
Forth With

Small Silicon

SVFIG

Nov. 16, 2024

Bill Ragsdale

The Premise

• Imagine our time is limited for silicon development.

• If execution speed and memory don’t matter . . .

•How many CPU opcodes are enough?

• This is an exploration. Is it practical?

Execution Levels

• Silicon level,14 actions; all handling 32 bits.

• All through the stack; no register-to-register transfers.

• Code-level, 14 op-code assembler.

• Linear, no nesting, no looping mechanism.

• Can only use silicon level actions.

• Opcode bits could be equivalent to microcode.

• High-level

• Colon definitions, nesting, branching, looping.

Registers

SP stack pointer

RP return stack pointer

IP interpretive pointer

UP user area pointer

Key Memory Areas

Data Stack

Return Stack

User Area

Dictionary

Magic Array

Assembly Language

• Memory

• @ ! SP@ SP! RP@ RP!

• Math

• Literal + Magic

• Logic

• Nand

• Control

• Exit Execute Branch ?Branch

Note: This is the ENTIRE assembly language! 14 opcodes

Meta Level, to bootstrap

• Dictionary

• DP, a user variable

• Defining

• CREATE USER

• Compiling

• CODE C; : ; COMPILE

Stack Manipulation

Built on: @ ! sp@ sp!

Generating

dup drop swap over rot nip tuck

Simple Code Examples

code dup (n1 --- n1 n1) \ duplicate top of stack
 SP@ @ c;

code drop (n1 ---) \ drop from stack
 SP@ ! c;

code swap (n1 n2 --- n2 n1)

 SP@ -12 + ! SP@ -12 + !

 SP@ -20 + @ SP@ -12 + @ c;

Some are simple and direct. Some quite complex.

Complex Code Example

Complex, uses 32-bit operators to handle 8 bit values.
Could be written at high level as:

: c! (n1 addr1 ---) \ store byte n1 at addr1
 dup @ -255 and rot 255 and or swap ! ;

But expands at the silicon level to:
code c!
 sp@ @ @ -255 nand SP@ @ nand
 RP@ -8 + ! RP@ -12 + ! RP@ -16 + !
 RP@ -12 + @ RP@ -8 + @ RP@ -16 + @
 255 nand SP@ @ nand
 SP@ @ nand SP@ -8 + ! SP@ @ nand SP@ -12 + @ nand
 SP@ -12 + ! SP@ -12 + ! SP@ -20 + @ SP@ -12 + @
 ! c;

Logic

Built on silicon “nand” using DeMorgan’s Theorem.

INVERT is “dup nand”

AND is “nand invert”

OR is “invert swap invert nand”

XOR is very complicated

Logic Examples

code invert sp@ @ nand c;

code and nand sp@ @ nand c;

code or SP@ @ nand SP@ -8 + !
 SP@ @ nand SP@ -12 + @ nand c;

: xor dup >r over nand swap invert
 r> invert nand nand invert ;

Math

Built on: + nand

code invert SP@ @ nand ;

code negate SP@ @ nand 1 + ;

code - SP@ @ nand 1 + + c;

Code-Level

IF ELSE THEN BEGIN

AGAIN WHILE REPEAT UNTIL

C, , C! C@

- R> >R R>DROP

1LSHIFT 1RSHIFT LROLL RROLL

LSHIFT RSHIFT +! XOR

OR AND TUCK NIP

ROT SWAP OVER DUP

DROP INVERT

Built from silicon code words.

Bit Manipulation

Generating:

Rshift, Lshift, 1Rshift, 1Lshift, Rroll, Lroll.

Build on: ‘magic’ a ram array of 192 cells.

 A 32-cell array for each word.

 Write into base memory cell.

 Read from a linked, offset cell.

Magic Array

0-Right Shift

1-Left Shfit

0-Left Shift

Left Roll

Right Roll

1-Right Shift

Base Address

Write to the base address.

Read adjusted cell at an offset.

A local, 32 bit bus between cells

does the shifting.

Right Shift, 32 bits, zero fill

A B C D <32 bits> m n o p

0 A B C l m n o

0 0 A B k l m n

0 0 0 0 0 0 A B

0 0 0 0 0 0 0 A

OFFSET

00

01

02

1D

1E

1F

0 0 0 0 0 A B C

Right Roll, 32 bits

A B C D <32bits> m n o p

p A B C l m n o

o p A B k l m n

C D E F o p A B

B C D E n o p A

OFFSET

80

81

82

9D

9E

9F

D E F G p A B C

Roll Example

: Rroll (n1 n2 --- n3) \ roll n2 bits right

 swap magic ! \ load register

 0x80 magic + + @ ; \ access with offset

0x0F 4 Rroll h. See: F0000000 ok

Return Stack Manipulation

: >r (n1 ---) (R: --- n1) \ move to return stack

 rp@ @ rp@ -4 + ! rp@ !

 rp@ -4 + rp! ;

: r> (R: n1 ---) (--- n1) \ move from return stack

 rp@ 4 + @ rp@ @ rp@ 4 + !

 rp@ 4 + rp! ;

Flow Control

Built on: branch, ?branch.

Generating:

if else then

begin until

begin while repeat

begin again.

Conditionals

: HERE dp @ ;

: >MARK HERE 0 , ;

: <MARK HERE ;

: >RESOLVE HERE 4 + SWAP ! ;

: <RESOLVE , ;

: IF COMPILE ?BRANCH >MARK ; IMMEDIATE

: THEN COMPILE _THEN >RESOLVE ; IMMEDIATE

: ELSE COMPILE BRANCH >MARK SWAP >RESOLVE ; IMMEDIATE

: test 1 if ." one" else ." not one" then ;

My Simulation

▪ Silicon primitives are in a W32Forth

vocabulary Silicon-level.

▪ Code words, only using silicon primitives in the

vocabulary Code-level.

▪ Language expanded in the vocabulary High-

level.

▪ Future: multiply and divide.

Implementations

▪ My simulation follows Win32Forth.

▪ Actual implementation could be ITC, DTC,

subroutine threaded or . . .

▪ Code words could have high bit set; colon

definitions have high bit clear. Allow mixing of

high-level and code, inline.

▪The ‘magic’ array in ram uses 32-bit cell images

of all rolling and shifting possibilities. 192 cells.

Conclusions

▪Very stack intensive.

▪All operations pass through the top two stack

items.

▪No arithmetic logic unit. Just an adder and 32-bit

nand.

▪The bits of silicon opcodes could be microcode

selecting control and flow in silicon.

▪Could be implemented in discrete integrated

circuits.

	Slide 1
	Slide 2: The Premise
	Slide 3: Execution Levels
	Slide 4: Registers
	Slide 5: Key Memory Areas
	Slide 6: Assembly Language
	Slide 7: Meta Level, to bootstrap
	Slide 8: Stack Manipulation
	Slide 9: Simple Code Examples
	Slide 10: Complex Code Example
	Slide 11: Logic
	Slide 12: Logic Examples
	Slide 13: Math
	Slide 14: Code-Level
	Slide 15: Bit Manipulation
	Slide 16: Magic Array
	Slide 17: Right Shift, 32 bits, zero fill
	Slide 18: Right Roll, 32 bits
	Slide 19: Roll Example
	Slide 20: Return Stack Manipulation
	Slide 21: Flow Control
	Slide 22: Conditionals
	Slide 23: My Simulation
	Slide 24: Implementations
	Slide 25: Conclusions
	Slide 26
	Slide 27: Loop Control
	Slide 28: Memory Access
	Slide 29: Silicon-Level
	Slide 30: Stack Manipulation
	Slide 31: Silicon-Level
	Slide 32: State Machine

