
CREOLE FORTH FOR EXCEL
Joseph M. O‟Connor

SVFIG Forth Day

November 2016



SOME HISTORY

 Creole Forth started out as a Delphi component

 Inspired by Norman Smith‟s UNTIL

 Used successfully as a macro/scripting language in many 

projects.

 Because Delphi is not very popular, management was never very 

happy with its use.

 This inspired me to consider transferring the language to a more 

widely used platform. 



MICROSOFT EXCEL

 An indispensable, and probably the most popular Microsoft 

Office product.

 Has a built-in macro language (VBA). 

 Available „everywhere‟, at least in a corporate environment.

 The layout of an Excel worksheet is preadapted for the Forth 

dictionary. 

 Has great similarities to the Delphi drag-and-drop visual 

development environment.



WHY A LANGUAGE BUILT ON TOP OF VBA

 Excel already has a powerful built-in language

 So the question is, why build another on top of it?

 Here are a few reasons:

 1. To combine a systems and a scripting language. 

 2. The Forth methodology of writing an application-specific 
instruction set is exceptionally productive. 

 3. Painless parameter passing via a stack or stacks. 

 4. Easy extensibility. 



CREOLE FORTH FOR EXCEL – ITS TRACK RECORD.

 Initial version was released in early August 2016.

 In that time I have created three applications with it:

 1. Optum Track Tools. This is a quasi client/server app that would 
interact with Cygwin and perform various administration tasks on a 
Linux server. 

 2. An XML import/export organizer. This was developed using the 
MVC (Model-View-Controller) pattern and helps manage the 2-way 
transfer of records from a Windows flashcard application 
(Supermemo) to one on the Android (Anymemo). 

 3. Issue Log Organizer. Sets up a Table of Contents and a Master 
Issues Log interface with buttons and hyperlinks. These buttons then 
import data from the linked spreadsheets. 



IMPLEMENTATION DETAILS

 At the GitHub repository is a spreadsheet CFExcel1.xls.

 Compatible with Excel 2003. 

 Opens to a workbook with three tabs:

 1. CreoleForthInitPage

 2. GlobalDS

 3. Dictionary



CREOLE FORTH INIT PAGE

 Holds information about different Forth “bundles”.

 A bundle is defined as a combination of the VBA code, GlobalDS 

page, and Dictionary page.

 In the current version, there are 4 possible Forth bundles at a 

maximum. 

 Only one bundle can be active at a time.

 There is currently one Forth bundle in the project, and in most 

cases you would probably not want or need more. 



THE GLOBALDS PAGE

 Holds the major external data structures. 

 Has five “stacks” and other associated data structures such as 

the InputArea and PAD. 

 You put code in the InputArea box and hit the „Submit‟ button 

and it will execute the code. 



THE DICTIONARY PAGE

 Holds the dictionary and associated fields. 

 Data structures are mostly column ranges. 

 Parameter Field is essentially everything to the right of those fields, 

although it gets a bit more complicated than that. 



EXECUTION OF CREOLE FORTH

 The values in the input area are split based on the space 

delimiter and placed into the ParsedInputField.

 Each value is looked up in the dictionary based on the list of 

vocabularies on the Vocabulary stack. 

 In this case FORTH is searched first, and if the search fails, ONLY is 

searched.

 If a match is found, the word is executed.

 If no match is found in any of the vocabularies on the vocabulary 

stack, the value is pushed onto the data stack.



TYPES OF WORDS

 Simple Primitives. These point directly to public methods in VBA 

class modules in the project. 

 Colon definitions. These are words compiled with : (colon). 

Addresses are compiled into the parameter field with 

CompileColon and executed with DoColon. 

 Defining words. Defined with CREATE or CREATE/DOES> 

combination. 

 Compiling words. Have separate primitives for compile-time and 

run-time and are used for branching/looping. 



SOME DIFFERENCES FROM “NORMAL” FORTHS

 No attempt is made to convert a value to an integer before 

placing on the stack. If a plain string is found, it goes on there. 

 Strings can also be compiled into definitions as literals. 

 Some words were renamed because the canonical Forth names 

caused bad reactions with Excel.



UNDER THE HOOD

 The methods of the primitives all take a single parameter, which is 

a GlobalSimpleProps object.

 The GlobalSimpleProps object is a list of properties that pass 

information between themselves and the GlobalDS, Dictionary, 

and CreoleForthInitPage pages. 

 Most of the work is done through named ranges.



UNDER THE HOOD 2

 When a word is looked up in the dictionary, it is looked up by its 

fully qualified name. 

 The fully qualified name consists of what‟s in its Name Field, a 

period, and the vocabulary it was defined in. 



UNDER THE HOOD 3 

 When words are resolved down to the primitive level, they‟re 

executed by the CallByName module as below.

 CallByName objClassModule, sCodeField, VbMethod, poGSP

 poGSP is the single GlobalSimpleProps object being passed as a 

parameter. 



COMPILATION

 Creole Forth has no state variable.

 Compilation starts when the IMMEDIATE vocabulary is pushed onto the stack.

 IMMEDIATE words are first in the search order.

 High-level definitions are built in PAD.

 Each word has its index looked up in the dictionary, and its associated compile action placed 
next to it.

 A “Smudge Flag” prevents accidental recursion. 

 After this is done, the results are fed back into the interpreter. 

 A word that has a COMININPF action will be compiled into the parameter field.

 Words with an EXECUTE action (compiling words) will be executed. 

 Literals are tagged with a COMPLIT action and are treated accordingly. 

 Compilation terminates with the execution of DoSemi. 

 The colon compiler is able to compile help into its definition. The commenting policy is to put 
the stack comment first, followed by the single-line comment just before the definition. 



CONTROL STRUCTURES

 IF-THEN-ELSE

 BEGIN-UNTIL.

 DO-LOOP and relatives are still under development. 



ORGANIZATION METHODOLOGY

 Try not to mix the “base code” already in the project with 

application-specific code. 

 Add a new “Main” form to call new subroutines.

 Define a new class module or set of class modules for new 

primitives. 

 FORGET is available, but CTRL-SHIFT-R and CTRL-SHIFT-C offer an 

easier alternative. (blow away and rebuild dictionary). 

 A typical application might acquire 30-40 primitives and 10-20 

high-level definitions. 



TO DO

 “Redefined” functionality in high-level definitions. 

 More control structures. 

 Better/more consistent commenting.

 List compiler to allow multiple arguments in a single cell on the stack. 

 VOCABULARY defining words – vocabulary words right now are all 
hard-coded primitives. 

 Prefilter/Postfilter stack support. 

 POSTPONE.

 Recursion. 



QUESTIONS?


