[image: image1.png]

A Call to Assembly by Julian V Noble

Extolling first the high‑level features of Forth‑its extensibility, abstractive power, simplicity, elegance, etc.‑may be a mistake, we might better introduce Forth to suspicious outsider by way of its assem​bler‑what Forth programmers take for granted, even eschewing non‑portable definitions. But to new users, the fact that Forth offers a shortcut that makes assembly language programming as simple as high‑level programming may be more enticing than all the abstract virtues we can name.

Using Forth as a Virtual Hardware Definition Language by John Hart

A set of VHDL extensions to Forth lets programmers define hardware in the same language with which they write software. Hardware defined in Forth can be verified by executing the hardware​definition words at the command line or by writing special Forth words to test their operation. The use of the same language for hardware and software simplifies the task of swapping hardware and software functions during optimization.

Reconfigurable Architecture Computation Engine (RACETm) by John Hart

Because Forth's performance isn't compromised by a limited number of registers, it was the logical choice for a processor in currently available PLDs. In the design process for this project, Forth words were coded in the primitive set and used as a key benchmark. The processor was optimized by repeat​edly modifying, compiling, and testing the model until it could execute Forth words at four MIPS and fit into the PLD with room left for the state machines needed by the application.

The Open Interpreter Word Set by M.L. Gassanenko

The concept of Open Interpreter makes the techniques of changing the control flow via return stack changes architecture‑independent. The five classes of open interpreter systems allow programmers to choose the most adequate degree of compromise between portability and convenience of program​ming. The Open Interpreter specification presented in this paper may be used as an additional chap​ter to the ANSI/ISO standard.

HC1 I Interface to Dallas Semiconductor Information Buttons (iBs) by Dave Edwards

First called "Touch Memories," then "Information Buttons" and "Autoldentification" devices, Jarrah Computers have stuck with the "Information Button" nomenclature for DS19XX devices. The family include memory of various sizes, one contains a timer, and one a thermometer. Dallas promotes the iBs as "attaching digital data to physical objects"‑for applications in industry to track gas cylinders, shipping containers, etc.

Object‑Oriented Programming in Forth‑Better Than Oberon by Hugh Aguilar

There are a lot of ways to implement OOP in Forth. Each method has varying levels of complexity and capability and, most importantly, differing design goals. And the author argues that Forth pro​grammers can choose one method for one program and another method for another program. The method described here is based on the Oberon language designed by Niklaus Wirth, but the author claims this method is better...

DEPARTMENTS

2
OFFICE NEWS
44
STRETCHING STANDARD FORTH #26

Linear Congruential Sequences

4
EDITORIAL
47
STANDARD FORTH TOOL BELT #26

Tools for Linear Congruential Sequences

43
FORML'99 REPORT
79
SPONSORS & BENEFACTORS

Forth Dimensions XXI.1,2
3

[image: image2.png]EDITORIA

Retrospection:

I cannot predict Forth's future today any more than I could when I interviewed for this position back around 1983. Then, fresh from editing Dr. Dobbs journal and in an oversimplification typical of the relatively young, I told the FIG Business Group in Silicon Valley that I believed Forth had not succeeded widely because it had been mismanaged.

That was a sweeping generalization and a poor choice of words, too. I still am a bit surprised they hired me. I was trying to say that the collective energy and vitality of FIG's four or five thousand members (if memory serves) was amazing but wasn't organized or used well enough to promote the language, The energy many other people interpreted as religious‑style zeal was mostly turned inward, and reinventing the wheel was a much‑favored pasttime. Despite perpetual complaints about the general lack of acceptance of Forth, marketing simply wasn't part of the mindset. Not even a piece in Rolling Stone‑and how many computer languages can make that clairn?‑had helped Forth rise much above its grass roots. But inventing and refining a language requires different skills and temperament than marketing it and running an organization.

I see no compelling technical reason now, as I saw none then, why Forth cannot serve as well as any other language and, in enough situations to matter, be the better performer.

For a few years, I've had the opportunity to work with a company where I see evidence daily that Forth has steady work in embedded systems, some amount of general application, and enough mouthwatering projects to keep things exciting. Forth is found everywhere, once you start looking. For that reason, and because Forth embodies some important philosophical aspects of programming, the Forth Interest Group has a purpose.

In my early days at Forth Dimensions, after Leo Brodie's departure, the number of readers ensured there usually was more material submitted than pages to print it on. We used a typesetting service, a layout and paste‑up artist, and a mailing house. It was high‑tech, then, to drive diskettes into town and exchange them for galleys a week later, corrections after that, followed by page proofs and more corrections. When desktop publishing came along, I found it easy enough to design and typeset while I edited; that was good, because the group's size had begun a dwindling process which has continued, although 1 suspect the rate of decline has decreased, The FIG office changed similarly: a smaller staff with increased efficiency and scope of duties has been brought about by circumstance and enforced by economics.

FIG has done amazingly well, long outliving most special‑interest technical groups founded in the nineteen seventies. The techno‑culture evolved, and such user groups no longer serve the same purposes, or else they attempt to serve purposes that no longer exist. Perhaps it is time for the Forth Interest Group to reinvent itself.

With some sense of nostalgia, I conclude this, my last editorial for Forth Dimensions. I have been unable to continue creating this magazine, in its current form, with the resources and time available to me. With fewer members now, much more editorial time has been required to find material to print. I hope someone will bring fresh perspective, inventiveness, and enthusiasm to the job, and I encourage you to help the Forth Interest Group's administrative staff and its board of directors to provide ways for Forth users to share technical information in a format that is both well designed and compellingly useful.

It has been a pleasure to be associated with Forth‑I wish FIG, and each of you, well!

‑Marling Ouverson, Editor editor@forth.org

In Memoriam

Sadly, we learned that Roy Martin died after a long battle with a brain tumor. Roy managed the business affairs of the Forth Interest Group at a time when the organization grew to around five thousand members. He also founded Mountain View Press.

In the early days of FIG, Roy participated wholeheartedly in the FIG Business Group, which directed most of FIG's activities, and he regularly conveyed an inventory of Forth books and Forth Dimensions to FIG chapter meetings. His influence helped shape FIG and played no small part in bringing wider attention to the Forth language. He will be missed and remembered, and we offer our sympathies to his family and friends,

4

Forth Dimensions

Volume XXI, Number 1,2

May 1999 August

Published by the

Forth Interest Group

Editor

Marlin Ouverson

CirculationlOrder Desk

Trace Carter

Forth Dimensions welcomes editorial material , letters to the editor, and com me nts from its readers. No responsibility is assumed for accuracy of submissions,

Subscription to Forth Dimensions is included with membership in the Forth InterestGroup at $4S peryear ($53 Canada/ Mexico, $60 overseas air). For membership, change of address, and to submit items for publication, the address is:

Forth Interest Group

100 Dolores Street, suite 183

Carmel, California 93923

Administrative offices:

831.37.FORTH Fax:831.373.2845

i

I

i

Copyright C) 2000 by Forth Interest Group, Inc.The material contained in this periodical (but not the code) is copyrighted by the individual authors of the articles and by Forth Interest Group, Inc., respectively. Any reproduction or use o this periodical as it is compiled or the articles, except reproductic

commercial purposes, without the written permission of Forth Interest Group, Inc. is a violation of the Copyright Laws. Any code bearing a copyright notice, however,can be used only with permission of the copyright holder.

The Forth Interest Group

The Forth Interest Group is the association of programmers, managers, and engineers who create practical, Forth‑ I based solutions to real‑world needs. FIG provides a climate of intellectual exchange and benefits intended to assist each of its members. Publications, conferences, seminars, telecommunications,and area chapter meetings are among its activities.

FORTH DIMENSIONS (ISSN 0884‑0822) is published bimonthly for $45/53/60 per year by Forth Interest Group at 1340 Munras Avenue, Suite 314, Monterey CA 93940. Periodicals postage rates paid at Monterey CA and at additional mailing offices.

POSTMASTER: Send address changes to FORTH DIMENSIONS, 100 Dolores Street, Suite 183, Carmel CA 93923‑8665.

Forth Dimensions XXI.1,2

I

[image: image3.png]J.V. Noble * jvn@virginia.edu
Charlottesville, Virginia

A Call to Assembly

Introduction

Forth programmers tend to take for granted the assembler

I
that accompanies most Forths [1]. We often eschew assembly language definitions because they are not portable, especially since, in the era of ANS Forth, portability represents an im​portant goal of programming. We therefore resort to the as​sembler only when running time is of the essence, or when we must access the underlying system at its most basic level​direct control of ports, drives and displays.

However, one of the things members of the Forth commu​nity do (besides program in Forth) is attempt to educate their peers who still muddle about with languages of lesser quality. It has for some time seemed to me that in our proselytizing we were missing a good bet, by extolling first the high‑level fea​tures of Forth‑its extensibility, abstractive power, simplicity, elegance, etc., etc. I think it may be better to introduce Forth to the suspicious outsider by way of the Forth assembler.

To make clear why I have taken this position, let me reca​pitulate what assemblers are and why they exist. In their es​sence, computer programs consist of sequences of numbers, generally in base 2 (binary) or 16 (hexadecimal) format. Since human brains never evolved to use numbers in any base, the man‑machine interface suffered from impedance mismatch in the era when digital computers were programmed directly with plug boards or switches. Programming in this fashion, still common in my youth, was arduous and prone to error.

Fortunately, today's computers rely on specialized conver​sion programs called assemblers to translate human‑readable representations of the instructions in text form ("assembler mnemonics") to their numeric equivalents. Good assemblers recognize macro instructions and operations ("pseudo‑ops") that perform such useful chores as referring to variables, con​stants, or frequently used sequences of instructions by name rather than by address [2].

Even with such tools, however, writing a lengthy program entirely in assembler is not a task to be undertaken lightly. Machine‑language programs are hard to get right, hard to understand, and hard to maintain or to port to another ma​chine. High‑level languages were invented to provide a bet​ter human‑computer interface, providing standardized data structures and operations that encompass most of the user's needs, and translating these to machine language in a stan​dardized fashion. Modern optimizing compilers can gener​ate machine code that executes no worse than two times slower than the best hand‑coded efforts of wizard hackers. Such facts of life have led to declarations that machine lan​guage programming is obsolete [3].

What happens when we encounter problems with no rea​sonable solution in high‑level code? Memory limitations, a desperate need for speed, or an operation trivial at the level

Forth Dimensions XXI.1,2

_7 i

of machine registers but time‑consuming and circuitous in a high‑level language (e,g., bit reversal in Fast Fourier Trans​form, or interfacing through ports) lead us‑however reluc​tantly‑to exercise our constitutional right to assemble.

Most modern programming languages permit linking with assembly language procedures that have been assembled sepa​rately (that is, outside the compilation process), thereby com​bining the ease of high‑level programming with the advan​tages of assembler. The value of this hybrid approach lies in the fact that most programs spend most of their time execut​ing relatively few instructions. Factoring such bottlenecks into separate subroutines, then hand‑coding them, can garner large increases in efficiency. The usual procedure is:

1. program, test, and debug everything in high‑level code; 2. using a profiler or algorithmic analysis, determine which portions can be rewritten profitably in machine language; 3. finally, endure the tedium attendant on assembling,

linking, and testing the hand‑coded parts.

In many cases, however, step three is so arduous as to dis​courage even minimal use of assembly language, except out of desperation.

What we really need is a way to test assembly language subroutines in isolation, i.e., to assemble and run them as separate programs. By eliminating the need to compile an "exercise" program, assemble the subroutine and link the two into an executable, we can telescope the compile‑test‑debug cycle into a single stage. Once we are satisfied with our ma​chine code subroutines, they can be (re) assembled and linked to the (compiled) main program once, or twice at most.

Forth offers a shortcut that makes assembly language pro​gramming as simple as high‑level programming. Although Forth is my first choice for the kind of programming 1 do (numeric and symbolic), not everyone likes it. Moreover, con​straints imposed by management often preclude using Forth in commercial applications. However, for assembling and test​ing isolated machine code fragments‑in fact, for rapid prototyping of any sort‑Forth is nonpareil and is worth con​sidering for that purpose, even if the final result must be ex​pressed in C or C++.

I. That is, all commercial Forths and many public‑domain ones. 2. Such assembler directives as macros and pseudO‑OPS are not actual machine instructions, of course. 3. See, e.g., A Abrash, The Zen ofCode Optimization (The Coriolis Group, Inc., Scottsdale, AZ, 1994) for an eloquent defense of assembly language vs. high‑level language. 4. L. Brodie, Starting FORTH, 2nd ed. (Prentice‑Hall, NJ, 1986); Thinking FORTH (Prentice‑Hall, NJ 1984). A Kelly and N. Spies, FORTH: a Text and Reference (Prentice‑Hall, NJ 1986). A Tracy, et al., Mastering Forth (Brady Books, NY 1989). J.V. Noble, Scientiflc FORTH: a modern language for scienti,fic programming (Mechum Banks Publishing, Ivy, VA 1992).

Julian Noble is among those who display erudition in Forth and who also can writeluddly about it. His work may be enjoyed online (e.g., comp.lang.forth) and, we are pleased to note, fn these pages.

5

i

i

i

i

I

1
‑1

Assemblers, cross‑assemblers, and decompilers in Forth are
the (input) integer n in binary notation: a string of I's and O's

so terse that most programmers used to other languages find
in a field k bits wide. For example, if the order N of the FFT is

it hard to believe they are what they claim to be. In a com‑
16 then the field is k=4 bits wide; the number 7, e.g., is repre​

mercial Forth I use regularly, the traditional (postfix) Forth
sented as

assembler source code resides in a file about 14 Kbytes long,

and adds about 6 Kbytes of compiled code to the system; a
n = 7d = 0111b,

more elaborate assembler (for a public‑domain Forth) that

allows prefix style comprises 31 Kb of source and compiles to and its bit‑reversed form is

about 8 Kb; the source file of a generic Forth cross‑assembler

for Motorola 680xO CPUs is about 16 Kb; and the assembler
n' = 1110b = 14d.

for Intel 80486 and Pentium CPUs that comes with a

Windows‑based Forth is still a relative lightweight at 85 Kb

We start with n‑=O (all bits are 0); we then shift n' one

of source. To normalize, the binary of an ancient 16‑bit as‑
position to the left, adding to it the right‑most bit of n. Then

sembler, MASM.EXE (v. 2.0), is about 74 Kb long.
we shift n one position to the right (with its former right‑most

The Forth assembler is written in Forth, hence it operates
bit dropping into oblivion), and then repeat until done.

the same way as any other set of Forth words. The words for

We simulate the shift operations using integer

compiling a new definition from assembler mnemonics,
divide‑by‑two (2/) for the right‑shift, and multiply‑by‑two

analogous to : and ;, are CODE and END‑CODE. Rather than
(2*) for the left‑shift. We keep n and n' on the data stack

threading together the addresses of predefined words from
(equivalent to temporary local variables that are reclaimed

the dictionary, the assembler mnemonics actually assemble a
when the subroutine returns control to the main program).

new machine code fragment containing the opcodes of the

Testing immediately, as is our wont in Forth,

target CPU. For the sake of definiteness, I shall illustrate with

popular public‑domain Forths F‑PC and Win32Forth (its lin‑

4 7 STIB
<cr> 14 ok

eal descendent), both the brain‑children of Tom Zimmer and

14 7 STIB
<cr> 7 ok

readily available from the Web site www.taygeta.com.

The pedagogical advantage of a complete F‑PC or Win32Forth

A machine code version that carries out the operations

installations is that they provides access to the machine code of
entirely within the CPU's registers will execute much faster

the most primitive kernel words, These serve as convenient ex‑
than the high‑level code [7]. The logical right‑shift (SHR) and

I
amples of the assembler's operation, as well as of how to pro‑
rotate‑left‑through‑carry (RCL) instructions are key to an ex​

gram simple operations in Intel 80x86 assembler.
ceedingly simple subroutine. Their behaviors are illustrated

This note provides three examples of the development
by the figure below.

I
process: ST I B [5], a routine that bit‑reverses numbers (for use

with Fast Fourier Transform); UCASE, a routine to convert all

lower‑case letters in an ASCII string

to uppercase, leaving digits and punc‑ S. That is, "BITS" spelled backwards. Forth names often seem odd to programmers used to the baroque

tuation alone; and SPHBEs, a spheri‑ compound names of C functions. Forth's conventions aim toward self‑documenting code, with tele​

cal Bessel function. In what follows, graphic word names that express their functionality without lengthy marginal notes. BITREV would also

work, and may perhaps be less cryptic. we assume the reader is familiar with 6. See, e.g., L. Scanlon, Assembly Language Programming for the IBM PC AT (Prentice Hall, New York, 1986); or

the assembly language mnemonics of
J.H. Crawford and P.P. Gelsinger, Programming the 80386 (SYBEX, Alameda, CA, 1987).

1 the Intel 80x86 series of CPUs. Occa‑ 7. The speed increase is large‑at least 20‑ or 30‑fold in standard Forth, which does not compile to an

optimized machine‑code image. Comparison with the same function written using an optimizing C

sionally their operation will be ampli‑
compiler, say, may reflect only a two‑ or three‑fold increase in speed.

fied in detail; however the reader is ad​

vised to consult a standard assembly

language programming manual [6].
 Listing One

Bit‑reversal
STIB (k n ‑ n')
\
reverse order of bits

0 SWAP (‑ k 0 n
\
initialize n'
lg2[N] n' n)

The bit‑reversal routine STIB may

ROT
0 DO
\

loop k times

be written in high‑level Forth [as in

DUP 1 AND
\
pick out l's bit of n

Listing One].

ROT 2* +
\
leftshift n' 1 place, add 1's bit

How does this work? The subrou‑

SWAP 2/
\
rightshift n 1 place

tine expects an integer n on the stack,

LOOP DROP
\
end loop, discard n

in the range

end definition

0 < n < 2k = N,

where Nis the order of the FFT (power
Listing Two

of 2). The loop must be executed k =

\
initialization steps

log,(N) times, so the loop limits are 0
POP BX
\
obtain n

and k. For simplicity, k is placed on
XOR DX, DX
\
n' = 0

the stack above n, rather than fetched

\
repeat following instructions k times

from a variable. To see how the rou‑
SHR BX, 1
\
logical right shift 1 place

tine performs bit reversal, visualize
RCL DX, 1
\
rotate left through carry 1 place

6

Forth Dimensions XXI.1,2

