[image: image1.png]I N G ST A ND A RD F O R T H - #26

Exhibits
40692 2147483647 248 ‑ */MOD DROP

Here is an exhibition of LCSs that have been popular. I
DUP RAND‑X

have assigned names for ease of reference here.

Definitions that do not return 0 should not be initialized
SF‑RAND is the random‑number generator from Brodie's

with 0.
Starting Forth. Of course, with 16‑bit arithmetic, 6 5 5 3 5 AND

Some of the tests that have been made on the sequences may be omitted.

are named, but details are postponed to another article.

P‑7 ‑‑RATND is LCS with the multiplier based on PL This is
SF‑RAND‑NEXT 0

32767

given in the summary of LCSs in the last section of chapter 3
RAND‑X @

of Knuth's The Art of Computer Programming, all editions.

31421 *
6927 + 65535 AND

DUP RAND‑NEXT

PI‑RAND‑NEXT
0

4294967295

RAND‑X @

c‑RANv is the default random‑number generator for the

3141592621 *
1 +
Standard C Library.

i

DUP RAND‑X

C‑RAND‑NEXT is C'S RAND

SJ‑RAND was proposed by Lewis, Goodman, and Miller
C‑RAND‑NEXT 0

32767

in the IBM Systems Journal in 1969. It was used in APL and

RAND‑X @

IMLS subroutine library. It was also an option in SwiftForthl.

1103515245
12345 +

The main reason for continued use is that the square of a is

DUP RAND‑X

less than modulus m and it can be implemented without arith‑

16 RSHIFT 32767 AND

metic overflow. However, such small multipliers have known

defects. (16807 is 7**5.)

RANDu is the egregious RANDU of the '60s and '70s. It

must be initialized to odd values only. Note that the multi‑

SJ‑RAND‑NEXT 1

2147483646
plier in hex is 10003. For any three successive values, 9X ‑ 6Y

RAND‑X @
+Zis0 mod 2147487648.

16807 2147483647 */MOD DROP

DUP RAND‑NEXT
RANDU‑NEXT
l

2147483647

RAND‑X @

EASY‑P‑AND was nominated by George Marsaglia (1972)
65539
2147483647 AND

as a candidate for the best multiplier, perhaps because 69069
DUP RAND‑X

is easy to remember.

Efficiently Portable Implementations

: EASY‑RAND‑NEXT
(‑‑ 0_4294967295)

In the m‑is‑word‑size definitions, then low‑order bits cycle :1

RAND‑X @

in a 2**n period, as mentioned in (6) above.

"0" * 1+

DUP RAND‑NEXT

n is 1

:GO CR 17 0 DO
PI‑RAND‑NEXT 1 AND . LOOP
GO

BS ‑RAND uses the best spectral primitive root for modulus 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2147483647. G.S. Fishman found it by brute force in 1986.

n is 2

BS‑RAND‑NEXT l

2147483646
:GO CR 17 0 DO PI‑RAND‑NEXT 3 AND , LOOP ; GO

RAND‑X @
2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2

62089911 2147483647 */MOD DROP

DUP RAND‑X
(n
is 3

:GO
CR 17 0 DO PI‑RAND‑NEXT 7 AND . LOOP ; GO

EP‑RAIND is an efficiently portable multiplier found by 7 4 5 2 3 0 1 6 7 4 5 2 3 0 1 6 7

Fishman in 1988.
Etcetera.

EP‑RAND‑NEXT
l..2147483646

RAND‑X @

In M‑iS‑word‑size definitions, the second half of the pe​

48271 2147483647 */MOD DROP
riod is the same as the first half with sign‑bit inverted . The

DUP RAND‑X
quarter‑cyles are also the same except for the two top bits,

Thanks to the first edition of The Art of Computer Program‑

EP2 ‑RAND is an efficiently portable multiplier found by ming, I've used the function PI‑RAND (with various names)

L'Ecuyer in 1988.
in different languages for 30 years. But things are bigger and

EP‑RAND‑NEXT
1_2147483338
faster than they used to be. Typically, I now use random num​

bers to test something a million times. So I suggest for a simple,

mbine

RAND‑X @

powerful, random‑number generator for today, to co ~~]

Forth Dimensions XXI.1,2

45

