
Implementing Forth on the
RCA 1802

A 40-year-old resource-starved processor architecture

Harold Rabbie

November 2014

RCA 1802 Microcontroller

• First manufactured in 1976

• Static CMOS technology (new at the time)

• Very low power
• 10 mW at 3.2 MHz

• Radiation hard Silicon-on-Sapphire
• Used in the Galileo spacecraft mission to Jupiter

• Currently manufactured by Intersil

RCA 1802 Hardware Interfaces

} 16-bit multiplexed address bus
(64KB addressable memory){8-bit data bus

One output bit

Four input bits}

Disk Files
Keyboard

Video
Mouse

Ethernet
Wi-Fi
USB

Serial I/O

RCA 1802 Registers

DDF

One 8-bit accumulatorCarry/borrow bitR0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13
R14
R15

Sixteen 16-bit pointer registers

P

4-bit Program
Counter Selector

X

4-bit Index
Register Selector

Arithmetic is ONLY between the D register and the memory
location addressed by the current index register

e.g.
P register contains 7, so R7 is the current program counter

X register contains 10, so R10 is the current index register

Arithmetic instruction at memory location addressed by R7
will operate on D and the value in memory addressed by R10.

RCA 1802 Instruction Set

• Most instructions are 1 byte long

• Most instructions take 16 clock cycles
• 3.2 MHz clock rate → 200K instr/sec, 5 µsec per instr.

• 8-bit arithmetic instructions
• D/DF register is always the destination operand

• 11 1-byte instructions that reference a pointer register:
• GHI, GLO, PHI, PLO, LDN, STR, LDA, INC, DEC, SEP, SEX

• Short branch 2-byte instructions (within same 256-byte page)

• Long branch 3-byte instructions (anywhere in 64KB address space)

4-bit
Opcode

4-bit
Register

The RCA 1802 Doesn’t Have:
• Conventional call / return instructions

• The SEP instruction is a possible alternative

• Hardware stacks
• Need to emulate in software

• Register-to-register arithmetic
• All arithmetic goes via the D/DF register

• 16/32-bit arithmetic
• Need to emulate in software with 8-bit operations

• Console I/O
• Add a UART chip or
• Bit bang using general-purpose I/O bits (EF, Q) or
• Simulate with a host OS

Forth Porting Decisions to Make

• Minimize execution time for most common operations:
• NEXT, DOCOLON, DOCONST, DOVAR, DOCREATE

• EXIT, LIT, >R, R>

• How should parameter stack be laid out?
• Big endian, or little endian?

• Grow up, or grow down?

• How should return stack be laid out?
• Big endian, or little endian?

• Grow up, or grow down?

• Indirect, direct, or subroutine threaded?

Set Program Counter (SEP) Instruction Example

Before executing SEP R2 After executing SEP R2

0x1234R1

P 1

0x5678R2

SEP R2
1234:

Current PC is R1

0x1235R1

P 2

0x5678R2

Current PC is R2
xxx5678:

SEP: Only 1 byte (good!) Only 16 different destinations (bad!)

Stack Design – Stacks Grow from High to Low

• RCA 1802 includes the LDA (load and advance) instruction

• e.g. LDA R1 can be used to POP a stack

0x1234R1

Memory location 1234: 0x56

0x1235

D 0x56

R1

BEFORE EXECUTING LDA R1 AFTER EXECUTING LDA R1
SP

}

Top of Stack Cell

There’s also STXD (store and decrement index register)

Threading Methods : FOO A B C ;

• Subroutine Threading
Header (FOO)

subcall A

subcall B

subcall C

jump NEXT

• Direct Threading
Header (FOO)
subcall docolon

.DW A

.DW B

.DW C

.DW EXIT

• Indirect Threading
Header (FOO)
.DW docolon

.DW A

.DW B

.DW C

.DW EXIT

• Body contains machine code
• Not available for RCA 1802,

due to lack of general
subroutine call instruction

• Body starts with machine code
• Needs only a limited number of

subroutine call instructions (*)

* Except for DOES> case

• Body contains only addresses
• Inner interpreter takes more cycles
• Words are 1 or 2 bytes longer than

direct threading

Direct Threading Example – CONSTANT word

• e.g. 1234 CONSTANT FOO

Compiles to:

Header (FOO)

sep constpc

.DW 1234 ; MSB first

; DOCONST, code action of CONSTANT words

sep nextpc

doconst:

lda codepc ; high byte of const

dec psp ; param stack ptr

stxd

lda codepc ; low byte of const

str psp

br doconst – 1 ; reset constpc

Executed with P=0 (codepc)
(R0 is the program counter)

Executed with P=6 (constpc)
(R6 is the program counter)

TOS.lo

TOS.hi

PSP

Stack Endian-ness
• ANSI 3.1.4.1 Double-cell integers

• On the stack, the cell containing the most significant part of a double-cell
integer shall be above the cell containing the least significant part.

LS byte

MS byte

PSP

Single-cell integer on stack
stored little-endian

LS byte of MS cell

MS byte of MS cell

LS byte of LS cell

MS byte of LS cell

PSP

Double-cell integer on stack
stored mixed-endian

• Return stack is big-endian to optimize >R and R>

RCA 1802 16-bit Register Usage

• 8 Dedicated Program Counter Registers
• R0 codepc machine code words
• R4 nextpc inner interpreter 6 instructions
• R5 colonpc words created with : (colon) 12 instructions
• R6 constpc words created with CONSTANT or VALUE 7 instructions
• R7 varpc words created with VARIABLE or CREATE1 7 instructions
• R8 createpc words created with CREATE 15 instructions
• R9 userpc words created with USER 8 instructions
• R10 execpc code field of EXECUTE 6 instructions

• 3 Forth Virtual Machine Registers
• R1 ip Inner Interpreter Pointer
• R2 psp Parameter Stack Pointer - usually set as the index register (SEX 2)
• R3 rsp Return Stack Pointer

Inner Interpreter (6 instructions)

; NEXT, dispatch next execution token from Forth Instruction Pointer

; entered by sep nextpc

sep codepc ; jump to xt

nextd:

lda ip ; high byte of xt

phi codepc

lda ip ; low byte of xt

plo codepc

br nextd – 1 ; reset nextpc

XT.hi

XT.lo

Forth IP

Compiling a VARIABLE word
; DOVAR, code action of VARIABLE words

; entered by sep varpc

sep nextpc

dovar:

ghi codepc ; high byte of addr

dec psp

stxd

glo codepc ; low byte of addr

str psp

br dovar - 1 ; reset varpc

• e.g VARIABLE FOO

Compiles to:

Header (FOO)

sep varpc

.DW xxxx

7 Instructions
Executed with P=7
varpc is the program counter

Executed with P=0
codepc is the program counter

DOES> Overrides default runtime semantics
for CREATE’d word

Other language FORTH

: char-array CREATE ALLOT DOES> + ;

char a[10]; 10 char-array a

a[5] = 42; 42 5 a C!

Defining word defines a class with a single method
Default runtime semantics push address of body

Using CREATE to define a word

• e.g CREATE FOO

Compiles to:

Header (FOO)

sep createpc

.DW noop

; may be overridden by DOES>

; followed by BODY

; DOCREATE, code action of CREATE'd words

; entered by sep createpc – 15 instructions!

sep codepc

docreate:

lda codepc ; high byte of DOES> part

phi temp1

lda codepc ; low byte of DOES>

plo temp1

ghi codepc ; push PFA to param stack

dec psp

stxd

glo codepc

str psp

ghi temp1 ; need to enter DOES> part

phi codepc ; with codepc

glo temp1

plo codepc

br docreate - 1 ; reset createpc

noop: sep nextpc

Why did <BUILDS go away?
There is a need to distinguish between cases where DOES> may or may not be used

Creating Word FIG-Forth ANS-Forth Camel Forth 1802

<BUILDS DOES> is used

CREATE DOES> is not used DOES> may be used DOES> may be used

CREATE1 DOES> may not be used

Fig-Forth : char-array <BUILDS ALLOT DOES> + ;
ANS Forth : char-array CREATE ALLOT DOES> + ;

Example usage : VARIABLE CREATE1 CELL ALLOT ;

CamelForth ANSI-compliant FORTH compiler

• Brad Rodriguez, McMaster University, Ontario, Canada

• Designer of “Pathetic Instruction Set Computer”

• CamelForth project started 1994

• Ports available for
• Intel 8051, 8086

• Zilog Z80, Z180

• Motorola 6809

• TI MSP430

• RCA 1802

Word Header in CamelForth 1802

Link

Flag

Count

name[0]

name[1]

Pointer to NFA of previous word in the dictionary

S

0 = Normal, 1 = Immediate

Smudge bit + Length of word name

……

Code field

Name of word (up to 127 characters)

• Code words – assembler instructions
• Colon words – SEP colonpc + list of XT’s
• CONSTANT, VALUE – SEP constpc + 2 bytes of data
• VARIABLE, CREATE1 – SEP varpc + body data
• CREATE – SEP createpc + XT + body data

{

LFA

NFA

CFA/XT

ANSI X3.215-1994 compliance of CF1802

Word Set Standard Words CamelForth 1802 Notes

6.1 Core Words 133 133

6.2 Core Extension Words 46 43 3 obsolescent

8.6.1 Double-Number Words 20 3 M+, DNEGATE, DABS

15.6.1 Programming-Tools Words 5 4 SEE not implemented

15.6.2 Programming-Tools
Extension Words

13 8 ASSEMBLER, EDITOR
not implemented

17.6.1 String Words 8 8

NOT IMPLEMENTED
Double Extension, Floating, Search, Search Extension, Block, Block Extension
Exception, Facility, Local, Local Extension, File, File Extension, Memory

Passes John Hayes & Gerry Jackson’s ANSTESTS version 0.7

Some statistics for CamelForth 1802 v1.1

• Constant words 12

• Code words 91

• Colon words 163

• User words 9

• Total words 275

• Dictionary size 6,657 bytes

• Minimal ROM footprint < 4KB
• Sufficient functionality to compile rest of words from FORTH source

Performance - Loop Counting to 64K

• FORTH code

0 BEGIN 1+ DUP 0= UNTIL DROP

1+ 8 inst

DUP 9 instr

0= 6 instr

?BRANCH 11 instr

NEXT 6 * 4 instr.

• Total 58 instructions per loop

• 64K loops -> 19 seconds

• Assembly code

1$: INC Rn

GLO Rn

BNZ 1$

GHI Rn

BNZ 1$

• Total: 3.008 instructions per loop

• 64K loops -> 0.98 seconds

FORTH : assembler ~ 19 : 1

Implementation Complexity

0

20

40

60

80

100

120

140

Word Implementation Size in Bytes

Forth word
Code word

CamelForth 1802 Demo Setup

CF1802.ASM
Assembly code

Cross-
Assembler

Instruction-
Level

Simulator

CF1802.OBJ
Intel Hex

CF1802.LST
Symbol Table

ACCEPT

STDIN

STDOUT

EMIT

./1802sim CF1802

Starting address: 0000

RCA1802 CamelForth v1.3 18 Oct 2014

: hello ." Hello World!" ;

ok

Advantages of Simulation over Real Hardware

• Run-time error checking with no performance penalty
• Stack underflows

• Write to pre-defined dictionary area

• Execution of undefined opcodes

• Symbolic execution tracing
• FORTH word level with stack contents

• Machine code level

• Cycle-accurate timing measurements

• ~600 times faster than RCA 1802 hardware

