Unsuitable 1.0

Blog Engine
Forth.

Problems (July 2009)

Web Hosting Provider Folding in Few Weeks

Using Serendipity with PostgreSQL Database
Need to install new blog, retaining content
— Local Installation of Serendipity with MySQL
Sounds simple to migrate!

Problems

* Local Serendipity Failed to Import from
Remote Serendipity Instance

— Only first 20 or so articles succeeded
— No comments were imported

Problems

Serendipity Suffers Numerous Page-Rendering
Bugs too.
— Code listings were always double-spaced.

— Sometimes you needed \ to escape its wiki-
inspired format codes, sometimes not.

Problems

* Decided to try Wordpress.
— Themes broken out of the box!! Ouch!
— Could not fix them by changing themes. Ouch!
— Failed to import comments from Serendipity.

Problems

* Decided to try Wordpress.

— | am not alone: 29 complaints in last 3 months

Forum Topics

Topic
"Broken theme" "template missing
Broken Theme - Missing Style Sheet

Theme Broken

Broken Theme...another one
[resolved] Broken Theme & Dashboard

Broken Theme

Posts

14

Last Poster

Micah007

dkristine

AVX

sulfsby

carolineasmussen

esmi

flamenco

esmi

Freshness

month

2 months

2 months

2 months

months

months

months

Problems

Decided to try Movable Type
— Could not import anything from Serendipity.
— Configuration was a pain.

* Intended for large-scale sites with dedicated support
personnel.

* | had to pay for the theme | wanted. Ouch!

Problems

* |t Becomes Personal!

“My crusade in this post is that

Forth is emphatically not the right tool
for the job.” — lars _ (reddit.com)

Light Bulb!

e By this time, | had only one day left of hosting.
| grabbed an SQL dump, intending to import
material into whatever blog engine |
eventually settled on.

e But then | remembered all those previous
articles where | said, “I should write my own
blog in Forth someday.”

It was now

or

Simplifications

* Comments
— Not worth the effort to implement!
— 99% spam by volume.

— Serendipity required non-stop administrative
expense on my part.

— Most contemporary blogs moving towards hiding
comments by default, because let’s face it, they’re
just plain ugly and distracting.

Simplifications

* Comments
— I’'m not alone!
e Laughing Squid (removed)
* LispCast (hidden)
 WSJ (never used; comments on Facebook now!)
» Science Daily (never existed)

— Therefore, Unsuitable doesn’t support comments.

Simplifications

* Searches
— Google site:foo.com search works great!
— It’s almost like owning a GSA, but cheaper.
— Faster than any blog search engine I’'ve used.

— Therefore, Unsuitable does not provide search
capability.

Simplifications

e Falvotech.com belongs only to me.
e | have no guest authors.

e No theme: | discuss whatever I’'m thinking at the
moment.

e Supporting multiple authors implies user and
rights management complexities.

e Therefore, Unsuitable hardcodes the author of all
articles.

Simplifications

* Visual Appearance

— Different page layouts really requires different
article flows.

— | expect to make no money from my blog; material
no longer of interest to the world at large.

— Automatic flow management, a la T¢X, is hard!!

— Therefore, Unsuitable hardcodes much of the
visual layout, while accepting essentially raw
HTML as input.

Simplifications

e Article Submission Procedure
— I’'m the sole author for all content.

— Multiple authors -> user management ->
management user interfaces.

— SSH already provides spectacularly awesome
authentication.

— Therefore, Unsuitable requires article submission
from command-line.

Deliberate Complexification

Don’t use files for persistence
Would not be “Forth-like” if | did.

Instead, use 1970s-era, natively-hosted Forth
BLOCK system (DASD).

Reminds me of allocating data-sets on IBM
mainframes. Only way, way, easier and
cooler.

Surprising results!!

The Result

* Only the essentials:

— Organizes catalog of articles.

— Provides RSS feed.

— Permits user to drill down into an article.
e 371 lines of code total.

— Includes comments and blank lines!

— Not all compiled at once, though.
* Pure CGI Interface for Lighttpd.

The Result

$ siege -c 250 -i http://www.falvotech.com/

Transactions: 39709 hits
Availability: 100.00 %
FElapsed time: 290.39 secs
Data transferred: 291.71 MB
Response time: 1.31 secs
Transaction rate: 136.74 trans/sec
Throughput: 1.00 MB/sec
Concurrency: 179.17
Successful transactions: 39709

Failed transactions: 0
Longest transaction: 14.02
Shortest transaction: 0.01

The Result

$ siege -f urls.txt -c 250 -I

Transactions: hits
Availability: . 3
FElapsed time: . secs
Data transferred: . MB
Response time: . secs
Transaction rate: . trans/sec
Throughput: : MB/sec
Concurrency:

Successful transactions:

Failed transactions:

Longest transaction:

Shortest transaction:

The Result

Lighttpd is definitely the bottleneck!

371 Lines of What?

* Forth Machine Model
— A “Dictionary”
— Persistent Storage in “blocks”
— A Data Stack
— A Return Stack

* Forth code always reads left to right.

— Except when it doesn’t.

371 Lines of What?

* Forthis Interpreted

371 Lines of What?

* Forthis Interpreted

32180100 */32 +

371 Lines of What?

* Forthis Interpreted

180 100 */ 32 +

DATA STACK:

371 Lines of What?

* Forthis Interpreted

32 100 */ 32 +

DATA STACK: 32

371 Lines of What?

* Forthis Interpreted

32 180 */32 +

DATA STACK: 32 180

371 Lines of What?

* Forthis Interpreted

32180100 "/ 32+

DATA STACK: (32*180)/100 or

371 Lines of What?

* Forthis Interpreted

32180100 */ 22 +

DATA STACK: 57.6

371 Lines of What?

* Forthis Interpreted

32180100 */ 32

DATA STACK:

371 Lines of What?

* Forth is Compiled

. >F 180 100 */ 32 +;

e : defines new words. Note : is like any other
word!

e : closes the definition.
e Names may contain any non-space character.

371 Lines of What?

* Forth recognizes three distinct times: ICE
— Interpret-time.
— Compile-time.
— Edit-time.

371 Lines of What?

* Forth recognizes three distinct times: ICE

:>F 180100 */ 32+
32 >F

371 Lines of What?

* Data Stack Manipulation

— Sometimes, required data isn’t where you need it
to be.

123
123
123
123
123

371 Lines of What?

e Return Stack Used to Remember What to Do
Next
— Think, “Return to what | was doing.”
— May also be thought of as partial continuations.

e Return Stack Manipulators
>R (to-R)
R> (R-from)

371 Lines of What?

e Structured Returns Common in Functional
Languages Today

— Forth coders have been doing this since the 60s!!

:onlylfOdd dup 1 and O=if r> drop then;
. testlt onlylfOdd .” This number is odd.” cr ;

3 testlt 4 testlt
e Forth thus allows factoring control flow!

371 Lines of What?

e Structured Returns and Deep Stacks Lead to
Spaghetti If Abused.

* Used properly, however, they permit Forth to
express in 371 lines what Java/Perl/Python/
et. al. require ~2000 for.

 Compression also comes from eliminating
redundancy in the source code.

371 Lines of What?

In Forth:

: >core
dup 10 rshift block

In Java (Hypothetical):

public Ptr<char>

convertToCoreAddress(int address) {
int blkAddress;

blkAddress =
filBlockCache(address >> 10);
return
new Ptr<char>(blkAddress +

()}

A Word about Types

* Forth, the language, specifies no types.

— Moore believes, rightly, that a potentially infinite
number of sub-types exist for any non-trivial
application.

Ex: Form-raw strings vs. HTML-escaped strings
Ex: Does the range [1, 7] correspond to days of the

week or a valid menu selection? Both? And,
when?

A Word about Types

* Type checking done through Hoare Logic.
— Prefer edit-time “checking” with Hoare Logic.

— Compiler almost always ignorant about types. See
StrongForth for an exception.

— Interpret-time checking preferred over run-time
checking (c.f. Unsuitable’s modules, TDD, etc.)

— Run-time checking enforceable through execution
of guards and preconditions.

Workflow

Workflow

* Unsuitable receives request in PATH _INFO.

S" PATH INFO" getenv
constant /path-info
constant &path-info

e Convention: Read /x as “size of x,” as in bytes
per X.

Workflow

* Unsuitable receives request in PATH _INFO.

e Basic sanity checks ensure obvious breakage

attempts yields an index page.
lurl | >=2
/path-info 2 u< if
s" m—-index.fs" included bye
then ;
lurl | >=2

Workflow

Unsuitable receives request in PATH _INFO.

Basic sanity checks ensure obvious breakage
attempts yields an index page.

More sophisticated forms of breakage requires
compromising Lighttpd itself.

Based on URL component, dispatch to specific
Forth module.

Workflow

e URL Structure

/module/parameters

AL
~ Y, Y/\ ~ J

Resolved by POWS Selects Optional
Unsuitable

Request Handler

Workflow

/module/parameters

Spath-info /path-info +

constant end-of-url

&path-info 1+

constant module

Workflow

/module/parameters

—eou dup end-of-url >= if r> drop then ;
-/ dup c@ [char] / = if r> drop then ;
slash Dbegin -eou -/ char+ again ;

module slash constant ¶meters

Workflow

/module/parameters

path [char] m ¢, [char] - ¢, ;

base module ¶meters over -
here swap dup allot move ;

extension S" .fs" here swap dup allot
move ;

filename path base extension ;

dispatch here filename here over -
included ;

dispatch bye

Workflow

* Each module responsible for validating and
interpreting URL parameters, if any.

e Modules exhibit bracket structure:

— First “bracket”: examine URL and make sure it’s
valid for this module. Don’t compile rest of the
module unless it’s worth it!

Workflow

* Each module responsible for validating and
interpreting URL parameters, if any.

end-of-url ¶meters -
constant /parameters
oO0pS
s" m-index.fs" 1ncluded bye ;
| parameters | >=2
/parameters 2 u< if oops then ;
|parameters|>=2

Workflow

 Each module responsible for validating and
interpreting URL parameters, if any.

e Modules exhibit bracket structure:

— Interior: macro definitions and support utilities.
ex1lsts:
dup -1 = 1if r> 2drop then ;
.
1d @ articleWithId!
execute exists: gob! get, ;
title ['] title .f ;
lead ['] lead .f ;
body '] body .f ;

Workflow

 Each module responsible for validating and interpreting
URL parameters, if any.

Modules exhibit bracket structure:

— Second “bracket”: render the resulting page using the
above-defined macros, if any.
variable s
variable end
mime
." Content-type: text/html" cr cr ;
valid
mime here s !
s" article.html" slurp here end !
s" response.fs" included bye ;

Storage

* Blog written as if it were orthogonally
persistent.

 BLOCKs implement software-managed virtual
memory with 1024 byte “pages.”

— @f and !f to fetchs and stores (resp.) to persistent
space.

— @ and ! for normal core/dictionary storage.

00000000

00000400
00000800
00010800
00011000
00013800
00040000

Storage

OOOO003FF

O00O0O07FF
000107FF
OOO10FFF
000137FF
OOO3FFFF
OO13FFFF

Vestigial boot block
storage?

GOS and DB Metablock
unused?

2K GOS Handle Table3
10K Articles Table3
unused

1MB GOS blob storage

1 Used back when Forth implementations doubled as a machine’s operating system.
2 Formerly, 64K GOS blob storage.
3 At current blog article posting rate, should suffice for another five years of posts!

Storage

* Administering Storage Surprisingly Quick/Easy
— Filesystems not as useful as | expected for this
project!
— When | ran out of my first GOS (64K), | expanded it

to 256K, including relocating it in the block space,
in only 10 minutes.

— GOS now is 1MB in size.
— | anticipate GOS exhaustion around Feb 2011.

No Libraries!

Dwindling user-base since Forth eclipsed by C
in mid-80s.

Hence, no libraries exist for collections,
networking, etc.

— That’s OK though: Forth philosophy prefers
building from scratch for production code.

— Re-using code considered OK for R&D though!
Code re-use takes backseat to concept re-use.

Compiles on Every Page View

* Forth compilers work very fast!
— Gforth compiles 45,801 LOC/s on my web server.
— Gforth-fast compiles 54,500 LOC/s.

* |f every line of the blog were compiled for a

single request, it would introduce only 8ms of
latency.

Future Directions

* Interest Expressed in a Forth Web Application
Server!

* Adding Features to Unsuitable:

— Series of Articles (e.g., Unsuitable on Unsuitable)
— Different Navigation Methods?

— Automated Article Obsolescence Tracking?
— Support for Different Kinds of Articles?

Additional Resources

* Blog Address
— http://www.falvotech.com/blog2/blog.fs

e Unsuitable on Unsuitable

— http://www.falvotech.com/blog2/blog.fs/articles/
1030

* Declarative, Imperative, then Inquisitive
Pattern

— http://www.falvotech.com/blog2/blog.fs/articles/
1022

Additional Resources

e Starting Forth
— http://www.forth.com/starting-forth/

* Thinking Forth
— http://thinking-forth.sourceforge.net/

 Silicon Valley Forth Interest Group

— If you don’t mind a bunch of disgruntled Forth
coders reminiscing of the good-ol’ days... ;-)

— http://www.forth.org/svfig

Thank You!

