
LabVIEW: a Graphical
Dataflow Language
and Telescopes
Silicon Valley
Forth Interest Group
Sunnyvale, January 28, 2006

Why?

� Do we only find problems after compiling?
� Do we only find missing functions after

linking?
� Can’t we give hints to the environment

about what can run independently?
� …

LabVIEW: a graphical dataflow language
� Execution order determined by presence of data on input: different paradigm than

text based procedural languages. In general: no sequential execution, no
variables.

� Every subunit of code (a VI or “Virtual Instrument”) has its own user interface, “for
free”. Great for testing.

� Requires more an “engineering thinking” than traditional “computer science”
thinking.

� Dataflow languages lend themselves to parallel execution. Multithreaded
execution becomes automatic without the user having to think much about it.

� Code is automatically compiled to machine language. Not interpreted so it’s
(reasonably) fast (about ½ of C).

� Comes with large libraries of math & signal processing functions.

� In the real world: seldom the only development environment used so cooperation
is paramount. There are interfaces to C/C++, .NET assemblies, DLL’s.

� Available on different operating systems: Windows family, Mac, Linux, Solaris.
Code is platform independent and can be moved from one OS to another.

� Available for different hardware targets: PDA (Palm/WinCE), PXI, FPGA. Same
code can be downloaded to different targets (but FPGA is limited to integer
operations). Next version of Lego Mindstorm (NXT) is also LabVIEW based.

��

LabVIEW Everywhere

� � �� � � 	 �
 ���

���� � � �
 �

� � � 	 � �� ��� �

� � �
 � � �

� � � �

 �

������

��
 � � �� �� ���� � � � �� � ���� ��

� �� � �� � �

 � � � � �

! � 	 �� � � �" �� � � � �� ��
 � � � �

� � # ���� � # � � � �

LabVIEW: Data Capabilities
� Supported types: int (I8-I64), float, complex, boolean, enum, string, object

reference, variant, time and N-dimensional arrays of those
� Functions are polymorphic: adapt to input wires. Greatly decreases

required number of primitives.
� Wire color indicates type. Wire thickness indicates dimensionality.

� Primitive data types can be combined in user-defined structures, up to any
complexity (just like C structs)

� Support for +/- Inf and NaN.

LabVIEW: Programming Capabilities
� Event handling: user defined or User Interface triggered

� Synchronization primitives: Queue, Rendezvous, Semaphore, Notifier.
� Unlimited hierarchy of VI’s.

� For and While loops. “Sequence Structures” where order of execution is
important. Timed Loops for rate based scheduling.

LabVIEW: Math & Signal Processing Libraries
� Math

� Linear Algebra
� Optimization
� Curve fitting, interpolation, extrapolation
� Integration, differentiation, differential equations
� Probability, Statistics
� Elementary & Special functions (Gamma, Bessel,…)
� N-dimensional array manipulation
� Polynomial operations

� Signal Processing
� Windows (Hamming, Flat top,…)
� Spectral analysis
� IIR & FIR filters (Butterworth, Chebychev,…)
� Transforms (Laplace, Fourier, Z, wavelets,…)
� Signal generation (chirp, noise,…)

LabVIEW: Connectivity

� Instrument I/O
� Data acquisition boards (double-buffered, complex triggering, intra-board

synchronization)
� VISA (serial)
� GPIB (with 1000’s of drivers to other vendors instruments)

� Sound In/Out
� File I/O: binary, text, datalog (structured binary), XML support
� VI server for remote control – DataSockets for remote data

� Call Windows DLL or Unix Shared
Libraries

� ActiveX server/client: control LabVIEW
from other Windows programs

� Embed ActiveX components in display,
including event handling

� Call .NET assemblies
� Drivers for serial, TCP, UDP, IRDA,

Bluetooth, SMTP
� Formula nodes: C-syntax, Matlab,

Xmath, IDL (RSI)

LabVIEW: Productivity Improvements
� Impossible to write syntactically incorrect code: wires “break”
� Immediate execute, invisible compile/link cycle
� No pointers, garbage collection, automatic memory allocation for all objects,

variable size arrays => really hard to make code crash
� Debugging

� Probes on wires
� Single stepping
� Breakpoints
� User defined probes

� Every piece of code (VI) has its own interface and can be tested without
having to write a “main” function

LabVIEW: User Interface elements
� Numerics
� Graphs
� Trees, listboxes, tables
� Tabs
� ActiveX container
� 3D
� For everything else: Drawing

canvas (Picture control)

LabVIEW: Final Comments
� It’s a 4th generation language, specifically designed to tackle measurement

and engineering problems. Don’t do “computer science” stuff with it!
� Use it for:

� Multi-threaded, multi-rate measurement and control problems
� Simple and complex data acquisition, machine vision, motion control
� Rich user interfaces
� Rapid Prototyping
� Environments where development cost and “time to market” is the most

important factor (e.g. not for mass produced items)
� Do not use it for:

� Device drivers, operating system stuff
� Complex parsing (Yacc/Lex)
� Word processors
� Games…

� It’s fun. Makes you think about the problem to solve and less about the
syntax of a programming language.

An Introduction to SALT

� South Africa (host institution: the South African Astronomical Observatory).
� Poland (through the Nicholas Copernicus Astronomical Centre, Warsaw).
� Rutgers University, New Jersey, USA.
� Göttingen University, Germany.
� The Hobby-Eberly Telescope Board (consisting of partners in the USA & Germany).
� Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
� University of Wisconsin, Madison, Wisconsin, USA.
� New Zealand (founding institution: the University of Canterbury).

General:
• SALT is a 10 metre class
telescope built in South Africa.

• It is the largest single telescope in
the Southern Hemisphere

• SALT is being built by an
international consortium consisting
of the following partners:

26-m Diameter
Dome

11-m
Primary
Mirror array

Tracker
Beam

Fibre-Coupled
Instrument Room

Telescope
azimuth rotation
bearing

Dome Opening

27-m Mirror Alignment Tower

Control & Service Building

Telescope
Structure

10 metres

The HET in Texas:

A concept diagram of SALT

Telescope moves in azimuth
only, not in altitude (fixed at
37 degrees from zenith)

The Arecibo Concept:

Spherical Primary Mirror

Star moves E to W on sky

Image moves
W to E on the
focal surface

Centre of curvature at
radius of primary

mirror

Tracker follows
focus of star. It
carries a
payload
consisting of
optics and
instruments.

Tracker off-centre
and pupil partially on primary

mirror array. At worst extreme,
still a 7 metre telescope!

Part of pupil off mirror is baffled
at exit pupil position

Tracker centred
and pupil centred on
primary mirror array. Full
9.2 metre collecting area.

How the telescope tracking works

9.8 meters
(32.2 feet)

11.1 meters
(36.4 feet)

Attributes:
• segmented array of 91 hexagons, each 1
meter wide (edge-to-edge) and 50 mm thick

• maximum mirror diameter:
11 m

• accuracy of mirror surface:
0.052 microns (1/10th wavelength of light
(smooth to 5/100,000 th of a mm)

• Field of view:
8 arcmin (~1/4 size of Moon)

• Resolution:
0.25 – 0.5 arcsec
(size of quarter at 10 km)
• Mirror array supported on steel ‘space
frame’ truss containing 1,747 struts and 383
nodes, precise to 4 mm over the entire
truss.

Primary Mirror Array

� Design: modified version of Hobby-Eberly Telescope.
� Telescope length 13 meters, mirror array 11 × 10 meters.
� Mass of telescope: 82 tonnes.
� Light collecting area of array: 77.6 sq. meters
� Wavelength coverage: 340 nm to 2500 nm (ultraviolet to near

infrared).
� Telescope rotates in azimuth on 8 air bearings to acquire targets, with

a precision of 3 microns. A tracker with 10 degrees of freedom then
follows the target, as the Earth rotates, for up to ~2.5 hours.

� The telescope can be moved from one object to another in < 5 min.
� Optical fibers can relay light from several objects (10-20) in the field to

instruments in the the basement.
� The tracker will consist of a Prime Focus Instrument Platform,

consisting of an efficient imaging spectrograph capable of observing
many objects at once.

Facts & Figures: telescope

Mirror support trusses 3 years ago

Supported by air bearings during movement

Telescope building with alignment tower

Cost benefits analysis

� Spherical mirror segments (not parabolic)
� Easy to grind
� Only one type of shape needed
� Optical aberrations (coma) corrected by secondary

� Move in azimuth only
� Much lighter telescope structure
� Gravity constant on mirror, corrections much easier

� Mirror not phased (edge alignment in microns, not
nanometers)

Only 70% of sky visible
Will never be able to use Adaptive Optics
Scheduling of time more cumbersome

But: 10% of cost of Keck!
Optimized for spectroscopy and UV

Telescope Control System Architecture

