
A Programming Language Translator:

C to Forth:

Introduction
John E. Harbold

SVFIG – January 28, 2023

We present a programming language translator

that will convert the C programming language to

the Forth programming language

C to Forth: Introduction

⚫ The C programming language is used in an enormous

number of applications, libraries, operating systems, both

general purpose and real-time. It would be nice to have this

code converted to Forth, in essence why “reinvent the wheel”.

⚫ The Forth programming language has a speed advantage

over C because a C function has three sections, a stack

setup, the code and a stack tear down. Forth does not have

this handicap.

C to Forth: Introduction

⚫ In the past, the 1980s and 1990s, there have been attempts to translate C to

Forth by by using the parser generator, “yacc”, or the more modern, “bison”,

and the associated lexical analyzer, “lex”, or the more modern, “flex” to create

a C parser that will parse a C file and generate the associated Forth code.

Remember, at this time was in the early days of C where the individual passes

of the C compiler could not be run separately.

⚫ Now, in the early 21st century, in the GNU Compiler Collection, (GCC), the C

compiler, (gcc), the individual pass can be run to process any pre-processing

directives, in particular, the #include directive to include any necessary

declarations and pass 1 of the compiler that parses the resulting C code.

C to Forth: Introduction

⚫ The first pass of the gcc will generate the necessary abstract syntax

tree, (AST) describing parsed C code. The problem is finding the file

that contains this information.

⚫ There is another compiler, LLVM from the University of Illinois, in

particular the C compiler, clang. This compiler will generate a human

readable AST that can be analyzed to generate Forth code.

⚫ Remember, the C language uses infix for any binary operators where

the Forth language uses postfix. This is the reason for the AST.

A Simple C Program

uint32_t a = 1;

uint32_t b = 2;

uint32_t c;

int main(int ac, char* av[])

{

c = a + b;

return 0;

}

Equivalent Forth Program

⚫ variable a 1 a !

⚫ variable b 2 b !

⚫ variable c

⚫ : main (ac av – status)

⚫ a @ b @ + c !

⚫ 0

⚫ ;

Abstract Syntax Tree (AST)
⚫ The AST describes the parsing of the first pass of the C compiler. It breaks down the individual C syntax into a more

readable fashion.

⚫ The following lines describe the individual AST name:

− VarDecl – Variable Declaration

− FunctionDecl – Function Declaration

− ParmVarDecl – Parameter Variable Declaration

− CompoundDecl – Compound Declaration

− DeclRefExpr – Declaration Reference Expression

− BinaryOperator – Binary Operator

− ImplCastExpr – Implicit Cast Expression

− ReturnStmt – Return Statement

⚫ The following slides will show the individual AST members of the above example:

The First AST Statement

Variable Declaration

uint32_t a = 1;

|-VarDecl 0x154ee40 <globalVar.c:10:1, col:9> col:5 used a 'int' cinit

| `-IntegerLiteral 0x154eef0 <col:9> 'int' 1

variable a

1 a !

Variable Declaration

uint32_t b = 2;

|-VarDecl 0x154ee40 <globalVar.c:10:1, col:9> col:5 used b 'int' cinit

| `-IntegerLiteral 0x154eef0 <col:9> 'int' 2

variable b

2 b !

Variable Declaration

uint32_t c;

|-VarDecl 0x154ee40 <globalVar.c:10:1, col:9> col:5 used c 'int'

variable c

Function Declaration

int main(int ac, char* av[])

: main (ac av -- status)

Compound Statement

c = a + b;

`-CompoundStmt 0x154f9e0 <line:21:1, line:57:1>

|-BinaryOperator 0x154f3e0 <line:25:3, col:11> 'int' '='

| |-DeclRefExpr 0x154f330 <col:3> 'int' lvalue Var 0x154efc8 'c' 'int'

| `-BinaryOperator 0x154f3c0 <col:7, col:11> 'int' '+'

| |-ImplicitCastExpr 0x154f390 <col:7> 'int' <LValueToRValue>

| | `-DeclRefExpr 0x154f350 <col:7> 'int' lvalue Var 0x154ee40 'a' 'int'

| `-ImplicitCastExpr 0x154f3a8 <col:11> 'int' <LValueToRValue>

| `-DeclRefExpr 0x154f370 <col:11> 'int' lvalue Var 0x154ef28 'b' 'int'

a @ b @ + c !

Return Statement

return 0;

`-ReturnStmt 0x154f9d0 <line:55:3, col:10>

`-IntegerLiteral 0x154f9b0 <col:10> 'int' 0

0

The Last AST Statement

}

;

Further Work

⚫ The program to analyze the AST and produce Forth Code will be

described.

⚫ The C programming language has an extensive syntax. Other syntax will

be explored in the future.

⚫ The Forth programming language has to be extended for other C syntax,

especially the “union” and “enum”.

⚫ Because the first pass of the C compiler does not execute any

optimizations, optimization of the translated Forth code will be done on a

per-Forth-word basis.

Questions?

See You Next Month

