
GreenArrays™
World Leader toward Efficiency

Choreographing Teams of
Fast, Low-Power Computers

GreenArrays® Staff
SVFIG Forth Day

17 November 2012

The Best Known Energy Efficiency in a
Commercially Available Chip.

GA144

Graph courtesy of Per Ljung, Nokia Research

Progress Since Nov 2011

 Many evaluation boards and chips shipped

 Numerous new documents published

 arrayForth® Institute created

 polyFORTH® system, running in Fall 2011,
documented and released in Sep 2012

 Ethernet NIC implemented in Jan 2012, most of
TCP/IP stack converted in Feb 2012, life testing
underway

 Chip design improvements continue

Promising Developments

 Engagement with technologists developing
new manufacturing methods for the “Internet
of Things”

 Excellent study by a major company confirms
the GA144 to be vastly superior to even the
latest TI MSP430 in energy efficiency

 Engagements with several potential customers
who need higher performance at lower power
than is otherwise possible

Problems Encountered

 Slow acceptance of novel hardware

 Lack of funds limits marketing efforts

 Legal harassment by Daniel E. Leckrone has
wasted our time and money

Plans for 2013

 Development roadmap (see website)

 Moving development tools onto the chip –
two approaches, polyFORTH based and
Chuck’s etherForth

 Selective creation of product companies and
funding them (VC, Angel, KickStarter)

Acknowledgments

 App notes created by Peter Milford and Stefan
Mauerhofer

 Advanced programmer interface concepts by
Robert Patten

 Documentation reviews by David Stubbs who
has also salvaged all of Jeff Fox’s disk drives

Plan for the Afernoon

 Quick review of GreenArrays Architecture

 Short (10 minute), sweet topics with Q&A
encouraged after each topic

– High-level design for several applications

– High-level development and debugging
techniques

 Chuck’s Fireside Chat

For More Information
on GreenArrays

 Primary Website

– http://www.greenarraychips.com

 arrayForth Institute

– http://school.arrayforth.com

 Announcement Blogs

– Business http://www.greenarraychips.com/blog1

– Technical http://www.greenarraychips.com/blog2

 Tech Support on e-mail, Skype, Phone

http://www.greenarraychips.com/
http://school.arrayforth.com/
http://www.greenarraychips.com/blog1
http://www.greenarraychips.com/blog2

GreenArrays™
World Leader toward Efficiency

F18A Architecture Review

John Rible and Greg Bailey

The Production G144A12 Chip

 144 F18A computers in
8 rows, 18 columns

 Each talks to its
adjacent neighbors

 22 edge nodes have
I/O pads

 Max ≈ 100 GOPS at <1
Watt

 In production. Sample
kits and chips shipped
for 1 year, quantity
orders welcome

F18A Technology

 Easily configured arrays of computers and I/O
 Each 18-bit asynchronous computer is self

contained
– RAM, ROM and registers in a single address space

 Instant suspension/resumption per computer
 High performance (≈666 MIPS/node)
 Low energy per unit work (≈7 pJ/instruction)

– No power or energy cost per MIP, only per unit work;
typically low duty cycle

 Multilevel programming

F18A Computer

 241 μm x 523 μm in
180nm CMOS process

 Dual stack architecture

 8-element circular stacks

 Archtypical Forth ALU

 5 specialized registers

 Memory balanced for
speed and power

 Up to 5 comm ports

 Optional I/O

Coordinating Computers

 Fast, simple, synchronized comm ports

– Passing instructions and/or data bidirectionally

– Transparent handshaking

• Automatic suspension with no races

– Port execution

• Simple protocols – use instructions, not codes

– Multiport operations

• Up to five other computers when rules are followed

• Multiplexing / demultiplexing data streams

Managing I/O

 Software-defined pin behavior

– GPIO Pins: Fine control, reads actual pin state

• Nodes may have up to four pins

– Bidirectional parallel buses

– Analog I/O

 High speed SERDES (~600 Mbit)

For More Information
on Architecture and Chips

 Documentation on website

– DB001: F18A Technology Reference

– DB002: G144A12 Chip Reference

 arrayForth Institute

– PROG0100: F18A Architecture and Instruction Set

– PROG0200: F18A Programming Techniques

(course not released yet)

GreenArrays™
World Leader toward Efficiency

Multilevel Programming

Greg Bailey

Three Basic Methods

 Microcode: Application modules consisting of
native F18 code residing in one (or more)
computers.

 Streamed port execution of larger programs
fed by a memory resource

 Virtual machines running from external
memory, implemented by a team of
computers

Code Generation

 Applicable to any of the three basic
programming methods

– Hand-crafted software

– Semiautomatic programming

• Interactive synthesis: Analog block diagrams

• Automatic programming: Ras Bodik and colleagues

Today’s Emphasis

 Organizing teams of computers

 Using high level tools like polyFORTH for
debugging and managing of such teams

 Previously we have concentrated on the
 fine details of F18 programming...

 Today we take a macroscopic view of
 creating applications

For More Information
on Programming Methods

 Documentation on website

– DB004: arrayForth User’s Manual

– DB005: polyFORTH Reference Manual

– DB006: polyFORTH Supplement for G144A12

– Paper on Boot Protocols

– Paper on Getting Started with eForth

GreenArrays™
World Leader toward Efficiency

A Team to Control an SRAM

John Rible and Greg Bailey

Goals for This Particular Model

 Enabling external memory access

 Support for multiple masters

 Not specialized ... random access sequences

 Not fully optimized

Four Nodes, Three Clients

 Three worker nodes
dictated by chip geography

 Interface extended to node
107 to facilitate large teams

 Tradeoffs – more clients
increase latency

Functions

 Arbitrates between up to three clients and
provides five atomic functions:

 Words Received Reply
Sent

Function Performed
1st 2nd 3rd 4th

+p4 +a16 --- --- w16 e@ Read a word from SRAM at p:a

-p4 -a16 w16 --- --- e! Write a word into SRAM at p:a

-n16 +p4 a16 w16 f16
Compare-and-exchange. Write w to
SRAM iff current value = n
Return x0FFFF if stored or 0 if not.

+x -0 m16 --- --- mk! Set master enable mask

+x -1 m16 --- --- mk! Post stimuli for master(s)

For More Information
on External RAM Control

 Documentation on website

– AN003: SRAM Control Cluster Mark 1

 Source code

– arrayForth 2a blocks [270..280] SRAM

– arrayForth 2a blocks [1320..1328] Partial ROM
support for SDRAM

GreenArrays™
World Leader toward Efficiency

A Team to Implement
a Virtual Computer

John Rible and Greg Bailey

eForth/polyFORTH VM

Choreography

 Stack node responsible for data stack,
memory access and operations predominantly
using the data stack.

 Bitsy node responsible for return stack,
instruction stream fetch and decode, and ops
predominantly related to these things.

 Neighbor “buds” available for expansion or
application specific instructions.

Instruction Set

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

0 High Level Execution token (external RAM address) Call pFVM code in low external RAM

1 1 0 0

00 ea F18 RAM/ROM/Port address

Call F18 definition in Bitsy node 105

1 1 1 0
Call F18 definition in node 205 through
up port of bitsy node

1 1 1 1 Call F18 defn in node 005 down bitsy

1 0 0 0 Call F18 definition in Stack node 106

1 0 1 0 Call F18 defn in node 206 up stack

1 0 1 1 Call F18 defn in node 006 down stack

For More Information
on These Virtual Machines

 Documentation on website

– DB006: polyFORTH Supplement for G144A12

 Source code

– arrayFORTH 2a blocks [360..478] for pF VM

– arrayFORTH 2a blocks [1080..1198] for eF VM

GreenArrays™
World Leader toward Efficiency

The Snorkel:
A Programmable DMA Channel

Greg Bailey

Goals for the Snorkel

 Move arbitrary 16- or 18-bit data
beween external SRAM and one
of Snorkel’s ports

 Independently execute a simple
program from SRAM

 Started by stimulus from another
master

 Gets program start address from
an agreed SRAM cell

 Implements streamed port
execution programming method

Snorkel Program Structure

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

0 hi Address of port to use (occurs once)
followed by one or more 5-cell
instructions as follow: low

0 Opcode: Addr of F18 routine

Opcode: Address of F18 routine
o16: Send 16-bit data
i16: Receive 16-bit data
o18: Send 18-bit data
i18: Receive 18-bit data
fin: Stimulate a selected master, stop
and await new program

0 hi
18-bit transfer size (words thru port)

low

0 hi
20-bit SRAM address for transfer

low

For More Information
on the Snorkel Mark 1

 Documentation on website

– AN010: Not yet published.

 Source code

– arrayFORTH 2a block [408]

– polyFORTH 2a blocks [96, 28]

GreenArrays™
World Leader toward Efficiency

A Surface of Ganglia:
Dynamic Message Routing

Greg Bailey

Problem Statement

 Route messages between arbitrary nodes

 Each message is a simple exchange between
SRAM and a given port of a given node

– Deliver x-word payload, receive y-word reply

 Employ unoccupied nodes for routing

 Path exists only during exchange

 Support long (262k-word) messages

– Any combination of code and/or data

Chosen Solution

 Define a frame whose header holds source
routing, updated as the frame moves
incrementally between nodes

 Program each node by default with the ganglion
program that interprets header and
– Updates header and moves frame to next node

– or delivers payload and receives reply back down
same path

 Resulting surface of ganglia can connect any two
ports if a path is possible

Ganglion Frame Structure

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Function

Focusing call (updated for each port crossing) Included in payload delivery

call to pump routine in ganglia Header
- Focusing call and encoded path

updated at each step
- Header stripped when delivering

payload at destination

Encoded path remaining (list of direction/distance)

reply count, Y-1

payload count, X-1

Payload (X words)
Sent with outbound frame and
delivered after focusing call at
destination

Reply (Y words)
Transferred from destination back to
originator

 Path encoding will be upgraded for versatility

Procedure for Use

 Build snorkel program that transmits frame
and receives reply

 Build frame and execute program

 Snorkel program may assemble (gather) frame
from components and may disassemble
(scatter) reply as desired

For More Information
on Mark 1 Ganglia

 Documentation on website

– Mark 1 will be obsoleted, probably by 2b.

– AN011: Mark 2 Ganglia, not yet published.

 Source code

– arrayFORTH 2a blocks [404..406]

– polyFORTH 2a blocks [97, 28]

GreenArrays™
World Leader toward Efficiency

Implementing polyFORTH
on a Virtual Computer

Greg Bailey

Motivation

 Automated Test Equipment (ATE) testing of a
chip with 144 computers

 Develop and test software on chip without
dependency on a host computer

 Cross-develop into target chips with very high
speed and the ability to generate test stimuli
and probe responses at low cost

Chosen Solution

 Port polyFORTH to a VM running on chip

– Thanks to FORTH, Inc. for its kind permissions

– Well-documented, robust development system

– Suitable for any application

– Target compiler and full source provided

 Best tradeoffs for versatile 16-bit model

– Very similar to our system for original Novix chip

– Will be able to compile and debug F18 code

polyFORTH Memory Model

Resulting System

 Solid development platform

 Performance governed by memory access time
and choice of “instruction set”
– True of any VM, note benefits of dual stack arch

– Result on the order of DEC 11/73 or VAX 780 at cost of
about 5 mA when polling nodes eliminated

 VM may be extended with application specific
instructions

 Plenty of room for enhancement with VM
instructions and improved memory subsystem

For More Information
on G144A12 polyFORTH

 Documentation on website

– DB005: polyFORTH Reference Manual

– DB006: polyFORTH Supplement for G144A12

 Source code

– arrayFORTH 2a blocks [360..478] Virtual Machine

– polyFORTH 2a full system and utilities

• blocks [51..59] Target Compiler

• blocks [60..119] Nucleus Source

GreenArrays™
World Leader toward Efficiency

Memory Mastering I/O
for polyFORTH

Greg Bailey

Trivial I/O to Manipulate Pins

 Use Simple Ganglion frames to set io register
using port execution, no RAM code required in
the nodes owning the pins

 Examples are:

– Setting pin 600.17 to select SPI devices

– Resetting target chip using pin 500.17

Ad Hoc Fetch/Store

 R@ (d a) R! (a – d) R!@ (d a – d) in any
listening node

 Memory, ports, io register

 Used for simple I/O exploration, see app notes

 Operational use when speed unimportant

SPI Flash and MMC

 Bus support code in node 705 specific to
device protocol type (protocols very different)

 Macro operations defined by streaming port
execution using ganglion frames

 When switching devices drop new code into
node 705 using a ganglion frame

Other Bus Masters

 Ideal I/O for this sort of implementation uses
shared memory structures and stimuli

 Present chips require a polling node whenever
sources are combined

 Lesson Learned

– Future chips will poll at very low power

– “Warp” ports, for more flexibility in floor planning,
are probably worth their cost

For More Information
on I/O Using Snorkel & Ganglia

 Documentation on website

– DB006: polyFORTH Supplement for G144A12

 Source code

– arrayFORTH 2a blocks [410..412, 774..776]

– polyFORTH 2a blocks [98..101] SPI mass storage

• blocks [31..32, 121..122] external frequency refs

• block [142] ad hoc memory/register fetch/store

GreenArrays™
World Leader toward Efficiency

Using polyFORTH to Explore
a 3-Axis Accelerometer

Peter Milford

For More Information
on This Exercise

 Documentation on website

– AN008: Exploring a 3-Axis Accelerometer

 arrayForth Institute

– APP0100: Application Notes

 Source code

– polyFORTH 2a block [142]

GreenArrays™
World Leader toward Efficiency

Using polyFORTH to Develop a
Software-Defined Interface

Stefan Mauerhofer

presented by Greg Bailey

Talking with an AT Keyboard

PS/2 (female)

12

34

56

+5

clock

data

+1.8

100 nF

1

2

3

4

5

6

7

8

J21

617.ao

617.ai

517.17

417.17

317.17

217.17

117.ao

117.ai

100 nF

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

T
X

S
0

1
0

8
E

A1

VCCA

A2

A3

A4

A5

A6

A7

A8

OE

B1

VCCB

B2

B3

B4

B5

B6

B7

B8

GND

 5V open-collector bi-
directional interface

 Select a suitable level
shifter chip

 Take 5V supply from
convenient USB
interface on EVB001
Evaluation Board

 Hardware Prototype

Used arrayForth IDE to Explore

 With a scope attached to IO pins 317.17 and
217.17 the keyboard can be exercised and its
behavior observed

 ArrayForth code is written and tested to allow
reading and writing of the keyboard using
nodes 316 and 216 as buffers

 Simple testing is performed “by hand”

Higher Level Testing with polyFORTH

 Snorkel/Ganglia path to buffer nodes

 Read and write buffers using ganglia words R!
and R!@ with paths to nodes 315 and 215

 Build up and test a higher level interface using
keycode tables and meta keys

 Use a polyFORTH background task to control
the keyboard

 Replace serial terminal ‘KEY vector with the
attached PS/2 keyboard

For More Information
on the AT Keyboard Project

 Documentation on website

– AN009: Attaching a PS/2 Keyboard

 Source code

– polyFORTH 2a block [142]

GreenArrays™
World Leader toward Efficiency

Using polyFORTH to Test
and Validate an MD5 Team

Charley Shattuck

Node Diagram of MD5 Module

: MD5 (a n) <MD5 >MD5 MD5>
REPORT ;

 polyFORTH code is factored into three
snorkel/ganglia transactions plus REPORT.

 <MD5 gets the module started

 >MD5 feeds a string of bytes to the module

 MD5> stops the module and reads back the
message digest

 REPORT displays the message digest in a
standard format

Timing Test Results

Timing Test

 Hashes 1 million bytes in : 900 ms

 With virtual CPU turned off : 810 ms

 386DX25 : 1303 ms

 386DX40 : 776.5 ms

 386 code was generated inline by assembler
macros, no loops, no conditionals, VERY FAST!

 See 386 source in arrayForth terminal
emulator blocks 156 through 161

For More Information
on Testing the MD5 Hash

 Documentation on website

– AN001: An Implementation of the MD5 Hash

(Updated version not published yet)

GreenArrays™
World Leader toward Efficiency

Choreographing a Memory
Mastering Ethernet NIC

Greg Bailey

Problem Statement

 Support Ethernet for all good reasons

– Direct communication with rest of world

– IP transport without writing host drivers

 Existing NICs expensive to use

– Price of silicon and support chips (flash)

– Cost of interface (typically a PCI bus)

 Prove practicality of high speed bit-banged
communications complying with standards

Shared Memory Structure
Name Content

t.cm Command to TX pipeline, zero when taken.

t.pf ^ next descr to process, = t.rx if none

RX Descriptor Pool t.rx ^ next descr to be filled by RX, = t.ep if none

t.ep ^ next empty descriptor for freed buffer

t.lk Latest Link Status Word

t.dp 32-bit count of packets dropped for no buffers

t.sk ^ USER AREA TO AWAKEN for TX/RX completions

t.wk Value of WAKE to store into user areas

t.xa 20-bit TX buffer address

t.xn Length of TX buffer in octets; negative to force link down; 0 when done

t.pp Poll period for commands

t.tt ^ USER AREA TO AWAKEN for timer prodding

t.rxd
RX Descriptor table: +0 20-bit store address;

+2 ^ Buffer Structure; +3 Unused.

Building TCP/IP Stack

 Port well tested ATHENA stack for polyFORTH
on 32-bit machines to 16-bit environment

– Extended memory functions optimized for simple
code

– Locating code and structures in upper memory,
and buffers in extended memory, to minimize
footprint on low memory

For More Information
on Ethernet NIC

 Documentation on website

– AN007: A Bit-banged 10baset NIC

– DB008: polyFORTH TCP/IP Package

(neither is yet published)

 Source code

– arrayFORTH 2a blocks [720..778] Working NIC

– polyFORTH 2a blocks [540..840[TCP/IP package

(partially converted, working)

GreenArrays™
World Leader toward Efficiency

Thank You!

For more information, please visit

http://www.greenarraychips.com

http://www.greenarraychips.com/

