
Levels Of Abstraction 

Using OOP

SVFIG

Jan.  24, 2026

Bill Ragsdale



The Rationale

• I’m using a variety of OOP objects.

• Matrix

• Data base

• CSV

• I wanted to bring a commonality to 

them.

• And match them to the logical flow of 

my application’s development.



So, Levels

• OOP allows objects to ‘inherit’ the 

data structure and methods of prior 

objects.

• We’ll use three levels.



So, Levels

Resources: memory

Structure: CSV, 

matrix, data base, text

Interfaces: files

A

P

P

L

I

C

A

T

I

O

N

S



Levels, and

• Memory allocator is the same for all.

• Data objects specific for text, CSV, 

data-base, matrices.

• File interface, same for all.

• Each final object carries all the lower 

level parameters and methods.



Memory Allocator

:CLASS :Allocation/   <Super Object

      int Location  int Size

:M Release:  Location if Location release 0 
to Location then ;M

:M PutLocSize: ( loc size --- ) Release: 
self to Size to Location ;M

:M GetLocSize: ( --- loc size ) Location 
Size ;M

;CLASS



Support

: /Initialize ( object size  --- ) 

    over Release: :Allocation/

    dup MALLOC swap  2dup erase   

    rot PutLocSize: :Allocation/ ;

: /Dump ( object --- ) \ display memory

    GetLocSize: :Allocation/  dump ;

[



Allocation Example

:Allocation/  An-Allocation/

An-Allocation/ 64 /Initialize 

An-Allocation/ /Dump



A Data Base

:Class :DB/  <Super :Allocation/   \ data base object

   int #Records int #Fields int Record-size int Field-size

:M SetDBparams: 

   to field-size to record-size to #fields to #records ;M

:M GetFieldAddress: 

      Field-size * swap Record-size * + Location + ;M

:M Get#R#F:  #Records #Fields ;M

;CLASS



DB Support

: /InitDB  ( DBobject fldsize #recs #flds --- )

 {: field-size #records #fields | record-size:}

  field-size #fields * dup to record-size

  #records * to size   

  dup size /Initialize 

  #records #fields record-size field-size

   4 roll SetDBparams: :DB/ ;



DB Support, more

: /LoadDB 

   dup Get#R#F: :DB/ 

   swap 0 do  dup  0 do  

  j i  3 pick GetFieldAddress: :DB/

  j 100 * i + swap ! loop cr loop 2drop ;

: /ListDB  

   dup 2 cells- >name count 3 spaces type cr

   dup Get#R#F: :DB/    

   swap 0 do  dup  0 do  

     j i  3 pick GetFieldAddress: :DB/

     @  6 .r loop cr loop 2drop ;



Testing DB

:DB/  A-DB/  \ create db object.

A-DB/ 4 3 4 /InitDB \ size rec fld

A-DB/       /LoadDB

A-DB/       /ListDB

Release: A-DB/  Forget A-DB/



File Read-Write
:Class :DBfile/  <Super :DB/  

      maxstring bytes Path

:M PutPath:   count Path place ;M

:M PathToPad:  Path count pad place

      self 2 cells- >name count 1- pad +place

                    c" .db"  count pad +place ;M

:M ReadFile:  PathToPad: self pad count

    r/o open-file -280 ?throw 

   dup>r *file-size -281 ?throw 

   dup MALLOC  swap 2dup r@ read-file 

   -281 ?throw  drop  handle

   r> close-file  abort" File closing error"

   PutLocSize: self  ;M

:M WriteFile:  GetLocSize: self 

     PathToPad: self pad  Fsave-file  ;M  ;CLASS



File Read-Write, support

: /WriteDBfile WriteFile: :DBfile/  ;

: /ReadDBfile  ReadFile: :DBfile/ ;

: /ReleaseFile Release: :DBfile/  ;

: /PutPath      swap PutPath: :DBfile/ ;



Example

:DBfile/  SUGTX/  \ create the data base file

SUGTX/ 4 3 4 /InitDB \ fieldsize, record size

                     \ fields/record

SUGTX/  /LoadDB

SUGTX/  /ListDB cr



Example, continued
SUGTX/ c" C:\Data\Forth\Application       

            Tools\Object Master\" /PutPath

SUGTX/  /WriteDBfile

SUGTX/  /ReadDBfile

SUGTX/  /ListDB

SUGTX/  /ReleaseFile

Forget SUGTX/



Summary

Originally, I was rewriting the allocation, the structure 

and read/write for each application.

About 150 lines of Forth code is application 

independent.

The middle layer, ‘structure’ is unique for each 

application.  CSV, DB, matrix, text etc.




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

