
1
CHAPTER 8. DICTIONARY AND VOCABULARY

The source code discussed in this chapter is in the file KERNEL86.BLK, screens 67-68, and 76.

If you had a figForth system, you might have noticed that it took a while to compile a screen of text. If
you were to load a sizable system or application program, it might seem to be a long time before the
computer came back and put an 'ok' on the screen. The reason is that the dictionary in figForth is
basically a single, linearly linked list of words. It takes some time for the text interpreter to travel
through this list to find a word. The worst cases are the numbers. If the text interpreter cannot find the
word in the context vocabulary, it will search again in the current vocabulary, which in most cases is the
same as the context vocabulary with the entire root Forth vocabulary tagged at the end.

F83 improves this situation by breaking the dictionary into four separately linked lists. To locate a word,
only a quarter of the dictionary needs to be searched. This strategy visibly enhances the performance of
the text interpreter. In this section, I hope that I can explain how this dictionary structure is
implemented in F83.

8.1. THREADING OF THE DICTIONARY

First, there are several important system variables which perform the housekeeping chores in managing
the vocabulary and the searching of dictionary:

VARIABLE DP Pointer to the top of the dictionary. Returned by HERE.
VARIABLE CURRENT Pointer to the current vocabulary to which new definitions

are linked.
8 CONSTANT #VOC The number of vocabularies to be searched, as specified by

the array in CONTEXT.
VARIABLE CONTEXT The context vocabulary pointer.
#VOCS 2* ALLOT Space to hold 8 transient vocabulary pointers. The array

specifies the search order for the text interpreter.
VARIABLE VOC-LINK Pointer to the most recently defined vocabulary.

Vocabularies are thus linked in the order of their creation.

The 8 numbers stored in the transient array are the parameter field addresses of up to eight different
vocabularies. The text interpreter searches up to eight vocabularies and stops at the first encounter of the
name it looks for.

Next, let us see how the vocabularies are defined and how to select the context and current vocabularies.

: VOCABULARY (---) Define a new vocabulary.
CREATE Take the following string as the name of the new

vocabulary.
#THREADS 0 DO Compile four 0's in the parameter field.

0 , They are the four threads
 LOOP in the dictionary for the new vocabulary.

2
HERE The next cell is for the vocabulary link, VOC-LINK. VOC-

LINK @ , Old vocabulary link is placed in this cell.

3
VOC-LINK ! The new vocabulary is the last in the vocabulary link list. Its

link address must be stored in VOC-LINK.
DOES> End of the compilation of a new vocabulary entry in

dictionary. Next is the vocabulary interpreter:
CONTEXT ! Store the parameter field address of this vocabulary in the

first cell of the CONTEXT array so that this vocabulary will ;
be searched first by the text interpreter.

: DEFINITIONS (---) Link subsequent definitions to the context vocabulary.
CONTEXT @ Get the address of the context vocabulary.
CURRENT ! Store it in CURRENT. New definitions will be linked to the
; vocabulary pointed to by CURRENT.

The interesting things are how new definitions are linked to the current vocabulary and to the threads in
the dictionary. Vocabularies are the logical groupings of definitions in the dictionary and the threads are
the physical mechanism to group definitions in the dictionary. New definitions are created by CREATE,
which invokes "CREATE to build the name fields and link fields. The fields in a definition are shown in
Fig. 8.1. Vocabularies and threads are shown in Figures 8.2-3.

: "CREATE (---) Create a header for a new definition. The header consists of
a view field, a link field, and a name field.

COUNT Character count in the name.
HERE EVEN 4 + Address of the name field.
PLACE Move the name string into the name field.
ALIGN Align the header to a cell boundary because the view field

contains a 16 bit integer.
,VIEW Lay down the view field in which the top 4 bits contain a file

number and the lower 12 bits contain a block number in the
file.

HERE 0 , Save a cell for the link field to be filled later.
HERE LAST ! Store the name field address in LAST.
HERE (lfa nfa) Get the name field address.
WARNING @ If the warning flag is set, search the dictionary to see if the

name is unique.
IF FIND If it is an existing name,

IF HERE COUNT TYPE print the name, ." isn't unique" with an error
message.

THEN
DROP HERE Clean the stack after FIND.

THEN
CURRENT @ HASH Hash the first character of the name with the current

vocabulary to return one of the four threads to be extended. DUP @
Get the name field address of the last definition of this

thread.
HERE 2- The link field address of the current definition.
ROT ! Store this link field address in the head of thread in the

current vocabulary.
SWAP ! Store the link field address of the last definition in the link

4
field of the current definition and extend the linked chain. HERE

Name field address saved on stack.
DUP C@ Character length of name.

5

Figure 8.1 Structure of a Forth definition

parameter list

parameter field

code fieldaddress of inner
interpreter

char

char
0
1

1
0
0

0

char
char
char

...

p s char count

link address

block number
file number view field

link field

name field

p: precedence bit
s: smudge bit

6
Figure 8.2 Vocabularies and the dictionary structure.

threads

voc-link

threads

voc-link

threads

voc-link

threads

voc-link

threads

voc-link

FORTH

FORTH

ROOT ROOT

EDITOR

EDITOR

ASSEMBLER

ASSEMBLER

META

META

VOC-LINK

free memory

FORTH

EDITOR

FORTH

ROOT

0

0
0

0

0

context vocabularies

current vocabulary

dictionaryvocabulary link

7
Figure 8.3 Four-way threading in the vocabulary.

0

0

0

0

free memory

view

link

FORTH

DOVOC

thread1

thread2

thread3

thread4

voc-link

view field

link field

name field

code field

parameter
field

end of thread 3

end of thread 4

end of thread 2

end of thread 1

definition of
FORTH vocabulary

typical definition

dictionary

8
WIDTH @ MIN 1+ Width of the name field.
ALLOT ALIGN Name field allocated.
128 SWAP CSET Set the MSB of the length byte, which is the first byte in

name field, as a name field delimiter.
128 HERE 1- CSET Set the MSB of the last byte in name field as another

delimiter.
COMPILE [Turn on the interpreter.
DOCREATE , Compile the variable interpreter in the code field.
; Thus complete the header.

The header in this F83 Forth is not the same as the other more popular Forth systems. A view field is
added to help the user locating a definition in one of the CP/M files containing Forth source screens.
The link field is placed before the name field so that the string comparisons can be performed more
quickly without traversing through the name field. The linking of dictionary entries involves only the
link fields. Name fields are no longer involved in the linkage.

8.2. HASHING AND SEARCHING THE DICTIONARY

Two important words in "CREATE above were not fully explained: HASH and FIND. These are the key
definitions used by the text interpreter to search specific words in the dictionary. HASH is a code
definition. FIND, however, is a high level colon definition which eventually calls a code definition
(FIND) to do the actual searching. Let us first look at HASH and (FIND):

CODE HASH (string-addr vocabulary-pfa --- thread-addr) Given a string address and a
pointer to a vocabulary, return the address of the thread in

the parameter field of the vocabulary.
CX POP Pfa of the vocabulary.
BX POP Address of the string.
BX INC Address of the first character.
0 [BX] AL MOV Get the first character which is the key of hashing.
3 # AX AND Use only the two LSB bits.
AX SHL Multiply it by 2 to get the cell offset to the proper thread. CX

AX ADD The actual address of the thread.
1PUSH Push the thread on stack and return.
END-CODE

CODE (FIND) (here lfa --- cfa true, if found; here false, if not found.) Given the address of a
string and the link field address of a word in dictionary,

search the dictionary and return an address and a flag on the
stack. Flag=1 for an immediate word; flag=-1 for a regular

word; and flag=0 if the word is not found. If not found, the
string address remains on the stack.

DX POP The link field address.
DX DX OR Test it.
0= IF

AX AX SUB Lfa is 0.
1PUSH Push a false flag and return.

9
THEN Lfa not 0. Start comparing strings.
BEGIN

DX BX MOV
BX INC BX INC BX now points to the name field of the dictionary entry.

DI POP Here.
DI PUSH Get the string address to DI.

10
0 [BX] AL MOV Get the length byte of the dictionary entry.
0 [DI] AL XOR Compare it with the string length.
63 # AL AND Mask off two most significant bits, delimiter and precedence

bits.
0= IF Length bytes not equal, go for the next entry in the thread.

BEGIN
BX INC Length bytes equal, now scan the strings.
DI INC Next character.
0 [BX] AL MOV From the dictionary entry.
0 [DX] AL XOR Compare with the one at HERE.
0<> UNTIL If equal, continue the comparison.
127 # AL AND Not equal. See if it is the last character in the name field.

0= IF Not the last character. Strings are not the same. Go for the
next entry in the thread.

DI POP Rid of the HERE.
BX INC Get the code field address.
BX PUSH Push it on the data stack.
DX BX MOV Get the link field address back to BX again, checking

precedence bit.
BX INC BX INC Increment to the name field address.
0 [BX] AL MOV Get the length byte again.
64 # AL MOV Examine the precedence bit.
0<> IF Not an immediate word.

1 # AX MOV Set indicator to 1 for immediate word.
ELSE

-1 # AX MOV Not immediate, set AX to -1.
THEN
1PUSH Push the indicator on stack and return.
THEN
THEN
DX BX MOV String comparison failed. Prepare to test the next entry in

the thread.
0 [BX] DX MOV Get the link field address of the next entry in the thread from

the link field of this entry.
DX DX OR Is the next link field address zero, end of the thread?

0= UNTIL Not the end of thread. Loop back for the next entry. AX AX SUB
End of the thread,

1PUSH push a false flag on stack and return.
END-CODE

(FIND) searches through one thread, with a given link field address of a dictionary entry. To pick up
one thread among four for searching and to do the searching, a high level definition FIND has to be
used. The four-way threading of the dictionary is shown in Fig. 8.3.

4 CONSTANT #THREAD Number of threads implemented in this Forth system.

: FIND (string-addr --- cfa true, if found; string-addr false, if not found)
DUP C@ IF If the string is not a null string, do the dictionary searching.

11
Otherwise, do the end of line processing.

PRIOR OFF PRIOR is a user variable storing the last vocabulary
searched. Clear PRIOR to begin searching.

FALSE This is a dummy flag for the next do-loop.
#VOCS 0 DO #VOCS=8, the number of vocabularies to be searched.
DROP Drop the flag on the stack.

12
CONTEXT I 2* + @ Get the vocabulary address in the CONTEXT array.

DUP IF If the vocabulary address is zero, skip it because no
vocabulary was specified for this CONTEXT entry.

DUP PRIOR @ Get the contents of PRIOR, the last vocabulary
searched.

OVER PRIOR ! Update PRIOR with the vocabulary to be searched
now.

= IF If the PRIOR vocabulary is the same as the present
vocabulary, here is no need of repeating the

searching.
DROP FALSE Drop the vocabulary and replacing with a false flag.

Loop back.
ELSE Now search the new vocabulary.

OVER SWAP Save a copy of the string address.
HASH Hash the string and return the address of the head of

a thread in the present vocabulary.
@ Pick up the thread, the link field address of the last

entry in this thread in the dictionary.
(FIND) Search the dictionary.
DUP ?LEAVE If tos is a true flag, a word is found in the dictionary.

Leave the loop immediately. If tos is false, repeat the
loop and search the next vocabulary.

THEN
THEN

LOOP
ELSE Null string processing.

DROP Discard the string address.
END? ON Turn on the end-of-line flag.
['] NOOP 1 Push the NOOP address on the stack with a true flag so that

the nd-of-line process will happen immediately.
THEN ;

FIND thus scans the CONTEXT array, where up to 8 vocabularies can be specified and are to be
searched in the order of the array. When a vocabulary is to be searched, HASH selects one of the 4
threads, which are the link field addresses of the last entries in each of the threads stored in the
parameter field of the vocabulary, and hands the proper link field address to (FIND) to scan the thread
for a name matching the given string. When a vocabulary was searched, its address was preserved in
PRIOR to avoid searching the same vocabulary repeatedly. This allows the same vocabulary to be
specified in the CONTEXT array more than once without being searched more than once. FIND can
also skip nulls in the CONTEXT array. Nulls and multiple vocabulary entries in CONTEXT are
conveniences in manipulating vocabulary searching order, which will be discussed in a moment.

: DEFINED (--- addr flag) Parse out the next word in the nput stream and search the
dictionary. If a matching entry is found, return its cfa and an
1 or -1. If not found, return HERE and a false flag.

BL WORD Parse the next word, delimited by blank characters, and copy
he word to HERE, the word buffer.

CAPS @ IF If the contents of CAPS is true, he word will be converted to

13
upper case characters.

DUP COUNT UPPER Upper the cases.
THEN
FIND Now do the searching.
;

14

If an immediate word is found by FIND, the return flag is 1. If the found word is a regular, non-
immediate, word, -1 is returned. It is important for the colon compiler to know whether a word is
immediate or not. The colon compiler normally compiles the code field addresses of regular words, but
executes the immediate word to take care of special compiling conditions or to build structures in a
colon definition.

In F83, because of the more complicated CONTEXT structure, it requires a few more words to handle
the vocabularies and to use then effectively. When a vocabulary is invoked, its parameter field address
is stored into the first cell in the CONTEXT array. (See Fig. 8.2.) The next time a search is done, this
vocabulary will be the first vocabulary to be searched. The word ONLY is used to initialized the
CONTEXT array. It places the address of a very small searching control vocabulary in the first and the
last cell of the CONTEXT array. The words in this control vocabulary allow us to select appropriate
working vocabularies like FORTH, etc. The word ALSO copies the first CONTEXT entry to the second
entry and moves the second and subsequent entry up by one cell, adding one entry to the searching
order. This set of words can be used to specify any searching strategy within the size of the CONTEXT
array.

