

Transcription Factors

Chen-Hanson Ting
SVFIG
July 28, 2018

Summary

- Cell computer postulates
- microRNA is the key
- Supporting evidences
- RNA polymerase
- Transcription factors
- Transcription factor binding sites
- My expectations

盲人摸象《涅槃经卷三十二》

Cell Computer Postulates

- A living cell functions by ordered release of proteins.
- A miRNA causes transcription of one RNA, which causes:
 - Transcripting a protein; or
 - Releasing a group of miRNAs; or
 - Other specific RNA function.

MicroRNA is the Key

- Each cell function is represented by one miRNA.
- Each miRNA has a code of 20-24 bases.
- Each miRNA has a code field in genome, followed by a RNA field, which is transcribed to a functioning RNA.

MicroRNA

- miRNA functions by annealing to its code field in a genome.
- A RNA polymerase enzyme followed the annealed miRNA and transcribes a RNA whose sequence is stored in the RNA field.

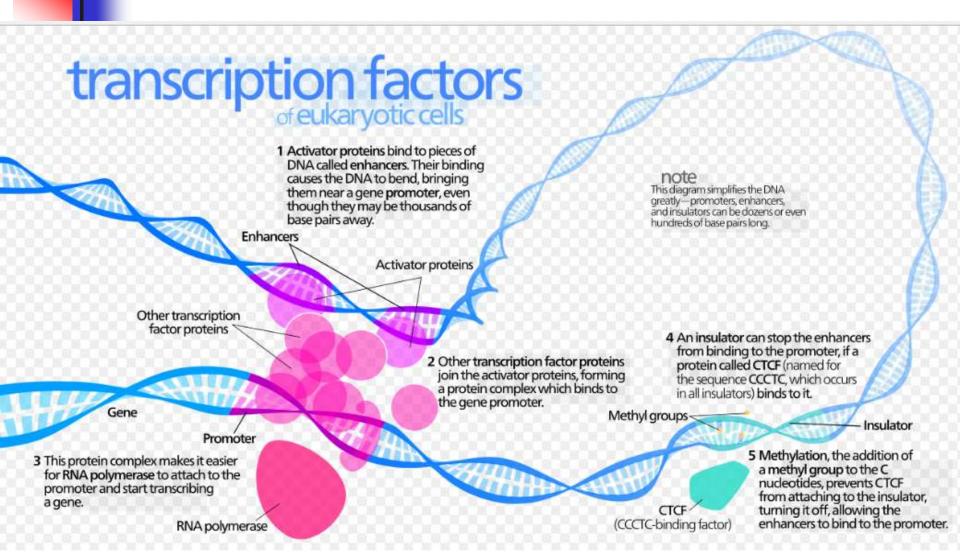
RNA Polymerase

- A transcription factor binds to a promoter in front of a gene.
- RNA polymerase transcribes a RNA from DNA.
- The promoter generally has start code TATA.
- RNA polymerase stops at CCCTC.


PCR & DNA Polymerase

- PCR (polymerase Chain Reaction) is one of the greatest inventions in 20th century.
- It opened up the DNA in genomes and lead to genetics.

Supporting Evidences


- Many long non-coding lncRNAs contain clusters of miRNA.
- Many genomes contain clusters of miRNA.
- PCR (Polymerase Chain Reaction) shows that DNA polymerase can extend long DNA sequence from a primer of ~20 bases.

Transcription Factors

- Transcription Factor is a protein that controls the rate of transcription of a gene from DNA to messenger RNA, by binding to a specific DNA sequence.
- If a transcription factor contained a miRNA to bind to DNA, my postulate would be proven.

Function of TF

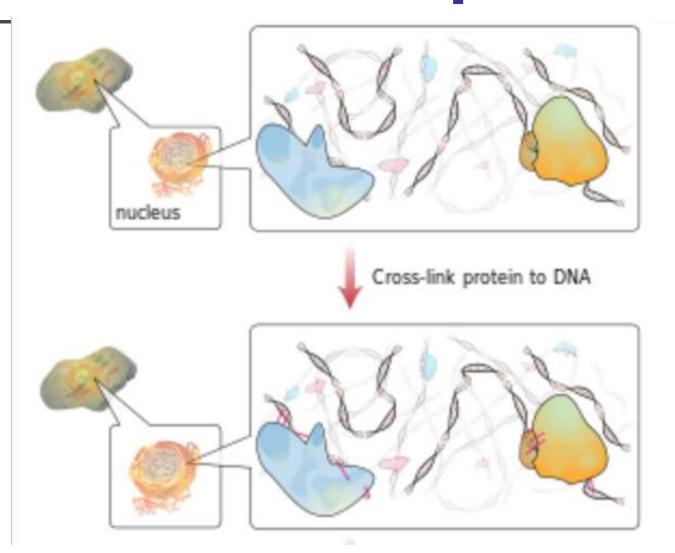
Schematic diagram of the amino acid sequence (amino terminus to the left and carboxylic acid terminus to the right) of a prototypical transcription factor that contains (1) a DNA-binding domain (DBD), (2) signal-sensing domain (SSD), and a transactivation domain (TAD). The order of placement and the number of domains may differ in various types of transcription factors. In addition, the transactivation and signal-sensing functions are frequently contained within the same domain.

TF Specificity

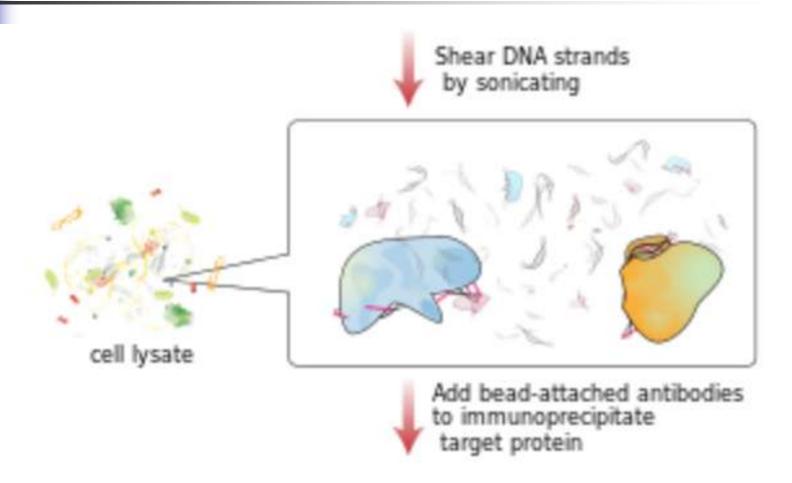
- DNA Binding Domain
 - How can a stretch of protein can accurately bind to specific DNA promoter?
- Response Element, Transcription Factor Binding Site.
 - No reliable experiment can accurately identify TF binding sites

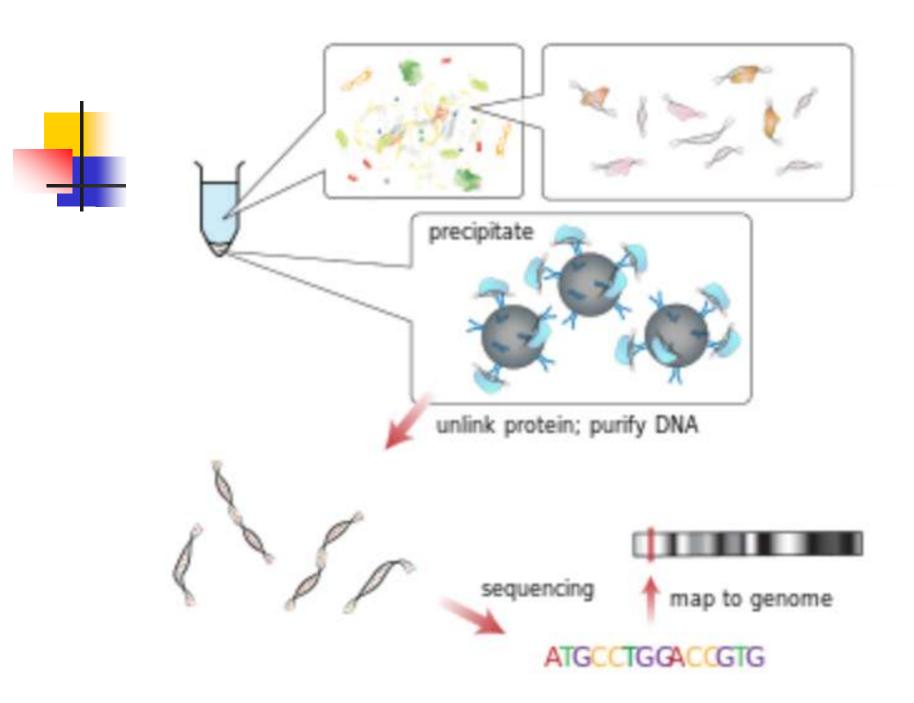
TF Specificity

- 2600 transcription factors identified in human genome.
- The transcription factor binding sites are not reported so far.



ChIP-Sequencing


- Chromatin Immunoprecipitation Sequencing
- Hundreds of ChIP sequencing experiments yielded tens of thousands sequences, but they are not transcription factor binding sites.



ChIP-seq

ChIP-seq

miRNA, TF Binding Sites

- I picked one file: ALX4_HUMAN.H11MO.0.D.words
- It reported 23663 sequences of experiments yielded tens of 12 bases.
- 41 of these sequences are contained in miRNAs.

miRNA, TF Binding Sites

AAATTTAATTA	L15477	AGATTCAATTA	M12126	
TGATTTAATTA	м05978	CTAGTTAATTA	M03991	
TAATCCGATTA	L44635	TAATGCAATTG	L33476	
TAATATAATTA	L33520	TAATACGATTA	M23422	
TAAATCAATTA	L14755	GAAATCAATTA	M46405	
AAACTTAATTA	L07386	TAAAGTGATTA	L28835	
TAGTTTAATTA	L31182	TGCTTTAATTA	L33116	
CAACCTAATTA	L45456	TATTTTAATTT	L07392	
GAAGCTAATTA	м35659	TGAGTTAATTT	L23045	
TTAGGTAATTA	L33620	AATTTCAATTA	м36383	
TCAGTTAATTA	L21572	TAATCTCATTT	м18736	
TATTCCAATTA	м15471	TATGGTAATTA	м09815	
TCAGCTAATTA	L48169	TAATGCAATCA	L39647	
AAATTTAATTT	м09979	TAATACAATAA	M41031	
TTATTTAATTG	м44455	GCATTCAATTA	м17564	
TTAATCAATTA	L33669	AAGTCCAATTA	L30957	
TTAGTTGATTA	м03759	AAAGTTAATTG	L34079	
TAATTTGATAA	м33643	CAATCTAATTC	L41832	
AAATCTAATTT	L12331	TATACCAATTA	L34088	
TAATGCAATAA	L28102	AAGGTTAATTA	м35743	

My Expectations

- Each cell function has a miRNA.
- Each miRNA has a transcription factor, or something which guides RNA polymerase to transcript one RNA.
- RNA polymerase has to act like DNA polymerase, starting from a simple miRNA primer.

Questions?

Thank You!