
Masa will discuss the other reason behind his project and
how Forth might play an entirely different role in
computer language history.

My First Encounter with
Forth

In 1984, I was involved in building a telephone message
system. There were three of us: One for overall system
design, one for software implementation in Forth, and one
for hardware implementation, which was me.

In 1986, I took Forth class through UC Berkeley
Extension. I used FIG Forth on my Apple II computer.

The Last Two Decades of
Computer Improvements:

Hardware: Computation power has increased enormously
while the price of hardware has decreased significantly.

Internet: WWW, e-mail

Software: Do we really have a significant change?

Why not much progress in
Software Area?

We exhausted ideas 20 years ago?

JAVA was so hot at one point, but it hasn’t saved SUN.
Also, it did not create anything new. VM had been
already there with p-PASCAL and JAVA syntax came
largely from C++.

Newcomers: Ruby on Rails – Any comment on these new
languages?

My View on Programming
Languages:

Most of them, if not all, are visually oriented. Prof: Why
don’t you read it off to your neighbors to see if he/she
understands it?

They are like mathematical equations since they are
primarily designed by engineers or scientists, but linguist.
– Why this is a problem? All humans are equipped with
natural language skills which are more essential to our
survival. Computer languages are not leveraging our
natural ability in general.

Why can’t we achieve the
same kind of mastery in
computer programming?

Look at what trained musicians can do: They can play
complex music without noticeable mistakes. Some of
them can create music instantaneously, called
improvisations – the highest form of musicianship.

Is it possible to achieve this in programming? If so, how?
- We know that Forth programming style encourages far
less bugs in programming.

How is this possible in
music?

Internalization (memorization): Musicians can do
everything in his/her head – Is this possible in our
computer languages?

Historically, we had aural tradition where everything was
transferred to the next generation aurally.

There is a traditional Japanese singer designated as a
national treasure by the government. He can sing off any
song from his memory, over thousands of songs. Once he
dies, this mastery disappears.

If you think this is only given to
talented musicians, check this:

You can strike a conversation with a stranger about any
subject. Isn’t this an improvisation? This is why we can
draw such an analogy between music and human
languages.

In order for this to work effectively, a certain quality
should be observed, which is, a subject at any moment in
your conversation is relevant to close proximity.

Now, What is Audible
Computing?

My Definition: To perform any kind of computing tasks
based on audible interface rather than visual or other
physical means.

How this project started for
those who don’t know:
1.I acquired an old notebook computer with a broken LCD

panel. It functions fine with an external monitor. But, I
realized that this might be still a nice machine for data
logging and/or control applications since it runs on 12V
DC. I have friends who live in woods. They have solar
systems and need some monitoring and controls.

2.I picked up SPARCstation 4 from the neighborhood. I
didn’t know anything about Open Firmware or Open Boot,
but I thought having Forth in firmware was very practical
for trouble shooting.

The status of SPARCstation 4 (SS4)

The target machine doesn’t have to be SS4, but it contains
Open Boot, a sister of Open Firmware. The source code
for a similar UltraSPARC Station is available, which
could be helpful if I ever want to play with it.

The booting issue resolved, which means both Fedora 3
and Solaris 8 will be operational shortly.

Type 5 keyboard is acquired.

I just need to verify if the mouse is operational. I also
need to acquire a reflective mouse pad.

How Morse Code is
Constructed: Brief Explanation

Timing is everything in Morse Code:
Dot: 1 [Unit length, which changes according to the speed of keying.]

Dash: 3 [Dot length=Unit length]

Character Space: 3

Word Space: 7

S V F I G

Keying Devices:
Modern Squeeze Key – The separate input for Dash and
Dot, which makes programming and keying easier.

K7SRA Key

Extended Morse Code:
Special characters, such as space and carriage return need
to be added to the standard Morse Code. I call it
“Extended”.

I am in the process of finding out if the Extended Morse
Code used in Darci USB is copyrighted. They call it
Morse Code Plus. If not, I use the same definition. If yes,
I will just come up with my own definitions. This is not
an engineering issue, but I need to be careful

Why Forth?

Most of the languages are not suited for audible
computing, simply too complicated.

Forth architecture makes it a present subject only relevant
to close proximity: Think of what you can do with a stack
versus what you can do with a group of registers. This
could be the single most important reason why Forth
programs are less prone to bugs. Of-course, you can defy
this feature/disadvantage, but it makes your program very
inefficient. For example, C to Forth Compiler.

Prototype 1:
Prototype 1 is focused on the feasibility of the concept .

A terminal program under Windows with Morse Code
Interface. This terminal program can be connected to
another Forth system.

I found a sample TTY program for Windows at Microsoft
web site:

http://msdn2.microsoft.com/en-
us/library/ms810467(d=printer).aspx

It is a fairly complete program with source code and
detailed explanation of the code.

http://msdn2.microsoft.com/en-us/library/ms810467(d=printer).aspx
http://msdn2.microsoft.com/en-us/library/ms810467(d=printer).aspx

Requirements:
There are two tones for Morse Code: one for incoming,
the other for outgoing for clarity. They should be
adjustable for personal preferences.

Any unrecognized characters in input stream will be
simply discarded. – No complicated terminal emulations,
but a simple teletype emulation, abbreviated as TTY.

Any unrecognized character in keying stream will be
interrupted with a correction symbol for an immediate re-
transmission, which makes it easier to use.

Serial In

ASCII
To Morse

Conversion

MIDI OSC1

MIDI OSC2
Volume

S
um Amplifier

SP

Terminal
(Screen)

Squeeze
Key

Controller

Morse
To ASCII

Conversion Serial
Out

Block Diagram:
Prototype 1

Squeeze
Key

Input
Error

Correction

Keyboard

Prototype 2: Porting
Prototype 1 to Forth System
Running under Windows:
Prototype 2 is focused on porting Prototype 1 to Forth
System running under Windows.

This is a great opportunity to learn how Windows API is
implemented in different Forth Systems.

I am also looking for Forth System, which can be easily
ported to Windows CE environment. The above study
will be directly used here.

Prototype 3: Integrate
Prototype 2 to Forth System.

All the Forth routines except hardware related routines
will be completed in Prototype 2, which makes the
integration easier.

Prototype 3 is conditional upon the result of the Prototype
1. If Prototype 1 is promising, Prototype 3 is continued.
Prototype 2 is actually a learning opportunity for Forth
System running under Windows. It will be continued
regardless of the result of the Prototype 1.

Prototype 3 (Additions):

Prototype 3 is the final step of the project and focused on
actual implementation of the concept.

The target Forth system should be modified for Audible
Computing, especially in editing (or human interface)
area. Preferably, implement a switch to change the mode
of operation so that the original interface is kept intact.
Or, if a keyboard and/or video interface does not present,
it automatically switches into Morse Code mode.

Disclaimer:
This is created best to my knowledge at the time of
writing. It is, however, not guaranteed to be 100%
accurate. I shall not be held liable for either direct or
indirect damages by your applying the information
contained here. You are at your own.

Copyright Notice:
This work is copyrighted by Masa Kasahara.

You are granted to make copies and share with your
colleagues for educational purposes.

All the images used are either my own, if not specified, or
in public domain with sources indicated.

Third-Party Trademarks: Brand and product names are
or may be trademarks or registered trademarks of their
respective holders. All rights with respect to those
trademarks or registered trademarks are reserved by their
respective holders.

