A Merge Sort
In Forth

SVFIG
Mar. 22, 2025
Bill Ragsdale

The Need

Sorts for a Forth matrix system.
= Bubble Sort, last month. n-squared.

= Merge Sort, this month. nlog,(n).

Results, effort worthwhile?

Rows Bubble Merge
10 <1 msec < 1 msec
100 16 - 32 msec 2 - 4 msec

1,000 2.3- 3.7 sec 15 - 16 msec

5 min 29 sec
10,000 6 min41sec 65-110 msec

Merge-Sort Summary

Scan locating a pair of runs.

Merge-sort that pair into one run.

If at an odd run at the matrix end, carry it across.
Repeat until two runs remain.

Final merge-sort pass.
End.

How: }Scanner

Set last matrix row as the default exit value.
From the starting row.
Compare its sort value to that of the following row.

Finding the row with the lessor or equal value ,

return row number just above and exit,
otherwise, increment row and loop.

If no ending value qualifies, return the default value.

}Scanner

H' 1- to result

Jdup @
H' 1- rot
?do

2dup 1 1+ swap @
Fdup Frot F<

yScanner { %{ 1 C ——— r2

T T e

h!

flag)} % locate run end
default ending value

sort value of the origin row
start at r row

ccan to matrix end

value from target row

lesser marks new run.

if 1 to result leave then % end of run

loop

Z2Zdrop Fdrop result dup H" 1- =

Run }Locator

Use }scanner to find a run.
Set 1t run A’ start and 15t AX’ end.
Return a code if AX’ ends the run.
If second run is found,

Set 2™ run start B’ and 2" run Bx’ end.

Return a code if Bx’ ends the matrix.

}Locator

- ylocator { %{ v C ——— code }
over to A" -1 to AX' -1 to B' -1 to Bx°
A' B= 1f B to w-row then
Jdup :Scanner
swap to Ax" 1if 3Jdrop B exit then % at matrix end.
Ax" 1+ to B' nip B" swap }scanner Y row flag

swap to Bx® Y mark 2nd end

if -1 else 1 then .

}2-merge
Use }locator to determine the locations of two runs.
Find the row with the smallest ‘C’ value.
Copy identified row to the working{ matrix.

Test if that run has been exhausted.

If so, transfer the remaining portion of the other run
to the working{ matrix.

Set the next start row into A’.

}2-merge
: y2-merge (®{ G ———) Y merge two runs
begin 2dup A" swap }dE v get B' row sort cell float
2dup B® swap @ F<= % get A' row sort cell
if over A B }}
working{ w-row 8@ }} Y r—addyr r-addr
Xx{bytes cmove % move row
1 +to A" 1 +To w-row A" AX' > \ compare A" AX" >
if drop }copy-second-run exit then
else over B" 8 3} Y setup transfer
working{ w-row 8 }} ={bytes cmove
1 +to B* 1 +to w-row B' Bx' > % at 2" vrun end
if drop }copy-first-run exit then then

again ;

Elements, run actions

A: One run found, matrix already sorted. Exit.

C: Only two runs found, do one merge. Exit.
D: Two ending runs found, merge and restart sort.
E: Two runs found, merge and continue.

B: One ending run found, carry it across and restart
sort.

}Msort

Initialize control parameters A’ Ax” B’ Bx’
Run }locator setting A’ Ax’ B’ Bx’.
Enter a case statement on the }locator return value.

Select from E (most likely), AB, CD

From the returned value either loop or end.

}Msort

: yMsort (%{ C ——) Y merge sort
Z2dup 8 swap jlocator Y locate and receive code
begin
case “ select action for Yselector code
1 of 2dup }case-E endof Yy interior merge

8 of 2dup ;case-AB endof Y sorted or ending run
-1 of 2dup case-CD endof Y two runs or end
cr cr abort" error in }Hsort"
endcase
until Y upon flag from a merge word

2drop :

Elements, run actions

A: One run found, matrix already sorted. Exit.

C: Only two runs found, do one merge. Exit.
D: Two ending runs found, merge and restart sort.
E: Two runs found, merge and continue.

B: One ending run found, carry it across and restart
sort.

Input,

Z2._.8889
L .8888
/.8889
19.8488
17.888
19.8489
1.88480
18.888
19.8489
L .884a9
16.0888
L .884a9

12 Rows

15.8488
13 .888
/.8889
6.88480
/.0888
17.8488
8.88480
15 . 888
19.8489
0._884a9
15.888
15.8480

Sort On Column Two

19.84808 6.08888 /

/.8888 7._9088
17.888 7.8888
1.88808 8.08888
5 .08888 9._.9088
L .88488 13.8848
Z2_.88488 15.8848
18.888 15._0888
16.8808 15.888
L .884808 15.888
19.888 17.0888
19.8480 19.8848

Sort On Column Two Then One

\ 1.88808 8.088848

L.88808 9._088848

5 .884808 13.888

18.888 15.088
16.6888 15._088

19.880 6.08848
19.8488 17.888
19.8480 19.8848

Time Results

Rows Bubble Merge
10 < 1 msec < 1 msec
100 16-32 msec 2 - 4 msec

1,000 2.3-3.7 sec 15 - 16 msec

5 min 29 sec

10,000 | 6 min 41 sec | 2> MO

msec

Machine Loading Results, passes

Rows Bubble Merge
10 50 4
100 5,000 7
1,000 500,000 10

10,000 50,000,000 17

Onward
Discovery: If starting with an odd number of runs, a short
run will remain at the end until the last merge.
This will demand a final merge for that very short run.

So, upon finding an odd number of runs, do an in-place
bubble sort of the first run pair.

Will decrease sort time by log,(n-1)/log,(n).

This tends to keep all runs of a similar size.

Also

This merge sort requires an identical added working space
for the sort values and associated row values.

| allocate a temporary space to fully duplicate the source
matrix.

Space is rows x columns x 8 bytes.
A matrix of 1,000 rows by 5 columns 40 Kbytes.

Some other sorts use a smaller working space.

Conclusion

The bubble sort is so compact, I’ll leave it the
core matrix code,

And make the merge-sort a load module.

Sorting and optimization can be an infinite time
sink.

| think I’'m done.

	Slide 1
	Slide 2: The Need
	Slide 3: Results, effort worthwhile?
	Slide 4: Merge-Sort Summary
	Slide 5: How: }Scanner
	Slide 6: }Scanner
	Slide 7: Run }Locator
	Slide 8: }Locator
	Slide 9: }2-merge
	Slide 10: }2-merge
	Slide 11: Elements, run actions
	Slide 12: }Msort
	Slide 13: }Msort
	Slide 14: Elements, run actions
	Slide 15: Input, 12 Rows
	Slide 16: Sort On Column Two
	Slide 17: Sort On Column Two Then One
	Slide 18: Time Results
	Slide 19: Machine Loading Results, passes
	Slide 20: Onward
	Slide 21: Also
	Slide 22: Conclusion

