COMPILING AND DEFINING
WORDS IN CREOLE FORTH

JOSEPH M. O’CONNOR
MAY 2025

OVERVIEW

* Defining words — have two actions ; one at compile time, another at run time.

 Compiling words — execute at compile time, usually for the purposes of generating code into the
parameter field.

* In both cases, there is a difference between compile-time code and run-time code, which can be tricky
to visualize.

QUINTESSENTIAL DEFINING WORDS

e : CONSTANT CREATE , DOES> @ ;
* :VARIABLE CREATE , DOES> NOP;

SOME COMPILING WORDS

 DO...LOOP/LOOP+ - Executes code in between a definite number of times.
 BEGIN...UNTIL—- Executes code in between until some specified condition is met.

e |F...ELSE...THEN — conditional execution

POINTS TO REMEMBER

* Defining words and compiling words both have separate compile-time and run-time actions.
e Compiling words are used most often when setting up control structures.
» Defining words are a method of creating a new compiler.

* Some consider defining words to be an early form of object-oriented programming due to words
inheriting functionality from previously defined words and the grouping of data and functionality

together.

DEFINING WORD EXAMPLE — CONSTANT

: CONSTANT CREATE, DOES> @ ;

 Compile time 1 : tokens for the primitives doCreate, doComma, compileDoes, and doFetch are placed in
the parameter field.

e Compile time 2 : 3 CONSTANT THREE — compiles 3 in the parameter field, followed by its own address
token™ and the runtime code. Code field is set to doDoes.

* Run time : Puts the index field of the current word onto the stack has doColon execute @. This
retrieves the value in the first member of the Parameter field (3), then pushes it onto the stack.

COMPILING WORDS EXAMPLE — IF ELSE THEN

Compile Time:

(1) compilelf

1. Adds the doZeroBranch (0BRANCH) code and a placeholder -1 to store the address to jump to.
2. Pushes the location of the placeholder onto the stack.

(2) compileElse

1. Adds the doJump (JUMP) primitive and a -1 placeholder next to it.

2. Pops the position of the zero branch address to jump to off the stack,

3. Stores the location to jump to in that position.

4. Concludes with pushing the jump address location next to the jump command onto the stack.
(3) compileThen

1. [Pops the location information off the stack and puts it in the -1 placeholder,

2. adds a doThen

COMPILING WORDS EXAMPLE — IF ELSE THEN

Run Time:

* (1) doOBranch jumps to the address beside it if it consumes a 0 value, otherwise just advances the
parameter field pointer by 1.

* (2) doElse and doThen are synonyms for doNop (no operation). Their location is what is important, not
what they do.

ASSEMBLY OF PARAMETER FIELD — IF/ELSE/THEN

Python method Dictionary def Contents of Parameter field Stack

compilelf IF (--locl) OBRANCH -1

doHello HELLO (--) OBRANCH -1 HELLO

compileElse ELSE (loc1 -- loc2) OBRANCH 5 HELLO JUMP -1 doElse
doTulip TULIP (--) OBRANCH 5 HELLO JUMP -1 doElse doTulip

compileThen THEN (loc2 --) OBRANCH 5 HELLO JUMP 7 doElse doTulip doThen

doSemi ; Final tokens in parameter field —
[56,5, 5,57, 7,58, 6,59]. Also pops IMMEDIATE
vocabulary off of the stack

CREOLE FORTH COMPILING WORDS - DIFFERENCES

* Most Forths define a state variable to differentiate between compiling and not compiling.
* A word that is marked immediate will execute during compilation, not compile.

* Creole Forth lacks the state variable.

* Instead, all immediate words are in the IMMEDIATE vocabulary.

e During compilation, the IMMEDIATE vocabulary is placed on top of the vocabulary stack, therefore this
vocabulary is always searched first.

* At the end of compilation, the IMMEDIATE vocabulary is knocked off the vocabulary stack, which makes
the words in that vocabulary inaccessible afterwards.

CREOLE FORTH COLON COMPILER

* Definitions are built in the PAD data structure
e Each word in the definition is looked up.

e The fully qualified name (name + vocabulary), token or address, and compile-time action are placed in a
Compilelnfo object.

* For ordinary words, the compile-time action is COMPINPF, which is a synonym for, (COMMA).
* For compiling words, this action is EXECUTE.

* Once the name-token-action triplets are all in PAD, the respective tokens and actions are passed to an
interpreter. Each token is pushed onto the stack, then consumed by its compile-time action.

IF-ELSE-THEN IN PAD

WORD FQ NAME IN PAD TOKEN/ADDRESS IN PAD | COMP ACTION IN PAD
IF.IMMEDIATE EXECUTE
HELLO.FORTH COMPINPF
ELSE.IMMEDIATE EXECUTE

TULIP.FORTH COMPINPF
THEN.IMMEDIATE EXECUTE
;- IMMEDIATE EXECUTE

FINAL OBSERVATIONS

 The more recent versions of Creole Forth (Python, VB, etc) appear to blur the distinction between
compilation and metacompilation.

* In a metacompilation loop, each symbol encountered is first executed, not compiled.
* This execution causes it to compile its target compilation address into its target.

* In Creole Forth, each token in pad is executed by its compilation action, which is embedded in its
definition.

* Ordinary words have their tokens placed ‘as is’ in the parameter field.

* Compiling words are executed, which generates code into the parameter field (it could generate code
elsewhere too).

* This may offer advantages in modularity over a single global compilation process with a STATE variable.

QUESTIONS/COMMENTS?

