
COMPILING AND DEFINING
WORDS IN CREOLE FORTH

JOSEPH M. O’CONNOR

MAY 2025

OVERVIEW

• Defining words – have two actions ; one at compile time, another at run time.

• Compiling words – execute at compile time, usually for the purposes of generating code into the
parameter field.

• In both cases, there is a difference between compile-time code and run-time code, which can be tricky
to visualize.

QUINTESSENTIAL DEFINING WORDS

• : CONSTANT CREATE , DOES> @ ;

• : VARIABLE CREATE , DOES> NOP ;

SOME COMPILING WORDS

• DO…LOOP/LOOP+ - Executes code in between a definite number of times.

• BEGIN…UNTIL– Executes code in between until some specified condition is met.

• IF…ELSE…THEN – conditional execution

POINTS TO REMEMBER

• Defining words and compiling words both have separate compile-time and run-time actions.

• Compiling words are used most often when setting up control structures.

• Defining words are a method of creating a new compiler.

• Some consider defining words to be an early form of object-oriented programming due to words
inheriting functionality from previously defined words and the grouping of data and functionality
together.

DEFINING WORD EXAMPLE – CONSTANT

• : CONSTANT CREATE , DOES> @ ;

• Compile time 1 : tokens for the primitives doCreate, doComma, compileDoes, and doFetch are placed in
the parameter field.

• Compile time 2 : 3 CONSTANT THREE – compiles 3 in the parameter field, followed by its own address
token* and the runtime code. Code field is set to doDoes.

• Run time : Puts the index field of the current word onto the stack has doColon execute @. This
retrieves the value in the first member of the Parameter field (3), then pushes it onto the stack.

COMPILING WORDS EXAMPLE – IF ELSE THEN
• Compile Time:

• (1) compileIf

• 1. Adds the doZeroBranch (0BRANCH) code and a placeholder -1 to store the address to jump to.

• 2. Pushes the location of the placeholder onto the stack.

• (2) compileElse

• 1. Adds the doJump (JUMP) primitive and a -1 placeholder next to it.

• 2. Pops the position of the zero branch address to jump to off the stack,

• 3. Stores the location to jump to in that position.

• 4. Concludes with pushing the jump address location next to the jump command onto the stack.

• (3) compileThen

• 1. [Pops the location information off the stack and puts it in the -1 placeholder,

• 2. adds a doThen

COMPILING WORDS EXAMPLE – IF ELSE THEN

Run Time:

• (1) do0Branch jumps to the address beside it if it consumes a 0 value, otherwise just advances the
parameter field pointer by 1.

• (2) doElse and doThen are synonyms for doNop (no operation). Their location is what is important, not
what they do.

ASSEMBLY OF PARAMETER FIELD – IF/ELSE/THEN
Python method Dictionary def Contents of Parameter field Stack

compileIf IF (-- loc1) 0BRANCH -1 1

doHello HELLO (--) 0BRANCH -1 HELLO 1

compileElse ELSE (loc1 -- loc2) 0BRANCH 5 HELLO JUMP -1 doElse 4

doTulip TULIP (--) 0BRANCH 5 HELLO JUMP -1 doElse doTulip 4

compileThen THEN (loc2 --) 0BRANCH 5 HELLO JUMP 7 doElse doTulip doThen empty

doSemi ; Final tokens in parameter field –
[56, 5, 5, 57, 7, 58, 6, 59]. Also pops IMMEDIATE
vocabulary off of the stack

CREOLE FORTH COMPILING WORDS - DIFFERENCES

• Most Forths define a state variable to differentiate between compiling and not compiling.

• A word that is marked immediate will execute during compilation, not compile.

• Creole Forth lacks the state variable.

• Instead, all immediate words are in the IMMEDIATE vocabulary.

• During compilation, the IMMEDIATE vocabulary is placed on top of the vocabulary stack, therefore this
vocabulary is always searched first.

• At the end of compilation, the IMMEDIATE vocabulary is knocked off the vocabulary stack, which makes
the words in that vocabulary inaccessible afterwards.

CREOLE FORTH COLON COMPILER

• Definitions are built in the PAD data structure

• Each word in the definition is looked up.

• The fully qualified name (name + vocabulary), token or address, and compile-time action are placed in a
CompileInfo object.

• For ordinary words, the compile-time action is COMPINPF, which is a synonym for , (COMMA).

• For compiling words, this action is EXECUTE.

• Once the name-token-action triplets are all in PAD, the respective tokens and actions are passed to an
interpreter. Each token is pushed onto the stack, then consumed by its compile-time action.

IF-ELSE-THEN IN PAD

WORD FQ NAME IN PAD TOKEN/ADDRESS IN PAD COMP ACTION IN PAD

IF IF.IMMEDIATE 53 EXECUTE

HELLO HELLO.FORTH 5 COMPINPF

ELSE ELSE.IMMEDIATE 54 EXECUTE

TULIP TULIP.FORTH 6 COMPINPF

THEN THEN.IMMEDIATE 55 EXECUTE

; ;.IMMEDIATE 42 EXECUTE

FINAL OBSERVATIONS

• The more recent versions of Creole Forth (Python, VB, etc) appear to blur the distinction between
compilation and metacompilation.

• In a metacompilation loop, each symbol encountered is first executed, not compiled.

• This execution causes it to compile its target compilation address into its target.

• In Creole Forth, each token in pad is executed by its compilation action, which is embedded in its
definition.

• Ordinary words have their tokens placed ‘as is’ in the parameter field.

• Compiling words are executed, which generates code into the parameter field (it could generate code
elsewhere too).

• This may offer advantages in modularity over a single global compilation process with a STATE variable.

QUESTIONS/COMMENTS?

