
Project DOT

Forth Coding Practices for High
Quality, Maintainable Software

The Problem

PC/Arduino communications proved unreliable in practice.
About one in one hundred bytes would drop due to timing
inaccuracies between the Arduino and FTDI USB adapter.
Reliable protocol between PC and Arduino thus necessary
to ensure successful data exchange.

The Solution: AX.25 (sort of)

AX.25 is a proper subset of ISO HDLC.
Two 7-byte address fields instead of one 1-byte.
No official support for modulo-32768, SNRM, or SARM
modes of operation, but no impediments to supporting these
either.
In all other respects, AX.25 is HDLC.
Probably the simplest to understand protocol specification to
read since IP came out.

The Solution: AX.25 (sort of)

Proven technology originating with IBM System/360
Mainframes in the form of SDLC, later standardized
internationally as HDLC.
It works in high-noise (amateur radio), high-latency (Earth
orbiting satellite), low-noise (RS-422), and low-latency
(SONET/SDH) environments without any significant
changes.
Sole difference: use two 1-byte addresses instead of 7-byte.

The Solution: AX.25 (sort of)

But, why AX.25/HDLC and not TCP/IP?!

TCP has more complex state to maintain.
Telemetry inherently message-oriented; TCP is byte-
oriented.
TCP requires explicit framing of data to delineate
messages.
Separation of TCP and IP functionality

I have to write more code.
Greater opportunity for mistakes.
FAR greater overhead (40 to 60 bytes versus only 5)
Checksums instead of CRCs

The First Cut

The First Cut: Why?

Layers impose constraints on who can call what and when.
Data, however, transcends layers!
Structure-Centric Code (e.g., apps hold "handles" to
"connections").
Poor mapping to how HDLC actually works.
Threat of race conditions between threads:

(D)MUX runs in (De)framer context.
Connection and packet sequencer needs another
thread.
Application Interface runs in application context.

The Second Cut

The Second Cut: Why?

DLCR and DLCS are Relational Variables ("tables") equipped
with a rather thin procedural abstraction on top.

Almost as a consequence of using relational algebra, code
tends to declare (new) truth. As a rule, it doesn't have to
command or ask politely.

Code is database-centric, not structure-centric. No need to
pass pointers to parameter blocks everywhere!

Reduced constraints on module relationships.

The Second Cut: Why?

Dispatcher better matches how HDLC works best.

Note the distinct lack of a demultiplexor!!

Databases serve as a common interface between the different
threading domains. Hence, synchronization between threads
best kept factored in database access veneers.

Forth Design Patterns?!

Thinking Forth perhaps the first attempt at documenting Forth
guidelines. But, it doesn't go far enough to formalize individual
patterns.

I've detected and attempted to formalize six, without which the
HDLC implementation would be substantially harder to write
and maintain.

Upon reflection, these same patterns also appear in my Forth
blog software!

Forth Design Patterns?!

1. Declarative, Imperative, then Inquisitive
2. Aggressive Handling
3. Partial Continuation
4. Ascetic Programming
5. Factor Indices Out
6. Demultiplex by Request

Declarative, Imperative,
then Inquisitive

Intent

Ease writing of software in such a way that it simultaneously
facilitates easier reading and verification.

Motivation

Forth's lack of static type safety eliminates compile-time
sanity checking of your program.
Only edit-time and run-time error discovery options remain.
Problems found sooner makes coding easier and cheaper.
Therefore, use edit-time conventions to eliminate errors.

Declarative, Imperative,
then Inquisitive

Applicability

Use DItI when you want to ensure the highest possible
quality, greatest legibility, or both.

Structure

 : foo sensitive behavior ;

Declarative, Imperative,
then Inquisitive

Applicability

Use DItI when you want to ensure the highest possible
quality, greatest legibility, or both.

Structure

 : safe2do safe? IF EXIT THEN error ;
 : foo safe2do sensitive behavior ;

Declarative, Imperative,
then Inquisitive

Applicability

Use DItI when you want to ensure the highest possible
quality, greatest legibility, or both.

Structure

 variable s
 create stack MAX cells allot
 : pushed st<=s<st+MAX s @ ! 1 cells s +! ;

Declarative, Imperative,
then Inquisitive

Applicability

Use DItI when you want to ensure the highest possible
quality, greatest legibility, or both.

Structure

 variable s
 create stack MAX cells allot
 : pushed st<=s<st+MAX s @ ! 1 cells s +! ;
 : pushed? -n.in.st drop 0 ;

Declarative, Imperative,
then Inquisitive

Collaborations

15% declarative words for public interface
70% imperative words for internal implementation
15% inquisitive words for public interfac

: -match 2dup st + @ = IF DROP R> R> 2DROP -1 THEN ;
: -n.in.st 0 begin dup MAX < while -match cell+ repeat drop ;
: pushed? -n.in.st drop 0 ;

Declarative, Imperative,
then Inquisitive

Consequences

Slower to execute, but easier to debug. Compare against
the straight-ahead implementation:

 : pushed?
 0 begin
 dup MAX >= if drop 0 exit then
 2dup st + @ = if drop -1 exit then
 cell+
 again ;

Declarative, Imperative,
then Inquisitive

Consequences

Many operations performed by a module share common
preconditions, often with similar error-handling procedures
for violations. DItI permits defining preconditions once, and
re-using them multiple times elsewhere.
Programs read more like specifications or conversations.

Declarative, Imperative,
then Inquisitive

Sample Code

: SABM +sabm +connectable +authorized (declarations)
 dup replyUA (imperative)
 dup stations connected drop (declaration)
 reusable r> drop ; (declaration)

: U-frame (one of) UA DM SABM (else) reusable ;

Declarative, Imperative,
then Inquisitive

Related Patterns

Partial Continuation
Aggressive Handling

Aggressive Handling

Intent

Handle an exceptional condition as close to the origin of the
exception as possible.

Motivation

High-level code excels at dictating policy.
Low-level code excels at specific know-how.
Procedural code relies on task-oriented design, and so high-
and low-level code agree on intended task.
Therefore, let the low-level code do its job in the context of
the current task.

Aggressive Handling

Applicability

Use aggressive handling when:

you can express how to handle an exceptional condition as
a generic algorithm.
you need errors dealt with fast .

Aggressive Handling

Structure

 : guard predicate IF EXIT THEN handle exception ;
 : guard predicate IF . . . ELSE handle exception THEN ;

Collaborators

The guard must deal with the exceptional condition upon
detection.
The predicate determines if the current situation is
exceptional.

Aggressive Handling

Consequences

Error handling is very fast; no need for dynamically
dispatching or unwinding the stacks.
Error handling policy is firmly set by the algorithm used in
the handler. While specific elements of the handler's
behavior might be satisfied through DEFER'ed words or
other forms of generic programming in Forth, the over-
arching algorithm can only be changed by a recompile of
the guard.
The code is substantially easier to read, for the conditional,
consequent, and alternate appear together, readily available
for static review.

Aggressive Handling

Sample Code

 : .error z" phy-rs232.f" perror abort ;
 : 0<error 0< if .error then ;
 : h! dup 0<error 'h ! ;
 : (serial serial-port O_RDWR O_NONBLOCK open h! ;

If the HDLC stack cannot open the RS-232 device in Linux,
then what's the point in continuing further? When such an
event happens, we print the system-defined error message and
quit the program outright.

Aggressive Handling

Sample Code

: |fbuf|-1>=0 dup |fbuf| 1- 0<
 abort" Attempt to read byte from empty buffer" ;

: -head |fbuf|-1>=0 dup headc@ swap poph ;

We cannot read from a buffer if its length is zero. Therefore,
any attempt to do so is a critical error in the system. Here, too,
we ABORT, with the reason why.

Aggressive Handling

Related

Partial Continuation
Declarative, Imperative, then Inquisitive

Partial Continuation

Intent

Exit from a deeply-nested control flow without having to
transcend outer layers of software, each of which equipped
with redundant exit- or error-code checking.

Motivation

Words with complex logic have no easy way abort without
dumping the user to the OK prompt.
Sometimes, aggressive error handling proves insufficient,
and customized or policy-based handling is desired.

Partial Continuation

Applicability

Use partial continuations when

you want to escape from a deeply nested call stack to a
specific caller higher up in the stack.
you want to implement back-tracking algorithms, filters,
iterators, generators, or other co-routine-like entities.
you want to refactor common looping constructs to eliminate
redundancy.

Partial Continuation

Structure

Use of partial continuations can take many forms, depending
on the purpose.
: -bar bar? if drop 0 r> drop then ;
: foo? -bar drop -1 ;

By dropping the return address for -bar, which happens to be
foo? itself, we ensure that we return directly to whoever called
foo? .

Partial Continuation

Structure

: callback >r ;
: evens: r> -rot do i -odd i over callback loop drop ;
: .ev evens: . ." is an even number." cr ;
100 0 .ev

Here we see evens: return multiple times for the one call-site
it's used. It will print out all the even numbers in the range
provided. This use of partial continuations permits a different
kind of declarative programming style: implicit loops.

Partial Continuation

Collaborators

The caller may never complete its operation.
The caller may complete its operation many times , often
while iterating over a sequence of things.
The application who invokes the caller, in conjunction with
the caller, are responsible for ensuring correct return-stack
configuration prior to invoking the callee.

Partial Continuation

Consequences

Partial continuations can lead to spaghetti code; inasmuch,
treat them with respect, or risk making your software
unmaintainable.
Since the return stack is, in effect, used to pass parameters
as well, you may find that additional "stack noise" is needed
to help balance the stacks.
Unlike CATCH/THROW in ANSI, no result codes are
necessary for inter-layer communications. Aggressive
handlers are free to return results directly to the application
which invoked the caller if desired.

Partial Continuation

Sample Code

: append buffer @ +tail ;
: -flag dup $7E = if drop boundary r> drop then ;
: +buffer buffer @ 0= if drop r> drop then ;
: character -flag +buffer append ;

Related Patterns

Declarative, Imperative, then Inquisitive
Aggressive Handler

Ascetic Programming

Intent

Enhance code re-usability through expression of algorithms
at the most abstract level, without any regard to objects.

Motivation

Code operating on data in a structure tends to get caught up
with structures. Like const in C, pointers are contagious.
Calling words in Forth becomes problematic due to:

Mixing pointers and intelligence on the data stack.
Invoking multiple operations requires multiple uses of a
pointer, which creates stack noise and obscures intent.

Ascetic Programming

Applicability

Use ascetic programming if you

maintain a collection of like entities.
find passing pointers to procedures obscures the readability
of your code.
code in a language where arrays are the only aggregate
type.
work with the same data across several layers of
abstraction.

Ascetic Programming

Structure

The caller, per DItI, wants to establish the knowledge that Sam
is 35 years old, and so invokes:

 35 S" Sam" aged

Ascetic Programming

Structure

The implementor of aged (the callee) maintains a relational
variable corresponding age with username, indexing into table
as needed.

create ages /column allot
create names /column 2* allot
 . . .
: inserted +roomy #r @ 2* names + 2dup ! cell+ nip !
 #r @ ages + ! 1 cells #r +! ;
: +exists 2dup nameInserted? if exit then inserted r> drop ;
: aged +exists namedRecord ages + ! ;

Ascetic Programming

Collaborations

The caller typically wants to say something new, or update
existing knowledge.
The callee accepts this knowledge however the caller
represents it, and performs the actions necessary to ensure
relevant state updates or queries occur to satisfy the caller.

Ascetic Programming

Consequences

As a general rule, object concepts are replaced by
corresponding relational concepts.
Substantially fewer pointers passed between procedures,
greatly simplifying interfaces.
Interfaces to modules tend to be more generic and re-
usable, without the general need for templates.
Type relationships modeled in database, not explicitly in
code.
Supports stupidly simple persistence mechanisms.
If multithreaded, the code must deal with locking against
concurrent access.
Slower latencies than direct pointer dereferencing.

Ascetic Programming

Example Code -- Table definition

1 cells constant /row
#dlcs /row * constant /column

: column /column allot ;
create localA column
create remoteA column
create stat column
variable nextDlc

Ascetic Programming

Example Code -- Basic Search and Hit Testing

: hit? >r over remoteA r@ + @ = over
 localA r@ + @ = and r> swap ;
: -match hit? if nip nip r> r> 2drop exit then ;
: -found 0 begin dup nextDlc @ < while
 -match cell+ repeat drop ;
: row -found 2drop 0 r> drop ;

Ascetic Programming

Example Code -- Basic Predicates

: isDlc? row drop -1 ;
: disconnected? isDlc? 0= ;
: is? -rot row stat + @ = r> drop ;
: connecting? DLCS_CONNECTING is? nip ;
: connected? DLCS_CONNECTED is? nip ;

Ascetic Programming

Example Code -- Basic State Changes

: disconnected row collapse ;
: change >r localA r@ + ! remoteA r@ + ! stat r> + ! ;
: +absent 2dup isDlc? if 2dup row change r> drop -1 then ;
: +room nextDlc @ /column = if 2drop drop r> drop 0 then ;
: update -rot +absent +room
 nextDlc @ change /row nextDlc +! -1 ;
: connecting DLCS_CONNECTING update ;
: connected DLCS_CONNECTED update ;

Ascetic Programming

Example Code -- Client Use

1 2 connected? . 0 ok
1 2 connecting drop ok
1 2 connected? . 0 ok
1 2 connecting? . -1 ok

create callsignA 'K c, 'C c, '5 c, 'T c, 'J c, 'A c,
create callsignB 'K c, 'F c, '4 c, 'F c, 'S c, 'E c,

callsignA callsignB connected drop ok
callsignA callsignB connected? . -1 ok

Ascetic Programming

Related Patterns

Declarative, Imperative, then Inquisition
Partial Continuation
Factor Indices

Factor Indices

Intent

Focus on core intelligence by letting records state only
facts, while concurrently maintaining rapid access to
relevant records in other knowledge stores.

Motivation

Full-table scans of relational data requires O(n) time worst-
case.
If a search criteria ("foreign key") is used often, or when
accessing slow media, using a structure with O(log2 n) time
can save k1n-k2log2 n time.

Factor Indices

Applicability

You want to factor indices out from normal data when

absolute, break-neck performance is unnecessary, but more
naive approaches to finding data proves too slow to be of
value.
storing data on rotating media, or otherwise much slower
media than RAM. Keeping relevant indices in RAM can
eliminate access overheads.
you want to access data in one of several prescribed sort
orders (e.g., ascending/descending, by priority, etc.) without
moving records around in memory.

Factor Indices

Structure

Too numerous to list here. Google for B-tree, skiplists, binary
trees, hash tables, and more!!
Common characteristics:

Relational records composed predominantly of business
logic.
Index records composed almost exclusively of pointers and,
if appropriate, (subsets of) candidate keys.

Factor Indices

Collaborations

Each record in a relational variable states a fact about some
relevant portion of your business.
One or more index records may refer to any given record.
As updates to knowledge tables occur, indices must be
updated as a necessary precondition to returning to the
caller.
The callee is, except for the time measured to perform a
database operation, wholesale ignorant of what kinds of
indices exist, if any at all.

Factor Indices

Consequences

Inserts of fresh data into tables slows down, as the need to
update indices as an atomic operation becomes necessary.
Updates and deletions of existing data may slow down,
depending on the nature of the change, as search criteria
might change, thus necessitating an update to all relevant
indices.
Searches become substantially faster, as unnecessary
accesses to slow media or RAM are removed.
Indices consume greater amounts of storage space, and
must be provisioned like normal storage space.
Although remaining factored, code becomes more complex.

Factor Indices

Sample Code

This example comes from my Unsuitable blog, as I have no
need for indices in my HDLC codebase at this time.

First, I allocate space for the index:

create e0 5 cells allot
e0 5 cells -1 fill
e0 4 cells + constant en-1
en-1 cell+ constant en
variable ep

Factor Indices

Sample Code

Then, I use an insertion sort on the index while doing a full-
table scan of articles to get the n most recent articles posted:

: insert ep @ dup cell+ over en-1 swap - move ;
: nil ep @ @ -1 = if article ep @ ! r> drop then ;
: eol ep @ en >= if r> drop then ;
: Te<Tr article ep @ @ article! timestamp swap article!
 timestamp < if insert article ep @ ! r> drop then ;
: Te>=Tr [1 cells] literal ep +! ;

(continued . . .)

Factor Indices

Sample Code

(. . . continued)

: sort e0 ep ! begin eol nil Te<Tr Te>=Tr again ;
: consider articleId -1 xor if sort then ;
: scan articleIds dup /afields + begin 2dup < while
 over articleIds - article! consider swap cell+ swap
 repeat 2drop ;

Note how much harder it is to understand this code versus the
HDLC code? It's because I wrote it before identifying the DItI
and aggressive handling patterns. :-)

Factor Indices

Related Patterns

Ascetic Programming

Demultiplex by Request

Intent

Simpify state changes in one of several instances of a finite
state machine.

Motivation

Many protocols depend on destination to select a state
machine instance. However, responses to events across all
instances remains the same. Therefore, demultiplexing on
destination address first makes things unnecessarily
complex.

Demultiplex by Request

Applicability

Demultiplexing by request pays off when

you manage a plurality of autonomous entities, all of which
behave similarly to like events.
you want to implement object-oriented semantics.

Demultiplex by Request

Structure

Message requests can be encoded through:

integers passed as a parameter (e.g., Win32 message
handlers); code dispatches via a "switch" statement.
offsets from a jump table (e.g., C++ virtual method tables;
hardware dispatches through indirect jumps
bytecodes embedded in data structures (e.g., HDLC
"control" field); software dispatches through either
indirection or "switch"-like construct, as appropriate.

Demultiplex by Request

Collaborators

The caller and callee must agree on a common protocol.
The caller is responsible for "marshaling" messages into a
format readable by the callee.
The callee is responsible for interpreting the message,
acting accordingly, and if required, providing a response.

Demultiplex by Request

Consequences

Satisfying requests take longer because of runtime
resolution of behavior.
Invoked behavior no longer tied to request ID, and can
even change over time.

Demultiplex by Request

Sample Code

: U-frame (one of) UA DM SABM (else) reusable ;

create table0
 ' I-frame , ' I-frame , ' S-frame , ' U-frame ,

: handler .control swap +c@ 3 and cells table0 + @ ;
: dispatch dup handler execute ;

Demultiplex by Request

Related Patterns

Declaration, Imperative, then Inquisitive
Object Orientation

The End
(or is it just The Beginning?)

Thank You!

