
Project: DOT
The Digital Optical Transceiver Project.

Samuel A. Falvo II
2009 December 16

Audio Samples of Optical Voice

Introducing Layer 1: Physical Layer

Introducing Layer 1: Physical Layer

The simplest possible means of communications between two
pieces of electronics gear is to run a simple cable between end-
points.

Introducing Layer 1: Physical Layer

By default, neither node expresses any desire to send anything,
so they just sit and listen for activity on "the line." Since neither
node drives any signal on the line, it tends to float naturally
towards some well-known voltage.

Introducing Layer 1: Physical Layer

Let's pretend our line's quiescent voltage is ground. Suppose A
wants to signal to B that some kind of event happened. It may
do so by asserting a positive signal on the line. B can readily
detect this, because it knows that a grounded wire implies
nothing's happening.

Or, is it?

Introducing Layer 1: Physical Layer

Suppose that node A monitors for one of two events. How can
node A inform node B which event occured? We can bring the
line high for the first event, but we can't just "assert" 0V on the
line to indicate the second event. How can we work around
this?

It turns out there are several different ways.

Introducing Layer 1: Physical Layer

If node B maintains relative timing information, it can note
when node A asserted its signal, and when it stops. By
measuring the span of time between these two events, node B
can infer whether node A is attempting to indicate event 1 (1
second) or event 2 (2 seconds).

This is called Pulse Width Modulation.

Introducing Layer 1: Physical Layer

If node B maintains absolute timing information, it can note
when node A asserted its signal, and when it stops. By common
agreement , we know the pulse width is finite, so we instead only
care about where the pulse starts in time.

This is called Pulse Position Modulation.

Introducing Layer 1: Physical Layer

While PWM is used with R/C aircraft and cars, it's usually not
used in digital communications because it takes different lengths
of time to send different numbers. Breaking big numbers into
smaller chunks, help, but it doesn't solve the problem
completely.

Introducing Layer 1: Physical Layer

Do we use PPM? In a crude form, we used to use multi-bit PPM
for floppy disk recording (FM and MFM encoding). Manchester
encoding is a more contemporary application of the
idea. Manchester encoding is used in 10-base-2 and 10-base-T
Ethernet!

Still, we prefer not to use it, because it basically takes two bits to
communicate one.

Introducing Layer 1: Physical Layer

No, I choose to use PCM -- Pulse Code Modulation. Fancy
words for simply choosing to do the simplest possible thing you
can: a binary zero and binary one are represented simply by
specific voltages (0V and 5V in the case of DOT's hardware).

TX and RX Synchronization

Which interpretation is correct?!

We need edges to keep the receiver in sync with the transmitter, so
that the receiver doesn't go too fast or too slow. The trick is inserting
these edges in such a manner that we keep our data steam as compact
as possible. Three techniques remain in common use today.

TX and RX Synchronization

One approach is to scramble the data using a random number
generator. The transmitter and receiver set their RNG to the same
initial seed value so they can understand each other.

The disadvantage of scrambling is that malicious users can engineer
traffic specifically to counter the effects of scrambling, resulting in
loss of synchronization.

TX and RX Synchronization

Bit-stuffing works through probabilities; since we know when the
previous edge occured, we can predict where future edges would
exist, if they were to occur at all. However, after so many bits, the
error introduced from prediction can get so great that you start to mis-
interpret the signal.

So, we stuff bits deliberately, with the intention of enforcing
synchronization. Note that stuffing only happens when it's needed!

TX and RX Synchronization

The final approach is to convert 8-bit bytes into 10-bit codewords,
each designed to have a roughly equal number of 1s and 0s, so as to
maintain sufficient numbers of edges that the receiver never has more
than, say, three 0s or 1s in a row. However, you take a 20%
performance hit!

Arduino Test Bench

How NRZI Works

When we transmit a 1, we do nothing. Otherwise, toggle the output
signal.

Results of Streaming 0 Test
In case it's hard to read,
here's a color-coded
transcription of a single data
packet from the receiver:

RED is HDLC framing.
GREEN is number of 0s.
YELLOW is number of 1s.
BLUE is 8-bit ATM CRC.

7ED124060000000000577E
000402641 000000000

<-- Notice the CRC error
caused by the unreliability of
the Arduino's RS-232
interface!

One Little Oopsie with Bit-Stuffing

See how the resulting NRZI-encoded waveform is either almost
entirely low voltage or high voltage? This poses a bit of a problem
not because it's somehow "wrong" to do from a philosophical
stand-point. Instead, it pushes the receiver's amplifier to its
physical limits, and may actually cause loss of data!

Receiver Schematic (Preliminary)

Receiver Schematic (Preliminary)

Amplifier Saturation Waveform

Thank you for attending!
(If Time Permits, Forth Code Follows!)

CRC-8-ATM (sans scrambling)

Polynomial is dreadfully simple: x 8+x 2+x +1

: b dup $80 and if 2* 7 xor else 2* then ;
: c over c@ xor b b b b b b b b swap 1+ swap ;
: crc vars 0 c c c c c c c c nip 255 and ;

Proper ATM-spec CRC also XOR's final value with $AA for
scrambling purposes. I'm communicating over RS-232 and USB, so
no scrambling necessary.

Primordial HDLC Framing and Byte-
Stuffing
: flag begin recvRx $7E = until ;
: -escape dup $7D = if
 drop recvRx $20 xor then ;
: o recvRx -escape over c! 1+ ;
: n o o o o ;
: telemetry vars n n crc recvRx xor
 if ." (CRC ERROR)" then drop ;
: rxFrame flag telemetry flag cr ;

Notice that CRC byte covers message data after HDLC escaping has
occurred. Real HDLC wouldn't do this, but it took less code to make
it work this way, and it works fine.

Complete Telemetry Source Code
: deviceName S" /dev/ttyUSB1" ;

variable hRx
: openRx deviceName r/w bin open-file throw hRx ! ;
: closeRx hRx @ close-file throw ;
: sendRx hRx @ write-file throw ;
variable buf
: recvRx buf 1 hRx @ read-file throw drop buf @ 255 and dup hex
 s>d <# # # #> type decimal ;

create msg 0 ,
: askRx msg 1 sendRx ;

create vars 2 cells allot
vars constant n0bits
vars cell+ constant n1bits

: flag begin recvRx $7E = until ;
: -escape dup $7D = if drop recvRx $20 xor then ;
: o recvRx -escape over c! 1+ ;
: n o o o o ;
: b dup $80 and if 2* 7 xor else 2* then ;
: c over c@ xor b b b b b b b b swap 1+ swap ;
: crc vars 0 c c c c c c c c nip 255 and ;
: telemetry vars n n crc recvRx xor if ." (CRC ERROR)" then drop ;
: rxFrame flag telemetry flag cr ;

: .cols ." N0Bits N1Bits" cr
 ." --------- ---------" cr ;
: .cell s>d <# # # # # # # # # # #> type space ;
: .row n0bits @ .cell n1bits @ .cell cr ;
: run cr .cols begin askRx rxFrame .row 1000 ms again ;

