
1

PART 3. UTILITIES IN F83 SYSTEM

CHAPTER 14. THE MS-DOS FILES

The source code managing files in the F83 system is scattered in screens 51 and 57 in KERNEL86.BLK
and also in screens 7 to 12 in EXTEND86.BLK. Some of them were discussed in the chapter on the
virtual memory.

14.1. CP/M-DOS FILE PRIMITIVE COMMANDS

The DOS file management system consists of a set of words in the DOS vocabulary that access the
BDOS functions of the CP/M-DOS operating system, such as creating, opening, and deleting files.
There is also a word that parses a string and creates a file control block (FCB). A very useful word
SAVE is also provided to save the contents of memory as an executable DOS file. A number of words
were also defined in the basic F83 system which are used to access the default file defined by the FCB1
control block.

VOCABULARY DOS All the DOS words are put in this vocabulary. For CP/M
 systems, its name is CP/M, of course.
DOS DEFINITIONS Make DOS the current vocabulary so that all subsequent

words will be added to this vocabulary.
CREATE FCB1 B/FCB ALLOT Allocate space for the first FCB block of the current file.
CREATE FCB2 B/FCB ALLOT Allocate space for the second FCB block of the in-file.

: CLR-FCB (fcb ---) Initialize the specified FCB.
DUP B/FCB ERASE Clear the FCB to nulls.
1+ 11 BLANK Initialize the file name and extension to blanks.
;

The following words are simply BDOS functions with Forth names. Descriptive names make the Forth
programs or definitions more readable.

: RESET (---) Reset disk, flush file buffers, but does not close files.
0 13 BDOS DROP ;

: CLOSE (fcb ---) Close the given file and report errors.
16 BDOS Call BDOS to close the file.
DOS-ERR? If there is error,
ABORT" Close error" report it.
;

: SEARCH0 (fcb --- n) 17 BDOS ;

2
: SEARCH (fcb --- n) 18 BDOS ;

: DELETE (fcb --- n) 19 BDOS ;

: READ (fcb ---) Read the next record and report any error.
20 BDOS Read next record.
DOS-ERR? If read error,
ABORT" Read error" abort with a message.
;

: WRITE (fcb ---) Write the next record and report error if any.
21 BDOS Write the record.
DOS-ERR? Any error?
ABORT" Write error" Report and abort.
;

: MAKE-FILE (fcb --) Create a new DOS directory entry for a new file. Report
error if any.

22 BDOS Create directory entry.
DOS-ERR? Error?
ABORT" Can't make file"
;

14.2. THE FILE CONTROL BLOCK

The file control block FCB is a table containing essential information so that the DOS system can
manage the file in association with this block. The next two words build FCB blocks which is almost all
that is needed to create files and gain access to them using the above commands.

: (!FCB) (addr len fcb ---) Use the string at addr and the length, len, to set up a file
 control block. This is the primitive file name parsing word,
 which breaks the drive/filename/extension string into a drive
 specifier, the file name, and the extension, and inserts them

into the proper fields in the FCB.
DUP B/FCB ERASE Clear the entire FCB to zeros.
DUP 1+ 11 BLANK Clear the name/extension fields to Ascii blanks.
>R Save the FCB address for later use.
OVER 1+ C@ Get the second character in the string on stack.
ASCII : = IF If it is a ':', then get the first character and use it as the drive

 specifier.
OVER C@ Get the first character.
[ASCII A] LITERAL Store Ascii code of A here as a literal.
- Subtract 65 (Ascii A) from the drive specifier. The result is

 the drive number.
R@ C! Store it in the drive number field in FCB.
2 /STRING Adjust the string address and length to point to the file name.

THEN

3
R> 1+ Address of the name file in FCB.
-ROT Get the string length to top of stack.
0 DO Now fill the file name field.

DUP C@ ASCII . = Is the character a period?
IF Yes. End of file name and start of extension.

SWAP S wap the FCB field pointer to top of stack.
8 I - + Compute the address of the extension field in FCB.
ELSE Not a period. Stuff the character in the name or extension field.
2DUP C@ Get the character from string.
SWAP C! Store it in the FCB.
SWAP 1+ Increment the FCB pointer.

THEN
SWAP 1+ Increment the string pointer also.

LOOP 2DROP Clean the stack to exit.
;

: !FCB (FCB-addr ---) Use the following string as the file name string and create an
 FCB for it. If CAPS is false, allow lower case file names.

BL WORD Parse out the next string and place it in the word buffer
. COUNT Get the string length from the word buffer address left by WORD.

CAPS @ IF If CAPS is true,
2DUP UPPER convert the string to upper case.

THEN Otherwise, allow lower case string.
ROT Get the FCB address to top of stack for (!FCB).
(!FCB) Now, get (!FCB) to fill the FCB with the name string in the

word buffer.
;

: SELECT (drive ---) Make the given drive the default drive.
14 BDOS DROP ;

14.3. HIGH LEVEL FILE COMMANDS

The following words are defined in the basic F83 system as shown in KERNEL86.BLK file, screen 57.
However, their functionalities make them a natural part of this chapter on the MS-DOS files. One of the
problems in reading Forth source code is that the order in loading the Forth source codes does not
necessarily bear any relationship with the logical order of words. In this book, I hope that grouping
words together according to their functionalities will help you to perceive more clearly the logical
structure in the F83 system.

: FILE-SIZE (fcb --- n) Return the size of the current file in number of records.
35 BDOS DROP BDOS function 35 returns the file size in the field of random

 record number.
RECORD# @ Get the file size.
;

4
: DOS-ERR? (--- f) Return a true flag if the previous DOS operation is in error.

255 = BDOS returns 255 if an error occurred
. ;

: OPEN-FILE (---) Open the current file and store the size of this file in MAXREC#.
IN-FILE @ 15 BDOS Open the in-file.
DOS-ERR? IF Is there an error?

." Open error"
DISK-ABORT

THEN If so, abort.
DUP FILE-SIZE Otherwise, size the file.
1- SWAP Number of the last record in file.
MAXREC# ! Save it.
;

92 CONSTANT DOS-FCB The zero page address where DOS puts a parsed FCB.

: DEFAULT (---) Open the default DOS file. Move the parsed FCB block to
 FCB1 and open the file. If no file is in DOS-FCB, do nothing.

FCB1 DUP IN-FILE ! Make the default file as specified by FCB1 both the in-file
 DUP FILE ! and the current file.

CLR-FCB Erase FCB1.
DOS-FCB 1+ C@ Get the first character in the name field of the DOS file in

DOS-FCB.
BL <> IF If the first character of file name is not blank, there is a DOS file.

DOS-FCB FCB1 12 CMOVE Copy the drive number, file name. And
 extension into FCB1.

OPEN-FILE Open the current file.
THEN ;

: CREATE-FILE (n ---) Create a new file and allocate n blocks to this file.
FCB2 DUP !FILES Set the file pointers in both the current file and in-file to point

to FCB2.
DUP !FCB Build a FCB at FCB2 and make it the current file. The file

 name is taken from the input stream.
MAKE-FILE Call BDOS to make the file.
MORE Allocate the require blocks.
;

: MORE (n ---) Add n blocks to the current file.
1 ?ENOUGH I need at least one stack item.
CAPACITY SWAP Current maximum size in blocks.
SWAP DUP 8* Record number to be added.
FILE @ MAXREC# +! Add to the maximum record field in the current FCB

. BOUNDS ?DO Now initialize the whole file to blanks.
I BUFFER Get a disk buffer.
B/BUF BLANK Clear the disk buffer to blanks.
UPDATE Mark the buffer as modified. Next time BUFFER is called to

5
 use this buffer, the blanks will be written to the file.

LOOP
SAVE-BUFFERS Flush the remaining buffers out to disk.
FILE @ CLOSE Close the file.
;

14.4. SAVE CORE IMAGE TO A FILE

A very special usage of the file words is to save the entire core image in a file which can be called for
execution from DOS. This will save lots of compiling time to load in many blocks of utilities. It is also
a good way to build an application program without giving the user all the Forth source code, a good
way to protect your software product.

DEFER HEADER Create a vectored word.
' NOOP IS HEADER HEADER is used in the DOS system.

: SAVE (addr len ---) Use the name following as the file name and create an
 executable DOS file. Memory from addr to addr+len is
 saved into this file. The current file is not disturbed.

FCB2 DUP !FCB Build a new FCB at FCB2, using the name following SAVE.
DUP DELETE DROP If this file already exists, delete it.
DUP MAKE-FILE Create a new file.
HEADER Build an executable header.
-ROT BOUNDS DO Scan the given range of memory.

I SET-DMA Specify memory address for DMA transfer.
DUP WRITE Write one record of 128 bytes.

128 +LOOP Increment the index of length for next record.
CLOSE Close the file. ;

: SAVE-SYSTEM (---) The high level command to save the code image to a file.
 You do not have to remember the dictionary addresses.

256 Starting memory address of the Forth dictionary.
HERE End of dictionary.
SAVE Make the executable file.
;

14.5. DIRECTORY ACCESSING

F83 can access the DOS directory on a disk directly without having to leave the Forth environment.
They are conveniences that make you feel at home and eliminate the necessity of learning the DOS
system and fighting against it.

: .NAME (n ---) Print the name of the nth entry in the DOS directory.
#OUT @ Get the current output character count in #OUT.
C/L > If it exceeds the line length,
IF CR THEN send a CR to start a new line.

6
32 * PAD + 1+ The address of the nth entry, already copied to the PAD buffer.
8 2DUP TYPE SPACE Print the file name.
+ 3 TYPE 3 SPACES Print the extension.
;

: DIR (---) Print the DOS directory.
[DOS] Switch context to CP/M vocabulary.
" ????????.???" Put a file name template in PAD.
FCB2 (!FCB) Create a new FCB with the ? marks in its name and extension

 fields.
CR PAD SET-DMA Fetch the directory information to PAD.
SEARCH0 Search for the first directory entry that matches the ? mark

name. Any valid file name would do. The stack item
returned is the entry number of the file in PAD, just right for

 .NAME.
BEGIN Scan the entire directory.

.NAME Print the file name and extension.
SEARCH Search the next matching file name, i.e., the next file name.

DUP DOS-ERR? End of the directory?
UNTIL If any error flag is returned, we have reached the end of the

directory. Exit now. Otherwise, loop back to print the next
 file name.

DROP Drop off the invalid entry number.
;

: .FILE (addr ---) Given the address of an FCB, print the name of this file.
COUNT ?DUP IF If the drive number is not zero,

ASCII @ + EMIT ." :"
THEN then print the drive prompt.
8 2DUP Name field width.
-TRAILING TYPE Print the file name without the trailing blanks.
+ The address of the extension field.
." ." Print a period sign between name and extension.
3 TYPE SPACE Print the extension.
;

: FILE? (---) Print the name of the current file.
FILE @ Get the FCB of current file.
.FILE Print its name.
;

F83 allows you to have two files opened at the same time: a current file and an in-file. The in-file is
used for input and the current file is used for output. The command SWITCH can be used to switch
these two files so you can input from the previous current file and output to the previous in-file.

: SWITCH (---) Exchange the current file and the in-file.
FILE @ IN-FILE @ Two fcb's.
FILE ! IN-FILE ! Exchange the fcb addresses.

7
;

: !FILES (fcb ---) Set both the current file and the in-file to the given fcb. DUP
FILE ! Set current file.

IN-FILE ! Set in-file.
;

14.6. SYSTEM LEVEL FILE COMMANDS

The words defined above are mostly utility words which allow the F83 system to manage DOS files and
the associated facility. As a user, you will probably have no need for them unless you have to dig down
into the system level. To use the file management system, you need only a few words at the top Forth
level to create files and to gain access to their contents. This section describes these words and their
functions.

: FILE: (--- fcb) Use the following string as the file name and create a new
 file. The address of the FCB is returned on the stack.

>IN @ Save the input character pointer because we will use the next
 name more than once.

CREATE Create a Forth word using the following name. When this
word is referenced, the file of the same name in DOS will be

 opened and made the current file.
>IN ! Restore the input character pointer to the front of the file name.
HERE DUP The parameter field address of the file definition.
B/FCB ALLOT Put the FCB in the parameter field.
!FCB Now stuff the FCB with the new file name.
DOES> Now comes the execution part of the file definition.
!FILES Initialize both the current and the in-file.
;

: ?DEFINE (--- fcb) Define the next word as a file if it is not already defined.
 Leave its FCB address on stack.

>IN @ Save the input character pointer.
DEFINED Search the dictionary for the next word, which is supposedly

 a file name.
IF NIP >BODY If the file definition is in the dictionary, discard the character

 pointer because we will not need it. The cfa returned by
DEFINED is then changed to pfa which is the FCB of the
defined file.

ELSE No. The file was not defined.
DROP Throw away the word buffer address.
>IN ! Restore the character pointer to the front of the file name.
FILE: Define a new file with a new file definition in the dictionary

. THEN ;

FORTH DEFINITIONS All the file management words were put into the DOS
vocabulary, which are not accessible from FORTH. The

8
two most used words concerning files are to be defined in

 the FORTH vocabulary so that they can be accessed conveniently.

: OPEN (---) Open the following file and make it the current file.
[DOS] OPEN has to refer to words in the DOS vocabulary.
?DEFINE Find the file in dictionary. If failed, create a new file.
!FILES Make this file the current file.
OPEN-FILE Open it.
;

: DEFINE (---) Define the following word as a new file without opening it.
?DEFINE DROP ;

: FROM (---) Make the next word in the input stream the FROM file. It
will be created if not already being defined.

?DEFINE Open a file.
IN-FILE ! Make it the in-file.
OPEN-FILE And then open it.
;

DEFER LOAD Interpret a screen.

In the previous Forth systems, including F83 Version 1, LOAD always interprets a screen from the
current file. To allow more natural and more convenient access to multiple files, F83 Version 2 modified
the LOAD command so it will load a screen from the in-file, which is set up as the input file. Most of
the other file commands access the current file as default. To make sure that other file commands can
still access the current file, LOAD only loads one screen from the in-file and then restores the current
file.

: (LOAD) (n ---) Interpret one screen from the in-file.
FILE @ >R Save the current file fcb.
BLK @ >R Save the currently processed screen number on the data stack.
>IN @ >R Save the word parsing pointer also.
>IN OFF Start at the beginning of the screen.
BLK ! Store n into BLK to process screen n.
IN-FILE @ FILE ! Make the in-file the current file for interpreting.
RUN Interpret the screen.
R> >IN ! Restore the parsing pointer.
R> BLK ! Restore the previous screen number.
R> !FILES After loading from the FROM file, restore the current file.
;

' (LOAD) IS LOAD Vector LOAD to execute (LOAD).

1 CONSTANT INITIAL In all the F83 source files, screen 1 is always a load screen
 which loads in the code in the file. INITIAL is defined to
 load this screen.

9
: OK (---) Load applications in the current file.

INITIAL LOAD ;

: A: (---) Select drive A as the default drive.
0 SELECT ;

: B: (---) Select drive B as the default drive.
1 SELECT ;

