Go Forth with TTL!

‘ﬁ-r-tuzn.,':-'ﬁlr—'
— -

The Gigatron TTL Color Computer

Forth for a Very Unusual Processor
Ken Boak
SV Fig. Forth Day 2019 .

In September of 1975, MOS Technology launched the 6502 at the
Wescon75 Computer Conference in San Francisco.

25 year old, HP Engineer, Steve
Wozniak, realised that this new
microprocessor would be a
game-changer and went on to
Incorporate it into the small
computer he was developing.

That machine went on to become
the Apple I.

Chuck Peddle and his team had created a
very lean, stripped down, small die cpu.

Costing just $25, the 6502 was a fraction of
the cost of its nearest competitor. At that
time the Intel 8080 was $360 and the
Motorola 6800 was $175 .

The 6502 was clearly a disruptive usurper.

In 1975 7400 TTL was the “Bread and Butter” of logic design:

7400 series TTL integrated circuits were developed in the early 1960’s.
Initially quite expensive so mainly used in Military and Aerospace applications.
By the early 1970’s TTL had become a versatile family of standardised, low
cost, easy to use logic. Typically about $1 per device.

7400 series logic was widely used in the design of minicomputers, including
the PDP-11, the Data General Nova 1200 and later models of PDP-8.

* TTL was a viable, faster and cheaper processing solution than the emerging
8-Dbit mlcroprocessors such as MOS 6502, Intel 8080 and the Motorola 6800.

)) “ \IIIIIH;IIIIIIHIII] PL j]lllIIIIIIIIIIIIlIIIllIlIIIlIIIlIIFIIII|‘um"
/) ad SREERE W) E NI el Rl e !‘
. R 1] - 'i ’ ‘\u g t I\ 1
18 * ;w
i 14 in

Data Book
Design Engineers

%

TEXAS INSTRUMENTS

Essential Reading 16-bit TTL CPU board from Data General Nova 1200

The Gigatron TTL Computer — What is it?

Started as a Hackaday.io project in Spring 2017
by Marcel van Kervinck of The Hague,
Netherlands.

Inspired by Apple |, Marcel wanted to show just
what could be achieved without a microprocessor.
His personal challenge was to construct an 8-bit
computer with integrated color video generation
and sound based on simple, readily available,
74xx00 series TTL devices, plus ROM and RAM.
Gigatron uses a simple ALU design made from
multiplexers and adders.

Avoids using the rare and obsolete 74181.
Highly integrated cpu and video generation
hardware.

Ya VGA resolution: 160 x120 pixels, 64 colors

Harvard design using 16-bit x 64K ROM
Fewer than 40 ICs.

Marcel van Kervinck

Early Beginnings

The Gigatron began life on a big breadboard.

* The original was prototyped in about 1 month on a set of breadboards.

* 36 TTL chips handwired to form CPU with ROM and video RAM

* Designed from the outset to produce 2 VGA color video and sound.

* Produced as an open source, educational, self build kit, now over 750 sold
* Inspired by the Apple |, but smaller, cheaper, more colorful and faster........

The breadboard prototype shows the main functional blocks:

= I:r—I:n—l u;l

m lg =

WFL
IIIIIIIIEIIIII -"’

.............

.....................
......

........

Then converted to a 2 layer pcb:

9 9
]

3 B Serisl Controiler

g @ i
erator .‘_"! e = W, s T 4

T3

Clock

-

Ep—— " L -

.r.*

= 2 =S

T T
e

= & & um

- e

?-'.iﬂﬂ .

mer

’
i

1.

3

L =

.'-_""'_-;*’
. : -'..Eq:l'__
ABLLLE ==

1'.“'_-_
LA
--.---._E
=i
i
¥

RN e

2
3
:

Gigatron TTL
hittps:/ Fgigatron.ios

Control Unit

L}
1
[]
¥
L]
i
L]
]
[]

o
Low Bes Buffer High
Arithmethic and Logic Unft

Lz

[
B

gl ag ™ - .
|?|. i e ..*'_:J. =

£
'q__—ﬁ"
Mfeeee==l

-
T YRR R Y

Program Coanter

=)
¢ i

¥ Reglster
AR

I r AR NN rrryyryanyne

i - Frogram Memory . =

L SFFPPPPFEFFFPP
Random Access Memary

Microcomputer

Ciata

T P FFFF AT e
B Dats Register Pl instrection Register
15
-

Ll %
- i'". s =

- el

Bus Bulfer Bus Accesa Decoder

nry

|
w w
=
__.,11' - . e
Candition Decoder

- - w a a N

fl -

The Hardware Architecture

Built as a Harvard machine with separate ROM and RAM
spaces - tailored to generate 72 VGA video from RAM
Clocked at 6.25MHz to meet VGA timing requirements
Executes 1 instruction per clock cycle with simple pipeline

Consists of the following functional blocks:

ALU Arithmetic Logic Unit
AC Accumulator

PC Program Counter

IR Instruction Register
MAU Memory Address Unit
CU Control Unit

Registers X, Y, In, Out, Data

CLK ‘
ix e

Result bus ——r Data bus

fIE

Viden Inpast

2017-10-07 Marcel van Kerdnck

“A processor is like a nest of tangled pythons — all trying to eat each others’ tails.
You have to carefully learn where to start unravelling it all from”

The Gigatron uses only 36 simple TTL devices to implement its
Harvard architecture - in fewer than 1000 gates!

Dual 4:1 Multiplexers 74xx153

4 bit full adders 74xx283

4-bit counters 74xx161

Octal Latches 74xx377

Various basic gates including OR, AND, Inverters

Serial to parallel shift register for keyboard entry 74HC595
Plus 32K x 8 SRAM and 64K x 16 bit EPROM

With the exception of the EPROM and RAM - all of these parts
were available in standard 7400 series TTL back in 1975

Average price per 7400 series |IC was about $1 each in 1975.

RAM was still very expensive in 1975. 4K bytes implemented as
32 x Intel 2102 SRAMs would cost at least $96. (Byte Magazine
October 1975).

The Gigatron PCB — with main functional blocks highlighted

Video out Game
Audio controller

out input
our || HTL TR 2 oy
. SR CLK BUS-IN

peL |l

RESULT BUS

64Kx16 EPROM

hlil:! r

32Kx8 RAM

-

. T -
2 i, qait by
iy] (]
1 1 (5
1 i . i
.
N ¥ oy
e
H
n
iy
iy
"
o e .

T
i +F
-

omPYKHD | _
i BUS-D J/BUS

BCC

INS

DATA BUS

The Instruction Set

8-bit wide instruction word providing 8 opcodes, 8 addressing modes
and 4 data sources for operands.

8 X 8 x4 = 256 instruction combinations

The Accumulator AC always provides one operand for the ALU
Memory load/store LD, ST

Arithmetic ADD, SUB

Logical AND, OR, XOR

Unconditional jumps JMP, BRA

Conditional jumps BGT, BGE, BLT, BLE, BEQ, BNE

Others NOP, CTRL

Instruction Decoding

17116 115114 |13 |12 |11]IO

---Operation---|-----Mode-----|----Bus---|
0 LOAD [D],AC D

1 AND [X],AC RAM

2 OR [Y,D],AC AC

3 XOR [Y,X],AC IN

4 ADD [D],X

5 SUB [D],Y

6 STORE [D],OUT

7 JUMP 1Y, X++],0UT

Control Unit

2017-05-21 Marcel van Kervinck

IR, IR, IR, CLK IR, IR, IR, AC, AW
|
1001 T :
I Iz i
N/A—MiE 2 BT
; LD ’ 1IrEi o 'ED] .::c H il
; ; 4. BE
1. AND A&B 1 [%], AC 5. BG{EI
2.0R AlB 2. [Y.D], AC 6. BLE
3, XOR A"B 3. [rX].AC JE 7.BRA
4. ADD A+B 4. 1B], % i . ' 74153
55U A-B f’ 5. (D], ¥ : o Y, 74139
6. 5T A E| 8 [DLOUT
T O U D # 7.[¥.X++],0UT & e
74155 w | 2 74138 e
or 74138 NC NC NC
i I .
—+‘ |:| NV mv || OR wired | Iny
_ _ l AND
diede on Pull LY ¥y ¥ ¥ ¥ % L X} -
junction up INV OR OR OR
4 l_‘L— l 1'\1 l l l L4 J— L i L
AL AR, AR, AR, AR, /WE,, fLD JoL /YL /XL EH EL X /PH fPL

IR, IR,

¥ ¥

¥ 74139

0, 0, 0, O

¥ ¥ r wr
J/DE /OE [AE JIE

The Instruction Decoder uses a “Diode ROM" driven from a
7/4HC138 decoder to feed the correct instruction pattern to the ALU.

tgLD AND OR XOR ADD
;-0011 0001 0111 0110 0011.

AAMB AVB A=B B -B
0 0 0 0 1
0 | 1 1 0 1
0 1 1 1 0
1 1 0 1 0

ALU - Arithmetic Logic Unit

The ALU forms the functional core of the Gigatron processor.

Provides 8-bit ADD, SUB arithmetic operations, plus AND, OR and
XOR bitwise logical operations

It's an extendible bitslice design. Constructed from 10 ICs:
8 x 74HC153 multiplexers and 2 x 74HC283 4-bit adders.

Provides a readily available alternative to the now obsolete and rare
74181 4-bit ALU

ALU is equivalent to approximately 200 logic gates.

Based on an original design by TTL CPU builder Dieter Muller.

The ALU is based on the 74xx153 dual 4:1 Multiplexer

ﬁ
As a 4:1 multiplexer: T I>O
Normally you would use the A 5
and B inputs to select which 'iL>@'—‘

one of the inputs 10 to I3 that
you wish to appear at the o . —

output Q.

However there is a neat trick,
and an altogether more
ingenious way of using the [2 g
basic multiplexer that lends
itself perfectly to constructing i]
an ALU:

N N N
\

The 4:1 multiplexer can be used to generate any logic function Q of its two inputs A and
B just by wiring various logic levels, 0 or 1 to the inputs 10 to I3.

Applying a different 4-bit pattern to 10:13 you can create AND, OR, XOR, invert or any
other of 16 common logic functions of A and B. It's a programmable function generator!

The Logic Unit for the ALU is built from 8 such multiplexers, one for
each bit:

M M W W Ig] Ly} < T v) ¥) ™ ™ — — & &

€ (] L4y (] € o O (4] € (] T (] € (| Ly]
N N R R A R N
a Blllla 8l|l[la 8ll|la Bl|[l[a Bll[la B]|||la BI|||a B &
n—fnlEHnIEHn 2 HO 122 HO |2 H [Hi |2 >£
12—12|—= H12|= H12|= H12|= H12|= Hi2|= H12|= H12|- a
3 (3T Hia|¥ His|™ Hral¥ His|¥ Hal+ Hiz|¥ Hiz|+ 5
I
aQ Q Q Q aQ aQ Q Q .
/S ®

Q7 Qs as Q4 a3 Q2 Q1 Qo

Applying a 4-bit opcode to the 10:13 inputs allows any one of 16 common logic
functions, including AND, OR, XOR, zero, invert, pass-through etc to be applied
bitwise to the 8-bit operands A[7:0] and B[7:0].

AL/.. @] BL/..@]

l l

I[3..Q] \ /
Logic Unit

!

QL/..al

The Arithmetic section is made from two 4-bit adders and
two of the 74xx153 logic units.

BL7..0] 2%7415/
X[/7..@] SHR_X

=
-

=PQAL7..0]

2:1 MUX

8%74153 .l_

X+Y

- l Adder
1

Y[7..0] 2%/4283

AL /7. .@]

As the 74xx153 are dual 4:1 multiplexers you conveniently get both logic
units from the same 8 ICs!

The two 74xx283 4-bit adders provides 8-bit addition and subtraction.

An optional 7xx157 mux may be used if Right Shift operation is required.
On the Gigatron, right shifts are performed using a look up table in ROM

RAM, X and Y Registers and Video Generation Hardware

From the outset, the Gigatron was designed to output a 64 color image to
a VGA display using highly integrated hardware.

The resolution is 160 by 120 pixels - effectively 72 VGA

The X and Y registers address a 32K RAM — and effectively hold the
horizontal and vertical location of the pixel.

The X register is an 8-bit counter which can auto-increment to select the
next pixel in the line of video.

The video RAM holds the RGB video (2 bits of each) and the remaining 2
bits are for the horizontal and vertical sync signals.

The VGA video signal is created using a simple resistor network DAC.

The audio signal uses a 4-bit resistor ladder network with waveform tables
stored in ROM

The audio and video generation is also kept very simple:

vCPU — A 16-bit virtual machine

Gigatron achieves flexibility and easier programming by implementing
a 16-bit von Neumann virtual machine on top of the 8-bit Harvard
architecture. vCPU uses 37 instructions expressed as bytecodes.

The vCPU interpreter is written in native 8-bit machine language,
executing code from the ROM.The instruction bytecodes are merely
offsets from a base address into the ROM. The 16-bit vCPU executes
its code from RAM.

vCPU executes 16-bit operations which are precisely timed to fit in
with the video blanking. Instructions are 2.25uS to 4.5uS duration.

Programming Model: vCPU implements the following registers

vVAC ACcumulator (16-bits)
vPC Program Counter
VLR Link Register (16-bits)
vSP Stack Pointer (8-bits)

vCPU Instruction Set

Mnem. Encoding #C Description

ST $S5E DD 16 Store byte in zero page ([D]=vAC&256)

STW S2B DD 20 Store word in zero page ([D], [D+1]=vAC&255,VvAC>>8)
STLW S$SEC DD 26 Store word in stack frame ([vSP+D], [vSP+D+1]=vAC&255,VvAC>>8)
LD S1A DD 18 Load byte from zero page (vAC=[D])

LDI $59 DD 16 Load immediate small positive constant (vAC=D)

LDWI $11 LL HH 20 Load immediate word constant (vAC=$SHHLL)

LDW $21 DD 20 Word load from zero page (VAC=[D]+256*[D+1])

LDLW SEE DD 26 Load word from stack frame (vAC=[vSP+D]+256* [vSP+D+11])
ADDW $99 DD 28 Word addition with zero page (VAC+=[D]+256*[D+1])

SUBW S$SB8 DD 28 Word subtraction with zero page (VAC-=[D]+256*[D+1])
ADDI SE3 DD 28 Add small positive constant (vAC+=D)

SUBI $E6 DD 28 Subtract small positive constant (vAC-=D)

LSLW SEO9 28 Shift left ('ADDW vAC' will not work!) (vAC<<=1)

INC $93 DD 16 Increment zero page byte ([D]++)

ANDI $82 DD 16 Logical-AND with small constant (vAC&=D)

ANDW S$SF8 DD 28 Word logical-AND with zero page (VAC&=[D]+256*[D+1])
ORI $88 DD 14 Logical-OR with small constant (vAC|=D)

ORW SFA DD 28 Word logical-OR with zero page (VAC|=[D]+256*[D+1])
XORI S$8C DD 14 Logical-XOR with small constant (vAC”*=D)

XORW SFC DD 26 Word logical-XOR with zero page (VAC"=[D]+256*[D+1])
PEEK S$SAD 26 Read byte from memory (vAC=[VAC])

DEEK S$SF6 28 Read word from memory (vAC=[VAC]+256* [VAC+1])

POKE S$SFO DD 28 Write byte in memory ([[D+1], [D]]=vAC&255)

DOKE SF3 DD 28 Write word in memory ([[D+1], [D]], [[D+1], [D+1]=VvAC&255, vAC>>8)

LUP $7F DD 26 ROM lookup, needs trampoline in target page (VAC=ROM[VAC+D])

Forth Thoughts?

vCPU is a flexible, 16-bit virtual cpu which can be used to host the Forth primitives.

Stack structures are implemented in RAM using ALLOC to modify the stack pointer, LDLW
and STLW to load and store the top of stack.

vSP is then the data stack pointer. We can use ALLOC, LDLW, STLW on it.

Zero page variables: IP, RSP, W, Next, DoColon

IP = Instruction Pointer

RSP = Return Stack Pointer

W = Work Register

NEXT vCPU function to dispatch the next threaded instruction

CODE: SELECT ALL

0zZ0z2 2% 30 LDDW 530 VAL = IEF Fosghid
0zo04 Zb 30 ST S30 ITEi= 3pnC
fZ0iE EE DEEE Eead word

GREN T < i CALL wAC Jump

Further primitives may then be added:

PLUS

CODE: SELECT ALL

gels Ee DU
B35tk 2 349
FSld:. dE Q2F
gES1E =& B
Bae]l D g
@522 ea& DO
G525 2B QE
BEEZS §E 3F

DUP

CODE: SELECT ALL

U3Ea: ee DO
Bhize dE fi=
PERe Bl DI
0540 5% 0z
0542 ef 32

DoCOLON vCPU function to enter threaded code

CODE: SELECT ALL

0z0d 21 34
G2BE a8 B2
0211 Zb 34
Uels 21 =0
021> £5 54
ety 21 la
ggLEs ZE 20
gzlb E&

G2l=z ef 14

LDLW 0O
=TT S38
ALLOC 2
LDLW O
ADDW 538
STLW O
LDT 2
CRELE 532
LDLW O
ALLOC Sfe
STLW O
LDI &
CALL $32

LD 534
SUBET 2
=T S$34
LD Sl
DOKE $34
LD LR
=T 538
DEEEK

CALL wAC

Load top of stack
Park in W

V3P += 2

Eiode Eoin OF =SEaEk
Add W

SEors: Eop Of SEack

MNext

Leadkop of =sktack
EeE =% &
Srore’ fop ofistack

Next

RSE —= 2

Sawve old TIE

VOB return address
becomes new IF

Petel: first snstcrniction

Direct threading

A start has been made on a Forth implementation running on the vCPU:

Gigatron

. e - e e - e W . e e - —

This is however very much a work in progress and we are looking for fellow
enthusiasts to help with the implementation.

The Gigatron Ecosystem

Gigatron is a constantly evolving project with an active community and many
new developments since the original machine.

For code development, there is an online emulator, an assembler and other
tools written in Python.

Gigatron comes with a TinyBASIC in ROM and a hex monitor program inspired
by WozMon — originally written for the Apple 1 by Steve Wozniak

“Pluggy McPlugface” — an adaptor that allows a PS/2 keyboard to be used
A C compiler based on Icc — write standard code using modern tools.

v6502 allows the Gigatron to emulate the 6502 — with video - at about
0.125MHz - but gives access to a wealth of software such as Microchess,
figForth and MS floating point BASIC.

A RAM and port expansion board that allows use of SPI hardware such as SD
cards, port expanders and FRAM non-volatile memory.

By using 74F series logic, Gigatron can be overclocked to 12.5MHz — twice the
standard clock frequency.

V6502 emulates a 6502 and allows existing 6502 applications to be run:

Gigatron

TinyBASIC

E |.f.'1.i 5 .-:i.g o
(]
|...‘; "
£
lll-lI
115
IIIII] .l'r.llillnl
L1
Yitihts
% LI

|
|
Illlri
T

i
| iy

] L 11}
Itllll

"y
|
]
. |
" |
I uuu' Inll "

I."IH II‘IEI I‘“I“
[

[[}
11
(1]
e,
TTT]
{1}
IlIIl
||
[]
II
|
II!III
L]
[]
(]
I |

!

|
| T] ot

)
k

IIIII |.'
II " I-Iri
(1] LIRTEY
i
tllll IIIII
“ll‘
“-lll
I (1]
llll
!II‘II
(11]
[|
I'Illl (1L
LIELL]
Ii

ol ol

",

=)
1t o

I

e 0o

11
i

| 1]
e b b b b I |

l“i]" IIIII!I-'I lllllll lIIIIII Illllll I

| r'l

1L

1"
CLRLCT

I iill
W
|]
]
l' | N
A0,

e LI

L

I IIIIII‘ "H"I “"-Ill IIIII-II IIIII|| IPIIII| ||II|I|

[TTTL
LELILY

IIIIIII]
l.l l

il

WozMon — in 254 words of vCPU!

|
-
ES
mpn ¥
L
i 8

Al
T ax L

=

TR} ¥

ke

SR TGS
EEmaGn

-
I:I
"
o
r

!
=
1
=
- de

1

5
e
B
=
=
=
a

E

T

9 W

1
=
1
A

)

.Jc_l_..lzlI

s] =]
e
-

K|
H
=

e
i1
K |
T
=
—
| Sl T |
1k
-
1L
[-

Al BE AF

B

An emulator with screen memory, CPU & vCPU:

igatron Mas AR BIon A EHDE B 5

CFU coda i AOW

T
e 5T
T 5alact I Start b rl 1] B ad XA X ATEA (W Bl

L Pl i St i

Al Laad GTH
LRI
Cyche FIANTRIT 4 oy BITRE Wirdow mdmah
ATF) e (FH| Coaabrus [E7] RS & AdcsAManis

An assembler for native 8-bit code:

085a 1401 $01 Enter video loop at vertical blank
085h e003
DB5c c2le
sys_ResetWaveforms:
0e5d 0118
0@5e 8200
@e5f 9200
mRel 0118
061 dedB
bl 2020
063 ecbb
0064 0118
0865 fcb8
D@6b 8118
0867 6O7f
0068 deDO
0862 0118
DBba 2020
ifeb ecte
O@ec fcbf
DGod 0000
Bise 003f
006t dedd
0870 0118
071 cedd
GLLENTe U masterfE dev.asm SYS Exec 88 ¢ asm « utf-8[unix]
0% = 118/59076 § : 15 i

M
i mu

:Sawtooth: T[4i+8] = 1
:Triangle: T[4i+l] = 21 1f i<32 else 127-21

5% L5 e @} Qb —s
= = i

=

0o on 00 O

et 00 —a T

wd e O o 3 P D
el
-+ —
+

B o e B
e

oo e
+

— -4

;Pulse: T[41+2] = 0 if 1<32 else 63

Pl ol
= T

e
-5

=

-Sawtooth: T[4i+43] = 1

=5 =N =5 25 5 45 5 R S S
=3
=
=

il A W L 55
"k [l

o m

i 4

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

