
Component-based Forth

By Joe O’Connor

Forth Day 11/15/2008

A bit of history

• I have been using Delphi as a RAD (Rapid
Application Development) tool since about
1996.

• My familiarity with Forth precedes that by
about 5 years (maybe more).

Forth History – early years

• First exposure – Tom Zimmer’s FPC.

• Starting Forth and Thinking Forth.

• Became a member of the Forth Interest
Group.

• To sum up, I was fascinated by the concept
and simplicity of Forth but didn’t do much
with it at this early stage. (I am not a
hardware/firmware programmer).

Forth – middle years

• Norman Smith’s UNTIL – Write your Own
Programming Language In C++.

• Smith extolled the virtues of using Forth as a
simple macro language on top of a C/C++
application.

• Biggest advantage of using a form of Forth –
no need for the complex baggage of lexical
analysis and parsing.

Middle years (cont).

• Q: What does the lack of complex
lexing/parsing allow?

• A: It allows the construction of a powerful,
macro language in only a few thousand lines
of code.

More middle years

• Q: Has anyone else had the bright idea of
developing a macro language along similar
lines besides Forthers?

• A: Tcl/Tk has a similar strategy of making
elements of the language as commands with
associated parameters. Its model more closely
resembles the function application done by
Lisp.

Modern Era Part I

• In 1998-1999 time frame, I had used Delphi for
several RAD projects, and decided to try my hand
at component programming.

• Delphi RAD development is visual in nature, and
focuses on using, not creating components.

• Component development is a separate discipline.
It’s nonvisual in nature, and is aimed primarily in
providing extra functionality to the programmer,
not the end user.

Modern Era Part I cont.

• Inspiration for developing Creole Forth –
UNTIL.

• Just as UNTIL can be piggybacked on top of a
C/C++ program, any Delphi application can
now have its own application language.

• All it requires is that the TCreole component
be dropped onto a form and a few properties
set.

First attempt – the good, bad, and ugly

• Used a form of threading probably unique in
the history of Forth – “database threading”.

• The dictionary took the form of a Paradox
database table.

• High level definitions were resolved down to
primitives by repeated SQL queries.

• It is the opinion of this author that database
threading should remain unique in the history
of Forth – it’s horrendously inefficient.

Modern era – Part II

• Q1: What’s the problem here?

• A1: A database is simply too heavyweight a
solution to implementing a Forth type of
lookup table.

• Q2: So what’s the solution?

• A2: Find a lightweight data structure to serve
as the dictionary.

Second pass

• Delphi’s TStringList data type filled the bill
nicely.

• An outer interpreter could use it as an
associative array (aka hash).

• An inner interpreter could use integer indexes
for lookup.

• Substituting the database with a TStringList
sped up search and looping by a factor of
250,000 according to benchmarks.

Current form of Creole Forth

• Inherits from TComponent (previous incarnation
inherited from TSQL).

• Has 5 stacks :
– Parameter stack.
– Return stack. This is implemented as an integer array

for speed.
– Vocabulary stack.
– Prefilter stack.
– Postfilter stack. Screens values to see if they belong to

the allowed datatype. For example if ‘INTEGER’ is on
this stack, only integer values are allowed on.

Current form of Creole Forth

• Encryption is used as a namespacing
mechanism. Names of words are encrypted
differently depending on the vocabulary
they’re in.

• No STATE variable. On compilation, the
IMMEDIATE vocabulary is pushed on the stack.
All words in this vocabulary are executed,
others are compiled. Compilation ends when
IMMEDIATE is popped off the stack.

Features of Creole Forth cont.

• Small and simple – less than 100 definitions.

• Now has networking primitives – found it hard
to get along without them.

Examples – let’s create an application

• Open Delphi.

• Drop it on the form.

• Set the properties.

Examples – demo app.

• Web server stuff, etc.

Current applications

• Two-way web server.

– Front end is a user-friendly interface that allows
users to browse the directories of a remote Unix
server and execute commands on the files there
(ie. Check for duplicate lines or view a summary
report).

More applications

• As an ActiveX control in Excel, pulls data from three
different sources (Oracle calendar, a remote script
that pulls email from a POP3 server, and the files on
the server) and displays them in summary format.

• As a high-volume file transformer that takes Excel
spreadsheets, transforms them into csv, and
transfers them to a Unix server for loading.

Future directions?

• Lazarus and Free Pascal. Write once, compile
anywhere. Pursuing this would put Creole
Forth on the Linux map.

• Adapting the ‘Forth component’ idea to Java
and Javabeans.

