
In Introduction To

Win32Forth Object

Oriented Programming

SVFIG
Oct. 25, 2025
Bill Ragsdale

Object Oriented Programming

Initially, by Ole-Johan Dahl and Kristen Nygaard in the

1960s leading to Simula.

The term "object-oriented programming" coined by Alan

Kay around 1966 working on Smalltalk.

But we know the concepts were developed by Charles

Moore in the 1960s via CREATE DOES>.

The Win32Forth implementation is patterned after

NEON and YERK.

OOP Key Elements

A class is comprised of similar objects and provides computational

resources. Think “colon-definitions & variables”.

Those resources may be passed downward to ‘child’ classes and

objects. Inheritance.

An object is an isolated, functional structure for a specific purpose.

Objects provide encapsulation Their components:

 Data elements are only accessible from within.

 Methods form the only access into an object.

OOP Key Elements

A class inherits resources from a super-class.

It creates an object defining word, variables and methods.

The data items are called instance variables.

The executable code is called a method. These simply are

colon definitions usable only when associated with an object.

Parameters are passed to methods via messages. The term

‘message’ is just a high-priced term for stack values.

Using An Internal Method

As methods are shared, their usage must link to an object.

We have three ways to link a method to an object.

Within the structure of an object ‘self’ refers to methods within

the object:

:M Product: dup * ;M

:M Scale: length Product: self ;M

The Early Binding Method

When an object as has been defined before use, a prefix syntax is

used; the method followed by its object:

Class: MyClass <super object

 int length

:M Product: length * ;M ;CLASS

MyClass MyObject \ creates an object

: Area 1000 Product: MyObject ;

The Late Binding Method

When a Class as has been defined, but no objects, the late binding

syntax is used. The object is later passed by its address.

Class: MyClass <super object

 int length

:M Product: length * ;M ;CLASS

: Area (n1 addr ---) Product: MyClass ;

MyClass MyObject

1000 MyObject Area

Instance Variables

byte <name> to hold a byte value

short <name> to hold a word value

int <name> to hold a cell value

dint <name> to hold a double or float

b/float bytes <name> to hold a float

int Holder cell to hold bits

 3 bits 3By 5 bits 5By 24 bits filler

Record: Local int left int right ;Record

Create Does> Birthday Example

: SetBirthDay (month day name ---) 2! ;

: GetBirthDay (name --- month day) 2@ ;

: Family CREATE 2 cells allot DOES> ;

Family Betty

Family U.S.A

10 5 Betty SetBirthday

7 4 U.S.A. SetBirthday

The code in Family is shared.
Each Family word has its
own storage area.

Create Does> Birthday Report

Betty GetBirthDay

.(for Betty) swap .(Month) . .(Day) .

See: for Betty Month 10 Day 5

U.S.A GetBirthDay

.(for U.S.A) swap .(Month) . .(Day) .

See: for U.S.A Month 7 Day 4

OOP Birthday Example

:CLASS Family <Super Object

 dint BirthDay \ month & day

:M SetBirthDay: TO BirthDay ;M

:M GetBirthday: BirthDay ;M ;CLASS

Family Betty 10 5 SetBirthDay: Betty

Family U.S.A. 7 4 SetBirthDay: U.S.A.

OOP Birthday Report

GetBirthDay: Betty

.(for Betty) swap .(Month) . .(Day) .

See: for Betty Month 10 Day 5

GetBirthDay: U.S.A.

.(for U.S.A.) swap .(Month) . .(Day) .

See: for U.S.A Month 7 Day 4

OOP President Example

:CLASS U.S.Constitution

 <Super Object

 ;CLASS

The class inherits from the super-class Object.

OOP President Example

:CLASS U.S.Constitution <Super Object ;CLASS

:CLASS President <Super U.S.Constitution

;CLASS

We now have a class consisting of U.S. Presidents.
They share common inheritance from the U.S.
Constitution, and the (to be defined) common methods
and each to have their (to be defined) OWN instance
variables.

OOP President Example

:CLASS U.S.Constitution <Super Object ;CLASS

:CLASS President <Super U.S.Constitution

 int ArmySize int UStreasury int USdebt

;CLASS

Adding integer instance variables.

OOP President Example

:CLASS U.S.Constitution <Super Object ;CLASS

:CLASS President <Super U.S.Constitution

 int ArmySize int UStreasury int USdebt

:M Entry: to USdebt to UStreasury to ArmySize ;M

:M Record: +TO USdebt +TO UStreasury +TO ArmySize ;M

:M Report: ArmySize USTreasury USdebt ;M

 ;CLASS \ Adding methods.

President Support

: .header (president ---)

 cr cr ." President " 2 cells- .name

 cr cr ." Year Army Treasury Debt” ;

\ shows report data for one year.

: .Show (army treasury debt year ---)

 cr 6 .r 2 spaces rot 7 .r swap 8 .r 8 .r ;

President Data

: YearChanges (year --- Army Treas Debt)
 CASE 1791 of 1000 0 -11 endof
 1792 of 500 0 -5 endof
 1793 of 500 0 -6 endof
 1794 of 10000 0 -1 endof
 1795 of -8500 0 -1 endof
 1796 of 0 0 -2 endof
 1797 of 500 0 -2 endof
 1861 of 400 0 -26 endof
 1862 of 73600 0 -433 endof
 1863 of 510000 0 -476 endof
 1864 of 445000 0 -800 endof
 1865 of 0 0 -900 endof
 abort" Bad Year" endcase ;

President Report

: Action (president start end ---)

 2 pick .header \ president show header

 2 pick Report: President \ current year’s data

 4 pick 1- .Show \ pres start end

 1+ swap \ over years of presidency

 do

 i YearChanges \ get year’s changes

 3 pick Record: President \ place changes

 dup Report: President \ year’s data

 i .Show \ year’s display

 loop drop ;

President Washington’s Definition

President Washington

500 0 -54 Entry: Washington \ prior year

Washington 1791 1797 Action

Washington’s Report To Congress

President WASHINGTON

 Year Army Treasury Debt (millions)
 1790 500 0 -54
 1791 1500 0 -65
 1792 2000 0 -70
 1793 2500 0 -76
 1794 12500 0 -77
 1795 4000 0 -78
 1796 4000 0 -80
 1797 4500 0 -82 ok

President Lincoln’s Definition

President Lincoln

16000 0 -65 Entry: Lincoln \ prior year

Lincoln 1861 1865 Action

Lincolns’s Report To Congress

President LINCOLN

 Year Army Treasury Debt (millions)

 1860 16000 0 -65

 1861 16400 0 -91

 1862 90000 0 -524

 1863 600000 0 -1000

 1864 1045000 0 -1800

 1865 1045000 0 -2700 ok

Conclusion

OOP has features in common with Forth.

However, it has greatly expanded internal data and methods

(execution code).

OOP has multi-level inheritance.

I find about a three to one increase in function per unit of

code. Matrices in one page.

Win32Forth OOP documentation is the bare minimum.

As an OOP novice I am on a detective search for

knowledge.

	Slide 1
	Slide 2: Object Oriented Programming
	Slide 3: OOP Key Elements
	Slide 4: OOP Key Elements
	Slide 5: Using An Internal Method
	Slide 6: The Early Binding Method
	Slide 7: The Late Binding Method
	Slide 8: Instance Variables
	Slide 9: Create Does> Birthday Example
	Slide 10: Create Does> Birthday Report
	Slide 11: OOP Birthday Example
	Slide 12: OOP Birthday Report
	Slide 13: OOP President Example
	Slide 14: OOP President Example
	Slide 15: OOP President Example
	Slide 16: OOP President Example
	Slide 17: President Support
	Slide 18: President Data
	Slide 19: President Report
	Slide 20: President Washington’s Definition
	Slide 21: Washington’s Report To Congress
	Slide 22: President Lincoln’s Definition
	Slide 23: Lincolns’s Report To Congress
	Slide 24: Conclusion

