
Java Eforth108

SVFIG

Chen-Hanson Ting
May 22, 2021

Java Forth

◼ There are several Forth
implemented in Java.

◼ There were even an eForth
implemented in Java by Michael
A. Losh, in 1997.

◼ They are all very complicated.

Java Eforth

◼ I wanted a simple Java Forth
modeled after jeforth614.

◼ Every Forth word should be an
object.

◼ To write and test Java code, you
need an IDE, like Eclipse from
IBM.

JavaScript

◼ Everybody knows that JavaScript
is no Java.

◼ After learning some Java, I
realized that JavaScript is actually
a cScript.

◼ Objects in JavaScript are not
objects, but very flexible arrays.

Eforth in Java

◼ Eforth101, experiments on stack.
◼ Eforth102, Brad Nelson made it a

4-function calculator..
◼ Eforth104, Shawn Chen made it a

Forth.
◼ Eforth106, eForth prototype.
◼ Eforth108, aligned with forth614
◼ Eventually it will be released as

javaEforth.

Java Eforth Objects
▪ All Forth objects have the

following attributes:

▪ name

▪ Token with an sequential ID

▪ Pf with an object list

▪ Qf with a data list

▪ Literal with a string

▪ Immediate with a compiling flag

Eforth108

◼ A single method with a giant
switch structure to execute all
primitive words.

◼ The default method in this switch
structure executes colon words.

◼ Constants, variables, and arrays
are all implemented as colon
words.

Eforth108

◼ Only two types of words:
◼ Primitive words

◼ Colon words
◼ All primitive words are

constructed by Class Code.
◼ Colon words are defined by the

user.

Outer Interpreter

◼ The Forth outer interpreter is the
main()method, written in Java.

◼ The parser is a single Java
command: Scanner.in.next().

◼ To use in.next(). I sacrificed
the universal Forth prompt OK,
and the opportunity to show the
contents of data stack.

in=new Scanner(System.in);String idiom;

while(!(idiom=in.next()).equals("bye")){

Code newWordObject=null;

for (var w : dictionary){

if (w.name.equals(idiom)) {newWordObject=w;break;}}

if(newWordObject != null){

if((!compiling) || newWordObject.immediate) {newWordObject.xt(),}

else{ Code latestWord=dictionary.get(dictionary.size()

latestWord.addWord(newWordObject);}}

else{try {int n=Integer.parseInt(idiom, base),

if (compiling){Code latestWord=dictionary.get(dictionary.size()

latestWord.addWord(new Code("dolit",n));}

else{stack.push(n);}}

catch (NumberFormatException ex) {System.out.println(idiom + " ?");

compiling=false,stack.clear();}}}

System.out.println("Thank you.");in.close();}

Inner Interpreter

◼ Shawn Chen contributed a
beautifully simple inner
interpreter to process nested
token lists:
for(Code w:words) w.xt();

◼ I have to break up this code to
handle control structures.

Inner Interpreter
default: {

rstack.push(wp);rstack.push(ip);

wp=token;ip=0;

while(!pf.get(ip).name.equals("exit")) {

try{pf.get(ip).xt(); }

catch (Exception e)

{System.out.println(e);}

ip++;

}

ip=rstack.pop();wp=rstack.pop();

}

Object List

▪ Each word object has a sequential
ID as a token.

▪ However, colon words compile
object lists, not token lists.

▪ Tokens are still needed to look up
objects in dictionary.

Literals in Object List

▪ In a colon word, the pf attribute

contains an object list.
▪ Forth needs these literals in the

object list:

▪ Integer literals

▪ String literals

▪ Address literals

Literals in Object List

▪ Object dolit contains an integer
in its qf.

▪ Objects dostr and dotstr contain
strings in their literal.

▪ Objects branch, zbranch, and
donext have the branching
addresses in their qf.

Lessons108.txt

▪ 17 lessons/tutorials on how to
use eForth were used to verify
that Eforth108 worked properly.

▪ The entire file can be copied and
pasted into the Console window
to exercise Eforth108.

Conclusions

◼ Eforth108 proves that Forth
words work as true objects.

◼ Eforth108 is logically correct but
can use lots of improvement.

◼ It is my first Java project and
shows my lack of understanding
of this extremely complicated
language.

Link to Eforth108

◼ Link to Eforth108:
◼ https://drive.google.com/file/d/1S-

UpZ73k3mPx9zU7J_dcP49kRQ4GPI
9M/view?usp=sharing

◼ Email for commenting:
◼ chenhansunding@gmail.com

Demo

Thank You!

