
SERVING FORTH
Presented by Bob Nash at the November 20th, 2004 Forth Day

Abstract
Although Forth is touted for its code transportability, GUI transportability remains
a problem. Thus, Forth programmers must adapt existing GUI tools to their
needs, increasing development time and departing from their strengths as Forth
programmers.

This paper shows how standard HTML tools and a Forth-based scripting
language helped to solve this problem.

Haiku

GUI path, watch your step!
Simple Words help many see the light;
Served right, Forth guides all

SERVING FORTH.doc Page 1 of 16 03Nov04 rjn

SERVING FORTH
Presented by Bob Nash at the November 20th, 2004 Forth Day

Introduction
While re-factoring an existing application, I decided to strip out much of the
existing Windows GUI code and provide a user interface with an HTTP Server
and a Forth-based scripting language.

The project started out as a straightforward conversion to:

• Provide remote user access,
• Reduce the size of executables by eliminating Windows GUI content, and
• Change program interfaces, as much as possible, to use text files for

input, output and configuration (similar to Unix/Linux).

As mentioned in a previous paper, DISGUISING FORTH, this conversion was
surprisingly successful, earning praise from both users and management not only
for increased accessibility but also for expanded functionality.

Much of this increased accessibility and functionality were a natural consequence
of using a browser-based user interface. The advantages inherently provided by
an HTTP server and browser combination are:

• Remote user access via an existing corporate network
• Browser-based printing and display facilities that are automatically fitted to

user PC configurations
• Easy display formatting and user input design using commonly available,

but sophisticated, HTML tools
• The user interface can be more easily transported in the event that the

core application is re-hosted on a different operating system

SERVING FORTH.doc Page 2 of 16 03Nov04 rjn

SERVING FORTH
Presented by Bob Nash at the November 20th, 2004 Forth Day

Overview
Although I believe that the principles outlined here are generally applicable to a
number of computing environments, I describe only one specific combination.

The combination consists of a core application with a browser-based GUI. Both
the application and the HTTP server for the GUI are written in SwiftForth™. The
HTTP server was written by Mike Ghan of Logix Controls and is furnished as a
turnkeyed Windows program with some code examples.

To the disappointment of some (e.g., Elizabeth Rather), I will not dwell on the use
of SwiftForth™ for developing Windows™ applications or the core application.
Suffice it to say that I am well pleased with the results I have been able to
achieve with SwiftForth™.

However, the advantages outlined below should apply equally to other Forth-
based Windows™ programming environments with similar facilities, and other
programming environments such as Gforth running under Linux with Bernd
Paysan’s WEB server extensions.

Primarily I describe the Forth scripting capabilities of Mike Ghan’s HTTP server
to show the kinds of things that are possible with a CGI supercharged with Forth.

Mike Ghan’s HTTP Server
At first, the server didn’t seem to be much different from other Public Domain
programs I had downloaded from the Internet. However, I chose Mike’s server
because I was interested in using Forth scripting. I also used Mike’s server
because it was:

1. Available Public Domain (thanks Mike!)
2. Written in SwiftForth™ (but only as a turnkey application)
3. Useful without consuming a large number of computer resources (the

executable is only 925K)
4. Equipped with a number of useful configuration and status indicators
5. Proven to be reliable and suitable for process control applications, having

been used internally by Mike for several years prior to release
6. Furnished with a CGI scripting interface that used Forth-based display and

interface scripts mixed with HTTP statements
7. Provided with coding examples that illustrated important capabilities such

as CGI command extensions (in Forth), extension of the server
capabilities at startup and file I/O.

Following sections focus on items 6 and 7 above.

SERVING FORTH.doc Page 3 of 16 03Nov04 rjn

SERVING FORTH
Presented by Bob Nash at the November 20th, 2004 Forth Day

A Sample Forth Script
As I understand it, the development of the scripting interface provided with the
Mike’s server was influenced by Bernd Paysan’s article, A Web-Server in Forth
(see www.jwdt.com/~paysan).

To give you a flavor of how a Forth-based CGI script looks, see Exhibit 1.

As you can see, the script is a mixture of HTML and Forth Words. The <% …
%> pairs demark the Forth CGI statements. In this example, part of the text for
the error display is handled by standard HTML statements and part is handled by
information extracted from the server data and output as HTML.

When I first saw statements like this, I felt that I had found something I could
work with productively. It allowed me to leverage my experience with HTML and
Forth to display information to a remote user. But wait! There’s more!

Startup Extensions
As promising as the sample given in Exhibit 1 seemed when I first saw it, it didn’t
seem to be anything earthshaking. For an earthshaking example, consider
Exhibit 2.

What is so exciting about this script? Well, it is executed at startup by the
server. When I first saw this, I couldn’t understand how a Forth definition could
be executed by a turnkey application. The turnkey can execute the Forth
definition, SHOW-VERSION, because the HTTP server has a dictionary. This
dictionary allows the Forth scripting language to be globally extended at startup.

How much dictionary memory is available for extensions at startup? All the
memory is available just as in a SwiftForth™ console session.

Pretty cool, huh? But wait! There’s more!

SERVING FORTH.doc Page 4 of 16 03Nov04 rjn

http://www.jwdt.com/~paysan

SERVING FORTH
Presented by Bob Nash at the November 20th, 2004 Forth Day

Client Extensions
Now consider Exhibit 3, a client script from one of my applications. Note that the
script allows the client’s dictionary to be extended with Forth definitions such as:

 : >CLOG (a n ..) <CRLF> COUNT RAW>CLOG RAW>CLOG ;

Also note that the other normal dictionary operations can also be performed,
such as conditionally defining a buffer:

\ ----- buffer for data file name
[DEFINED] FBUF NOT [IF]
 64 CONSTANT |FBUF|
 CREATE FBUF |FBUF| ALLOT
[THEN]

Of course, client definitions only persist as long as the client application is active
(e.g., when a client “task” is created at connection).

Because the server must handle multiple client connections, client script
dictionaries are limited. In the system as delivered, the default client dictionary is
50K but, because the dictionary size is controlled by a VALUE, you can alter
the client dictionary size in the startup script. For example: 75000 TO
/SCRIPT-DICT . Thus, the resource usage of client scripts can be tuned, based
on the server resources and the likely number of concurrently connected clients.

Other Features
For the sake of brevity (not my strong point), here are some other features
provided or supported by Mike’s server:

1. File reading and writing from a client script
2. Cookies (read and write)
3. Access to the connection stream (e.g., for IP address, protocols, data

values)
4. Forms for user input, including validation scripts
5. Client connection data such as socket numbers, open connections, client

connect/terminate times, socket data)
6. Server configuration (e.g., set and view TCP Port, IP address, connection

timeout)
7. Style sheets
8. Small footprint – my application with the server and all scripts is less than

1.1 Megabytes, including 925K for the server executable

SERVING FORTH.doc Page 5 of 16 03Nov04 rjn

SERVING FORTH
Presented by Bob Nash at the November 20th, 2004 Forth Day

Summary
Using an HTTP server and a Forth scripting language to provide a user interface
can provide:

1. A user interface that is much more transportable (or at least more
translatable) than with native GUI APIs such as Windows

2. User functionality that is inherent in the use of a browser, such as remote
access, customized printing and flexible displays

3. A convenient development environment, including Forth and HTML tools

The only drawback to using a server-based GUI is that there is some learning
curve, especially if you are not familiar with HTML development tools. Also,
formatting HTML text did consume more of my time than I expected, but those
more experienced with WEB development should have fewer problems.

SERVING FORTH.doc Page 6 of 16 03Nov04 rjn

SERVING FORTH
Presented by Bob Nash at the November 20th, 2004 Forth Day

EXHIBIT 1
SAMPLE FORTH CGI SCRIPT

(BAD-URL.FS)

<HTML>
<HEAD>
<TITLE>Page Not Found - Unknown URL (404)</TITLE>
</HEAD>
<BODY>
<H2>There was a problem with your request, sorry ...</H2>
<% (We're in FORTH!)
 PARA
 S" The page you requested " .<TYPE>
 .(<CODE>) SCRIPT-CLIENT USING WEB-CLIENT-RES GET-RAW-READ
 BL PARSE-WORD 2DROP BL PARSE-WORD 2NIP DKRED-COLOR COLOR .<TYPE> .(
</CODE>)
 S" does not exist." .<TYPE>
 END-PARA
 PARA .(Please correct your request and try again.)
 END-PARA
 HTML.SERVER
%>
</BODY>
</HTML>

SERVING FORTH.doc Page 7 of 16 03Nov04 rjn

SERVING FORTH
Presented by Bob Nash at the November 20th, 2004 Forth Day

EXHIBIT 2
EARTHSHAKING SCRIPT

(CUSTOM.FS)

{ ===
Custom Forth Routines for WebServer

 Changes:
 Created 12/10/2002 by Mike Ghan
=== }

HTML DEFINITIONS

: SHOW-VERSION (--)
 BREAK RED BOLD <ATTR> .VERSION </ATTR> BREAK ;

/FORTH

SERVING FORTH.doc Page 8 of 16 03Nov04 rjn

SERVING FORTH
Presented by Bob Nash at the November 20th, 2004 Forth Day

EXHIBIT 3
CLIENT SCRIPT

(ACLM-RcvForm.FS)

HTML

\ -----------------------------[Client Log File]----------------------------

: RAW>CLOG (a n --) C" CLIENT.log" ~>>FILE TYPE CONSOLE ; \ no crlf
: >CLOG (a n ..) <CRLF> COUNT RAW>CLOG RAW>CLOG ;

\ ----------------------------[Switch Data File]----------------------------

\ ----- buffer for data file name
[DEFINED] FBUF NOT [IF]
 64 CONSTANT |FBUF|
 CREATE FBUF |FBUF| ALLOT
[THEN]

\ ----- create dated filename for switch data file
\ (e.g., 040514083417.dat for May 14th, 2004 at 08:34:17)

S" C:\ACLM\DEACTIVATE\" FBUF PLACE DatedFName FBUF APPEND S" .dat" FBUF
APPEND

: $>DFILE (a n --) FBUF ~>>FILE TYPE CONSOLE ; \ add $ to deactivate file

[DEFINED] DBUF NOT [IF]
 4096 CONSTANT |DBUF| \ data buffer for deactivate images
 CREATE DBUF |DBUF| /ALLOT
[THEN]

\ Note: Do not append a CRLF to each switch. This is not only unnecessary,
\ but will also crash MASTA! Terminating CRLF is optional
: !DBUF (a cnt --) \ store a $ in the switch data buffer
 DBUF DUP C@ IF APPEND ELSE PLACE THEN
 S" 01 000 000 01" DBUF APPEND ;

SERVING FORTH.doc Page 9 of 16 03Nov04 rjn

SERVING FORTH
Presented by Bob Nash at the November 20th, 2004 Forth Day

EXHIBIT 3 (Cont.)

\ ------------------------------[Client Cookie]-----------------------------

\ ----- set name value in cookie
S" Name" SET-CLIENT-COOKIE-NAME
S" First" GET-CLIENT-CONTENT-VALUE >SPAD SPACE>SPAD
S" Last" GET-CLIENT-CONTENT-VALUE SPAD+
SPAD COUNT DUP 1 > [IF] SET-CLIENT-COOKIE-VALUE [ELSE] 2DROP [THEN]

\ S" password" SET-CLIENT-COOKIE-NAME
\ S" password" GET-CLIENT-CONTENT-VALUE SET-CLIENT-COOKIE-VALUE

0 (time offset in seconds) 10 (days) SET-CLIENT-COOKIE-EXPIRE

\ ---------------------[Write user data to a log file]----------------------

\ ----- write Client name to log
SPAD COUNT DUP 1 > NOT [IF]
 2DROP S" No user name entered" >CLOG
 S" Cookie name is: " >CLOG
 S" Name" GET-CLIENT-COOKIE-VALUE RAW>CLOG
[ELSE]
 S" Name: " >CLOG RAW>CLOG
[THEN]

\ ----- write Client IP to log
GET-CLIENT-IP DUP [IF] >CLOG [ELSE] 2DROP [THEN]

\ ----- write Client raw switch data to log
S" switches" GET-CLIENT-CONTENT-VALUE DUP 0= [IF]
 2DROP S" No data entered"
[THEN] >CLOG

\ ----- echo data filename to capture date/time
FBUF COUNT >CLOG S" -----------------" >CLOG

SERVING FORTH.doc Page 10 of 16 03Nov04 rjn

SERVING FORTH
Presented by Bob Nash at the November 20th, 2004 Forth Day

EXHIBIT 3 (Cont.)

 (Next Call the "Success" Page/Script -- see HTML-Script.f)
REPLY-FORM-SUCCESS? [IF] (True = Success URL Specified?)
 DBUF COUNT DUP [IF]
 $>DFILE <CRLF> COUNT $>DFILE
 CR .(Switch data written to:) FBUF COUNT TYPE
 [ELSE]
 2DROP CR .(No switch data to write!)
 [THEN]
\ CR CR .(ACLM-RecvForm.SHTML -- Form Processing is Complete)
[ELSE] (else)

\ PLAY-WARNING \ Play Windows warning sound on Server
 <HTML>
 <HEAD>
 <TITLE>Missing Success Page</TITLE>
 <META http-equiv="Pragma" content="no-cache">
 </HEAD>
 <BODY>
 <P>
 <HR>
 Missing Success Page! (Data Dump Below)

<% (########################## Start Forth ################################)

 BREAK .(URL:) GET-HTML-URL TYPE
 BREAK .(HTTP Arguments:) GET-HTML-ARGS TYPE
 BREAK
 .(<PRE TITLE="Raw HTTP Request">) \ Add Tooltip!
 .(The Raw HTTP Request was:)
 CR SCRIPT-CLIENT USING WEB-CLIENT-RES GET-HEADERS TYPE
 CR .(The Raw HTTP Content was:)
 SCRIPT-CLIENT USING WEB-CLIENT-RES GET-CONTENT TYPE
 .(</PRE>)

(############################## End Forth ##############################) %>

 <HR>
 </P>
 </BODY>
 </HTML>

[THEN]

SERVING FORTH.doc Page 11 of 16 03Nov04 rjn

SERVING FORTH
Presented by Bob Nash at the November 20th, 2004 Forth Day

EXHIBIT 4
ACTUAL STARTUP SCRIPT

(Custom.FS)

{ ===================[CUSTOM FORTH ROUTINES FOR WEB SERVER
]=============

 Change History:

 021210 Mike Ghan Original version created
 040511 rjn Added DISPLAY-FILE and support code
 040617 rjn Added GET-FILE?

===
== }

VARIABLE TRANSACTION# \ Example of a Global Variable

HTML DEFINITIONS

\ NOTE: All must be relative to a Client task resource (e.g., PAD, R-ALLOC)

: SHOW-VERSION (--)
 BREAK RED BOLD <ATTR> .VERSION </ATTR> BREAK ;

: DATEDFNAME (-- a n) TIME&DATE 2000 - 0 5 0 DO 100 1 M*/ ROT M+ LOOP
 <# # # # # # # # # # # # # #> ;

: NUMERIC? (char -- ?) [CHAR] 0 [CHAR] 9 1+ WITHIN ;

{ ------------------------[OUTPUT FILE AS HTML]------------------------- }

: (.X) (n #digits -- a n) 0 SWAP <# 0 DO # LOOP #> ;

: DateTime$ (-- a n) \ return date/time $
 0 LOCALS| T$ | 64 R-ALLOC TO T$
 (@date) >R 2 (.X) (month) T$ PLACE S" /" T$ APPEND
 2 (.X) (day) T$ APPEND S" /" T$ APPEND
 R> 2000 - 2 (.X) (yr) T$ APPEND S" " T$ APPEND
 @HOUR (.) T$ APPEND S" :" T$ APPEND
 @MINS 2 (.X) T$ APPEND S" :" T$ APPEND
 @SECS 2 (.X) T$ APPEND
 T$ COUNT PAD PLACE PAD COUNT ;

SERVING FORTH.doc Page 12 of 16 03Nov04 rjn

SERVING FORTH
Presented by Bob Nash at the November 20th, 2004 Forth Day

EXHIBIT 4 (Cont.)

: EXEPATH (-- zadr)
 0 GetModuleHandle HERE 255 GetModuleFileName DROP
 HERE ZCOUNT -NAME PAD ZPLACE S" \" PAD ZAPPEND PAD ;

: .ERR$ (a n --) 2 REL-SIZE RED BOLD .<TYPE> ;
: .BLUE (a n size --) REL-SIZE BLUE BOLD .<TYPE> ;
: .BLACK (a n size --) REL-SIZE (BLACK) .<TYPE> ;

: ONELINE (fid -- a n flag)
 PAD 255 ROT READ-LINE 0<> OR 0<> PAD -ROT ;

: DISPLAY-FILE (a n size --) \ given filename, display the file as HTML
 0 LOCALS| T$ size | 128 R-ALLOC TO T$ T$ PLACE
 T$ COUNT R/O OPEN-FILE ?DUP IF (bad open)
 NIP (fid) (THROW) BREAK .ERR$ BREAK T$ COUNT .ERR$
 ELSE
 BEGIN
 DUP ONELINE WHILE (fid a n)
 BREAK size .BLUE
 REPEAT 2DROP CLOSE-FILE DROP
 S" <HR>" TYPE
 BREAK BREAK DateTime$ 1 .BLACK
 BREAK T$ COUNT 1 .BLACK
 THEN ;

{ -------------------------[READ FILE TO MEMORY]--------------------------

0 VALUE |FILE| \ holds last file size: valid only immed. after GET-FILE?

: GET-FILE? (adr len -- adr flag) \ flag is true for a good read
 2DUP R/O OPEN-FILE IF
 DROP 4096 ALLOCATE DROP >R
 S" File " R@ ZPLACE R@ ZAPPEND
 S" not found." R@ ZAPPEND R> FALSE EXIT
 THEN (handle) 0 0 LOCALS| buf n fid | 2DROP
 fid FILE-SIZE 2DROP DUP TO n TO |FILE|
 n 4 + ALLOCATE DROP TO buf 0 buf n + C!
 buf n fid READ-FILE 2DROP
 fid CLOSE-FILE DROP buf TRUE ;
 -- }

/FORTH

SERVING FORTH.doc Page 13 of 16 03Nov04 rjn

SERVING FORTH
Presented by Bob Nash at the November 20th, 2004 Forth Day

EXHIBIT 4 (Cont.)

{ --------------------------[OPTIONAL HTTP PORT]-------------------------- }

\ 81 WEB-MASTER TCP-PORT ! \ Set HTTP Port

FALSE [IF] \ Test Message Box - Be Careful, No Window Exists Yet
S" Port altered to " PAD ZPLACE
WEB-MASTER TCP-PORT @ (.) PAD ZAPPEND
0 (No HWND) PAD Z" Testing"
MB_SYSTEMMODAL MB_OK OR MessageBox DROP
[THEN] \ End Test

SERVING FORTH.doc Page 14 of 16 03Nov04 rjn

SERVING FORTH
Presented by Bob Nash at the November 20th, 2004 Forth Day

EXHIBIT 5
USAGE NOTES

The following are notes I left for myself when I first brought up Mike Ghan’s
server. They may be useful if you decide to check it out.

Setup

1. Unzip the distribution and place the executable, WEBSERVER.exe,
HTML-Script.f and Custom.f (startup extensions) in the root directory (e.g.,
C:\WEBSERVER). To include the extensions, also create a batch file,
startup.bat, containing the statement: START WEBSERVER Custom.f .

2. HTML and script (*.FS) files are contained in the WEB subdirectory (e.g.,
C:\WEBSERVER\WEB).

3. Users accessing the server (e.g., via HTTP://10.31.199.16 or localhost)
will see INDEX.html contained in the WEB subdirectory.

Cookies

1. The cookie info is stored in a file named something like:
2. C:\Documents and Settings\bnash\cookies\bnash@10.31.199.16[1].txt
3. The form text is stored in the web server root directory as COMMENT.txt

Miscellaneous. Info

(some correspondence with Mike)

Question1: Because your server is a turnkeyed app, approximately how much
dictionary is available for extensions at startup? I assume there is also a limit on
the Forth definitions contained in the client CGI scripts.

Answer1: At startup, all the memory is available just as in a SwiftForth console
session. A client script is limited, the default is 50K, but because it is a VALUE,
you can alter it at startup: 75000 TO /SCRIPT-DICT

SERVING FORTH.doc Page 15 of 16 03Nov04 rjn

http://10.31.199.16/

SERVING FORTH
Presented by Bob Nash at the November 20th, 2004 Forth Day

Miscellaneous. Info (Cont.)

Question2: What is the latest version of your HTTP Server?

Answer2: Latest version is 05/10/2004 which fixed a few problems when
INCLUDEing forth source when the server was launched.

Question3: Can you provide a simple explanation of how the HTTP requests from
a client are formatted in the socket data?

Answer3: HTTP requests are fairly straightforward - keep reading until a pair of
crlfs are received, the connection times out, or until your buffer is full (important).
I’ve implemented the server in SWOOP (object oriented SwiftForth extensions)
with each client allocating buffer space on the fly. I gleaned a few ideas from
Bernd Paysan’s web server: http://wwwejwdt.com/~paysan/httpd-en.html .

SERVING FORTH.doc Page 16 of 16 03Nov04 rjn

http://wwwejwdt.com/~paysan/httpd-en.html

	Abstract
	Although Forth is touted for its code transportability, GUI transportability remains a problem. Thus, Forth programmers must adapt existing GUI tools to their needs, increasing development time and departing from their strengths as Forth programmers.
	This paper shows how standard HTML tools and a Forth-based scripting language helped to solve this problem.
	Haiku
	GUI path, watch your step!
	Simple Words help many see the light;
	Served right, Forth guides all�Introduction
	Overview
	Mike Ghan’s HTTP Server
	A Sample Forth Script
	Startup Extensions
	Client Extensions
	Other Features
	Summary

