
May 1999 AugustVolume XXI, Number 1,2

A Call to Assembly

The Open Interpreter Word Set

HC11 Interface to Dallas Semiconductor
Information Buttons

Using Forth as a Virtual Hardware Definition Language

Reconfigurable Architecture Computation Engine

Object-Oriented Programming in Forth—
Better Than Oberon

2 Forth Dimensions XXI.1,2

O F F I C E N E W S

Forth Dimensions XXI.1,2 3

C O N T E N T S

D E P A R T M E N T S

2 OFFICE NEWS

4 EDITORIAL

43 FORML ‘99 REPORT

44 STRETCHING STANDARD FORTH #26
Linear Congruential Sequences

47 STANDARD FORTH TOOL BELT #26
Tools for Linear Congruential Sequences

79 SPONSORS & BENEFACTORS

HC11 Interface to Dallas Semiconductor Information Buttons (iBs) by Dave Edwards
First called “Touch Memories,” then “Information Buttons” and “AutoIdentification” devices, Jarrah
Computers have stuck with the “Information Button” nomenclature for DS19XX devices. The family
include memory of various sizes, one contains a timer, and one a thermometer. Dallas promotes the
iBs as “attaching digital data to physical objects”—for applications in industry to track gas cylinders,
shipping containers, etc.

48

Reconfigurable Architecture Computation Engine (RACE™) by John Hart
Because Forth’s performance isn’t compromised by a limited number of registers, it was the logical
choice for a processor in currently available PLDs. In the design process for this project, Forth words
were coded in the primitive set and used as a key benchmark. The processor was optimized by repeat-
edly modifying, compiling, and testing the model until it could execute Forth words at four MIPS and
fit into the PLD with room left for the state machines needed by the application.

24

A Call to Assembly by Julian V. Noble
Extolling first the high-level features of Forth—its extensibility, abstractive power, simplicity, elegance,
etc.—may be a mistake, we might better introduce Forth to suspicious outsider by way of its assem-
bler—what Forth programmers take for granted, even eschewing non-portable definitions. But to
new users, the fact that Forth offers a shortcut that makes assembly language programming as simple
as high-level programming may be more enticing than all the abstract virtues we can name.

5

Using Forth as a Virtual Hardware Definition Language by John Hart
A set of VHDL extensions to Forth lets programmers define hardware in the same language with
which they write software. Hardware defined in Forth can be verified by executing the hardware-
definition words at the command line or by writing special Forth words to test their operation. The
use of the same language for hardware and software simplifies the task of swapping hardware and
software functions during optimization.

21

The Open Interpreter Word Set by M.L. Gassanenko
The concept of Open Interpreter makes the techniques of changing the control flow via return stack
changes architecture-independent. The five classes of open interpreter systems allow programmers to
choose the most adequate degree of compromise between portability and convenience of program-
ming. The Open Interpreter specification presented in this paper may be used as an additional chap-
ter to the ANSI/ISO standard.

31

Object-Oriented Programming in Forth—Better Than Oberon by Hugh Aguilar
There are a lot of ways to implement OOP in Forth. Each method has varying levels of complexity
and capability and, most importantly, differing design goals. And the author argues that Forth pro-
grammers can choose one method for one program and another method for another program. The
method described here is based on the Oberon language designed by Niklaus Wirth, but the author
claims this method is better…

60

4 Forth Dimensions XXI.1,2

E D I T O R I A L Forth Dimensions
Volume XXI, Number 1,2

May 1999 August

Published by the
Forth Interest Group

Editor
Marlin Ouverson

Circulation/Order Desk
Trace Carter

Forth Dimensions welcomes editorial ma-
terial, letters to the editor, and comments
from its readers. No responsibility is as-
sumed for accuracy of submissions.

Subscription to Forth Dimensions is in-
cluded with membership in the Forth In-
terest Group at $45 per year ($53 Canada/
Mexico, $60 overseas air). For member-
ship, change of address, and to submit
items for publication, the address is:

Forth Interest Group
100 Dolores Street, suite 183
Carmel, California 93923
Administrative offices:
831.37.FORTH Fax: 831.373.2845

Copyright © 2000 by Forth Interest
Group, Inc. The material contained in this
periodical (but not the code) is copy-
righted by the individual authors of the
articles and by Forth Interest Group, Inc.,
respectively. Any reproduction or use of
this periodical as it is compiled or the
articles, except reproductions for non-
commercial purposes, without the writ-
ten permission of Forth Interest Group,
Inc. is a violation of the Copyright Laws.
Any code bearing a copyright notice,
however, can be used only with permis-
sion of the copyright holder.

The Forth Interest Group
The Forth Interest Group is the associa-
tion of programmers, managers, and
engineers who create practical, Forth-
based solutions to real-world needs.
FIG provides a climate of intellectual
exchange and benefits intended to as-
sist each of its members. Publications,
conferences, seminars, telecommuni-
cations, and area chapter meetings are
among its activities.

FORTH DIMENSIONS (ISSN 0884-0822)
is published bimonthly for $45/53/60
per year by Forth Interest Group at
1340 Munras Avenue, Suite 314,
Monterey CA 93940. Periodicals post-
age rates paid at Monterey CA and at
additional mailing offices.

POSTMASTER: Send address changes to
FORTH DIMENSIONS, 100 Dolores Street,
Suite 183, Carmel CA 93923-8665.

I cannot predict Forth’s future today any more than I could when I interviewed for this
position more than fifteen years ago. Then, fresh from editing Dr. Dobbs Journal and in an
over-simplification typical of the relatively young, I told the FIG Business Group in Silicon
Valley that I believed Forth had not succeeded widely because it had been mismanaged.

That was a sweeping generalization and a poor choice of words, too. I still am a bit
surprised they hired me. I was trying to say that the collective energy and vitality of FIG’s
four or five thousand members (if memory serves) was amazing but wasn’t organized or
used well enough to promote the language. The energy many other people interpreted as
religious-style zeal was mostly turned inward, and reinventing the wheel was a much-fa-
vored pasttime. Despite perpetual complaints about the general lack of acceptance of Forth,
marketing simply wasn’t part of the mindset. Not even a piece in Rolling Stone—and how
many computer languages can make that claim?—had helped Forth rise much above its
grass roots. But inventing and refining a language requires different skills and temperament
than marketing it and running an organization.

I see no compelling technical reason now, as I saw none then, why Forth cannot serve as
well as any other language and, in enough situations to matter, be the better performer.

For a few years, I’ve had the opportunity to work with a company where I see evidence
daily that Forth has steady work in embedded systems, some amount of general application,
and enough mouthwatering projects to keep things exciting. Forth is found everywhere, once
you start looking. For that reason, and because Forth embodies some important philosophi-
cal aspects of programming, the Forth Interest Group has a purpose.

In my early days at Forth Dimensions, after Leo Brodie’s departure, the number of readers
ensured there usually was more material submitted than pages to print it on. We used a
typesetting service, a layout and paste-up artist, and a mailing house. It was high-tech, then,
to drive diskettes into town and exchange them for galleys a week later, corrections after that,
followed by page proofs and more corrections. When desktop publishing came along, I found
it easy enough to design and typeset while I edited; that was good, because the group’s size
had begun a dwindling process which has continued, although I suspect the rate of decline
has decreased. The FIG office changed similarly: a smaller staff with increased efficiency and
scope of duties has been brought about by circumstance and enforced by economics.

FIG has done amazingly well, long outliving most special-interest technical groups
founded in the nineteen seventies. The techno-culture evolved, and such user groups no
longer serve the same purposes, or else they attempt to serve purposes that no longer exist.
Perhaps it is time for the Forth Interest Group to reinvent itself.

With some sense of nostalgia, I conclude this, my last editorial for Forth Dimensions. I have
been unable to continue creating this magazine, in its current form, with the resources and
time available to me. With fewer members now, much more editorial time has been required
to find material to print. I hope someone will bring fresh perspective, inventiveness, and
enthusiasm to the job, and I encourage you to help the Forth Interest Group’s administrative
staff and its board of directors to provide ways for Forth users to share technical information
in a format that is both well designed and compellingly useful.

It has been a pleasure to be associated with Forth—I wish FIG, and each of you, well!
—Marling Ouverson, Editor

editor@forth.org

In Memoriam
Sadly, we learned that Roy Martin died after a long battle with a brain tumor. Roy man-

aged the business affairs of the Forth Interest Group at a time when the organization grew
to around five thousand members. He also founded Mountain View Press.

In the early days of FIG, Roy participated wholeheartedly in the FIG Business Group,
which directed most of FIG’s activities, and he regularly conveyed an inventory of Forth
books and Forth Dimensions to FIG chapter meetings. His influence helped shape FIG and
played no small part in bringing wider attention to the Forth language. He will be missed
and remembered, and we offer our sympathies to his family and friends.

Retrospection

Forth Dimensions XXI.1,2 5

A Call to Assembly

J.V. Noble • jvn@virginia.edu
Charlottesville, Virginia

Introduction
Forth programmers tend to take for granted the assembler

that accompanies most Forths [1]. We often eschew assembly
language definitions because they are not portable, especially
since, in the era of ANS Forth, portability represents an im-
portant goal of programming. We therefore resort to the as-
sembler only when running time is of the essence, or when
we must access the underlying system at its most basic level—
direct control of ports, drives and displays.

However, one of the things members of the Forth commu-
nity do (besides program in Forth) is attempt to educate their
peers who still muddle about with languages of lesser quality.
It has for some time seemed to me that in our proselytizing we
were missing a good bet, by extolling first the high-level fea-
tures of Forth—its extensibility, abstractive power, simplicity,
elegance, etc., etc. I think it may be better to introduce Forth
to the suspicious outsider by way of the Forth assembler.

To make clear why I have taken this position, let me reca-
pitulate what assemblers are and why they exist. In their es-
sence, computer programs consist of sequences of numbers,
generally in base 2 (binary) or 16 (hexadecimal) format. Since
human brains never evolved to use numbers in any base, the
man-machine interface suffered from impedance mismatch
in the era when digital computers were programmed directly
with plug boards or switches. Programming in this fashion,
still common in my youth, was arduous and prone to error.

Fortunately, today’s computers rely on specialized conver-
sion programs called assemblers to translate human-readable
representations of the instructions in text form (“assembler
mnemonics”) to their numeric equivalents. Good assemblers
recognize macro instructions and operations (“pseudo-ops”)
that perform such useful chores as referring to variables, con-
stants, or frequently used sequences of instructions by name
rather than by address [2].

Even with such tools, however, writing a lengthy program
entirely in assembler is not a task to be undertaken lightly.
Machine-language programs are hard to get right, hard to
understand, and hard to maintain or to port to another ma-
chine. High-level languages were invented to provide a bet-
ter human-computer interface, providing standardized data
structures and operations that encompass most of the user’s
needs, and translating these to machine language in a stan-
dardized fashion. Modern optimizing compilers can gener-
ate machine code that executes no worse than two times
slower than the best hand-coded efforts of wizard hackers.
Such facts of life have led to declarations that machine lan-
guage programming is obsolete [3].

What happens when we encounter problems with no rea-
sonable solution in high-level code? Memory limitations, a
desperate need for speed, or an operation trivial at the level

of machine registers but time-consuming and circuitous in a
high-level language (e.g., bit reversal in Fast Fourier Trans-
form, or interfacing through ports) lead us—however reluc-
tantly—to exercise our constitutional right to assemble.

Most modern programming languages permit linking with
assembly language procedures that have been assembled sepa-
rately (that is, outside the compilation process), thereby com-
bining the ease of high-level programming with the advan-
tages of assembler. The value of this hybrid approach lies in
the fact that most programs spend most of their time execut-
ing relatively few instructions. Factoring such bottlenecks into
separate subroutines, then hand-coding them, can garner large
increases in efficiency. The usual procedure is:
1.program, test, and debug everything in high-level code;
2.using a profiler or algorithmic analysis, determine which

portions can be rewritten profitably in machine language;
3. finally, endure the tedium attendant on assembling,

linking, and testing the hand-coded parts.

In many cases, however, step three is so arduous as to dis-
courage even minimal use of assembly language, except out
of desperation.

What we really need is a way to test assembly language
subroutines in isolation, i.e., to assemble and run them as
separate programs. By eliminating the need to compile an
“exercise” program, assemble the subroutine and link the two
into an executable, we can telescope the compile–test–debug
cycle into a single stage. Once we are satisfied with our ma-
chine code subroutines, they can be (re)assembled and linked
to the (compiled) main program once, or twice at most.

Forth offers a shortcut that makes assembly language pro-
gramming as simple as high-level programming. Although
Forth is my first choice for the kind of programming I do
(numeric and symbolic), not everyone likes it. Moreover, con-
straints imposed by management often preclude using Forth
in commercial applications. However, for assembling and test-
ing isolated machine code fragments—in fact, for rapid
prototyping of any sort—Forth is nonpareil and is worth con-
sidering for that purpose, even if the final result must be ex-
pressed in C or C++.

1. That is, all commercial Forths and many public-domain ones.
2. Such assembler directives as macros and pseudo-ops are not actual

machine instructions, of course.
3. See, e.g., M. Abrash, The Zen of Code Optimization (The Coriolis Group,

Inc., Scottsdale, AZ, 1994) for an eloquent defense of assembly language
vs. high-level language.

4. L. Brodie, Starting FORTH, 2nd ed. (Prentice-Hall, NJ, 1986); Thinking
FORTH (Prentice-Hall, NJ 1984). M. Kelly and N. Spies, FORTH: a Text and
Reference (Prentice-Hall, NJ 1986). M. Tracy, et al., Mastering Forth (Brady
Books, NY 1989). J.V. Noble, Scientific FORTH: a modern language for
scientific programming (Mechum Banks Publishing, Ivy, VA 1992).

Julian Noble is among those who display erudition in Forth and who
also can writelucidly about it. His work may be enjoyed online (e.g.,
comp.lang.forth) and, we are pleased to note, in these pages.

6 Forth Dimensions XXI.1,2

Assemblers, cross-assemblers, and decompilers in Forth are
so terse that most programmers used to other languages find
it hard to believe they are what they claim to be. In a com-
mercial Forth I use regularly, the traditional (postfix) Forth
assembler source code resides in a file about 14 Kbytes long,
and adds about 6 Kbytes of compiled code to the system; a
more elaborate assembler (for a public-domain Forth) that
allows prefix style comprises 31 Kb of source and compiles to
about 8 Kb; the source file of a generic Forth cross-assembler
for Motorola 680x0 CPUs is about 16 Kb; and the assembler
for Intel 80486 and Pentium CPUs that comes with a
Windows-based Forth is still a relative lightweight at 85 Kb
of source. To normalize, the binary of an ancient 16-bit as-
sembler, MASM.EXE (v. 2.0), is about 74 Kb long.

The Forth assembler is written in Forth, hence it operates
the same way as any other set of Forth words. The words for
compiling a new definition from assembler mnemonics,
analogous to : and ;, are CODE and END-CODE. Rather than
threading together the addresses of predefined words from
the dictionary, the assembler mnemonics actually assemble a
new machine code fragment containing the opcodes of the
target CPU. For the sake of definiteness, I shall illustrate with
popular public-domain Forths F-PC and Win32Forth (its lin-
eal descendent), both the brain-children of Tom Zimmer and
readily available from the Web site www.taygeta.com.

The pedagogical advantage of a complete F-PC or Win32Forth
installations is that they provides access to the machine code of
the most primitive kernel words. These serve as convenient ex-
amples of the assembler's operation, as well as of how to pro-
gram simple operations in Intel 80x86 assembler.

This note provides three examples of the development
process: STIB [5], a routine that bit-reverses numbers (for use
with Fast Fourier Transform); UCASE, a routine to convert all

the (input) integer n in binary notation: a string of 1’s and 0’s
in a field k bits wide. For example, if the order N of the FFT is
16 then the field is k=4 bits wide; the number 7, e.g., is repre-
sented as

 n = 7d = 0111b,

and its bit-reversed form is

n’ = 1110b = 14d.

We start with n-=0 (all bits are 0); we then shift n′ one
position to the left, adding to it the right-most bit of n. Then
we shift n one position to the right (with its former right-most
bit dropping into oblivion), and then repeat until done.

We simulate the shift operations using integer
divide-by-two (2/) for the right-shift, and multiply-by-two
(2*) for the left-shift. We keep n and n′ on the data stack
(equivalent to temporary local variables that are reclaimed
when the subroutine returns control to the main program).

Testing immediately, as is our wont in Forth,

 4 7 STIB . <cr> 14 ok
 14 7 STIB . <cr> 7 ok

A machine code version that carries out the operations
entirely within the CPU’s registers will execute much faster
than the high-level code [7]. The logical right-shift (SHR) and
rotate-left-through-carry (RCL) instructions are key to an ex-
ceedingly simple subroutine. Their behaviors are illustrated
by the figure below.

5. That is, “BITS” spelled backwards. Forth names often seem odd to programmers used to the baroque
compound names of C functions. Forth’s conventions aim toward self-documenting code, with tele-
graphic word names that express their functionality without lengthy marginal notes. BIT_REV would also
work, and may perhaps be less cryptic.

6. See, e.g., L. Scanlon, Assembly Language Programming for the IBM PC AT (Prentice Hall, New York, 1986); or
J.H. Crawford and P.P. Gelsinger, Programming the 80386 (SYBEX, Alameda, CA, 1987).

7. The speed increase is large—at least 20- or 30-fold in standard Forth, which does not compile to an
optimized machine-code image. Comparison with the same function written using an optimizing C
compiler, say, may reflect only a two- or three-fold increase in speed.

Listing One

: STIB (k n — n') \ reverse order of bits
 0 SWAP (— k 0 n) \ initialize n' (— lg2[N] n' n)
 ROT 0 DO \ loop k times
 DUP 1 AND \ pick out 1's bit of n
 ROT 2* + \ leftshift n' 1 place, add 1's bit
 SWAP 2/ \ rightshift n 1 place
 LOOP DROP \ end loop, discard n
; \ end definition

Listing Two

 \ initialization steps
 POP BX \ obtain n
 XOR DX, DX \ n' = 0
 \ repeat following instructions k times
 SHR BX, 1 \ logical right shift 1 place
 RCL DX, 1 \ rotate left through carry 1 place

lower-case letters in an ASCII string
to upper case, leaving digits and punc-
tuation alone; and SPHBES, a spheri-
cal Bessel function. In what follows,
we assume the reader is familiar with
the assembly language mnemonics of
the Intel 80x86 series of CPUs. Occa-
sionally their operation will be ampli-
fied in detail; however the reader is ad-
vised to consult a standard assembly
language programming manual [6].

Bit-reversal
The bit-reversal routine STIB may

be written in high-level Forth [as in
Listing One].

How does this work? The subrou-
tine expects an integer n on the stack,
in the range

0 < n < 2k = N,

where N is the order of the FFT (power
of 2). The loop must be executed k =
log2(N) times, so the loop limits are 0
and k. For simplicity, k is placed on
the stack above n, rather than fetched
from a variable. To see how the rou-
tine performs bit reversal, visualize

Forth Dimensions XXI.1,2 7

SHR

RCL

7 6 5 4 3 2 1 0 CF

7 6 5 4 3 2 1 0 CF

Different Forths will require minor differences in how we
proceed. Several commercial Forths cache the top of the data
stack in the register BX, thereby eliminating some pushes and
pops. The public-domain F-PC, on the other hand, leaves BX
free. Since we are illustrating with F-PC, our first job will be to
obtain the argument n; we therefore BX it from the stack to BX:

 POP BX

Next let us assign the (unused) DX register to the
bit-reversed answer; we initialize DX to 0 quickly using bit-
wise exclusive-or [8]

 XOR DX, DX

Now we shift BX one place to the right using SHR; the
rightmost bit, as the Figure suggests, moves from the register
to the Carry Flag. Then we RCL the DX register one place to
the left; the bit formerly in the Carry Flag becomes the right-
most bit of DX. The left-most bit (if any) of DX ends up in the
CF. But that does not matter, because it will be replaced by
the right-most bit of BX when the sequence is repeated. So
the machine-language program (with comments) looks like
[Listing Two].

All that is required now is to arrange to repeat the
two-instruction sequence the requisite number of times. For
simplicity, let us do this using the most elementary looping
instruction, LOOP. We must place the number of times the
loop is to be executed in the register CX, then at the end of the
loop issue the LOOP instruction which will decrement CX by 1
and loop back to the starting point (which we must label some-
how—we will return to this point and describe how it is done),
as long as CX is non-zero. That is, it will loop the number of
times specified by the integer in CX.

To assemble this subroutine using an assembler like
MASM® or TASM®, we would prepare a text file of the form:
 POP BX ; get n
 POP CX ; get # of iterations
 XOR DX, DX ; set n' = 0
HERE: ; beginning of loop
 SHR BX, 1 ; send 0'th bit of n to CF
 ; and shift right 1 place
 RCL DX, 1 ; shift n' left and
 ; move CF into 0th bit of n'
 LOOP HERE ; CX=CX-1, loop if CX > 0.
 PUSH DX ; leave result on stack

(however, as we shall see below, there will need to be some
necessary boilerplate lines that conform to the particular
assembler’s conventions, as well as respecting the calling con-
ventions of the high-level language we are going to use the
subroutine with).

To test the assembly language program with F-PC’s intrin-
sic assembler, we modify it slightly (to conform to the latter’s
notational conventions), obtaining [Listing Three].

An assembler written in Forth is simple because the mne-
monics are actually IMMEDIATE words that execute during
assembly, placing the appropriate operation codes in the pa-
rameter field of the word being defined. In the F-PC assem-
bler, the LOOP mnemonics (LOOP, LOOPZ, LOOPNZ, etc.) ex-
pect a number on the stack, which is actually the address
they loop back to (or not, depending whether an appropriate
condition is satisfied). This can be supplied by an explicit
label or, as in the above example, we may simply say HERE,
which places on the stack the address of the next piece of
code to be assembled; this is the very point we want to loop
back to, hence LOOP enters the Intel opcode for LOOP, together
with that address.

Listing Three

 CODE STIB \ reverse bit-order
 POP BX \ get n
 POP CX \ get # of iterations
 XOR DX, DX \ set n' = 0
 HERE \ beginning of loop
 SHR BX, # 1 \ send 0'th bit of n to CF
 \ and shift right 1 place
 RCL DX, # 1 \ shift n' left and
 \ move CF into 0'th bit of n'
 LOOP \ CX=CX-1, loop if CX > 0.
 PUSH DX \ leave result on stack
 NEXT END-CODE \ terminate definition

We now enter the subroutine from
the keyboard and test the result.

CODE STIB <cr> ok
POP BX <cr> ok
POB CX <cr> POB <-WHAT?

Oops! A typo, do it again. Just in case,
FORGET from STIB on:

FORGET STIB <-WHAT?

CODE STIB <cr> ok
POP BX <cr> ok
POP CX <cr> ok
XOR DX, DX <cr> ok
HERE <cr> ok

8. The instruction MOV DX, # 0 would also work, but requires one byte
more storage.

8 Forth Dimensions XXI.1,2

SHR BX, # 1 <cr> ok
RCL DX, # 1 <cr> ok
LOOP <cr> ok
PUSH DX <cr> ok
NEXT <cr> ok
END-CODE <cr> ok

This all looks like it entered correctly—at least the assem-
bler did not burp. The proof of the pudding, however, is in
the eating:
 4 7 STIB . <cr> 14 ok
 4 14 STIB . <cr> 7 ok

Eureka! No warts this time.
If an assembly language version of STIB were needed for

linking with a BASIC or C program, some minor modifica-
tions would be necessary:

• the comments would have to be preceded with a semico-
lon ; rather than Forth’s traditional backslash \;

• the word HERE must be converted to a loop label;
• a standard header must be added, and the definition

termination also changes.

[See Listing Four.]

Case conversion
Many languages contain a library function for converting

a string to all upper-case letters or all lower-case ones, leav-
ing digits and punctuation alone. The new Forth ANS stan-
dard [9] happens not to require such a routine, although most
Forths contain a word analogous to UCASE as part of the com-

Listing Four

Code segment word public 'CODE' ; define the code segment
assume cs: Code
public STIB ; allow any routine to call it
 STIB proc near ; reverse bit-order
 POP BX ; get n
 POP CX ; get # of iterations
 XOR DX, DX ; zero n'
 HERE: ; label beginning of loop
 SHR BX, 1 ; 0'th bit -> CF, shift right
 RCL DX, 1 ; n': shift left, CF -> 0'th bit
 LOOP HERE ; CX=CX-1, loop if CX > 0.
 PUSH DX ; leave result on stack
 RET ; return from function call
 STIB endp ; terminate definition
 Code ends
 end
Listing Five

 : lcase? (char -- flag) \ true if lower case
 DUP [CHAR] a < (char f1) \ true if char < "a"
 SWAP [CHAR] z > (f1 f2) \ true if char > "z"
 OR (not[flag]) \ combine flags
 NOT ; \ logical not

 : UCASE (beg len)
 0 DO \ work from left to right thru string
 DUP C@ (-- adr char) \ get character
 DUP lcase? (-- adr char flag)
 32 AND (-- adr char 32 if lcase | 0 else)
 - \ subtract 32 from lcase letters only
 OVER C! \ replace modified character
 1+ LOOP \ increment address by 1 and loop
 DROP ; \ clean up stack

Listing Six

 : lcase? (char -- flag)
 DUP [CHAR] a < (char flag1)
 SWAP [CHAR] z > (flag1 flag2)
 OR (not[flag])
 NOT (flag)
 ;

9. A copy of the final draft of the ANS Forth Standard document, X3J14
dpANS-6 can be downloaded in several different machine-readable
formats, including F-PC hypertext, Microsoft Word , or HTML, from the
Web site www.taygeta.com.

Forth Dimensions XXI.1,2 9

piling mechanism.
The first step is to choose our approach. In Microsoft Quick

Basic® (QB), a string of N characters is stored in a contiguous
sequence of N bytes of memory in the default data segment.
It is referenced by a 4-byte string descriptor, with the first
two bytes containing the length as a signed 16-bit integer,
and the second two bytes the offset of the beginning of the
string in the data segment. That is, Quick Basic strings can be
up to 32 Kb long. Microsoft C stores strings in contiguous
segments of N+1 bytes with the N+1st byte containing 0 (stan-
dard terminator), strings being referenced by the address of
their first byte.

Forth, by contrast, usually deals in counted strings up to
256 bytes long, whose count is contained in the first byte. These
differences between languages present a minor problem in
designing subroutines that manipulate strings, since they will
not work the same in Forth as in QB or C. The easiest method
is to write the code in two pieces: a language-specific header
and a universal body. We illustrate with headers for Forth, Quick
Basic and C string-storage conventions.

What of the body code? If we write it first in high-level
Forth the design becomes clear [10] [see Listing Five]. That is,
we step through the string a byte at a time from beginning to
end, testing whether the character is a lower-case letter or
“other.” If lower case, change to upper case; otherwise do noth-

ing. The actual switch from lower to upper case is accomplished
by subtracting 32d from the ASCII character code of the letter,
since the upper-case letters have codes 32d smaller than their
corresponding lower-case values. It is worth noting that in the
words lcase? and UCASE the programming style computes
the result rather than deciding it [11]. That is, while it is not
always practical to avoid decisions [12], good style eschews
branches wherever possible.

We test the Forth version using non-Standard but com-
mon words $" (save a string from the keyboard to temporary
storage) and $. (print a counted string at address adr to the
screen) [13]:
 $" this + is A % lcase STring" COUNT UCASE
 PAD $. THIS + IS A % LCASE STRING ok

The assembly language version is easy to construct. Begin
with lcase? [Listing Six] and recode directly in assembly lan-
guage [14] [see Listing Seven].

Test it. (Note: “true”—all bits set to 1— is assumed to be -1 in
this example, an illustration of “environmental dependency,”
i.e., code that assumes two’s-complement integer arithmetic.)
 CHAR A DUP . lcase? . 65 0 ok
 CHAR a DUP . lcase? . 97 -1 ok
 CHAR z DUP . lcase? . 122 -1 ok
 CHAR & DUP . lcase? . 38 0 ok

Listing Seven

 CODE lcase? (char -- flag)
 POP BX \ char -> BL
 MOV AX, BX \ copy to AL
 SUB AL, # 96 \ AL = char - 96
 CBW \ sign AL -> AH = flag1
 XCHG AX, BX \ interchange registers BH = flag1
 SUB AL, # 123 \ AL = char - 123
 CBW \ sign AL -> AH = flag2
 OR AH, BH \ AH = flag1 or flag2
 XCHG AL, AH \ AL = ~flag
 NOT AL \ AL = flag
 CBW \ convert 8- to 16-bit flag
 PUSH AX \ flag -> TOS
 NEXT END-CODE \ terminate definition

10. The ANS Forth word WITHIN could have been used for this test, as in
: lcase? (char -- flag=true if char is lower case)

[CHAR] a [CHAR] z 1+ WITHIN ;

(The extra 1+ is required because ANS Forth defines WITHIN so that it
returns TRUE if the limits satisfy n1 ␣ ≤␣ char␣ <␣ n2␣ .) However, this would
not illustrate directly how to turn primitive Forth operations into CODE.

11. Note that, in this example, the use of a branching construct (IF …
ELSE … ENDIF) eliminates the need to store a byte if the character were
upper case or a non-letter. That is, we could say

lcase? IF 32 - SWAP C! ELSE DROP ENDIF

However, tests reveal that most text input is predominantly lower case;
hence, the time consumed in the branch dominates the unnecessary
store operations.

12. J.V. Noble, Computers in Physics, Jul/Aug 1991, p. 386.

13. If your Forth lacks $" and $. here are their definitions:
: $" [CHAR] " WORD PAD OVER C@ 1+ CMOVE PAD ;
\ Read text up to a terminating " then move it to PAD
\(temp storage); leave the string’s new address.

: $. (adr—) COUNT TYPE ;
14. Several things to keep in mind about the translation: since we are

working with ASCII codes, i.e., integers in the range 0..255, we can save
register space by using eight-bit operations rather than 16- or 32-bit
ones. (Of course, when PUSHing or POPping to/from the data stack, the
operations appropriate to the cell size of the stack must be used.)

15. An alternate assembly definition of lcase? employing jumps is
CODE lcase? (char -- f)
 POP BX \ char -> BL
 XOR AX, AX \ AX = false
 CMP BL, # 97 \ < a ?
 JL DONE
 CMP BL, # 122 \ > z ?
 JG DONE
 NOT AX \ AX = true
 DONE:
 PUSH AX \ flag -> TOS

NEXT END-CODE

whereas we used no jumps to perform the tests in the previous version.
The jumpless version assembles to 18 bytes, whereas the one with
jumps requires 18. That is, although the version with jump instructions
looks much shorter than the branchless version, it is actually nearly the
same length. And eliminating jumps can reduce the likelihood of
having to dump the pipeline.

10 Forth Dimensions XXI.1,2

The preceding test went well—we can test efficiently
whether a character is lower case [15]. To proceed, we next
require a looping construct. The one we used in STIB will do
fine, because once again the loop will execute a predetermined
number of times. Again we must provide header code that
places the count (string length, in bytes) in the CX register,
and the address of its first byte in BX. This time, however, we
identify the header code as a separate section of the assem-
bler subroutine, in order to be able to replace it later with an
appropriate equivalent that respects the conventions of a lan-
guage other than Forth.

In F-PC the header will consist of the instructions:

POP CX \ count in CX
POP BX \ beginning of data in BX
PUSH DI \ save DI (index) register
MOV DI, BX \ start-1 in DI

Upon exiting, we restore DI with BX DI, as the last instruc-
tion preceding NEXT END-CODE. Conversely, a header suitable
for Quick Basic would look like [16] [see Listing Eight] and the
corresponding QB footer (to exit gracefully) would be

 POP DI
 POP BP ; restore registers

The complete program in F-PC assembler then becomes
[Listing Nine].

The subroutine is hard to read even with indented com-
ments (which is why we prefer high-level language to assem-
bler), but it consists of the same parts as the high-level defi-
nition: a SETUP section that gets the count and origin of data;
a body that LOOPs through the string; a test that determines
whether a character is a lower-case letter, and if so, modifies
it to upper case; and a “footer” that restores whatever regis-
ters have been saved on the stack and exits gracefully. Note
we were able to eliminate three redundant instructions:

 XCHG AL, AH
 CBW
 PUSH AX

whose only purpose in the CODE version of lcase? was to

Listing Eight

 PUSH BP ; save BP
 MOV BP, SP ; use BP as a stack pointer
 PUSH DI ; save DI register
 MOV BX, 6 [BP] ; address of string descriptor to BX reg

; Note: don't need to initialize CX
 MOV CX, 0 [BX] ; count in CX reg
 ADD BX, 2 ; offset to string origin in BX

Listing Nine

 CODE UCASE \ start header
 POP CX \ get count
 POP BX \ get origin
 PUSH DI \ save DI
 MOV DI, BX \ end header, start body
 HERE \ begin loop
 INC DI \ point to next byte
 MOV BL, 0 [DI] \ get byte
 MOV AX, # 96 \ test case
 SUB AL, BL
 CBW
 XCHG AX, BX
 SUB AL, # 123
 CBW
 AND AH, BH \ AH = FF|0
 AND AH, # 32 \ AH = 32 if lcase, 0 else
 SUB 0 [DI], AH \ convert letter in $
 LOOP \ loop if CX > 0
 \ end body
 \ footer
 POP DI \ restore DI
 NEXT \ end footer
 END-CODE

convert an 8-bit flag to a 16-bit inte-
ger that could be left on the stack. The
code for UCASE is about as terse as such
a routine can be made.

Since assembler supposedly provides
raw speed, it is interesting to examine
timings [16]. Looking up the number
of clock cycles per instruction for the
Intel 80286 [17], we find [Listing Ten].

The instructions labeled “assembler
directive” execute during compilation
and carry no run-time overhead. Since
the header and footer are executed
once, their 25 clock cycles are imma-
terial for reasonably long input strings.
Converting a lower-case to an upper-
case letter evidently requires 42 clock
cycles, i.e., about 1.3 µsec on a 33 MHz
machine. The test loop

: TEST0
 0 DO PAD UCASE LOOP ;
: TEST1
 0 DO 10000 TEST0 LOOP ;

allows us to iterate enough times to get
meaningful data: saying 10 TEST1 it-
erates 105 times. The time to convert
45 characters is 7 seconds, giving a
per-character time of 1.5 µsec, in rea-
sonable agreement with the estimate
from machine cycles. This is 24 times
faster than the high-level Forth version;
optimization is definitely worthwhile
when we have many strings to convert.

For completeness, here is a version
that works with (zero-terminated)

16. Note: if we were trying to generate the same function for linking to C,
we would have to take into account the zero-terminated structure of
strings in C, probably using a different looping method, since the
count would not be readily available.

16. Abrash, op. cit., discusses in detail the pitfalls of assuming the
instruction timings given by Intel.

17. Actually the test was performed on a 3086SX-33 machine.

Forth Dimensions XXI.1,2 11

strings in C. There are two obvious ways to approach the prob-
lem: first, modify the loop in UCASE so it terminates when the
byte fetched is 0 (not ASCII 0). Alternatively, if we had a fast
way to determine the string’s length, we could use the preced-
ing code unmodified. Now, we know only the beginning ad-
dress of a C string, so to determine its length we must search it
until we find the terminating character, incrementing a counter
as we go. In high-level Forth, the subroutine is [Listing Eleven]
and is very slow. Given a function to compute the length of a

zero-terminated string, the revised upper-case function is vir-
tually identical to its predecessor [Listing Twelve].

To test these, we need words that input and print C-like
strings [Listing Thirteen].

A quick interactive test [is shown in Listing Fourteen].
Of course, if we had to replicate the steps and tests of

GET_LEN in assembler, it would obviously be better to rewrite
UCASE.C entirely. Fortunately, the 80x86 chips have a spe-
cial instruction pair, SCASB and REPNZ, that speed up certain

Listing Ten

 CODE UCASE \ 0 (assembler directive)
 POP CX \ 5
 POP BX \ 5
 PUSH DI \ 3
 MOV DI, BX \ 2
 \ total = 15 for header
 HERE \ 0 (assembler directive)
 INC DI \ 2
 MOV BL, 0 [DI] \ 5
 MOV AX, # 96 \ 2
 SUB AL, BL \ 2
 CBW \ 2
 XCHG AX, BX \ 3
 SUB AL, # 123 \ 3
 CBW \ 2
 AND AH, BH \ 2
 AND AH, # 32 \ 3
 SUB 0 [DI], AH \ 7
 LOOP \ 9
 \ total = 42 for body
 POP DI \ 5
 NEXT \ 5 (depends on the Forth)
 \ total = 10 for footer
 END-CODE \ 0 (assembler directive)

Listing Eleven

 : GET_LEN (beg -- len)
 DUP (beg beg)
 BEGIN \ start indefinite loop
 DUP C@ \ get char
 0<> (beg adr flag)
 WHILE 1+ (beg adr+1)
 REPEAT (beg end+1)

\ loop until character is 0
 SWAP - (-- len) \ compute length
 ;

Listing Twelve

 : UCASE.C (beg --)
 DUP GET_LEN
 0 DO \ work left to right thru string
 DUP C@ (-- adr char) \ get char
 DUP lcase? (-- adr char flag)
 32 AND (-- adr char 32 if lcase | 0 else)
 - \ subtract 32 from lcase letters only
 OVER C! \ replace modified character
 1+ LOOP \ increment address by 1 and loop
 DROP ; \ clean up stack

12 Forth Dimensions XXI.1,2

string operations. The Forth assembler definition using these
instructions would then be [Figure Fifteen].

This is a bit long and complicated, and no doubt will get
longer and more complex when the boilerplate headers and
footers that respect C conventions are added. Unless there is
a specific need for a function that determines the lengths of

zero-terminated strings (and, for all I know, one may be avail-
able), there does not seem to be any reason to factor out this
functionality, merely to re-use the code designed for counted
strings. Here is a situation where recoding UCASE.C from
scratch is the more efficient approach.

Once again we begin by prototyping in high-level Forth,

Listing Thirteen

 : $0" (-- adr) \ input 0-terminated string
 [CHAR] " WORD \ get input
 DUP ($adr $adr)
 1+ PAD ROT C@ \ get length
 DUP >R \ save it temporarily
 CMOVE \ move text to scratchpad
 PAD R> OVER + (-- beg end+1)
 0 SWAP C! \ terminate with 0
 ;

 : $0. (adr --) \ print 0-terminated string
 DUP GET_LEN TYPE ;

Listing Fourteen

 $0" Here is a test string of 37 characters!" ok
 GET_LEN . 37 ok
 PAD $0. Here is a test string of 37 characters! ok

Listing Fifteen

HEX
CODE GET_LEN (adr -- len) \ get length of 0-terminated $
 POP BX \ adr -> BX
 PUSH DI \ save state
 PUSH ES \ save “extra” segment descriptor
 MOV AX, DS \ there is no MOV ES, DS instruction
 MOV ES, AX \ point to data segment
 MOV CX, # FFFF \ largest possible string
 MOV DI, BX \ load offset
 XOR AL, AL \ AL = 0
 REPNZ SCASB \ go thru $ until 0 byte found
 SUB BX, DI \ compute length
 NEG BX
 POP ES \ restore state
 POP DI
 PUSH BX \ result on stack
NEXT END-CODE
DECIMAL

Listing Sixteen

 : UCASE.C (beg --)
 BEGIN \ start indefinite loop
 DUP C@ (-- adr char)
 DUP 0<> (-- adr char flag)
 WHILE \ haven't reached end
 lcase? (-- adr flag)
 -32 AND (-- adr -32 | 0)
 OVER +C! \ modify char in place
 1+ (-- adr+1)
 REPEAT \ loop until char = 0
 DROP \ clean up stack
 ;

Forth Dimensions XXI.1,2 13

Listing Seventeen

$0" This is a fairly long test string of 59 characters' length." ok
get_len . 59 ok
pad $0. This is a fairly long test string of 59 characters' length. ok
pad ucase.c ok
pad $0. THIS IS A FAIRLY LONG TEST STRING OF 59 CHARACTERS' LENGTH. ok

Listing Eighteen

 CODE UCASE.C
 MOV DX, DI \ save DI (in DX)
 POP DI \ DI = beg
 1 $: \ label to return to
 MOV BL, 0 [DI] \ get byte
 CMP BL, # 0 \ is it 0 ?
 JZ 2 $ \ jump to end if 0
 MOV AX, # 96 \ 97d is ASCII 'a '
 SUB AL, BL \ is the byte < 'a' ?
 CBW \ if BL >= 97 then AH = FFh, else AH = 0
 XCHG AX, BX
 SUB AL, # 123 \ is the byte > 'z' ?
 CBW \ if AL <= 122 AH = FFh; else AH = 0
 AND AH, BH \ AH = FFh if 'a' <= byte <= 'z', else AH = 0
 AND AH, # 32 \ AH = 32 or 0
 SUB 0 [DI], AH \ convert byte in string
 JMP 1 $ \ loop
 2 $: \ end
 MOV DI, DX \ restore DI
 NEXT
 END-CODE

Listing Nineteen

\ Micro-mini assembler suitable for F-PC
HEX
: <% HEX \ base 16
 BEGIN BL WORD %NUMBER
 WHILE DROP C,
 REPEAT 2DROP DECIMAL \ restore base
 HERE 1+ @ 3E25 <> ABORT" Missing %> !"
; IMMEDIATE
DECIMAL
\ Note: <% xx xx xx xx %> in a CODE definition assembles those (hex) bytes
\ Usage: CODE MY@ <% 5B FF 37 %> NEXT END-CODE
\
\ Note: to make the above work in ANS Forth we need to define %NUMBER in terms
\ of >NUMBER.
\ : %NUMBER 0.0 ROT COUNT >NUMBER NIP ;

then translate to CODE. We want to hybridize GET_LEN and
UCASE.C from before, i.e., replace the definite loop with an
indefinite one. [Listing Sixteen]

This is easily tested using our zero-terminated string tools
[Listing Seventeen].

The assembler version is easily coded. The use of CBW (“con-
vert byte to word”) avoids decisions by computing a flag (in
the upper half of the AX register) based on the sign of the
subtraction operation. [Listing Eighteen]

Micro-mini assembler
Although I have discussed the use of the Forth assembler in

the context of rapid machine code development and/or as a
propaganda device to interest outsiders in Forth, of course one
should not forget that it is a useful tool in the Forth
programmer’s arsenal. In my own work, I have not worried

too much about the fact that Forths tend to run somewhat
slower than optimized C programs, because I know that if I
really need to step on the gas by hand coding an inner loop, it
will not take much extra effort. (There was a time, not so many
years ago, when I got so carried away with that approach that
I would define words in CODE at the drop of a hat, just because
it was so easy. Needless to say, my work was cut out for me
later on when I had to port the programs to ANS-compatible
Forths. One mustn’t lose one’s head by over CODEing.)

When memory is limited and only a few CODE words need
to be defined, rather than load the entire assembler it pays to
insert the opcodes directly into the body of the code word.
These are usually byte-sized numbers in hexadecimal format,
and can be inserted with C, as in (suitable for F-PC)
CODE MY@ HEX
 5B C, FF C, 77 C,
NEXT END-CODE

14 Forth Dimensions XXI.1,2

Listing Twenty

 DECLARE SUB sphbes ()
 DEFDBL S-X
 DIM SHARED xj(40), x
 INPUT "What is x"; x
 CALL sphbes
 FOR n% = 0 TO 9
 PRINT "j"; LTRIM$(STR$(n%)); " ("; x; ")", xj(n%)
 NEXT
 END

DEFDBL S-X
 SUB sphbes
 xj(40) = 0!
 xj(39) = 1!
 sum = 2 * 39 + 1
 FOR n% = 39 TO 1 STEP -1
 temp = xj(n%) * (2 * n% + 1) / x - xj(n% + 1)
 xj(n% - 1) = temp
 sum = sum + (2 * n% - 1) * temp * temp
 NEXT
 xnorm = 1 / SQR(sum)
 FOR n% = 0 TO 9
 xj(n%) = xj(n%) * xnorm
 NEXT
 END SUB

Listing Twenty-one

\ data structures
10 REAL*8 #CELLS 1ARRAY JBES{ \ holds j0-j9

FVARIABLE SUM \ temps to off-load from fp stack
FVARIABLE X

: SETUP (F: x -- 0 1) (-- 79)
 X DF! 79 S>F SUM DF!
 F0.0 F1.0 79 ;

: NORMALIZE SUM DF@ FSQRT 1/F
 10 0 DO FDUP JBES{ I } DUP DF@ F* DF! LOOP
 FDROP ;

: DO_X=0 FDROP F1.0 JBES{ 0 } DF!
 10 1 DO F0.0 JBES{ I } DF! LOOP ;

: ITERATE (F: jn+1 jn -- jn jn-1) (2n+1 -- 2n-1)
 DUP S>F FOVER F* (F: jn+1 jn jn*[2n+1])
 X DF@ F/ FROT F- (F: -- jn jn-1)
 FDUP F^2 (F: -- jn jn-1 jn-1^2)
 2- DUP (-- 2n-1 2n-1)
 S>F F*
 SUM DF@ F+ SUM DF! ;

: SPHBES (F: x --)
 FDUP F0=
 IF DO_X=0 EXIT THEN
 SETUP
 11 39 DO ITERATE -1 +LOOP
 0 9 DO ITERATE
 FDUP JBES{ I } DF!
 -1 +LOOP
 DROP FDROP FDROP \ clean up stacks
 NORMALIZE ;

Forth Dimensions XXI.1,2 15

If there are more than a few such words, but one would
prefer not to load the assembler, the following word may be
of use. [Listing Nineteen]

Spherical Bessel functions
Here is an example of a fairly complex subroutine from a

number-crunching application. It was necessary to code this
function in assembler because it was used many times.

If one only needs a single spherical Bessel function, jn(x),
it is usually best just to compute it in terms of sin(x), cos(x)
and polynomials in 1/x. However, when more than one is
needed, especially functions of high order, the most practical
approach is recursion. The obvious method of upward recur-
sion, based on the relation

j x n x j x j xn n n−
−

+= + −1
1

12 1() () () ()

and starting with explicit formulae for j0(x) and j1(x), is un-
stable and rapidly loses numerical precision. We therefore em-
ploy the downward recursion recommended by Abramowitz
and Stegun [18], with starting values (for some large N)
j jN N= =+1 01,

then apply the relation

() () .2 1 12

0

k jk x
k

N

+ [] =
=
∑
to obtain the normalization. In QuickBasic the program might
look like [Listing Twenty], whereas a Forth version is [Listing
Twenty-one].

Translating this routine to assembler will be the pièce de
resistance of this article. It is rather long, and represents the
upper limit of what is reasonable to hand code as a single
subroutine in the never-ending search for speed. We shall

maintain temporary values and intermediate expressions on
the intrinsic stack of the floating-point co-processor to mini-
mize transfers to/from the (slower) main memory. The pub-
lic-domain Forth F-PC does not come with 80x87 extensions
to its assembler. Therefore, to assemble and test the subrou-
tine, we must choose one of the following courses:
• add the necessary extensions to the F-PC assembler (Robert

L. Smith has done this in creating the floating-point
extensions ffloat.seq available on various Forth archives);

• use the Micro-mini assembler described above;
• employ a Forth with a more complete assembler, such as

Tom Zimmer’s Win32Forth.

The floating-point units associated with Intel micropro-
cessors possess an intrinsic eight-deep stack [19]. Upon en-
tering the subroutine, the on-chip stack must be initialized
to contain nothing, which we visualize as
 st(7) ...
 st(6) ...
 st(5) ...
 st(4) ...
 st(3) ...
 st(2) ...
 st(1) ...
 st(0) ...

The first steps are initialization, following which the FPU
stack will contain x, the argument of the Bessel function(s),
as well as the initial values of jn, jn+1, and whatever else may
be needed. In fact, it looks like
 st(7) ...
 st(6) ...
 st(5) ...
 st(4) x
 st(3) sum

Listing Twenty-two

st(7)... st(7) ...
st(6) ... st(6) ...
st(5) ... st(5) ...
st(4) x st(4) x
st(3) sum st(3) sum + (2n+1)*jn*jn
st(2) 2n+1 st(2) 2n-1
st(1) jn+1 st(1) jn
st(0) jn st(0) jn-1

Listing Twenty-three

finit \ clear fpu stack
mov ecx, FSP [edi] \ get fstack ptr
sub ecx, # B/FLOAT \ decrement by data size
js L$2 \ -> error handler
fld FSIZE FSTACK [ecx] [edi] (87: x)
mov FSP [edi], ecx \ adjust fstack ptr
push ebx \ TOS -> mem
push # 4F \ 79d=4Fh on data stack
fldz \ fload 0 (87: 0 x)
fild dword 0 [esp] \ 79d -> st(0)
fldz \ fload 0
fld1 \ fld 1 (87: 1 0 79 0 x)
pop ebx \ ebx = 79
(87: jn jn+1 2n+1 sum x)

19. The stack notation (87: --) refers to the eight-deep FPU-intrinsic stack (the
Intel FPU began as a separate chip with the designation 8087/80287/80387
before being combined onto the 80486 and Pentium® series).

18. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions
(Dover Publications, Inc., New York, 1965) p. 452.

16 Forth Dimensions XXI.1,2

Listing Twenty-four

FXCH ST(1) FLD ST(1) FMUL ST(0), ST(3)

st(7)
st(6)
st(5) ... x x
st(4) x sum sum
st(3) sum 2n+1 2n+1
st(2) 2n+1 jn jn
st(1) jn jn+1 jn+1
st(0) jn+1 jn jn*(2n+1)

FLD ST(0) FMUL ST(0), ST(3) FADDP ST(5), ST(0)

st(7)
st(6) x x ...
st(5) sum sum x
st(4) 2n+1 2n+1 sum'
st(3) jn jn 2n+1
st(2) jn+1 jn+1 jn
st(1) jn*(2n+1) jn*(2n+1) jn+1
st(0) jn*(2n+1) jn*(2n+1)*jn jn*(2n+1)

FDIV ST(0), ST(5) FSUBRP ST(1), ST(0) FLD1

st(7)
st(6)
st(5) x ... x
st(4) sum' x sum'
st(3) 2n+1 sum' 2n+1
st(2) jn 2n+1 jn
st(1) jn+1 jn jn-1
st(0) jn*(2n+1)/x jn-1 1

FSUB ST(3), ST(0) FSUBP ST(3), ST(0)

st(7)
st(6)
st(5) x ...
st(4) sum' x
st(3) 2n sum'
st(2) jn 2n-1
st(1) jn-1 jn
st(0) 1 jn-1

Listing Twenty-five

 fxch st(1) (87: jn+1 jn k=2n+1 sum x)
 fld st(1) (87: jn jn+1 jn k sum x)
 fmul st(0), st(3) (87: k*jn jn+1 jn k sum x)
 fld st(0) (87: k*jn k*jn jn+1 jn k sum x)
 fmul st(0), st(3) (87: k*jn^2 k*jn jn+1 jn k sum x)
 faddp st(5), st(0) (87: k*jn jn+1 jn k sum' x)
 fsubpr st(1), st(0) \ this is a sp. error in 486asm.f
 \ ^^^^^^ \ -- should be fsubrp
 fld1
 fsub st(3), st(0)
 fsubp st(3), st(0) (87: jn-1 jn 2n-1 sum' x)

Forth Dimensions XXI.1,2 17

 st(2) 2n+1
 st(1) jn+1
 st(0) jn

At each subsequent iteration the stack transforms as [List-
ing Twenty-two].

Let us begin with the initialization steps [Listing Twenty-
three]. The initialization clears the FPU stack and moves x
from the in-memory fstack to the fpu. (This part is taken di-
rectly from float.f’s word fpop.) Finally, numeric constants

Listing Twenty-six

finit ok
3.7e0 ok
ITERATE ok.
. 79 ok
fpush f. 1.00000 ok
fpush f. .000000 ok
fpush f. 79.0000 ok
fpush f. 79.0000 ok
fpush f. 3.70000 ok
see iterate
ITERATE IS CODE
 3712C 8B8F3CC70100 mov ecx , FSP [edi]
 37132 83E908 sub ecx , # 8
 37135 0F881F000000 js ITERATE
 3713B DD84394CC70100 fld double FSTACK [ecx] [edi]
 37142 898F3CC70100 mov FSP [edi] , ecx
 37148 53 push ebx
 37149 6A4F push , # 4F
 3714B DB0424 fild dword [esp]
 3714E D9C0 fld ST(0)
 37150 D9EE fldz
 37152 D9E8 fld1
 37154 5B pop ebx
 37155 E908000000 jmp ITERATE
 3715A C7C650CF0100 mov esi , # 1CF50
 37160 03F7 add esi , edi

Listing Twenty-seven

3.7e0 ok
iterate ok.
.s [1] 77 ok. \ left 2n-1 on data stack to check it
fpush f. 21.3514 ok.
fpush f. 1.00000 ok.
fpush f. 77.0000 ok.
fpush f. 158.000 ok. \ This is the sum. Note it should be 79.
fpush f. 3.70000 ok.
see iterate
ITERATE IS CODE
 3712C 9BDBE3 finit
 3712F 8B8F3CC70100 mov ecx , FSP [edi]
 37135 83E908 sub ecx , # 8
 37138 0F8840000000 js ITERATE
 3713E DD84394CC70100 fld double FSTACK [ecx] [edi]
 37145 898F3CC70100 mov FSP [edi] , ecx
 3714B 53 push ebx
 3714C 6A4F push , # 4F
 3714E DB0424 fild dword [esp]
 37151 D9C0 fld ST(0) \ wrong step
 37153 D9EE fldz
 37155 D9E8 fld1
 37157 5B pop ebx
 37158 FFCB dec ebx
 3715A DD949FDC6F0300 fst double JBES{ [edi] [ebx*4]
 37161 D9C9 fxch ST(1)
 37163 D9C1 fld ST(1)
 37165 D8CB fmul ST , ST(3)
 37167 D9C0 fld ST(0)
 37169 D8CB fmul ST , ST(3)
 3716B DEC5 faddp ST(5)
 3716D D8F5 fdiv ST , ST(5)
 3716F DEE1 fsubrp ST(1)
 37171 D9E8 fld1
 37173 DCEB fsub ST(3) , ST
 37175 DEEB fsubp ST(3)
 37177 FFCB dec ebx
 37179 E908000000 jmp ITERATE
 3717E C7C650CF0100 mov esi , # 1CF50
 37184 03F7 add esi , edi

are loaded.
Next we consider what hap-

pens during each iteration: we
must pay careful attention to the
FPU stack because there are five
items on it after initialization. We
note we shall need the factor
(2n+1)jn in two places: first, to cal-
culate j n ; and second, to calcu-
late the next term in the sum. To
work out the steps, we show the
FPU stack after each machine in-
struction [Listing Twenty-four].

That is, the complete sequence
of instructions that performs one
iteration is [Listing Twenty-five].

Now, how can we test this to be
sure it is correct? The beauty of test-
ing an assembly language subrou-
tine within the Forth environment
is that no linking step is required.
Thus we can assemble larger and
larger subsets of the CODE word, test-
ing each portion and FORGETting
it to test the next iteration. (Assum-
ing, that is, we have not caused the
system to crash in one of the ex-
periments!) Here are some actual
test runs performed while getting
the word ITERATE off the launch-
ing pad [Listing Twenty-six].

What I have done here is show
the steps needed to hand-initialize
the system before invoking the
word (ITERATE) being tested. I then
said ITERATE to run the part that
had been assembled so far, and ex-
amined the FPU stack with the
float.f words fpush f. to be sure
all had gone as expected. The final
step was to disassemble ITERATE to
record what it consisted of so far.

The eventual idea is to simu-
late a BEGIN … UNTIL loop in as-
sembler. Many Forth assemblers
provide macros for this purpose,
but since my aim was to create a
subroutine that could be ported
easily to another high-level lan-
guage (given the proper
boilerplate header and footer), I
did not wish to avail myself of
Forth-specific macro facilities.

18 Forth Dimensions XXI.1,2

Listing Twenty-eight

3.7e0 ok
iterate ok.
.s [1] 77 ok.
fpush f. 21.3514 ok.
fpush f. 1.00000 ok.
fpush f. 77.0000 ok.
fpush f. 79.0000 ok.
fpush f. 3.70000 ok.
see iterate
ITERATE IS CODE
 3712C 9BDBE3 finit
 3712F 8B8F3CC70100 mov ecx , FSP [edi]
 37135 83E908 sub ecx , # 8
 37138 0F8840000000 js ITERATE
 3713E DD84394CC70100 fld double FSTACK [ecx] [edi]
 37145 898F3CC70100 mov FSP [edi] , ecx
 3714B 53 push ebx
 3714C 6A4F push , # 4F
 3714E D9EE fldz \ repaired step
 37150 DB0424 fild dword [esp]
 37153 D9EE fldz
 37155 D9E8 fld1
 37157 5B pop ebx
 37158 FFCB dec ebx
 3715A DD949FDC6F0300 fst double JBES{ [edi] [ebx*4]
 37161 D9C9 fxch ST(1)
 37163 D9C1 fld ST(1)
 37165 D8CB fmul ST , ST(3)
 37167 D9C0 fld ST(0)
 37169 D8CB fmul ST , ST(3)
 3716B DEC5 faddp ST(5)
 3716D D8F5 fdiv ST , ST(5)
 3716F DEE1 fsubrp ST(1)
 37171 D9E8 fld1
 37173 DCEB fsub ST(3) , ST
 37175 DEEB fsubp ST(3)
 37177 FFCB dec ebx
 37179 E908000000 jmp ITERATE
 3717E C7C650CF0100 mov esi , # 1CF50
 37184 03F7 add esi , edi

The next test stage consisted of adding the machine code
to perform one iteration. The result is shown below. I have
not yet installed either the looping construct or the code to
clean up the stacks afterward. [Listing Twenty-seven]

Note that at this point I added the finit step into the
subroutine instead of performing it by hand. But this time all
did not go well. The sum that has been computed is wrong—
it is 158 rather than 79 as it should have been. The reason is
easy to see: I had a misconception that this term would be
computed last, using 2n-1 and jn-1 rather than before jn-1 using
2n+1 and jn. The fix is simple, namely to modify the initial-
ization sequence to load 0 rather than 2n+1 for the initial
sum. Here is the fixed result [Listing Twenty-eight].

Now all is correct. We are ready to add the code to simu-
late BEGIN … UNTIL as well as that needed to clean up the
various stacks. Note that, at the beginning of an iteration,
the current value of the Bessel function (not yet properly nor-
malized, of course) gets stored in its proper array element of
the array jbes{. This is done by computing the base address

using the phrase jbes{ 0 } [20] which is then added to the
offsets indexed by registers ebx and edi. Note that the array
index seems to be multiplied by 4 (bytes) as for 32-bit preci-
sion. However, at this storage step, the value in ebx is 2n be-
cause ebx has been decremented once. So in fact the subrou-
tine is written to store 64-bit floating-point numbers—vital
because the magnitude of the un-normalized functions (not
to mention that of the normalization sum) can grow easily
past the numbers accommodated in IEEE 32-bit precision.

In fact, the first dec ebx instruction (leaving 2n in ebx)
marks the beginning of the loop. The second dec ebx in-
struction marks the last computational step of the loop. We
label the beginning of the loop with the assembler’s local
label facility (the phrase L$1:) and use the Intel jns (“jump
not sign”) instruction to loop back to it when the decrement
operation has not changed the algebraic sign of the index in
the ebx register (that is, while 2n-1 > 0).

Finally we must clean up the stacks. The exit value of the
index (-1) needs to be replaced in the ebx register (which is
used as the top of the data stack by Win32Forth) by whatever
was on top of the stack before entering the subroutine. This
is accomplished by the pop ebx instruction. Since it does
not particularly matter when this is done, we perform this last.

20. This notation was introduced in my book Scientific Forth: a modern
language for scientific computing (Mechum Banks Publishing, Ivy, VA
1992) and has been adopted as standard for the Forth Scientific
Subroutine Library Project organized by Skip Carter.

Forth Dimensions XXI.1,2 19

Appendix

FALSE [IF]

Regular spherical Bessel functions j_n(x), n=0-39

(Assembly language version suitable for Win32Forth)

© J.V. Noble 1999. May be used for any purpose as long
 as this copyright notice is maintained.

Uses Miller's method of downward recursion, as described
in Abramowitz & Stegun, “Handbook of Mathematical Functions”
10.5 ff. The recursion is

 j(n-1) = (2n+1) j(n) / x - j(n+1)

The downward recursion is started with j40 = 0, j39 = 1 . The
resulting functions are normalized using

 Sum (n=0 to inf) { (2n+1) * jn(x)^2 } = 1 .

Usage:
To calculate j0-j39 say, e.g.,

3.0e0 sphbes

To access/display a value say, e.g.,

jbes{ 3 } F@ F. .1520516620 ok
[THEN]

marker -jbes
include arrays.f

40 long 1 dfloats 1array jbes{
FVARIABLE x

HEX
code ITERATE (f: x --)
 \ initialization

finit \ clear fpu stack
mov ecx, FSP [edi]
sub ecx, # B/FLOAT
js L$2 \ -> error handler
fld FSIZE FSTACK [ecx] [edi] (87: x)
mov FSP [edi], ecx
push ebx
push # 4F \ 79d on data stack
fldz (87: 0 x)
fild dword 0 [esp] (87: 79 0 x)
fldz
fld1 (87: 1 0 79 0 x)

The only number we wish to retain from the FPU stack is the
sum, so we simply pop the top three items with three repeti-
tions of the instruction fstp st(0); then we move the sum
to the in-memory fstack (simply copying the code sequence
from fpush for this purpose); and finally we drop x from the
FPU stack with one more repetition of fstp st(0).

Believe it or not, when I added this code and tested the

high-level word sphbes given in the listing below, it worked
perfectly first crack out of the box. The entire test sequence,
including the mistake I had to correct, lasted 15–20 min-
utes. I do not believe MASM® or TASM® could come within
an order of magnitude of this time.

With the completion of the spherical Bessel function rou-
tine, I end this call to assembly. Class dismissed.

20 Forth Dimensions XXI.1,2

pop ebx \ ebx = 79
(87: jn jn+1 2n+1 sum x) \ end of initialization

L$1: dec ebx \ loop begins here
fst double jbes{ 0 } [ebx*4] [edi]

\ fwait \ may be needed
fxch st(1) (87: jn+1 jn k=2n+1 sum x)
fld st(1) (87: jn jn+1 jn k sum x)
fmul st(0), st(3) (87: k*jn jn+1 jn k sum x)
fld st(0) (87: k*jn k*jn jn+1 jn k sum x)
fmul st(0), st(3) (87: k*jn^2 k*jn jn+1 jn k sum x)
faddp st(5), st(0) (87: k*jn jn+1 jn k sum' x)
fdiv st(0), st(5) (87: k*jn/x jn+1 jn k sum' x)
fsubpr st(1), st(0) \ this is a sp. error in 486asm.f

 \ ^^^^^^ \ -- should be fsubrp
fld1
fsub st(3), st(0)
fsubp st(3), st(0) (87: jn-1 jn 2n-1 sum' x)
dec ebx
jns L$1 \ loop ends here

 (87: j0 j1 -1 sum x)
fstp st(0) (87: j1 1 sum x)
fstp st(0) (87: 1 sum x)
fstp st(0) (87: sum x)
mov ecx, FSP [edi] \ sum->fstack
fstp FSIZE FSTACK [ecx] [edi]
fwait
add ecx, # B/FLOAT
mov FSP [edi], ecx
fstp st(0) (87: x --)
pop ebx (-1 --)
jmp L$3

L$2: mov esi, # ' FSTKUFLO >body \ error handler
add esi, edi

L$3: next,
end-code

DECIMAL

: DO_X=0 \ handle the special case x=0
FDROP F1.0 JBES{ 0 } DF!
10 1 DO F0.0 JBES{ I } DF! LOOP ;

: NORMALIZE (f: sum --)
 FSQRT F1.0 FSWAP F/
 39 0 DO FDUP JBES{ I } DUP F@ F* F! LOOP
 FDROP ;

: SPHBES (f: x --)
 FDUP F0= \ x=0 ?
 IF DO_X=0 ELSE ITERATE NORMALIZE THEN ;

Forth Dimensions XXI.1,2 21

Virtual Hardware Definition Language

Using Forth as a VHDL

John R. Hart • Tempe. Arizona
jhart@testra.com • www.testra.com

Abstract
A set of VHDL extensions to Forth lets programmers de-

fine hardware in the same language with which they write
software. Hardware defined in Forth can be verified by ex-
ecuting the hardware-definition words at the command line
or by writing special Forth words to test their operation. The
use of the same language for hardware and software simpli-
fies the task of swapping hardware and software functions
during optimization.

Introduction
Computer-aided design has become an essential part of

product development, and several different hardware defini-
tion languages (HDLs) are marketed for that purpose, but I
wanted to define the hardware in the same language the soft-
ware was written in. We have been using Forth to define PAL
equations for about ten years using a set of extensions to Forth
called CARMAP. When we started using complex program-
mable logic devices (CPLDs), it seemed more logical to ex-
tend CARMAP than to buy an off-the-shelf compiler and learn
a new language.

With each improvement, CARMAP has moved closer to
being a complete high-level design system. A program to fit
the design into the PLD was added along with a method of
defining what inputs an output needs. When the upgrades
were finished, the compiler could automatically reduce a vir-
tual description to logical pieces, and fit them into the
macrocells of the PLD.

After the fitting is complete, the macrocells and their out-
puts have to be placed and arranged so all outputs can be
routed to the places they are required. This problem is some-
what like solving a multi-dimensional Rubik’s Cube.

Why use Forth to simulate hardware?
1.A software model can be completed much faster than

hardware.
2 Application code can be tested before the hardware is

designed.
3. It is easy to display or modify internal states.
4.Diagnostic macros can be easily implemented.
5.Resources can be optimized early in the design.

Why use Forth as a VHDL?
1.To reduce the time needed to create the system.
2.So Forth can be the hardware description language.
3.So the project can use one uniform language.
4.To support the extensibility of the design.
5.To enable interactive hardware design.

Designing logic with the Forth VHDL
1. Write a software simulation of the design.
2. Test the design.
3. Convert the software simulation into a hardware defini-

tion.
4. Compile the hardware definition into logic equations.
5. Fit the logic equations into the device.
6. Verify that the logic equations work correctly.
7. Route the signals and assign the I/O pins.
8. Convert the routed design into a fuse map.

Simulation
The simulation of a design allows interactive analysis of

many aspects of the hardware including complexity, func-
tionality, timing, and performance. If the application pro-
gram for the proposed hardware is also written in the same
language as the hardware, hard and soft components can be
interchanged during optimization.

The software model
The software model is like a black box, it doesn’t matter

how it works as long as it works correctly. The main advan-
tage of the software model is that structural details of the
PLD can be ignored as ideas are evaluated early in the design
stage.

The hardware definition
After the software model has been evaluated, the design is

turned into a hardware definition. The hardware definition
is an expanded version of the software model. Programs will
run a little slower on it, but they should function the same.

For a design to match up with the device structure, it must
be partitioned correctly. Partitioning is an intuitive process
that is difficult to automate, so information relating to hard-
ware structure needs to be included in the definition.

The conversion to the hardware definition involves break-
ing complex functions into smaller parts that will fit in a
single layer of logic. A library of words to expand complex
functions could be built to aid in this task. Global variables
must be created for the output nodes of all the logic blocks,
and procedures must be written that will function the same
as the components would behave.

The inputs and outputs of the procedures are passed via
the global variables that hold the state of the model. These
variables have three parts: the first holds the present state,
the second holds the future state, and the third holds the
don’t-care flags. The global variables also contain informa-
tion about register clocking and propagation delays.

The author is doing design work for Testra Corp., which is manufacturing
an integrated motion control system for industrial and robotic applica-
tions. The system is based on a Forth processor designed using the HDL
described here.

22 Forth Dimensions XXI.1,2

Verification of the model
Debugging the simulation of a design will require a set of

tools that are “tuned” to the characteristics of the design. In
a non-extensible language, this might be done using some
form of macros; but when debugging a simulation in Forth, a
lot of the tools exist even before the job is started. Simple
things can be interactively tested by keying in and running
short programs.

The simulation process involves executing all the simula-
tion procedures, then copying all the future states into the
present state. The relationship of timing and propagation is
established by the order in which the state of the global vari-
ables is changed.

Things to consider when creating the hardware model
1.Truth table size. The size of a truth table is 2n where n is

the number of inputs. A function with more than 20
inputs will take a long time to compile, and it should be
factored into smaller parts to reduce the number of
inputs.

2. Input relationships. The inputs needed for an output can
be specified to reduce the initial truth table size.

3.Specify don’t-care terms. In many cases, there are places in
a function table that are not used. If the unused space is
flagged as don’t-care, a simpler solution with a reduced
number of terms may be possible.

How the logic compiler works (CARMAP)
The logic compiler converts each of the functions described

in Forth into a set of logic equations for each output bit of the
function. This is a conceptually simple process that involves
expanding the function into a truth table and then reducing
the number of terms in the truth table to the minimum.

The function is mapped into the truth table using the in-
puts that are related to the output. After the function has been
mapped, the table is scanned for unused inputs. If any unused
inputs are found, they are removed from the table. Each input
that is removed cuts the table size by half.

The truth table is then converted into logic equations by
an exhaustive scanning process that tries all possible combi-
nations of inputs and compares them with the truth table.
The first step is to search the table for a true output. When an
output is found, all sets in which it resides are tested for corre-
lation with the other outputs. The largest true set is saved, and
the bits within it are marked as solved. Then the next unsolved
output is found and the process repeats until finished.

The second step of the transformation is to delete the sets
in which all elements have more than one solved mark. This
gives something close to the ideal two-level array. Fitting the
logic into a FPGA would require a third step to convert this
ideal array into a multi-level array that would fit into their
finer structure. This could be accomplished by recursively fac-
toring gates from the high-level sets and ORing them together.

Conclusion
Forth provides a good foundation for a VHDL system be-

cause Forth is an extensible virtual interpreter. Most every-
one who works with Forth knows its unique features can en-
hance software productivity. My experience has shown it to
be very useful when working with variable hardware, as well.

The Forth inner interpreter is a very simple list processor
that requires only three pointers, two registers, and an ALU to

run efficiently. Because of Forth’s simple structure, a software
model can be completed very quickly, and it is easy to adapt it
to changes in the instruction set as the design matures.

People who work with Forth have long known it is a good
application language; our experience has shown that its ad-
vantages also apply when it used as a VHDL.

Bibliography
 “VHDL and Verilog fundamentals- expressions, operands and
operators.”
Douglas J. Smith, EDN, 4/10/1997.

“VHDL & Verilog Syntax & Semantics Handbook.”
Johan Sandstrom, Integrated System Design Magazine, Jan. 1996.

“Vhsic Hardware Description Language.”
Steven H. Leibson, EDN, 3/16/1989.

“Getting a handle on HDLs.”
Brian Dipert, EDN, 5/7/1998.

“Adopting VHDL for PLD design and simulation.”
Troy Scott, EDN, 4/9/1998.

“Hug an XOR gate today: An introduction to Reed-Muller
Logic.”
Clive “Max” Maxfield, EDN, 3/1/1996.

Appendix A. CARMAP Word Set

Variables: (Items)
MAX:GLB:INPUTS

I/O Definitions:
IO-GROUP "name"

INPUT "name" [START BITS]

OUTPUT "name" [START BITS CLOCK XORS TERMS
 FLIP USES USEX SEL SELX]
 [OE PTCLOCK are Lattice-specific commands]

BITS (n —)
A word that defines the number of bits used in an INPUT or
OUTPUT.

START (n —)
A word used in conjunction with BITS that sets the starting
bit number. If START is not specified, the first bit number
will be zero.

CLOCK "name"
A word that defines the clock for registered outputs.

XORS (n —)
A word that sets the maximum number of inputs to be tried
in the XOR term.

TERMS (n —)
A word that sets the maximum number of inputs to a logic
block.

Forth Dimensions XXI.1,2 23

FLIP (m —)
A mask that defines which output bits in the truth table will
be inverted.

USES (m —) "name"
A bit mask that defines what bits are used by an output. A
counter is a function where each output bit depends on all of
the bits less than it. The USES mask is rotated to the position
of the current output bit. The upper bits in the mask are ro-
tated into the lower bits so they will be used in counting
functions.

USEX (m —) "name"
A bit mask that defines what bits should be tried in an XOR
function. This word is used in conjunction with USES, and
the mask rotates the same as for USES.

SEL (m —) "name"
A bit mask that defines a set of bits in a fixed position that
are used as a selector. This word is like USES but the mask
does not rotate .

SELX (m —) “name”
A bit mask that defines what bits should be tried in an XOR
function. The mask stays in a fixed position. This word is
used in conjunction with SEL.

OE (—)
A word that defines an output-enable term for a Lattice de-
vice.

PTCLOCK (—)
A word that defines a clock term for a Lattice device.

END-IO-GROUP
A word that closes the I/O group.

 Software Simulation Words

INVERT (d — d)
The logical NOT of the bits in a word.

MAP[(v —) n
A word that creates an associative memory structure similar
to a CASE statement.

MAP (v a —)
A word that inserts a token (v) and its associated value (a)
into the MAP structure.

]MAP (a —)
A word that inserts the default value (v) into the MAP struc-
ture, and finishes the mapping function.

]: (— a)
A word that changes the state to compilation and returns the
address of the start of the compiled string.

;[
A word that inserts a next into the compiled string and
changes the state back to interpret.

>> (io —) "label"
The top element on the stack is moved to the input and out-
put registers. (This word is used for design verification.)

>>O (o —) "label"
The top element on the stack is moved to the output register.

>>X (x —) "label"
The top element on the stack is moved to the don’t-care reg-
ister.

>>OX (d x —) "label"
The top element on the stack is moved to the don’t-care reg-
ister, and the next element is moved to the output register.

O>> (— o) "label"
The output register is copied to the stack.

TRUTH-TABLE: (io-group_ads —)
"simulation_word"
Builds the truth table for a function, and solves the logic equa-
tions.

MAKEMACS
Solves all of the logic equations in a design.

Hardware Simulation Words

INIT-LOGIC
Must be done before defining nodes.

NODE "name"
Creates a single-bit, self-fetching variable called %name.

NODES (s n —) "name"
Creates a multiple-bit, self-fetching variable called %name.

CLOCK "name"
Creates a single-bit, self-fetching variable called %%name.

UPDATE-STATE
Updates the state of the outputs for all functions.

EXECUTE-CLOCK
Copies the state of the outputs to the inputs.

SIMLDF
The name of the simulation vocabulary.

Lattice-specific words for defining I/O pins

CLKMAC (n io-group_ads —) "name" FORGET
"io-group_name"

IOMAC (n io-group_ads —) "name" FORGET
"io-group_name"

IMAC (n io-group_ads —) "name" FORGET
"io-group_name"

24 Forth Dimensions XXI.1,2

Reconfigurable Architecture Computation Engine

RACE™

John R. Hart • Tempe. Arizona
jhart@testra.com • www.testra.com

Abstract
Because Forth’s performance isn’t compromised by a lim-

ited number of registers, it was the logical choice for a proces-
sor in currently available PLDs. In the design process for this
project, Forth words were coded in the primitive set and used
as a key benchmark. The processor was optimized by repeat-
edly modifying, compiling, and testing the model until it could
execute Forth words at four MIPS and fit into the PLD with
room left for the state machines needed by the application.

Forth was used to simulate the design.
Forth was used to define the hardware.
Forth was used to convert the design into logic equations.
Forth was used to fit the logic equations into the PLD.
Forth was used to route the PLD’s internal connections.
Forth was used to verify the logic equations.
Forth was used to assemble the application code.
Forth was used as the metacompiler.

Introduction
The design process began by making a software simula-

tion of a very simple Forth processor, called the miniForth.
Getting the miniForth up and running was one of the easiest
parts of the job: the simulation code for the 27 primitives
needed to build the Forth kernel took only a few days to write
and debug. The miniForth was the starting point in an evolu-
tionary process that involved running the application on the
simulator, finding bugs, and correcting shortcomings. The
viability of this method was clearly evident when the proto-
type hardware booted up and said “OK” without a glitch.

Description
The RACE is a 16-bit RISC processor that will execute code

at 25 to 50 MIPS, using currently available parts. It fits into
an ispLSI1048 PLD with about one third of the device free for
application-specific logic. In our application, the remaining
macro cells were used for state machines to control timing
and motor currents.

The RACE is a Harvard architecture machine with two
memory spaces, one for code and the other for data. In the
present configuration, the PC is twelve bits, so code space is
limited to 8K bytes; and the IP is fifteen bits, making 64K
bytes available for programs.

Code Space
Code space contains lists of code that define primitives and

handle interrupts. Three different conditions can be selected
to control branching in code space. PC branching takes one
cycle, but the code after a branch executes so, in some cases, a
null has to be placed there, making the branch take two cycles.

Data Space
Data space contains the stacks, programs, and data for the

application. The first 24 locations are dedicated for system
variables or pointers. The address for these variables can be
loaded in one cycle. The loaded value can be used as an ad-
dress or a constant. The return stack is assigned locations from
256–382 and the data stack is assigned locations from 384–
510. Locations from 65K–128K are used for application-spe-
cific data. DRAM is available for applications needing a large
memory space.

Forth Primitives
Most Forth primitives take from four to eight code words,

so Forth runs about 4 MIPS. Code operators were devised so
they could be combined to build efficient Forth primitives
and make best use of the PLD’s limited resources, so some
things were done in unconventional ways. Functions like AND,
OR, 1+, 2*, and 2/ are easy to do in one cycle, but + and -
had to be broken into multiple parts. First, the operands are
half-added using an XOR command that takes one cycle. Then
a special command is executed four times to complete the
function and propagate the carry through all 16 bits.

The 0BRANCH primitive is built using a command that cop-
ies the jump address into the IP if the top of the stack is equal
to zero. NEXT is done by a command that conditionally loads
the IP, depending on the state of bit zero in the instruction. If
the bit is zero, the instruction is a call, and the PC is loaded
with the address of the nesting code. If the bit is one, the rest
of the bits in the instruction are loaded into the PC.

The RACE has two interrupts, one for the timer and one
for external events. The branch-on-interrupt is part of the
next command. To maintain an interrupt latency of less than
two microseconds, there can be no more than 128 clocks be-
tween NEXT commands.

Multiplication is done by adding and shifting, and divi-
sion is done by subtracting and shifting; both take more time
to execute than the maximum allowed interrupt latency, so a
conditional NEXT command called (LOOP?) was created to
allow interruptable loops. Words that use the (LOOP?) have
two CFAs. The first points to the beginning of the code; the
second points to the start of the code that is repeated. If RP6
is high, (LOOP?) reloads the PC with the CFA pointing to
the start of the loop; if RP6 is low, the PC is incremented, and
the code following the loop is executed.

Commands
The majority of the commands were made for building Forth

primitives, but there are several application-specific commands
for booting, accessing DRAM, loading the timer, doing I/O,
loading code memory, and addressing local variables.

Copyright © 1999 Testra Corp. The author is doing design work for Testra
Corp., which is manufacturing an integrated motion control system for
industrial and robotic applications. The system is based on a Forth pro-
cessor designed using the HDL described here.

Forth Dimensions XXI.1,2 25

Code words are divided into five fields: the control field,
the accumulator field, the memory address field, the stack
pointer field, and the register address field. There are two types
of commands: deferred and immediate. Immediate commands
execute on the next clock edge, while deferred commands
execute on the second clock edge.

When writing to code space, the data to be written is in
the TR, and the MA points to a memory location in data space
that contains the address. After a write to code space, the
state of the AC and the flags is indeterminate.

The Control field (CSu)
The CSu is five bits wide and it controls system timing,

memory access, ALU modes, the operation of the flags, tem-
porary register, and instruction pointer. Execution of the CSu
is deferred until the next code word.

Flags
In addition and subtraction, the CRY is added to the nybles,

and the overflow goes into the CRY. Also, there are commands
that can set the CRY true or false, load it with AC0, load it
with AC15, or swap it with the FLG. The FLG can be used as
IP0 by IP+CRY>IP, loaded with IP15 by a IP*2>IP command,
or loaded with TR0 when TR is copied into the IP.

The Temporary Register (TR)
The TR has several purposes. By convention, NEXT fetches

the second element on the stack to TR. The TR can be loaded
from the AC, or from memory, and it is the destination for
the AND command. The TR can be rotated four bits to the
right, or shifted four bits to the right with the high four bits
coming from the low four bits of the AC. The TR can also be
loaded with minus one. During a read from the boot EPROM,
the low byte of TR is copied into the high byte.

The Instruction Pointer (IP)
The IP points at the word in data space that is being inter-

preted. It can be loaded with the contents of TR. When the TR
is copied into the IP, TR0 is also copied into the FLG. The IP is
incremented when a memory read directly follows an IP>MA
command. The CRY can be added to the IP using an IP+CRY>IP
command which uses the FLG as IP0. The IP can also be ro-
tated left one bit through the FLG with an IP*2>IP command.

The Accumulator Field (ACu)
The ACu is a two-bit immediate command that controls

the operation of the AC register (top of stack). There are four
modes for AC commands that are set by the previous CSu, so
there is a total of sixteen AC commands.

The accumulator (AC) is the destination for most arithmetic
and logic commands and, by convention, the top of stack
data is kept in the AC. The AC can be loaded from the TR or
the MA. When the AC is loaded with the MA, the FLG is cop-
ied into AC0. The AC is the source of data for memory writes.

Logical commands execute in one cycle, but arithmetic
commands take multiple cycles. The ALU is only four bits
wide, so a sixteen-bit operation takes four cycles. Each cycle
shifts the data left four bits at a time, so after four cycles the
nybles are back where they started. Additions and subtrac-
tions are preceded by an XOR of the TR with the AC which
performs a half add. The next four cycles complete the add,
and propagate the carry.

The Memory Address field (MAu)
The MAu is a three-bit immediate command that selects

one of seven different addresses to be loaded into the Memory
Address Register (MA). The MA points to the location in data
space that is used by a read or a write operation. The MA can
be loaded with the contents of the IP, the SP, the RP, the AC, or
a constant from 0–22. A simple form of indexing can be done
using an RA_AC>MA command, which loads the MA with the
contents of the AC, ORed with a constant from 0–22.

The Pointer field (PTu)
 The PTu is a three-bit immediate command that controls

incrementing, decrementing, and loading of the SP and the
RP.

The Stack Pointer (SP) is six bits, with the upper bits point-
ing to a fixed location. The data stack range is 64 words from
location 256–382. The SP can be incremented or decremented
using an SP+1 or SP-1 command, or it can be initialized using
an SP_XOR_AC>SP command. The SP is loaded into the MA
by a SP>MA command.

The Return Pointer (RP) is six bits, with the upper bits
pointing to a fixed location. The return stack range is 64 words
from location 394–510. The RP can be incremented or
decremented using an RP+1 or a RP-1 command, or it can be
initialized using an RP_XOR_AC>RP command. The Rp is
loaded into the MA by an RP>MA command. RP6 is used as
the limit flag for the (LOOP?) command.

The register address field (RAu)
The RAu is a four-bit immediate command used for ad-

dressing local variables and loading small constants.

Loops
 Loops in code space are performed by a (LOOP?) com-

mand, which is like a NEXT command, except the IP does not
increment until RP6 equals zero. The pointer to code that
uses the (LOOP?) instruction is followed by a pointer to code
following the DO. The code in front of the DO needs to save
the RP and load the loop index into the RP. If the loop index
is larger than the size of the RP, (six bits) the incrementing of
the larger part of the index must be done by code.

By convention, loops or lists of code should have no more
than 120 clock cycles between a NEXT or (LOOP?) command,
otherwise the accuracy of the timer may be compromised.

Interrupts
The interrupts are tested during NEXT and (LOOP?). A timer

interrupt causes the PC to branch to address 180h, and an
external interrupt causes the PC to branch to address 80h. If
one of the interrupts is true during NEXT or (LOOP?), the
execution vector is copied into TR. TR must be saved in
memory in order to “return” from the interrupt.

The SP must have a valid pointer when NEXT or (LOOP?)
executes, so the interrupting procedure will have a place to
save registers, if necessary. When the interrupt process is fin-
ished and any used registers have been restored, NEXT is ex-
ecuted with an address in MA pointing at the saved execu-
tion vector.

Conclusion
Reconfigurable processors are computational devices with

reprogrammable logic and data paths, and can be adapted to

26 Forth Dimensions XXI.1,2

the needs of an application. For many applications,
reconfigurable hardware has a computation potential that is
orders of magnitude faster than fixed hardware.

This project demonstrates that a practical, reconfigurable
microcontroller can be built using a PLD. The main disad-
vantage of current PLDs for this application is the large num-
ber of pins connecting them to the memory. If as little as 2K
of internal memory were available, 28 fewer I/O pins would
be needed and the part could run much faster.

Bibliography
“The configurable processor draws near”
Stanley Yang, p63 EE Times, 10/19/1998.

“Speedy 8-Bit Microcontroller Crafts Virtual Peripherals”
Dave Bursky, p36 Electronic Design, 8/4/1997.

“Soft Computing Reconfigures Designer Options”
Jim Turley, p76 Embedded Systems, April 1997.

“From Code to Logic”
Man/Machine, p23 OEM Magazine, Dec/Jan 1996.

“Stalking the Chameleon Computer”
Murray Disman, p67 OEM Magazine, Dec/Jan 1996.

“Shattering the programmable-logic speed barrier”
Brian Dipert, EDN, 5/22/1997.

“CPLD/FPGA devices, tools lure PLD designers into faster,
denser logic”
Mike Donlin, Computer Design, Nov 1995.

Appendix A. Instruction Word Format

 F E D C B A 9 8 7 6 5 4 3 2 1 0
 `-------------.-------------' |
 | |
 ADDS -------------------------------' |
 NEST ---'
If NEST is one, the word points to code;
if it is zero, the word points to another list.

Appendix B. Code Word Format

 F E D C B A 9 8 7 6 5 4 3 2 1 0
 `---.---' `.' `-.-' `-.-'--.--'
 | | | | |
 CSu control -------------' | | | |
 ACu accumulator ----------------' | | |
 MAu memory address ------------------' | |
 PTu stack pointers ------------------------' |
 RAu register address ---------------------------'

Appendix C. Internal Registers

 AC Accumulator 16 bits (top of stack)
 TR Temporary Register 16 bits
 IP Instruction Pointer 15 bits
 SP Stack Pointer 6 bits
 RP Return Pointer 6 bits
 MA Memory Address 15 bits
 PC Program Counter 12 bits

Flags:
 CRY Carry Flag (not borrow flag when subtracting)
 FLG Shift Flag (memory address bit 0)
 ACZ AC is zero (top of stack)

Forth Dimensions XXI.1,2 27

Appendix D. Code word set RACE4th Processor Version 7

 Deferred Commands (pipelined)
 5 CSu
 0 (nop) 0>NM (Word Mode)
 1 (con) 3>NM (Constant Mode)
 2 (>>TR) >>TR 0>NM (TR 4 bits right, Word Mode)
 3 (>>TR) >>TR 1>NM (TR 4 bits right, Nyble Mode)
 4 (-1>TR) -1>TR (Minus one into TR)
 5 (AND>TR) AC TR AND -> TR (AC AND TR into TR)
 6 (?BRANCH) IF_ZER TR>IP THEN (IP branch if carry is false)
 7 (IF(C)>>TR) IF_CRY >>TR THEN (If CRY Rotate TR 4 bits Right)
 8 (AC>>TR) AC>>TR 1>NM (Shift right low 4 bits of AC into TR)
 9 (@B) BE *MA_BM>TR (Read Boot EPROM)
 IF_MA=IP IP+2 THEN (Increment the IP?)
 A (!) WE AC>*MA (AC is written into the memory at *MA)
 B (@) RE *MA>TR (Read Data Memory)
 IF_MA=IP IP+2 THEN (Increment the IP?)
 C (AC>TR) AC>TR (AC is copied into TR)
 D (AC>TR>IP) CALL (The procedure address is in the TR)
 E (!C) IF_CRY WEh ELSE WEl THEN (Byte Store Primitive)
 F (NEXT) IF_TINT 180>PC *MA>TR ELSE
 IF_INT 80>PC *MA>TR ELSE
 IF_MD0 0>PC *MA>TR ELSE *MA>PC THEN
 THEN
 THEN
 IF_MA=IP IP+2 THEN (Increment the IP?)
 10 (>CRY) f_RA>CRY 2>NM (Word Mode, LD CRY)
 11 (NM) 1>NM (Nyble Mode)
 12 (>>TR)_(>CRY) f_RA>CRY >>TR 2>NM (Word Mode, >>TR, LD CRY)
 13 (>>TR) f_RA>CRY >>TR 3>NM (Constant Mode, >>TR)
 14 (JMPIF_CRY) IF_CRY (JMP) ELSE PC+2 THEN (branch if Carry)
 15 (JMPIF/CRY) IF_CRY (JMP) ELSE PC+2 THEN (branch if Not Carry)
 16 (JMPIF_AC15) AC15_IF (JMP) ELSE PC+2 THEN (branch if AC15)
 17 (JMP) *PC0..5_XOR_PC>PC (branch always)

 18 (IP+CRY) IF_CRY (Ads the Carry to the extended IP)
 IF_FLG 0>FLG IP+2
 ELSE 1>FLG
 THEN
 THEN
 19 (MA>TV) Loads the Timer Register with MA1..9
 1A (IP*2>IP) Rotate IP left thru FLG
 1B sp Spare.
 1C (!P) DM>PC TR>*PC 80>PC (Jumps to 80 when finished)
 1D (BOOT) DM>PC *BM>*CM 80>PC (copy 100 bytes from BM to CS)
 1E (DRAM) RA, 0=Clear, 1=RAS, 2=CAS (RAS Disables RAM)
 1F (LOOP?) IF_RP6 (Loop with test for Interrupts)
 IF_TINT 180>PC *MA>TR ELSE
 IF_INT 80>PC *MA>TR
 ELSE MA*>PC THEN
 THEN
 ELSE PC+2>PC THEN

Memory Address: For fetch and store. (used with @, !, & NXT.)
 3 MAu
 0 IP MA>MA (hold)
 1 IP IP>MA (IP+2 if followed by @, IP1..15 -> MA)
 2 RP RP>MA (RP1..6 OR C0 -> MA)
 3 SP SP>MA (SP1..6 OR 80 -> MA)
 4 RG RA>MA (RA1..3 -> MA)
 5 RG RA>MA (RA1..3 OR 10 -> MA)
 6 RG RA>MA (RA1..3 OR 20 -> MA)
 7 IDX RA_AC>MA (RA1..3 OR AC1..15 -> MA)

28 Forth Dimensions XXI.1,2

Arithmetic, Logic, Carry, and Flag. (previous CTL% sets the NM^)
 (CRY uses RA0..1, FLG uses RA0..2)
 NMv ACu RAu
 0 0 Hold AC, FLG, and CRY, are not changed.
 0 1 AC_XOR_TR>AC AC TR XOR -> AC
 0 2 MA>AC MA -> AC
 0 3 TR>AC TR -> AC

 1 0 AC+CRY>>AC AC CRY + -> AC ACn4 -> CRY
 1 1 AC-/CRY>>AC AC /CRY - -> AC /ACn4 -> CRY
 1 2 AC+TR+CRY>>AC AC TR XOR TR + CRY + -> AC ACn4 -> CRY
 1 3 AC-TR-/CRY>>AC AC TR XOR TR - /CRY - -> AC /ACn4 -> CRY

 2 0 0 hold
 2 0 1 CRY>FLG CRY -> FLG
 2 0 2 AC15.XOR.CRY>FLG AC15 CRY XOR -> FLG
 2 0 3 FLG>AC_0>FLG FLG -> AC 0 -> FLG
 2 0 7 FLG>AC_1>FLG FLG -> AC 1 -> FLG

 2 1 0 0>CRY 0 -> CRY
 2 1 1 CRY><FLG FLG -> CRY CRY -> FLG
 2 1 2 1>CRY 1 -> CRY
 2 1 3 AC0>CRY AC0 -> CRY

 2 2]: RAU>AC RAU -> AC

 2 3 0 CRY>AC_0>CRY CRY -> AC 0 -> CRY
 2 3 1 CRY>AC_FLG>CRY CRY -> AC FLG -> CRY
 2 3 2 CRY>AC_1>CRY CRY -> AC 1 -> CRY
 2 3 3 CRY>AC_AC0>CRY CRY -> AC AC0 -> CRY

 3 0 CRY>AC CRY -> AC
 3 1 AC*2>AC AC 2* -> AC AC15 -> CRY
 3 2 AC0_XOR_CRY>AC AC0 CRY XOR -> AC
 3 3 AC*2+CRY>AC AC 2* CRY + -> AC AC15 -> CRY

Stack Pointers: (Pointers are held when writing to CM)
 PTu
 0 nop (hold)
 1 SP+2>SP SP+2
 2 SP-2>SP SP-2
 3 AC_XOR_SP>SP AC SP XOR -> SP
 4 sp (reserved)
 5 RP+2>RP RP+2
 6 RP-2>RP RP-2
 7 AC_XOR_RP>RP AC RP XOR -> RP

Control Vectors:
Temporary Register.
 3 TRv
 0 TR>TR Hold
 1 AND>TR AC TR AND >> TR
 2 *MA>TR Copy memory data into TR
 3 AC>TR Copy AC into TR
 4 >>TR Rotate TR right 4 bits
 5 AC>>TR Shift TR right 4 bits. Copy AC_03 into TR_CF
 6 *MA_BM>TR Copy TR0_7 into TR8_F and MD0_7 into TR0_7
 7 -1>TR Load -1 into TR
Accumulator and Carry.
 2 NMv Nyble Mode
 0 0>NM Word Mode (logic)
 1 1>NM Nyble Mode (math)
 2 2>NM Word Mode, Load Carry (logic)
 3 3>NM Constant Mode, Load Carry (Constant)

Forth Dimensions XXI.1,2 29

Program Counter.
 3 PCv
 0 PC+2 Increment PC (default)
 1 PC>PC Hold (state machine mode)
 2 *PC_X>PC Jump Current Page (XOR relative)
 3 *PC_X100>PC Jump into Common Page (100 - 17F)
 4 *MA>PC MD0 IF 0>PC ELSE *MA>PC THEN (NEXT)
 5 0>PC Jump to 0 (address of Code for nesting) (0)
 6 80>PC Jump to 80 (address of code for external int)
 7 180>PC Jump to 180 (address of code for timer int)
Instruction Pointer.
 2 IPv
 0 IP>IP Hold
 1 IP+2 Increment IP
 2 IP*2>IP Shift left IP thru FLG
 3 TR>IP Copy TR into IP

Appendix E. Timing

 ispLSI1048
 -80 -70 -50 CLK _____/~~~___/~~~___/~~~___/~~~___/~~~\
 | |
 7.5 9.0 12.0 tco ---->| |<- |
 | |
 PC _____/~~~~~~~_______/~~~~~~~_______/~~
 Memory | |
10.0 12.0 15.0 tma ------>| |<- |
 | |
 CODE _________/~~~~~~~_______/~~~~~~~_______
 | |
 8.0 11.0 14.5 tsu -------->| |<-

25.5 32.0 41.5 ns
39.2 31.2 24.1 MHz

 Strobes
 ns 00 25 50 75 00 25 50 75 00
 40mhz | | | | | | | | |
 IIU ____/XX~~~~~XX_____XX______XX______XX____________________________
 CLK0 /~_/~_/~_/~_/~_/~_/~_/~_/~_/~_/~_/~_/~_/~_/~_/~_/~
 CLK /^~~___/^~~___/^~~___/^~~___/^~~~~~~~~~~~~~~_______________/^
 OEDM ~~~~~~~~_______/~~~~~~~~~~~~~~~_______________________________/~
 OEBM ________________________________/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_
 OECM ~~~~~~~~~~~~~~~~~~~~~~~~_______/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 IS0 ________/~~~~~~~___________________/~~~___/~~~___/~~~___/~~~_
 IS1 ________/~~~~~~~_______________________/~~~~~~~_______/~~~~~~~_
 WEL ____________/~~~___
 WEH ____________/~~~___
 WEC ____________________________/~~~_________________________________

Counter timer: A 9 8 7 6 5 4 3 2 1
 | `-' `-----.-----'
 Start -----------------' | |
 Chopper Mode. --------------------' |
 0 Measure |
 1 Decide |
 2 Settle |
 3 Charge |
 Load Value -----------------------------'
 0 Off
 1 129 counts
 7F 256 counts

 1. A WTV command copies the contents of MA into the counter pre-load register.
 2. Counter is reloaded after it passes thru zero and the processor is interrupted. (addr 180h)
 3. The counter has it's own external clock but it must be in sync with the Processor clock.

30 Forth Dimensions XXI.1,2

Appendix F. Pins

Processor I/O:
Data Memory DM_0-15 (128K bytes) 16
Code Memory CM_0-15 (8K bytes) 16
Outputs:
Memory Address MA_1-16 16
Pointer to Code PC_1-12 12
I/O Command IO_0-3 4
Chopper feedback MEAS 1
Interrupt INT 1

total 64

Micro Step I/O:
Driver Outputs PHA_0-7 8
 PHB_0-7 8
Comparator Inputs CPI_0-7 8
 CNI_0-7 8

total 32

Misc. Inputs:
Internal Clock PCLK 1
Timer Clock TCLK 1
Input Clock ICLK 1
Output Enable TR OETR 1
Output Enable AC OEAC 1
Reset RESET 1

Appendix G. Macro Cells & Logic Blocks

Counters: cells blks
Program Counter PC 12 3
Instruction Pointer IP 16 4
Return Pointer RP 6 2
Stack Pointer SP 6 2

Sub total 40 11

Address:
Memory Address MA 15 5
Data:
Temporary Register TR 16 4
Accumulator AC 19 8

sub total 35 12

Control Logic: CTL
State SQv 3 1
IP vector IPv Instruction Pointer 2
TR vector TRv Temporary Register 3 1
II vector IIv Input output 4 1
Flags CRY FLG 2 1
Strobes WTv 1 1
PC vector PCv 3 1
NM vector NMv 2 1

Sub total 21 7

Processor total 111 35
Driver:
Timer 12 3
Chopper 24 8
spares 39 2

total 196 48

Forth Dimensions XXI.1,2 31

This paper may be distributed freely in hard copy or electronic
form provided that it is not changed, and a reference to the origi-
nal publication is given. Citations (and partial reproduction) are
allowed, but they must not misrepresent the intent of this paper,
and a reference to the whole document must be given. (The pur-
pose of this requirement is to guard against releases of incompat-
ible “improvements” of this specification, because this would be a
hindrance to the primary purpose of this document, portability of
return address manipulations.)

Abstract
The concept of Open Interpreter makes the techniques of

changing the control flow via return stack changes architec-
ture-independent. The five classes of open interpreter systems
allow programmers to choose the most adequate degree of
compromise between portability and convenience of program-
ming. The Open Interpreter specification presented in this
paper may be used as an additional chapter to the ANSI/ISO
standard.

1. The purpose of this paper
The purpose of this paper is to introduce a specification

which would allow portable use of techniques that are cur-
rently (in March 1999) outside the scope of the ANS Forth
standard. They are: manipulations with return addresses, back-
tracking, keeping literals in threaded code, user-defined con-
trol structures (ANS Forth supports the latter in a restricted
way). Such techniques as user control over code generation,
dynamic code generation, de-compilation will also benefit.

The value of some of the mentioned techniques is argu-
able, but, in fact, sufficient motivation is provided by the
two following items:
1.portability of return address manipulations (which, in

particular, means portability of backtracking);
2.portability of implementation techniques (in particular,

of access to literals in threaded code). Portability of
implementation techniques is valuable for cross-compil-
ers and embedded systems: people often need to port a
system to a new target keeping its internals the same.

To prevent possible misinterpretation, I have to expand
on the second item. It is good when implementation tools
are portable. They will not be as much portable as Core words,
and the structure of the standard with the Open Interpreter
specification reflects this: the code that e.g. accesses in-line
data requires the system to support the Core word set, plus
the optional Open Interpreter word set, plus the optional
Open Interpreter In-line Data Access word set. It is up to the
programmer to realize that some method is less portable than
another, and to use it adequately. It is a bad style to mix low-

Document: The proposed Open Interpreter Wordset.
History:
Version 1.0: Gassanenko M.L. Open Interpreter: Portability of Return Stack
Manipulations. Proc. of the euroFORTH'98 Conf., Sept. 18–21 1998.
Version 2.0: Feb.–May 1999. Both a paper for FD and a proposal for
the ANSI/ISO Forth standard.
Version 2.1: 29 June 1999. Added R-SAVE-SYS/R-RESTORE-SYS.
Version 2.2: 20 Oct 1999 Grammar corrections, better formulations,
etc.

The Open Interpreter Word Set

M.L. Gassanenko, Ph.D. • St. Petersburg, Russia
mlg@forth.org
Copyright © M.L.Gassanenko, 1999.

level and application-level code, but a programming language
standard cannot and must not prevent bad style.

The Open Interpreter word set will be proposed for inclu-
sion into the standard, but first of all, the procedure requires
this item be included into the technical committee (TC)
agenda. It is possible that TC will not be willing to spend
time on it. On the other hand, portability of the mentioned
Forth techniques and inclusion of corresponding words into
the standard are related, but different purposes. The proposed
specification works even not being a part of the standard.

2. The approach
Let us formulate the main contradiction:

• the “classical” architecture is backed by a wide common
practice, it is both simple and adequate to the techniques
of return address manipulations, but there are also
“unclassical” architectures, and therefore the code
written for the “classical” model is not much portable;

• it is possible to write programs as if the return address
size is unknown, the code will be portable, but cumber-
some; this approach is not justified if the program will
never be ported to a system with return addresses wider
than one cell; in addition, double-cell return addresses
are not widely used today;

• The compromise, “intermediate” solutions may be
adequate for some architectures, but such compromises
lose both advantages: they are neither backed by wide
common practice nor widely portable.

The solution is to introduce multiple classes of Open In-
terpreter systems (namely, five). A “classical” system is of Class
1, and Class 5 is a probably Harvard system with probably
multiple-cell return addresses and probably different size of
code and data memory address units. A Class 1 system may
be considered as a particular case of a Class 5 system.

The code written for higher classes may run on lower
classes, but not vice versa. Therefore, programs written for
higher classes are more portable. In exchange, programming
for lower classes is less cumbersome (the word ‘cumbersome’
means ‘inadequately complex’).

M.L. Gassanenko is a researcher at the St. Petersburg Institute for
Informatics and Automation of the Russian Academy of Sciences.

32 Forth Dimensions XXI.1,2

An important requirement is that each lower class is a sub-
class of all higher classes. It guarantees that any Open Inter-
preter system belongs to one and only one minimal class.
Otherwise it would be possible to consider the same system
as a particular case of two different, incompatible architec-
tures (each architecture implies the use of its own protocol,
and the system would be able to implement either the first or
the second protocol, but not both). Two portions of code
written for the same system but assuming it to belong to dif-
ferent classes (that is, to implement different protocols) would
be incompatible, which is absurd. Therefore, out of any two
classes, one class must be a subclass of the other (one of the
two protocols will have to include the other).

A system is said to be of Open Interpreter Class N if Class N
provides the strongest specification the system can implement.

One more problem is related to stack manipulations:
• if the size of a return address is greater than one cell and

unknown, too many stack operators are needed to
manipulate with stack items of various sizes;

• programs that assume one-cell return addresses size are
not much portable.

The solution is to use the return stack for data rearrange-
ment. Return addresses come from the return stack and go to
the return stack. In most cases, changes affect only two top
elements. Therefore, the following set is enough:
>RR , move to the return stack;
RR> , move from the return stack;
RR@ , copy from the return stack;
RRDROP , remove from the return stack;
>RR< , exchange the data stack top with the return stack top;

3. The result
With the Open Interpreter specification, return address

manipulations become portable across Open Interpreter sys-
tems. The five classes of open interpreter systems allow pro-
grammers to choose the most adequate degree of compro-
mise between portability and convenience of programming.

Portability of return address manipulations enables one
to use the following techniques to develop portable Forth
code running on a variety of platforms:
1.user-defined (application-specific) methods of code

execution, including backtracking;
2.data execution (data-driven approach);
3.user-defined (application-specific) control structures,

including those for the techniques mentioned above;
4.access to parameters stored in threaded code via the

return stack (it is a widely used and therefore important
implementation technique).

Among application areas, we should mention distributed
artificial intelligence and cross-compilers (tools for program-
ming for embedded systems).

4. Document organization
The document contains references to sections of the ANS

Forth Standard (ANSI X3.215-1994 American National Standard
for Information Systems — Programming Languages — Forth,
American National Standards Institute, Inc., 1994; also recog-

nized as an ISO standard), for example, “1.3 Document organi-
zation” references the section 1.3 of the ANS Forth standard.
The references to sections of the Open Interpreter word set speci-
fication all begin with OI, and sections of this paper that do not
belong to the Open Interpreter specification are not referenced.

The glossary entries are organized according to ANS Forth
rules (2.2.4 Glossary notation). The symbol ???? in the glos-
sary entry number is used for words that do not have a se-
quential number assigned by the standard. The sequential
numbers are a Technical Committee's prerogative. From simi-
lar considerations, the symbol OI (from Open Interpreter) is
used in place of the section number.

OI The optional Open Interpreter word set
OI.1 Introduction

Since the very first implementation, Forth allowed access
to the return addresses on the return stack. Nevertheless, it
was not until the end of 1990s that the problem of portabil-
ity of this technique was solved. The five classes of Open In-
terpreter systems allow programmers to choose the most ad-
equate degree of compromise between portability and con-
venience of programming.

OI.2 Additional terms and notation
OI.2.1 Definition of terms and classes of Open Interpreter
systems
OI.2.1.1 The five classes of Open Interpreter systems

Definition. There are 5 classes of open interpreter Forth
systems:

Class 1. Return addresses have the same format as data
addresses, the system uses threaded code which resides in data
memory.

Class 2. Return addresses are 1 cell wide, but their represen-
tation on the return stack may be different from that on the
data stack. Threaded code resides in data memory, and data
stored into threaded code may be accessed by data memory
access operators, such as @ . Both aligned and unaligned ad-
dresses may be converted to the return stack representation.

Class 3. Return addresses are 1 cell wide, their representa-
tion may be different from that of data addresses. Threaded
code may reside in a separate memory, and special words may
be required to access that memory. Both aligned and unaligned
addresses may be converted to the return stack representation.

Class 4. Return addresses may be more than 1 cell wide,
and special words may be required to access threaded code.
Both aligned and unaligned addresses may be converted to
the return stack representation. The size of a character is an
integral multiple of the size of a code memory address unit.

Class 5. Return addresses may be more than 1 cell wide,
and special words may be required to access threaded code.
Conversion to the return stack representation is allowed only
for compiled-token-aligned return addresses. The size of one
code memory address unit may exceed the size of a character.

Each class is a subclass of the next class. (End of the

Forth Dimensions XXI.1,2 33

definition.)
A system is said to be of Open Interpreter Class N if Class

N is the strongest specification the system can implement.
(By definition of Open Interpreter Classes, if a system can
implement the functionality of Class N, it also can imple-
ment the functionality of Class N+1—so classes with the
smaller ordinal numbers have the stronger specifications.)

OI.2.1.2 Definition of terms
aligned code pointer: a code memory address at which a
compiled token or a reference may be located.

cell-aligned code pointer: a code memory address at which
a data cell may be located. Required to be the same as aligned
code pointer.

code interpreter: the interpreter that processes threaded code,
as specified in OI.3.4 The executable code and the code
interpreter.

code memory address unit: the size of a code memory ad-
dress unit may be different from that of a data memory ad-
dress unit. See: address unit in 2.1 Definition of terms.

code pointer: the address of a threaded code element (or,
which is the same, the address of the threaded code fragment
starting from that threaded code element).

compiled token: a threaded code element that denotes ex-
ecution semantics of some procedure. When a compiled to-
ken is processed by the code interpreter, the corresponding
execution semantics are performed. Different compiled to-
kens may have different sizes, but the ones generated by the
word TOKEN, all have the same system-defined size.

current code fragment: The code fragment whose compila-
tion has been started but not yet ended.

high-level definition: a definition created by the word : (co-
lon) or by the CREATE...DOES> construct. The execution se-
mantics of a high-level definition are implemented using
threaded code.

in-line data (stored into threaded code): data stored into
threaded code. The procedure whose compilation token pre-
cedes in-line data is responsible for processing these data. The
procedure must also prevent processing of the in-line data by
the code interpreter, for example, by advancing IP to the com-
piled token next to the data.

interpretation pointer (IP): the pointer to the next com-
piled token to be processed by the code interpreter. More pre-
cisely, the interpreter fetches the compiled token at IP, then
advances IP to the next threaded code element, then executes
the semantics denoted by the compiled token. See OI.3.4 The
executable code and the code interpreter.

interpretation stack: the stack formed by IP (the top) and the
return stack (the rest). The interpretation stack contains (1) code
pointers that reflect the currently unfinished procedure calls,
and (2) data that procedures place onto the return stack. The
top interpretation stack element (IP) is always a code pointer.

IP: see interpretation pointer.

reference (to a threaded code fragment): a threaded code
element that identifies the location of another threaded code
element (and of the threaded code fragment starting from
that element). The format of threaded code references is imple-
mentation-defined. This format may be used to represent the
destination locations of control-flow operations.

return address: a code pointer which usually either a) is the
run-time nesting information generated by the threaded code
interpreter when a high-level definition is called; b) may be
placed onto the return stack to let the code interpreter ex-
ecute a code fragment; c) (rarely) is a code pointer which is,
or could be, used as, or instead of a return address (in the
sense of the a) and b) items).

threaded code: a) a sequence of threaded code elements; b)
the representation of a program in the form of sequences of
threaded code elements.

threaded code element: either a compiled token, a reference
to a threaded code fragment, or in-line data.

threaded code fragment: a sequence of threaded code elements.

threaded code interpreter: the same as code interpreter.

unaligned code pointer: a code memory address, at which
an in-line data element may be located. A compiled token
and a reference may be located only at compiled-token-aligned
addresses (aligned code pointers).

OI.2.2 Notation
OI.2.2.1 Interpretation stack notation

The interpretation stack notation is:
(I: before -- after)

The symbol “I:” is the interpretation stack stack-id. See
2.2.2 Stack notation.

Advancing IP to the next compiled token (see OI.3.4 The
executable code and the code interpreter) is attributed to
the threaded code interpreter and therefore is not included
into the interpretation stack effect.

OI.2.2.2 Stored data notation
cp[<data>] a code pointer cp, at which <data> are stored
cp+ the code pointer cp advanced by the size of

data stored at cp
addr[<data>] address addr at which <data> are stored

OI.3 Additional usage requirements
A system that provides either the Open Interpreter In-Line

Data Access word set or the Open Interpreter Threaded Code
Access word set shall provide the Open Interpreter word set.

OI.3.1 Data types
Append table OI.1 to table 3.1. Two different formats may

be used to keep code pointers on the data stack and on the
return stack. The data stack format is suitable for the read (or
read/write) access to the code memory; the return stack for-
mat is suitable for the code interpreter.

34 Forth Dimensions XXI.1,2

OI.3.2 Data type relationships
The data type relationships for systems of different classes

are given in table OI.2. The phrase "=> j" in the row correspond-
ing to data type i denotes "i is a subtype of j", the phrase "= j"
denotes "i is the same data type as j". The notation S: i indicates
that the row describes the meaning of the data type symbol i
on data stack diagrams; analogously, the notation R: i is used to
describe the meaning of i on return stack diagrams.

See: A.OI.3.2 Data type relationships.

OI.3.3 Threaded code memory addresses
A code memory address identifies a location in the code

memory space with a size of one code memory address unit,
which a program may fetch from or store into or transfer
control to except for the restrictions established in this Stan-
dard. The size of a code memory address unit is specified in

bits. Each distinct code memory address value identifies ex-
actly one such storage element.

The set of character-aligned code memory addresses, ad-
dresses at which a character can be accessed, is an implementa-
tion-defined subset of all code memory addresses. Adding the
size of a character to a character-aligned code memory address
shall produce another character-aligned code memory address.

The set of compiled-token-aligned (aligned) code memory
addresses, addresses at which a compiled token or a reference
can be accessed, is an implementation-defined subset of all
code memory addresses. Adding the size of a reference or of a
compiled token to a compiled-token-aligned address shall
produce another compiled-token-aligned address. Code
memory addresses (compiled-token-aligned, unaligned) are
also called code pointers (aligned, unaligned).

Table OI.1 — Data Types

Symbol Data type Size on stack

acp-r aligned code pointer (1) depends on the system's class (3)
acp-s aligned code pointer (2) depends on the system's class (3)
ucp-r unaligned code pointer (1) depends on the system's class (3)
ucp-s unaligned code pointer (2) depends on the system's class (3)
acp aligned code pointer (4,5) depends on the system's class (3)
ucp unaligned code pointer (4,5) depends on the system's class (3)
cp code pointer (6,5) depends on the system's class (3)
ct compiled token none (size in code is implementation-defined)
ref reference none (size in code is implementation-defined)
l*x (7) any data type 0 or more cells

(1) in the return stack representation
(2) in the data stack representation
(3) 1 cell (Classes 1-3); implementation-defined (Classes 4,5).
(4) the symbols ucp and acp denote, correspondingly, the types ucp-s and acp-s on the data stack diagrams and the data types ucp-r and

acp-r on the return stack diagrams.
(5) When this symbol appears in both return stack and data stack diagrams suffixed with the same digit, it denotes the same value in the

two representations. For example, the notation "(cp --) (R: -- cp) Move cp from the data stack to the return stack" means for Classes 1-
4 "(ucp-s --) (R: -- ucp-r) Convert ucp-s to the return stack representation ucp-r, remove ucp-s from the data stack and place ucp-r onto
the return stack".

(6) the symbol cp denotes the data type ucp for Classes 1-4 and the data type acp for Class 5.
(7) Like i*x, j*x, k*x, it may be an undetermined number of stack entries of unspecified type. See table 3.1.

Table OI.2 - Data Type Relationships

Open
Interpreter Class 1 Class 2 Class 3 Class 4 Class 5
data type data type data type data type data type data type

ucp-r =addr =>x =>x unspecified not exists
acp-r =a-addr =>ucp-r =>ucp-r =>ucp-r unspecified
ucp-s =addr =>addr =>u =>i*x =>i*x
acp-s =a-addr =>a-addr =>ucp-s =>ucp-s =>ucp-s

R: ucp =ucp-r =ucp-r =ucp-r =ucp-r not exists
R: acp =acp-r =acp-r =acp-r =acp-r =acp-r
S: ucp =ucp-s =ucp-s =ucp-s =ucp-s =ucp-s
S: acp =acp-s =acp-s =acp-s =acp-s =acp-s
R: cp =ucp-r =ucp-r =ucp-r =ucp-r =acp-r
S: cp =ucp-s =ucp-s =ucp-s =ucp-s =acp-s

Forth Dimensions XXI.1,2 35

The set of cell-aligned code memory addresses is an imple-
mentation-defined subset of character-aligned code memory
addresses. The set of cell-aligned code memory addresses is the
same as the set of compiled-token-aligned code memory ad-
dresses. Adding the size of a cell to a cell-aligned code memory
address shall produce another cell-aligned code memory address.

Two representations are used for code pointers: the data
stack format and the return stack one (for Class 1 systems
they are the same). The return stack representation is the one
used by the code interpreter, this format allows to execute
code. The data stack representation permits address arithmetic
and access to threaded code elements.

The code memory address units do not necessarily have
the same size as data space address units. The size of a cell in
data space address units may be different from the size of a
cell in code memory address units.

The size of a reference and the size of a compiled token shall
be integral multiples of the size of a code memory address unit.

OI.3.4 The executable code and the code interpreter
The executable code used by the Forth code interpreter is

called threaded code. Threaded code is a sequence of threaded
code elements, each one may be either:
• a compiled token of a procedure (that is, of a definition)
• a reference to threaded code (branch destinations are

represented in this format)
• in-line data

Only compiled tokens of procedures are processed by the
threaded code interpreter, the other two types of threaded
code elements are processed by procedures. The procedure
compiled immediately before in-line data and/or reference(s)
shall modify IP to point to a valid compiled token, to pre-
vent the code interpreter from accessing them.

The threaded code interpreter (the “inner” interpreter of
Forth) has:
• a register (IP, the interpretation pointer) that points to

the next threaded code element to be processed, and
• a stack (the return stack), to which the interpreter saves

IP when it calls a threaded code fragment, and from
which it loads IP exiting the threaded code fragment.

Together, IP and the return stack form the interpretation
stack.

The threaded code interpreter repeats the following steps:
fetches the compiled token at IP, then advances IP to the next
threaded code element, then executes the semantics denoted
by the compiled token. The semantics may imply changing
IP. See OI.6.1.0450 : , OI.6.1.0460 ; , OI.6.1.1250 DOES> ,
OI.6.1.1380 EXIT .

The interpretation stack can contain:
• code pointers that reflect the currently unfinished

procedure calls, and
• data that procedures place onto the return stack.

The top interpretation stack element (IP) is always a code
pointer.

Programs written for Open Interpreter Forth are allowed to
change the number and order of interpretation stack elements.
Programs written for Open Interpreter Forth are allowed to
change control flow by changing the interpretation stack.

Programs are allowed to place data which are not threaded
code fragment addresses onto the return stack, but these pro-
grams shall be written so that such data are never loaded into IP.

OI.3.5 Environmental queries

Append table OI.3 to table 3.5.

See: 3.2.6 Environmental queries

OI.4 Additional documentation requirements
OI.4.1 System documentation
OI.4.1.1 Implementation-defined options
• class of the system;
• size and format of code pointers on the data stack and on

the return stack;
• whether code space is a part of the data space, whether

code is in a separate memory space;
• The method of converting from the data stack representa-

tion to the return stack representation (and vice versa);
• alignment requirements for threaded code elements;
• whether unaligned addresses may be correctly converted

to the return stack representation;
• whether writing to code space is possible at run-time;
• environmental restrictions (if any) and additional

disciplines they impose.

OI.4.1.2 Ambiguous conditions
• Loading IP with a value which is not a valid compiled

token address in the return stack representation;

Table OI.3 - Environmental Query Strings

String Value data type Constant? Meaning

OPEN-INTERP flag no Open Interpreter word set present
OPEN-INTERP-EXT flag no Open Interpreter extensions word set present
OI-DATA flag no Open Interpreter in-line data access word set present
OI-DATA-EXT flag no Open Interpreter in-line data access extensions word set present
OI-CODE flag no Open Interpreter threaded code access word set present
OI-CODE-EXT flag no Open Interpreter threaded code access extensions word set present

36 Forth Dimensions XXI.1,2

• compiling a word (adding corresponding semantics to
the current definition) when the code memory pointer is
not compiled-token-aligned;

• writing to code space at run-time;
• converting an unaligned code pointer to the return stack

representation (Class 5 only);
• an unaligned code pointer is used where an aligned code

pointer is required.

The following specific ambiguous conditions are noted in
the glossary entries of the relevant words:

• the value passed to OI.6.3.???? RP! does not correspond
to any valid return stack depth;

• OI.6.3.???? RP! removes from the return stack some data
that control nesting structures, and the program does not
restore these data (see: OI.6.2.???? R-SAVE-SYS,
OI.6.2.???? R-RESTORE-SYS);

• an exception frame is removed by OI.6.3.???? RP!;
• word not defined via 6.1.1000 CREATE (OI.6.1.1250

DOES>);
• xt passed to OI.6.3.???? >TCODE does not correspond to

a colon definition;
• the destination address is unreachable (OI.6.3.???? REF!);
• ct has not been stored with TOKEN, or TOKEN! (OI.6.3.????

TOKEN@, OI.6.3.???? TOKEN+, OI.6.3.???? TOKEN>);
• the threaded code space pointer is not compiled token-

aligned when OI.6.5.???? /, begins execution;
• on Class 5 systems, the code memory has not been

allocated as a single cell (OI.6.5.???? /@);
• code memory address is not character-aligned

(OI.6.5.???? /C!, OI.6.5.???? /C@);
• on Class 5 systems, the code memory at ucp has not been

allocated as a single character (OI.6.5.???? /C@).

OI.4.1.3 Other system documentation
• the structure of executable code;
• how control structures are implemented;
• environmental restrictions, if any, and programming

disciplines required in this connection.

OI.4.2 Program documentation
• the class of Open Interpreter required by the program;
• whether program writes to code memory at run-time;
• (optional) environmental restrictions which the system

that runs the program is allowed to have.

OI.5 Compliance and labeling
Through the section OI.5, the symbol wordset-name denotes

one of the following word sets: the Open Interpreter word set,
the Open Interpreter Threaded Code Access word set, the Open
Interpreter In-Line Data Access word set; the symbol N denotes
the Open Interpreter class number of the system.

OI.5.1 ANS Forth systems
The phrase “Providing the wordset-name word set (specifi-

cation ver. 2.2, proposed in <this publication>)” shall be ap-
pended to the label of any Standard System that provides all
of the wordset-name word set.

The phrase “Providing name(s) from the wordset-name exten-

sion word set (specification ver. 2.2, proposed in <this publica-
tion>)” shall be appended to the label of any Standard System
that provides portions of the wordset-name extension word set.

The phrase “Providing the wordset-name extension word set
(specification ver. 2.2, proposed in <this publication>)” shall
be appended to the label of any Standard System that provides
all of the wordset-name and wordset-name extension word set.

The phrase “Providing the wordset-name word set with en-
vironmental restrictions (specification ver. 2.2, proposed in
<this publication>)”, or “Providing name(s) from the wordset-
name extension word set with environmental restrictions (speci-
fication ver. 2.2, proposed in <this publication>)”, or “Pro-
viding the wordset-name extension word set with environmen-
tal restrictions (specification ver. 2.2, proposed in <this publi-
cation>)” shall be appended to the label of any Standard Sys-
tem that provides names from the wordset-name [extension]
word set, but imposes additional restrictions on their use.

The phrase “of Open Interpreter Class N (specification ver.
2.2, proposed in <this publication>)” shall be appended to
the label of any Standard System providing the Open Inter-
preter word set to indicate its Open Interpreter class.

OI.5.2 ANS Forth programs
The phrase “Requiring Open Interpreter Class N (specifi-

cation ver. 2.2, proposed in <this publication>)” shall be ap-
pended to the label of Standard Programs that assume the
system to have the Open Interpreter class not higher than N.

The phrase “Requiring the wordset-name word set (specifi-
cation ver. 2.2, proposed in <this publication>)” shall be ap-
pended to the label of Standard Programs that require the
system to provide the wordset-name word set.

The phrase “Requiring name(s) from the wordset-name Ex-
tension word set (specification ver. 2.2, proposed in <this
publication>)” shall be appended to the label of Standard
Programs that require the system to provide portions of the
wordset-name Extension word set.

The phrase “Requiring the wordset-name Extensions word
sets (specification ver. 2.2, proposed in <this publication>)”
shall be appended to the label of Standard Programs that re-
quire the system to provide all of the wordset-name and word-
set-name Extensions word sets.

OI.6 Glossary
OI.6.1 The Open Interpreter words

OI.6.1.0450 : “colon” OI

Replace the specification 6.1.0450 : with the following one:
 (C: “<spaces>name” -- colon-sys)

Skip leading space delimiters. Parse name delimited by a
space. Create a definition for name, called a “colon defini-
tion”. Enter compilation state and start the current defini-
tion, producing colon-sys.

The execution semantics of name will be determined by

Forth Dimensions XXI.1,2 37

the words compiled into the body of the definition. The cur-
rent definition shall not be findable in the dictionary until it
is ended (or until the execution of DOES> in some systems).
The code space pointer is aligned when : finishes execution.

 name Initiation: (--) (I : cp1 -- cp1 acp2)

Push the current value of IP onto the return stack and
load IP with acp2, the address of the threaded code fragment
in the name's body, thus transferring control to the body of
the definition.

 name Execution: (i*x -- j*x) (I: k*x cp1 -- l*x acp3)

Perform the initiation semantics of name. The rest of ex-
ecution semantics, and the stack effects are due to the words
compiled into the body of the definition. A compiled token
must be located at the code memory address acp3. The sym-
bols i*x and j*x represent arguments to and results from name,
respectively. The symbols k*x and l*x represent changes on
the return stack.

Note. If the optional Locals word set is present, the elements
of the return stack are unavailable after declaration of locals.
Nevertheless, after declaration of locals the top return stack ele-
ment shall be an address to which EXIT may transfer control.

See: 6.1.0450 :, A.OI.6.1.0450 :, RFI 0005 Initiation se-
mantics.

OI.6.1.0460 ; “semicolon” OI

Replace the specification 6.1.0460 ; with the following one:

Interpretation: Interpretation semantics for this word are
undefined.

Compilation: (C: colon-sys --)

Append the run-time semantics below to the current defi-
nition. End the current definition, allow it to be found in the
dictionary and enter interpretation state, consuming colon-
sys. If the data-space pointer is not aligned, reserve enough
data space to align it.

Run-time: (--) (I : acp1 cp2 -- acp1)

Transfer control to the code fragment specified by acp1.

See: 6.1.0460 ; , A.OI.6.1.0460 ; , OI.6.1.0450 : ,
OI.6.1.1380 EXIT .

OI.6.1.???? >RR “to-double-r” OI
(cp --) (R: -- cp)
Move cp from the data stack to the return stack, convert-

ing it to the return stack format. On Class 1 systems, >RR is
equivalent to >R .

OI.6.1.???? >RR< “to-double-r-and-back” OI
(cp1 -- cp2) (R: cp2 -- cp1)
Exchange cp1 at the data stack top with cp2 at the return

stack top, changing their representation. For Class 1 - Class 3
systems, >RR< is equivalent to RR> SWAP >RR .

OI.6.1.1250 DOES> “does” OI

Replace the specification 6.1.1250 DOES> with the following:

Interpretation: Interpretation semantics for this word are
undefined.

Compilation: (C: colon-sys1 -- colon-sys2)

Append the run-time semantics below to the current defi-
nition. Whether or not the current definition is rendered
findable in the dictionary by the compilation of DOES> is
implementation defined. Consume colon-sys1 and produce
colon-sys2. Append the initiation semantics given below to
the current definition.

Run-time: (--) (I: acp1 cp2 -- acp1)

Replace the execution semantics of the most recent defi-
nition, referred to as name, with the name execution seman-
tics given below. Transfer (return) control to the (calling)
threaded code fragment specified by acp1. An ambiguous con-
dition exists if name was not defined with CREATE or a user-
defined word that calls CREATE .

name Initiation: (-- a-addr) (I : cp3 -- cp3 acp4)

Place name's data field address on the stack. Push the cur-
rent value of IP onto the return stack and load IP with acp4,
the address of the threaded code fragment that follows DOES>
which modified name, thus transferring control to the DOES>
part of that definition.

name Execution: (i*x -- j*x) (I: k*x cp3 -- l*x acp5)

Perform the initiation semantics of name. The rest of ex-
ecution semantics, and the stack effects are due to the words
compiled after the DOES> which modified name. At the code
memory address acp5 a compiled token must be located. The
symbols i*x and j*x represent arguments to and results from
name, respectively. The symbols k*x and l*x represent changes
on the return stack.

See: A.6.1.1250 DOES> , OI.6.1.0450 :, A.OI.6.1.0450 : ,
RFI 0003 Defining words etc., RFI 0005 Initiation seman-
tics.

OI.6.1.1370 EXECUTE CORE
(i*x xt -- j*x) (I: k*x -- l*x)
Remove xt from the stack and perform the semantics iden-

tified by it. Other stack effects are due to the word EXECUTEd.
The stack effect of the executed word is assumed to be:

(i*x -- j*x) (I: k*x -- l*x)

See: 6.1.1370 EXECUTE, OI.6.1.???? RUSH.

OI.6.1.1380 EXIT OI
(I: acp1 cp2 -- acp1)
Replace the specification 6.1.1380 EXIT with the following:

Transfer control to the code fragment specified by acp1.

38 Forth Dimensions XXI.1,2

OI.6.1.???? RR> “double-r-from” OI
(-- cp) (R: cp --)
Move cp from the return stack to the data stack, convert-

ing it to the data stack format. On Class 1 systems, RR> is
equivalent to R> .

OI.6.1.???? RR@ “double-r-fetch” OI
(-- cp) (R: cp -- cp)
Copy cp from the return stack top to the data stack, con-

verting it to the data stack format for code pointers. On Class
1 systems, RR@ is equivalent to R@ .

OI.6.1.???? RRDROP “double-r-drop” OI
(--) (R: cp --)
Remove cp from the return stack. On Class 1 - Class 3 sys-

tems, RRDROP is equivalent to R> DROP .

OI.6.1.???? RUSH OI
(i*x xt -- j*x) (I: k*x cp1 -- l*x)
Remove the top interpretation stack element cp1, and then

execute xt, that is, remove xt from the stack and perform the
semantics identified by it, as with EXECUTE . Other stack ef-
fects are due to the word executed. The stack effect of ex-
ecuted xt is assumed to be:

(i*x -- j*x) (I: k*x -- l*x)

See OI.6.1.1380 EXIT, 6.1.1370 EXECUTE, OI.6.1.1370
EXECUTE, A.OI.6.1.???? RUSH.

OI.6.2 The open interpreter extension words

OI.6.2.???? R-RESTORE-SYS “r-restore-sys” OI-EXT
(--) (R: xn ... x1 n --)
Restore implementation-dependent data xn ... x1 about

enclosing structures.

See: A.OI.6.2.???? R-SAVE-SYS, OI.6.2.???? R-SAVE-SYS,
OI.6.2.???? RP! .

OI.6.2.???? R-SAVE-SYS “r-save-sys” OI-EXT
(--) (R: -- xn ... x1 n)
Save implementation-dependent data on the return stack.

These data contain information about enclosing structures
which (information) may be lost when a non-local exit is per-
formed with the help of RP!. This information about enclos-
ing structures (more precisely, the system copy of this infor-
mation) does not change when a threaded code fragment is
called or exited, or when values are placed onto or removed
from the return stack.

See: A.OI.6.2.???? R-SAVE-SYS, OI.6.2.???? R-RESTORE-
SYS, OI.6.2.???? RP!, OI.6.2.???? RP@.

OI.6.2.???? COPY>RR “copy-to-double-r” OI
(cp -- cp) (R: -- cp)
Copy cp from the data stack to the return stack, convert-

ing the copy to the return stack format. For Class1 - Class3
systems, COPY>RR is equivalent to DUP >RR .

OI.6.2.???? RADDR@ “r-addr-fetch” OI-EXT
(a-addr -- cp)
Fetch the code pointer cp stored at a-addr. For systems of

Classes 1-3 this word is equivalent to @ .

OI.6.2.???? RADDR! “r-addr-store” OI-EXT
(cp a-addr --)
Store the return address cp at a-addr. For systems of Classes

1-3 this word is equivalent to ! .

OI.6.2.???? RADDR+ “r-addr-plus” OI-EXT
(addr1 -- addr2)
Add the size in address units of a code pointer to addr1,

giving addr2. For systems of Classes 1-3 this word is equiva-
lent to CELL+ .

OI.6.2.???? RADDR– “r-addr-minus” OI-EXT
(addr1 -- addr2)
Subtract the size in address units of a code pointer from

addr1, giving addr2. For systems of Classes 1-3 this word is
equivalent to the phrase 1 CELLS - .

OI.6.2.???? RP@ “r-p-fetch” OI-EXT
(-- x)
Return a system-dependent value identifying the current

depth of the return stack. A Standard program may pass this
value to OI.6.2.???? RP! or compare for equality to another
such value.

OI.6.2.???? RP! “r-p-store” OI-EXT
(x1 --) (R: i*x -- j*x)
Set the return stack depth to be the one specified by x1. If

the new stack depth is greater than the old stack depth, the
contents of the newly allocated return stack elements are un-
defined. An ambiguous condition exists if x1 does not corre-
spond to any valid return stack depth. An ambiguous condi-
tion exists if the return stack contains data that control nest-
ing structures and the program does not restore such data.
An ambiguous condition exists if an exception frame is re-
moved by RP!.

See: OI.6.2.???? R-SAVE-SYS, A.OI.6.2.???? R-SAVE-SYS,
OI.6.2.???? R-RESTORE-SYS, OI.6.2.???? RP@.

OI.6.3 The Open Interpreter threaded code access words

OI.6.3.???? /ALLOT “slash-allot” OI-CODE
(n --)
Calculate m, the amount of code memory address units

enough to store n data memory address units. If m is greater
than zero, reserve m code memory address units. If m is less
than zero, release |m| address units of code space. If m is zero,
leave the code-space pointer unchanged. If the code-space
pointer is aligned and n is a multiple of the size of a compiled
token or of a reference when /ALLOT begins execution, it will
remain aligned when /ALLOT finishes execution.

See OI.6.5.???? /ALLOT .

OI.6.3.???? /HERE “slash-here” OI-CODE
(-- ucp)
ucp is the code memory space pointer.

OI.6.3.???? >TCODE “to-t-code” OI-CODE
(xt -- acp)

Forth Dimensions XXI.1,2 39

Return the address acp of the threaded code fragment
which is called when the colon definition identified by xt is
executed. An ambiguous condition exists if xt does not corre-
spond to a colon definition.

OI.6.3.???? REF! “ref-store” OI-CODE
(acp1 acp2 --)
Store a reference to acp1 at acp2. After execution of this

word, the reference at acp2 points to acp1. The size of the
modified code memory area may be calculated with the phrase
1 REFS . An ambiguous condition exists if the destination
address is unreachable. The address at which the reference is
located and the address that follows it shall be always reach-
able.

OI.6.3.???? REF+ “ref-plus” OI-CODE
(acp1[ref.acp2] -- acp1+)
Advance acp1 by the size of a reference.

OI.6.3.???? REF– “ref-minus” OI-CODE
(acp1 -- acp2)
Decrease acp1 by the size of a reference.

OI.6.3.???? REF@ “ref-fetch” OI-CODE
(acp1[ref.acp2] -- acp2)
Return acp2, the address to which the reference at acp1

points.

OI.6.3.???? REFS OI-CODE
(n1 -- n2)
n2 is the size in data space address units of n1 references.

OI.6.3.???? TOKEN! “token-store” OI-CODE
(xt acp --)

Store a compiled token of the procedure identified by xt to
the threaded code element located at acp. The compiled to-
ken may be retrieved by the word TOKEN@ or executed with
the code interpreter. The size of the modified code memory
area may be calculated with the phrase 1 TOKENS .

OI.6.3.???? TOKEN, “token-comma” OI-CODE
(xt --)

Add a compiled token of the procedure identified by xt to the
current threaded code fragment. The compiled token may be
executed with the code interpreter, or retrieved with the word
TOKEN@ , or changed with the word TOKEN! . The size of the
added compiled token may be calculated by the phrase
1 TOKENS .

OI.6.3.???? TOKEN@ “token-fetch” OI-CODE
(acp[ct] -- xt)

Decode the compiled token ct at acp and return the execu-
tion token xt of the procedure which semantics (compilation
token ct) is stored at acp. An ambiguous condition exists if ct
has not been stored there with TOKEN, or TOKEN! .

OI.6.3.???? TOKEN+ “token-plus” OI-CODE
(acp[ct] -- acp+)

Increment acp by the size of the compiled token ct at acp,
returning the address of the next threaded code element. An
ambiguous condition exists if ct has not been stored at acp
with TOKEN, or TOKEN! .

OI.6.3.???? TOKEN> “token-from” OI-CODE
(acp[ct] -- acp+ xt)

Decode the compiled token at acp and return the address of
the next threaded code element acp+, and the execution to-
ken xt of the procedure whose compiled token ct is stored at
acp. An ambiguous condition exists if ct has not been stored
at acp with TOKEN, or TOKEN!. The word TOKEN> is equiva-
lent to the phrase >RR RR@ TOKEN+ RR> TOKEN@.

OI.6.3.???? TOKENS OI-CODE
(n1 -- n2)

n2 is the size in data space address units of n1 compiled to-
kens allocated with the word TOKEN, .

OI.6.4 The Open Interpreter threaded code access exten-
sion words

None.

OI.6.5 The Open Interpreter in-line data access words

OI.6.5.???? /! “slash-store” OI-INLINE
(x acp --)

Store one-cell data x at acp. On Class 1 systems, this word is
equivalent to the word ! .

OI.6.5.???? /+ “slash-plus” OI-INLINE
(n ucp1 -- ucp2)

Calculate m, the amount of code memory address units
enough to store n data memory address units. Add m to ucp1.
For systems of Classes 1 and 2 this word is equivalent to + .

OI.6.5.???? /, “slash-comma” OI-INLINE
(x --)

Reserve one cell of threaded code space and store x in the
cell. If the threaded code space pointer is compiled token-
aligned when /, begins execution, it will remain compiled
token-aligned when /, finishes execution. An ambiguous
condition exists if the threaded code space pointer is not com-
piled token-aligned when /, begins execution.

OI.6.5.???? /@ “slash-fetch” OI-INLINE
(acp[x] -- x)

Fetch the one-cell literal data x located at acp. On Class 1
systems, this word is equivalent to the word @ . On Class 5
systems, an ambiguous condition exists if the code memory
at ucp has not been allocated as a single cell.

If return addresses are one-cell wide and code memory is data
memory, and if alignment requirements for compiled tokens
and data memory cells are different (that is, aligned code
pointers are not aligned addresses), the system can imple-
ment only Class 3.

OI.6.5.???? /ALIGN “slash-align” OI-INLINE
(--)

If the code-space pointer is not aligned, reserve enough space
to align it.

OI.6.5.???? /ALIGNED “slash-aligned” OI-INLINE
(ucp -- acp)

acp is the first aligned code pointer greater than or equal to ucp.

40 Forth Dimensions XXI.1,2

OI.6.5.???? /ALLOT “slash-allot” OI-INLINE
Calculate m, the amount of code memory address units
enough to store n data memory address units. If m is greater
than zero, reserve m code memory address units. If m is less
than zero, release |m| address units of code space. If m is
zero, leave the code-space pointer unchanged. If the code-
space pointer is aligned and n is a multiple of the size of a cell
when /ALLOT begins execution, it will remain aligned when
/ALLOT finishes execution. If the code-space pointer is char-
acter aligned and n is a multiple of the size of a character
when /ALLOT begins execution, it will remain character
aligned when /ALLOT finishes execution.

See OI.6.3.???? /ALLOT, A.OI.6.5.???? /ALLOT.

OI.6.5.???? /C! “slash-c-store” OI-INLINE
(c ucp --)

Store character c at ucp. When character size is smaller than
cell size, only the number of low-order bits corresponding to
character size are transferred. On Class 1 systems, this word
is equivalent to the word C! . An ambiguous condition exists
if ucp is not character-aligned.

OI.6.5.???? /C@ “slash-c-fetch” OI-INLINE
(ucp[c] -- c)

Fetch the character literal data located at ucp. An ambiguous
condition exists if ucp is not character-aligned. For Class 1
systems, this word is equivalent to C@ . On Class 5 systems,
an ambiguous condition exists if the code memory at ucp has
not been allocated as a single character.

OI.6.5.???? /CELL+ “slash-cell-plus” OI-INLINE
(ucp1 -- ucp2)

Advance ucp1 by the size of a cell. For Class1 and Class 2
systems, this word is equivalent to CELL+ .

OI.6.5.???? /C, “slash-c-comma” OI-INLINE
(char --)

Reserve space for one character in the threaded code space
and store char in the space.

OI.6.5.???? /GET “slash-get” OI-INLINE
(addr u ucp --)

If u is greater than 0, fill the u data space address units at addr
with the contents of the corresponding amount of consecutive
threaded code space address units at ucp. For systems of Classes
1 and 2, this word is equivalent to the phrase ROT ROT MOVE .

OI.6.5.???? /HERE “slash-here” OI-INLINE
See OI.6.3.???? /HERE .

OI.6.5.???? /PUT “slash-put” OI-INLINE
(addr u ucp --)

Calculate m, the amount of code memory address units
enough to store n data memory address units. Fill the m code
memory address units with the contents of n data memory
address units at addr.

OI.6.6 The Open Interpreter in-line data access extension
words

OI.6.6.???? //SWAP “double-slash-swap” OI EXT
(ucp1 ucp2 -- ucp2 ucp1)

Exchange ucp1 and ucp2 . For Class 1 - Class 3 systems, this
word is equivalent to SWAP . For Class 1 - Class 4 systems, this
word is equivalent to >RR >RR< RR> .

OI.6.6.???? /XSWAP “slash-x-swap” OI EXT
(ucp x -- x ucp)

Exchange ucp and x (x is at the stack top). For Class 1 - Class
3 systems, this word is equivalent to SWAP .

OI.6.6.???? X/SWAP “x-slash-swap” OI EXT
(x ucp -- ucp x)

Exchange x and ucp (ucp is at the stack top). For Class 1 -
Class 3 systems, this word is equivalent to SWAP .

A.OI The optional Open Interpreter Wordset

A.OI.1 Introduction

A.OI.2 Additional terms and notation
A.OI.2.1 Definition of terms and classes of Open Interpreter
systems
A.OI.2.1.1 The five classes of Open Interpreter systems

Class 5. It is possible that real Class 5 systems will not be
able to support the Open Interpreter Data Access and Code
Access word sets without environmental restrictions. If hard-
ware does not permit unaligned code pointers to be stored as
return addresses, the executable code memory space is most
likely larger than the readable code memory space. For ex-
ample, code memory may consist of 64K 16-bit words, but
only the first 32K words may be accessed as 64K read-only
bytes. In this situation, the full implementation of the code
memory data access functionality is just not possible.

This wordset does not attempt to fully support the Class 5
systems; instead, it suggests an approach that enables the pro-
grammer, given a Class 5 system with some kind of environ-
mental restrictions, to develop a wordset that will work both
on Class 5 systems with this kind of restrictions and on sys-
tems of lower classes.

In general, it may be recommended to write new code for
at least Class 3; Class 5 is probably not worth care unless there
is a perspective of porting code to a Class 5 system.

A.OI.2.1.2 Definition of terms
A.OI.2.2 Notation
A.OI.2.2.1 Interpretation stack notation

A word having the return stack effect
(R: i*x -- j*x)

is assumed to have the following interpretation stack effect:
(I: i*x cp -- j*x cp)

and vice versa, only words that do not change IP, the top

Forth Dimensions XXI.1,2 41

interpretation stack item, may be adequately described by the
return stack diagram.

A.OI.2.2.2 Stored data notation
A.OI.3 Additional usage requirements
A.OI.3.1 Data types

The data type cp denotes an unaligned code pointer (ucp)
for Classes 1-4, and an aligned code pointer (acp) for Class 5,
because unaligned code pointers cannot be represented in
the return stack representation on systems of Class 5.

The data types acp and ucp have two representations: the
data stack one (acp-s and ucp-s, correspondingly) and the re-
turn stack one (acp-r and ucp-r). The symbol acp denotes acp-s
on the data stack diagrams and acp-r on the return stack dia-
grams. This approach has been chosen because acp-s and acp-r
(ucp-s and ucp-r) are logically the same value.

A.OI.3.2 Data type relationships

For Class 1,
acp = a-addr => cp = ucp = addr.

For Class 2, the return stack representation of code pointers
is different from the data stack representation.

acp-s = a-addr => cp-s = ucp-s = addr,
acp-r => cp-r = ucp-r => x.

For Class 3, the code pointers are not necessarily data memory
addresses.

acp-s => cp-s = ucp-s => u,
acp-r => cp-r = ucp-r => x.

For Class 4, the code pointers are not necessarily one-cell wide.
acp-s => cp-s = ucp-s => i*x,
acp-r => cp-r = ucp-r.

A system of Class 5 is a system of Class 4 with the environ-
mental restriction that unaligned code pointers cannot be
converted to the return stack representation. This restriction
affects all words that accept or return the data type cp.

cp-s = acp-s => ucp-s => i*x,
cp-r = acp-r => ucp-r.

The symbols cp-s and cp-r above denote cp in the data stack
and return stack representations correspondingly.

A.OI.3.3 Threaded code memory addresses

The standard does not require that the size (in bits) of one
code memory address unit is not greater than the size of a
character, but it is possible that systems on which it is not
true will not be able to implement the Open Interpreter In-
Line Data Access word set in a reasonably efficient way.

A.OI.3.4 The executable code and the code interpreter

The key to understanding the return address manipula-
tions is a dual view on the interpreter stack. The threaded
code interpreter considers the return stack and the interpre-
tation pointer (IP) as a single stack. The programmer manipu-

lates only with the return stack, because IP changes while the
programmer's code executes, and writing to IP will result in
an immediate control transfer. On the other hand, this does
not make a restriction: when we call an auxiliary procedure,
the return stack becomes what the interpretation stack was.
Any changes that have to be done with the interpretation
stack, the auxiliary procedure does with the return stack.
When the procedure exits, the interpretation stack becomes
what the return stack was.

The rule of thumb for writing code that changes the inter-
pretation stack is: write code that does with the return stack
what must be done with the interpretation stack; put this
code into an auxiliary procedure. This procedure will do the
required changes with the interpretation stack.

A.OI.3.5 Environmental queries
A.OI.4 Additional documentation requirements
A.OI.4.1 System documentation
A.OI.4.1.1 Implementation-defined options
A.OI.4.2 Program documentation

A program written for a standard system with environmen-
tal restrictions can run on a standard system. A standard sys-
tem provides all of the functionality of the system with envi-
ronmental restrictions, plus some additional functionality.

A program written for an unstandard system cannot run
on a standard system. The functionality of a standard system
is just different from the functionality of the unstandard sys-
tem for which the program is written.

For example, if the system does not implement the word
/C@ , it is an environmental restriction. If the system allows
in-line literal data only within the first 32K of code memory,
it is an environmental restriction. A program aware of such
peculiarities still can run on a standard system. But if the
value returned by RR@ points to the called compiled token
instead of the next compiled token, the system is unstandard,
and a program aware of this peculiarity cannot run on a stan-
dard system.

A.OI.5 Compliance and labeling
A.OI.5.1 ANS Forth systems
A.OI.5.2 ANS Forth programs
A.OI.6 Glossary
A.OI.6.1 The Open Interpreter words

A.OI.6.1.0450 : “colon” OI

 name Execution: (i*x -- j*x) (I: k*x cp1 -- l*x acp3)

1)
The initiation semantics of name has the interpretation stack
effect

(I : cp1 -- cp1 acp2).
The rest of execution semantics of name has the interpreta-
tion stack effect

(I: k*x cp1 acp2 -- l*x acp3),
thus giving

(I: k*x cp1 -- l*x acp3).

42 Forth Dimensions XXI.1,2

2)
cp1 is not necessarily aligned because the word OI.6.1.????
RUSH enables one to start execution of a colon definition with
an unaligned cp1. But if name is invoked by the threaded code
interpreter, cp1 just cannot be unaligned.

3)
If name does not do return stack manipulations, its interpre-
tation stack effect

(I: acp1 -- acp1)
is a “sum” of the interpretation stack effects of:
name initiation

(I : acp1 -- acp1 acp2),
name body (IP changes while the body is being interpreted)

(I : acp1 acp2 -- acp1 acp4),
and EXIT (or run-time semantics of OI.6.1.0460 ;)

(I : acp1 acp4 -- acp1).

A.OI.6.1.???? RUSH OI

The word RUSH allows to get rid of an extraneous return
stack element. If the word X does return stack manipulations,
then the interpretation stack elements are arguments to it.
Execution of X from inside an auxiliary definition is different
from execution of X without an auxiliary definition because
one more return address makes the difference. The word RUSH
allows an auxiliary definition to call X as if X was called in
place of the auxiliary definition.

A.OI.6.2 The open interpreter extension words

A.OI.6.2.???? RP@ “r-p-fetch” OI-EXT
A.OI.6.2.???? RP! “r-p-store” OI-EXT

The purpose of these words is to provide non-local exits
(which is required, for example, for a Prolog-like cut statement).
These words may be found on most (if not all) Forth systems.

The value x used by these words is traditionally called “re-
turn stack pointer”.

OI.6.2.???? R-SAVE-SYS “r-save-sys” OI-EXT

An implementation may keep data that control nesting
structures in registers. For example, it may keep in registers
do-loop parameters (count, limit) and the locals frame pointer
(if not locals themselves). Therefore, a program that imple-
ments non-local exits using RP! shall save such information
using R-SAVE-SYS before obtaining the return stack pointer
with RP@ and shall restore this information using R-RESTORE-
SYS after changing the return stack pointer with RP!.

OI.6.3 The Open Interpreter threaded code access words

There is a wide class of applications that do not need dy-
namic code generation or run-time patching of generated
code. Therefore, it may be quite reasonable to introduce en-
vironmental restrictions on the use of words that write to
code space, for example, requiring that these words are not
used to patch finished definitions. Such system shall be la-
beled as “Providing the Open Interpreter threaded code ac-
cess word set with environmental restrictions”, and the re-
strictions shall be documented.

A.OI.6.3.???? TOKEN, “token-comma” OI-CODE

The difference between OI.6.3.???? TOKEN, and 6.2.0945
COMPILE, is that COMPILE, is allowed to do optimizations. If
some word, say TUCK , is compiled with TOKEN, , the resulting
compiled token is guaranteed to have the size of 1 TOKENS
and be decompiled (e.g., with the word TOKEN>) as TUCK , while
if the same word is compiled with COMPILE, , the compiled
token may be of some different size and decompile, for ex-
ample, as SWAP OVER , or may be non-decompileable.

A.OI.6.3.???? TOKEN> “token-from” OI-CODE
A.OI.6.3.???? TOKEN+ “token-plus” OI-CODE

The word TOKEN+ is not necessarily equivalent to the
phrase 1 TOKENS /XSWAP /+. If the code memory address at
the stack top points to a token compiled with TOKEN,, they
are equivalent. But if the code memory address at the stack
top points to a token compiled with COMPILE,, the word
TOKEN+ is allowed to add the size of that token instead of
adding the default size of a token.

A.OI.6.4 The Open Interpreter threaded code access
extension words
A.OI.6.5 The Open Interpreter in-line data access words

A.OI.6.5.???? /@ “slash-fetch” OI-INLINE
If return addresses are one-cell wide and code memory is data
memory, and if alignment requirements for compiled tokens
and data memory cells are different (that is, aligned code
pointers are not aligned addresses), the system can imple-
ment only Class 3.

A.OI.6.5.???? /+ “slash-plus” OI-INLINE
A.OI.6.5.???? /ALLOT “slash-allot” OI-INLINE
A.OI.6.5.???? /GET “slash-get” OI-INLINE
A.OI.6.5.???? /PUT “slash-put” OI-INLINE

Code memory address units may have different size than
data memory address units, and the phrase 1 CHARS /ALLOT
1 CHARS /ALLOT may give different results than the phrase
2 CHARS /ALLOT.

 (The first phrase is guaranteed to reserve at least two code
memory address units; on a Class 5 system, the second phrase
may reserve only one code memory address unit, this hap-
pens if one code memory address unit is large enough to hold
two characters.)

Since the words /ALLOT and /+ may perform alignment
on a code memory address unit boundary, the data elements
in code memory must be accessed in the same way as they
have been allocated.

A.OI.6.6 The Open Interpreter in-line data access extension
words

These words are meaningful only on Class 4 and Class 5
systems. On a Class 5 system, unaligned code pointers can-
not be placed onto the return stack, and these are the only
words that can do something with an unaligned code pointer.

<end of document>

Forth Dimensions XXI.1,2 43

Forth and the Internet

FORML 21

Walter J. Rottenkolber • waltjr@sierratel.com
Mariposa, CA

The 21st annual FORML Conference was held November
21–23, 1999 (Friday through Sunday) at the Asilomar Con-
ference Center. Asilomar is located west of Monterey, Cali-
fornia, on a hillside that overlooks a wide sandy beach and
the Pacific Ocean beyond. Most residence quarters and meet-
ing rooms are clustered on the hillside. The cafeteria, chapel,
auditorium, and administration building huddle at the base
of the hill near the shore. The buildings have a natural, rustic
design, and the pace at Asilomar is unhurried. The atmosphere
is more that of a spiritual retreat, despite the number of con-
ferences being held there.

The weather started off blustery, and rain began to fall by
dinner time and on through the evening. By morning, how-
ever, the sky was clear and the surf was up. It was the same
on Sunday when an outdoor barbecue was served for lunch,
ending a picture-perfect day.

The Forth Interest Group was able to arrange for more
comfortable rooms this year, especially for those of us who
chose to double up as an economy measure. The meals were
outstanding. Definitely a weekend to leave the diet behind.

The majority of those attending this FORML came from
the United States, but we also welcomed two intrepid travel-
ers from overseas. Federico de Ceballos came from Santander
in northern Spain, and Charles Esson made the long flight
from Ballarat, Victoria, in Australia.

FORML21 began at 3:30 p.m. with Richard Wagner pre-
senting a tribute to Robert R. Reiling, who passed away a few
months earlier. Mr. Reiling had guided FORML conferences
for nearly 20 years, ever since they had been held at Asilomar.
Like all those who work with quiet competence, his efforts
will be appreciated most by those who must shepherd the
conferences in the future.

The format of the conference then was outlined.
Though the theme of this year’s FORML was “Forth and

the Internet,” the papers ranged over several topics:
Forth and Networking
Encryption
Text Processing
Forth Machines
Forth Philosophy
Teaching Forth

Charles Esson presented three papers on ColdForth, a Forth
designed to run on Motorola’s ColdFire family. This project
was started two years ago after Motorola announced that the
68K family would be phased out. For fourteen years, Color
Vision Systems, the company Charles is with, had been using
the Motorola 68K family of chips, building a large base of
Forth, assembler, and proprietary code. All of it was threat-
ened with obsolescence. After exploring alternatives, they

decided on ColdFire and Forth. Commercial Forths were
looked at, but a critical requirement was preemptive multi-
tasking, so they decided to roll their own.

To avoid a future problem with “disappearing hardware,”
ColdForth is being designed to be as portable as possible. To
achieve this, the bulk of it is being written in ANS Forth. The
compiler will do some optimizing to increase speed. Device
drivers are coded as objects, so kernel words handling input/
output or mass storage don’t need to be rewritten—the ap-
propriate driver is simply plugged in. The kernel code is be-
ing made GPLLable, and its source will eventually appear on
the Internet. The hope is that others will adapt it to other
chip families, and extend the list of device drivers.

Esson’s first paper described the design of the TCP/IP proto-
col as a set of objects, just another device driver. In addition, an
interface was developed to allow transfers on an ethernet link.

His second paper discussed the reasons for requiring a pre-
emptive multitasker, and the design considerations to ensure
its proper function.

The third paper described a heap to allocate and release
memory for the datagrams processed by TCP/IP. The chal-
lenge was that it had to work without the benefit of an MMU,
be written in Forth, and still be fast.

Federico de Ceballos dealt with the challenge of connect-
ing a Forth program to a Siemens AS990 system. This is a
distributed computer system having multiple nodes tied to-
gether by an ethernet. Each node is composed of a VE486
processor card, and a CP486 ethernet card. Each card has its
own operating system (MICROS), and the two cards commu-
nicate via a MicroNET system using a TCP/IP stack! Federico
presented the Forth code used to interface his program with
the MicroNET C functions that handle data transfer. There
was a high priority on reliability, as the program located the
position of control rods in a nuclear reactor.

Skip Carter of Taygeta Scientific showed how to subset TCP/
IP. TCP/IP is not a monolithic structure; instead, it is a collec-
tion of protocols. Not all are needed in a dedicated system,
and careful pruning can simplify the code.

Wil Baden presented two papers on encryption.
The first was on the SHA-1 Secure Hash Algorithm. This is

widely used to secure the Digital Signature Algorithm. His
Forth code is designed to run on big-endian or little-endian
Forths without change. Though it does much better on 32-
bit systems, he has a 16-bit version available, including one
for Quartus (Palm Pilot) Forth.

The second, “Solitaire,” was about an encryption method
used by a Soviet spy, and described by David Kahn in Kahn on
Codes. The original method used a standard deck of 52 play-
ing cards plus the two Jokers.The cards are arranged in Bridge

Continues on page 77.

Walter has “retired and drifted away from programming.” He lives “out in
the country near the edge of the universe” where he finds interest in the
history of computers, Forth, and the implementation of the odd algorithm.

44 Forth Dimensions XXI.1,2

S T R E T C H I N G S T A N D A R D F O R T H – #26

Wil Baden • Costa Mesa, California
wilbaden@netcom.com

Linear Congruential Sequences
If you are like most of us, and need a few random num-

bers for a game or such, then a single linear congruential se-
quence (LCS) should be good enough. With a little more ef-
fort, we can get millions and millions of “random” numbers.

According to Knuth, (Chapter 3 of The Art of Computer
Programming), LCS was introduced by D.H. Lehmer in 1949.

Quoting Knuth,
We choose four magic integers,

 m, the modulus; 0 < m.

 a, the multipier; 0 <= a < m.

 c, the increment; 0 <= c < m.

 X[0], the starting value; 0 <= X[0] < m.

The desired sequence of random numbers (X[n]) is then ob-
tained by setting

 X[n+1] = (a*X[n] + c) mod m;

Knuth gives the following principles (paraphrased) for se-
lecting those numbers.

(1) The “seed” number X[0] may be chosen arbitrarily.
(2) The number m should be large, say at least 2**30. Conve-

niently it may be the computer’s word size, since that makes the
computation quite efficient.

16-bit word size cannot satisfy this principle.
In Forth, we can write a LCS with m as the word size:

 VARIABLE RAND-X

 : RAND-NEXT (-- u)
 RAND-X @ a * c + DUP RAND-X ! ;

Another approach is to use for m an easily referenced large
prime within the word size. For 32-bit arithmetic, 2**31–1,
which is 2147483647, is a popular choice. The value of c
should be 0.

 : RAND-NEXT (-- u)
 RAND-X @ a m */MOD DROP DUP RAND-X ! ;

(3) If m is a power of 2, pick a so that a mod 8 is 5. If m is a
power of 10, choose a so that a mod 200 is 21.

This, with c as chosen below, ensures a cycle of m values
that pass a test of “potency.”

In Starting Forth, a is 31421.
(4) The multiplier a should preferably be chosen between .01*m

and .99*m, and its binary or decimal digits should not have a
simple, regular pattern.

31421 for a 32-bit word size fails this principle—it’s too
small.

Knuth recommends a “haphazard” constant like
3141592621. I call this “Pi21.” It’s enough digits of pi, with
21 tacked on, to fill a 32-bit word. I think Starting Forth’s 31421
was chosen the same way for 16-bit words.

I remember Pi21 by “Now I want a large container of cof-
fee-21.”

(5) The value of c is immaterial when a is a good multiplier,
except that c must have no factor in common with m.

So 1 or a look like good values for c.
This gives:

 : RAND-NEXT (-- u)
 RAND-X @ 3141562621 * 1+ DUP RAND-X ! ;

or

 : RAND-NEXT (-- u)
 RAND-X @ 1+ 3141562621 * DUP RAND-X ! ;

(6) When m is the word size the least significant digits of
random numbers are not very random, so decisions based on the
number should always be influenced primarily by the most sig-
nificant digits.

In other words, don’t use MOD to select a value. The Start-
ing Forth function is good when m is the word size.

 : RAND-UNIF (u -- n) RAND-NEXT UM* NIP ;

Starting Forth calls this CHOOSE.
(7) The randomness in t dimensions is only one part in the t-th

root of m.
Don’t use a LCS for simulations requiring high resolution.
(8) At most m/1000 numbers should be generated; otherwise

the future will behave more and more like the past.
For a 32-bit word size, a new scheme or a new multiplier

should chosen every few million random numbers.
For a 16-bit word size, a new scheme or a new multiplier

should chosen every few 64 or 65 random numbers.
From this, you can see that you can’t get a good single

LCS for 16-bit arithmetic. This can be fixed by using mul-
tiple LCSs or other methods. Later we’ll give a multiple LCS
definition for 16-bit Forth.

WIL BADEN after many years of profane language has retired to Stan-
dard Forth. For a copy of the source for this article, send e-mail re-
questing Stretching Forth #26: Linear Congruential Sequences.

Forth Dimensions XXI.1,2 45

S T R E T C H I N G S T A N D A R D F O R T H – #26

Exhibits
Here is an exhibition of LCSs that have been popular. I

have assigned names for ease of reference here.
Definitions that do not return 0 should not be initialized

with 0.
Some of the tests that have been made on the sequences

are named, but details are postponed to another article.
PI-RAND is LCS with the multiplier based on PI. This is

given in the summary of LCSs in the last section of chapter 3
of Knuth’s The Art of Computer Programming, all editions.

 : PI-RAND-NEXT (-- 0..4294967295)
 RAND-X @
 3141592621 * 1+
 DUP RAND-X ! ;

SJ-RAND was proposed by Lewis, Goodman, and Miller
in the IBM Systems Journal in 1969. It was used in APL and
IMLS subroutine library. It was also an option in SwiftForth1.
The main reason for continued use is that the square of a is
less than modulus m and it can be implemented without arith-
metic overflow. However, such small multipliers have known
defects. (16807 is 7**5.)

 : SJ-RAND-NEXT (-- 1..2147483646)
 RAND-X @
 16807 2147483647 */MOD DROP
 DUP RAND-NEXT ! ;

EASY-RAND was nominated by George Marsaglia (1972)
as a candidate for the best multiplier, perhaps because 69069
is easy to remember.

 : EASY-RAND-NEXT (-- 0..4294967295)
 RAND-X @
 69069 * 1+
 DUP RAND-NEXT ! ;

BS-RAND uses the best spectral primitive root for modulus
2147483647. G.S. Fishman found it by brute force in 1986.

 : BS-RAND-NEXT (-- 1..2147483646)
 RAND-X @
 62089911 2147483647 */MOD DROP
 DUP RAND-X ! ;

EP-RAND is an efficiently portable multiplier found by
Fishman in 1988.

 : EP-RAND-NEXT (-- 1..2147483646)
 RAND-X @
 48271 2147483647 */MOD DROP
 DUP RAND-X ! ;

EP2-RAND is an efficiently portable multiplier found by
L’Ecuyer in 1988.

 : EP-RAND-NEXT (-- 1..2147483338)
 RAND-X @

 40692 2147483647 248 - */MOD DROP
 DUP RAND-X ! ;

SF-RAND is the random-number generator from Brodie’s
Starting Forth. Of course, with 16-bit arithmetic, 65535 AND
may be omitted.

 : SF-RAND-NEXT (-- 0..32767)
 RAND-X @
 31421 * 6927 + 65535 AND
 DUP RAND-NEXT ! ;

C-RAND is the default random-number generator for the
Standard C Library.

C-RAND-NEXT is C’s RAND .

 : C-RAND-NEXT (-- 0..32767)
 RAND-X @
 1103515245 * 12345 +
 DUP RAND-X !
 16 RSHIFT 32767 AND ;

RANDU is the egregious RANDU of the ’60s and ’70s. It
must be initialized to odd values only. Note that the multi-
plier in hex is 10003. For any three successive values, 9X – 6Y
+ Z is 0 mod 2147487648 .

 : RANDU-NEXT (-- 1..2147483647)
 RAND-X @
 65539 * 2147483647 AND
 DUP RAND-X ! ;

Efficiently Portable Implementations
In the m-is-word-size definitions, the n low-order bits cycle

in a 2**n period, as mentioned in (6) above.

(n is 1)
:GO CR 17 0 DO PI-RAND-NEXT 1 AND . LOOP ; GO
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

(n is 2)
:GO CR 17 0 DO PI-RAND-NEXT 3 AND . LOOP ; GO
2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2

(n is 3)
:GO CR 17 0 DO PI-RAND-NEXT 7 AND . LOOP ; GO
7 4 5 2 3 0 1 6 7 4 5 2 3 0 1 6 7

Etcetera.

In m-is-word-size definitions, the second half of the pe-
riod is the same as the first half with sign-bit inverted. The
quarter-cyles are also the same except for the two top bits.

Thanks to the first edition of The Art of Computer Program-
ming, I’ve used the function PI-RAND (with various names)
in different languages for 30 years. But things are bigger and
faster than they used to be. Typically, I now use random num-
bers to test something a million times. So I suggest for a simple,
powerful, random-number generator for today, to combine

46 Forth Dimensions XXI.1,2

S T R E T C H I N G S T A N D A R D F O R T H – #26

EP-RAND and EP2-RAND, as proposed by Knuth.

 65536 0= NOT [IF]

 1 VARIABLE RAND-X VARIABLE RAND-Y

 3 : RAND-NEXT (-- 1..2147483647)
 4 RAND-X @
 5 48271 2147483647 */MOD DROP
 6 DUP RAND-X !
 7 RAND-Y @
 8 40692 2147483399 */MOD DROP
 9 DUP RAND-Y !
 10 - DUP 0> NOT IF 2147483647 + THEN ;

 [THEN]

According to Knuth, the period is about 74 quadrillion.
RAND-X and RAND-Y should be initialized independently

to non-zero values for best results.
RAND-X does not have the problem with low-order bits.

 1 RAND-X ! 1 RAND-Y !

 (n is 1)
 :GO CR 17 0 DO RAND-NEXT 1 AND . LOOP ; GO
 1 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 0

 (n is 2)
 :GO CR 17 0 DO RAND-NEXT 3 AND . LOOP ; GO
 3 2 0 3 3 3 0 3 0 0 2 1 2 0 3 2 2

 (n is 3)
 :GO CR 17 0 DO RAND-NEXT 7 AND . LOOP ; GO
 5 7 5 3 5 6 0 3 5 2 5 5 3 4 3 2 4

With 16-bit arithmetic Forth, three LCSs should be com-
bined. The following is adapted from a suggestion by L’Ecuyer
in 1988.

 65536 0= [IF]

 1 VARIABLE RAND-X
 2 VARIABLE RAND-Y
 3 VARIABLE RAND-Z

 5 : RAND-NEXT (-- 1..32363)
 6 RAND-X @ 157 32363 */MOD DROP
 7 DUP RAND-X !
 8 RAND-Y @ 146 31727 */MOD DROP
 9 DUP RAND-Y !
 10 - DUP 0> NOT IF 32363 + THEN
 11 RAND-Z @ 142 31657 */MOD DROP
 12 DUP RAND-Z !
 13 - DUP 0> NOT IF 32363 + THEN ;

 [THEN]

The exhibits here were originally presented in profane lan-
guages—outside of the temple of Forth. Some of those lan-

guages do not have a double accumulator for multiplication,
and may fail with integer overflow. When a times a is less
than m, and the remainder m divided by a is less than the
quotient, then a m */MOD DROP can be replaced by:

 [m a /] LITERAL /MOD
 [m a MOD] LITERAL * >R
 a * R> -
 DUP 0< IF m + THEN

All intermediate results will be in the official range of
integers.

Such substitutions can be made in the 32-bit and 16-bit
versions of RAND-NEXT. The practice will be more useful in
the reverse direction, converting profane language to Forth.
Many conversions from Fortran or another profane language
to Forth use a precomputed quotient and remainder. For a
Forth definition, */MOD DROP can be used to simplify.

Don’t Use MOD
You have been warned not to use MOD to select random

numbers. With a small range, the problem is neglible, but
the following shows the danger.

 65536 0= NOT [IF]

 1 1 RAND-X ! 1 RAND-Y !

 3 CREATE BINS 10 CELLS ALLOT

 5 :GO CR CR ." Distribution Using MOD " CR
 6 BINS 10 CELLS ERASE
 7 20000 0 DO
 8 \ 9 Digit Number
 9 RAND-NEXT 1000 MIL MOD (u)
 10 \ Into 10 BINS
 11 100 MIL /
 12 CELLS BINS + 1 SWAP +! ()
 13 LOOP ; GO

 15 :GO
 16 10 0 DO
 17 CR I CELLS BINS + @
 18 DUP 4 .R SPACE
 19 50 / [CHAR] * EMITS
 20 LOOP ; GO

Distribution using MOD:

2805 **
2288 ***
1816 ************************************
1871 *************************************
1828 ************************************
1807 ************************************
1908 **************************************
1940 **************************************
1884 *************************************
1853 *************************************

Forth Dimensions XXI.1,2 47

S T R E T C H I N G S T A N D A R D F O R T H – #26

22 : RAND-UNIF (+n -- u) 2* RAND-NEXT UM* NIP ;

24 :GO CR CR ." Distribution Using Multiply " CR
25 BINS 10 CELLS ERASE
26 20000 0 DO
27 \ 9 Digit Number
28 1000 MIL RAND-UNIF (u)
29 \ Into 10 BINS
30 100 MIL /
31 CELLS BINS + 1 SWAP +! ()
32 LOOP ; GO

34 :GO
35 10 0 DO
36 CR I CELLS BINS + @
37 DUP 4 .R SPACE
38 50 / [CHAR] * EMITS
39 LOOP ; GO

Distribution using multiply:

1977 ***************************************
2042 **
1974 ***************************************
2024 **
2021 **
2007 **
1981 ***************************************
1991 ***************************************
2001 **
1982 ***************************************

 [THEN]

S T A N D A R D F O R T H T O O L B E L T – #26

Wil Baden • Costa Mesa, California
wilbaden@netcom.com

Tools for Linear Congruential Sequences

Note: The preceding “Tool Belt” article was #9. From now
on, the “Tool Belt” article number will agree with the current
“Stretching Forth” article number. Using two sets of numbers
confuses me.

Definitions for the non-standard words in the current
“Stretching Forth” article are given here for your convenience.
Most of these have appeared in previous articles, and will
have little or no discussion.

 1 : MACRO ("name <char> ccc<char>" --)
 2 : CHAR PARSE POSTPONE SLITERAL
 3 POSTPONE EVALUATE
 4 POSTPONE ; IMMEDIATE ;

 6 MACRO :GO " ANEW NONCE : (GO) "
 7 MACRO GO " (GO) NONCE "

 9 : POSSIBLY ("word" --)
 10 BL WORD FIND (xt flag)
 11 ?DUP AND IF EXECUTE THEN ;

 13 : ANEW ("name" --)
 14 >IN @ POSSIBLY >IN ! MARKER ;

 16 \ NOT is equivalent to `0=` or `INVERT`.
 17 MACRO NOT " 0= "

 19 \ MIL is convenient for large numbers.
 20 : MIL (n -- 1000000**n) 1000000 * ;

 22 \ EMITS displays a CHAR n times.
 23 : EMITS (n CHAR --)
 24 SWAP 0 ?DO DUP EMIT LOOP DROP ;

WIL BADEN after many years of profane language has retired to Standard
Forth. For a copy of the source for this article, send e-mail requesting
Standard Forth Tool Belt #26: Tools for Linear Congruential Sequences.

48 Forth Dimensions XXI.1,2

HC11 Code Interface to

Dallas Semiconductor Information Buttons (iBs)

The Dallas Semiconductor Information Button, or iB, is a
non-volatile RAM, with a serial interface, carried in a two-
contact housing, often using a button-battery style enclosure.
The name of these devices has itself undergone a sort of evo-
lution at Dallas; originally they were called “Touch Memo-
ries,” then they were known as “Information Buttons,” and
then as “AutoIdentification” devices. Of all this, we at Jarrah
Computers have stuck with the “Information Button” no-
menclature. There is an entire family of devices in the iB range,
all denominated DS19XX. The family include memory of
various sizes, one contains a timer, and one a thermometer.
Jarrah Computers have primarily used the DS1996 (64Kbit
NV RAM), and this article is based on code which interfaced
to the 1996, but we believe the processes are similar for all
members of the family.

Dallas have promoted the iBs as “attaching digital data to
physical objects”—their intended applications being in in-
dustry to track, say, gas cylinders, shipping containers, and
the like. To this end, there is quite a bit of information in the
Dallas data sheets (available on-line at www.ibutton.com) on
how to run connections to the iB wherever it is located on its
“physical object”—sometimes a couple of metres of wire are
used; some hookups use metal straps, or a set of cables, and
connectors to wire the iB from wherever it is physically lo-
cated back to a reading/writing device.

This is worth noting, as any interface code must almost
presume that the contacts to the iB may be momentarily high
resistance—that contacts may be making and breaking as we
try to communicate. The retries in the code are primarily to
handle momentary breaks in connection. The example given
at the end of this article, on backup memories, is an example
of attaching digital data (in iB) to a CPU board, which is, in
the end, a physical object!

The memory in the iB is organised into a set of 32-byte
pages, plus a 32-byte scratchpad, via which all reads and writes
are mediated. Furthermore, Dallas recommend that the data
be formatted into what they call Universal Data Packets, which
is a count byte, the data, then a two-byte CRC, meaning that
only 29 bytes of actual data can be stored in each 32-byte
page. The UDP, including checksum, provides an extra check
that good data has been read and is, in our view, well worth
the extra effort.

There are two modes for dealing with iBs, called regular
and overdrive speeds by Dallas—we will only be dealing with
the regular speed, as overdrive requires processors which are
faster than a (2 MHz) 68HC11—they typically deal in 2-10µS
periods, which is faster than some 68HC11 instructions!

The bi-directional serial interface is implemented on a
single active wire, and ground. The recommended processor
interface is a single bi-directional port line (and ground), with

the port line tied to Vcc (+5V) via a (nominal) 4K7 resistor.
The iB sends data by simply generating current pull when it
wants to send a zero, and the current pulls the resistor volt-
age down far enough to be sensed as a low on the (input)
port line. To send a “one” the iB, of course, does not need to
do anything.

The serial protocol involves commands being sent out to
the iB, and the iB sends the required data back over the same
wire, so the processor must switch the port line to input mode
before the iB starts sending the data. As reading data (and thus
switching the direction of the port line) is involved in all in-
teractions between a processor and the iB—and as we must
ensure that we are never driving the line when the iB is—syn-
chronous dynamic control of the bi-directional port line’s di-
rection is a critical part of the interface to the Dallas iBs.

The most important aspect of the serial protocol coding is
timing. The processor must drive and sense the line during
the allocated time slots, so the time-critical routines must be
worked out almost on a cycle-by-cycle basis.

1. iB Interface Details
There are four basic processes in dealing with the iBs:

1.1 Reading “presence”—refer to Figure One
To read iB presence, the port line (in output mode) must

be driven low for greater than 480 µS, and then the port line
must be sampled (in input mode), starting between 15 and
60 µS after the low pulse is released, and the iB will drive the
line for between 60 and 240 µS. If an iB is present, there will
be a “low” generated by the iB; if no iB is present, the line
will of course stay high due to the tie-high resistor.

1.2. Reading a data bit—refer to Figure Two
To read an iB data bit, the port line (in output mode) must

be driven low for between 1 and 15 µS (basically, as short as
possible!), then the port line must be sampled (in input mode),
starting as soon as the low pulse is released, and the iB will
drive the line for a window of 15 µS. If the iB data is zero,
there will be a “low” generated by the iB; if the iB data is one,
the line is left high.

1.3. Writing a “one” bit—refer to Figure Three
To write an iB data bit “one,” the port line (in output mode)

must be driven low for between 1 and 15 µS (basically, as
short as possible!), then the port line is left high for the re-
mainder of the 60 µS window.

1.4. Writing a “zero” bit—refer to Figure Four
To write an iB data bit “zero,” the port line (in output

mode) must be driven low for the entire 60 µS window.

Dave Edwards • jarrah@inf.net.au
Perth, W.A., Australia

Dave Edwards formed Jarrah Computers, an embedded systems de-
velopment company using primarily Forth, in 1984. His company has
specialised in design of custom microcontrollers. He is writing his sec-
ond opera, using his own Forth-programmed MIDI music system.

Forth Dimensions XXI.1,2 49

2. The Code
Having described the basic processes, now we can look at

the code which does all of this (refer to the listings). This is
where some detailed knowledge of the 68HC11’s opcodes and
opcode execution times is needed; this is where we start count-
ing cycles!

2.1 Coding Preliminaries
Before I begin the detailed discussions of the coding, as

Jarrah Computers are a Forth-based company, we have devel-
oped our own 68HC11 assembler and therefore must provide
some background to our style of coding, just to help you
understand the listing.

The assembler uses reverse Polish assembler, so what would
normally be written as, say, LDD # $1234 (load’D’ immedi-
ate with $1234) is written (HEX) 1234 # LDD, and the opcode
names all end with , to indicate the point in the code where
assembly actually occurs. We can also say VARIABLE-NAME
LDD and the like.

The stack referencing used in this code is similar to that of
many Forths: the Y register points to the TopOfStack (High
byte), so we use ,Y addressing mode: 0 ,Y references TOS, 2
,Y references NOS, and so on. We also have our own defini-
tions for RAM locations: RAM arrays are called RARRAY, used
n RARRAY Name. VARs are our VARIABLEs (a “2” RARRAY),
and CVARs are single-byte variables. The HC11 has two accu-

INITIALIZATION PROCEDURE "RESET AND PRESENCE PULSES"

MASTER TX "RESET PULSE" MASTER RX "PRESENCE PULSE"

tRSTH

VPULLUP
VPULLUP MIN

VIH MIN

VIL MAX
0V

tRSTL tPDL

tPDH

tP

RESISTOR

MASTER

DS1996

MASTER SAMPLING
WINDOW

Read-Data Time Slot

tRECtSLOT

VPULLUP
VPULLUP MIN

VIH MIN

VIL MAX
0V

tRELEASE
tLOWR

RESISTOR

MASTER

DS1996

tRDV

tSU

Regular Speed Overdrive Speed
480 µs ≤ tRSTL < ∞ 48 µs ≤ tRSTL < 80 µS

480 µs ≤ tRSTH < ∞ (includes recovery time) 48 µs ≤ tRSTH < ∞
15 µs ≤ PDH < 60 µs 2 µs ≤ tPDH < 6 µS

60 µs ≤ tPDL < 240 µs 8 µs ≤ tPDL < 24 µS

Regular Speed Overdrive Speed
60 µs ≤ tSLOT < 120 µs 6 µs ≤ tSLOT < 16 µS

1 µs ≤ tLOWR < 15 µs 1 µs ≤ tLOWR < 2 µS

0 ≤ tRELEASE < 45 µs 0 µs ≤ tRELEASE < 4 µS

1 µs ≤ tREC < ∞ 1 µs ≤ tREC < ∞
tRDV = 15 µS tRDV = 2 µS

tSU < 1 µS tSU < 1 µS

Figure One. Initialization procedure “reset and presence pulses”

Figure Two. Read-data time slot

A
ll

fi
g

u
re

s
re

-d
ra

w
n

 fr
o

m
 d

ia
g

ra
m

s
p

ro
vi

d
ed

 c
o

u
rt

es
y

o
f D

al
la

s
Se

m
ic

o
n

d
u

ct
o

r.

50 Forth Dimensions XXI.1,2

Write-One Time Slot
tRECtSLOT

VPULLUP
VPULLUP MIN

VIH MIN

VIL MAX
0V

(OD: 2 µs)
15 µs

RESISTOR

MASTER

tLOW1

(OD: 6 µs)
60 µs

DS1996
SAMPLING WINDOW

mulators, A and B, and these are indicated by using .A or .B
respectively.

Words are defined by the bracketing HC: and ;HC defin-
ing words, which basically perform the same functions as :
and ; in Forth, or CODE and END-CODE in Forth assemblers.
The assembly address of a HC: name is left on the stack
when the name is invoked. For subroutines, we have also de-
veloped the defining words SUB: and ;SUB which have the
following characteristics:

;SUB compiles an RTS, instruction before doing the “end-
definition” work of ;HC, and SUB: makes a header similar to
HC: with the additional DOES> property of compiling a JSR
to the name’s address.

This means that a word defined by SUB: can be invoked
simply by its name. I.e., it does not need to be invoked by
saying NAME JSR, which is what HC: names require. This has
the net effect of making the code look very much like high-
level Forth. For example, if we have SUB: routines like:

SUB: OVER (code instructions) ;SUB
SUB: SWAP (code instructions) ;SUB
SUB: + (code instructions) ;SUB

…we can simply write, in a subsequent definition:

SUB: NEW-WORD SWAP OVER + (etc.) ;SUB

In fact, the code becomes almost simultaneous Forth and
assembler, in that it’s possible to have a set of statements that
look like Forth, and then have opcodes one after another as
in assembler. For example, at the end of the word MAKE-UDP,
we have:

…… CRC16 LDB, FF # .B EOR,
 iBCRC LDA, FF # .A EOR, PSHD
 SWAP ! "UDPBUFF" SWAP OVER C@ "3" + ;SUB

The first two lines are almost pure assembly, but the last is a
lot like Forth.

2.2 The iButton Code—The Bits
With those preliminaries out of the way, we can now pro-

ceed to examine the code in detail. After the Forth kernel
and the two CRC lookup tables, the iB code proper starts.
First of all, we name the port line (an address, and a bit mask)
and its associated Direction Register line (again, an address

Figure Three. Write-one time slot

Write-Zero Time Slot tREC
tSLOT

VPULLUP
VPULLUP MIN

VIH MIN

VIL MAX
0V

(OD: 6 µs)
15 µs

15 µs
(OD: 2 µs)

tLOW0

DS1996
SAMPLING WINDOW

Figure Four. Write-zero time slot

Regular Speed Overdrive Speed
60 µs ≤ tSLOT < 120 µs 6 µs ≤ tSLOT < 16 µS

1 µs ≤ tLOW1 < 15 µs 1 µs ≤ tLOW1 < 2 µS

1 µs ≤ tREC < ∞ 1 µs ≤ tREC < ∞

Regular Speed Overdrive Speed
60 µs ≤ tLOW0 < tSLOT < 120 µs 6 µs ≤ tLOW0 < tSLOT < 16 µS

1 µs ≤ tREC < ∞ 1 µs ≤ tREC < ∞

A
ll fig

u
res re-d

raw
n

 fro
m

 d
iag

ram
s p

rovid
ed

 co
u

rtesy o
f D

allas Sem
ico

n
d

u
cto

r.

Forth Dimensions XXI.1,2 51

and a bit mask). The port line is kept normally in input mode
to ensure that we never drive the line when the iB is attempt-
ing to drive it.

We start with some timing functionals which are used to
build the “bit interface” words. The first word is a utility timer,
tmwait, which expects a number in the B accumulator (“n”),
and consumes 5n+11 cycles—the 11 being the call/return
opcodes. We then use a utility compiler word, uSwait, which
takes a given number on the assemble-time stack (represent-
ing microseconds) and converts it into a number which, when
fed into tmwait via the B accumulator, will consume that
number of microseconds. For example, the phrase:

5 uSwait # LDB, tmwait

compiles code to wait for five microseconds.
The same values work in the word WRLO (“write low”),

which takes a number on the stack (the machine’s run-time
stack!) and writes a low on the iB port line for that number of
microseconds. Thus, the phrase:

5 uSwait # CPUSH WRLO

compiles code to write a low on the iB line for five µsecs.

2.3 Reading “Presence”
This process tests the iB line to see if a device is present on

the line—and this presence-testing is also referred to as
“reset”ing the device, so our first word is called readiBreset
(RDiBRST), and returns its result in a condition code regis-
ter (0= flag). How RDiBRST works is:

We set interrupt masks (to lock out any interrupts and thus
guarantee the timing), and then write a low pulse for approxi-
mately 450 µsecs—the iB interprets such a long pulse as a re-
quest for a presence pulse response, which it will now send.

We enter a timed loop to consume 480 µsec—the execu-
tion time of the loop was calculated (33 cycles), and then the
count (29) was determined so that 480 µsec was consumed
(29*33 = 957 cycles = 479 µsec). During this loop, we monitor
the iB line to see if it goes low at any time; if it does, we have
an iB present. Note that, if we sense the low, we do not imme-
diately exit, but remain in the loop for the full 480 µsec.

RDiBRST is used primarily to reset communications; it is
recommended that the presence checking be run as the start
of any communication sequence.

The word iBPRESENT simply runs RDiBRST and exits in
Error! mode if the device is not found. The details of this
error handling are implementation dependent, but the gen-
eral idea of exiting to the system level on any iB errors is to
simplify control structures later in the code, and is highly
recommended.

3. The Bytes
3.1 Sending a Byte to the iB

The first byte-level interface word is !iBYTE, which sends
a byte to the iButton. A one is loaded and stored in utility
register N—this is a mask (rotated left once for each bit) against
which the input byte is tested to determine the state of each
bit. It is also used as the default counter, as this bit-rotating
out of the accumulator into the carry register is taken as the
termination test.

The process then tests each bit of the input byte, and if

the bit is high, the “transmit one” process is undertaken, oth-
erwise “transmit zero” is undertaken. Note that these pro-
cesses are guarded by disabling interrupts (setting of the in-
terrupt mask) before the processes start, and re-enabling in-
terrupts after the 60 µsec window, whichever path is taken,
again to guarantee timing.

3.1.1 “transmit one” (refer to 1.3) takes the line low for 3 µsec,
and then leaves the line high for a remaining 57 µsec. The 3
µsec low pulse is generated as follows:
a. Write a low to the port line—remember that at this point

the port is still in INPUT mode, therefore the tie-high
resistor will be holding the line high.

b.Make the port line output—this is when the port’s output
driver comes into play, and drives the line low. Our
timing of the low pulse out starts at this point.

c Make the port line input—this is where the tie-high
resistor takes over again, so the port releases the line, and
the resistor pulls the line high, only 3 uSec after it was
taken low.

3.1.2. “transmit zero” (refer to 1.4) takes the line low for the
entire 60 µsec window, so the iB is guaranteed of reading a
low bit.

3.2 Reading a byte From the iB
We now examine the word which reads a byte from the

iB, @iBYTE. Again, this is an eight-step loop, reading a bit at
a time. Room is made on the stack for the result, eight is
stored as a count, and we begin:
• Write a low pulse for as short a time as possible. (again, a

3 µsec low)
• Wait 5 µsec before commencing sensing:
• Monitor the iBline for next 100 µsec:

If it is pulled low, accumulate a “zero” bit
If it is not pulled low, accumulate a “one” bit and repeat
this process for the eight bits.

This completes the fundamental interface to the iBs. We
can now get bytes into and out of them. It is worth noting
that, while all of the processes up to now have involved criti-
cal timing, other words can call them completely asynchro-
nously—the timing is wrapped up within these words!

4. The Communications—Strings of Bytes
Now we can start the “communications” level of talking to

iBs. As we pointed out before, all interactions with the iB is via
a buffer page called the scratchpad. Data must be written to
the scratchpad (indicating the final target address at this point),
verified in the scratchpad (which involves reading all of the
data back and comparing it to the source), and finally copying
the data in the scratchpad into the final target page.

Dallas provide a flowchart as a guide to this layer. There are
sets of functions which the iB can perform—READ ROM, MATCH
ROM, SEARCH ROM, and SKIP ROM—and all the general memory
functions come under the SKIP ROM sub-section. This is why
we have iBSKIP, a “start communications” word which checks
for iB presence and then sends the “skip” command ($CC).
The SKIP-ROM commands used are READ-ROM, WRITE-
Scratchpad, READ-Scratchpad, and COPY-Scratchpad.
READ-ROM is used for general reading of data (page-based, ran-

52 Forth Dimensions XXI.1,2

dom page access), and the others are used as a set to write data
to a target page in memory via the scratchpad.

4.1 Moving Data to the Scratchpad—SXMOVE
We start with the word which moves data to the scratchpad

(which has been shortened to SX in word names), namely
SXMOVE, which uses control data on the stack—the address
in the CPU’s memory in which the data is stored, the target
iB address, and finally the count (which must be less than or
equal to 32 bytes). We do iBSKIP, then send the command
byte $0F (“Write Scratchpad”) followed by the two bytes of
the target address (the 16-bit address split into two separate
bytes) and the count, then the actual data is sent byte-by-
byte. Note that all three numbers are left on the stack for
subsequent words to check data against, and that the iB does
not need to know the source address.

4.2 Checking the Scratchpad—SXOK and SXCHK
Next is the code to check the status of the move. Firstly, we

use RDSX to get status information from the iB. After iBSKIP,
RDSX sends the command byte $AA (“Read Scratchpad”), then
reads back the next three bytes from the iB; these bytes repre-
sent the target address (as two separate bytes on the stack, just
as we sent them), and the E/S status register.

The main scratchpad-checking word is SXCHK. RDSX is run
to get the SXMOVE result data, then the two target address
words are checked against the target address still on the stack
from sending the data, and then the E/S status byte is checked;
if any of the uppermost three bits of E/S are set, there has
been an error. Hence we compare to $20—if the number is
between $00 and $1F, it is okay. If any errors are encountered
during these checks, the carry flag is set (in which case we do
iBRST to clear the iB’s communication and leave a set carry
to indicate the error), and we proceed only in the case of a
clear carry.

If things are all okay, we proceed to check every byte read
back from the scratchpad against the bytes in memory from
whence they were moved (using the source address on the very
bottom of the stack). Again, any error causes carry to be set,
which this time is left as the return code from the entire word.

We check the E/S byte in the word SXOK—similar to SXCHK,
if any of the uppermost three bits of E/S are set, there has
been an error, so we again compare E/S to $20 (after drop-
ping the address bytes).

4.3 Copying the scratchpad—SXCOPY
The last word of this section is the scratchpad copy com-

mand, which gives the iB the all-clear to write what is cur-
rently in the scratchpad to the target address. After the iBSKIP
we send the command byte $55 (“Copy Scratchpad”), and cop-
ies of the target address (again in separate bytes). Finally, we
can drop the six numbers we have accumulated on the stack!

4.4 The Universal Data Packet (UDP).
To complete this section, we will look at the Universal

Data Packet format recommended by Dallas Seminconductor.
The UDP format is a count byte at the start, the data and
then a two-byte checksum (CRC). This means we can get a
maximum of 29 net bytes in a 32-byte memory page. The
checksum is calculated from lookup tables provided by Dal-
las Semiconductor, as is the algorithm to perform the com-
putation on bytes. There are two lookup tables, one for the

upper part of the CRC, and one for the lower. The algorithm
for computation is:

Input byte XORed with lower CRC, and the result of this
is used as an index into CRC16HI to fetch the new high byte
of the CRC. The result of the XOR is then used as the index
into CRC16LO, and the fetched byte is XORed with the previ-
ous value of the higher CRC and the result is the new value
of the lower byte of the CRC. At the end of the process, we
invert all the bits by XORing with -1. This algorithm is coded
in the word UDPCRC.

Using UDPCRC, we develop the word MAKE-UDP, which takes
a source address, iB target address (which is actually not used
in MAKE-UDP), and the count. The outputs are a new source
address (the actual UDPBUFFer), the unaltered iB target ad-
dress, and the original count incremented by 3. We have cre-
ated a buffer UDPBUFF which is 32 bytes long as a staging
area for this process. Firstly, we store the original count at
UDPBUFF, and then CMOVE the bytes from the input address
to UDPBUFFer+1. The last bit of the process is to calculate the
CRC, by clearing our CRC accumulation variables, and then
going through the source data and running UDPCRC on each
fetched byte. The result is stored in the UDPBUFF at the end
of the data.

5. iBMOVE and iBMOVE>.
So we can now approach the “final” words, which we have

named iBMOVE (to move data to the iB) and iBMOVE> (to move
data back from the iB to the CPU’s memory). To start with, we
develop iBMOVE? and iBMOVE>?, which attempt a read/write
and leave the carry flag as the result—a set carry (CS) means
the attempt was okay. If these words fail, the main words
(iBMOVE and iBMOVE>) administer a set of retries.

iBMOVE? uses a source address, the iB target address, and
a count. iBMOVE? runs SXMOVE and then SXCHK. If all is okay,
SXCOPY is run, with a subsequent SXOK to check that the move
itself generated no errors. If all is not ok, the arguments are
dropped, and a clear carry is left to indicate a fault.

iBMOVE>? again uses a destination address, the iB source
address, and a count. iBMOVE>? seeds the CRC variables with
the iB page address, which is calculated by dividing the actual
address by 32. We then run iBSKIP followed by the com-
mand byte $F0 (“Read Memory”). We then send the target
address (again as two separate bytes), and then a loop of read-
ing the data from the iB, and we once again use the UDPBUFF
as in interstitial area to read the data—and we calculate the
CRC using UDPCRC as we read each byte.

Seeding the CRC variables with the iB page address guar-
antees that the final result is $B001 (after CRCing the CRC in
the iBpage itself!), so this check is run to leave the final result
in the carry flag.

Finally, iBMOVE uses the same arguments as iBMOVE?, and
iBMOVE> uses the same arguments as iBMOVE>?.

With iBMOVE, we first make the input data into a UDP, set
up a counter to count retries (Jarrah Computers use 20), and
then begin with trials of iBMOVE?. If iBMOVE? is successful,
we are done; but if it is not, we wait for about 2 µsecs (to
allow for iB recovery, in the case of a fault), decrement our
counter, and try again. If we do not get a good write in our
retries number of attempts, we must indicate an Error! to
the system.

With iBMOVE>, we first increment the count by three (we
know the iB UDP will be that much larger than the data bytes

Forth Dimensions XXI.1,2 53

we have been asked for), and the UDPBUFF is set up as the
address to read the data into. We again set up a retry counter
to 20, and begin attempts to read the data with iBMOVE>?. If
errors are indicated, we decrement our counter and try again
(and again, if we exhaust the retries we must indicate an Er-
ror! to the system). If the move from the iB was successful,
we then CMOVE the data from the UDPBUFF to the final desti-
nation address. These words are used by simply writing:

Address iBAddress Number iBMOVE
to write data to the iB

Address iBAddress Number iBMOVE>
to read data from the iB

6. Example Application—iBak, iBVars, iBArrays…
As an example of an application using the above inter-

face, Jarrah Computers have used an iB as a backup memory
for data used by a control system. The only difficulty of imple-
menting this is that we now need two different references to
the same variable (array, etc.)—its address in RAM and its
address (page-based) in the iB, which we shall call the iBak in
this application. To overcome this, a few simple Forth words
solve the problem.

To begin with, we make a note of the starting RAM ad-
dress of the backed-up variables (iBAKram), and declare the
starting address of the iBak (iBAKstart). Also, when we have
reached the end of declaring the backed-up variables, we can
calculate the total size of the area used (iBAKsize). We will
be storing 29-byte (29 is called iBDATA) chunks of RAM into
iB pages of 32 bytes (32 is called iBPAGE). This means that, to
back up even a single byte, the entire 29-byte page will be
written from memory into the iB. The following table
summarises the correlation between RAM addresses and iB
adresses.

RAM Adresses iB Page
BASE Address Range

iBAKram ..(to+28) iBAKstart
iBAKram+ iBDATA ..(to+28) iBAKstart+ iBPAGE
iBAKram+2*iBDATA ..(to+28) iBAKstart+2*iBPAGE
 … etc.

Note that the RAM addresses are proceeding in steps of 29
(iBDATA), while the iB addresses are proceeding in steps of
32 (iBPAGE). This complexity is part of what we are trying to
hide here! The RAM addresses in the left-hand column repre-
sent base addresses which correspond to pages in the iB—
any RAM address between a base address and the base ad-
dress+28 will use the base address, and a count of 29, in reads
from, and writes to, the iBak.

To implement our interface, we develop some utility words:
A>PG takes a RAM address and returns a base RAM address

which corresponds to the start of the associated iB page.
Ac>PGS takes a RAM address and count, and returns the

base of the starting page, the base of the ending page, and a
count of the number of iB pages consumed by the original
count. As the interface to the iB is via arrays (i.e., address
count), the job of this word is to work out whether the RAM
array crosses any iB page boundaries, and thus requires mul-
tiple page accesses.

For example, if a two-byte variable occupies the last byte
of one iB page and the first byte of the next iB page, Ac>PGS
will return the base address of the first page, the base address
of the second page, and a count of two. If the two-byte vari-
able occupies two successive bytes of one iB page, then, after
Ac>PGS, the start and end page base addresses will be the
same, and the count will be one.

The last functional is iBPAGES, used in both iBakMOVE
and iBakMOVE>, whose job is to provide the correct argu-
ments for either iBMOVE or iBMOVE>, as well as leave on the
stack the data to calculate the next iteration’s arguments.
iBPAGES takes an address and count on the stack, and leaves
the address+29 (ready for the next page, if there is one), the
count-1 (this number being zero is taken as termination), and
then the original address, the iB page (calculated from the
address), and the count of 29 (iBDATA), which are used as a
set of three by either iBMOVE or iBMOVE>.

With these functionals, we can construct the final words
iBakMOVE and iBakMOVE>. For both words, we use Ac>PGS to
calculate our looping parameters, and then begin a loop of:

iBPAGES iBMOVE (or iBPAGES iBMOVE>).

The phrase 0 ,Y LDD, 0= UNTIL, non-destructively
tests the top of stack (which holds the decrementing count),
so that the loop continues until the count is zero. Finally, we
drop the two remnants from the stack. So we can use these
words as follows:

Address Count iBakMOVE
to write data to the iBak

Address Count iBakMOVE>
to read data from the iBak

Note that we don’t need to know the associated iBak ad-
dresses or whether the array wraps over between pages—the
iBakMOVE words do all of this work for us! We can move the
entire array to and from the iBak with the following phrases:

SUB: RAM>iBAK iBAKRAM iBAKSIZE iBakMOVE
;SUB
SUB: iBAK>RAM iBAKRAM iBAKSIZE iBakMOVE>
;SUB

To automatically back up any variables as we write to them,
we could easily develop, say:

SUB: C!Bak (n A --) TUCK C! 1 iBakMOVE ;SUB
SUB: !Bak (n A --) TUCK ! 2 iBakMOVE ;SUB

54 Forth Dimensions XXI.1,2

\ StartUp - Compilers DCE 13:05 03.02.98
HEX
ASM DEFINITIONS 5000 CONSTANT ROMBASE 2000 CONSTANT ROMSIZE
 ROMBASE ROMSIZE + CONSTANT ROMEND

EMULATE!
 TARGET .IF 0 ROMSIZE - THERE - .ELSE 0 .THEN dA !

: RAMBASE TARGET IF 2000 ELSE ROMBASE 1800 - THEN ;

 RAMBASE RAMPTR !
 ROMBASE 40 + (RegsArea) TDP ! THERE ROMSIZE 42 - FF FILL

\ StartUp - RamLocations, Lines DCE 15:06 06.05.99
HEX
B02E CONSTANT SCSR B02F CONSTANT SCDR
 7E CONSTANT JMPop

CVAR OUTJMP VAR STDOUT (OutPutRedirect)
CVAR STOPS (Errors that cause STOP!)

 08 RARRAY #$ (Formatting NumberStrings)

 VAR LOOPTR (LoopPointer - i.e. Counter)
 VAR LOOPND (LoopEnd - i.e. Limit)

\ StartUp - Primitives DCE 13:04 13.05.99

SUB: wait BEGIN, .B CLR, BEGIN, .B DEC, 0= UNTIL,
 .A DEC, 0= UNTIL, ;SUB

SUB: OUT OUTJMP JMP, ;HC

 : #OUT # LDB, OUT ;

SUB: PSHD DEY, DEY, 0 ,Y STD, ;SUB
SUB: PSHB .A CLR, DEY, DEY, 0 ,Y STD, ;SUB

 : CPUSH LDB, PSHB ;
 : PUSH LDD, PSHD ;

SUB: POPD 0 ,Y LDD, INY, INY, ;SUB
SUB: OVER 2 ,Y LDD, PSHD ;SUB
SUB: SWAP 0 ,Y LDD, 2 ,Y LDX, 0 ,Y STX, 2 ,Y STD, ;SUB
SUB: NIP POPD 0 ,Y STD, ;SUB

SUB: lit PULX, (X) LDD, INX, INX, PSHX, PSHD ;SUB
 : LIT lit , ; (n -- \ Compile n as Literal)

SUB: 2DROP INY, INY, INY, INY, ;SUB (n n --)
SUB: DROP INY, INY, ;SUB (n --)

'S 2DROP DUP CONSTANT POP2 4 + CONSTANT POP

SUB: DUP 0 ,Y LDD, PSHD ;SUB (n -- n n)
SUB: 2DUP 2 ,Y LDD, PSHD 2 ,Y LDD, PSHD ;SUB
SUB: 3DUP 4 ,Y LDD, PSHD 4 ,Y LDD, PSHD
 4 ,Y LDD, PSHD ;SUB

SUB: ROT 4 ,Y LDD, N STD, 2 ,Y LDD, 0 ,Y LDX,
 2 ,Y STX, 4 ,Y STD, N LDD, 0 ,Y STD, ;SUB

FORML, from page 78.
The book includes all the code re-
quired with documentation.
(R.E.Haskell,:Design of Embedded Sys-
tems Using 68HC12/11 Microcontrol-
lers, Prentice-Hall, Upper Saddle
River, NJ, 2000)

Of similar interest is the use of
Forth (FICL comes to mind) to wrap
C/C++ code, such as drivers. It could
provide an interactive user interface
at the top, and hardware emulation
at the bottom. This would permit
testing, debugging, and evaluating
the driver code long before the
hardware becomes available.

Philip Daunt, whose practice is
law, provided a first for FORML, a
talk not about Forth but on the Law.
He listed some of the problems in
which engineers-turned-business-
men can be ensnared.

Elizabeth Rather spoke to the
request that the equivalent of MS
Foundation Classes be provided in
SwiftForth. The answer: they are
exploring the task, but don’t hold
your breath. Not only is the num-
ber and complexity of these classes
daunting, but not a few have bugs,
as well. A useful subset may be a
possibility, with the Forth commu-
nity filling in the rest.

Chuck Moore provided a few
more details about Color Forth. It
has no name fields. Instead, words
are hashed and their addresses lo-
cated through a table. Words, then,
will not provide a list of words in
the dictionary.

The new single command line
works well. As you type, letters en-
ter from the right, travel left, and
vanish at the left edge.. Words are
interpreted as soon as a blank space
is entered. You always have a his-
tory of 80 characters.

Of the short papers that
wrapped up the discussion, I en-
joyed most the one by Dr. C.H.
Ting. He spoke to the essence of
Forth, the “Tao of Forth.”

Michael Ham had written,
“Forth is like the Tao; it is a Way,
and is realized when followed. Its
fragility is its strength; its simplic-
ity is its direction.” Ting sought a
greater simplification inspired by
the Tao Te Ching, chapter 48:

“Do learn daily, increase. Do
Tao daily, decrease. Decrease and

Forth Dimensions XXI.1,2 55

SUB: -ROT 0 ,Y LDD, N STD, 2 ,Y LDD, 4 ,Y LDX,
 2 ,Y STX, 0 ,Y STD, N LDD, 4 ,Y STD, ;SUB

SUB: + 2 ,Y LDD, 0 ,Y ADDD, 2 ,Y STD, POP JMP, ;HC

SUB: 1- 0 ,Y LDD, 1 # SUBD, 0 ,Y STD, ;SUB (n -- n-1)
SUB: 1+ 0 ,Y LDD, 1 # ADDD, 0 ,Y STD, ;SUB (n -- n+1)

SUB: C@ 0 ,Y LDX, (X) LDB, .A CLR, 0 ,Y STD, ;SUB

SUB: C! 2 ,Y LDD, 0 ,Y LDX, (X) STB, POP2 JMP, ;HC
SUB: ! 2 ,Y LDD, 0 ,Y LDX, (X) STD, POP2 JMP, ;HC

HEX
SUB: M/MOD (d n -- R Q \ Divides n into d => Rem Quotient)
 4 ,Y LDD, 2 ,Y LDX, 4 ,Y STX,
 ASLD, 2 ,Y STD, 10 # LDX,
 BEGIN, 4 ,Y LDD, .B ROL, .A ROL,
 CS NOT IF, 0 ,Y CPD, CS NOT IF, F[SWAP]F
 THEN, 0 ,Y SUBD, SEC,
 ELSE, CLC, THEN, 4 ,Y STD, 3 ,Y ROL, 2 ,Y ROL,
 DEX, 0= UNTIL, POP JMP, ;HC

SUB: /MOD 0 ,Y LDD, N STD, 0 # LDD, (n n -- R Q)
 0 ,Y STD, N PUSH M/MOD ;SUB

SUB: T0= POPD 0 # CPD, ;SUB (--cc0= if Top=0)

SUB: COUNT 0 ,Y LDX, (X) LDB, INX, 0 ,Y STX, PSHB ;SUB

SUB: "-1" -1 # PUSH ;SUB
SUB: "0" 0 # PUSH ;SUB
SUB: "2" 2 # PUSH ;SUB
SUB: "3" 3 # PUSH ;SUB

SUB: CMOVE (A B c -- \ Move memory from A to B for c bytes)
 BEGIN, 0 ,Y LDX, 0= NOT WHILE, DEX, 0 ,Y STX,
 4 ,Y LDX, (X) LDB, INX, 4 ,Y STX,
 2 ,Y LDX, (X) STB, INX, 2 ,Y STX,
 REPEAT, DROP POP2 JMP, ;HC

\ FORTHKernel - Converters DCE 11:49 16.06.99
HEX
SUB: do POPD LOOPTR STD, (End St --)
 POPD LOOPND STD, ;SUB

SUB: loop LOOPTR LDD, 1 # ADDD, LOOPTR STD, (-- CS)
 LOOPND CPD, ;SUB

 : DO, do BEGIN, ;
 : LOOP, loop CS NOT UNTIL, ;

\ Variables - RAMarrays DCE 11:49 16.06.99
HEX
 CVAR iBCNT (Utility Count byte)
 CVAR iBCRC CVAR CRChi (CRCBytes, low, high)
 CVAR iBRETRY (ReTry Counter)

20 RARRAY UDPBUFF (UniveralDataPacket Buffer)

SUB: "UDPBUFF" UDPBUFF # PUSH ;SUB (-- n) Pushes "UDP"

\ CRC16Low DCE 14:54 29.07.97
HEX

decrease until — nothing. Do no,
do and no no do.”

In American idom, “To acquire
knowledge, add. To gain Wisdom,
subtract.”

Thus, the Tao of Forth is
-- > :

(The meaning of the Tao of Forth
escaped me, so I asked Dr. Ting
about it. The colon, of course, is the
Colon Word. This Word represents
the start of all Forth, the point at
which new definitions are defined
that take the essence of Forth and
extend it to reach the universe.

On further refection, it is obvi-
ous that the essence—that is, the
Wisdom—of Forth is derived by
subtracting non-essential Words
from Forth until an irreducible set
of Words is left. In describing his
P8 Forth processor, Dr. Ting had re-
duced that number of primitive
Words to 25. From these, the Forth
core, kernel, programming envi-
ronment, and program itself even-
tually all flow.)

Four attendees brought hard-
ware to demonstrate.

Dr.Ting showed the wire-wrap
setup he used to program his P8
Forth processor.

John Hart demonstrated a step-
per-motor controller using a PGA.
By using the current pulses driving
the stepper, it could determine the
position of the motor without ex-
ternal sensors.

András Zsótér demonstrated the
iTV web hardware. An old Sinclair
computer provided the keyboard
input, a TV the display, and a por-
table computer emulated a web
site. Text is clear, though limited
to TV resolution. The hard part is
still to come—ramping up for pro-
duction and devloping a market
adequate to make it pay.

John Hall brought some of the
colorful clamshell Apple portable
computers. They resemble game
machines and I see the appeal to the
high school and college crowd. They
are complete systems with a fast re-
sponse, but are surprisingly heavy.

The meeting ended with the
distribution of prizes and closing
remarks by Richard Wagner.

56 Forth Dimensions XXI.1,2

HC: CRC16LO 00 C, C1 C, 81 C, 40 C, 01 C, C0 C, 80 C, 41 C,
 01 C, C0 C, 80 C, 41 C, 00 C, C1 C, 81 C, 40 C,
 01 C, C0 C, 80 C, 41 C, 00 C, C1 C, 81 C, 40 C,
 00 C, C1 C, 81 C, 40 C, 01 C, C0 C, 80 C, 41 C,
 01 C, C0 C, 80 C, 41 C, 00 C, C1 C, 81 C, 40 C,
 00 C, C1 C, 81 C, 40 C, 01 C, C0 C, 80 C, 41 C,
 00 C, C1 C, 81 C, 40 C, 01 C, C0 C, 80 C, 41 C,
 01 C, C0 C, 80 C, 41 C, 00 C, C1 C, 81 C, 40 C,
 01 C, C0 C, 80 C, 41 C, 00 C, C1 C, 81 C, 40 C,
 00 C, C1 C, 81 C, 40 C, 01 C, C0 C, 80 C, 41 C,
 00 C, C1 C, 81 C, 40 C, 01 C, C0 C, 80 C, 41 C,
 01 C, C0 C, 80 C, 41 C, 00 C, C1 C, 81 C, 40 C,
 00 C, C1 C, 81 C, 40 C, 01 C, C0 C, 80 C, 41 C,
 01 C, C0 C, 80 C, 41 C, 00 C, C1 C, 81 C, 40 C,
 01 C, C0 C, 80 C, 41 C, 00 C, C1 C, 81 C, 40 C,
 00 C, C1 C, 81 C, 40 C, 01 C, C0 C, 80 C, 41 C,
 01 C, C0 C, 80 C, 41 C, 00 C, C1 C, 81 C, 40 C,
 00 C, C1 C, 81 C, 40 C, 01 C, C0 C, 80 C, 41 C,
 00 C, C1 C, 81 C, 40 C, 01 C, C0 C, 80 C, 41 C,
 01 C, C0 C, 80 C, 41 C, 00 C, C1 C, 81 C, 40 C,
 00 C, C1 C, 81 C, 40 C, 01 C, C0 C, 80 C, 41 C,
 01 C, C0 C, 80 C, 41 C, 00 C, C1 C, 81 C, 40 C,
 01 C, C0 C, 80 C, 41 C, 00 C, C1 C, 81 C, 40 C,
 00 C, C1 C, 81 C, 40 C, 01 C, C0 C, 80 C, 41 C,
 00 C, C1 C, 81 C, 40 C, 01 C, C0 C, 80 C, 41 C,
 01 C, C0 C, 80 C, 41 C, 00 C, C1 C, 81 C, 40 C,
 01 C, C0 C, 80 C, 41 C, 00 C, C1 C, 81 C, 40 C,
 00 C, C1 C, 81 C, 40 C, 01 C, C0 C, 80 C, 41 C,
 01 C, C0 C, 80 C, 41 C, 00 C, C1 C, 81 C, 40 C,
 00 C, C1 C, 81 C, 40 C, 01 C, C0 C, 80 C, 41 C,
 00 C, C1 C, 81 C, 40 C, 01 C, C0 C, 80 C, 41 C,
 01 C, C0 C, 80 C, 41 C, 00 C, C1 C, 81 C, 40 C, ;HC

\ CRC16Hi DCE 14:54 29.07.97
HEX
HC: CRC16HI 00 C, C0 C, C1 C, 01 C, C3 C, 03 C, 02 C, C2 C,
 C6 C, 06 C, 07 C, C7 C, 05 C, C5 C, C4 C, 04 C,
 CC C, 0C C, 0D C, CD C, 0F C, CF C, CE C, 0E C,
 0A C, CA C, CB C, 0B C, C9 C, 09 C, 08 C, C8 C,
 D8 C, 18 C, 19 C, D9 C, 1B C, DB C, DA C, 1A C,
 1E C, DE C, DF C, 1F C, DD C, 1D C, 1C C, DC C,
 14 C, D4 C, D5 C, 15 C, D7 C, 17 C, 16 C, D6 C,
 D2 C, 12 C, 13 C, D3 C, 11 C, D1 C, D0 C, 10 C,
 F0 C, 30 C, 31 C, F1 C, 33 C, F3 C, F2 C, 32 C,
 36 C, F6 C, F7 C, 37 C, F5 C, 35 C, 34 C, F4 C,
 3C C, FC C, FD C, 3D C, FF C, 3F C, 3E C, FE C,
 FA C, 3A C, 3B C, FB C, 39 C, F9 C, F8 C, 38 C,
 28 C, E8 C, E9 C, 29 C, EB C, 2B C, 2A C, EA C,
 EE C, 2E C, 2F C, EF C, 2D C, ED C, EC C, 2C C,

(CRC16HI) E4 C, 24 C, 25 C, E5 C, 27 C, E7 C, E6 C, 26 C,
 22 C, E2 C, E3 C, 23 C, E1 C, 21 C, 20 C, E0 C,
 A0 C, 60 C, 61 C, A1 C, 63 C, A3 C, A2 C, 62 C,
 66 C, A6 C, A7 C, 67 C, A5 C, 65 C, 64 C, A4 C,
 6C C, AC C, AD C, 6D C, AF C, 6F C, 6E C, AE C,
 AA C, 6A C, 6B C, AB C, 69 C, A9 C, A8 C, 68 C,
 78 C, B8 C, B9 C, 79 C, BB C, 7B C, 7A C, BA C,
 BE C, 7E C, 7F C, BF C, 7D C, BD C, BC C, 7C C,
 B4 C, 74 C, 75 C, B5 C, 77 C, B7 C, B6 C, 76 C,
 72 C, B2 C, B3 C, 73 C, B1 C, 71 C, 70 C, B0 C,
 50 C, 90 C, 91 C, 51 C, 93 C, 53 C, 52 C, 92 C,
 96 C, 56 C, 57 C, 97 C, 55 C, 95 C, 94 C, 54 C,
 9C C, 5C C, 5D C, 9D C, 5F C, 9F C, 9E C, 5E C,
 5A C, 9A C, 9B C, 5B C, 99 C, 59 C, 58 C, 98 C,
 88 C, 48 C, 49 C, 89 C, 4B C, 8B C, 8A C, 4A C,

Forth Dimensions XXI.1,2 57

 4E C, 8E C, 8F C, 4F C, 8D C, 4D C, 4C C, 8C C,
 44 C, 84 C, 85 C, 45 C, 87 C, 47 C, 46 C, 86 C,
 82 C, 42 C, 43 C, 83 C, 41 C, 81 C, 80 C, 40 C, ;HC

\ iButtons - Start of actual iButton code! DCE 11:06 17.06.99
HEX

: iBDL B000 ; (B000 is PortA)
: iBDm 80 ; ($80 is bit 7)
: iBDR B026 ; (B026 is PortA "iBDirnReg")
: iBRm 80 ; ($80 is bit 7)

SUB: iBPAGE 20 LIT ;SUB (32Bytes per Page)
SUB: iBDATA 1D LIT ;SUB (29bytes+Cnt|CHK|SUM|)

SUB: tmwait (INPUT in B, Uses 5n+11 Cycles)
 BEGIN, .B DEC, 0= UNTIL, ;SUB

(Macro: Computes on the ASSEMBLE-TIME stack, compiles nothing!)

: uSwait F[2* 15 - 5 /]F ; (A:uS -- A:Wc for2MHzClock)

SUB: WRLO (t --) (Uses same time as "tmwait", but on stack!)
(SetupLowOut:) iBDL LDB, iBDm FF XOR # .B AND, iBDL STB,
(Dirn Output:) iBDR LDB, iBRm # .B ORA, iBDR STB,
(Wait:) 0 ,Y LDD, BEGIN, .B DEC, 0= UNTIL,
(Dirn Input:) iBDR LDB, iBRm FF XOR # .B AND, iBDR STB,
(Drop Stack) DROP ;SUB

 (N.B. This is a CRITICALLY TIMED Subroutine!!!)
SUB: RDiBRST (leaves 0= if LoSensed in 480uS after WriteLo)
 SEI, (Set InterruptMask)
 (448) 1C0 uSwait # CPUSH WRLO (SendPresencePulse)
 .A CLR, (Clear Result Reg)
 1D # LDB, iBCNT STB, (Setup Counter)
 BEGIN, iBDL LDB, iBDm # .B AND, (Pulled Low?)
 0= IF, 1 # LDA, (Yes:Setup Answer)
 ELSE, NOP, NOP, (ElseTime balance)
 THEN, iBCNT DEC, (Count Loops)
 0= UNTIL, CLI, 1 # .A CMP, ;SUB (Setup return flag)

SUB: iBPRESENT RDiBRST 0= NOT IF, Error! THEN, ;SUB

SUB: !iBYTE 01 # LDB, N STB, (c --)
 BEGIN, 0 ,Y LDD, N .B AND,
 0= IF, (Wr0:) SEI, 3C uSwait # CPUSH WRLO CLI,
 ELSE, (Wr1:) SEI, (now write lo for 3uS:)
(SetupLowOut:) iBDL LDB, iBDm FF XOR # .B AND, iBDL STB,
(Dirn Output:) iBDR LDB, iBRm # .B ORA, iBDR STB,
(Dirn Input:) iBRm FF XOR # .B AND, iBDR STB,
 34 uSwait # LDB, tmwait CLI,
 THEN, N ROL, CS UNTIL, DROP ;SUB

SUB: @iBYTE DEY, DEY, 0 ,Y CLR, 8 # LDB, N STB, (-- n)
 BEGIN, SEI,
(SetupLowOut:) iBDL LDB, iBDm -1 XOR # .B AND, iBDL STB,
(Dirn Output:) iBDR LDB, iBRm # .B ORA, iBDR STB,
(Dirn Input:) iBRm -1 XOR # .B AND, iBDR STB,
 4 # LDB, tmwait (PostPulseWait)
 iBDL LDB, iBDm # .B AND, (LowSensed?)
 0= IF, 1 # LDA, ELSE, .A CLR, THEN, (SetupResultReg)
 CLI, 1 # LDB, tmwait (PostSenseWait)

58 Forth Dimensions XXI.1,2

 1 # .A CMP, (TestResultReg)
 0= IF, CLC, ELSE, SEC, THEN, 1 ,Y ROR, N DEC,
 0= UNTIL, ;SUB

SUB: iBSKIP iBPRESENT CC # CPUSH !iBYTE ;SUB

SUB: RDSX (-- TA1 TA2 E/S)
 iBSKIP AA # CPUSH !iBYTE
 @iBYTE @iBYTE @iBYTE ;SUB

SUB: SXOK RDSX POPD 2DROP 20 # .B CMP, (ccCS=>OK)
 CS IF, CLC, ELSE, SEC, THEN, ;SUB

SUB: SXCHK (CA TA c -- CA TA c ALO AHI ES) (& CS if Error)
 RDSX 5 ,Y LDD, 9 ,Y .B CMP,
 0= NOT IF, SEC,
 ELSE, 3 ,Y LDD, 8 ,Y .B CMP,
 0= NOT IF, SEC,
 ELSE, 0 ,Y LDD, 20 # .B CMP,
 CS NOT IF, SEC, ELSE, CLC, THEN,
 THEN,
 THEN,
 CS NOT IF, A ,Y LDX, 7 ,Y CPUSH
 BEGIN, @iBYTE POPD (X) .B CMP,
 0= NOT IF, 1 # LDB, SEC,
 ELSE, 1 ,Y LDB, .B DEC,
 0= IF, 0 # LDB, SEC,
 ELSE, 1 ,Y STB, INX, CLC, THEN,
 THEN,
 CS UNTIL, DROP 1 # .B CMP, 0= IF, SEC, ELSE, CLC, THEN,
 ELSE, RDiBRST SEC, (do TMRST to clear iBState)
 THEN, ;SUB

SUB: SXMOVE (CA TA c -- CA TA c)
 iBSKIP 0F # CPUSH !iBYTE
 3 ,Y CPUSH !iBYTE
 2 ,Y CPUSH !iBYTE 4 ,Y LDX, DUP
 BEGIN, (X) LDB, PSHB !iBYTE 1 ,Y LDB, .B DEC,
 0= IF, SEC, ELSE, 1 ,Y STB, INX, CLC, THEN, CS UNTIL,
 DROP ;SUB

SUB: SXCOPY (CA TA c ALO AHI ES --)
 iBSKIP 55 # CPUSH !iBYTE
 4 ,Y LDD, PSHB !iBYTE
 2 ,Y LDD, PSHB !iBYTE !iBYTE
 2DROP 2DROP DROP ;SUB

SUB: UDPCRC 0 ,Y LDD, iBCRC .B EOR, 0 ,Y STD, (n --)
 CRC16HI # ADDD, XGDX, (X) LDB, N STB,
 POPD CRC16LO # ADDD, XGDX, (X) LDB, CRChi .B EOR,
 iBCRC STB, N LDB, CRChi STB, ;SUB

SUB: MAKE-UDP (CA TA c -- A' TA c+3)
 0 ,Y LDD, UDPBUFF STB, ROT "UDPBUFF" 1+ ROT CMOVE
 0 ,Y LDD, LSRD, LSRD, LSRD, LSRD, LSRD,
 CRChi STA, iBCRC STB, "UDPBUFF" DUP C@ 1+
 BEGIN, OVER C@ UDPCRC SWAP 1+ SWAP 1- 0 ,Y LDD,
 0= UNTIL, DROP CRChi LDB, FF # .B EOR,
 iBCRC LDA, FF # .A EOR, PSHD SWAP !
 "UDPBUFF" SWAP OVER C@ "3" + ;SUB

SUB: iBMOVE? (CA TA c --) (ccCS if OK)

Forth Dimensions XXI.1,2 59

 SXMOVE SXCHK
 CS NOT IF, SXCOPY SXOK
 ELSE, 2DROP 2DROP 2DROP CLC, THEN, ;SUB

SUB: iBMOVE>? (CA TA c --) (cc0= if OK)
 2 ,Y LDD, LSRD, LSRD, LSRD, LSRD, LSRD,
 CRChi STA, iBCRC STB,
 iBSKIP F0 # CPUSH !iBYTE
 3 ,Y CPUSH !iBYTE
 2 ,Y CPUSH !iBYTE NIP
 "0" DO, @iBYTE DUP UDPCRC OVER C! 1+ LOOP, DROP
 CRChi LDA, iBCRC LDB, B001 # CPD, ;SUB

SUB: iBMOVE (CA TA c --) (NOTE: "c" MUST BE <=29 $1D !!!)
 MAKE-UDP 14 # LDB, iBRETRY STB,
 BEGIN, 3DUP iBMOVE?
 CS NOT IF, 2 # LDA, wait iBRETRY DEC,
 0= IF, Error! ELSE, CLC, THEN,
 THEN, CS UNTIL, DROP 2DROP ;SUB

SUB: iBMOVE> (CA TA c --) (NOTE: "c" MUST BE <=29 $1D)
 "3" + UDPBUFF LIT -ROT 14 # LDB, iBRETRY STB,
 BEGIN, 3DUP iBMOVE>? 0= IF, SEC,
 ELSE, iBRETRY DEC,
 0= IF, Error! ELSE, CLC, THEN,
 THEN, CS UNTIL, 2DROP
 COUNT ROT SWAP CMOVE ;SUB

\ Backup Memory (iBak) Example:

\ Variables - Start of iBAKed variables DCE 14:34 09.06.99

DECIMAL
RAMPTR F[@]F CONSTANT iBAKram (Start of iBAKed Variables)
 1024 CONSTANT iBAKstart (Start of backup IN iBAK)

(....declare variables we wish to back up)

F[RAMPTR @ 1- iBAKram - 29 / 1+ 29 *]F CONSTANT iBAKsize

SUB: iBAKRAM iBAKram LIT ;SUB
SUB: iBAKSTART iBAKstart LIT ;SUB
SUB: iBAKSIZE iBAKsize LIT ;SUB

SUB: A>PG iBAKRAM - iBDATA / iBDATA * iBAKRAM + ;SUB
SUB: Ac>PGS OVER + 1- A>PG SWAP A>PG TUCK - iBDATA / 1+ ;SUB

SUB: iBPAGES (A n -- A+29 n-1 A iBA 29)
 1- OVER iBDATA + SWAP ROT DUP
 iBAKRAM - iBDATA / iBPAGE * iBAKSTART + (A>iB)
 iBDATA (Count) ;SUB

SUB: iBakMOVE (A n --)
 Ac>PGS BEGIN, iBPAGES iBMOVE 0 ,Y LDD, 0= UNTIL, 2DROP ;SUB

SUB: iBakMOVE> (A n --)
 Ac>PGS BEGIN, iBPAGES iBMOVE> 0 ,Y LDD, 0= UNTIL, 2DROP ;SUB

SUB: RAM>iBAK iBAKRAM iBAKsize LIT iBakMOVE ;SUB
SUB: iBAK>RAM iBAKRAM iBAKsize LIT iBakMOVE> ;SUB

60 Forth Dimensions XXI.1,2

Object-Oriented Programming in Forth

Better Than Oberon

Hugh Aguilar • haguilar@dancris.com

Casts are one of the most error-prone facilities in C++.
They are also one of the ugliest syntactically.

—Bjarne Stroustrup

It should be recognized that the single most important
contribution towards a design’s reliability is the elimination
of superfluous features and facilities, and the containment of
its complexity.

—Niklaus Wirth

What is OOP — extensible records
There are a lot of ways to implement OOP in Forth. Each

method has varying levels of complexity and capability and,
most importantly, differing design goals. A programmer
should not be too concerned with which method is the “best.”
He may choose one method for one program and another
method for another program. This kind of flexibility is what
makes Forth strong. In C++, for example, the programmer is
pretty much tied to multiple-inheritance for all of his pro-
grams, even if single-inheritance would be suitable for some
and multiple-inheritance only needed for a few. The method
described in this article is based on the method used in the
Oberon language (designed by Niklaus Wirth). Our method
is better, however, because we have constructors and destruc-
tors, the lack of which is the most serious flaw in Oberon.

Dick Pountain, while describing ordinary records, makes
the following observation [1]:

Since field-names are just global Forth definitions in the
dictionary, there is nothing to prevent the programmer using
a field name from one record type to reference a record of a
different type. The result would of course be garbage if
fetching data and corruption of the other fields if storing
data (except in the unlikely event that the field offsets just
happen to be the same).

This problem of accidentally using one record’s fields in
another record as always been with us and was especially
prevalent in assembly language. OOP seems to have been in-
vented when somebody said, “What if we purposely con-
structed our records to effect that ‘unlikely’ event of them
having the same fields in the same place? We could then write
code that would work on more than one type of record with-
out having to rewrite the code for each type!” This is the crux
of OOP. A type of record is defined. Later, a new type of record
is defined. This record type needs all of the fields of that first
type as well as some new fields as well. Instead of just writing
a new record type with all of the fields in arbitrary order, we
write the new record type with the fields common to the first
record type in the same order and position. The new fields

are appended upon those common fields, causing the new
record type to be larger. All of the code written to access the
first record type will work on the second record type as well.
The first record type is the base class, and the extended record
type is the derived class. This is called inheritance and it is the
primary point of OOP. Niklaus Wirth speaks on inheritance [3]:

We recognize at this point that the ultimate innovation
was data type extensibility, which unfortunately remained
obscured behind the much less expressive term ‘object-
oriented.’ Rather unfortunately, this term was accompanied
by a whole new nomenclature for many already familiar
concepts with the aim of perpetrating a new view or
metaphor of programming at large. Thus types became
classes, variables instances, procedures methods and
procedure activations messages.

The second major point of OOP (encapsulation) is that
code should be associated with data. Each record type has
functions associated with it called methods or member func-
tions. Some member functions never change and are coded
statically (early binding). Others may get rewritten in derived
classes. These are called virtual member functions. Some lan-
guages, such as Oberon, will store vectors to these functions
in fields within the record. Other languages, such as C++ and
Pascal, will have a single field in the record (usually at the
0th offset) which contains a pointer to an array of vectors.
This array contains vectors to all of the member functions
associated with that record type. It is called the VMT (Virtual
Method Table). The use of virtual member functions is simi-
lar to the use of vectors in traditional Forth. The idea is that
the virtual member function can be rewritten (and a new value
stored in its vector variable) and the higher level code which
calls the virtual member function (with a PERFORM of the
vector) does not have to be rewritten. The programmer who
changes the contents of the vector does not even have to
have access to the source code for the higher level code or do
a recompile of it. It will be the same code but it will act differ-
ently because it will be calling a new virtual member function
during the course of its execution. This is called late binding.

Other than Oberon, most languages use a VMT. There are
arguments both for and against the use of a VMT. A good thing
about the VMT is that it saves memory inside of the record
(called an object or an instance). This is because only the pointer
to the VMT needs to be stored in every object, rather than
vectors to all of the virtual member functions. Another good
thing is that, when creating a new object, the only field which
has to be initialized is the pointer to the VMT (rather than
several vectors). A bad thing about the VMT is that we can not
modify the vectors associated with individual objects. Any

Forth Dimensions XXI.1,2 61

modification of the VMT would affect all of the objects which
contain a pointer to that VMT (all of the objects of a particular
class). This isn’t generally a problem because the normal way
to modify the vectors is to derive a new class and give it a new
and slightly modified VMT. Another bad thing about the VMT
is that it adds an additional level of indirection to the run-
time execution of virtual member functions. With modern
processors (the PowerPC) that have a lot of registers, this isn’t
a problem. When implementing OOP on a processor that suf-
fers from register starvation (the Pentium), however, the VMT
can be unduly slow. Most CISC processors suffer from register
starvation. The problem of using a VMT on a processor with
too few registers has already been discussed in Forth Dimen-
sions in regard to the i21 processor [8].

We will be using the Oberon method, to store the vectors
as ordinary fields in the records and to do away with the VMT.
One reason is that we might want put our system on an eight-
bit computer. Forth is used quite a lot for embedded control-
lers, where eight-bit processors with few registers are still the
norm. The fact that VMTs use less memory, on the other hand,
might make them the preferred method for some applications.
In general, though, memory is inexpensive these days and even
small systems will often have the full 64K compliment.

nifty features, but difficult to appreciate the amount of work
which is involved in implementing and supporting increas-
ingly complex designs. Furthermore, many people don’t ap-
preciate that almost all design decisions involve a trade-off
between conflicting goals. Features like multiple-inheritance
are an absolute requirement to some programmers but are an
unwanted performance degradation to other programmers
and to all programmers are yet another thing that has to be
learned and understood before beginning work.

Fortunately, Forth programmers don’t have to donate a
kidney in order to propose a new language feature. More prac-
tically, they don’t have to convince a benevolent dictator that
their proposal is worthy of implementation; they just imple-
ment it themselves. If a Forth programmer’s language exten-
sion has some general utility, he can e-mail the source code
and a write-up to the FIG office and, most likely, get it pub-
lished in Forth Dimensions. Best of all, the readers of Forth
Dimensions have the choice of adding the feature to their own
Forth compiler or ignoring it if they have no use for it. Grady
Booch says [5], “Multiple inheritance is like a parachute; you
don’t need it very often, but when you do it is essential.”
Forth programmers have the option of wearing a parachute
when they pilot an airplane but of foregoing this precaution

Figure One.

CLASS BNODE NOTHING \ binary tree node

 POINTER .LEFT \ pointer to left node
 POINTER .RITE \ pointer to right node
 VIRTUAL .COMPARE \ ^root_node -- -1|0|1
 VIRTUAL .INSERT \ ^root_node -- ^found_node

 VARIABLE ^^PARENT \ set by INSERT (0 if root_node is found_node)
 \ will be useful for rotating nodes in the tree

 : MAKE_ROOT \ ^^root_node -- ^new_root \ assumes ^root_node is 0
 SELF SWAP ! \ make SELF the new root
 SELF ;

 : LOW_INSERT \ ^^root_node -- ^found_node \ ^root_node is nonzero
 BEGIN DUP @ SELF .COMPARE ?DUP WHILE
 -1 = IF DUP @ .LEFT
 ELSE DUP @ .RITE THEN \ ^^root ^^child --
 SWAP ^^PARENT ! \ ^^child --
 DUP @ 0= IF MAKE_ROOT EXIT THEN \ there is no ^child node
 REPEAT
 @ ; \ return ^root_node as the found node
 PRIVATE

 : <INSERT> \ ^^root_node -- ^found_node
 0 ^^PARENT !
 DUP @ 0= IF MAKE_ROOT EXIT THEN
 LOW_INSERT ;

 : <BNODE>
 0 SELF .LEFT !
 0 SELF .RITE !
 ['] ABSTRACT SELF VIRTUAL_ADR .COMPARE !
 ['] <INSERT> SELF VIRTUAL_ADR .INSERT ! ;

' <BNODE> ' NADA END_CLASS BNODE

Our OOP is a minimalist
system in the spirit of
Oberon, a language which
Wirth presented as being the
simplest language possible
which is still capable of sup-
porting serious and large-
scale work. C++ seems to go
in the opposite direction,
acquiring over time new fea-
tures (such as multiple-inher-
itance) which were originally
deemed to be unnecessary
complications. This is de-
spite C++ inventor, Bjarne
Stroustrup, making a strong
effort to keep C++ as
minimalist as possible. With-
out his personal efforts, C++
would have probably bloated
completely beyond usability
a long time ago. Stroustrup
[2] appreciatively quotes Jim
Waldo as saying:

Proposers of new
features [to C++] should
be required to donate a
kidney. That would make
people think hard before
proposing, and even
people without any sense
would propose at most
two extensions.

One can empathize with
Stroustrup’s obvious frustra-
tion with proposers of new
features. It is easy to propose

62 Forth Dimensions XXI.1,2

when they ride a bicycle. C++ programmers don’t.

Our OOP — a user’s perspective
The OOP described in this article is called OOOP (pro-

nounced “ope”), for “Oberon-like OOP.” All code is written
in Forth-83 and tested under Laboratory Microsystems’ UR/
Forth. Figure One is a sample class definition.

The word CLASS starts the definition of a class. The word
following it is the name of the class being defined (BNODE).
The word following that is the name of the base class which
this class is derived from. NOTHING is the root of the entire
inheritance tree and is the only class without a base class. In
the beginning there was NOTHING. NOTHING has two data
fields. One is called .CLASS and contains a pointer to a data
structure containing information about the object’s class. The
other is called .KRYSHA and contains a pointer to the del-
egating object if there is one. We will discuss delegation later
on. Because every class has NOTHING as its ultimate base class,
every class has the .CLASS and .KRYSHA fields. Every time
that an object is constructed, its .CLASS field is filled in with
information about the class that created the object.
END_CLASS ends the definition of the class and, similarly to
CLASS, must be followed by the class name. Between CLASS
and END_CLASS, the fields and member functions are defined
as well as anything else (mostly supporting colon words) that
the user wants to define in there. OOOP is not like some Forth
OOP systems, such as SWOOP [6], that redefine common
defining words such as VARIABLE and colon and CREATE in-
side of class definitions. This would be confusing to the user,
to have words’ meanings be context-sensitive. It also prevents
the user from defining normal VARIABLE and colon words,
etc., inside of a class definition. Chuck Moore [7] has said,
“Let the dictionary do the decision making.” OOOP follows
this advice in that it does not use context-sensitivity to de-
termine the meaning of a few words. OOOP has distinct words
associated with distinct operations and it is the user’s respon-
sibility to use the right word in the right place.

CLASS leaves several parameters on the stack which are
updated by the field defining words and which are consumed
by END_CLASS. We have several kinds of fields available. As
we list these, the parameters that we mention are the ones
that the user explicitly provides and do not include the pa-
rameters provided by CLASS.

FIELD
This contains data. It takes one parameter, which is the size
of the field. The field is unaligned.

VIRTUAL
This contains a vector to a late-bound member function. The
field is word aligned.

STRING
This contains data. It is just like FIELD except that it adds
one to the size parameter in order to provide room for the
string’s count byte.

INTEGER
This contains data. It takes no parameters. It creates a field of
one word which is word aligned. INTEGER is like VARIABLE
except that INTEGER defines word-sized fields in classes while
VARIABLE defines word-sized variables statically.

DINTEGER
This contains data. It is just like INTEGER except that pro-
vides room for two words.

POINTER
This contains data. It is just like INTEGER. Using this rather
than INTEGER helps with self-documentation in that it tells
the reader what the data is, a pointer rather than a numeric
integer.

As a convention, the user should make all field names (in-
cluding virtual function names) start with a dot. In the BNODE
class, .LEFT and .RITE are data fields, .COMPARE and .IN-
SERT are late-bound member functions, <BNODE> is the con-
structor. We don’t have any early-bound member functions
or a destructor in this class (later example classes will). All
member functions require the object address on the top of
the stack when they are called. The object address isn’t listed
as one of their parameters in their stack picture comment.
Within the member function, the word SELF is used to refer-
ence the object address.

The constructor must explicitly fill the virtual function
vectors with pointers to colon words. Remember that the vir-
tual functions vectors are in the object itself rather than in a
VMT, so they need to be initialized every time that an object
is constructed. As a convention, the user should make colon
words corresponding to virtual functions be that virtual func-
tion name without the dot in front and surrounded by pointy
brackets (such as <INSERT> for .INSERT). Also as a conven-
tion, the user should make the constructor colon word be
the class name surrounded by pointy brackets (<BNODE> in
the example). The destructor colon word should be the same
except with a tilde in front of the class name (that would be
<~BNODE> if we had one).

A constructor is called when an object is created. Actually,
all the constructors in the inheritance chain are called, start-
ing with the most elder class (this is always NOTHING) and
working down to the class of the object being created. If a
base class constructor fills some field with some data and a
derived class constructor fills that same field with some data,
the derived class’s constructor’s data overwrites that of the
base class. This is especially important with virtual function
vectors. Most classes’ constructors initialize all of the vectors.
The function pointer that actually ends up in each vector,
however, is the one which the latest derivation class construc-
tor puts there. Objects are destroyed by giving their object
address to DESTRUCT. DESTRUCT calls all of the destructors in
the inheritance chain, but does it in the opposite order. It
first calls the destructor of the class created and works its way
up to the most elder base class (NOTHING) destructor.

The constructors don’t have to call MALLOC for the object,
this is already done for them. Similarly, the destructors don’t
have to call FREE for the object, this is done after they ex-
ecute. The constructors and destructors should only be con-
cerned with initializing and uninitializing the data in the
fields. Constructors are quite common since most classes have
virtual functions, the vectors of which need to be initialized.
Destructors are fairly rare. They are primarily used when a
class has a POINTER field which contains a pointer to some
object which was created by the constructor. The destructor
should call DESTRUCT for that object since it is not going to

Forth Dimensions XXI.1,2 63

be used anymore, now that the object containing the pointer
to it is being destroyed. Failure to do this will result in a
memory leak.

In the code for OOOP provided with this article, MALLOC
uses ALLOT to allocate its memory. FREE doesn’t do anything.
In actual use, MALLOC and FREE should be upgraded to allo-
cate and deallocate memory from a heap. The implementa-
tion of a heap is beyond the scope of this magazine article
and we don’t provide one. MALLOC, by the way, always re-
turns a word aligned address.

A common error for programmers is to define the colon
word for a virtual function (such as <INSERT>), but to forget
to fill the virtual function vector (.INSERT) in the construc-
tor. This is because OOOP is the only OOP system that re-
quires the programmer to manually do this. OOOP has a er-
ror-checking built-in to catch this fault. All virtual function
vectors are automatically initialized with pointers to
BAD_VIRTUAL. At run-time, if a virtual function which has
not been initialized in the constructor is called, BAD_VIRTUAL
will abort the program with an error message.

The Oberon language does not have constructors or destruc-
tors. Oberon programmers would typically write a member
function called INIT (or whatever other name they might es-
tablish as a convention) in each class. Upon instantiating an
object, they would then call this initialization function. They
would have another function (possibly called UNINIT) which
they would call just prior to freeing the memory of an object.
This is not a good method because there is no way to call the
constructors and destructors for the base classes of an object.
Wirth got a little too minimalist when he did away with con-
structors and destructors and, in doing so, largely killed the
chance of his language being put to use in the real world.

END_CLASS is given two parameters by the user. These are
pointers to the constructor and destructor. We have a word
called NADA which does nothing. This should be used if the
user doesn’t have a constructor or destructor for his class (we
don’t have a destructor for BNODE, so we use NADA). The
constructor’s job is to initialize the virtual vectors and any
data fields that need initialization. Initializing data fields is
easy since we can just use SELF and the field name to get the
field address. Virtual function vectors are a little harder. If we
used SELF and the field name, we wouldn’t get the field ad-
dress but rather we would cause the function to execute (it is
BAD_VIRTUAL at this time). In order to get a VIRTUAL’s field
address, we give the object address (usually SELF) to
VIRTUAL_ADR with the virtual function’s name following it
in the input stream. VIRTUAL_ADR is intended to be used
only in constructors.

Sometimes we don’t want to initialize a virtual address
because our class is not intended to ever be used to create
objects. Our class is only intended to be used as a base class
for other classes which will be used to create objects. Our
own class does not have any defined behavior for all of its
virtual functions. BNODE is like this. .COMPARE doesn’t have
any defined behavior in BNODE and is intended to be defined
in the derived classes. BNODE’s constructor initializes .COM-
PARE with a pointer to ABSTRACT. If we accidentally do de-
fine an object of type BNODE and try to execute .COMPARE,
for that object, ABSTRACT will abort the program an error
message. A class like BNODE which has ABSTRACT virtual func-
tions is an abstract class. The reason that we make BNODE ab-
stract is that there are any number of kinds of data which a

person might want to store in a binary tree. We don’t want to
tie BNODE to any particular kind of data. We don’t have any
data fields in BNODE for .COMPARE to compare. Derived classes
will have data and they will have a .COMPARE that can deal
with this data. We are separating the concern of how a bi-
nary tree works from the concern of storing some particular
kind of data. In general, abstracting behavior is the primary
point of inheritance which is the primary point of object-
oriented programming.

The colon word LOW_INSERT is not an early-bound mem-
ber function. It does use SELF, however. LOW_INSERT is a helper
function. It must be called from member functions in order
that SELF will be valid within it. As a rule, helper functions
should be made PRIVATE since they can’t be used outside of
the class anyway. More will be said about PRIVATE later. The
variable ̂ ^PARENT, similarly, is not a field. It is a static variable
just like any VARIABLE defined anywhere. It is used internally
by .INSERT and LOW_INSERT. As a convention, the author
uses the caret in front of a variable name to indicate that a
variable contains an address. Two carets indicates that it con-
tains an address of an address. We try not to have any more
levels of indirection than this since it would get confusing.

Our class-defining word (BNODE in the example), when
executed, requires a parameter which is a count of how many
objects are needed. If the user only wants one object, he still
has to explicitly give it a 1 parameter. If the user creates more
than one object, the objects are guaranteed to be contiguous
in memory so that they can be used as an array. The class-
defining word returns the address of the first object in the
array. If the user wants to have named objects defined at com-
pile-time, then he can give this address to CONSTANT. If the
user defines an object at run-time, then he can store this ad-
dress in a data structure of some kind (possibly just a VARI-
ABLE). The author recommends against defining objects at
compile-time because this involves executing the construc-
tor at compile-time. If the software is ever going to run on an
embedded controller, then this could be a problem because
the constructor is written to execute on the target machine
and not on the host machine. An aspect of C++ that the au-
thor doesn’t like is the use of static objects (objects not local
to MAIN or any other function). The constructors for these
will execute before MAIN begins executing. They presumably
execute in the same order that they appear in the source code.
Such objects are a problem because some debuggers (Borland’s
Turbo Debugger) only begin debugging with the MAIN func-
tion. If a constructor has a bug and crashes, the crash occurs
before the debugger begins and the programmer doesn’t know
which constructor crashed or how. The reader is encouraged
to avoid this mess by constructing all objects at run-time.
This is true for OOOP as well as C++.

OOOP provides a couple of words called SIZE and
SIZE_OF. SIZE takes an object address and returns the size of
that object. SIZE_OF takes no parameters but needs to be
followed in the input stream by a class-defining word name.
It returns the size of any object created by that class-defining
word. SIZE and SIZE_OF are primarily intended for cases in
which the programmer has an array of objects and needs to
increment a pointer through them. The programmer is en-
couraged to use SIZE rather than SIZE_OF because it is pos-
sible that the objects which he thinks are of some class are
actually of a derived class. By using SIZE, the size is deter-
mined at run-time and the correct value will be used. SIZE_OF

64 Forth Dimensions XXI.1,2

is a purely compile-time determination. Any kind of com-
pile-time calculation goes against the spirit of object-oriented
programming. The author expects that SIZE_OF will never
be used. If any reader can think of a use for it, he should tell
the author.

Figure Two contains a few more classes. PERSON is a fairly
simple class which contains some information describing a
person. The only new concept here is that we have an early-
bound member function. This is FULL_NAME. An early-bound
member function, similar to a late-bound member function,

takes an object address parameter. Also similarly, we don’t list
this object address in the stack picture comment since we are
going to be accessing it with SELF rather than keeping it on
the stack. A difference from virtual functions, however, is that
in an early-bound function we need to explicitly bind this
object address to SELF. We do this with <BIND at the very be-
ginning. We also need to unbind it at the end of the function
with BIND>. We need a BIND> prior to the semicolon and also
prior to any EXIT words that we may have within the func-
tion. Don’t forget BIND>! This is an easy mistake to make and

Figure Two.

: APPEND \ ptr ^string -- past_ptr
 COUNT 0 DO \ destination_ptr source_ptr --
 2DUP C@ SWAP C!
 SWAP 1+ SWAP 1+ LOOP
 DROP ;

: STRCAT \ ^left_string, ^right_string -- ^full_string
 OVER C@ OVER C@ + >R \ return: count of full_string
 R@ 1+ MALLOC DUP >R \ return: ^full_string
 1+ \ ^left ^right first_char_adr --
 ROT APPEND SWAP APPEND DROP \ --
 R> R> OVER C! ;

CLASS PERSON NOTHING

 40 STRING .NAME \ 1'st line of mailing address
 40 STRING .STREET \ 2'nd line of mailing address
 40 STRING .CITY_STATE_ZIP \ 3'rd line of mailing address
 INTEGER .SSN \ social security number
 1 FIELD .SEX \ 'M' or 'F'
 VIRTUAL .TITLE

 : .FULL_NAME <BIND \ -- ^string \ use FREE to deallocate it
 .TITLE .NAME STRCAT
 BIND> ;

 : <TITLE> \ -- ^string
 SELF .SEX C@ ASCII M = IF " Mr." ELSE " Ms." THEN ;

 : <PERSON>
 ['] <TITLE> SELF VIRTUAL_ADR .TITLE ! ;

' <PERSON> ' NADA END_CLASS PERSON

CLASS EMPLOYEE BNODE \ sorted by SSN

 POINTER .PERSONAL \ to a PERSON object
 INTEGER .WAGE \ hourly
 1 FIELD .LANGUAGE \ E=English, S=Spanish, B=Both

 : COMPARE# \ a b -- -1|0|1
 2DUP = IF
 2DROP 0 \ 0 for a=b
 ELSE
 U< IF -1 ELSE 1 THEN \ -1 for a<b or 1 for a>b
 THEN ;

 : <COMPARE> \ ^root_node -- -1|0|1
 SELF .PERSONAL @ .SSN @ SWAP .PERSONAL @ .SSN @

Forth Dimensions XXI.1,2 65

one that will crash the computer. If you have unexplained
crashes, try doing a text search on <BIND and visually check-
ing to make sure that each one has a corresponding BIND>.

The author doesn’t like early-bound functions. Originally,
OOOP wasn’t going to have them at all. The programmer can
rarely foresee what functions may need to be redefined in
derived classes. Early-bound functions prevent such redefini-
tion, but late-bound functions leave the door open for such
later redefinitions. On the other hand, early-bound functions
are a little faster and use no memory within the object. This
can be needed for classes that have a lot of objects defined by
them. As a rule, the programmer should make all member
functions late-bound and only convert them to early-bind-
ing as a part of the optimization phase at the very end of the
program development.

Our next class is EMPLOYEE. We have several new con-
cepts introduced here. For one thing, we have a base class of
BNODE rather than of NOTHING. This means that we have all
of BNODE’s fields. We have a POINTER field called .PERSONAL
which contains a pointer to an object of class PERSON. In our
constructor, we create this object by calling our class-defin-
ing word PERSON. We store the resulting object address in
.PERSONAL. This is done using DELEGATE rather than ! (more
will be said about DELEGATE later). We also override the
.TITLE virtual member function of our PERSON object with
our own version. We define a word <COMPARE> whose ad-
dress is stored in the .COMPARE field by the EMPLOYEE con-
structor. Our .COMPARE function, <COMPARE>, is accessing a
field in the .PERSONAL object (the .SSN field). We have a
destructor that calls DESTRUCT for the object address stored

in .PERSONAL.
We have another class called EMPLOYEE_BY_ID which has

EMPLOYEE as its base class. This class introduces a new field
called .ID and we redefine .COMPARE to use this rather than
the social security number. This kind of upgrade could hap-
pen if a company used SSNs to identify their employees and
later decided to use an internal employee identification num-
ber. The order that the constructors are called is important in
regard to the .COMPARE field. First is BNODE’s constructor
which sets .COMPARE to ABSTRACT. Secondly is EMPLOYEE’s
constructor which sets .COMPARE to code dealing with the
.SSN field. Thirdly is EMPLOYEE_BY_ID’s constructor which
sets .COMPARE to code dealing with the .ID field. Since this
is the last constructor called, this is the code that .COMPARE
refers to in EMPLOYEE_BY_ID objects.

Multiple Inheritance — we use true delegation instead
Neither Oberon or OOOP has multiple-inheritance. Given

the current design of OOOP, it would be pretty much impos-
sible to implement. All of the member functions for any base
class would expect their fields to start at index zero. Multiple
base classes can’t all start at index zero. Multiple-inheritance
would be nice, though. In our example, our EMPLOYEE class
currently has BNODE as its base class and has a pointer (.PER-
SONAL) to an object of class PERSON as one of its fields. This
pointer gets initialized by the constructor, which calls the
constructor for PERSON to create a PERSON object and then
stores the object address of this object in .PERSONAL. With
multiple-inheritance, EMPLOYEE would have two base classes:
BNODE and PERSON. This would simplify things since we would

 COMPARE# ;

 : <TITLE> \ -- ^string
 KRYSHA .LANGUAGE C@ ASCII S = IF
 SELF .SEX C@ ASCII M = IF " Sr." ELSE " Sra." THEN
 ELSE
 <TITLE> THEN ; \ this is the <TITLE> defined in PERSON

 : <EMPLOYEE>
 1 PERSON DUP SELF .PERSONAL DELEGATE
 ['] <TITLE> OVER VIRTUAL_ADR .TITLE !
 DROP
 ['] <COMPARE> SELF VIRTUAL_ADR .COMPARE ! ;

 : <~EMPLOYEE>
 SELF .PERSONAL @ DESTRUCT ;

' <EMPLOYEE> ' <~EMPLOYEE> END_CLASS EMPLOYEE

CLASS EMPLOYEE_BY_ID EMPLOYEE \ sorted by ID

 INTEGER .ID \ internal identification number

 : <COMPARE> \ ^root_node -- -1|0|1
 SELF .ID @ SWAP .ID @
 COMPARE# ;

 : <EMPLOYEE_BY_ID>
 ['] <COMPARE> SELF VIRTUAL_ADR .COMPARE ! ;

' <EMPLOYEE_BY_ID> ' NADA END_CLASS EMPLOYEE_BY_ID

66 Forth Dimensions XXI.1,2

not have to manually construct a PERSON object in our EM-
PLOYEE constructor (base classes’ constructors are automati-
cally called by a constructor). Also, we would not have to
manually do double indirection to get at the PERSON fields
(as seen in the EMPLOYEE version of <COMPARE>). This tends
to clutter the code. It is also difficult for the user to remem-
ber when it is needed, which is a common source of bugs in
object-oriented programming.

At one time, prior to implementing multiple-inheritance
(in version 2.0 of C++), Stroustrup experimented with some-
thing called delegation. This is essentially what we are doing
in OOOP with having a pointer to an object (.PERSONAL).
The user would list the delegation classes next to the base
class name in the class declaration. The construction of the
delegated object would be performed automatically. From a
practical standpoint, however, it doesn’t really matter if he
manually constructs this delegated object in his constructor
or if the compiler automatically generates this code for him.
Stroustrup says this about his experiment [2]:

Unfortunately, every user of this delegation mechanism
suffered serious bugs and confusion. Because of this, the
delegation was removed from the design and from the
Cfront that was shipped as Release 2.0. Two problems
appeared to be the cause of bugs and confusion:

#1 Functions in the delegating class [EMPLOYEE] do not
override functions of the class delegated to [PERSON].

#2 The function delegated to [a member function of PERSON]
cannot use functions from the delegating class [EMPLOYEE]
or in other ways "get back" to the delegating object.

Naturally, the two problems are related. ... In retrospect, I
think the problems are fundamental. Solving the problem #1
would require the virtual function table [VMT] of the object
delegated to be changed when it is bound to a delegating
object. This seems out of line with the rest of the language
and very difficult to define sensibly. We also found examples
where we wanted to have two objects delegate to the same
"shared" object. Similarly, we found examples where we
needed to delegate through a [pointer to a base class object]
to an object of a derived class [of that base class].

Stroustrup is hamstrung by his use of a VMT. He can’t
change the virtual function vectors for an object delegated to
because they are in the VMT and every other object of that
class would be affected. We can change these vectors. In the
constructor for EMPLOYEE we use VIRTUAL_ADR to plug a new
value into the vector for .TITLE which is a field in the PER-
SON class object pointed to by .PERSONAL. By doing this, we
solve Stroustrup’s #1 problem in that a function in EMPLOYEE
is overriding a function in PERSON. Our new function “gets
back” to the delegating object (of class EMPLOYEE) when it ac-
cesses the .LANGUAGE field there. This solves Stroustrup’s #2
problem. The functions in the object being delegated (.TITLE
in the object pointed to by .PERSONAL) needs to know the
object address of the object that is doing the delegating (the
EMPLOYEE object). This is what the .KRYSHA field is for. Every
object has a .KRYSHA field. The PERSON object pointed to by
the .PERSONAL pointer in the EMPLOYEE object has the object
address of that EMPLOYEE object in its .KRYSHA field. When

we filled the .PERSONAL pointer in our EMPLOYEE object with
the object address of a PERSON object, we used DELEGATE.
DELEGATE, in addition to filling this pointer (which ! could
have done), also sets the .KRYSHA field in the PERSON object
to point to the EMPLOYEE object doing the delegating. In our
EMPLOYEE constructor, we also overrode one of the virtual vec-
tors in the PERSON object (the .TITLE field). We filled this
vector with a function that we had just written. This is a vir-
tual function of PERSON, so its SELF is the PERSON object. Our
function uses SELF to access the .SEX field in the PERSON ob-
ject. Within this virtual function, it can use KRYSHA to obtain
the object address of the delegating object (the EMPLOYEE ob-
ject). Our function does this to “get back” to the .LANGUAGE
data field in the EMPLOYEE object.

The word krysha is Russian and literally means “roof.” In
general usage, a person’s krysha is an upper echelon figure in
the police or the mafia who will protect that person from
harm [9]. The EMPLOYEE object is the krysha of the PERSON
object because the only way to get access to the PERSON ob-
ject is by going through the EMPLOYEE object. The EMPLOYEE
object could customize the virtual functions of the PERSON
object because every use of the PERSON object would be in
the context of it being a delegated object of the EMPLOYEE
object. Modifying these virtual vectors does not affect other
objects of PERSON class (who may or may not have a krysha)
that are also in use at this time. They have their own .TITLE
vectors inside of themselves set by the PERSON constructor. If
we were using a VMT, then all PERSON objects would use the
same .TITLE vector in the VMT, and modifying it would af-
fect all of them. Because we don’t have a VMT, we can use
delegation effectively and we do not have to let the multiple-
inheritance genie out of the bottle. Multiple-inheritance is
nicer looking syntactically than delegation, but it is compli-
cated to implement and slow to execute. It is clearly not in
line with our minimalist Oberon-like philosophy. On the
other hand, we can’t ignore the concept entirely. We need to
have a workable alternative — and we do.

Run-time type checking — needed for copying objects
One of Oberon’s most powerful is run-time type check-

ing. We have this too. The word IS_A takes an object address
as a parameter and has a class name in the input stream after
it. IS_A returns a flag indicating if that object is a member of
that class. The flag will also be returned true if the object is a
member of a class derived from the indicated class. The pro-
grammer should use IS_A sparingly. Bjarne Stroustrup has
this to say [2]:

RTTI [run-time type information] can be used to write
thinly disguised switch statements [see Figure Three]. I have
heard this style described as providing "the syntactic
elegance of C combined with the run-time efficiency of
Smalltalk," but that is really too kind. The real problem is
that this code does not handle classes derived from the ones
mentioned correctly and needs to be modified whenever a
new class is added to the program. Such code is usually best
avoided through the use of virtual functions. … For many
people trained in languages such as C, Pascal, Modula-2,
Ada, etc., there is an almost irresistible urge to organize
software as a set of switch statements. This urge should most
often be resisted.

Forth Dimensions XXI.1,2 67

Stroustrup was actually referring to the TYPEID function in
C++ which provides a code for each class but which, unlike
our IS_A function, does not indicate if an object’s class is de-
rived from some other class. The C++ TYPEID function corre-
sponds to our .CLASS field All objects have this field and it
contains a unique identifying number for the class of that ob-
ject. Our IS_A is a lot more useful than C++’s TYPEID and can
often obviate the code modifications which Stroustrup is warn-
ing against. Nevertheless, Stroustrup is right. There are some
valid uses of SWITCH statements (sometimes called CASE state-
ments), but they are the most dangerous language feature to
be found within the Structured Programming paradigm. Us-
ing them is like letting the camel stick his nose inside of your
tent; pretty soon you have the whole camel. Your program is
no longer structured even though you may insist that you have
only used Structured Programming language features. And it
is not just object-oriented programming that can get fouled
up, either. Those giant SWITCH statements used to implement
state machines in pseudo-multitasking are a horrible thing as
well. Chuck Moore has spoken out against the use of SWITCH
statements. His proverb [7] is, “Let the dictionary do the deci-
sion making.” He is saying that people should not pass a pa-
rameter into a function and then have that function test the
parameter at run-time and branch to various code based upon
the value of the parameter. It is better to have separate func-
tions compiled to contain those various pieces of code. Each
function is referenced by its name at compile-time. Both lan-
guage designers seem to be seeing eye-to-eye on the subject of
SWITCH statements. An observer would never guess this by
examining typical Forth and C++ programs and counting the
number of times that SWITCH statements are used in them (a
lot for C++). For all of the adulation that is heaped upon
Stroustrup by the C++ community, nobody seems to be pay-
ing attention to what he is actually saying.

Run-time type checking is most valuable when copying
objects. The word OCOPY takes two parameters, a source ob-
ject address and a destination object address. The source ob-
ject is copied on top of the destination object if the source
object’s class is of the destination object’s class. OCOPY uses
IS_A internally. If the source object’s class is a derived class
of the destination object’s class, then the data is truncated
when it is copied. It is illegal to go the other way, from an

object of a base class to an object of a derived class. The de-
rived class has more fields than the base class and there would
be no way to know what data to put in these fields. Niklaus
Wirth has this to say [3]:

The essence of a language featuring strong typing is that
the type of the expression on the right-hand side of ":=" must
be assignment- compatible with the type of the designator on
the left-hand side. … [When assigning an object of a base
class to an object of a derived class] there is not enough
information to unambiguously specify [the result]. Such an
assignment is illegal in Oberon. An attempt at an artificial
definition, such as ‘[the extra fields] remain unchanged’ cannot
be reconciled with the axiom of assignment.

Beyond allowing assignments between objects of exactly
the same class, it is best to only allow assignments from a
derived class to a base class and to truncate the extra fields in
the data during the copy. This is known as restrained type
casting. This is all that OCOPY allows. If OCOPY is used to copy
an object to an object of a derived class, it will abort with an
error message. It will also abort if the source and destination
objects aren’t in the same inheritance chain at all (neither is
a base class of the other). The programmer can give his source
and destination object address to COULD_OCOPY rather than
OCOPY. COULD_OCOPY will return a flag indicating if it is a
legal operation that OCOPY will accept. Use of COULD_OCOPY
will allow the programmer to make a more graceful exit than
to just abort the program with an error message as OCOPY
would do. Niklaus Wirth says this [3]:

Only those fields that comprise [the destination class]
participate in the assignment. Therefore it is assured that
there always exists a one-to-one correspondence [between
the left and right sides of the :=]. This definition has an
analogy in mathematics: the projection of a higher-dimen-
sional vector onto a lower-dimensional space. Using this
analogy, we say that the assignment is a projection of [the
source type] onto [the destination type].

Bertrand Meyer, the inventor of the Eiffel language, also
speaks out against unrestrained type casting [4]:

Typing, if taken seriously, also means that there is no
way to bypass the type system. Many languages which claim
to be statically (sometimes even "strongly") typed also allow
developers to cheat the type system, enticing them into
sordid back-alley deals sometimes known as casts.

Strong words these are. Clearly he is referring to C++; the
hallmark of C++ programming is unrestrained type casting.
Surprisingly, however, the inventor of C++, Bjarne Stroustrup,
largely agrees [2]:

The DYNAMIC_CAST operator [essentially the same as
our OCOPY] serves the majority of needs I have encoun-
tered. I consider DYNAMIC_CAST to be the most important
part of the RTTI [run-time type information] mechanism and
the construct users should focus on.

Is unrestrained type casting really so bad? In some cases,
no. A good example is numerics. When copying data from a

Figure Three.

void rotate(const Shape& r)
{
 if (typeid(r) == typeid(Circle)) {
 // do nothing
 }
 else if (typeid(r) == typeid(Triangle)) {
 // rotate triangle
 }
 else if (typeid(r) == typeid(Square)) {
 // rotate square
 }
 // ...
}

68 Forth Dimensions XXI.1,2

simple class to a complicated class, we have easy and obvious
rules for filling out the data of a complicated class. Examples
would include casting an integer to a real or a real to a com-
plex. Notice, however, that our simple class is not a base class
to our more complicated class. For example, a complex num-
ber is not just a real with an extra field (the imaginary com-
ponent) tacked on. A complex number has all of its arith-
metic operations redefined. Assuming that these are virtual
functions in the real number class, all of them would have to
be rewritten. This kind of wholesale redefinition is not in the
spirit of inheritance since nothing is being inherited. This is
a good example of polymorphism, since both classes have
member functions with the same names. It is not an example
of inheritance, however.

Unrestrained type casting can be seen to be useful for a
fairly narrow range of problems. It is useful when one class is
a superset of the other class (complex numbers contain all
real numbers) but does not inherit anything from this sub-
set. Unrestrained type casting should not be used when the
superset inherits functionality from the subset. OCOPY will
abort in this case. Users of OOOP are encouraged to work
within the constraints of OCOPY and to not bypass it. Let re-
strained type casting be the hallmark of OOOP programming!
To a large extent, OOOP is being put into the public domain
as an experiment to see if restrained type casting will work in
the real world. Try writing large programs using OOOP. Is it
ever necessary to cast from base classes to derived classes?
When is the IS_A function ever needed? The author of OOOP
would like some feedback on these questions.

Uniform Access — better than Eiffel
C++ programmers know that they should not declare data

fields as being public because this makes it difficult to upgrade
the processing of the data in derived classes. Given a data field
X, they will generally make it private and then provide public
functions called GET_X and PUT_X which fetch a datum and
store a datum respectively. This really shows up what a weak
language C++ is. Normally the assignment statement (=) is used
for storing data into a variable. Now, however, we have a func-
tion (PUT_X) doing it by wrapping its parenthesis around the
expression that otherwise would have stood alone on the right
hand side of the assignment. Our expressions are also filled
with GET_X function calls, each with a set of empty parenthe-
sis. Our C++ assignments now have more parenthesis then LISP
statements, and none of these parenthesis provide any infor-
mation at all! We also have the characters “GET_” prefixed to
all of our field names in the expression. This isn’t providing
the reader with any information either. These GET_X and PUT_X
functions are syntactical abominations — one can hardly imag-
ine a more thorough way to clutter up one’s source code. Not
only is the source code cluttered, but the object code suffers as
well. Function calls of member functions are big and slow com-
pared to direct access of data fields. Even the best optimizing
compiler is going to choke on all of these GET_X and PUT_X
function calls.

Let us turn away from this madness and read what Bertrand
Meyer, the inventor of Eiffel, has to say [4]:

An important property applies to feature calls written in
dot notation and used as expressions: the notation is exactly
the same for a Call involving a [member] function with no
arguments and one involving an attribute [data field]. So the

expression

P1.AGE

where entity P1 is of type PERSON, is applicable both if the
feature AGE of class PERSON is an attribute or if it is a function.

If AGE is an attribute, every instance of PERSON has a
field which gives the value of AGE for the instance. If AGE is
a function, that value is obtained, when requested, through
some computation, presumably of the difference between
the current date and a "birth date" field.

For a client containing the above call, however, this
makes no difference.

This property of uniform access facilitates smooth
evolution of software projects by protecting classes from
internal implementation changes in their suppliers.

Uniform Access allows us to get rid of all of our GET_X func-
tions. We can make our data fields public and use them in
expressions. If we ever need to “smarten up” these features
(such as with the calculated age in Meyer’s example), we can
rewrite them as functions. All of our code which uses these
features can remain unchanged because the syntax for calling
a member function or for accessing a data field is the same.

In C++, we couldn’t upgrade a data field to a member func-
tion because data fields use a different syntax than member
functions (functions require parenthesis) and so every refer-
ence to that feature would need to be located in a text search
and changed. This text search could span dozens of files. If
polymorphism is in use, a simple text pattern-matching search
is going to find a lot references that don’t need to be changed.
The user has to visually inspect each text search hit to deter-
mine if it is code that needs to be changed. Massive text search
and replace done on source code is an invitation to disaster.
The avoidance of this is what prompted the C++ program-
mers to use the GET_X technique which, frankly, is just an
invitation to a different disaster. C++ is a flexible language in
regards to the problem of upgrading data fields to member
functions. You will hang yourself, however, you have a choice
of which rope to use.

Bertrand Meyer is clearly on the right track with his Uni-
form Access. However, he hasn’t done anything about the
need for PUT_X functions. Eiffel doesn’t allow function calls
on the left hand side of the assignment. Nor does C++ or any
other such language. Can OOOP do this? Yes, it can! Unfor-
tunately, the author of OOOP can’t take credit for this — Forth
has had true Uniform Access since the day that it was in-
vented. Leo Brodie [7] has discussed the concept, although
he didn’t call it Uniform Access (his example of counting the
red and green apples).

Any Forth variable can be thought of as a word that provides
an address where some data can be fetched from or stored to. It
is very possible to write a colon word which similarly provides
an address. Both variables and colon words are called with the
same syntax (just a reference to their name), so it is possible to
rewrite a variable as a colon word. All code that accesses the
variable, whether for storing to or fetching from, will now ac-
cess the colon word without having to be modified.

Forth has always had true Uniform Access, but a lot of
Forth programmers are unaware of it. Only now, with the
advent of object-oriented programming, has it become im-
portant. The programmer can define a data field in his class

Forth Dimensions XXI.1,2 69

using FIELD or one of the words derived from FIELD (INTE-
GER, POINTER, etc.). Later on, he can rewrite this word as a
colon word (early-binding) or as a VIRTUAL field (late-bind-
ing). All code, whether member functions or external func-
tions, that accessed the field will now access the function.
This works for both storing to and fetching from the address.
Anybody who uses OOOP should be aware of Uniform Ac-
cess and make use of it.

Polymorphism & information-hiding — weakly supported
There seems to be some confusion of definitions of poly-

morphism. Rick Van Norman says this [6]:

Polymorphism goes a step further than inheritance. In it,
a new subclass [derived class] inherits all the members of its
parents [base classes], but may also redefine any DEFER:
[virtual] members of its parents.

This isn’t polymorphism, this is just inheritance as OOOP
provides and as we have been describing throughout this ar-
ticle. Two classes can have fields of the same name that do dif-
ferent things only if they are in the same inheritance chain. That is,
one is a base class of the other. In true polymorphism, two classes
can have fields of the same name that do different things even
though neither is a base class of the other (and the fields may
not have the same relative position within the objects).

OOOP does not support true polymorphism. We have
object addresses being passed around on the parameter stack
and being stored in data structures. We can tell at run-time
what class an object is (by using IS_A or COULD_OCOPY). There
is no inherent way, however, to tell at compile-time what
class an object address is of. This information would be nec-
essary for the compiler to modify the dictionary search such
that, when a field name is later referenced, the compiler uses
the field name associated with the class which this object is
of. The only way for the compiler to obtain this information
is for the programmer to explicitly tell the compiler. In
SWOOP [6], this is accomplished by tagging each use of an
object address with the word USING followed by the class-
defining word name. The author of OOOP has no intention
of doing anything like this in OOOP. The source code would
get so cluttered with all of those USING xxx tags that it would
be unreadable. Most of the time, they are not needed any-
way, because it is fairly rare to have classes with common
field names. Generally, this happens by accident because there
are a lot of classes and name-space pollution has become a
problem. Name-space pollution is not unique to object-ori-
ented programming; any large program will suffer from it.
The solution, within OOP and without, is to be alert to re-
definition warnings and to think up new names as needed. It
is fairly rare for the programmer to purposely use polymor-
phism. The only example that the author can think of is nu-
merics (the same example that we used for unrestrained type
casting). Two classes, such as COMPLEX and REAL, may not be
in the same inheritance chain but may have common field
names (the arithmetic operations). Since OOOP is not sup-
porting unrestrained type casting, there is little need to sup-
port true polymorphism either.

OOOP will probably never have true polymorphism. A little
information hiding could be useful, though. Name-space pol-
lution becomes a problem as programs become large. OOOP
has a facility for dealing with this. Word name fields have sev-

eral flag bits in them. Everybody is familiar with the ‘immedi-
ate’ flag bit and knows that the word IMMEDIATE sets this in
the last word defined. Some Forth systems also have a few name
field flag bits undefined which the user can define for his own
purposes. We have a word called PRIVATE which is like IMME-
DIATE except that instead of setting the ‘immediate’ flag bit, it
sets a different flag bit which we shall call the ‘private’ flag bit.
We have another word called END_MODULE which traverses the
entire dictionary and removes any words that have their ‘pri-
vate’ flag bit set from the dictionary search. These words are
still in the dictionary and any words which call them will still
work. It is just that the words can’t be found in a future dictio-
nary search and hence can’t be called from any future words.
If a new word is defined with the same name, there will be no
redefinition warning given. In a large program, there can be
thousands of words defined. Only a fraction of these are docu-
mented and intended to be used throughout the program, the
rest were just of local interest and are just clutter. END_MODULE
could be incorporated into END_CLASS in order to emulate
the concept of private member functions as provided by C++.
The author prefers to not do this. It is best to organize the code
into modules (each stored in a separate file) and to use
END_MODULE at the end of each one to hide all of the words in
that module which are not intended to be used outside of the
module. If an inheritance chain of classes are all defined within
a single module, placing END_MODULE at the end of that mod-
ule has the effect of making the private words act similarly to
the PROTECTED words of C++.

PRIVATE and END_MODULE are very handy words for re-
ducing name-space clutter. Because they are not strictly tied
to object-oriented programming, the user has some flexibil-
ity with them. If END_MODULE is incorporated into END_CLASS,
then PRIVATE words are essentially the same as C++ PRI-
VATE words. If END_MODULE is used at the end of each mod-
ule, then PRIVATE words are essentially the same as STATIC
words in C and C++ modules. If an entire inheritance chain
is in a single module, then PRIVATE words are essentially the
same as C++ PROTECTED words. Despite being a fairly simple
construct, our private concept works fairly well. It is not as
thorough as C++’s PUBLIC, PROTECTED, and PRIVATE words
(especially if one takes into account how C++ classes also
declare their base classes as PUBLIC, PROTECTED, or PRIVATE).
On the plus side, it works quite well and it doesn’t involve a
lot of source code clutter like the USING xxx tags of SWOOP.
The only real problem with PRIVATE and END_MODULE, is
that the author doesn’t know of any way to write them in
Forth-83. He does know how to write them in UR/Forth, which
is the compiler that he uses. The implementation, however,
involves accessing internal non-standard features of UR/Forth.
The OOOP code provided with this magazine article has only
dummy definitions of PRIVATE and END_MODULE. The reader
needs to write these himself so that they will work with what-
ever compiler he is using. If the reader doesn’t know how to
do this, he is still encouraged to use PRIVATE and END_MODULE
throughout his application in the hopes that he will eventu-
ally be able to put some substance to these words.

Implementation — nothing very complicated
The complete code for OOOP is in the file OOOP.4TH

which is provided with this article. It is straightforward and
uncomplicated Forth-83 code. The reader should be able to
quickly get it running on any Forth-83 system and probably,

70 Forth Dimensions XXI.1,2

with a little more effort, on any ANSI Forth system. OOOP is
currently running under UR/Forth. If anybody does port it to
any other Forth system, please e-mail a copy to the author.

There are some sticky points. The PRIVATE/END_MODULE
pair, which we have already discussed, is the worst. Another
area in which the implementor is going to need to do some
custom programming is MALLOC and FREE. MALLOC uses AL-
LOT internally. This is not suitable for practical use. The reader
will need to rewrite MALLOC and FREE to use a heap. Heaps
aren’t complicated, but they are beyond the scope of this ar-
ticle. There are some design decisions that the implementor
needs to make. Mostly, he needs to decide if he is going to
have a static internal array which he allocates memory from
(good on an embedded controller), or if he is going to use the
operating system’s memory allocation facility (good on a desk-
top computer). Also complicating the implementation would
be if the programmer wants to get involved in using far point-
ers on a processor that has banked memory (such as the 8086).
If there is interest in how to implement a heap, readers should
contact the author. Perhaps we can have a Forth Dimensions
article about heaps sometime in the future.

A minor point that may cause implementors difficulty is
the COMPILE word. A very grievous weakness of Forth-83 is
that we don’t have any standard word which takes a CFA and
compiles it. This word is easy to write (on a threaded system
it is just a comma), however, it is different on every compiler.
This kind of situation is exactly what standardized words are
for — they hide compiler specific details from the applica-
tion programmer. The result of this weakness is that we don’t
have a good way to write macros (immediate words that com-
pile a sequence of words). Within the sequence of words, we
have to deal with immediate words differently than with non-
immediate words. We use [COMPILE] for immediate words
and COMPILE for non-immediate words. We can use WORD
FIND to determine if a word is immediate or non-immediate.
Once we have used WORD to take it out of the input stream,
however, we have no way of compiling it since COMPILE needs
it in the input stream. We don’t have a word which can take
the CFA provided by FIND and compile it. Essentially, COM-
PILE needed to be factored into its two constituent parts:
getting the word out of the input stream and compiling it.

OOOP has a few macros (SELF, <BIND, and BIND>). These
use COMPILE and assume that the words being compiled are
all non-immediate. We have a word called CHECK_IMMEDIACY
that is run at compile-time to check that the words used by
COMPILE actually are non-immediate. If they are immediate
on any compiler that the reader may be using, then the reader
will have to rewrite the macros. >R and R> are words that, in
some Forth compilers, are immediate and, in other Forth com-
pilers, are non-immediate. >R and R> may cause problems.
The difficulty in writing macros is one of those heartbreak
situations where Forth-83 almost does what is needed.

Other than these points, OOOP should be easy to imple-
ment on any compiler. We don’t use any particularly fancy
programming techniques, such as dictionary search modifi-
cations (vocabularies) or “second order defining words” [1].
OOOP should be easily implemented on a cross-compiler. This
is important, since we have said that OOOP is intended for
use on embedded controllers, and these are generally pro-
grammed with cross-compilers. The author hasn’t tried imple-
menting OOOP on a cross-compiler. The author has written
a cross-compiler (MFX for the MiniForth processor at Testra),
however, and is quite familiar with how cross-compilers work.
The author predicts no difficulty in getting OOOP to run on
MFX. Any cross-compiler comparable to MFX in capability

should also work just fine.

Summary — keep it simple
Forth’s primary arena is embedded controllers, many of

which are eight-bit. OOOP is designed to be used in this arena.
As such, it has been purposely kept as simple as possible. This
has several benefits. One is easy implementation — OOOP is
going to have to be implemented by programmers who are
eager to get started on their application and don’t really want
to delve into any systems-level Forth programming. A lot of
these programmers may actually be electrical engineers who
see programming as being a small part of the work involved
in a project and would like it to be smaller. Another benefit is
reliability. As Wirth pointed out in the quote at the top of the
article, simplicity is the key to reliability. Because OOOP is
“pure” object-oriented programming assuming that the pro-
grammer uses restrained type casting), OOOP programs are
amenable to verification of their correctness. This can be
important in embedded systems that control machines which,
if they fail, could put people in the hospital or smash up ex-
pensive equipment. Yet another benefit of OOOP is a reduced
learning curve. If a feature isn’t going to be used by most of
the users, then all of the users should not be forced to learn
it. OOOP does not have any superfluous or gratuitous fea-
tures, and the features that it does have are uncomplicated.

OOOP is not necessarily the best choice for all applications.
As projects get bigger, polymorphism and information hiding
become increasingly important. OOOP doesn’t have true poly-
morphism. Our PRIVATE mechanism provides somewhat crude
information hiding in that it only simulates the creation of
protected words if all the class definitions of an inheritance
chain are in a single module. Desktop software tends to get a
lot bigger than embedded controller software. Desktop soft-
ware also usually involves supporting a large API (set of inter-
face words to the operating system). Name-space conflicts can
become common. OOOP, which doesn’t do any modification
of the dictionary search, is probably not a good solution in
this environment. In general, programmers should choose their
OOP system depending upon the application which they are
working on. The strength of Forth is that choices like these
can be made. If a programmer doesn’t make these choices but
expects to be given a single standard solution to use on every
application, then he is not taking advantage of the Forth lan-
guage. It is a mistake to become trapped in the idea that there
is a single best solution waiting to be found. This is the path to
mediocrity, because no single solution is going to be optimum
for the entire spectrum of applications that can be written.
Ironically, the path to mediocrity is most heavily traveled by
elitist types who feel that they deserve only the best.

Bibliography
[1] Object Oriented Forth, Dick Pountain, 1987
[2] The Design and Evolution of C++, Bjarne Stroustrup, 1994
[3] Programming in Oberon — Steps beyond Pascal and Modula,

Martin Reiser and Niklaus Wirth, 1992
[4] Eiffel: the language, Bertrand Meyer, 1992
[5] Object-Oriented Design, Grady Booch, 1991
[6] “SWOOP: Object-Oriented Programming in SwiftForth”,

Forth Dimensions (XX.5,6), Rick Van Norman.
[7] Thinking Forth, Leo Brodie
[8] “DynOOF-style Objects for the i21 microprocessor”,

Forth Dimensions (volume XX, number 4), András Zsótér
[9] Dermo! The Real Russian Tolstoy Never Used, Edward Topol,

1997

Forth Dimensions XXI.1,2 71

Listing One.

\ OOOP.4TH -- Oberon-like Object Oriented Programming system
\ by Hugh Aguilar

\ ****** Preliminary code ******

WSIZE 4 = .IF \ 32-bit system

 4 CONSTANT W

 : W+ 4 [COMPILE] LITERAL COMPILE + ; IMMEDIATE
 : W- 4 [COMPILE] LITERAL COMPILE - ; IMMEDIATE
 : W* COMPILE 2* COMPILE 2* ; IMMEDIATE
 : W/ COMPILE 2/ COMPILE 2/ ; IMMEDIATE

 \ all of these should be in assembly language

.THEN

WSIZE 2 = .IF \ 16-bit system

 2 CONSTANT W

 : W+ COMPILE 2+ ; IMMEDIATE
 : W- COMPILE 2- ; IMMEDIATE
 : W* COMPILE 2* ; IMMEDIATE
 : W/ COMPILE 2/ ; IMMEDIATE

.THEN

-1 CONSTANT TRUE
 0 CONSTANT FALSE

: BAD_VIRTUAL \ --
 TRUE ABORT" *** The constructor didn't fill in this VIRTUAL's vector. *** " ;

: NEEDED \ adr -- offset \ offset to add to adr to make an aligned address
 W MOD >R R@ IF
 W R> -
 ELSE
 R> THEN ;

: ALIGNED_HERE \ -- here_value \ calls ALLOT with value [0,W)
 HERE NEEDED ALLOT
 HERE ;

: MALLOC \ size -- adr
 ALIGNED_HERE >R \ size -- \ aligned adr on return stack
 DUP ALLOT \ size -- \ allocate memory at R@ adr
 R@ + R@ ?DO \ --
 ['] BAD_VIRTUAL I !
 W +LOOP
 R> ;

\ MALLOC fills the data with vectors to BAD_VIRTUAL. Because VIRTUAL always
\ aligns the vectors, the vectors will all be initialized with BAD_VIRTUAL.
\ If a user forgets to properly initialize a vector in the constructor, the
\ first time that this member function is called, BAD_VIRTUAL will execute.

72 Forth Dimensions XXI.1,2

: FREE \ adr --
 DROP ;

\ For simplicity we use ALLOT in MALLOC. This should be changed to use a heap
\ if it is desired to be able to deallocate nodes. FREE would then be changed
\ to deallocate the memory in the heap.

: PFA \ -- pfa \word: structure_name
 ' >BODY ;

: PFA_FIELD \ index --
 DUP 0= IF DROP
 : [COMPILE] ; IMMEDIATE \ don't waste run-time adding zero to the pfa
 EXIT THEN
 CREATE
 W* , \ store the offset for use by DOES>
 DOES> \ pfa -- field_adr
 @ + ;

\ PFA and PFA_FIELD are a primitive way to access fields within a structure
\ (any word defined with CREATE). OOOP is a much more sophisticated method,
\ but we need PFA and PFA_FIELD for writing OOOP.

: PRIVATE \ -- \ make the last definition private
 ;

: END_MODULE \ -- \ remove all private definitions from dictionary search
 ;

\ PRIVATE and END_MODULE can't be written in Forth-83 that I am aware of (I know
\ how to write them in UR/Forth). PRIVATE should set a bit in the name field
\ (similar to how IMMEDIATE works). END_MODULE should traverse the entire
\ dictionary and remove all of the words that have their private bit set from
\ the dictionary search. These words will still exist in code memory and will
\ execute at run-time when the words which call them are executed. They can't
\ be found in the dictionary, however, and so can't be executed from the keyboard
\ or compiled into any future words.

\ ****** Binding ******

VARIABLE <SELF> \ this is the current object

: CHECK_IMMEDIACY \ --
 " +" FIND NIP -1 <> ABORT" *** + should be non-immediate ***"
 " -" FIND NIP -1 <> ABORT" *** - should be non-immediate ***"
 " 2*" FIND NIP -1 <> ABORT" *** 2* should be non-immediate ***"
 " 2/" FIND NIP -1 <> ABORT" *** 2/ should be non-immediate ***"
 " 2+" FIND NIP -1 <> ABORT" *** 2+ should be non-immediate ***"
 " 2-" FIND NIP -1 <> ABORT" *** 2- should be non-immediate ***"
 " >R" FIND NIP -1 <> ABORT" *** >R should be non-immediate ***"
 " R>" FIND NIP -1 <> ABORT" *** R> should be non-immediate ***"
 " @" FIND NIP -1 <> ABORT" *** @ should be non-immediate ***"
 " !" FIND NIP -1 <> ABORT" *** ! should be non-immediate ***"
 " <SELF>" FIND NIP -1 <> ABORT" *** <SELF> should be non-immediate ***"
 ;
CHECK_IMMEDIACY \ verify the COMPILE words used in various places

: SELF \ -- \ compile-time
 \ -- object_adr \ run-time
 COMPILE <SELF> COMPILE @ ; IMMEDIATE

Forth Dimensions XXI.1,2 73

: <BIND \ -- \ compile-time
 \ object_adr -- \ run-time
 COMPILE <SELF> COMPILE @ COMPILE >R \ push old <SELF> to return stack
 COMPILE <SELF> COMPILE ! ; IMMEDIATE \ set <SELF> to object_adr

: BIND> \ -- \ compile-time
 \ -- \ run-time
 COMPILE R>
 COMPILE <SELF> COMPILE ! ; IMMEDIATE \ restore old <SELF>

\ To define early-bound words, use <BIND at the beginning of the colon word and
\ BIND> at the end. In addition to putting in a BIND> prior to the semicolon,
\ you must put in a BIND> prior to any EXIT inside of the word. Forgetting to
\ use BIND> will cause the word to crash the machine as it tries to use the old
\ <SELF> value as a return address. If you are getting unexplained crashes, use
\ a text editor to find all of your <BIND words and manually look to see that the
\ semicolon and any EXIT words have a BIND> before them. In general, it is best
\ to use late binding (VIRTUAL words) normally and to only use early binding if
\ speed and memory are critical and you are absolutely certain that you will
\ never want to override the member function in a derived class.

\ It is possible to write colon words which use SELF and which are called on by
\ VIRTUAL words. These should always be made PRIVATE since they can't be called
\ by anything but VIRTUAL functions and to do so would be a bug (since they use
\ SELF and SELF isn't valid). These aren't early-bound member functions because
\ they aren't passed an object address like the VIRTUAL functions are. Think of
\ them as helper functions for the VIRTUAL functions. We don't actually have
\ early-bound functions. It is also possible to write colon words which are
\ passed one or more object addresses on the stack and which muck with the
\ object(s) in some way (by calling VIRTUAL functions and/or by modifying fields).
\ These aren't member functions, they are extraneous to the class.

\ ****** How to define fields ******

: ALIGN_INDEX \ index -- aligned_index
 DUP NEEDED + ;

: FIELD \ index size -- new_index
 CREATE
 OVER , \ store index for use by DOES>
 + \ return new index; for next field
 DOES> \ object_adr -- field_adr
 @ \ object_adr index --
 + ; \ field_adr --

: VIRTUAL \ index -- new_index
 CREATE
 ALIGN_INDEX
 DUP , \ store index for use by DOES> (and by VIRTUAL_ADR)
 W+ \ return new index; for next field
 DOES> \ object_adr --
 @ \ object_adr index --
 OVER <BIND
 + \ field_adr --
 PERFORM \ execute the virtual function
 BIND> ;

\ If possible, a register should be used for the variable <SELF>. Any word that
\ accesses <SELF> should be in assembly. All such words should be in this file.

74 Forth Dimensions XXI.1,2

\ I recommend against using CREATE and ;CODE to replace CREATE and DOES> since
\ it is somewhat slow this way. I recommend using CODE to create a machine code
\ word and then executing an assembly macro which generates the proper machine
\ code and which assembles the index value into this machine code as an immediate
\ operand. This is much faster than ;CODE which causes the pfa to be passed into
\ the machine code. The machine code then must fetch the index value from this
\ location. Using CODE instead of CREATE is somewhat non-traditional but, for
\ something as important as OOP, the speed increase makes it worthwhile.

: VIRTUAL_ADR \ object_adr -- field_adr \word: virtual_field_name
 PFA @ [COMPILE] LITERAL \ object_adr virtual_field_index --
 COMPILE + ; IMMEDIATE

\ VIRTUAL_ADR is used by the constructors who need the address of the
\ virtual field within the object which they are constructing. They need
\ this so that they can fill it in with a vector to the proper function.
\ Filling in these vectors is the primary thing that constructors do.
\ Unlike in C++, the user has to write this vector filling-in code himself.

: STRING \ index size -- new_index \ counted strings
 1+ FIELD ; \ 1+ to make room for the count byte

: INTEGER \ index -- new_index \ numbers
 ALIGN_INDEX W FIELD ;

: DINTEGER \ index -- new_index \ double numbers
 ALIGN_INDEX W 2* FIELD ;

: POINTER \ index -- new_index \ pointers to data (usually other objects)
 ALIGN_INDEX W FIELD ;

\ STRING and FIELD provide unaligned fields of variable length. INTEGER,
\ DINTEGER, POINTER and VIRTUAL provide aligned fields of W multiple length.

\ ****** Access to class struct ******

\ When we define a class_name, the following data go in its pfa
0 PFA_FIELD .SIZE \ size of objects created by this class
1 PFA_FIELD .BASE \ ptr to base class's pfa
2 PFA_FIELD .CONSTRUCTOR \ ptr to constructor function
3 PFA_FIELD .DESTRUCTOR \ ptr to destructor function

: SIZE_OF \ -- \word: class_name \ compile-time
 \ -- object_size \ run-time
 PFA .SIZE @ [COMPILE] LITERAL ; IMMEDIATE

\ When we define an object, the following data go at its address.
0 PFA_FIELD .CLASS \ ptr to defining class's pfa
1 PFA_FIELD .KRYSHA \ ptr to delegating object, if there is one
2 PFA_FIELD .DATA \ this is all of the user's FIELD and VIRTUAL data

CREATE NOTHING
 W 2* , \ size of the object (the .CLASS and .KRYSHA pointers)
 0 , \ base class pfa (the 0 is looked for by <IS_A>)
 0 , \ class constructor
 0 , \ class destructor

\ NOTHING is the base class for everything. We build it by hand.
\ Normally classes are built with CLASS ... END_CLASS.

Forth Dimensions XXI.1,2 75

: SIZE \ object_adr -- object_size
 .CLASS @ \ class_pfa --
 .SIZE @ ;

\ SIZE is primarily for incrementing a pointer through an array of objects.
\ SIZE should be used instead of SIZE_OF as much as possible.

\ ****** Constructing and destructing ******

: NADA \ --
 (this word does nothing) ;

\ NADA is a null-operation. It can be given to END_CLASS as the constructor or
\ destructor of classes which don't need any specific actions here.

: ABSTRACT \ --
 TRUE ABORT" *** You have tried to execute an abstract member function. ***" ;

\ ABSTRACT is for initializing VIRTUAL functions which are intended to be defined
\ in a derived class and which have no behavior in this class.

: <CONSTRUCT> \ class_pfa -- \ needs SELF to be valid
 DUP .BASE @ \ class_pfa base_class_pfa --
 DUP NOTHING = IF DROP ELSE RECURSE THEN \ call base class constructor
 .CONSTRUCTOR PERFORM ; \ call our own constructor

: <DESTRUCT> \ -- \ needs SELF to be valid
 SELF .CLASS @ BEGIN DUP NOTHING <> WHILE \ class_pfa --
 DUP .DESTRUCTOR PERFORM \ call our own destructor
 .BASE @ REPEAT DROP \ repeat with base_class_pfa
 SELF FREE ; \ deallocate the memory at object_adr

: DESTRUCT \ object_adr --
 <BIND <DESTRUCT> BIND> ;

: DESTRUCTS \ first_object_adr how_many --
 DUP 1 < ABORT" *** DESTRUCTS needs a how_many parameter >= 1 ***"
 <SELF> @ >R \ hold old <SELF> value
 >R \ hold how_many value temporarily
 DUP SIZE SWAP \ object_size object_adr --
 R> 0 DO
 DUP <SELF> ! <DESTRUCT> \ set <SELF> value and destroy that object
 OVER + LOOP 2DROP
 R> <SELF> ! ; \ restore old <SELF> value

\ DESTRUCT and DESTRUCTS are called by the user.
\ <CONSTRUCT> and <DESTRUCT> are for internal use only.

: DELEGATE \ object_adr field_adr -- \ to be used inside of constructors
 OVER >R ! \ fill field_adr with object_adr
 SELF R> .KRYSHA ! ; \ fill .KRYSHA field of object with SELF

: KRYSHA \ -- object_adr
 SELF .KRYSHA @
 DUP ['] BAD_VIRTUAL = ABORT" *** .KRYSHA field was never filled in. ***" ;

\ KRYSHA is to be used inside of overridden functions of the delegatee object.
\ It provides them with the object_adr of the delegating object.

76 Forth Dimensions XXI.1,2

\ ****** Copying objects and testing objects' class ******

: <IS_A> \ class_pfa target_class_pfa -- flag
 >R \ hold target_class_pfa on return stack
 BEGIN DUP WHILE \ NOTHING's .BASE field contains a 0
 DUP R@ = IF \ this is it!
 R> 2DROP TRUE EXIT THEN
 .BASE @ REPEAT \ repeat using base class
 R> 2DROP FALSE ; \ target_class_pfa not in class_pfa's inheritance chain

: IS_A \ -- \word: class_name \ compile-time
 \ object_adr -- flag \ run-time
 COMPILE @ \ class_pfa -- \ an assumed .CLASS
 PFA [COMPILE] LITERAL \ class_pfa target_class_pfa --
 COMPILE <IS_A> ;
IMMEDIATE

: COULD_OCOPY \ source_object_adr destination_object_adr -- flag
 >R \ hold dst_adr on return stack
 .CLASS @ R> .CLASS @ <IS_A> ;

: OCOPY \ source_object_adr destination_object_adr --
 >R \ hold dst_adr on return stack
 DUP .CLASS @ R@ .CLASS @ <IS_A>
 0= ABORT" *** Can only OCOPY src to dst if src IS of dst's class ***"
 W+ R@ W+ R> SIZE W- CMOVE ; \ dst object's .CLASS field unchanged

\ OCOPY will truncate the data if src's class is derived from dst's class.
\ If they are exactly the same class, no data will be lost.
\ OCOPY adds W to the src and dst addresses and also subtracts W from
\ the size of the copy (dst's size) in order to not copy the .CLASS field.

\ It is illegal to OCOPY if src's class is a base class of dst's class since we
\ have no way of knowing what data to put in the extra fields. It would be bad
\ programming (according to Niklaus Wirth) to initialize these extra fields to
\ some default value. This is the hallmark of OBERON which we are emulating.
\ Don't subvert this by writing your own words to "typecast" objects; try
\ working within the constraints of OCOPY as an experiment to test Wirth's idea.

\ <IS_A> should be written in assembly to make OCOPY run quickly.
\ SIZE also to help OCOPY and because it is important on its own.

\ ****** How to define classes ******

\ All of the field defininitions are bracketed by CLASS and END_CLASS.

\ CLASS doesn't take any parameters but does require the class_name
\ and the base_class_name. It defines the class_name as a new word.

\ END_CLASS needs to be given the vectors to the constructor and destructor
\ (as well as the data which CLASS left on the stack and which FIELD and
\ VIRTUAL have been updating). END_CLASS fills in the class pfa fields.

: CLASS \ -- base_class_pfa index \word: class_name base_class_name
 CREATE
 0 , 0 , 0 , 0 , \ fill class_pfa with dummy values
 PFA \ base_class_pfa --
 DUP .SIZE @ \ base_class_pfa initial_index --
 DOES> \ how_many -- object_adr
 <SELF> @ >R \ hold old <SELF> value

Forth Dimensions XXI.1,2 77

 OVER 1 < ABORT" *** Class definers need a how_many parameter >= 1 ***"
 2DUP .SIZE @ \ how_many class_pfa how_many class_size --
 * MALLOC \ how_many class_pfa first_object_adr --
 DUP >R
 ROT 0 DO \ class_pfa object_adr --
 2DUP .CLASS ! \ set pointer to class_pfa in object
 DUP <SELF> ! \ set SELF for use by constructors
 OVER <CONSTRUCT> \ call all of the constructors
 OVER .SIZE @ + LOOP 2DROP \ --
 R> \ first_object_adr --
 R> <SELF> ! ; \ restore old <SELF> value

: END_CLASS \ base_class_pfa final_index ^constructor ^destructor --
 \ word: class_name
 PFA >R \ hold class_pfa on return stack
 R@ .DESTRUCTOR !
 R@ .CONSTRUCTOR !
 R@ .SIZE ! \ final_index is the object's size
 R> .BASE ! ;

\ END_CLASS fills in the values of the class_pfa (created by CLASS)

\ We don't have any way to nest class definitions as done in C.
\ You must include a POINTER to your subclass object. In the constructor,
\ create an instance of this class and store the object_adr in the pointer.

order, giving the values 1–52, with one Joker being 53 and
the other 54. The key was the arrangement of the cards and
the Jokers, and this had to be determined by preagreement,
say a Bridge column in the newspaper. Letters were encrypted
by adding the value of the letter (a–z, 1–26) to the card value,
modulo 26. Then the deck was cut and shifted according to
where the Jokers were located. The method is effective, simple,
and inexpensive, but extremely slow (and confusing).
Definitly a job his Forth program can do better.

In a third paper, Wil presented “The Most Powerful Editor
That I Have Ever Used.” The idea is to place a block of text
into a large counted array named “Clipboard,” and then to
throw tiny Forth tools at it to massage the text. The tools
were usually set up to process a line of text at a time, and
many code examples were provided. It reminded me of Perl,
and Wil conceded that you could think of it that way. (“Forth
as the better Perl” — makes sense to me.)

Two papers describe using Programmable Logic Devices
(PLD) to generate your own hardware. This is the opposite
approach that Esson took to the problem of “disappearing
hardware.” John Hart, of Testra Corporation, programmed
an ispLSI12032 PLD to provide the interface between an RS232
port on a PC to an RS485 security network. The device con-
tained a baud generator, three digital filters, and a state ma-
chine. This was an example of work done with an HLDL he
wrote in Forth and programmed in Forth. It generates the
logic equations actually used to program the device.

Dr. C.H. Ting demonstrated his new P8 Forth processor.
This is an eight-bit bus version of the P16, which has its roots
in the MU21, a Forth chip that Moore and Ting developed.
This project became viable with the availability of the XS40
development kit from Xess. The on-board XC4005 FPGA has
the advantage of being reprogrammable. The kit also has 32K
SRAM, I/O, workspace, and a parallel port for connection to a

PC. By reducing the data bus to eight-bits wide, he could fit a
P16 core onto the FPGA and still run a modified eForth. As it
is, he used only 165 CLB logic blocks, even after adding a simple
serial port, leaving 31 logic blocks for future development.

The P8 has the return and data stacks in hardware, and
both are only 16 cells deep, so recursion and other stack ex-
cesses are out. It uses a long instruction word, with each 16-
bit cell containing up to three five-bit instructions. Only 25
of the 32 possible instructions are implemented in hardware.
Calls and jumps contain an 11-bit address, so you can only
address the 2048 cells (4056 bytes) in the current page. To go
beyond the page, you have to push a 16-bit address on the
return stack and do a RET instruction.

The P8 project should be of interest to students and ex-
perimenters.

John Carpenter talked about “Calling Forth Methods from
Java.” Because Java usually takes so much time to load, he
thought it best to reverse the process and have Java resident.
Java can then call Forth modules in the form of Forth.DLLs.
SwiftForth was used because it is Windows friendly, and he
was able to demonstrate that the idea is workable.

Glen Haydon shared his thoughts on Forth Philosophy in
1999. He echoed the hope of some that the ANS Forth stan-
dard doesn’t induce stasis in what has always been a dynamic
language. He noted that the Internet doesn’t seem to have
generated the free flow of meaningful ideas on Forth, ideas
that would excite newcomers to the power of Forth to im-
prove their creativity and productivity.

Later, two papers were presented that dealt with Forth
education. The attempt to reach out continues.

Dr. C.H. Ting described how he has developed a simpli-
fied and faster version of eForth that students can learn and
use, and not be caught up in unnecessary details. He also
outlined his Firmware Engineering Workshop, which is a four-

FORML, continued from page 43.

78 Forth Dimensions XXI.1,2

lesson course to teach hardware engineers the fundamentals
of firmware.

Richard Haskell teaches computer science and engineer-
ing at Oakland University in Rochester, Michigan. His prob-
lem was not hardware disappearance, as much as hardware
obsolescence. The assembler language course for the micro-
chip of this year became the obsolete assembler course next
year. A high-level language at least would let you concen-
trate on code rather than yet another language. With C/C++,
however, the development environment is not the friendli-
est. What is needed is something small, simple, interactive,
even on-board the target—something like Forth. Enter WHYP
(pronounced “whip”), Words to Help You Program.

This subroutine-threaded Forth is written in C++ and as-

sembler for the 68HC12 and 68 HC11 microcontrollers. A PC
host holds the name fields with the parameter field addresses,
while the parameter fields are on the target. The two are con-
nected by a serial link. Invoking a word’s name on the host
will cause it to execute on the target.

All of this is explained in a course book that introduces the
student to the microcontrollers and the code to control them.
It leads to a discussion of the interface, the programming of
simple routines, interrupts, timers, A/D conversion, fuzzy
contollers, etc. All the exercises are done incrementally and
interactively, allowing the student to test and program each
feature of the 69HC12. By the end of the course the student
understands both the 68HC12 and the usefulness of Forth.

Mascot and Annual Award of the German Forth Interest Group

The Swap-Dragon

Fred Behringer • behringe@mathematik.tu-muenchen.de

I really do not have the slightest idea where the Swap Dragon
came from. Any suggestions? Chris Jakeman, editor of FIG UK’s
Forthwrite, thought it could have had its origin from an illus-
tration of Leo Brodie’s famous and ubiquitous book Starting
Forth. Elizabeth Rather is reported to be quite sure that the
Swap Dragon figure does indeed come from Starting Forth and
that FORTH Inc. has given Forth-Gesellschaft specific permis-
sion to copy it solely for the purposes of a mascot.

Anyway, it has been more than ten years now that the
Swap Dragon has been a mascot of Forth-Gesellschaft, the
German FIG. Its foremost characteristic is the two-headedness.
Can this little creature actually swap its heads? Or is it, rather,
ideas which are swapped to and fro between the two heads?
A symbolic representation of the notion of distributed intel-
ligence? Decentralization. Or is it rather a manifestation of
the fact that interchanging knowledge and experience is the
thing most important among Forthers? I can only guess. The
fact is that the Swap Dragon, in its embodied form, is a cute
little bronze statue of rather heavy weight which serves the
German FIG as a mascot and, at the same time, as an annual
award for achievements towards Forth and merits gained in
favour of Forth-Gesellschaft. It was originally imported and
presented to Forth-Gesellschaft by Klaus Schleisiek, in plas-
tic, and it recently got its current bronze form from Rolf
Kretschmar, an inspired artist who, as many of us Forthers, is
taking Forth as one source of his creativeness but does not
insist on considering Forth as the only conceivable thing in
the world.

The statue’s character of also being a mascot imposes quite
a duty on the respective winner of this prize: he or she has to
take it in custody and see that nothing unforeseen happens
to the little creature, so it can be passed on to the next in
line, the next year’s winner of the prize. Of course, since it
would be unfair to let the same winner win the prize twice,
the probability of winning the Dragon is steadily increasing
from year to year. The German FIG does not have that many
members, so everybody gets a fair chance. However, at the

present, there might be members
who will have to wait another
three hundred years or so until
they get the prize.

The names immortalized so
far (up to 1998) in the Hall of
Fame guarded by the Swap
Dragon are: Michael Kalus,
Heinz Schnitter, Joerg Staben,
Klaus Schleisiek, Ulrike
Schnitter, Jens Wilke, Joerg
Plewe, Friederich Prinz, Klaus
Kohl, Ulrich Hoffmann, and
Bernd Paysan, in chronological
order.

Yours truly, this year’s custodian, does not yet know how
the procedure of electing the respective new Dragon Award
winner actually is evolving. He will know it next year, though,
when he too will have gained the honour of being consid-
ered one of their number: the Drachenrat (Dragon Council),
a Druid-like assembly of conspirators, consisting of the prize
winners of the past who, at a certain time late in the evening
of Forth-Tagung, the day of the Annual General Meeting of
Forth-Gesellschaft, meet behind closed doors. It’s always kept
a great secret, well-hidden from any prospective curious in-
truder. Everybody would like to know more about it. Nobody
has ever had the chance of learning what’s really going on
behind those doors, locked to the extent that even the wait-
ress would have to swear seven oaths not to tell the public a
single word of what she heard—and might have understood.

It is rumoured that there is much unintelligible mutter-
ing and mumbling from which only one word can be singled-
out from time to time: Forss, the average native German
speaker’s way of pronouncing Forth, the “th” not belonging
to the set of German sounds and being next to unpronounce-
able, for many of us. One thing, however, is for certain: the
brainstorming electorial process is kept rolling by quite a
number of bottles of an alcoholic kind of liquid whose exact
ingredients, however, are also kept a secret. As I said before,
next time I will know more about the whole procedure—and
start keeping the secret from the rest of the uninitiated world.

“FORML” continues on page 54.

Forth Dimensions XXI.1,2 79

S P O N S O R S & B E N E F A C T O R S

The following are corporate sponsors and individual benefactors
whose generous donations are helping, beyond the basic member-
ship levels, to further the work of Forth Dimensions and the Forth In-
terest Group. For information about participating in this program,
please contact the FIG office (office@forth.org).

Corporate Sponsors

AM Research, Inc. specializes in Embedded Control applications us-
ing the language Forth. Over 75 microcontrollers are supported in
three families, 8051, 6811 and 8xC16x with both hardware and soft-
ware. We supply development packages, do applications and turn-
key manufacturing.

Clarity Development, Inc. (http://www.clarity-dev.com) provides con-
sulting, project management, systems integration, training, and semi-
nars. We specialize in intranet applications of Object technologies,
and also provide project auditing services aimed at venture capitalists
who need to protect their investments. Many of our systems have
employed compact Forth-like engines to implement run-time logic.

Computer Solutions Ltd. supplies Forth and other tools for embedded
microprocessor designers and programmers in the U.K. and continen-
tal Europe. Users and developers for 18 years, COMSOL pioneered Forth
under operating systems, and developed the groundbreaking chipFORTH
host/target environment. Our consultancy projects range from single
chip to one system with 7000 linked processors. www.computer-
solutions.co.uk

Digalog Corp. (www.digalog.com) has supplied control and instrumen-
tation hardware and software products, systems, and services for the
automotive and aerospace testing industry for over 20 years. The real-
time software for these products is Forth based. Digalog has offices in
Ventura CA, Detroit MI, Chicago IL, Richmond VA, and Brighton UK.

Forth Engineering has collected Forth experience since 1980. We now
concentrate on research and evolution of the Forth principle of pro-
gramming and provide Holon, a new generation of Forth cross-de-
velopment systems. Forth Engineering, Meggen/Lucerne, Switzerland
– http://www.holonforth.com.

FORTH, Inc. has provided high-performance software and services
for real-time applications since 1973. Today, companies in banking,
aerospace, and embedded systems use our powerful Forth systems
for Windows, DOS, Macs, and micro-controllers. Current develop-
ments include token-based architectures, (e.g., Open Firmware,
Europay’s Open Terminal Architecture), advanced cross-compilers,
and industrial control systems.

The iTV Corporation is a vertically integrated computer company
developing low-cost components and information appliances for the
consumer marketplace. iTVc supports the Forth development com-
munity. The iTVc processor instruction set is based on Forth primi-
tives, and most development tools, system, and application code are
written in Forth.

Keycorp (www.keycorp.com.au) develops innovative hardware and
software solutions for electronic transactions and banking systems,
and smart cards including GSM Subscriber Identification Modules
(SIMs). Keycorp is also a leading developer of multi-application smart
card operating systems such as the Forth-based OSSCA and MULTOS.

www.kernelforth.com

An interactive programming environment for writing Windows NT
and Windows 95 kernel mode device drivers in Forth.

MicroProcessor Engineering supplies development tools and
consultancy for real-time programming on PCs and embedded sys-
tems. An emphasis on research has led to a range of modern Forth

systems including ProForth for Windows, cross-compilers for a wide
range of CPUs, and the portable binary system that is the basis of
the Europay Open Terminal Architecture. http://www.mpeltd
.demon.co.uk

RAM Technology Systems - Specialists in real-time embedded con-
trol. We develop hardware and software from initial idea to final
production if required. We have developed the only commercial Forth
for the PIC16Cxx range of microcontrollers and now for the AVR. If
you need an embedded compiler for your new processor give us a
callhttp://www.ram-tech.co.uk • irtc@ram-tech.co.uk

www.theforthsource.com

Silicon Composers (web site address www.silcomp.com) sells single-
board computers using the 16-bit RXT 2000 and the 32-bit SC32 Forth
chips for standalone, PC plug-in, and VME-based operation. Each SBC
comes with Forth development software. Our SBCs are designed for
use in embedded control, data acquisition, and computation-intense
control applications.

T-Recursive Technology specializes in contract development of hard-
ware and software for embedded microprocessor systems. From con-
cept, through hardware design, prototyping, and software implemen-
tation, “doing more with less” is our goal. We also develop tools for
the embedded marketplace and, on occasion, special-purpose soft-
ware where “small” and “fast” are crucial.

Tateno Dennou, Inc. was founded in 1989, and is located in Ome-
city Tokyo. Our business is consulting, developing, and reselling prod-
ucts by importing from the U.S.A. Our main field is DSP and high-
speed digital.

ASO Bldg., 5-955 Baigo, Ome,Tokyo 198-0063 Japan
+81-428-77-7000 • Fax: +81-428-77-7002

http://www.dsp-tdi.com • E-mail: sales@dsp-tdi.com

Taygeta Scientific Incorporated specializes in scientific software: data
analysis, distributed and parallel software design, and signal process-
ing. TSI also has expertise in embedded systems, TCP/IP protocols
and custom applications, WWW and FTP services, and robotics.
Taygeta Scientific Incoporated • 1340 Munras Avenue, Suite 314 •
Monterey, CA 93940 • 831-641-0645, fax 831-641-0647 • http://
www.taygeta.com

Triangle Digital Services Ltd.—Manufacturer of Industrial Embedded
Forth Computers, we offer solutions to low-power, portable data log-
ging, CAN and control applications. Optimised performance, yet ever-
increasing functionality of our 16-bit TDS2020 computer and add-
on boards offer versatility. Exceptional hardware and software sup-
port to developers make us the choice of the professional.

Individual Benefactors

Makoto Akaishi
Everett F. Carter, Jr.
Edward W. Falat
Michael Frain
Guy Grotke
Bjorn Gruenwald
John D. Hall
Guy Kelly
Zvie Liberman
Marty McGowan

Andrew McKewan
Peter Midnight
John Muller
Gary S. Nemeth
Marlin Ouverson
John Phillips
Thomas A. Scally
Martin Shann
Werner Thie
Richard C. Wagner

80 Forth Dimensions XXI.1,2

