Simple Sorts

SVFIG
Feb. 22, 2025
Bill Ragsdale

The Need

A simple sort for tens to low hundreds of rows.
More complex sorts are suitable for larger matrices.
Four bubble sort strategies.

1. Full sort all rows. n-squared.

2. Full sort all rows with early exit.

3. Diminishing sort. n-squared /2.

4. Diminishing sort with early exit.

Comments.

Is often used as a cleanup after more complex sorts.
Sort time increases by n-squared.

Add a digit to number of rows, sort time increases by
100-fold.

Can sort in place with (almost) no temporary
memory.

Comments.

Scan downward by row examining a column value.

If column entry is larger than the next column entry,
exchange rows.

Larger values sink to the bottom.
Preserves the order of prior sorted columns.

Each scan can cover one less row as the last row is
known to be the largest in that column.

Input, 10 Rows

-88808 7.8088 1._.8084898
-8888 9.068688 7.90088
8888 2_068688 2_008688
-8889 B.8088 4_80489
-8888 .90888 5.00888
-8888 .88088 5_88488
-88808 6.8088 4_80480
-8888 5._8088 2Z2_88488
-8889 E.8088 7_88489
-8888 8.068688 9.06888

= e I - B B == B - = B = L =

Sort On Column Three

!

-88808 7.8088 1._.8084898
-8888 2_8088 2Z_88489
-8888 5._8088 2Z2_88489
-8880 8.08088 4_808480
-88808 6.8088 4_88489
-8888 .88088 5_88489
-8888 .90888 6.080888
-8888 9_.8088 7_884898
-8880 8.8088 7_808489
-8888 8.068688 9.08088

= I I = LI - = B = e T~ B = T R |

Sort On Column Three Then Two

!

-8880 .880688 5_808480
-8888 .88088 6.88488
-8888 2_8088 2Z_884898
-8888 5._08688 2._0888
-B888 6.8088 4_88489
- 88489
-88pn B.8088 4
0680 8.00888 7.

(= B = - e e I - B T = B =

Row Exchange Key Word

: yrow-exXchange (®%{ C

F1 v2 —— ®{ ¢C)

“ Given the matrix, column and two row numbers

3pick 2pick 8 }}
transient{ }size
3pick over 8 }}
transient{ }size
transient{ 8 8 }} ¢
transient{ }size

Z2drop :

FROM } transient{ 8 8 }} (TO)
cmove
FROM)} A4pick 3pick 8 3}} (TO)
cmove
FROM)} A4pick 2pick 8 }} (TOD)
cmove

One Pass Through Matrix

: one-pass (®%{ c row-through --——- ¥{ Cc)

1+ B

do over 1 2pick @ % compare to i-th+1 cell
over 1 1+ 2pick @ F>
if 1 1 1+ }row-exchange then

loop ;

Bubble Sort

- ybubble { ¥{ col —— } %\ sort rows of X¥{ on column
1 2pick }cols opentransient{
over rows 2 - B swap
do 1 W %{ ¢ 1 of target rouw
one-pass W X{ C
-1 +loop

2drop closetransienty .

Rows Square
10 < 1 msec
100 40 msec

1,000 4.4 sec

10,000

Results

Results

Square +
Rows Square Early Exit
10 < 1 msec < 1 msec

100 40 msec 34 msec
1,000 4.4 sec 3.7 sec

10,000

Results

Square +

Rows Square i Decreasing
10 < 1 msec < 1 msec <1 msec
100 40 msec 34 msec 32 msec
1,000 4.4 sec 3.7 sec 3.8 sec
10,000 5 min 29 sec

6 min 41 sec

Rows Square
10 < 1 msec
100 40 msec

1,000 4.4 sec

10,000

Results

Square +
Early Exit

<1 msec

34 msec

3.7 sec

Decreasing
<1 msec

32 msec

3.8 sec

5 min 29 sec
6 min 41 sec

Decreasing +
Early Exit

<1 msec
16-32 msec.

2.3 — 3.7 sec

Onward

e | should move to the next more complex sort:
* Shell sort?
* [nsertion sort?

e The sorts in Excel are fantastic. Hundreds and
thousands in fractions of a second.

o | suspect they use large amounts of short-term
memory.

	Slide 1
	Slide 2: The Need
	Slide 3: Comments.
	Slide 4: Comments.
	Slide 5: Input, 10 Rows
	Slide 6: Sort On Column Three
	Slide 7: Sort On Column Three Then Two
	Slide 8: Row Exchange Key Word
	Slide 9: One Pass Through Matrix
	Slide 10: Bubble Sort
	Slide 11: Results
	Slide 12: Results
	Slide 13: Results
	Slide 14: Results
	Slide 15: Onward
	Slide 16
	Slide 17

