
1

Forth Meets Smalltalk

A Presentation to SVFIG
October 23, 2010

by Douglas B. Hoffman

2

CONTENTS
• WHY FMS?
• NEON HERITAGE
• SMALLTALK HERITAGE
• TERMINOLOGY
• EXAMPLE FMS SYNTAX
• ACCESSING OVERRIDDEN METHODS
• THE OBJECT - MESSAGE CONTRACT
• OBJECTS AS INSTANCE VARIABLES
• EARLY vs LATE BINDING to SELF
• WHY MESSAGE NAMES ARE SPECIAL
• MESSAGE NAME CONFLICTS
• RECORDS
• REFERENCE IMPLEMENTATIONS
• LINKED LISTS
• DISPATCH TABLES
• SUMMARY

3

WHY FMS
(Forth Meets Smalltalk)?

• Neon-like Forth object extensions have a long
history of successful use in several Forths.

• Friendly and familiar syntax for creating classes.
• But there have been complaints (ordering of

message-object, [] syntax, lack of methodless
ivar access, etc.)

• Claimed to have inefficient (slow) dynamic
binding.

• FMS addresses the complaints, but keeps what
is liked.

4

NEON HERITAGE

• FMS class building syntax resembles Neon,
but there are important differences.

• Retains Neon’s ease of use in defining new
classes, e.g., interface definitions are not
needed.

• Fully supports objects-as-instance-variables.
• Upgrade path to Multiple Inheritance thanks

to Michael Hore and PowerMops.

5

SMALLTALK HERITAGE

• Any message can be sent to any object
(Duck Typing). No interfaces needed.

• Object-message syntax.
• Message names end with colon “:”

6

TERMINOLOGY
• Smalltalk terminology is used in this

presentation.
• Early Binding, a message send is

resolved to the correct method at
compile time.

• Late Binding, a message send is
resolved to the correct method at run
time. Also called Dynamic Binding.

7

EXAMPLE FMS SYNTAX

:class foo
 :m hi:
 .” Hello”
 ;m
;class

Begin a class definition

End the class definition

The class name is foo

Begin a method definition

End the method definition

The message name is hi:

The method itself

8

foo myfoo
myfoo hi: Hello

: make (-- ^obj)
 heap> foo ;
make constant myfoo2
myfoo2 hi: Hello
myfoo2 <free

Alternatively, instantiate an object in the heap. Heap>
is a runtime only word.

Instantiate an object in the
dictionary of class foo. The
object is named myfoo.

Send the hi: message to
the object.

Free the heap memory when
done with object myfoo2

Note that all messages sent to public objects (not objects as ivars) are late bound.

9

:class var
 cell bytes data
 :m @: (-- n)
 data @ ;m
 :m !: (n --)
 data ! ;m
;class

Define a class whose objects will have an instance variable (ivar) of size one cell. We normally
declare all ivars prior to defining the methods. Here the BYTES ivar defining primitive is used.

Executing the ivar’s name will return
its address.

The scope of the ivar name, in this case “data”, is private to the class
definition and any subsequent subclasses. Message names are
always global in scope.

10

:class var2 <super var
 :m print1: data @ . ;m
 :m print2: self @: . ;m
 :m print3: [self] @: . ;m
;class
var2 v2 25 v2 !:
v2 print1: 25
v2 print2: 25
v2 print3: 25
v2 IV data @ . 25

Define a subclass of var, named var2. Objects of class var2 inherit all data and methods from the
superclass var. Objects of class var2 will also respond to the three new print messages.

Four different ways to print the ivar value in
a var2 object.

What are the implications of each?

Note explicit declaration of superclass

11

:m print1: data @ . ;m

:m print2: self @: . ;m

:m print3: [self] @: . ;m

v2 IV data @ . 25

Method print1: will be the fastest message send because it uses in-class METHODLESS IVAR
ACCESS.

Method print2: uses an early bound message to the pseudo ivar SELF.

Method print3: uses a late bound message to the pseudo ivar SELF. The late binding is invoked
by using the bracketed [SELF]. The advantage of using a late bound message send is we can
more easily change the behavior of subclass methods (see next slide). The disadvantage is a
late bound message send is always somewhat slower than one that is early bound. This speed
difference may or may not be important to the application. Late binding to SELF is the most
flexible way to design a method and is considered by some to be the preferred technique in all
cases. In FMS the programmer has a choice.

Methodless ivar access outside of a class definition will always be fastest because no message is
sent (anywhere). But the downside is this trick violates the fundamental idea behind object
programming. What if we later change the internal structure of the class such as changing data
to be a char-length integer?

12

:class var3 <super var2
 :m @: (-- n)
 .” fetch from var3 ”
 data @ ;m
;class
var3 v3 25 v3 !:
v3 print2: 25
v3 print3: fetch from var3 25

Define a subclass of var2 named var3. The @: method inherited from the superclass var has
been overridden with a different method. Note that the overriding is implicit, i.e., there is no need
to declare something like “override” because the intent is (should be) obvious.

The late bind of @: to [SELF] in the print3: method of class var2 will use the most recently defined
@: in the class hierarchy chain. Objects of class var and var2 are not affected by the redefinition
of @: in class var3. Late binding to [SELF] is sort of like a context-dependent deferred definition.
The context is the class.

Method print2: is unaffected because the @: in class
var2 is early bound to SELF.

13

:class var4 <super var
 :m @: (-- n)
 .” fetch from var4 ”
 data @ ;m
 :m test: (-- n)
 self @: .
 cr super @: 1+ . ;m
;class
var4 v4 95 v4 !:
v4 test: fetch from var4 95
96

Call the @: method in class VAR.

Call the @: method in this class.

ACCESSING OVERRIDDEN METHODS

14

THE OBJECT - MESSAGE
CONTRACT

• Classic OOP theory would mandate that the
only way to access an object’s data or invoke
its procedures is to send a message to the
object.

• This a form of data protection. Data can only
be changed via a message send.

• Makes it easier to avoid or track down bugs.
• Also allows the internal details of data formats

and procedures to be changed without
affecting the rest of the program. This is a
form of information hiding.

15

THE OBJECT - MESSAGE
CONTRACT

• In FMS the programmer is free to
violate this contract. Why? This is
Forth.

• Methodless ivar access is available.
• Ivar data and methods are available.
• Use with care, if used at all.

16

OBJECTS AS IVARS
:class bar
 var x
 var2 y
 foo aFoo
 :m !: (x y --) y !: x ! ;m
 :m p: x @: . y print2: aFoo hi: ;m
;class

bar b \ instantiate an object
5 10 b !: \ send a message to b
b p: 5 10 Hello \ send a message to b

We can declare as many ivars as we want. We can freely mix
ivar objects and ivars created with the BYTES primitive.

17

Early vs Late Binding to SELF
• Defining all messages sent to SELF as late

bound, (i.e., always use [SELF] instead of
SELF) might make it easier to reuse method
definitions in subclasses. This could be a
benefit, but not in all cases.

• The downsides are: 1) Slower program
execution due to many more (and
unnecessary) late binds, and

 2) Must be careful to avoid infinite loops
when a subclass method uses a superclass
method which references back to the
subclass via late binding.

18

Early vs Late Binding to SELF

• It has been the author's experience that
when an opportunity for code reuse via
late binding to SELF occurs, it is a
simple matter to just redefine the
binding involved by changing SELF to
[SELF] in the superclass method.

19

WHY MESSAGE NAMES
ARE SPECIAL

• Sending a message is a "special" event and it should
be clear when reading source code where a message
send occurs. This is an opinion.

• In FMS we require that all message names end in
colon (<name>:).

• This naming convention has been used with success
in other Forths for decades.

• Some seem fixated on wanting to hide the use of
objects thus making object code indistinguishable
from Forth code not using objects.

• This a mistake, in the author’s opinion. For example,
if we define "@" to be a message then we can have
code that looks like the following (next slide):

20

WHY MESSAGE NAMES
ARE SPECIAL

foo @ \ a normal fetch from the VARIABLE foo, or the
address presented by the execution of foo.

bar @ \ a message send to the OBJECT bar, or the
object presented by the execution of bar.

21

MESSAGE NAME
CONFLICTS

• FMS message names have global scope.
• A message name conflict with another

globally scoped word is handled as you would
with any name conflict in Forth.

22

RECORDS
• Instance variables can be declared as

part of a record.
• Header information is then removed

from an object’s data.
• Use the REC{ … }REC notation.
• Essentially a form of a structures

package for objects.

23

REFERENCE
IMPLEMENTATIONS

• Two example implementations of FMS are provided for
reference.

• Not the only ways to implement FMS.
• “Production” FMS code would be optimized.
• Reference implementations are loosely based on Andrew

McKewan’s work (Object Oriented programming in ANS Forth,
Forth Dimensions, March 1997).

• One uses linked lists to resolve messages to methods. Faster
than McKewan (1997) because the n-way thread is determined
at compile time. This is actually pretty fast. N could be
increased.

• One uses dispatch tables (very fast).
• A small library is supplied in order to help illustrate the use of

FMS.

24

LINKED LISTS
 ^obj SelectorID

(compute mfa thread offset at compile time)

 : FINDM (SelID MFA -- ^xt)
 BEGIN @ DUP
 WHILE 2DUP CELL+ @ =
 IF 2 CELLS + NIP EXIT THEN
 REPEAT ;

 FINDM @ EXECUTE-METHOD

 : EXECUTE-METHOD (^obj xt --)
 [SELF] >R SWAP TO [SELF] EXECUTE
 R> TO [SELF] ;

25

DISPATCH TABLES

 ^obj SelectorID

 OVER CELL - @ + @ EXECUTE-METHOD

 : EXECUTE-METHOD (^obj xt --)
 [SELF] >R SWAP TO [SELF] EXECUTE
 R> TO [SELF] ;

26

SUMMARY

• FMS retains what we like from Neon.
• FMS improves upon any real or

perceived weaknesses in Neon.

