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In September of 1975, MOS Technology launched the 6502 at the 
Wescon75 Computer Conference in San Francisco.

25 year old, HP Engineer, Steve 
Wozniak, realised that this new 
microprocessor would be a 
game-changer and went on to 
incorporate it into the small 
computer he was developing.

That machine went on to become 
the Apple I.

Chuck Peddle and his team had created a 
very lean, stripped down, small die cpu.

Costing just $25, the 6502 was a fraction of 
the cost of its nearest competitor. At that 
time the Intel 8080 was $360 and the 
Motorola 6800 was $175 .

The 6502 was clearly a disruptive usurper.



 16-bit TTL CPU board from Data General Nova 1200

In 1975 7400 TTL was the “Bread and Butter” of logic design:

.

 

 7400 series TTL integrated circuits were developed in the early 1960’s. 
 Initially quite expensive so mainly used in Military and Aerospace applications.
 By the early 1970’s TTL had become a versatile family of standardised, low 

cost, easy to use logic. Typically about $1 per device.
 7400 series logic was widely used in the design of minicomputers, including 

the PDP-11, the Data General Nova 1200 and later models of PDP-8.
 TTL was a viable, faster and cheaper processing solution than the emerging 

8-bit microprocessors such as MOS 6502, Intel 8080 and the Motorola 6800.

Essential Reading



The Gigatron TTL Computer – What is it?

 Started as a Hackaday.io project in Spring 2017 
by Marcel van Kervinck of The Hague, 
Netherlands. 

 Inspired by Apple I, Marcel wanted to show just 
what could be achieved without a microprocessor.

 His personal challenge was to construct an 8-bit 
computer with integrated color video generation 
and sound based on simple, readily available, 
74xx00 series TTL devices, plus ROM and RAM.

 Gigatron uses a simple ALU design made from 
multiplexers and adders. 

 Avoids using the rare and obsolete 74181.
 Highly integrated cpu and video generation 

hardware.
 ¼ VGA resolution: 160 x120 pixels, 64 colors
 Harvard design using 16-bit x 64K ROM
 Fewer than 40 ICs. 

Marcel van Kervinck



Early Beginnings

                     

 The original was prototyped in about 1 month on a set of breadboards.
 36 TTL chips handwired to form CPU with ROM and video RAM
 Designed from the outset to produce ¼ VGA color video and sound.
 Produced as an open source, educational, self build kit, now over 750 sold
 Inspired by the Apple I, but smaller, cheaper, more colorful and faster........

The Gigatron began life on a big breadboard.



The breadboard prototype shows the main functional blocks:



Then converted to a 2 layer pcb:



The Hardware Architecture
 Built as a Harvard machine with separate ROM and RAM 

spaces - tailored to generate ¼ VGA video from RAM
 Clocked at 6.25MHz to meet VGA timing requirements
 Executes 1 instruction per clock cycle with simple pipeline

    Consists of the following functional blocks:

 ALU   Arithmetic Logic Unit
 AC    Accumulator
 PC    Program Counter
 IR     Instruction Register
 MAU  Memory Address Unit
 CU    Control Unit
 Registers  X, Y, In, Out, Data



“A processor is like a nest of tangled pythons – all trying to eat each others’ tails.
You have to carefully learn where to start unravelling it all from”



 The Gigatron uses only 36 simple TTL devices to implement its 
Harvard architecture - in fewer than 1000 gates!

 
 Dual 4:1 Multiplexers  74xx153
 4 bit full adders 74xx283
 4-bit counters 74xx161
 Octal Latches 74xx377
 Various basic gates including OR, AND, Inverters
 Serial to parallel shift register for keyboard entry 74HC595
 Plus 32K x 8 SRAM and 64K x 16 bit EPROM
 
 With the exception of the EPROM and RAM – all of these parts 

were available in standard 7400 series TTL back in 1975

 Average price per 7400 series IC was about $1 each in 1975.

 RAM was still very expensive in 1975. 4K bytes implemented as 
32 x Intel 2102 SRAMs would cost at least $96. (Byte Magazine 
October 1975).



The Gigatron PCB – with main functional blocks highlighted



The Instruction Set
 8-bit wide instruction word providing 8 opcodes, 8 addressing modes 

and 4 data sources for operands.

  8 x 8 x 4 = 256 instruction combinations
 
 The Accumulator AC always provides one operand for the ALU

 Memory load/store  LD,  ST

 Arithmetic  ADD, SUB 

 Logical  AND, OR, XOR

 Unconditional jumps JMP, BRA

 Conditional jumps BGT, BGE, BLT, BLE, BEQ, BNE

 Others  NOP, CTRL



Instruction Decoding

 |---Operation---|-----Mode-----|----Bus---|

0  LOAD                [D],AC                  D
1  AND                  [X],AC                  RAM
2  OR                    [Y,D],AC               AC
3  XOR                  [Y,X],AC               IN
4  ADD                  [D],X
5  SUB                  [D],Y
6  STORE             [D],OUT
7  JUMP                [Y,X++],OUT

I7  I6  I5  I4  I3  I2  I1  I0





The Instruction Decoder uses a “Diode ROM” driven from a 
74HC138 decoder to feed the correct instruction pattern to the ALU.



ALU  - Arithmetic Logic Unit

 The ALU forms the functional core of the Gigatron processor.
  
 Provides 8-bit ADD, SUB arithmetic operations, plus AND, OR and 

XOR bitwise logical operations 
  
 It’s an extendible bitslice design. Constructed from 10 ICs: 
 8 x 74HC153 multiplexers and 2 x 74HC283 4-bit adders.

 Provides a readily available alternative to the now obsolete and rare 
74181 4-bit ALU

 ALU is equivalent to approximately 200 logic gates.

 Based on an original design by TTL CPU builder Dieter Muller.



The ALU is based on the 74xx153 dual 4:1 Multiplexer

The 4:1 multiplexer can be used to generate any logic function Q of its two inputs A and 
B just by wiring various logic levels, 0 or 1 to the inputs I0 to I3. 

Applying a different 4-bit pattern to I0:I3 you can create AND, OR, XOR, invert or any 
other of 16 common logic functions of A and B. It’s a programmable function generator!

As a 4:1 multiplexer:

Normally you would use the A 
and B inputs to select which 
one of the inputs I0 to I3 that 
you wish to appear at the 
output Q.

However there is a neat trick, 
and an altogether more 
ingenious way of using the 
basic multiplexer that lends 
itself perfectly to constructing 
an ALU:



The Logic Unit for the ALU is built from 8 such multiplexers, one for 
each bit:

Applying a 4-bit opcode to the I0:I3 inputs allows any one of 16 common logic 
functions, including AND, OR, XOR, zero, invert, pass-through etc to be applied 
bitwise to the 8-bit operands A[7:0] and B[7:0].



The Arithmetic section is made from two 4-bit adders and 
two of the 74xx153 logic units.

As the 74xx153 are dual 4:1 multiplexers you conveniently get both logic 
units from the same 8 ICs!

The two 74xx283 4-bit adders provides 8-bit addition and subtraction. 

An optional 7xx157 mux may be used if Right Shift operation is required. 
On the Gigatron, right shifts are performed using a look up table in ROM



 RAM, X and Y Registers and Video Generation Hardware

• From the outset, the Gigatron was designed to output a 64 color image to 
a VGA display using highly integrated hardware.

• The resolution is 160 by 120 pixels  - effectively ¼ VGA

• The X and Y registers address a 32K RAM – and effectively hold the 
horizontal and vertical location of the pixel.

• The X register is an 8-bit counter which can auto-increment to select the 
next pixel in the line of video.

• The video RAM holds the RGB video (2 bits of each) and the remaining 2 
bits are for the horizontal and vertical sync signals.

• The VGA video signal is created using a simple resistor network DAC.
•  
• The audio signal uses a 4-bit resistor ladder network with waveform tables 

stored in ROM



The audio and video generation is also kept very simple:



vCPU – A 16-bit virtual machine
•  
• Gigatron achieves flexibility and easier programming by implementing 

a 16-bit von Neumann virtual machine on top of the 8-bit Harvard 
architecture. vCPU uses 37 instructions expressed as bytecodes.  

•  
• The vCPU interpreter is written in native 8-bit machine language, 

executing code from the ROM.The instruction bytecodes are merely 
offsets from a base address into the ROM. The 16-bit vCPU executes 
its code from RAM.

• vCPU executes 16-bit operations which are precisely timed to fit in 
with the video blanking. Instructions are 2.25uS to 4.5uS duration.

• Programming Model:  vCPU implements the following registers
•  

     vAC     ACcumulator (16-bits)
     vPC     Program Counter
     vLR     Link Register (16-bits)
     vSP     Stack Pointer (8-bits)



Mnem. Encoding  #C Description
----- --------- -- -----------
ST    $5E DD    16 Store byte in zero page ([D]=vAC&256)
STW   $2B DD    20 Store word in zero page ([D],[D+1]=vAC&255,vAC>>8)
STLW  $EC DD    26 Store word in stack frame ([vSP+D],[vSP+D+1]=vAC&255,vAC>>8)
LD    $1A DD    18 Load byte from zero page (vAC=[D])
LDI   $59 DD    16 Load immediate small positive constant (vAC=D)
LDWI  $11 LL HH 20 Load immediate word constant (vAC=$HHLL)
LDW   $21 DD    20 Word load from zero page (vAC=[D]+256*[D+1])
LDLW  $EE DD    26 Load word from stack frame (vAC=[vSP+D]+256*[vSP+D+1])
ADDW  $99 DD    28 Word addition with zero page (vAC+=[D]+256*[D+1])
SUBW  $B8 DD    28 Word subtraction with zero page (vAC-=[D]+256*[D+1])
ADDI  $E3 DD    28 Add small positive constant (vAC+=D)
SUBI  $E6 DD    28 Subtract small positive constant (vAC-=D)
LSLW  $E9       28 Shift left ('ADDW vAC' will not work!) (vAC<<=1)
INC   $93 DD    16 Increment zero page byte ([D]++)
ANDI  $82 DD    16 Logical-AND with small constant (vAC&=D)
ANDW  $F8 DD    28 Word logical-AND with zero page (vAC&=[D]+256*[D+1])
ORI   $88 DD    14 Logical-OR with small constant (vAC|=D)
ORW   $FA DD    28 Word logical-OR with zero page (vAC|=[D]+256*[D+1])
XORI  $8C DD    14 Logical-XOR with small constant (vAC^=D)
XORW  $FC DD    26 Word logical-XOR with zero page (vAC^=[D]+256*[D+1])
PEEK  $AD       26 Read byte from memory (vAC=[vAC])
DEEK  $F6       28 Read word from memory (vAC=[vAC]+256*[vAC+1])
POKE  $F0 DD    28 Write byte in memory([[D+1],[D]]=vAC&255)
DOKE  $F3 DD    28 Write word in memory([[D+1],[D]],[[D+1],[D+1]=vAC&255,vAC>>8)
LUP   $7F DD    26 ROM lookup, needs trampoline in target page (vAC=ROM[vAC+D])
BRA   $90 DD    14 Branch unconditionally (vPC=(vPC&0xff00)+D)
BCC   $35 CC DD 28 Test vAC and branch conditionally. 

 CC can be EQ=$3F, NE=$72, LT=$50, GT=$4D, LE=$56, GE=$53

vCPU Instruction Set



Forth Thoughts?

 vCPU is a flexible, 16-bit virtual cpu which can be used to host the Forth primitives.
 Stack structures are implemented in RAM using ALLOC to modify the stack pointer, LDLW 

and STLW to load and store the top of stack. 
 vSP is then the data stack pointer. We can use ALLOC, LDLW, STLW on it.
 Zero page variables: IP, RSP, W, Next, DoColon
 IP = Instruction Pointer
 RSP = Return Stack Pointer
 W = Work Register
  
 NEXT   vCPU function to dispatch the next threaded instruction



    Further primitives may then be added:
PLUS

DUP

DoCOLON   vCPU function to enter threaded code



A start has been made on a Forth implementation running on the vCPU:

This is however very much a work in progress and we are looking for fellow 
enthusiasts to help with the implementation.



The Gigatron Ecosystem
 Gigatron is a constantly evolving project with an active community and many 

new developments since the original machine.
  
 For code development, there is an online emulator, an assembler and other 

tools written in Python.
  
 Gigatron comes with a TinyBASIC in ROM and a hex monitor program inspired 

by WozMon – originally written for the Apple 1 by Steve Wozniak
  
 “Pluggy McPlugface” – an adaptor that allows a PS/2 keyboard to be used
  
 A C compiler based on lcc – write standard code using modern tools.
  
 v6502  allows the Gigatron to emulate the 6502 – with video -  at about 

0.125MHz - but gives access to a wealth of software such as Microchess, 
figForth and MS floating point BASIC.

  
 A RAM and port expansion board that allows use of SPI hardware such as SD 

cards, port expanders and FRAM non-volatile memory.
  
 By using 74F series logic, Gigatron can be overclocked to 12.5MHz – twice the 

standard clock frequency. 



V6502 emulates a 6502 and allows existing 6502 applications to be run:



TinyBASIC



WozMon – in 254 words of vCPU!



An emulator with screen memory, CPU & vCPU:



An assembler for native 8-bit code:
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