
1
CHAPTER 13. STRUCTURES IN COLON DEFINITIONS

The source code discussed in this chapter is in KERNEL86.BLK, screens 70-71, and 74-75.

13.1. COMPILER DIRECTIVES

We have discussed in great detail the contents and the functions of the colon definition compiler which
compiles colon definitions, and the address interpreter which executes the colon definition as a list of
execution addresses. If that were all, the usefulness of colon definitions would be severely limited, as
they would not be able to cope with the wide variety of situations a programmer must solve using his
computer. Very few problems can be solved by linearly strung procedures or words. We need the
capability of altering the execution sequence on the fly, depending upon the results obtained in runtime.
We need the capability to compile and use different types of data and data structures, which are used to
encode input/output information and to hold intermediate information during processing. Compiler
directives are used to allow the user to specify explicitly alternate or repetitive execution sequences and
compile special data structures inside a colon definition. Compiler directives are called immediate
words in Forth because they have to be executed immediately during compilation so that special
structures can be built inside a colon definition. Immediate words can be distinguished from normal
words by the fact that a bit, the precedence bit, in the first byte of the name field is set.

The compiler loop] can compile normal, non-immediate words and single- or double-integer literals.
However, it incorporates an extremely powerful hook to take care of any special compiling conditions in
the form of immediate words. Whenever we have a situation that the compiler] is not able to handle, we
will design an immediate word to do whatever is necessary to take care of the situation and then let the
compiler] continue its normal compilation.

A few examples were shown in the chapter on the colon compiler. In fact, literals are handled also by the
colon compiler. When the compiler fails to locate a word in the dictionary, it converts the word into a
number and asks LITERAL or DLITERAL, two immediate words, to compile the numbers into the
dictionary in the form of two data types, single integer literal or double integer literal. This way,
numbers can be compiled into colon definitions, in-line with the execution addresses which are the
default data type in colon definitions.

There are other data types and different methods of interpreting them within the context of a colon
definition. F83 is very rich in these special words, for the convenience of you the user. Let's look at
them closely.

13.2. COMPILING NUMERIC DATA STRUCTURES

Two data types were taken care of: the single integer literal and the double integer literal. The
immediate words which compile them are LITERAL and DLITERAL. The runtime word which
interprets them, pushing the number on the data stack, is (LIT). The Numeric data structures are shown
in Fig. 13.1.

2
Two immediate words are provided to compile ASCII codes. They also use (LIT) to interpret the
compiled character literals:

3

: ASCII (--- char) Compile the next character in the input stream as an ASCII
character literal.

BL WORD Parse out the next character.
1+ C@ Get the ASCII code of this character from the word buffer. STATE @

Are we in the compiling state?
IF [COMPILE] LITERAL Yes. Compile the character as a single integer literal.

However, technically it is a character literal.
THEN If interpreting, just leave the character on stack.
; IMMEDIATE

: CONTROL (--- char) Compile the next character in the input stream as a control
character literal. The character must be upper case.

BL WORD Get the next character.
1+ C@ Get its ASCII code.
ASCII @ Offset between the control character and the upper case

character.
- Control ASCII code.
STATE @ If compiling,
IF [COMPILE] LITERAL compile the control code as a literal.
THEN Leave the character on stack if interpreting.
; IMMEDIATE

Figure 13.1 Numeric data structures.

4
Integer Literal

LITERAL

Double Integer
Literal

DLITERAL

Character
Literal

ASCII

Control Character
Literal

CONTROL

Address
Literal

[']

(LIT)

n

(LIT)

d low

(LIT)

d high

(LIT)

char
(LIT)

n

(LIT)

addr

5
We can always lookup the ASCII table and use the character codes directly in colon definitions. ASCII
and CONTROL, however, make very clear documentation to the intention of the programmer. Using
these words to invoke ASCII codes explicitly is highly recommended.

Ever heard of address literals? Well, there really are such things. Their usefulness has been
demonstrated in many applications in which we want to locate a definition in the dictionary in runtime.
An example is to find the address of a colon definition so that we can jump into the middle of it. The
reason of doing so is not obvious and certainly it is not orthodox Forth practice. Anyway, if you need the
address of another definition inside a colon definition, the word ['] is the one to use, not the plain '.

: ['] (---) Compile the address of the next word as a literal. At
runtime, return that address to the stack.

' (tick) Find the execution address of the next word in the input
stream.

[COMPILE] LITERAL Compile the address as a literal.
; IMMEDIATE

13.3. COMPILING STRING LITERALS

String literals are a very useful data type. They can be used to compile messages in a colon definition.
At runtime, the message will be typed out on the console, creating a friendly environment for the end
users. String literals are diagrammed in Fig. 13.2.

: (") (--- addr len) Return the address and the length of an in-line string. R>
Address of the in-line string compiled immediately after (").

It is compiled by " and ," .
COUNT Get the addr and len of the string.
2DUP + The address of the executable code after the string.
EVEN Align to cell boundary.
>R Replace it on the return stack to continue the execution

process.
;

: (.") (---) Type out the in-line string and continue executing the word
after the string. It is compiled by ." .

R> Address of the in-line string.
COUNT Addr and len.
2DUP + EVEN >R Replace the address of the next word to be executed. TYPE

Output the string to console.
;

: ," (---) Compile the following string to the dictionary.
ASCII " Use " as the delimiter of the string.
PARSE Parse the string out.
TUCK 'WORD PLACE Copy the string into the word buffer, just the right place to

compile this string.
1+ ALLOT ALIGN All we have to do is to move the DP pointer to include the

6
string in the dictionary.

;

7

Figure 13.2 The string literals.

(.")

length

(")

length

(ABORT")

length

print string
compiled

string
error

message

Print String

." ccc"

Compile String

" ccc"

Abort Message

ABORT" ccc"

8
: ." (---) Compile the following string to be typed out later. COMPILE (.")

Compile the runtime code (.") before the string so that the
string will be interpreted correctly.
," Compile the string into the dictionary.
; IMMEDIATE This is a compiler directive. Declare it to be immediate.

: " (---) Compile the string. At runtime, return its address and
length.

COMPILE (") Compile the runtime routine (").
," Compile the string after (").
; IMMEDIATE Must be immediate.

An important word also using string literals is the word ABORT". It forces the Forth system to return to
the text interpreter with a clean state to start over again. It can also print out a message explaining why it
has to take such a drastic measure to help you figure out what happened in the computer.

: (ABORT") (f ---) The runtime routine compiled by ABORT".
R@ COUNT Get the addr and len of the following string literal.
ROT Move the flag to the top of stack.
?ERROR Turn over to ?ERROR to process the error condition. R>

COUNT + EVEN >R Move the top of return stack to the word after the string, to
resume execution as the error condition was not true. ;

: ABORT" (f ---) If the flag is true, issue an error message and quit. COMPILE
(ABORT") Compile runtime routine.

." Compile the message.
; IMMEDIATE

DEFER ?ERROR Vectored to (?ERROR).

: (?ERROR) (addr len f ---) If the flag is true, execute WHERE to store useful debugging
data, type a message, and quit.

IF If the flag is true, prepare to quit.
>R >R Save the string parameters.
SP0 @ SP! Initialize the data stack.
PRINTING OFF Turn off the printer.
BLK @ IF If BLK is not zero, we are processing data from a disk

block.
>IN @ BLK @ WHERE Save the character pointer to the input buffer

and the block number and call WHERE to show where
error occurred.

THEN
R> R> Restore the string parameters.
SPACE TYPE SPACE Print the abort message.
QUIT Restart the text interpreter.

ELSE No error condition.
2DROP Clear the data stack.

THEN ;

9

DEFER WHERE WHERE is vectored to an editor routine (WHERE) to
display the block of source with the cursor pointing to the

word that causes the abort.

10

There are other data structures that can be compiled into the colon definitions. However, many of them
can be taken care of by variables and arrays derived from variables. Other recurring structures may be
handled by the CREATE---DOES> technique.

Figure 13.3 The control structures

?BRANCH
addr

true clause

?BRANCH

addr1

true clause

BRANCH

addr2

(DO)
addr1

(LOOP)

addr2

repeat
clause

repeat
clause

?BRANCH

addr

repeat
clause 1

?BRANCH
addr1

BRANCH

addr2

repeat
clause 2

IF...THEN IF...ELSE...THEN DO...LOOP BEGIN...UNTIL BEGIN...
WHILE...
REPEAT

11
13.4. COMPILING CONTROL STRUCTURES

Forth is a structured language. A structured language has provisions for the user to do two things:
successive refinement to decompose a problem into smaller parts hierarchically, and building modules
with control structures. Control structures, or simply structures, are segments of a program or groups of
program statements which have only one entry and one exit. The one- entry-one-exit property of control
structures allows the structures to be stacked linearly to form larger segments which can be built into
other structures at a higher level. Execution can take alternate paths or repeat a portion of the path only
within a structure. Very complicated high level structures can be built on simple structures, enabling
programmers to deal with real life problems efficiently.

In a previous chapter, I emphasized that Forth is a truely modular language because the definitions in
Forth are true modules, which can be independently executed and compiled, quite different from
modules in other languages which can function only within the context of a mainline program. Forth
definitions are also structures, with one entry and one exit. There are some exceptions when error
conditions are encountered. In these cases, execution is forced to abort to the text interpreter. Forth
definitions, as structures, can be stacked linearly together to form higher level structures, which are
basically the colon definitions. Besides linearly stacked structures, Forth provides a special set of words
which allows us to build other more sophisticated control structures inside colon definitions so that
alternate paths can be chosen and segments can be repeated in runtime. These structure building words
are all immediate words, because they have to perform extra work to build the desired structures
correctly. The control structures are shown in Fig. 13.3. The set of structure-building words in F83 is
listed here showing the syntax of their usages:

IF <true clause> THEN
IF <true clause> ELSE <false clause> THEN
BEGIN <repeat clause> UNTIL
BEGIN <repeat clause> AGAIN
BEGIN <repeat clause 1> WHILE <repeat clause 2> REPEAT
DO <repeat clause> LOOP
DO <repeat clause> +LOOP
?DO <repeat clause> LOOP
?DO <repeat clause> +LOOP

Inside the do-loops, the optional words LEAVE and ?LEAVE can be used to force the termination of the
loop.

13.5. ADDRESS CALCULATION FOR CONTROL STRUCTURES

In Sections 4.3 and 4.5 we have already discussed the low level words which change the execution
sequence in runtime. What the structure building words have to do is to compile these runtime routines
into the colon definition with additional branching addresses so that the execution sequence in runtime
can be changed according to pre-defined rules. Thus a group of supporting words is needed to calculate
the branching addresses during compilation.

12
: ?CONDITION (f ---) Compile time error checking. If the flag is false, abort.

NOT Invert the flag.
ABORT" Conditionals Wrong" Abort with a message.
; This simple error checking is adequate for most situations.

: >MARK (--- addr) Mark the point of a forward branch by saving its address on
the stack.

13
HERE Addr in which the forward branching address will be

placed.
0 , Compile a dummy address for the moment.
;

: >RESOLVE (addr ---) Resolve a forward branch, by compiling addr at HERE.
HERE This is the address to jump to.
SWAP ! Store this address in the memory addr where the forward

jump originates.
;

: <MARK (--- addr) Set up a backward branch by leaving the current address on
stack.

HERE This is the address the backward branch will jump to. ;

: <RESOLVE (addr ---) Resolve a backward branch by compiling addr.
, ; Compile the backward jump address at this point.

: ?>MARK (--- f addr) Set up a forward branch with error checking.
TRUE Put up a true flag for error checking.
>MARK ; Do the work.

: ?>RESOLVE (f addr ---) Resolve an forward branch with error checking.
SWAP ?CONDITION Check conditional error first.
>RESOLVE ; Then resolve the forward branch.

: ?<MARK (--- f addr) Set up a backward branch with error checking.
TRUE The flag for error checking.
<MARK ; Backward jump address.

: ?<RESOLVE (f addr ---) Resolve a backward branch with error checking.
SWAP ?CONDITION Error checking.
<RESOLVE ; Resolve the backward branching.

Error checking is a valuable service to the user to make sure that he has laid down the control structures
correctly. Structure words not properly paired are frequent causes of system crashes, because execution
can be steered to an unknown address.

13.6. CONTROL STRUCTURE COMPILER DIRECTIVES

Here come the real heroes that compile the control structures in colon definitions. These structure words
look very simple and indeed they are. All they have to do is to pick and compile the right runtime
routine and resolve the branching addresses. The runtime routines know what to do with the branching
addresses and change the execution sequence if necessary. These branching addresses can be considered
as special address literals, different from the normal execution addresses compiled by the] compiler.

14
: IF (--- f addr) Set up the IF-ELSE-THEN structure.

COMPILE ?BRANCH Conditional branch.
?>MARK Set up forward branch.
; IMMEDIATE

15
: ELSE (f1 addr1 --- f2 addr2) Resolve the forward branch from IF and set up

forward branch to THEN.
COMPILE BRANCH Unconditional branch.
?>MARK Set up flag and address to jump to THEN.
2SWAP ?>RESOLVE Resolve the jump address at IF.
; IMMEDIATE

: THEN (f addr ---) Resolve the forward jump from either IF or ELSE. ?>RESOLVE
Resolve the jump address.

; IMMEDIATE

: BEGIN (--- f addr) Mark the address for backward branching.
?<MARK ; IMMEDIATE

: UNTIL (f addr ---) Compile a conditional branch to BEGIN.
COMPILE ?BRANCH Compile the conditional branch runtime routine here. ?

<RESOLVE Put the address of BEGIN here to close the loop.
; IMMEDIATE

: AGAIN (f addr ---) Compile an unconditional branch to BEGIN.COMPILE BRANCH
Unconditional branch.
?<RESOLVE Address of BEGIN.
; IMMEDIATE

: WHILE (--- f addr) Compile a conditional exit in the BEGIN-WHILE-REPEAT
loop.

[COMPILE] IF Functionally, WHILE is identical to IF. To execute IF when
WHILE is called, you have to use [COMPILE] to override

the immediate effect of IF.
;

: REPEAT (f1 addr1 f2 addr2 ---) Compile an unconditional branch to addr1 left by
BEGIN, and resolve the forward branch for WHILE at

addr2.
2SWAP Get f1 and addr1 to top of stack.
[COMPILE] AGAIN Use AGAIN to compile the unconditional branch back to

BEGIN.
[COMPILE] THEN Since WHILE is identical to IF, we can use THEN to

resolve its forward branch.
; IMMEDIATE

16
: DO (f addr ---) Compile the header of a do-loop.

COMPILE (DO) Put the runtime (DO) here.
?>MARK (DO) needs the address after LOOP, making it look like a

forward branching for a real backward branching.
; IMMEDIATE

: ?DO (f addr ---) Compile the header for ?DO-LOOP.
COMPILE (?DO)
?>MARK ; IMMEDIATE

17
: LOOP (f addr ---) Complete the do-loop.

COMPILE (LOOP) Compile the runtime routine here.
2DUP 2+ ?<RESOLVE The backward branch address is 2 bytes after (DO), because

(DO) needs two bytes to store the address after (LOOP), in
case LEAVE needs it.

?>RESOLVE Store address after (LOOP) to the location just after (DO). ;
IMMEDIATE

: +LOOP (f addr ---) Compile the ending of the +loop.
COMPILE (+LOOP)
2DUP 2+ ?<RESOLVE
?>RESOLVE ; IMMEDIATE

: LEAVE (---) Compile (LEAVE).
COMPILE (LEAVE) ; IMMEDIATE

: ?LEAVE (---) Compile conditional leave.
COMPILE (?LEAVE) ; IMMEDIATE

As it is evident in the definitions of these control structure words, these words must used in pairs, and
they can be considered as the delimiters for structures in the colon definition, clearly indicating the entry
points and the exit points of the structures. IF must be followed by THEN. DO must be paired with
either LOOP or +LOOP. BEGIN must be paired with UNTIL, AGAIN, or REPEAT. Structures can be
nested but can not be overlapped. If the structures are overlapping, the system will behave erratically if
not crashed.

The error checking in compiling the structures in F83 is not as extensive as that in the fig-Forth model,
in which different types of structures are assigned different error checking numbers instead of a true-
false flag. Fig-Forth prohibits the compiling of improperly nested structures. Nevertheless, F83 is better
than those earlier Forth system without any error checking on the control structures. If you want speed
in compilation, you can strip out the error checking in F83 by using >MARK in place of ?>MARK, etc.,
and change all the 2DUP to DUP. Then you are entirely on your own.

