[image: image1.png]}
S TRETUCHI NG S TANUDA ARD F O RT H - #26]

[image: image2.png]: rofa-ne language has retired to Stan-

Wil Baden * Costa Mesa, California 4his attidle; send ol fe.

wilbaden@netcom.com

Linear Congruential Sequences

If you are like most of us, and need a few random num‑
In Starting Forth, a is 31421.

bers for a game or such, then a single linear congruential se‑
(4) The multiplier a should preferably be chosen between.01 *m

1 quence (LCS) should be good enough. With a little more ef‑ and .99*m, and its binary or decimal digits should not have a

fort, we can get millions and millions of "random" numbers.
simple, regular pattern.

i

According to Knuth, (Chapter 3 of The Art of Computer

31421 for a 32‑bit word size fails this principle‑it's too

Programming), LCS was introduced by D.H. Lehiner in 1949.
small.

Quoting Knuth,

Knuth recommends a "haphazard" constant like

We choose four magic integers,
3141592621. 1 call this "Pi21." It's enough digits of pi with

21 tacked on, to fill a 32‑bit word. 1 think Starting Forth's ~ 1421

m,
the modulus;
0 < m.
was chosen the same way for 16‑bit words.

1

1 remember Pi21 by "Now I want a large container of cof‑ 1

a
the multipier;
0
<= a < m.
fee‑2l."

(5) The value of c is immaterial when a is a good multiplier,

c
the increment;
0
<= c < m.
except that c must have no factor in common with m.

So 1 or a look like good values for c.

X[0] '
the starting value;
0

<= n 0] < M.

This gives:
i

The desired sequence of random numbers (X[nl) is then ob‑
RAND‑NEXT
u

~tained by setting
RAND‑X @ 3141562621 * 1+ DUP RAND‑X ! ;

1

1
X[n+l] = (a* K n] + c) mod m;
or

Knuth gives the following principles (paraphrased) for se‑

RAND‑NEXT
u

lecting those numbers.
RAND‑X @ 1+ 3141562621 *
DUP RAND‑X

(1) The 'seed" number X [01 may be chosen arbitrarily.

(2) The number m should be large, say at least 2**30. Conve‑

(6) When m is the word size the least significant digits of

niently it may be the computer's word size, since that makes the
random numbers are not very random, so decisions based on the

computation quite efficient.

number should always be influenced primarily by the most sig​

nificant digits.

16‑bit word size cannot satisfy this principle.

In Forth, we can write a LCS with m as the word size:

In other words, don't use MOD to select a value. The Start​

ing Forth function is good when m is the word size.

VARIABLE RAND‑X

RAND‑UNIF (u ‑‑ n) RAND‑NEXT UM* NIP

RAND‑NEXT

U

RAND‑X @ a
c + DUP RAND‑X
Starting Forth calls this CHOOSE.

(7) The randomness in t dimensions is only one part in the t‑th

Another approach is to use for m an easily referenced large
root of M.
1

prime within the word size. For 32‑bit arithmetic, 2**31‑1,

Don't use a LCS for simulations requiring high resolution.

which is 2147483647, is a popular choice. The value of c

(8) At most m/1000 numbers should be generated; otherwise

should be 0.
the future will behave more and more like the past.

For a 32‑bit word size, a new scheme or a new multiplier

RAND‑NEXT
U
should chosen every few million random numbers.

RAND‑X @ a m */MOD DROP DUP RAND‑X

For a 16‑bit word size, a new scheme or a new multiplier

should chosen every few 64 or 65 random numbers.

1

(3) If m is a power of 2, pick a so that a mod 8 is 5. If m is a

From this, you can see that you can't get a good single

power of 10, choose a so that a mod 200 is 21.
LCS for 16‑bit arithmetic.
This can be fixed by using mul​

This, with c as chosen below ' ensures a cycle of m values
tiple LCSs or other methods.
Later we'll give a multiple LCS

that pass a test of "potency."
1 definition for 16‑bit Forth.

44
Forth Dimensions

XXI.1,2

