
Hello, Forth!

A Proof of Concept (POC)

Graphical User Interface (GUI)

Implemented in the

Gnome Tool Kit (GTK)

and the

Forth Language (Gforth)

John E. Harbold

January 27, 2018

Introduction

 A GUI gives ease of use of an application by visual means.

 Forth allows a user to implement an application in a timely manner, if
and only if the user is a timely programmer.

 Gforth has a large Forth code source to support many architectures,
operating systems and standalone.

 Gforth also allows using preexisting libraries to speed development.

 Because GUI’s require the use of “callbacks”, Gforth satisfies this
requirement.

 Size of application is generally smaller than other languages.

GUI

 The visual part of a GUI can be implemented using a GUI builder tool.

 This GUI is implemented under Gnome using GUI builder tool, glade-3.

 Glade generates an XML file representing the GUI.

 Glade itself is an GUI allowing a user to see what the application’s GUI will
look like.

 The GUI consists of a window, menu and status bars and button. All these
things are known as GUI objects.

 Glade also allow a user to specify the names of the callback functions that
get executed when the specified GUI object get selected.

Callback Functions

 Most of these objects have callback functions associated

with them.

 Callback functions tie the GUI itself with the action that get

executed.

 A callback performs the application specific action when

the associated GUI object is selected.

Forth Callbacks

 Gforth has a callback feature that translates a Forth executable token to an address
of a corresponding C function.

 This address can be assigned to a constant such that it can be passed as an
argument to another C function.

 This allows writing a callback in Forth and have a GUI execute it as a C function.

 The callback declaration represent a Forth word as a C function prototype.

 An example, a GTK callback, void on_gtk_quit_active(GtkMenuItem *menuitem,
gpointer user_data), It consist of two pointer parameters and will return a void,
essentially nothing.

 In Gforth,, the callback declaration would be c-callback cb_a_a__void a a – void.

 The stack image for a callback is: (xt – cfunc-addr)

Forth C Function &

Dynamic Libraries

 Forth has the capability to interface to C libraries such as

the GTK GUI library and others.

 This capability allows using preexisting code that otherwise

a user would have to write.

 An explanation would be for another presentation.

Hello, Forth! GUI - Building

 Use Glade-3.0 to create a window that contains a menu

bar, a toggle button and a status bar. For the Help>About

menu item, create a separate about dialog.

 For the window, assign a callback, on_window1_destroy,

to the “destroy” signal handler to exit the application.

 For the File>Quit, assign a callback, on_gtk_quit_activate,

to the “activate” signal handler to exit the application.

Hello, Forth! GUI - Building

 For the Help>About, assign a callback,

on_gtk_about_active, to the “activate” signal handler to

display the about dialog.

 For the toggle button, assign a callback,

on_toggleButton1_toggled, to the “toggled” signal handler

to toggle the text strings on the toggle button.

Callback - on_window1_destroy

 The Forth word, on_window1_destroy, is used to exit the
application when the close icon is clicked.

 When called, it has a stack comment of: (gtk-window-addr
user-data-addr –) like its signal handler “destroy”.

 Because this callback just destroys the whole application, the
stack items will be dropped using, 2DROP.

 Next, the main GTK loop will be terminated using,
gtk_main_quit.

 Finally, the Forth application will be terminated using, _exit.

Callback – on_gtk_quit_activate

 The Forth word, on_gtk_quit_activate, does the same as

the on_window1_destroy callback and has the same stack

comment.

 The code is also the same, except, instead of executing

_exit, the Forth word, bye, is executed.

Callback - on_gtk_about_activate

 The Forth word, on_gtk_about_activate, is used to display the about
dialog when the Help>About menu item is clicked.

 When called, it has a stack comment of: (gtk-dialog-addr user-data-
addr –).

 This callback removes the user-data-addr using, NIP.

 Next, it duplicates the dialog address using, DUP.

 Next, it displays the about dialog using, gtk_dialog_run.

 Finally, after the dialog’s close button is clicked, the dialog is hidden
using, gtk_widget_hide.

Callback - on_toggleButton1_toggled

 The Forth word, on_toggleButton1_toggled, is used to display
the either, “Press Me!”, or, “Hello, Forth!”, when the toggle
button is clicked.

 When called, it has a stack comment of: (gtk-toggleButton-
addr user-data-addr –).

 This callback removes the user-data-addr using, NIP.

 Next, it duplicates the dialog address using, DUP.

 Next, it gets the current button label using,
gtk_button_get_label.

Callback - on_toggleButton1_toggled

 Next, it is compared to the “Press Me!” string.

 If it matches, then, load the “Hello, Forth!” string.

 If it does not match, then load the “Press Me!” string.

 Next, call the gtk_button_set_label word to set the string in

the toggle button’s label.

Callback - on_toggleButton1_toggled

 For the status bar, the status bar widget addres and context ID
are pushed on the stack and duplicated using, 2DUP.

 The original status bar context are removed using,
gtk_statusbar_pop.

 The current click count is processed into a string using,
.clickCount.

 Finally, the new click count string is pushed to the status bar,
gtk_statusbar_push.

Start-up Code

 Initially, the GTK system has to be initialized using, GTK_init,
with the command line parameters, argc and argv.

 Next, a GTK builder structure has to be created using,
gtk_builder_new. The resulting pointer is saved in a variable,
builderPtr.

 In order to use the GUI’s XML file, it is used in an GTK call,
gtk_builder_add_from_file. It requires as parameters, a pointer
to a GTK builder structure, a C-string representing the name of
the XML file and a pointer to a pointer for an error return or
NULL.

Start-up Code

 Next, the individual widget pointer have to be extracted

from the builder structure.

 Next, the callbacks have to be assigned to their respective

widgets.

 Next, the status bar’s first message has to be created and

assigned to the status bar.

Start-up Code

 Next, the whole GUI is displayed using, gtk_widget_show.

 Finally, the GTK menu processing is started using,

gtk_main.

Forth and C Strings

 Forth strings are counted string, the first byte is the number of

character in the string.

 C strings are ASCII NUL terminated.

 Forth creates counted strings, but C functions require C strings.

 Gforth can switch between both kinds of strings.

 sstring>cstring (forth-str – c-str)

 cstring>sstring (c-str – forth-str)

Thank you, any questions

