


Swift Fort hTM 
I for Windows 95/98 and Windows NT 

Super-efficient implementation 
for speed (32-bit subroutine- 
threaded, direct codeexpansion) 
Full GUI advantages (like drag- 
and-drop editing; hypertext 
source browsing; visual stack, 
watchpoints, and memory win- 
dows) but retains traditional 
command-line control and tools 
Complies with AN5 Forth, in- 
cluding most wordsets 

I Easy to add DLts  and to call 
DLL functions 

r DOE client services for inter- 
application communication 
Files and blocks supported 
Simple creation of windows, 
menus, dialogs, etc. - no 
third-party tools needed 
Flexible, extensible access to 
system callbacks and mes- 
sages, and exception handler 

As usual, FIG'S administrative and sales office is keeping 
busy with processing your membership renewals, service re- 
quests, new memberships, and product sales. Is your mem- 
bership due for renewal? I t  helps us if you renew your mem- 
bership early, and it guarantees that you do not miss any is- 
sues of Forth Dimensions. When you renew your membership, 
please be sure to give us your current e-mail address. There are 
some exciting things on the horizon, and if we have your 
current e-mail address it will make it easy for you t o  partici- 
pate! In fact, just e-mail it to us at  office@forth.org. 

Speaking of participating, please take a Iaok at the back 
cover of this issue. If you or someone you know is thinking 
about submitting an article to Forth Dimensions, the time is  
now! Forth Dimensions is your group's magazine-to get the 
most out of it, everyone needs to put something into it! The 
most often heard comments I get here at: the business office, 
when asking someone to write for Forth Dimensions, reveal 
that most people seem intimidated about needing to have an 
article in perfect form. Believe me, our editor, Marlin Ouverson, 
can work magic on prose! If you have an idea for an article and 
can get that to him, he can help you turn it into a masterpiece. 

The 20th Annual FORML Conference was a great success! 
Over 35 FIG members from the around the world, some com- 
ing from England, Germany, and Australia, got together to 
discuss and share their ideas about Forth and its future. When 
good people with good minds are working together, really 
terrific things can happen! We have already started planning 
for the 21st FORMGif  you have ideas or want to get involved, 
let us know and keep reading Office News for more details. 

As we warned in the last issue of Forth Dimensions, prices 
for books and software on the FIG mail-order form will be go- 
ing up. Because of adjustments to the magazine's publishing 
schedule, it went to press before the price changes could be 
made; new prices w l I  appear when the next issue is published. 

Looking forward to 1999, we can see it not only as the 
end of this millennium, but as the thresh- 
old to the next one! The future of Forth 
is in your hands! 

Remember together we can make a dif- 
ference! 

Cheers, 

Trace Carter 
Administrative Manager 
Forth Interest Group 
100 Dolores Street, Suite 183 
Carmel, CA 93923 USA 
voice: 831.373.6784 fax: 831.373.2845 
e-mail: office@forth.org 

This classic is  no longer out of print! 

Poor Man's Explanation of 
Kalman Filtering 
or, How I Stopped Worrying and 
Learned to Love Matrix Inversion 

by Roger M. du Plessis 

$19.95 plus shipping and 
handling (2.75 for surface U.S. 
4.50 for surface international) 

You can order in several ways: other publications offered 

e-mail: kalman@taygeta.com aygeta Scientific Inc., you 

fax: 831 -641 -0647 can call our 24-hour message 

voice: 831 -641 -0645 
line at 831-641-0647. For your 
convenience, we accept Mas- 

mail: send your check or money order ter-Card and VISA. 
in U.S. dollars to: 

Taygeta Scientific Inc. 
1340 Munras Avenue, Ste. 31 4 Dept. FD Monterey, CA 93940 
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. E l  Dyn00F-style Objects for the i2 I microprocessor by Andrds Zsdter 
The i21 is a stack machine designed to meet the minimum needs of the programmer; at first it does not 
seem the best candidate for impIementing OOP into the Forth virtual machine. This implementation 
demonstrates that it can be done, and that such an implementation is suitable for commercial use. 

To ward a Standard for Cross-compilers and Embedded Systems 
8 by Elizabeth D. Rather El An agenda item for ANS Forth involves the issues raised by embedded systems and cross-compilers. 

Such systems represent a large body of Forth use. In 1996, FORTH, Lnc. and MPE developed a joint set 
of standards for such systems. These now have been used in commercial settings and, as a result, a 
good body of experience is available from which to form the basis for a proposal for standardization. 

El FORML Conference #20 by Richard Astle 
Perhaps the longest-standing tradition in the Forth community, the FORML Conference just celebrated 
its twentieth anniversary. It's never been said that "as FORML goes, so goes Forth," but this year's 
increase in both attendance and number of presentations was encouraging. Certain of the presenta- 
tions may have set in motion technical developments which will bear fruit in the coming few months.. . 

El How and Why to Use Multitasking by Frank Sergeant 
Most Forths provide multitasking, which allows independent threads of control to run cooperatively. 
The author has used multitasking in his 16-bit Pygmy Forth and in its variants. This paper discusses 
some benefits of multitasking. The examples are for Pygmy, but the principles apply to other Forths. 
If you don't already use multitasking, this article will break the ice and get you started. 

El Forth and Functional MRI by Ronald Kneusel 
Functional Magnetic Resonance Imaging (fMRI) is a new branch of biophysics which studies brain 
function. In this article we will Iook a little at what MRI is and what the word "functional" means in 
regards to MRI. Then we will take a cIoser look at a Forth program developed for the analysis of 
functional MRI data. 

The Problem with Buffers by Hugh Aguilar 

26 I f  is commonplace that a program accept data and do something with that data. But data often comes El m bursts, faster than the program can process it, so we need to buffer the data in memory. But buffers 
can suffer from a variety of constraints, not least of which is the amount of memory. And what if the 
data must be in contiguous addresses? 

El Reed-Solomon Error Correction by Glenn Dixon 
Reed-Solomon is a type of forward error coxrection used in disk drives, CDs, satellites, and other com- 
munication channels. Redundancy is added to data before sending. At the destination, this data reveals 
if an error has occurred and may allow correction, reducing the necessity of retransmitting data. -. 

R E P ~ ~ R ~ M E N T S  
" A 

2 OFFICE MEWS 14 STRETCHING STANDARD FORTH 
SOOP - Simple Object-Oriented Programming 

4 EDITORIAL 
Preparing for the future 
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The future of Forth and of the Forth Interest Group is practically a perennial topic of 
speculation. In the relatively early years of FIG--I was not here at the beginning, so I can't 
speak for those times-it seemed to me there was some jealousy of the popular language du 
jour (Pascal, at one point, or even Ada). Those were times when the predictable response to 
almost any description of another language's strengths elicited a response that was wistful 
("But Forth could have done that!") or even beIIigerent ("Forth has always had that!"). As in 
so many  young organizations, strategic planning took second place to living in the mo- 
ment while dreaming of hitting it big. 

The best way to prepare for the future is to start realistically-from where we are, and 
not from where we wish we were. That means working with the resources that are available 
to us, in cooperation with people who follow words with action, to achieve a goal we can 
agree upon. The manner in which we conduct these affairs will be influenced-if we care at 
all about public perception of the Forth Ianguage-by the ski11 with which we use, or by the 
ignorance or arrogance that causes us to ignore, contemporary methods of communicating 
a message and delivering a service or product. 

Forth has always thrived by providing improved functionality with constrained resources. 
In a way, our organization has been doing that. Cleverly done, FIG could make a transition 
to full on-line presence so thoroughly that much of its day-to-day business could be strearn- 
lined. Set-up will be more complex than most volunteer projects, and members might called 
upon to view change as a positive factor. Some administration would be required, but we 
can design our services and the methods of delivering them such that their pricelperfor- 
rnance ratio makes them attractive alternatives. 

What does the future hold? Forth certainly has a history of finding a niche in which it 
excels; and while the much-sought killer app has not appeared, there have been many 
impressive Forth projects over the years, and it is a staple in the back room of many shops. 
(Maybe we should start thinking of Forth as the killer tool.) We can minimally expect that 
the occasional projects that are not well-served by more-popular approaches will continue 
to benefit spectacularly from the direct approach and various traits Forth demonstrates. 

Some people wait to see what the future holds, others invent it. Whichever approach is 
taken by this generation of leaders in the Forth community, we should consolidate our 
current resources and deploy them skillfully to serve Forth users and developers and to 
demonstrate that we are able to change with the times, and to come out stronger, more 
organizationaUy agile and adept with the tools, and perhaps even the styles, of the day. 

Measures we can and should be taking now include on-line archiving of all our publica- 
tions, in facsimile reproductions of presentation quality, in a searchable, indexed, cross- 
platform format that allows either direct copying or some other simple access to the pub- 
lished code; that might eliminate physical warehousing and much shipping. Forth Dimen- 
sions should convert to an all-electronic format to capitalize on the conveniences offered 
by hyperlinks, code sharing, on-line subscription and distribution, archiving, and cost sav- 
ings. The FIG mail-order form could, after the aforementioned electronic archive is com- 
plete, be greatly simplified and implemented as a secure-transaction feature of the web site. 
On-line conferences via IRC or other technology, including thread-linked archives of 
comp.lang.forth, could replace much of the function lost with the general (though not 
universal) demise of local FIG chapters. With a commitment to establishing this kind of 
presence, both the electronic form of this magazine and the overall web site could be rede- 
signed to serve as showcase, reference library, historical archive, code bank, coIlaborative 
center, classroom, and technical support. 

Of course, the collective resolve it will require to achieve a fair measure of these func- 
tions will be greater than it would be if the organization were better endowed. But I think 
great enthusiasm can overcome many other deficiencies, and our organization has never 
been short of that. We simply need to consolidate our resources, re-focus on the achievable, 
and coordinate our efforts. 

What will be required to move FIG into a new incarnation that serves better and more 
economically is resolve, cooperation, pa- 
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DynOOF-style Objects 
for-th~e i21 microprocessor 

Introduction 
Some say that Forth always had the essentials of object- 

oriented programming via CREATE and DOES>. However, 
modern OOP techniques use multiple methods associated 
with a data structure (as opposed to only one provided via 
DOES>), late binding, and named data fields inside an object's 
data area. 

Several attempts have been made to add object-oriented 
features to Fotth.~robabl~ one reason that such attempts were 
so numerous is the relative ease of the implementation of 
OOP in Forth. 

One model developed by the author of this paper places 
performance above all else [2, 31. This model will be referred 
to as the D p 0 0 F  model, named after one of its implementa- 
tions called the Dynamic Object-Oriented Forth. 

The syntax and semantics of the model is explained in 
details elsewhere [I]. DynOOF objects are accessed via an ob- 
ject pointer (OP), which is usually implemented as a register 
of the CPU. If resources permit, another register is used as a 
pointer to the object's virhral method table (VMT), which is 
used at run time for method calls. 

Objects must be explicitly selected either by overwriting 
the OP with 0 ! or by saving the previous OP and then over- 
writing it with (. In the latter case, the previous object pointer 
can be restored Iater by 1 I.  

After an object has been selected, the programmer can treat 
fields as ordinary global variables. The method-invocation 
syntax is also as simple as caning any other Forth word. 

The definition of' virtual methods, however, requires some 
extra syntax, but this paper can be understood without it, so 
it is not presented here [I]. 

Accessing data inside an object, or calling virtual meth- 
ods through a late-binding mechanism, can be nearly or 
equally efficient as accessing ordinary global variables and 
calling normal Forth colon definitions [3]-providing that 
the CPU has free registers to hold the Object Pointer and the 
address of the VMT. 

The main goal of this paper is to discuss issues related to 
implementing the model for the i21 microprocessor in iTvc's 
Forth target-compiled environment. Because the i21 is a stack 
machine which, following the Forth tradition, has been de- 
signed to meet only the bare minimum needs of the program- 
mer, at first it does not seem to be the best candidate for 
implementing something like OOP built right into the For* 
virtual machine. 

The OOP implementation described in this paper demon- 
strates that it can be done, and that such an implementation 
is suitable for commercial use. 

I. The words { and } have been replaced by <( and )> in more recent 
systems, to avoid name collision with the array syntax used by the 
Forth Scientific Library. 

The i21 microprocessor 
The i21 microprocessor is a stack machine which is being 

developed at the iTv Corporation (Redwood City, CA). Its 
general architecture and instruction set has evolved from the 
MuP21 microprocessor, which was discussed in detail in the 
pages of Forth Dimensions a few years ago [4]. 

The i21 is used by iTvc in the design of low-cost, Internet- 
access devices. The information presented in this paper is in 
use at iTvc. The object model was the foundation of the imple- 
mentation of several components of iTvc's system software, 
including a file system for flash devices, an HTTP client pro- 
gram, and a small HTTP server for embedded systems. 

Registers and stacks 
Although the i21, is a stack processor, its minimal instruc- 

tion set and limited stack depth is not enough to support the 
execution of a wide variety of standard ANS Forth [5] programs. 

In order to support all the features in the standard, iTvc's 
i21 Forth uses "soft" stacks, i-e., the high-level Forth machine 
does not use the i21's internal stacks as Forth's stacks. Its stacks 
reside in RAM. The addresses of the memory locations used 
as stacks in the high-level Forth are kept on the i21's internal 
stacks. 

The following register mode1 was used before implement- 
ing OOP: 

The A register: Forth's IP (instruction pointer). 
The top of the data stack: Forth's SP (data stack pointer). 
The top of the return stack: Forth's RP (return stack 
pointer). 
The second item on the return stack: Forth's UP (pointer 
to the user variable area). 

The above model uses nearly all easily accessible registers 
of the i21. Items deep in either stack cannot be used effi- 
ciently, because even getting to them requires a number of 
i21 instructions. 

The original DynOOF model uses two special registers: One 
for holding the address of the active object and one for hold- 
ing the address of the VMT of the class of the active object. 12, 
31. In the i21 Forth, the resources only allowed one such pointer. 

The second item on the iZ1's internal data stack is easily 
accessible, so it has been chosen to be the OPZ. This also means 

' that virtual method calls require an additional de-referenc- 

2. The register, apart from being easily accessible, also has to be spare, i.e., 
not clobbered by other pieces of code. Because the 121 registers are 
arranged as a stack, and routines are not supposed to dig into the stacks 
and scramble their contents, this condition has been met. Patching a 
Dyn00F-style OOP support into an already existing system on a CPU 
with a more traditional register file would probably have h e n  a lot 
more difficult, if not impossible, without rewriting a signif~cant portion 
of the system. 
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ing, thus they are somewhat more expensive than in the origi- 
nal DynOOF model. However, field accesses are still fast and, 
because they are significantly more frequent than virtual 
method calls, the model still provides sufficient overall per- 
formance for real-world applications. 

The representation of an object instance 
In the original DynOOF model, an object instances is rep- 

resented on the stack by its address [I, 31. This is true for 
objects in dictionary space as well as for objects aIIocated in 
dynamic memory. 

- Because i~vc's  Forth system is target compiled, it is im- 
practical to initialize objects at compile rime, because the 
object's Init method (its constructor) would have to run on 
the target compiler's host system whenever an object is ini- 
tialized at compile time, and the same constructor would have 
to run on the target system for dynamicaIly created objects. 

Therefore, all objects have to be created dynamically. iTvc's 
operating system (called 405) provides two different set of 
words for memory allocation. One set is handle based-a block 
of memory is represented on the stack by a handle which is 
the address of a pointer to the data area in memory. This is to 
allow moving a memory block without the application code 
having to keep track of it. The other set of memory-alloca- 
tion words use addresses, just like the ANS Forth memory- 
allocation wordset [ S ] .  

In iTvcls implementation of the DynOOF modeI, the 
former, handle-based, memory allocation scheme was cho- 
sen for implementing objects. Objects are represented on the 
stack as handles. However, this difference is completely trans- 
parent as long as the application programmer follows the API 
described by the appropriate documentation. 

Words which create or destroy an object ( ~ e w  and D e -  
l e te )  operate on handles. Words like 063, o!, 4 (, and 1 > use 
and update an object handle (OH). The handle of the active 
object is stored in RAM. Every time OH is updated by one of 
the above words, the object's address i s  copied from the handle 
to the OP inside the CPU. 

The only restriction is that the data area of an object can- 
not be moved in RAM while the object is active (which would 
render the OP invalid). However, 40s never actually moves 
data areas without an expIicit request from the appIication 
program. 

Another difference from the original DynOOF model is in 
what the address of the object means. in the original model, 
the address of an object was the address of the first data field, 
and the object's VMT was stored in the cell immediately be- 
fore the object's address. In the i21 version, the first cell at 
the object's address contains the address of its VMT and the 
first data field starts immediately above it. The old version 

Figure One 

was designed to protect the programmer, while doing inter- 
active deveIopment, from accidentally overwriting the VMT 
address inside the object instance (the address on the stack is 
always the address of a data area). On the i21, the address of 
the VMT is stored in the first cell of the object's body because 
accessing a negative offset would require additional instruc- 
tions, which would make method caIls slower. 

Threaded code for field access and method calls 
Both previous implementations of the DynOOF model 

were native code environments. The Forth system lay down 
machine code and OOP words usually compiled into one or 
two machine code instructions [3]. No special effort was nec- 
essary to optimize how OOP words are compiled. 

In a threaded code model, there are different possible ways 
to implement fieId accesses and virtual method calls: 

Each field name and method name can appear in the 
dictionary as a separate definition. The individual defini- 
tions can hold the necessary offsets to access the proper 
data field or proper VMT entry, respectively. Fields in 
different classes which have the same offset generate 
several identical definitions in the dictionary. Also, 
methods of different classes which have the same offset in 
the VMT require identical definitions in different classes. 
In a live Forth system, this solution would be natural. In 
iTvc's target-compiled environment, the size of the 
executable is considered to be important; thus, adding 
identical definitions to the dictionary is nor acceptable. 

A preset range of field access and method caII definitions 
can be added to the dictionary, and the compiler chooses 
the correct token when a field or method name appears 
in the input. 

Unlike in the previous case, only one token is required for 
fields starting at a certain offset in different classes. The 
compiler has to keep track which fields map to which 
token, and generate new tokens when they are needed. 

The third possibility was the one chosen for iTvc's imple- 
mentation of OOP because it only requires two defini- 
tions: one for field accesses and one for virtual method 
calls. The same trick is used as in the traditional Forth 
word LIT (which is compiled into definitions by the Forth 
system when a number inside a definition i s  encountered). 

Traditionally, the token LIT is laid down, followed by the 
number itself. When this LIT token i s  executed, it 
fetches the number following it from the dictionary and 

pushes that number to Forth's 
stack. The implementation of 

CODE ( F i e l d )  ( -- A d d r  ) 

OVER @A+ A@ PUSH \ Get Offset. Save register A .  
+ OVER $01 # nop \ Calculate Field's Address. 
+ A !  ! A  DROP \ SP+l->A, OP+Of £ s e t  -> ( A )  . 
A@ POP A !  \ A->SF,  Restore A .  
next 
END-CODE 

fields is analogous to LIT. 
When the appropriate token- 
called ( Fie 1 d ) - is executed, 
it fetches the number follow- 
ing it from the dictionary (the 
field offset), adds that number 
to the second item on the i21 
internal data stack (OP), and 
pushes the result to Forth's 
data stack in memory. 
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For the i21, the implementation of (Field) looks like 
Figure One. For comparison, the DOVAR routine which is 
used in accessing global variables looks like Figure Two. 

And in the body of each variable, there is a c a l l  DoVar 
instruction followed by the data area of the variable. The 
same number of instruction words3 is needed for both a 
field access and a global variable access. 

Thus, a field access inside an object (once the object has 
been selected) has about the same cost as a global 
variable access. On the other hand, the same class of 
objects can have several object instances, while the 
system has only one set of global variables. This makes 
objects particularly useful in a multitasking environment 
(such as iTvc's 40S), especially because the USER variabIes 
(which are unique for each task) are more expensive in 
the current irnpIementation. 

The token for methods-called (Method) -behaves 
similarly but, instead of calculating a data address, it 
fetches the address of a routine from the object's VMT 
and then executes that routine. (See Figure Three.) 

Choosing the third technique has reduced the number of 
definitions needed for field access and virtuaI method calIs 
to only two. Also, the compiler has been kept simple. On the 
other hand, each and every field access and virtual method 
call requires two items in the dictionary instead of one. 

Some optimizations 
Using two cells in the dictionary space instead of one is 

wasteful. 
A virtual method is usually called from only a few defini- 

tions4, so the two-item-long calls do not increase the code 
size significantly. 

On the other hand, field accesses are frequent, and a de- 
sign goal was to keep OOP code srnalI. As shown in the previ- 
ous section, selecting a way of implementing fields which 

3. On the i21 microprocessor, just like on the PZ1, instruction codes are 
five bits wide. A 20-bit word contains up to four instructions. 

never, ever wastes dictionary space could prove to be diffi- 
cult. In order to make field accesses more efficient, the com- 
piler has to recognize word sequences. 

Let us consider the following code fragment: 
C l a s s :  B a s  Field FBar ;Class 

: Fool -- ) FBar @ Foo FBar ! ; 

The definition of ~ o o l  contains eight tokens: (Field), the 
offset: of  bar, @, Foo, (F ie ld ) ,  the offset of FBar, ! , and EXIT. 

In both cases, when F B a r  is accessed, we are not really in- 
terested in its address but in reading or changing its value. 
Fetching and storing the content of a field is a very frequent 
operation. Having three tokens for field accesses instead of 
one can speed up field fetches and stores. We keep {Field) 
for pushing a field's address onto the stack when we need it. 
Two new tokens are needed- (Field@) and (Field ! )-which 
work Iike (Field) followed by a fetch or a store, respectively. 

After implementing those tokens in iZ1 assembly, a modi- 
fied @ and ! has to be implemented which recognizes that: a 
field has just been compiled, and replaces the token ( F i e l d )  
with (Field@) or (Field! ) , as appropriate. This modifica- 
tion can be added easily to the target compiler in a couple of 
lines of code. 

After the above modifications, the definition of F O O ~  will 
contain only six tokens: ( F i e l d @ ) ,  the offset of FBar, FOO, 
(F ie ld !  ) , the offset of FBar, and EXIT. 

The latter sequence of tokens is not only shorter than the 
original one, it also executes significantly faster. Memory ac- 
cesses are expensive on the i21 and, in the latter case, we avoid 
storing the address of the field on Forth's stack in memory 
and then reading it back. Thus, we not only have reduced the 
number of tokens compiled into definitions, we have abo elimi- 
nated two memory accesses (which took place behind the scene 
in the original version) for each field fetch or field store. 

(Continues on page 13.) 

4. Because methods can be implemented as ordinary colon definitions [I], 
only those which have to be overridden in a derived class need to be 
declared as virtual methods. Thus, the number of virtual methods can 
always be kept low, and even those can be wrapped into colon 
definitions, if such a minor difference in code size matters. 

Figure Two 

CODE D o V a r  ( -- addr ) 

01 # nop noP noP \ + must be in the next word. 
-+ A@ OVER A !  \ SP+l->SP,Save A, SP->A 
POP ! A  A!  \ Return address-?(A), Restore A 
next 
END-CODE 

Figure Three 

CODE (Method) ( -- ) 

A@ PUSH OVER A!  \ Save A, OP->A 
@A @R+ noP ~ O P  \ Fetch Address of VMT, Fetch Index 
+ A !  @A POP \ Fetch (VMT+Index), Restore A 

PUSH \ Jump to (VMT+Index) 
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Abstract 
One of the agenda items for ANS Forth involves addressing 

the issues raised by embedded systems and cross-compilers. 
This is worthwhile, as such systems represent a large body of 
Forth usage. 

In 1996, FORTH, Inc. and MPE developed a joint set of 
standards for such systems. These have been used in the 
Europay project to program eight smart card terminals with 
three different kinds of CPUs ranging from 8051s to 68Ks, 
and are incorporated in our SwiftX cross-compilers, which 
are now used by over fifty different customers on six differ- 
ent processor families. This represents a good body of experi- 
ence to form the basis for a proposal. 

1. Issues 
The following issues need to be addressed: 

What needs to be in the target? On many embedded 
systems, it's inappropriate to have a full dictionary, 
heads, compiler, interpreter, etc., resident in the target. Is 
it an "ANS Forth System" if the combination of host and 
target provide all Core words? 
What about managing memory spaces? Presently, ANS 
Forth's "dictionary" only contains data, and the rules for 
pre-initializing data spaces are unclear. Embedded 
systems have to worry about ROM and RAM, on-board 
and external memory, etc, 
How about managing scope/vocabulary issues? If the cross- 
compiler itself is written in Forth, as many are, how do 
you distinguish the underlying system's Forth words 
from the versions that construct the target, or that are 
only executable in the target? 

2.Host and target roles and functions 
, ANS Forth contains two recognizable sets of functionality: 

1. words that build and manage definitions and data 
structures, and 

, 2. all other executable words. 

In a cross-development environment, the first set may be 
confined to the host, so I will call these host functions. The 
second set, normally built by the first set, I shall call target 
functions. .. 

Host functions include all defining words, "syntactic ele- 
ments" such as IF and no, words that put things in data struc- 
tures such as , (comma), and DOES>. Target functions include 
normally executable words like t. and DUP. 

A conventional Forth integrates these two. A cross-devei- 
opment system segregates them, and manages them quite dis- 
tinctly. There may be versions of target words that are ex- 
ecutable on the host as well as the target. 

I propose to introduce a new optional wordset for cross- 
compiling. It will begin by identifying which of the present 
ANS Forth words (in all wordsets) fall into which category. It 
will then establish the principle that an "ANS Forth system" 
exists if, during development, the full set is available even 
though the host functions may be on a separate computer 
from the target. The target i s  not required to provide host func- 
tionality, although it may do so. 

3. Managing scopes 
A scope may be defined as the logical space in which a 

word is visible or can operate. In this context, the host and 
target systems require separate scopes, to distinguish (for ex- 
ample) the DUP used in the host computer's underlying Forth 
from the one that is executable only on the target, and the : 
used to build cross-compiler functions from the one that 
builds target definitions. 

I propose to define the following scopes: 
HOST: This provides access to the underlying system's 
Forth, and is used to construct the cross-compiler. It's 
rarely used explicitly in programs built for the target, but 
is available in case the programmer needs to do some- 
thing special. 
INTERPRETER: These words are executed on the host to 
construct and manage target definitions and data 
structures, and include all defining words plus words 
such as , (comma). New, application-specific defining 
words are defined in INTERPRETER scope. 
COMPILER: This is used to make words executed inside 
TARGET definitions to construct structures, etc. 
TARGET: This is the default scope, which contains all 
words executable in the target. 

By default, new commands belong to the TARGET scope; 
i.e., they are compiIed onto the target. But after the INTER- 
PRETER command, new words are added to the host that will 
be found when the host is interpreting on behalf of the target. 

If you use any of these scope selectors to change the default 
scope, we recommend that you later use TARGET before com- 
mands can again be compiled to the target. 

The compiler directive in force at' the time you create a new 
colon definition is the scope in which the new word will be 
found. As a trivial example: 
TARGET ok 
: Testl 1 . ; ok 
Testl 1 ok 

INTERPRETER ok 
T e s t l  
Error 0 TEST1 is undefined 
Ok 
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Table One with the sections shown in Listing One. 1 
4.1. Vectored Words 

The words used to allocate and access memory 
are vectored to operate on the current section of 
the current type. Use of one of the section type 
 elector^ CDATA, IDATA, or UDATA, Sets the vec- 
tors for the vectored words. If you only have one 
section of each type, the section names are rarely 
used; however, if you have (for example) multiple 
IDATA sections, using the name specifies where 
the next data obiect to be defined will go. Mul- 
tiple sections of a'given type enable you t: specify 
onboard and external RAM, for example, or to 

CDATA Code space; includes all code plus initialization tables. 
May be in PROM. CDATA may not be accessed directly 
by standard programs. 

I DATA Initialized data space; contains preset values specified 
at compile time and instantiated in the target automati- 
cally as part of power-up initialization. It is writable at 
run time, though, so it must be in RAM. 

UDATA Uninitialized RAM data space, allocated at compile time. 
Its contents cannot be specified at compile time. 

Table One summarizes the availability of words defined 
in various scopes. 

Scopes may be defined using wordlists and search orders, 
although they may also be defined using non-ANS Forth tech- 
niques, providing the correct functionality is supported. 

4. Data Space Management 
Target memory space can be divided into multiple sections 

of three types, shown in Table Two. Managing these spaces 
separately provides an extra measure of flexibility and con- 
trol, even when the target processor does not distinguish code 
space from data space. 

At least one instance of each section must be defined, with 
upper and lower address boundaries, before it is used. Ad- 
dress ranges for instances of the same section type may not 
overlap. The syntax for defining a memory section is: 
<low addr> < h i g h  addr>  < t y p e >  SECTION <name> 

An instance becomes the current section of its type when 
its name is invoked. The compiler will work with that section 
as long as it is current, maintaining a set of allocation point- 
ers for each section of each type. Only one section of each 
type is current at any time. 

As an example, consider the configuration (shown in List- 
ing One) of a program that runs from PROM. It's configured 

Set the address of the next available location in 
the current section of the current section type. 

HERE ( - addr ) 
Return the address of the next available location 
in the current section of the current section type. 

ALLOT ( n -) 
Allocate n bytes at the next available location in 
the current section of the current section type. 

A L I G N  ( - )  
Force the space allocation pointer for the current section of 
the current section type to be cell-aligned. 

c ,  (char-) 
Compile char at next available location (CDATA and IDATA 
only). 

I (x-1  
Compile a cell at the next available location (CDATA and IDATA 
only). 

4.2. Data Types 
Target defining words may place their executable compo- 

nents in code space. Data-defining words such as CREATE- 
and custom defining words based on CREATE-make defini- 
tions that reference the section that is current when CREATE 
is executed. 

Because UDATA is only allocated at compile time, there is 
no compiler access to it. UDATA is allocated by the defining 
words themselves (a summary of defining words is given be- 

. low). At power-up, UDATA is uninitialized. 
VALUES must be in CDATA, because they are initialized. 

We define VARIABLES to be in UDATA, and will recommend 
that as the default. We don't specify where CONSTANTS go, 
because some compilers compile references to CONSTANTS as 

INTERPRETER HEX 
0800 08FF IDATA SECTION IRAM \ I n i t i a l i z e d  da ta  
0900 OBFF UDATA SECTION URAM \ U n i n i t i a l i z e d  da ta  
8000 FFFF CDATA SECTION PROGRAM \ P r o g r a m  i n  e x t e r n a l  ROM 

L I 
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Listing Two I 
INTERPRETER 
\ ARRAY i s  an  a r r a y  of spec i f ied  s i z e  i n  UDATA. 

: ARRAY ( n -- ) 

IDATA CREATE \ New d e f i n i t i o n  w i t h  va lue  n .  
UDATA HERE OVER ALLOT \ A l l o c a t e  space, ge t  l o c a t i o n  

IDATA ( L o c  ) , ( S i z e )  , \ S a v e  s i z e  & l o c a t i o n  
DOES> ( i - addr ) \ T a k e  index ,  r e t u r n  addr of i t h  

2@ ROT MIN + \ C o m p u t e  i n d e x e d  address 
I 

TARGET 

100  ARRAY STUFF 

literals; for that reason, we would retain the restriction that 
they cannot be changed, and will not specify where they go. 

The @ and ! words, as well as the string-initialization words 
FILL, etc., may be used at compile time, providing the desti- 
nation address is in I DATA. It's an ambiguous condition (our 
compilers will abort) to attempt to access UDATA other than 
from the target at run time. 

4.3. Effects ofScoping on Data Object Defining Words 
Defining words other than : (colon) are used to build data 

structures with characteristic behaviors. Normally, an appli- 
cation programmer is primarily concerned with building data 
structures for the target system; therefore, the dominant use 
of defining words is in the TARGET scope while in interpret- 
ing state. You may also build data objects in HOST that may 
be used in all scopes except TARGET; such objects might, for 
example, be used to control the compiling process. 

Data objects fall into three classes: 
IDATA objects in initialized data memory--e.g., words de- 

fined by CREATE, VALUE, etc., including most user-defined 
words made with CREATE ... DOES>. 

UDATA objects in uninitialized data memory--e.g., words 
defined by the use of VARIABLE, BUFFER :, etC. 

Constants-words defined by CONSTANT or 2CONSTANT. 
Unlike target colon definitions, target data objects may be 

invoked in interpreting state. However, they may not exhibit 
their defined target behavior, because that is available only in 
the target (or, in some systems, when connected to a target via 
an interactive link). Constants will always return their value; 
other words will return the address of their target data space 
address. IDATA objects may be given compiled, initial values, 
with , (comma) and c, (c-comma), and you may also use @, ! , 
MOVE, ERASE, etc., with them at compile time. 

There is no way to initialize UDATA objects at compile time. 
Large buffers and arrays should be placed in UDATA, because 
IDATA objects enlarge the size of the ROM image by the size 
of their initialization array. 

Some special issues arise when creating custom data objects 
in a cross-compiled environment: defining words are executed 
on the host, to create new definitions that can be executed on 
the target. Therefore, you must be in the INTERPRETER scope 
when you create a custom defining word, and you must be aware 

of what data space you are accessing in the new data object. 
Consider the example in Listing Two. 
You must specify INTERPRETER before you make the new 

defining word, and then return to TARGET to use this word 
to add definitions to the target. The INTERPRETERversion of 
DOES> allows you to reference TARGET words in the execu- 
tion behavior of the word, since that will be executed only 
on the target. 

When CREATE (as well as the other memory allocation 
words listed above) is executed to create the new data object, 
it uses the current section type. The default in our practice is 
I DATA. The defining words that explicitly use UDATA (VARI - 
ABLE, etc.) do not affect the current section type. If you wish 
to force a different section type, you may do so by invoking 
one of the selector words (CDATA, IDATA, or UDATA) inside 
the defining portion or before the defining word is used. If 
you do this, however, you must assume responsibility for re- 
asserting the default section. 

You can control where individual instances of CREATE defi- 
nitions go, like this: 
I DATA 
CREATE BYTES 1 C, 2 C, 
UDATA 
CREATE S T U F F  100  ALLOT 

In this case, the data space for BYTES is in initialized data 
space, but the data space for STUFF is in uninitialized data 
space. 

5. Conclusions 
The above is a brief description of technology that has 

been developed and used by two major vendors of cross-com- 
pilers, as well as by many of their customers. We believe the 
rules and side-effects are well understood. The number of 
actual new words is small. 

The hope is that adding these words to ANS Forth can 
enable implementors to create standard cross-compilers, and 
application programmers to write standard programs that can 
be modified trivially to run in either domain, or provide ini- 
tial stubs to enable their programs to run even on systems 
not providing the cross-compiler words. 
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Altb ugh moved to the weekend before rather than after 
Thank: wing for the second year in a row, the annual FORML 
Forth 1 ast remains sumptuous, especially in this, officially 
its twe tieth, incarnation. There were differences other than 
time: ; dinner the first night we had black napkins and three 
forks; ood on the boardwalk between the conference center 
and tl beach has been replaced by some pressed, and formed, 
and d rable look-alike, doubtless good for the environment, 
and r linter free. But there was also the familiar: a talk by 
Glen laydon on Forth Philosophy, another by John Hart on 
Fort1 as a hardware design language, several papers and a 
new lias from Wil Baden, several papers and a lecture by Dr. 
Tint Chuck's latest versions of his latest things, wine and 
chef e parties, impromptu talks, working groups, wine bottle 
awz is, Bob Reiling taking care of us and telling us what to do. 

lere were a few more of us than last year, and many more 
pa] rs, though too many of those arrived late, hot from ex- 
pel :rice but perhaps short on review. The milestone anni- 
ve ary brought a few of those who come but not every year: 
M :h Bradley, Tom Zimmer, Andrew McKewan, and Peter 
KI ggs, but not, for example, Mike Perry, Bill Ragsdale, or 
RI 1 Braithewaite. There were new faces from Germany and 
A jtralia, as well as some from closer to home. The new faces, 
il general, sent papers in advance. 

The official theme was Forth Interfaces to the World; an 
1 lofficial theme was object-oriented Forth. Other topics in- 

dved meta- and target-compilation and embedded systems, 
lip designs, and even some actual applications. 

Peter Knaggs, from Bournemouth University in England, 
resented papers on program verification, software localiza- 
ion, and the future of the ANS Forth standard. His paper on 
Typing Forth" is a theoretical discussion of stack analysis that 
{oes beyond counting (stack depth checking) to checking data 
types. Traditional Forth pretty much lets us do what we want, 
allowing us to fail with terrifymg swiftness, to learn, and move 
on; more strongly typed languages (like Pascal and, to a lesser 
extent, C) prevent some of this but at some cost in flexibility 
and freedom. We know the tradeoffs, and whether Knaggs' 
direction leads down a slippery slope is a matter of opinion. 

Localization involves customizing language and date, nu- 
meric, and monetary formats in the user interface of a pro- 
gram to correspond to a user's expectations. This is a serious 
problem for programs intended to be distributed widely, and 
one that Americans probably undervalue. One issue for Forth 
is the use of the phrase COUNT TYPE to display strings, since 
strings of the same meaning in different languages will not 
always be the same length, nor is there even any guarantee 
that characters and bytes will always be the same size. 

Dr. Knaggs also discussed the ongoing Standards process 
and the problem of keeping up. This is a two-pronged prob- 

lem: getting good ideas out there, and consolidating similar 
good ideas to cut down on the proliferation of dialects. For 
example, ONLY and ALSO were presented in an appendix to 
the 83-Standard, and CATCH and THROW were presented in a 
talk at the last session of a long-ago FORML. Both were vali- 
dated by adoption and eventually became Standard. Knaggs 
proposes to automate this process through his website (http:l/ 
dec.bournemouth.ac.uk/forth/ans/). 

Useful as it is to all of us, as a point of reference and argu- 
ment and as a way to share code, the ANS Standard is most 
useful to those, like FORTH, Inc., that are trying to sell Forth 
beyond the choir. Thus it is no surprise that Elizabeth Rather 
presented a report on the required new round of ANS Stan- 
dard meetings. The issues this round are eliminating obsoles- 
cent words from the standard, clarifications (changes in word- 
ing but not technical content), and the new issues of inter- 
nationalization/localization (Knaggs' theme) and embedded 
systems and cross-compilers. Rather, in another session, pre- 
sented a proposal for a standard for embedded systems and 
cross-compilers. The proposal includes a small number of new 
words and purports to conform to or at least to clarify exist- 
ing practice by defining four semantic "scopes" (Host, Inter- 
preter, Compiler, and Target) and three kinds of target data 
space (code, initialized data, and uninitialized data). 

Standards or not, target- and meta-compilers have long 
been a favored FORML theme. This year Andy McKewan dis- 
cussed optimizing compiler issues with cmForth and ping- 
pong meta-compilation with riForth; John Rible discussed 
late-binding in an optimizing ANS Forth target compiler; and 
Dr. Ting, no friend of the whole idea of meta-compilation, 
presented some improvements to eForth. Dr. Tingfs other 
presentations involved robotic control (with a discussion of 
fast square roots), a kind of Forth multi-processing that in- 
volved Forth systems sending commands to each other (re- 
sponding "OK" for success and something else for failure), a 
discussion of P16 chip architecture, and an unaccountably 
well-received personality test. 

Dr. Ting's robotics paper (there's always a robot at these 
things lately, even if only in spirit) was one of a relatively 
small group that focused on actual applications. Others in- 
cluded "Open Network Forth: Control System for the Munich 
Accelerator Facility," presented by Heinz Schnitter, which 
included a model of communicating Forth systems running 
on different processors similar to the one described by Dr. 
Ting, and a paper on a MIDI controller for a guitar-like in- 
strument, presented by Brad Rodriguez. 

The FORML schedule is always pretty much the same: 
paper presentations Friday afternoon and evening, Saturday 
morning, and the first session Sunday morning; working 
groups Saturday afternoon; impromptu talks Saturday 
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evening; wine and cheese parties both nights; and a final wrap- 
up in the second Sunday morning session. If the prepared 
papers (last-minute or not) are an indication of what we're 
working on, working groups and impromptu talks lean to- 
wards what we're interested in. 

Like last year, and unlike no previous time in my recollec- 
tion (but I've been to only fourteen of the twenty FORMLs, 
and my memory may no longer be perfect), much of the 
working groups session was taken by a working group of the 
whole. The first of the whole-group topics this year was the 
proposed embedded standard. Discussion seemed to focus on 
two things: whether we need a standard in this area (that old 
cowboy argument on this new front) and on whether the 
generated target system would or would not be standard when 
compiled from a system with or without these proposed stan- 
dard words, an argument that seemed to miss the point. I 
have some small experience writing target- and meta-com- 
pilers, and the proposal seemed to me merely to be a way to 
clarify some difficult thinking, and I was surprised at the level 
of discussion it provoked, the most heated of the weekend- 
indeed, I believe, of the past several years. Perhaps the dis- 
sension had as much to do with history and positions in the 
Forth universe as anything else: No one wants new require- 
ments for something they already do-that's a strong source 
of objection to the ANS standard itself-and one can imag- 
ine FORTH, Inc. as counterpoint to the freewheeling Forth 
spirit, where anyone can do anything because they can. Still 
it was nice to hear some argument, if only to remind us. 

The second whole-group topic, unfortunately necessary, 
was the future of FIG, Forth, and FORML, led by Trace Carter, 
FIG'S business manager. FIG membership has dwindled to 
about 670, but interest in Forth is indicated by the fact that 
the FIG website gets about 500 hits per day. Proposals for 
dealing with these facts included charging for downloads and 
making Forth Dimensions an online magazine in an attempt 
to bring FIG back into the black. Someone suggested a help 
line: 1-900-FORTHUZ. The future of FORML is another issue, 
and suggestions included moving the site and time. These 
discussions are ongoing, and will no doubt be reported else- 
where in these pages. 

Part of the working Groups session was reserved for ac- 
tual working groups: three topics took people to different 
corners of the room. The discussions this year were on Forth 
chips, external language interfaces, and (the one I attended) 
object-oriented programming. 

Now that we have an ANS standard, Wil Baden's "if you've 
seen one Forth you've seen one Forth" has perhaps shifted to 
"if you've seen one OOP Forth you've seen one OOP Forth." 
Wil himself presented the first OOP paper of the conference, 
"Forth SOOP" (the "S" is for "simple"), followed closely by. 
Brad Rodriguez's "Object Oriented Forth and Building Auto- 
mation Control." Wil's paper attempts to demystify OOP by 
implementing a version of it simply. We have various models 
from other languages, ranging (among those I'm familiar with) 
from C++ (half-hearted OO), through Delphi (Object Pascal) 
and Java to Smalltalk (where even integers are objects), but 
for most of us discussions of inheritance, encapsulation, early- 
and late-binding, polymorphism, message passing, etc., are 
as in an alien language. As Forth programmers, we tend to 
try to understand something by implementing it, leading into 
various dark woods (implementation precedes comprehen- 
sion). Wil's paper goes a way to dispel the mystery, as does 

John Carpenter's "OOP in Forth ... Using What We Have." 
Still, we could use a real, thorough, model or two. Zimmer 
and McKewan's Win3ZForth includes an object model (per- 
haps to be revised on the basis of the discussion in the work- 
ing group), as does John Sadler's Ficl (rhymes with Tcl), but 
whether either of these goes far enough to be useful is some- 
thing to be proven in practice. 

That objects are useful has been proven for other languages 
in the construction and management of relatively large soft- 
ware projects. Sadler's paper, "Ficl - Object Forth Wraps C 
Structures," demonstrates a technique of using objects in 
Forth as an "interface to the world," linking the official and 
unofficial themes of this year's FORML. (Ficl is available from 
the FIG website, and is also the subject of an article in the 
January, 1999, Dr. Dobbs Journal, our esteemed editor's previ- 
ous publication.) But Chuck Moore, in an impromptu talk, 
raised the question of overkill, asking whether objects do 
anything that Forth doesn't already do, and challenging us 
to provide useful arguments and examples to justify the over- 
head. He also challenged the idea of a standard for embed- 
ded systems, as he tends to question all standards, saying 
"FORML would not be FORML without a touch of paranoia," 
and asking us to be careful not to rule things out but instead 
to gather them in. At least this is what I have in my notes. 
When Chuck speaks it is always a bit oracular, coming in at 
an angle from what the rest of us are thinking, cutting 
through, clarifying, laying bare. 

Other impromptu talks involved Forth chips (Chuck and 
Dr. Ting), Forth in boot on the new Macs Uohn Hall), the 
future of JFAR and EuroFORML (Peter Knaggs), and other 
things too disparate and numerous to mention. 

I've missed a few moments in this thematic traverse, and 
perhaps what I've mentioned thus far reflects my own inter- 
ests more than it should. Charles Essen, who came the fur- 
thest and talked about "gum trees" on the Stanford campus, 
gave a paper on implementing temporary dictionaries, imple- 
mented by manipulating DP. Temporary dictionaries allow 
us to use, for example, symbolic names for constants with- 
out cluttering the name space. Brad Rodriguez gave a paper 
on implementing a software WART on the PSC-1000, aka 
shBoom, a descendant of Chuck's chip of the same name. 
Though the chip is a Forth chip, he worked this project with- 
out Forth. FIG President Skip Carter presented a paper dis- 
cussing Forth running on an operating system (Linux for ex- 
ample) achieving real-time performance by diving to the 
micro kernel. 

Chuck gave a couple of papers, one on Color Forth, which 
he's been using for a few years, and another on a new com- 
mand line, which scrolls right to left on a single screen line, 
interpreting words as they're typed as in LaForth. Chuck's 
Forths are always small and idiosyncratic, at right angles to 
any attempt at standardization or any need for it. About his 
new command line he said, "There's one other reason for 
doing this, and that's that it's different, and neat." 

Mitch Bradley told a story of Open Boot, Apple, and the 
seemingly whimsical destruction of the Macintosh clone 
market; Randy Leberknight echoed this with his experience 
as a Motorola employee, where he went to write Open Boot 
software for their Macintosh clone and now finds himself 
coding in C. 

Almost finally, another large topic: Wil Baden's oeuvre: 
besides his paper on SOOP, which won the prize (a bottle of 
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wine) as the "most elegant" presentation, he presented a pa- 
per on his technique of mixing source-code and text in his 
papers and printing them various ways, something we've 
heard before but not in such detail, and another containing 
a glossary of all his "tool-belt" words. We all have favorite 
little extensions to Forth, words not quite in the standard 
but hopefully definable with it, that we-add to whatever sys- 
tem we use and use as our own private primitives: Wil has 
more of these than most of us, and now we (at least those of 
us who were there) have a list. Whether any of these will 
make their way to Knagg's website remains to be seen. 

That's about it. All that remains is a summation and the 
end of the conference. The last session is traditionally a time 
for a panel discussion, awards, and closing remarks. There 
was no panel this time, only Dr. Ting and a psychology test 
that he used to show that FIG and FORML are in trouble be- 
cause we members and attendees tend to be introverted, in- 
tuitive, logical, and relaxed. The awards (bottles of wine) went 
to Charles Essen, from furthest away (Australia), Wil Baden, 
for the most elegant presentation (SOOP), Heinz Schnitter, 
for the largest application, and Brad Rodriguez, for the small- 
est, and to John Sadler, for yet another freeware Forth (Ficl). 

Finally, the sad part of the weekend, which this year was 
not just the end of the conference but also the end of an era, 
Bob Reiling stepping down from the directorship after twenty 
years. There were tributes of course, and the presentation of 
an engraved cigar box-"finally a place to put all those late 
paperse-and no doubt he will remain with us, but the con- 
ference will run less smoothly without his leadership. 

Still, in any end is another beginning, and n e ~ t - ~ e a r  we 
will be twenty-one. 
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Conclusion 
In this paper, the details and rationale of the implemen- 

tation of Dyn00F-style OOP support for iTvcls i21 Forth have 
been presented. 

It has been demonstrated that, even on machines which 
do not have many directly addressable registers, such as the 
i21, a spare register can be found for an object pointer and 
efficient field accesses can be implemented. 

Techniques of implementing field accesses and virtual 
method calls on a threaded Forth system have been com- 
pared. One which generates the smallest number of defini- 
tions has been chosen for the implementation. 

This paper and the corresponding implementation dem- 
onstrates that OOP Forth-even on processors with limited 
resources, as in a target-compiled, embedded environment- 
can be very small and fast. In fact, storing data in objects 
instead of global variables can even be beneficial in a multi- 
tasking environment. Thus, programmers who write applica- 
tions for such systems do not have to avoid using OOP when 
that is the right solution. 

Credits 
The software described in this paper is part of the commer- 

cial system and application code of the iTv Corporation. Indi- 
vidual employees to be credited include Chuck Moore (who 
led the i21 microprocessor development), and Jeff Fox and 
Michael B. Montvelishsky (who wrote the target compiler, high- 
level Forth environment, and the 40s  operating system). 

Further information on 4 0 s  and iTvc software and hard- 
ware is available at http://www.itvc.com/ or by e-mail to 
info@itvc.com. 
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Programming with objects is like working with trained animals, 
instead ofpushing around boxes with a broom. 

-INGALLS per HORCH 

SOOP was inspired by a comp.lang.forth article from HELGE 
HORCH. He used a wordlist for each class and subclass. 

As wordlists may be a scarce resource, for FORML 1998 I 
used trees of linked lists to mimic wordlists. :NONAME was 
used to build the fields of a class: variables, buffers, constants, 
and operations. 

My goal was to keep it simple: easy to write, easy to read, 
and fast. 

The programmer's words were: 
CLASS c l a s s n a m e  
VARIABLE v a r n a m e  
n  BUFFER: b u f f e r n a m e  
n  CONSTANT c o n s t a n t n a m e  
: o p e r a t i o n n a m e  . . .  ; 
END-CLASS 

c l a s s  SUBCLASS s u b c l a s s n a m e  

c l a s s  BUILDS o b j e c t n a m e  

Within a n  o p e r a t i o n :  
SUPER f i e l d  
COMMON f o r t h w o r d  

o b j e c t  m e t h o d  

In object-oriented programming, the operations of a class 
are called methods. In the approach here, the data area speci- 
fications are also methods-they give addresses of data areas 
in the object. Classically, the data areas would be private and 
would require methods to manipulate them. 

The words defined in the definition of a class are some- 
times called fields. 

(END-CLASS is a new name for END, and BUILDS is a new 
name for BUILD.) 

My implementation has been greatly improved by RICK' 
VANNORMAN, and I no longer distribute it. 

Rick has added within a class: 
PRIVATE 
PUBLIC 
c l a s s  BUILDS o b j e c t n a m e  
DEFER: o p e r a  t i o n n a m e  . . . ; 
CREATE name 

c l a s s  BUILDS o b j e c t n a m e  
n  c l a s s  BUILDS[] o b j e c t n a m e  

It is still easy to write, easy to read, and fast, but is much more 
powerful. He will be presenting it in a forthcoming issue. 

Simple Object-Oriented Programming 
Here are the concepts of simple object-oriented program- 

ming. 
A class is a defining word for a collection of definitions to 

be made later. Like Forth CREATE DOES> defining words, it 
needs to build an instance of the definitions before any part 
can be used in a program. CREATE DOES> is limited to one 
cell or data area and one operation. A class may have many 
named cells, data areas, and operations. 
CLASS GREETING 
VARIABLE COUNT 
: HI .I1 Good m o r n i n g  " 1 COUNT + !  ; 
: BYE ." See you l a t e r  " COUNT @ . ; 
END-CLASS 

In this silly example, the class GREETING is a pattern for code 
with one variable and two operations. It is not yet usable 
code. To create usable code, you build an object. The object is 
an instance of the class, and building it is instantiation. 
GREETING BUILDS JOHN 

Now we have as usable one variable and two operations. 
To use them outside of the class you must precede them with 
the name of the object. 
JOHN HI 
0 JOHN COUNT ! 
JOHN BYE 

We can build other objects of the same class. Here's JACK. 

GREETING BUILDS JACK 

Another variable and two more operations are now avail- 
able. The variables have different data space; the operations 
have the same definitions and code space, but work on dif- 
ferent data areas. J O H N  H I  will increment one variable, and 
JACK HI will increment the other. One variable is JOHN COUNT, 
and the other is JACK COUNT. 

You can see that a class is an expansion of the CREATE DOES> 
idea. Any initialization of variables and buffers has to be done 
after the instantiation. It may be useful to provide an opera- 
tion, typically named INIT, to do extensive initialization. 

In a class, methods can be defined with VARIABLE, 
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BUFFER:, CONSTANT, and : . Variables and buffers will be ini- 
tialized to all 0 when the object is built. You can make use of 
this in your programming. VARIABLE and BUFFER: defini- 
tions cannot be initialized by interpretation in a class defini- 
tion, and their addresses cannot be used yet-they haven't 
been built. This is the same as variables and buffers in a cross- 
development system. 

We can make a new class that is an extension of a class 
and then add members to it with a word that seems to be 
misnamed: SUBCLASS. Think of SUB for down and SUPER for 
up in the hierarchy. A subclass may redefine operations and 
constants that were in its superclass as well as adding new 
operations, constants, variables, and buffers. A subclass is more 
specialized than its superclasses. 
GREETING SUBCLASS SPANISH 
: HI .Iv Buenos dias " 1 COUNT +!  ; 
: BYE ." Hasta la vista " SUPER BYE ; 

VARIABLE CURSES 
: CURSE .I1 Caramba 'I 1 CURSES +!  0 COUNT 
! ; 

END-CLASS 

SPANISH BUILDS JUAN 

SPANISH is a class that is a subclass of GREETING and has 
redefined H I  and BYE. It has new variable CURSES and new 
operation CURSE. 

In a subclass, the operations in the superclass can be used 
with the names SUPER H I  and SUPER BYE. If a name is not 
duplicated in the subclass, it does not need SUPER. The vari- 
able COUNT does not need SUPER because there is no name 
conflict in the subclass. COMMON before a word will get the 
Forth word with that name. 

In this example, I have used COUNT and BYE as names. 
These names will be used in the class and its objects with the 
meaning I've defined. If I want the Standard meaning in the 
class members, I write COMMON COUNT and COMMON BYE. (In 
real life, the use of COUNT would be a poor choice, but I wanted 
to illustrate this feature.) 

Subclasses are classes and, in turn, can be extended by 
SUBCLASS. 

There are no rules for naming classes, methods, and objects. 
You may want to choose some convention of your own use. 
Suffixing names with : : and : is one way to distinguish related 
classes and objects. Other suffixes for classes may be used. 

exist ing-object  method can occur in a class definition. 
Within a class, n BUFFER: name declares a data area. " 

Constants known only in a class or its objects can, be 
defined. 

Alas, redefining the value of a constant won't change val- 
ues used before the change. 

An important operation of object orientation is to prevent 
outside access to crucial parts of an object. For this, sections of 
the class definition can be bracketed between PRIVATE and 
PUBLIC. If we change the beginning of GREETING to 
PRIVATE 
VARIABLE COUNT 
PUBLIC 

the contents of COUNT cannot be legally examined or modi- 
fied outside the object. 

Because classes can solve the problem of name conflicts, 
classes can be written and studied more easily. 

A class is (1) a list of its methods, separated into private 
and public, (2) the total size of data space to be assigned, and 
(3) a pointer to the superclass. 

A member of the list is (1) a representation of the member's 
name, and (2) its execution token. 

An object is an instance of a class. It is (1) a pointer to the 
class, and (2) the assignment of data space. 

Thus, instantiations assign data space, but no new names 
or execution tokens, for the class members. 

Experience 
(1) My first use was to handle input files. The class is in 

the example below. Normally, I just use one input file. 1 have 
FILE, REWIND, and CLOSE in class FILES, and MAXLINE, LINE, 
OPEN, READ-LINE, READ, and LIST in subclass INPUTFILES. 

1 define my normal input file as an object. 
INPUTFILES BUILDS INPUT 

When I need another file, I define it; for example: 
INPUTFILES BUILDS MERGE 

This will give me a complete set of methods for each file 
The class OUTPUTFILES is another subclass of class FILES. 

It has OPEN and WRITE. I cannot READ or LIST an output file 
nor WRITE to an input file. The file knows what file access 
method to use to open, and whether to use OPEN-FILE or 
CREATE-FILE. I define my normal output file when I need it. 
OUTPUTFILES BUILDS OUTPUT 

(2) A linked list might have no particular order-that is, 
be last-in first-out, or first-in first-out. Or it might be in al- 
phabetic sequence. It might be case sensitive or case insensi- 
tive. It may be split over several heads. It might be some kind 
of binary tree. Or, instead of a list, it might be hashed. 

For all of these, I want operations ITEM, ADD-ITEM, ADD, 
LIST, and maybe PRUNE. The phrase str l e n  abject ITEM 
finds an item. 

So I set up classes to define lists. For example, ORDERED- 
LISTS,ALPHABETIC-LISTS,BINARY-TREES,HASH-LISTS, 
and so on. 

(3) To look at random-number generators, I make differ- 
ent classes for different generators, with INIT, RANDOM, and 
CHOOSE as operations. 

Those were applications that happened in the first week 
after installing CLASS. I know there will be more. 

Conclusion 
SOOP and other approaches to object-oriented Forth unify 

and supersede application vocabularies, CREATE DOES> de- 
fining words, and struct definitions. It can also encompass 
multitasking. Local variables become instance variables of an 
object. The direct act of sorting is usually eliminated. 

In constructing a class, the simple names of members make 
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it easier to code, and the clearer code is more maintainable. 
lntelligent objects take the place of navigating the structure. 

Members of a class are defined with familiar operations: 
VARIABLE, CONSTANT, BUFFER : , and : . The meanings can be 
understood immediately. 

Within similar or different kinds of classes, the names of 
members can be identical without confusion or conflict. 

In a class, the data layout and operations are collected in 

one place. Operations that don't apply to an object can be 
kept away from it. Many run-time errors or crashes will be 
caught at compile time. 

The format object method is like structure operation , and 
resembles what we normally use. Some other OOFs insist on 
method: object format. This has always seemed backwards to 
me, as well as requiring a magic character. 

Files Classes 
REWIND rewinds a file. 

1 : REWIND ( fid -- ) 
2 0 0 ROT R E P O S I T I O N - F I L E  ABORT" C a n ' t  REWIND " 

3 I 

FILES is the class for Files. 

6 CLASS FILES 

8 VARIABLE FILE 
9 : REWIND ( -- ) F I L E  @ COMMON R E W ~ D  ; 

11 :CLOSE ( - - )  
12 F I L E  @ ?DUP I F  CLOSE-FILE ABORT" C a n ' t  CLOSE-FILE " 
13 0 F I L E  ! 
14 THEN 

I 1 5  I 

1 7  255 CONSTANT MAXNAME 
18 MAXNAME 1+ BUFFER: NAME 
19  : . ( -- ) NAME COUNT TYPE SPACE ; 

21 END-CLASS 
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INPUTFILES is the class for Text Input Files. 
INPUT is the object for the principal input file. 

24 FILES SUBCLASS INPUTFILES 

26 : OPEN-FILE ( s t r  l e n  -- ) 
27 R/O COMMON OPEN-FILE ABORT" Can't OPEN-FILE " FILE ! 
2 8 r 

3 0 : OPEN ( s t r  l e n  -- ) 
31 2DUP OPEN-FILE 
32 MAXNAME MIN NAME PLACE 
33 I 

3 5 128 CONSTANT MAXLINE 
3 6 MAXLINE 2 + BUFFER: LINE 
37 : .LINE ( s t r  l e n  -- ) ?TYPE CR ; 

3 9 : READ-LINE ( -- l i n e  length  more ) 
4 0 LINE DUP MAXLINE FILE @ COMMON READ-LINE 
4 1 ABORT" Can't READ-LINE " 
42 t 

4 4 : READ ( -- f a l s e  I l i n e  length  t rue  ) 

4 5 READ-LINE ( l i n e  l eng th  more) DUP O= 
46 IF NIP NIP ( f a l s e )  REWIND THEN 
47 , 

4 9 : LIST ( -- ) 
50 REWIND BEGIN READ WHILE .LINE REPEAT 
51 , 

53 END-CLASS 

55 INPUTFILES BUILDS INPUT 

OUTPUTFI LES-BIN is the class for Binary Output Files. , OUTPUT is the object for the principal output file. 

5 8  FILES SUBCLASS OUTPUTFILES-BIN 

6 0 : OPEN-FILE ( s t r  l e n  -- ) 
61 2DUP DELETE-FILE DROP 
62 W/O BIN CREATE-FILE ABORT" Can't CREATE-FILE " 
63 FILE ! 
6 4 r 

6 6 : OPEN ( s t r  l e n  -- ) 
67 2DUP OPEN-FILE 
68 MAXNAME MIN NAME PLACE -\ 

6 9 r 

71 : WRITE ( s t r l e n  - - )  
72 FILE @ WRITE-FILE ABORT" Can't WRITE-FILE " 
73 , 

75 END-CLASS 

77 OUTPUTFILES-BIN BUILDS OUTPUT 

- 
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o Use Multitaskin 
Most Forths provide multitasking, which allows indepen- 

dent threads of control to run cooperatively. I have been us- 
ing multitasking for some time now, both in my freely avail- 
able 16-bit Pygmy Forth and in its variants that I use for cus- 
tom consulting work. I'll discuss some benefits of multitask- 
ing in general, and of cooperative multitasking in particular. 
The examples are written for Pygmy, but the principles apply 
to other Forths, too. 

I seem to see most things these days from the viewpoints 
of (1) how to build reliable software and (2) how to do it 
rapidly. I hope to explain how multitasking can contribute 
to both goals. If you don't already use multitasking, perhaps 
this article will help break the ice and get you started. 

Quick summary of how to use multitasking in Pygmy 
Define the word the task will execute 
Create the task with TASK: 
Initialize the task to point to the word it will execute 
with TASK ! 
WAKE the task 
Enable the multitasker with MULTI 

Unlink a task from the active list by putting it to SLEEP 
Relink a task into the active list with WAKE 
Disable the multitasker with SINGLE 

Some reasons to use multitasking 
Take advantage of delays by interleaving parts of the 
application so useful work can be done in time slots that 
would otherwise be wasted. A print spooler is an ex- 
ample. If four jobs each take five minutes, the total 
elapsed time is 20 minutes when done sequentially, but 
might be 12 minutes if interleaved. This leads to faster 
applications. 
Increase the responsiveness of an interactive application. 
Accept keypresses or mouse movements while the system 
is also doing something else. Don't make the user wait. 
Ease the work of building a complex application by 
decomposing it into simpler pieces which can be consid- 
ered in isolation. This leads to more reliable applications 
and reduces development time. 
Ordinary code, especially high-level Forth code, is easier 
to write and easier to test than ISRs (interrupt service 
routines). Some parts of an application can be done as 
separate tasks rather than in ISRs. This leads to more " 

reliable applications. 

Examples of multitasking 
Robots or enemies in a 3D shoot 'em up game. Let each 
robot run as a separate task, pursuing its own goals in its 
own ways. Numerous robot tasks can run the very same 

code, with different behavior and locations depending 
on each task's local data. 
Classic concurrent programming examples such as 
Dining Philosophers. 
Polling a serial port or other device instead of using 
interrupts. 
Running a user interface loop in the foreground while 
real work is performed in one or more background tasks. 

Cooperative vs. preemptive multitasking 
In describing how multitasking works, two questions arise: 

(1) when does a task switch occur, and (2) which task is cho- 
sen to run next? There are two broad categories of multitask- 
ing: preemptive and cooperative. Each category has different 
answers to "when?" and might have different answers to 
"who's next?" While some Forth multitaskers are preemptive, 
most are cooperative. While some Forths might use complex 
scheduling algorithms, most use a simple round-robin system. 

When? 
In preemptive multitasking, a task can be forced to give 

up control when a timer goes off. Since the timer might go 
off at any arbitrary point in the task, more state must be saved 
and restored when switching tasks. For example, a preemp- 
tive task switch might occur in the middle of a CODE word 
(so all registers must be saved and restored, including scratch 
registers). Special measures (such as semaphores) must be 
taken to guarantee that sequential operations that must not 
be interrupted will not be interrupted. Otherwise, shared data 
could be accessed when it is invalid (such as when only one 
byte of a two-byte variable has been updated). The answer to 
when a task switch occurs is "when the timer goes off," and 
so is unpredictable. This is more appropriate for an operating 
system or multi-user system where the different tasks cannot 
trust one another. 

A cooperative multitasker relies upon the tasks themselves 
to relinquish control voluntarily at appropriate points. This 
adds the important quality of predictability. A task switch 
cannot occur within a CODE word, thus scratch registers never 
need to be saved and restored. If two steps must be done in 
sequence without interruption, the task simply does not give 
up control between the two steps. The answer to when a task 
switch occurs is "when the programmer says so." However, if 
a task never gives up control, it will starve the other tasks 
and they will never run. In a cooperative multitasking sys- 

1 tem, the tasks must indeed cooperate with one another. This 
is not the system to use if you cannot trust the tasks. If you 
can trust the tasks, then this system is more efficient because 
of the reduced overhead consumed by the multitasker. 

An ISR (interrupt service routine) can be thought of as a 
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again with the first guide to using Forth for applications. This 
book captures the philosophy of the language, showing 
users how to write more readable, better maintainable 

WRITE YOUR OWN PROGRAMMING LANGUAGE USING C++, 
Norman Smith 270 - $1 6 

This book isabout an application language. More specifically, 
it is about how to write your own custom application 
language. The book contains the tools necessary to begln 
the process and a complete sample language 
implementation. (Guess what language!) Includes disk w~th 
complete source. 7 08 pp. 

WRITING FCODE PROGRAMS 252 - $52 

This manual is for designers of SBus interface cards and 
other devices that use the FCode interface language. It 
assumes familiarity with S,Bus card design requirements 
and Forth programmlng. D~scusses SBus development for 
OpenBoot 1 .O and 2.0 systems. 474 pp. 

I l l  - I - .  . 
Forth Dimensions, Article Reference 151 -$4 

An indexof Forth articles, by keyword, from Forth Dimensions 
Volumes 1-1 5 (1 978-94). 

FORML! Article Reference 152-$4 
An Index of Forth artlcles by keyword, author, and date from 
the FORML Conference Proceedings (1 980-92). 

LEVELS OF MEMBERSHIP 
Your standard membership in the Forth Interest Group brings 
Forth Dimensions and participation in FIG's activities-like 
members-only sections of our web site, discounts, special 
interest groups, and more. But we hope you will consider 
joining the growing number of members who choose to show 
their increased support of FIG's mission and of Forth itself. 

Ask about our special incentives for corporate and library 
members, or become an individual benefactor! 

Library - $1 25 
Benefactor - $1 25 
Standard - $45 (add $1 5 for non-US delivery) 

Forth Interest Group 
See contact info on mail-order form, or send e-mail to: 

office@forth.om 



The "Contributions from the Forth Community" disk library contains 
author-submitted donations, generally including source, for a variety 
of computers & disk formats. Each file is designated by the author as 
public domain, shareware, or use with some restrictions. This library 
does not contain "For Sale" applications. To submit your own contri- 
butions, send them to the FIG Publications Committee. 

FLOAT4th.BLK V1.4 Robert L. Smith COO1 - $8 
Software floating-point for fig-, poly-, 79-Std., 83-Std. 
Forths. IEEE short 32-bit, four standard functions, 
square root and log. *** IBM, 190Kb, F83 

Games in Forth COO2 - $6 
Misc. games, Go, TETRA, Life ... Source. 

Ir IBM, 760Kb 

A Forth Spreadsheet, Craig Lindley COO3 - $6 
This model s readsheet f~rst appeared in Forth 
~irnensions~11/?.2.  hose issuescontain docs & source. 

Ir IBM. 100Kb 

Automatic Structure Charts, Kim Harris COO4 - $8 
Tools for analysisof large Forth programs, first presented 
at FORML conference. Full source; docs included in 
1985 FORML Proceedings. 
lrlt IBM. 11 4Kb 

A Simple Inference Engine,,Magin Tracy COO5 - $8 
Based on Inference englne In Wlnston & Horn's book 
on LISP, takes you from pattern variables to com lete 
unificational ortthm, with running commentaryon Forth 
philoso hy 8 s  le. Incl. source. ** ILM. i6YKb 

The Math Box, Nathaniel Grossman COO6 - $1 0 
Routines by foremost math author in Forth. Extended 
double-precision arithmetic, complete32-bit fixed-point 
math & auto-ranging text. Incl. graphics, Utilities for 
rap~d polynomla! evaluation, continued fract~ons & Monte 
Carlo factor~zatlon. Incl. source & docs. +* IBM. 11 8 Kb 

AstroForth & AstroOKO Demos, I.R. Agumirsian COO7 - $6 
AstroForth is the 83-Standard Russian version of Forth. 
Incl. window interface, full-screen editor, dynamic 
assembler & a great demo. AstroOKO, an 
astronavi ation system in AstroForth, calculates sky 
position ogseveral objects from different earth positions. 

emos only. 
Sr IBM, 700 Kb 

Forth List Handler, Martin Tracy COO8 - $8 
List primitives extend Forth to provide a flexible, high- 
s eed environment for Al. Incl. ELlSA and Winston & 
&rn's micro-LISP as examples. Incl. source & docs. 

S r t  IBM, 170 Kb 

8051 Embedded Forth, William Payne CO50 - $20 
8051 ROMmable Forth operatin system. 8086-to- 
8051 target compiler. Incl. source.%ocsare in the book 
Embedded Controller Forth forthe 805 1 Family. Included 
wlth Item #216 
*Sr* IBM HD, 4.3 Mb 

68HC11 Collection COW - $16.~ 
Collection of Forths, tools and floating-point routines 
for the 68HC11 controller. *+* IBM HD. 2.5 Mb 

F83 V2.01, Mike Perry & Henry Laxen Cl00 - $20 
The newest version, ported to a variety of machines. 
Editor, assembler, decompiler, metacompiler. Source 
and shadow screens. Manual available separately (items 
21 7 & 235 . Base for other F83 applications. * lBd, 83.490 Kb 

F-PC V3.6 & TCOM 2.5, Tom Zimmer C200 - $30 
A full Forth system with pull-down menus, se uential 
files, editor, forward assembler, metacompiler,?ioatin 
polnt. Complete source and help files. ~anua l  for ~ 3 . g  
available separately (items 350 & 351). Base for other 
F-PC a plications. 
t &M HD, 83,3.5Mb 

F-PC TEACH V3.5, Lessons 0-7 Jack Brown C20l - $8 
Forth classroom on disk. First seven lessons on leam~ng 
Forth, from Jack Brown of B.C. Institute of Technology. * IBM HD, F-PC, 790 Kb 

VP-Planner Float for F-PC, V1.O1, Jack Brown C202 - $8 
Software floatln polnt englne beh~nd the VP-Planner 
spreadsheet. 80-%it (temporary-real) routines with transcen- 
dental functions, number I/O support, vectors.to support 
numeric co- rocessor overlay & user NAN checking. 
Ir* IBM, p-PC, 350 Kb 

F-PC Graphics V4.6, Mark Smiley C203 - $1 0 
The latest versions of new graphics routines, including CGA, 
EGA, and VGA support, wlth numerous Improvements over 
earlier versions created or supported by Mark Smiley. 
lrlr IBM HD. F-PC, 605 Kb 

PocketForth V6.4, Chris Heilman C300 - $1 2 
Smallest complete Forth for the Mac. Access to all Mac 
functions, events, files, graphics, floating int, macros, 
create standalone applications and DAs. g s e d  on fig & 
Start~n Forth. Incl. source and manual. * %AC, 640 Kb, System 7.01 Compatible. 

Kevo V0.9b6, Antero Taivalsaari C ~ W  - $10 
Complete Forth-like object Forth for the Mac. Object- 
Prototypeaccess to all Mac functions, files, gr hics, floating 
point, macros, createstandaloneapplications%emel source 
Included, extensive demo files, manual. *** MAC, 650 Kb, System 7.01 Compatible. 

Yerkes Forth V3.67 C350 - $20 
Complete object-oriented Forth for the Mac. Object access 
to all Mac functions, files, graphics, floating point, macros, 
create standalone applications. Incl. source, tutor~al, 
assembler & manual. 
*lt MAC, 2.4Mb, System 7.1 Compatible. 

Pygmy V1.4, Frank Sergeant C5W - $20 
A lean, fast Forth with full source code. Incl. full-screen 
editor, assembler and metacompiler. Up to 15 files open at 
a time. 
ltlr IBM, 320 Kb 

KForth, Gu Kelly C600 - $20 
A full Forth system with windows, mouse, drawing and 
modem ackages. Incl. source & docs. 
*lr I$M, 83,2.5 Mb 

Mops V2.6. Michael Hore C710 - $20 
Close cousin to Yerkes and Neon. Very fast, complles 
subroutine-threaded & native code. Object oriented. Uses 
F-P co-processor if present. Full access to Mac toolbox & 
system. Supports System 7 (e.g., AppleEvents). Incl. 
assembler, manual & source. ** MAC. 3 Mb. System 7.1 Compatible 

BBL & Abundance, Roed Green C800 - $30 
BBL public-domain. l2-bit Forth with extensive support of 
DOS, meticulously optimjzed for execution speed. 
Abundance IS a public-doma~n database language wntten In 
BBL. Incl. source & docs. *** IBM HD, 13.8 Mb, hard disk required 
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e - Volume 18 818 - $20 
I MuP2l - programming, demos, eForth 114 pp. 

Volume 10 (January 1989) g o - $ 1 5  
Rvreprints from 1 988 Rochester Forth conference, object- 
oriented cmForth, lesser Forth englnes. 87 pp. 

Volume 11  (July 1989) 811 -$I5 
RTXsupplement to Footstepsinan Empty Valley, SC32,32- 
bit Forth engine. RTX interrupts utility. 93 pp. 

Volume 12 (April 1990) 812 - $15 
ShBoom Chip architecture and instructions, neural 
com utin module NCM3232, pi Forth, binaryradixsorton 
802f6,68010, and RTX2000.87 pp. 

Volume 13 (October 1990 813-$15 
PALS of the R T X 2 d  Mini-BEE. EBForth. AZForth. RTX- 
2101,8086 eForth, 8051 eForth. 107 pp. 

Volume 14 814-$15 
RTX Pocket-Sco eForth for muP20, ShBoom, eForth for 
CP/M & 280, X ~ D E M  for eForth. 7 16 pp. 

Volume 15 815 - $15 
Moore: new CAD system for chip design, a ortrait of the 
P20; Rible: QS1 Forth processor, QS2, R I S & ~ ~  it all; P20 
eForth software simulator/debugger. 94 pp. 

Volume 16 816-$15 
OK-CADSystem, MuP20, eForth system words, 386eForth, 
80386 protected mode operation. FRP 1600 - 16-Bit real I time prbcessor. 104 pp. 

Volume 17 817-515 
P21 chi and specifications; Pic1 7C42; eForth for 68HC11, 
8051, gansputer 128 pp. 

Volume 19 81 9 - $20 
More MuP21 - programming. demos, eForth 135 pp. 

Volume 20 820 - $20 
More MuP21 - programmin demos, F95, Forth Spec~fic 
Language Microprocessor ?;tent 5,070,451 126 pp. 

Volume 2 1 
MuP21 Kit; My Troubles with This Dam 82C51; CTlOO Lab 
Board; Bom to Be Free; Laws of Com uting; Traffic Controller 
and Zen of State Machines; ~ h & m  Micro rocessor; 
Pro rampable Fieldbus Controller 1x1 ; Logic 8esign of a 
16-Bit M~croprocessor P I  6 98 pp. 

T-shirt, "May the Forth Be With You" 601 - $1 8 
(Specify size: Small, Medium, Large, X-Large on order form) 
wh~te design on a dark blue shirt or green design on tan shirt. 

BIBLIOGRAPHY OF FORTH REFERENCES 340 - $1 8 
ed., January 1987) 

ver 1 900 references to Forth articles throughout computer 
literature. 104 pp. 

I 
Last * 

Annual Forth issues, including code for Forth applications. 

I September 1982, September 1983, Sepember 1984 (3 issues) 
425 - $10 I 
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narrowly focused, preemptive task. The answer to when this 
"task switch" occurs is whenever the hardware signals an in- 
terrupt (providing the interrupt has not been disabled). ISRs 
can coexist happily with a cooperative multitasker. Upon the 
hardware signal, the currently executing task is interrupted. 
The ISR runs, then control is returned to the task that was 
interrupted. The ISR is typically written in CODE to perform 
low-level hardware work, such as reading a serial port or timer 
or some other device. It knows exactly which registers it uses, 
and only those registers need to be saved and restored. A nice 
balance is to use an ISR only when timing is critical. Let the 
ISR handle only the core of the time-critical task, such as read- 
ing a new character from a serial port and stuffing it into a 
queue. Then, let normal, cooperative multitasking handle 
everything else. The less you do in an ISR, the better. 

Who's next? 
Computer science literature is littered with papers describ- 

ing complex task-scheduling mechanisms, such as priority 
queues, where different tasks not only have different priori- 
ties but have dynamically changing priorities. Low-priority 
tasks sometimes have their priority raised to prevent them 
from slowing down higher-priority tasks. To a certain degree, 
this literature is solving problems created by the complex 
approaches to task scheduling. It is common for preemptive 
multitaskers to have more complex scheduling algorithms 
than cooperative multitaskers. 

In some-perhaps many-cases, task scheduling can be 
simplified dramatically. The traditional Forth scheduling 
method is round robin. Each task gets its turn, in order. Each 
task retains control until it voluntarily relinquishes control 
by executing PAUSE. A task may execute PAUSE directly, as in 

: TSTl BEGIN 
PAUSE DO-SOMETHING 

AGAIN ; 

or it may execute PAUSE indirectly by executing another word 
which executes PAUSE, such as 

: TST2 BEGIN 
100 MS DO-SOMETHING 

AGAIN ; 

where the word MS executes PAUSE periodically as it kills time. 
110 words execute PAUSE. Typically, the only time you 

need to use an explicit PAUSE is when you are running a loop 
that contains no 110 or delay. 

This scheduling algorithm is almost too simple to call an 
algorithm. Each task runs in turn. There are several benefic 
to this. First, the multitasking code is simpler and, therefore, 
more likely to be bug-free. Second, the multitasking code takes 
less space in memory. Third, and perhaps most important, 
this method runs fast. The overhead of task switching is small 
compared to preemptive methods with complex scheduling 
algorithms. In the time it takes for other methods to meet 
and discuss which task should run next, Forth just runs the 
tasks. It is simpler to do it than to argue about it. 

Classic Forth multitasking 
Classic Forth multitasking is a cooperative, round-robin 

system where all the tasks remain in a linked list, regardless 

of whether they are active or not. Each task gets control in 
turn. A sleeping task immediately jumps to the next task, 
without bothering to restore its state first, much as you might 
reach over to turn off an alarm clock without really waking 
up. This is usually done by a sleeping task's STATUS field con- 
taining a jump to the next task in the list. A task that is awake 
has a STATUS field that does not jump to the next task, but 
instead calls a routine to restore the task's state. SLEEP and 
WAKE change the task's STATUS field appropriately. The code 
to be executed is assigned to a task within a colon definition, 
following the word ACTIVATE. 

Pygmy multitasking 
Pygmy multitasking is very similar to classic Forth multi- 

tasking. The main difference is that only active tasks are kept 
in the task list. Thus, a sleeping task adds zero overhead to 
the task-switching mechanism. Instead of altering a STATUS 
field, SLEEP removes the task from the list and WAKE inserts 
the task into the list. The code to be executed by a task is 
defined in its own word, not by using ACTIVATE as described 
in the previous paragraph. 

USER variables 
Each task has its own private data area which can be ac- 

cessed via USER variables. A USER variable is defined with an 
offset relative to the start of the task's private data area. Thus, 
the actual address returned will be different for each task in 
the system, yet the variables are each defined just once. For 
example, BASE is a USER variable. Three different tasks could 
be printing numbers in three different bases without inter- 
fering with each other. Other USER variables contain initial 
data stack and return stack pointer values, the current data 
stack pointer for sleeping tasks, the current video cursor ad- 
dress, and a link to the next task in the active task list. When 
only one task is awake, its link variable points back to itself. 
It is possible for one task to access the USER variables of an- 
other task with the word LOCAL. For example, the main ter- 
minal task could change task Tl's BASE to octal with 

8 T1 BASE LOCAL ! 

The state you save may be your own 
When a task switch occurs, the state of the task giving up 

control must be saved and the state of the task about to run 
must be restored. Cooperative multitasking makes it easier 
and faster to save and restore state, because task switches occur 
only at predictable points. Task switches occur only when a 
task executes PAUSE. They never occur at random points in a 
task's code because of a timer going off, as can happen in 
preemptive multitasking. 

Timing issues 
I divide all timing requirements into two categories: tight 

and sloppy. Either the timing requirements are very precise 
and critical, or they are not. Fortunately, almost everything 
fits in the sloppy category. 

Obviously, the speed of the computer has a bearing on 
this. Generally, very few items fit in the first category. Inter- 
rupt service routines can handle them. Everything else, in- 
cluding the non-time-critical parts of critical tasks, is handled 
by ordinary round-robin Forth tasks. Since interrupt handlers 
are more difficult to code and test, reducing the number and 
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complexity of interrupt handlers increases reliability and re- 
duces development time. The goal is to divide tasks up in the 
simplest way possible that does not violate your application's 
timing constraints. 

Foreground versus background tasks 
In Pygmy, there is a single foreground task that commu- 

nicates with the user. Other tasks run in the background. The 
foreground task is called a terminal task because it is the task 
connected to the user's terminal. 

Separation of concerns 
Multitasking simplifies programming an application be- 

cause it focuses concentration on a smaller part of the bigger 
problem. With small-enough pieces, we can hope to achieve 
"proof of correctness by observation." Don't try to hold all of 
a complex application in your head at once. 

Simple example 
TASK: is used to create a task. The variables #sP, #RP, and 

#USER hold the number of bytes to be reserved in each task for 
the data stack, the return stack, and the user variables. The 
default for a 68HCll might be six user variables and 16 items 
on each of the stacks. For example, to set up three tasks, each 
of which requires (6 + 16 + 16) 38 cells, followed by four tasks, 
each of which requires (6 + 16 + 32) 54 cells, you could type 

TASK: T1 TASK: T2 TASK: T3 
16 CELLS #RP ! 32 CELLS #SP ! 
TASK: T4 TASK: T5 TASK: T6 

In deciding on the size of the stacks to be allocated to 
each task, consider whether the operating system or inter- 
rupts will be using the same stack. If so, be sure to leave suf- 
ficient room for that purpose, as well as for your own code. 

Once a task has been created, it must be assigned a word 
to execute. Such a word should be an endless loop, or should 
explicitly put itself to sleep with STOP. If task T 1  should in- 
crement a variable about once a second, first define the word 
that will do the real work. 

VARIABLE SECONDS 
: COUNT-SECONDS ( - )  

BEGIN 1 SECONDS + !  1000 MS AGAIN ; 

Then, initialize T I  so it will execute COUNT-SECONDS. 

' COUNT-SECONDS T1 TASK! 

TI does not start running until it is made active, i.e., awakened:. 

T1 WAKE 

Actually, all WAKE does is link the new task into a list of active 
tasks. For TI ta  execute, you must also enable the multitasker 
itself by typing 

MULTI 

Now T 1  is running COUNT-SECONDS in the background and 
the terminal task is still accepting input from you via the 
keyboard. Occasionally type SECONDS @ U .  to verify the 

seconds are counting. 
At the heart of the multitasking system, the word (PAUSE 

switches tasks. PAUSE is a vectored word which executes ei- 
ther (PAUSE or NOP. When PAUSE executes NOP, no task switch- 
ing occurs. When PAUSE executes (PAUSE, the state of the 
current task is saved and control is transferred to the next 
task in the list of active tasks. The word MULTI sets PAUSE to 
(PAUSE. The word SINGLE Sets PAUSE to NOP. 

Consider the example, several paragraphs above, for the 
definition of COUNT-SECONDS. Although it does not contain 
the word PAUSE, it contains the word M s  which contains the 
word PAUSE, so all is well. Generally, all the 110 words (and 
delay words such as Ms) contain PAUSE. 

Also, note that other tasks can access SECONDS without 
fear of catching it in the middle of an update. This is because 
a task switch never occurs because of a timer going off, only 
when a task executes PAUSE. Thus, COUNT-SECONDS never 
relinquishes control within + ! and no locking mechanism 
or semaphore is needed, as it might be in a preemptive mul- 
titasking system. 

The TI task may be taken out of the active task list by 

T1 SLEEP 

A task may put itself to sleep by executing the word STOP. 
Note that the main terminal task would ordinarily never try 
to put itself to sleep. 

Example: multiple-channel analog to digital converter 
Think of an ADC (analog-to-digital converter) as basically 

a volt meter without the display. It is an electronic circuit, 
usually in a single chip, that translates a voltage on its input 
into a number on its output such that the number is propor- 
tional to the input voltage. A multi-channel ADC is a chip 
containing more than one ADC. 

Let's suppose you have a four-channel 16-bit ADC from 
which you need to collect data. Assume it is memory-mapped 
starting at address $0800. Thus, the first channel is at $0800 
and $0801, the second at $0802 and $0803, etc. Further, to 
smooth the data, you need to keep a running average of the 
four most recent readings on each channel. 

Instead of trying to handle all four channels, start by writ- 
ing a word SAMPLE to handle a single channel. When it is 
correct, set up four tasks and let each of them run SAMPLE. 
Remember to Keep It Simple. Don't start by writing the en- 
tire application at once. Instead, write the very simplest, pale 
shadow of its future self. Write the skeleton and flesh it out 
later. First write a routine to test the ADC interactively at the 
keyboard. Connect a variable voltage source to one of the 
ADC inputs, for example a potentiometer between 5 volts 
and ground, with the wiper connected to the first ADC1s in- 
put. Then, read the ADC by typing 

to see what number you get. As a cross-check, use a real volt 
meter to measure the voltage source. How does the ADC num- 
ber compare to the volt meter's reading? Does the number 
make sense? Look at the data sheet. Did you get the byte 
order right, with the MSB (most significant byte) at the lower 
address and the LSB (least significant byte) at the higher ad- 
dress, or is it the other way around? Instead of typing the 
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above line over and over, create a shorthand word named V@ 
["voltage fetch") to do it for you. 

rhen you can say 

Do various readings at various potentiometer settings and 
:ompare with the volt meter and the data sheet until you 
have a handle on how it works. In other words, spend a little 
time playing in order to gain certainty and confidence that 
you are on the right track. Pay particular attention to the 
readings at zero and at 5 volts. Should you convert the raw 
number to a voltage? Yes, at least for testing. Even at this 
beginning stage of playing, scaling the raw number to a volt- 
age makes it easier to compare the reading with the volt meter. 

Let's assume a reading of 0 represents zero volts and a read- 
ing of 65535 represents 5 volts. . V o l t s  scales the raw num- 
ber returned by the ADC and displays it as a voltage with two 
decimal places. (Pygmy's #> also types the result to the screen.) 
[See Listing One.] 

Then, use . v ("print voltage") for further testing with the 
potentiometer. 

With the potentiometer near mid-scale, you might get some- 
thing like 2.48. 

By taking these baby steps, you move right along. If you 
try to take giant steps, you might bog down in the mire. 

The definition of v@ is hard-coded to read the first ADC 
channel. Once it is working, modify v@ so it can read any of 
the channels. 

$ 0 8 0 0  CONSTANT A t o D  

( read a c h a n n e l  w h e r e  t h e  ) 

( c h a n n e l  n u m b e r  i s  0 t o  3 ) 

: V@ ( c h a n n e l  - r a w )  
2* A t o D  + DUP C @  $ 1 0 0  * 
SWAP C @  + ; 

Then try it at the keyboard as before. 
What do you do with the readings? Store them in RAM or 

on disk? Transmit them via the serial port? For now, just write 
the raw numbers to the screen. This makes a four-channel, 
on-screen volt meter of sorts. 

Assume the ADC is always ready with the current valu; 
In real life, you might need to start a conversion, then wait 
for a period of time or for a ready signal. Those refinements 
can be added easily. The application culminates in SAMPLE 
which takes a channel to read and screen coordinates where 
the result should appear. 

: SAMPLE ( c h a n n e l  y x - )  

AT ( c h a n )  V@ 5 U . R  ; 

2. R right-justifies the number in a five-character field. This 
prevents previous values from confusing the viewer. Try it 
from the keyboard. For this to work correctly, so multiple 
tasks can share the same display, each task must keep track of 
its own cursor. For example, in F'ygmy, a version of EMIT could 
be written that used the USER variable RCURSOR for this pur- 
pose. Otherwise, when multiple tasks display the ADC read- 
ing, the digits will likely become jumbled with one another. 

0 3 15 SAMPLE 

Or, add KEY DROP to prevent scrolling. 

0 3 1 5  SAMPLE KEY DROP 

If all is well, set up four tasks and let each of them run the 
very same SAMPLE word, but with different channel num- 
bers and different screen coordinates. 

In Pygmy, each task needs its own self-contained word that 
takes no parameters. This is the word that does the real work. 
First, put SAMPLE in a loop and delay a little between readings. 
Since SAMPLE contains U . R, which contains PAUSE, an explicit 
PAUSE is not needed. 200  Ms delays for about 200 millisec- 
onds. (MS also contains the word PAUSE.) [See Listing Two.] 

Create the four tasks and assign the above words to the 
tasks. 

( create)  ( a s s i g n  w o r d  t o  t a s k )  ( a w a k e n )  
TASK: SO ' SAMPLE0 SO TASK! SO WAKE 
TASK: S 1  ' SAMPLE1 S 1  TASK! S 1  WAKE 
TASK: S 2  ' SAMPLE2 S 2  TASK! S 2  WAKE 
TASK: S 3  ' SAMPLE3 S 3  TASK! S 3  WAKE 

Only after the simple version works should you try 
smoothing the data. You could save the three previous read- 
ings to average with the new reading, but only the previous 
average needs to be saved. Multiply the previous average by 
three and add the new reading. Divide the sum by four to get 
the new average. [See Listing Three.] 

If you want to try running this example on a PC, you 
likely will not have a real ADC at address $0800. You might 
not even have a real ADC at all. You can fake it by reading a 
timer, instead. Use the following definition of v@ to simulate 
reading an ADC. 

: V@ ( c h a n n e l  - r a w )  DROP TO@ ; 

Summary 
If you are new to Forth multitasking, I hope this discus- 

sion has encouraged you to give it a try. Further, I hope it 
encourages us all to consider how to partition an application 
into simpler pieces, leading to more reliable applications 
which can be developed more rapidly. 
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Listing One 

( Pygmy 1.5 needs U*/ for .Volts to work) 
CODE UM* ( u u - ud) 
AX POP, BX MUL, AX PUSH, DX BX MOV, NXT, END-CODE 

: U*/ ( ul u2 u3 - ul*u2/u3) PUSH UM* POP UM/MOD NIP ; 

( Convert to a voltage and display with two decimals) 
: .Volts ( u - )  500 65535 U*/ <# # # ' .  HOLD #S #> ; 

Listing Two 

( Make it easy to save two words to the return stack 
and then recover them. Consider rewriting these 
words in CODE.) 

: 2PUSH ( a b - )  POP SWAP PUSH SWAP PUSH PUSH ; 

: 2POP ( - a b) POP POP SWAP POP SWAP PUSH ; 

: 2R@ ( - a b) POP 2POP 2DUP 2PUSH ROT PUSH ; 

: SAMPLES ( chan y x - )  2PUSH 
BEGIN ( chan) DUP 2R@ ( chan chan y x) SAMPLE 200 MS AGAIN ; 

: SAMPLE0 ( - )  0 2 15 SAMPLES ; 

: SAMPLE1 ( - )  1 4 15 SAMPLES ; 

: SAMPLE2 ( - )  2 6 15 SAMPLES ; 

: SAMPLE3 ( - )  3 8 15 SAMPLES ; 

Listing Three 

: AVERAGE ( previous~verage new - newAverage) 
4 / ( prev new/4) SWAP 3 4 * /  ( new/4 3/4) + ; 

: SAMPLES ( chan y x - )  

2PUSH ( chan) 
DUP V@ ( fake previous average) 
BEGIN ( chan prevAverage) OVER V@ AVERAGE 

2R@ AT DUP 5 U.R 200 MS 
AGAIN ; 

22 Forth Dimensions XX.4 



Forth an unctiona RI 
Functional Magnetic Resonance Imaging (fMRI) is a new 

branch of biophysics which studies brain function via mag- 
netic resonance imaging (MRI). A circular definition? Perhaps, 

cells without an oxygen atom attached) in the area. Deoxyhe- 
moglobin is paramagnetic, which interferes with the magnetic 
resonance signal. A decrease in deoxyhemoglobin concentra- 

One of the wonders of modern medicine, magnetic reso- 
nance imaging has the ability to peer into the body in a non- 
invasive manner which does not rely on ionizing radiation (x- 

but it will become clearer with a little description of the pro- 
cess. Specifically, in this article we will look a little at what 
MRI is and what the word "functional" means in regards to 
MRI. Then we will take a closer look at a Forth program de- 
veloped for the analysis of functional MRI data. I believe this 
to be the first use of Forth in this area. 

Magnetic Resonance Imaging 

ray, CAT scan) or ingestion of radioactive isotopes (PET imag- 
ing). Instead, MRI uses magnetic fields and radio-frequency 
pulses to cause water molecules in the body to "resonate," 

tion will, therefore, cause an increase in the magnetic reso- 
nance signal from that voxel in the image. These blood-oxy- 
genation-level-dependent (BOLD) signal changes are small, 
typically on the order of 2-5% of the voxel signal, and averag- 
ing over many trials is often necessary to get good data. 

Another key to the development of fMRI is known as echo- 
planar imaging (EPI), which is a way to make a single image 
very rapidly-as quickly as 54 ms. at our lab, which allows 

which in turn generate a detectable radio-frequency signal. By 
careful adjustment of the magnetic field, it is possible to en- 
code the output signal with information related to the posi- 

one to get many data points in the time domain to watch 
signal changes within voxels. Traditional MRI techniques take 
far too long to produce images for functional MRI to work. 
While industry i s  catching up with research and beginning 
to offer EPI abilities in scanners, until recently each site had 
to construct its own EPI hardware, which was time consum- 
ing and expensive. 

Functional MRI is a new and growing area which prom- 
ises to aid greatly in furthering medical advances in basic 

tion in the body and, hence, to construct an image which is research and in diagnosis and treatment of disease. Already 
related to the number of water molecules in small regions of fMRI has had important success in understanding the effects 
space termed voxels (volume elements). Interested readers can 
find the "Basics of MRI" web site (www.cis.rit.edu/htbooks/ 
mril), which contains an online book describing MRI in much 
more detail than is possible here. 

So, then, what is the meaning of the word "functional" in 
fMRI? For diagnosic purposes, MRI has been in use for roughly 
20 years. As a tool for radiologists, is it indispensible for its 
speed, safety, and flexibility. MRI can see soft tissue that stan- 
dard x-ray cannot see, but clinical MRI images are just that, 
static images. The body is, naturally, a living system, so it 
would be nice to use MRI to see it function. This is exactly 
what fMRI does with a focus on brain function. As a sub- 
field, it is less than eight years old, with much of the initial 
work performed at the Medical College of Wisconsin, where I 
am currently located. 

Functional MRI 
Functional MRI makes static MRI dynamic by acquiring 

multiple images of a specific area, or slice, over time while the 
subject is performing some sort of mental task. The task might 
be as simple as tapping his fingers or watching a flashing cheek- 
erboard; or as complex as thinking about tapping his fingers, 
or memorizing words or faces and placing them in sequence. 
The key to functional MRI is the fact that, when neurons in 
the brain become active in response to a stimulus (tapping 1 fingers for example), they extract oxygen from the surround- 
ing blood. This, in turn, causes an increase in blood flow, which 
causes a decrease in the amount of deoxyhemoglobin (red blood 

of cocaine abuse- and in diagnosis of schizophrenia. Recent 
work is demonstrating key elements of the process of memo- 
rization, and the potential for applications is virtually un- 
limited and untapped. 

A typical fMRl experiment 
A typical block-designed functional MRI experiment pro- 

ceeds as follows. The subject is placed within the scanner 
and images of the same portion of the brain are taken at regu- 
lar intervals. The time between images is typically on the or- 
der of one second but may be significantly shorter. During 
image acquisition, the subject is performing some sort of 
mental or physical task, as described above. 

When the scanning session is complete, the resulting im- 
ages contain a record of any variation in the magnetic reso- 
nance signal which may have occurred in connection with 
the applied stimulus. This data is then given to the fMRI analy- 
sis for evaluation. The program correlates the time 
course of each pixel with the applied stimulus or reference 
function, which is often represented as a box car function with 
a value of 1 when the stimulus was present and a value of 0 
otherwise. The results of this correlation calculation give an 
indication of which regions of the brain responded, or became 
"active," when the stimulus was applied. Activated regions are 
defined as those which have a cross-correlation value above 
some chosen threshold. The higher the cross-correlation value 
between the reference function and the pixel time series, the 
more the two are "alike," implying a response to the stimulus. 
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Forth enters the picture 
The output of an fMRI experiment is a series of hundreds, 

even thousands, of individual EPI images. These images form 
a three-dimensional data set, with the X and Y axes being the 
image axes, and the Z axis being time. A typical analysis would 
then need to look at specific images in the series and also 
plot time courses of individual pixels (voxels and pixels are 
frequently interchanged as, in a displayed image, each pixel 
corresponds to the signal intensity from a voxel). In order to 
determine which areas of the image became active with the 
stimulus applied during the experiment, a calculation is per- 
formed which correlates the pixel time courses with the ap- 
plied stimulus time course. The result of this calculation in- 
dicates regions in the image associated with the stimulus and 
allows these pixel time courses to be extracted and analyzed 
further, if need be. 

To accomplish this, I wrote a Forth program for the Apple 
Macintosh using Chris Heilman's freeware Pocket Forth. I de- 
scribed the general procedure for creating applications with 
Pocket Forth in Forth Dimensions XIX.3 and will, therefore, 
concentrate here on the specifics of the fMRI program. 

But, why choose Forth to begin with? Forth is, of course, 
suitable to most any task, but in this case it was particularly 
suitable for several reasons. Typical MRI images are stored as 

Figure One. [Color images reproduced here in grayscale. -Ed.] 

File fMRl 

16-bit integers, which is ideal for a small Forth to handle. 
Additionally, an fMRI dataset is easily stored as a package 
with all the images in a single file, making image access no 
different than accessing elements of an array, each element 
of which is 8192 bytes in size. With only a handful of excep- 
tions, all calculations can be handled by integer arithmetic, 
thereby greatly increasing the speed of the program, espe- 
cially on older hardware. Finally, Forth's interactive nature 
aided greatly in program development by allowing rapid test- 
ing of new words and ideas. 

The application 
Figure One is a screen shot of the fMRI application with 

some experimental data loaded. The application uses only 
one window, which is divided into three main sections. The 
first shows the actual images in the dataset, using internal 
greyscale or reverse greyscale palettes or an external user-de- 
fined color palette (256 RGB entries). The second section 
shows the time courses of the nine pixels within the rect- 
angle superimposed upon the image. It can be thought of as 
viewing the column of images from the side. This area of the 
window also shows the reference function, if any, and is used 
to show expanded graphs or images. The third section of the 
window contains buttons for controlling the cross-correla- 
tion and threshold, and for saving regions of interest (ROI) 
or activated pixels. In this context, "saving" means writing 
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the actual pixel time courses, or an average, out to disk as 
tab-delimited ASCII text. Additionally, this area of the appli- 
cation window contains the box car editor, which is useful 
for defining simple onloff reference functions. 

The three checkboxes-smart, linear, and average-are used 
to modify the actions of the buttons above them. The smarf 
checkbox implements an attempt to speed the cross-correla- 
tion calculation by only computing the correlation for pixels 
which have a value that is at least 114 the value of the mean 
pixel intensity of the first image. In this way, the program 
does not waste time calculating a value for areas of the data 
which are outside the brain itself. The linear checkbox is of- 
ten necessary. It removes any linear trend from a pixel time 
course before calculating the cross-correlation with the refer- 
ence function. Subject motion is one source of this linear drift. 
Lastly, the average checkbox is used to modify the behavior 
of the "save ROI" and "save activated pixels" buttons. In place 
of a large output file containing all the data from all acti- 
vated pixels, it will write a single, average time series. 

The application also has two menus, File and fMRI. The 
File menu is used to load image datasets (packages), 
anatomicals (high-resolution MRI images), and palette files, 
or to write the currently displayed image or time series to 
disk. The fMRI menu is used to set up for functional analysis. 

It uses the current settings of the box car editor, or the cur- 
rent pixel time course, to define the reference function. Ad- 
ditionally, it is used to load a reference function from an ASCII 
disk file or to sum multiple pixels into the reference func- 
tion. Three-channel binomial smoothing of the reference 
function is also available. 

Figure Two shows the result of a correlation calculation be- 
tween a selected pixel as a reference function and the reset of 
the data set. The expanded image plot shows areas of the brain 
which became active in response to the stimulus. In this case, 
the subject was instructed to watch a flashing checkerboard 
image and to tap his fingers when the checkerboard was 
present. This is an axial image with the forehead on the left. 
The two smaller activated regions on the left correspond to 
the primary motor cortex region of the brain. Had the subject 
been tapping the fingers on his left hand only, there would be 
a single active region near the top of the image (the right side 
of the brain). The larger activated region on the right corre- 
sponds to the primary visual cortex and is the result of the 
flashing checkerboard stimulus. These regions, or a portion of 
them, can be written to disk and analyzed further. 

Functional MRI is new and exciting and a prime opportu- 
nity for Forth to make an entrance. This example is the first 

I of what I hope to be several Forth-based fMRI analysis tools. 

FigureTwo. Result of a correlation calculation (shown in black and white). 

File fMRl 
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Let us say that we have a program on a microcontroller 
which inputs data and does something with this data. The 
data comes to us in bursts, so we need to buffer it. Overall, 
we process the data faster than it arrives, but when we get a 
burst of input, all we have time to do is store it in memory. 

We make our buffer as large as possible, filling our entire 
memory, in order to reduce the chance that our program will 
fail by not having enough buffer space available to hold a 
burst of data when it comes in. We have two pointers, TODO 
and PAST. TODO points to the data which awaits processing, 
and PAST points to just past this data. Our buffer initially 
looks like Figure One. 

CBUFFER and BEYOND are fixed pointers which never 
change during the course of the program's execution. Let's 
say that we get a burst of data. We put this data in our buffer 
and move PAST forward to the next available location [see 
Figure Two]. 

We now have some data to process (in our diagrams, valid 
data is represented by shaded areas). We do some processing 
and we consume some of this data, moving ToDO forward 
[Figure Three]. 

At this point, we get another burst of data. We place this 
data past our present data, moving PAST forward. Our data 
comes in sequentially (from a serial port, perhaps), so we can 
wrap around the end of the buffer [Figure Four]. 

So far, everything has been easy and obvious. We will now 
introduce a complication. We were able to wrap around the 
end of the buffer when we input our data, but let us say that 
we can't when we process it. Our data is composed of records 
which we must process as whole units. The routine which pro- 
cesses the records expects them to occupy contiguous addresses. 

Let us say that, in the above diagram, we have a record to 
process which currently has its front half at the back of the 
buffer (pointed to by TODO) and its back half at the front of 
the buffer (pointed to by CBUFFER). Our data must be con- 
tiguous before we can begin processing it. We need to rotate 
our data within the buffer so that TODO ends up pointing to 
the beginning of the buffer (equal to CBUFFER) [Figure Five]. 

An obvious solution would be to copy the data from TODO 
through BEYOND into a temporary storage location. We would 
then copy the data from CBUFFER through PAST to an ad- 
dress equal to CBUFFER + (BEYOND - TODO). We would thep 
copy our data from the temporary storage location to  
CBUFFER. This won't work, though. Our buffer pretty much 
fills the available RAM; we don't have room for temporary 
storage anywhere. We don't want to shrink the size of the 
buffer to make room for a temporary storage area, because 
the buffer needs to be as big as possible to prevent data loss 
during a burst of input. 

The next section of this article will discuss a solution to the 

Figure One 

PAST 
CBUFFER BEYOND f 

Figure Two 

'ODO 1 CBUFFER 
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BEYOND 

Figure Three 
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Figure Four 
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~roblem of rotating data within a buffer; the reader may want 
o take a moment now to figure out a solution of his own. 

3uffer "normalization" 
Listing One provides a solution to the problem of rotat- 

ng data within a buffer. We employ an algorithm which is 
.he author's own invention. The code is written in URIForth 
'rom Laboratory Microsystems, Inc. (both the 16-bit and 32- 
lit MS-DOS versions), but should run unmodified on any 
:orth-83 system. For demonstration purposes, we have a small 
~uffer of twenty-three bytes which we display as an ASCII 
itring before and after the rotation. Our algorithm should 
~ o r k  with any size buffer up to almost the full address space. 

We have a routine called INIT-CBUFFER which initializes 
:he CBUFFER and also the TODO and PAST pointers. We also 
lave a routine called DISPLAY-CBUFFER which displays the 
:BUFFER and the two pointers on the screen. The routine 
T EM ON ST RATE demonstrates the whole process; this is the 
routine the user should run from his console. 

The meat of our program lies in  the  routines 
NORMAL1 ZE-TODO and ADJUST-PTRS. NORMAL I ZE-TODO r0- 
tates the data in the buffer, and ADJUST-PTRS adjusts the 
values of T O D O  and PAST.  We will first examine 
NORMALIZE-TODO which is the more complicated. 

We have a double variable called DISTANCE which is the 
difference betwean TODO and CBUFFER; this is how far the 
data must be rotated. PREP-ROTATE sets DISTANCE and also 
provides our initial destination and source addresses. The 
destination is initially our TODO value, and the source is the 
destination value plus the difference. Note that we don't sim- 
ply add or subtract values to pointers. 

We have to be careful about falling off the edges of the 
buffer. Our routines ADVANCE-PTR and RETARD-PTR add and 
subtract the DISTANCE value to a pointer. 

Our ROTATE-CBUFFER routine takes the character at the 
source and stores it into the destination. At this point, it calls 
ADVANCE-PTRS which produces new destination and source 
values by advancing the old values forward by the DISTANCE 
value. Note that, since the destination and the source are al- 
ready separated by the DISTANCE value, we don't have to call 
ADVANCE-PTR on the destination value. We just discard the 
old destination value and use the old source value as the new 
destination value. We do have to call ADVANCE-PTR on the 
old source value to get the new source value. ROTATE-CBUFFER 
iterates until it has been through all of the combinations of 
destination and source values that it can do. If ROTATE-CBUFFER 
iterated one more time, it would find that its source location 
no longer holds the correct value; this location was the origi- 
nal destination location and got plugged with a new value at 
that time. ROTATE-CBUFFER doesn't iterate this last time, and 
this one location we must handle explicitly. 

Prior to calling ROTATE-CBUFFER we fetch the original 
character from the destination location and we hang onto it 
(on the R-stack). After ROTATE-CBUFFER finishes, we store 
this character into what would have been ROTATE-CBUFFER'S 
next destination location (the first character of the buffer). 
This completes NORMALIZE-TODO'S work. 

ADJUST-PTRS is fairly simple. We just call RETARD-PTRS 
for the ToDo and PAST pointers, adjusting them so that they 
correspond to the new orientation of the data in CBUFFER. 
Note that all of these operations could have been done in the 
opposite directions. We set DISTANCE to TODO minus CBUFFER. 
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In NOFMALIZE-TODO we called ADVANCE-PTR to iterate through 
our pointers. In ADJUST-PTRS we called RETAWPTR to ad- 
just our pointers. We could have set DISTANCE to BEYOND mi- 
nus TODO and then used RETAX-PTR in NORMALIZE-TODO 
and ADVANCE-PTR in ADJUST-PTRS. The effect is the same, it 
is just that everything is going in the opposite directions. The 
reader may want to rewrite the program in this manner to be 
sure that he understands the process. 

Notice that the size of the buffer must be a prime number. 
This ensures that ROTATE-CBUFFER iterates through all of 
the locations. In other words, we want to be assured that 
DISTANCE will never be an even divisor of CBUFFER-SIZE. 
Because TODO can be anywhere in CBUFFER, DISTANCE can 
be any number from zero to CBUFFER-SIZE-1. We have to 
make CBUFFER-SIZE a prime number to ensure that no num- 
ber in the range O,CBUFFER-SIZE) evenly divides it. 

A lot of programmers tend to take a few successful runs of 
a program as "proof" that the program is correct. The author 
of this article is guilty of this as often as anybody. It is a bad 
habit. Consider a programmer who might write the above 
program but fail to realize that CBUFFER-SIZE must be a prime 
number. This programmer might, by happenstance, set 
CBUFFER-SIZE at 64009, which is an "almost-prime" num- 
ber. This value is just short of 64K, which is in keeping with 
our idea of making the buffer almost fill available memory. 
The only time the program would fail would be when TODO 
happened to be 253 bytes away from CBUFFER. This would 
only happen, on the average, one out of every 64009 execu- 
tions of NORMALIZE-TODO, Or about 0.00156% of the time. 
Rare bugs like this don't generally show up during testing, 
only after a program has gone into production. This is a good 
illustration of the danger in relying on testing as a substitute 
for thinking things through. 

Pointers are integers 
Notice that, in our program, we converted our pointers to 

double-precision integers inside of ADVANCE-PTR and 
RETARD-PTR. At the end of these routines, we converted our 
values back into single-precision pointers. We did this be- 
cause we expected our buffer to be almost filling our avail- 
able memory. Let us say that we are working on a 16-bit com- 
puter and have 64K of memory available. If our buffer is al- 
most 64K, then our DISTANCE value, added or subtracted from 
some pointer within the buffer, could easily overflow our 
single-precision arithmetic operations. In fact, if our buffer 
size is over 21K (one third of our address space size), we can 
guarantee that we will overflow single-precision arithmetic 
somewhere within our program. Even with a buffer size un- 
der 21K, we will still overflow single-precision arithmetic 
unless our buffer is exactly centered in the middle of the ad- 
dress space. Small buffer sizes are clearly not in keeping with 
the normal usage of buffers, in which bigger is better. Even 
on a 32-bit machine, we could overflow a 32-bit integer if 
our buffer was fairly big and was relatively close to the bot- 
tom of the address space. The only good solution to over- 
flowing arithmetic is to type cast to a greater -precision arith- 
metic. This is what we did in ADVANCE-PTR and RETARD-PTR. 

Although this publication is concerned with the Forth pro- 
gramming language, let us now quote from The C Program- 
ming Language (second edition) Ritchie. On page 102, K&R say: 

Pointers and integers are not interchangeable. Zero is the only 



exception ... Any pointer can be meaningfully compared for equality or 
inequality with zero. But the behavior is undefined for arithmetic or 
comparisons with pointers that do not point to members of the same 
array (there is one exception: the address of the first element past the 
end of an array can be used in pointer arithmetic.) 

Bjarne Stroustrup has a similar speech to give in The C++ 
Programming Language (page 5 7) :  

The pointer values were converted to  the type l o n g  [in the 
example program] before the subtraction using explicit type conver- 
sion.They were converted to  long,and not to theUobvious"type int, 
because, in some implementations of C++ a pointer will not fit into an 
int (that is,sizeof ( i n t )  < s i z e o f  (char* )). 

Subtraction of pointers is defined only when both pointers point at 
elements of the same array (although the language has no way of 
ensuring that is the case).When subtracting one pointer from another, 
the result is the number of array elements between the two pointers 
(an integer).One can add an integer to  a pointer or subtract an integer 
from a pointer;in both cases, the result is a pointer value. If that value 
does not point to an element of the same array as the original pointer 
or one beyond, the result of using that value is undefined. 

ADVANCE-PTR and RETARD-PTR cannot be ported directly 
from our program into C or C++ because our pointer value 
may be outside of the CBUFFER array briefly. In our program, 
we test to see if the pointer is outside of the array, and wrap it 
around if it is. This cannot be done directly in C or C++ be- 
cause a pointer outside of an array is an undefined value, 
according to Stroustrup. To convert to C or C++, we would 
need to write the ADVANCE-PTR and RETARD-PTR routines as 
shown in Listing Two (note the use of long arithmetic, as per 
Stroustrup's advice). 

It is the author's contention that this is obscure and 
inobvious code. It is probably also less efficient because we 
are doing three long arithmetic operations (four, if the con- 
ditional is true), compared to the Forth version which does 
two long arithmetic operations (three, if the conditional is 
true). Mostly, though, our complaint is the fog-factor that 
comes with writing C code; it is an error-prone business. 

Note that we are not saying that a language definition 
should indicate how many bits each data type takes (like Java 
does). C and C++, like Forth, did the right thing in leaving 
this undefined. Defining the data type size largely ties a lan- 
guage to a processor size. Our Forth program, like almost all 
Forth programs, will run equally well on both 16-bit and 32- 
bit URIForth. 

On a Idbit  Forth, our program uses 16-bit single-preci- 
sion and 32-bit double-precision, which is optimum for that 
architecture. Java, because it specifies integers and pointers 
as 32-bit, must necessarily run on a 32-bit or bigger machine. 
This largely prevents Java from being used in embedded con- 
trollers, which was supposedly Java's original application. 
Forth programs can easily port without modification between 
a 16-bit embedded controller and a 32-bit desktop machine. 

Forth defines integers and pointers as being equal in size 
and being the natural size of data for a machine. C pointers 
may or may not be equal in size to integers. They might be 
equal in size to long integers. For safety, pointers should al- 
ways be type-cast to long integers. This is a problem because 
there is nothing bigger than a long integer and so there is no 
easy method of dealing with overflow. 

1 Listing One I 
screen 1. 
\ data declarations 

/ 23 CONSTANT CBUFFER-SIZE \ must be a prime number! I 
I CREATE CBUFFER CBUFFER-SIZE ALLOT HERE CONSTANT BEYOND 1 
VARIABLE TODO \ pointer to beginning of valid data 
VARIABLE PAST \ pointer to just past the valid data 

2VARIABLE DISTANCE \ distance betwean TODO and CBUFFER 1 
screen 2. 
\ INIT-CBUFFER DISPLAY-CBUFFER 

: INIT-CBUFFER \ -- \ sets CBUFFER, TODO, and PAST 
" fghijklmnopqrstl23abcde" COUNT 
DUP CBUFFER-SIZE o ABORT" string is wrong length" 
CBUFFER SWAP CMOVE *. 

CBUFFER 18 + TODO ! \ adr of the 'a' 
CBUFFER 15 + PAST ! ; \ adr of the '1'' 

: DISPLAY-CBUFFER \ -- \ needs CBUFFER, TODO and PAST 
CR 8 SPACES CBUFFER CBUFFER-SIZE TYPE 
CR TODO @ CBUFFER - 4 + SPACES . "  TODOA" 
CR PAST @ CBUFFER - 4 + SPACES . "  PASTA" CR ; 

screen 3. 
\ ADVANCE-PTR RETARD-PTR ADJUST-PTRS 

: ADVANCE-PTR \ ptr -- newgtr \ by DISTANCE 
0 DISTANCE2@ D+ \ D - -  
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2DUP BEYOND 0 D>= IF CBUFFER-SIZE 0 D- THEN 
O<> ABORT" we aren't back in our address space" ; 

: RETARD-PTR \ ptr -- newqtr \ by DISTANCE 
0 DISTANCE 2@ D- \ D -- 
2DUP CBUFFER 0 D< IF CBUFFER-SIZE 0 D+ THEN 
O<> ABORT" we aren't back in our address space" ; 

: ADJUST-PTRS \ -- \ adjusts TODO and PAST 
TODO @ RETARD-PTR TODO ! PAST @ RETARD-PTR PAST ! ; 

screen 4 .  
\ MOVE-DATUM ADVANCE-PTRS ROTATE-CBUFFER 02:54 05/10/97 

: MOVE-DATUM \ dst src -- 
C@ SWAP C! ; 

: ADVANCE-PTRS \ dst src -- new-dst new-src 
NIP \ discard dst, our old src will be our new dst 
DUP ADVANCE-PTR ; 

: ROTATE-CBUFFER \ dst src -- 
OVER >R BEGIN 

2DUP MOVE-DATUM ADVANCE-PTRS 
DUP R@ = UNTIL R> DROP 

2DROP ; \ these are just short of their original values 

screen 5 .  
\ PREP-ROTATE NORMALIZE-TODO DEMONSTRATE 05:16 05/10/97 

: PREP-ROTATE \ -- dst src \ sets DISTANCE 
TODO @ CBUFFER - O DISTANCE 2! 
TODO @ DUP ADVANCE-PTR ; 

: NORMALIZE-TODO \ -- \ adjusts TODO and PAST 
PREP-ROTATE OVER C@ >R 
ROTATE-CBUFFER R> CBUFFER C! ; 

: DEMONSTRATE \ -- 
INIT-CBUFFER DISPLAY-CBUFFER 
NORMALIZE-TODO ADJUST-PTRS DISPLAY-CBUFFER ; 

Listing Two 

/ /  assume CBuffer and Beyond are char * types 
/ /  assume Distance is an unsigned long int 

char *AdvancePtr( char *Ptr) 
I 

unsigned long int TrialDist= (1ong)Beyond -(long)Ptr; 
if( TrialDist i= Distance) / /  we will wrap! 
{ 

return( CBuffer + (  Distance -TrialDist)); 
} else { 

return( Ptr +Distance); 
1 

1 

char *RetardPtr( char *Ptr) 
{ 

unsigned long int TrialDist= (1ong)Ptr -(long)CBuffer; 
if( TrialDist < Distance) / /  we will wrap! 
{ 

return( Beyond - (  Gistance -~rialDist)); 
) else { 

return( Ptr -Distance); 
1 

} 
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This article describes how to do Reed-Solomon error cor- 
rection in Forth. Reed-Solomon is a type of forward error cor- 
rection used in disk drives, CDs, satellites, and other commu- 
nication channels. Forward error correction means that redun- 
dancy (extra bytes, for example) is added to a block of data 
before sending. At the destination, these extra data are used 
to determine if an error has occurred and to correct the error, 
if possible. Using forward error correction reduces the neces- 
sity of retransmitting data in error. In some cases, such as for 
disk drives, by the time an error is detected, the original data 
is not available and forward error correction must be used. 

Reed-Solomon Error Correction Codes (ECC) use a type of 
arithmetic called finite-field or Galois field arithmetic. Galois 
was a French mathematician who advanced the field of finite 
math an entire generation in a single night. Challenged to a 
duel over a woman, he wrote all he could on the subject the 
night before, and was killed the next morning. Mathemati- 
cians have enjoyed speculating what he might have subse- 
quently contributed, had he survived. 

This article is presented in two parts. The first is an intro- 
duction to finite field arithmetic, and shows how to generate 
finite fields, and how to use them. The second tells how to 
design and use Reed-Solomon ECC. 

Finite fields are called such because, unlike the set of inte- 
gers or real numbers, they contain a finite set of elements. 
The elements in a finite field are called symbols, and most 
symbols used today are base two, or binainumbers. All base 
two finite fields have 2" symbols, where n is a positive inte- 
ger. Thus, a 28 field will have 256 symbols, and they will be 
the 256 bytes we are familiar with. Today's algorithms be- 
come unwieldy for fields larger than about 2'6, and most fields 
are in the 26-212 range. 

Addition, subtraction, multiplication, and division opera- 
tions are defined for finite fields, so we will define Forth words 
for these: 

FF- ( n l  n2 - n 3 )  
F P  ( n l  n2 - n3)  
FF/ ( n l  n2 - n3)  

(nl, n2, and n3 are all symbols in the finite field) 
Any of these operations will give a result that is also in the 

finite field (as with familiar number systems, division by zero 
is undefined). We can, therefore, express the finite field in 
terms of addition, subtraction, multiplication, division, and 
even log and antilog tables. Tables for a Z4 field are shown in 
Figure One. You may find patterns in the numbers in this 
simple field, but larger fields may look like gibberish. Multi- 
plying by one or zero always gives results we are familiar with, 
but the patterns for other entries in the tables are not obvious. 

Note that a subtraction table is not given. In finite field 
arithmetic, addition and subtraction are exactly the same op- 
eration: XOR! You can verify that this is works by selecting 
two arbitrary numbers and adding them (table lookup), then 
subtract one of the original numbers (again with table 
lookup). It works every time (as it should, since we know nl  
n2 XOR n2 XOR gives r!l back: in finite field parlance, we are 
adding 1-2 to nl, then subtracting n2 from the result). Try 
some multiply and divide examples as well. 

The properties of commutation, association, and distri- 
bution all work with finite field arithmetic. And we can add 
another property: subtraction is also commutative, since it's 
the same as addition. 

Like the magic squares (matrices whose rows, columns, 
and diagonals add to the same number), we played with as 
children, only certain symbol arrangements work for a finite 
field. For a four-bit field, there are only six possible distinct 
arrangements, not counting rotations.- or an eight-bit field, 
there are thirty-eight. The larger the field, the more arrange- 
ments there are that work. 

How do we generate a finite field? The field is generated 
using XOR and shift operations with irreducible polynomi- 
als (finite field polynomial math is a big part of ECC). The 
irreducible polynomials are tough to find, but tables of them 
exist. Listing One gives some for symbol sizes through twelve 
bits. For each irreducible polynomial, there is a correspond- 
ing finite field. These fields can also be "rotated" by specify- 
ing an offset in the loglantilog tables. 

The code in Listing One will generate a finite field, given 
an irreducible polynomial. It also defines the three arithmetic 
operators (FF- is skipped; use FF+), log/antilog, and power 
operations. 

Listing Two gives utility words that display the Figure One 
tables for the field you generated. Of course, for large fields, 
the tables will not display properly, due to their size. 

To generate a finite field, choose the size by setting the 
number of bits in the MASK constant. Then choose the gener- 
ating polynomial from the list given. There are subtle differ- 
ences in the performance of different polynomials; for our 
purposes, any in the list will work. 

Once the code is loaded and the verifier has given a mes- 
sage that it has successfully completed, you are ready to do 
finite field arithmetic. Do it just like regular integer arith- 
metic, on the stack. Note that, without special hardware, it's 
most efficient to do FF* and FF/ using loglantilog table look- 
ups. The log of a finite field symbol is a regular integer, so to 
multiply, standard addition (mod the field size) of the logs is 
used. See the definitions of FF* and FF/. 

In the next article, we will use the finite field operators to 
make a Reed-Solomon encoder and decoder, and show how 
to do the math to detect and correct errors. 
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Figure One 

POLYNOMIAL ( L E S S  TOP TERM) = 3 MASK= F  
U=Undefined 

Antilog table 
0 1 2 3 4 5 6 7 8 9 A B C D E F  

................................................ 

1 2 4 8 3 6 C B 5 A 7 E F D 9 U  

Log table 
0 1 2 3 4 5 6 7 8 9 A B C D E F  

................................................ 

U 0 1 4 2 8 5 A 3 E 9 7 6 D B C  

Addition table 
0 1 2 3 4 5 6 7 8 9 A B C D E F  

................................................ 

0  0 1 2 3 4 5 6 7 8 9 A B C D E F  
1 1 0 3 2 5 4 7 6 9 8 B A D C F E  
2  2 3 0 1 6 7 4 5 A B 8 9 E F C D  
3 3 2 1 0 7 6 5 4 B A 9 8 F E D C  
4  4 5 6 7 0 1 i 3 C D E F 8 9 A B  
5  5 4 7 6 1 0 3 2 D C F E 9 8 B A  
6  6 7 4 5 2 3 O l E F C D A B 8 9  
7  7 6 5 4 3 2 1 O F E D C B A 9 8  
8  8 9 A B C D E F O 1 2 3 4 5 6 7  
9  9 8 B A D C F E 1 0 3 2 5 4 7 6  
A  A B 8 9 E F C D 2 3 0 1 6 7 4 5  
B  B A 9 8 F E D C 3 2 1 0 7 6 5 4  
C  C D E F 8 9 A B 4 5 6 7 0 1 2 3  
D  D C F E 9 8 B A 5 4 7 6 1 0 3 2  
E  E F C D A B 8 9 6 7 4 5 2 3 0 1  
F  F E D C B A 9 8 7 6 5 4 3 2 1 0  

Multiplication table 
0 1 2 3 4 5 6 7 8 9 A B C D E F  

................................................ ................................................ 
1 

0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 0 1 2 3 4 5 6 7 8 9 A B C D E F  
2  0 2 4 6 8 A C E 3 1 7 5 B g F D  
3 0 3 6 5 C F A g B 8 D E 7 4 1 2  
4  0 4 8 C 3 7 B F 6 2 E A 5 1 D 9  
5 0 5 A F 7 2 D 8 E B 4 1 9 C 3 6  
6  0 6 C A B D 7 1 5 3 9 F E 8 2 4  
7  0 7 E g F 8 1 6 D A 3 4 2 5 C B  
8  0 8 3 B 6 E 5 D C 4 F 7 A 2 9 1  
9  0 9 1 8 2 B 3 A 4 D 5 C 6 F 7 E  
A  O A 7 D E 4 9 3 F 5 8 2 1 B 6 C  
B  O B 5 E A l F 4 7 C 2 9 D 6 8 3  
C  O C B 7 5 9 E 2 A 6 1 D F 3 4 8  
D  O D 9 4 1 C 8 5 2 F B 6 3 E A 7  
E  O E F l D 3 2 C 9 7 6 8 4 A B 5  
F  O F D 2 9 6 4 B l E C 3 8 7 5 A  

Division table 
Numerator: 

0 1 2 3 4 5 6 7 8 9 A B C D E F  
................................................ ................................................ 

0  u U u U U U u u u U u u u u u u  
1 0 1 2 3 4 5 6 7 8 9 A B C D E F  
2  0 9 1 8 2 B 3 A 4 D 5 C 6 F 7 E  
3 O E F l D 3 2 C 9 7 6 8 4 A B 5  
4  O D 9 4 1 C 8 5 2 F B 6 3 E A 7  
5 O B 5 E A l F 4 7 C 2 9 D 6 8 3  
6  0 7 E 9 F 8 1 6 D A 3 4 2 5 C B  
7  0 6 C A B D 7 1 5 3 9 F E 8 2 4  
8  O F D 2 9 6 4 B l E C 3 8 7 5 A  
9  0 2 4 6 8 A C E 3 1 7 5 B 9 F D  
A  O C B 7 5 9 E Z A 6 1 D F 3 4 8  
B  0 5 A F 7 2 D 8 E B 4 1 9 C 3 6  
C  O A 7 D E 4 9 3 F 5 8 2 1 B 6 C  
D  0 4 8 C 3 7 B F 6 2 E A 5 1 D 9  
E 0 3 6 5 C F A g B 8 D E 7 4 1 2  
F  0 8 3 B 6 E 5 D C 4 F 7 A 2 9 1  

ADenominator 



Listing One. (Electronic copies of the listings are available by e-mail request to the author.) 

\ FILE FiniteFie1d.t to implement and test finite fields of GF(ZAK) symbols. 
\ Will handle up to K=12 or so depending on your memory. 
\ This should work on any ANSI forth, 16 or 32 bit, with no dependencies. 

A SHORT LIST OF IRREDUCIBLE POLYNOMIALS [ 11 : $ means hex 
the numbers below represent polynomials. The actual polynomial represented is 
xAk + xA(k-l)*bit(k-l)+xA(k-2)*bit (k-2)+ . . . +xAO*bitO 
example, the five-bit poly $ID is 
xA5+xA4+xA3+xA2+1 
3 bit: 3 ; 4 bit: 3 $17 ; 5 bit: $5 $ID $17 
6 bit: 3 $17 $27 ; 7 bit: 9 $f $ID ; 8 bit: $ID $77 $F3 
9 bit: $11 $59 $131 ; 10 bit: 9 $F $10D 11 bit: 5 $125 $8D 
12 bit: $53 $45B $4D 

\ Define your finite field as follows: Choose the number of bits in your symbol 
\ then set MASK to the all-1's symbol 
\ Example: For a 5 bit symbol, mask=$lF, For an 8 bit symbol, MASK=$FF 
\ Then set POLYNOMIAL to one of the polynomial numbers in the above table. 

HEX F DECIMAL CONSTANT MASK \ MASK=2"k-1 where k=symbol size 
3 CONSTANT POLYNOMIAL \ From the above table, 4 bit symbol 

\ The field can also have an offset, which basically rotates the entries: 
0 CONSTANT MO \ MO is an offset. In some cases, a non-zero offset is used to 
\ increase calculation efficiency. A non-zero value rotates the field. 

\ we start by making an antilog table. This is accomplished with shift-XOR 
\ operations on the chosen polynomial. 

CREATE ANTILOG MASK 1+ cells ALLOT \ An antilog table 
: FILL-ANTILOG 

1 MASK 0 DO DUP I CELLS ANTILOG + ! \ Store tha value in the table 
MASK U2/ MASK XOR OVER AND IF \ Test top bit 

2* POLYNOMIAL XOR \ Shift and XOR if set 
ELSE 2* 
THEN MASK AND \ Calculate next shifted value 
LOOP DROP ; 

FILL-ANTILOG \ Fill the table 

\ We now make a log table by reading the antilog table. 

: >ANTILOG ( nl--n2) \ Find the antilog d\f N1 using table lookup 
\ Note: multiply and divide operations Gan give inputs exceeding table indices. 
\ Wraparound with the MOD operation fixes this. 

MASK MOD CELLS ANTILOG + @ ; 

CREATE LOG MASK 1+ CELLS ALLOT 

\ FILL-LOG just looks through antilog table and puts corresponding entry in log table. 

: FILL-LOG 
MASK 0 DO I >ANTILOG 1- CELLS LOG + I SWAP ! LOOP ; 

-- - 
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FILL-LOG 

: >LOG ( nl--n2) \ find log of nl returned number is an integer (ordinal) 
DUP O= ABORT" ATTEMPTED TO FIND LOG OF 0 IN >LOG! ! !I' 
1- CELLS LOG + @ ; 

: FFt ( N1 N2--N) \ Finite field add (and subtract!) 
XOR ; 

\ If your system has SYNONYM, use it for FF+ to improve efficiency 

: FF* ( nl n2--N) \ Finite field multiply using logs 
DUP O<> >R \ If N1 or N2 are zero, log method won't work 
OVER O<> R> AND IF 
>LOG SWAP >LOG + \ Just add logs to multiply. 
>ANTILOG 
ELSE 2DROP 0 THEN 

: FF/ ( N1 N2--Nl/N2) \ Finite field divide using logs 
DUP O= ABORT" ATTEMPT TO DIVIDE BY 0 IN FF/!" 
OVER O<> IF \ zero numerator must have special handling. 
>LOG SWAP >LOG SWAP - 
>ANTILOG 
ELSE 2DROP 0 THEN ; 

: FFA ( nl POWER--n2) \ nl RAISED TO A POWER: Power is a normal ordinal integer 
DUP O= IF 2DROP 1 ELSE 
1 SWAP 0 DO OVER F P  LOOP SWAP DROP THEN \ brute force. 
I 

\ If an offset was specified, the log/antilog tables must now be redone: 
MO #IF 
\ this replaces the bAi antilog table (offset 0) with the AAi table (offset MO) 
CREATE NANTILOG MASK CELLS ALLOT 
: FILL-NANTILOG 

MASK 0 DO I >ANTILOG MO FFA I CELLS NANTILOG + ! LOOP ; 
FILL-NANTILOG 
NANTILOG ANTIMG MASK 1+ CELLS CMOVE \ replace the antilog table 
FILL-LOG 
#THEN 

Listing Two 

\ Utilities to display finite field tables 
\ Utilities only work for symbol size 8 hits or less. 

: H.R ( nl n2--) \ Hex . r 
BASE @ >R HEX . r r> BASE ! ; 

: .TOPLINE 
CR 4 SPACES 
MASK 1+ 0 DO I 2 H.R SPACE LOOP 
CR 4 SPACES 

--- MASK 1+ 0 DO ." ---I1 LOOP ; 
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: +TABLE 
CR ." ADDITION TABLE II 

. TOPLINE 
MASK 1+ 0 DO 
CR I 2 H.R 2 SPACES 

MASK 1+ 0 DO I J FF+ 2 H.R 1 SPACES LOOP 
LOOP CR CR 

I 

: *TABLE 
CR ." MULTIPLICATION TABLE 11 

. TOPLINE 
MASK 1+ 0 DO 
CR I 2 H.R 2 SPACES 

MASK 1+ 0 DO I J F P  2 H.R 1 SPACES LOOP 
LOOP CR CR 

: /TABLE 
CR ." DIVISION TABLE 11 

CR ." NUMERATOR:" 
. TOPLINE 
MASK 1+ 0 DO 
CR I 2 H.R 2 SPACES 

MASK 1+ 0 DO I J DUP O<> IF FF/ 2 H 
LOOP 
CR ." "DENOMINATOR" CR 
, 

R ELSE 2DROP ." U" THEN 1 SPACES LOOP 

: ANTILOG-TABLE 
CR .I' ANTILOG TABLE'' 
. TOPLINE 
CR 4 SPACES 

MASK 0 DO 
I >ANTILOG 2 H.R SPACE LOOP 
." U CR CR ; 

: LOG-TABLE 
CR ." LOG TABLE " 
. TOPLINE 
CR ." U I' 

MASK 1+ 1 DO 
I >LOG 2 H.R SPACE LOOP CR CR ; 

: TABLES. *\  
CR ." POLYNOMIAL (LESS TOP TERM) =" POLYNOMIAL 2 H.R 
." MASK=" MASK 2 H .R 
CR ." U=UndefinedV' 
CR CR 

ANTILOG-TABLE 
LOG-TABLE 
+TABLE 
* TABLE 
/TABLE ; 

Forth Dimensions XX.4 



The followinq are corporate sponsors and individual benefactors I 

Corporate Sponsors 

I whose generous donations are helpingl beyond the basic member- 
ship levels, to further the work of Forth Dimensions and the Forth In- 
terest Group. For information about participating in this program, 
please contact the FIG office (office@forth.org). 

AM Research, Inc. specializes in Embedded Control applications us- 
ing the language Forth. Over 75 microcontrollers are supported in 
three families, 8051, 6811 and 8xC16x with both hardware and soft- 
ware. We supply development packages, do applications and turn- 
key manufacturing. 

MicroProcessor Engineering supplies development tools and 
consultancy for real-time programming on pcs and embedded sys- 
tems. An emphasis on research has led to a range of modern Forth 
systems including ProForth for Windows, cross-compilers for a wide 

Clarity Development, Inc. (http://www.clarity-dev.com) provides con- 
sulting, project management, systems integration, training, and semi- 
nars. We specialize in intranet applications of Object technologies, 
and also provide project auditing services aimed at venture capitalists 
who need to protect their investments. Many of our systems have 
employed compact Forth-like engines to implement run-time logic. 

Computer Solutions, Ltd. (COMSOL to its friends) is Europe's pre- 
mier supplier of embedded microprocessor development tools. Us- 
ers and developers for 18 years, COMSOL pioneered Forth under 
operating systems, and developed the groundbreaking chipFORTH 
hostltarget environment. Our consultancy projects range from single 
chip to one system with 7000 linked processors. www.computer- 
solutions.co.uk. 
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Articles 
The author of any Forth-related 

article published in a periodical or in 
the proceedings of a non-Forth con- 
ference is awarded one year's mem- 
bership in the Forth Interest Group, 
subject to these conditions: 

a. The membership awarded is for 
the membership year following 
the one during which the ar- 
ticle was published. 

b. Only one membership per per- 
son is awarded in any year, re- 
gardless of the number of ar- 
ticles the person published in 
that year. 

c. The article's length must be 
one page or more in the maga- 
zine in which it appeared. 

d. The author must submit the 
printed article (photocopies 
are accepted) to the Forth 
Interest Group, including 
identification of the maga- 
zine and issue in which it 
appeared, within sixty days 
of publication. In return, 
the author will be sent a 
coupon good for the follow- 
ing year's membership. 

e. If the original article was 
published in a language 
other than English, the ar- 
ticle must be accompanied 
by an Engish translation or 
summary. 

BY THE FORTH INTEREST GROUP 
"Silicon Slick" tan allas) 

. . .and any and all Forth 
arogrammers and other 

SOFWARE RENEGADES roaming the 
range in aioneer territories.. . 
... t o ~ a r l k l e s a b o u t  meir 

DISCOVERIES & TECHNIQUES, 
PERILOUS MISADUENTURES, and 
MYSTIMNG ENCOUNTERS with 

STRANGE CHWCTERS and with 
FORTH FEATURES obvious and subtle. 

Letters to the Editor 
Letters to the editor are, in effect, 

short articles, and so deserve recogni- 
tion. The author of a Forth-related let- 
ter to an editor published in any maga- 
zine except Forth Dimensions is awarded 
$10 credit toward FIG membership 
dues, subject to these conditions: 

a. The credit applies only to mem- 
bership dues for the member- 
ship year following the one in 
which the letter was published. 

b. The maximum award in any 
year to one person will not ex- 
ceed the full cost of the FIG 
membership dues for the fol- 
lowing year. 

c. The author must submit to the 
Forth Interest Group a photo- 
copy of the printed letter, in- 
cluding identification of the 
magazine and issue in which it 
appeared, within sixty days of 
publication. A coupon worth 
$10 toward the following year's 
membership will then be sent 
to the author. 

d. If the original letter was pub- 

TO nmg* u* a*m 01 lished in a Tanpage other ihan 

artldes, the Forth Interest Group 0 has adopted 
thetolowing Author RecognltknProgram. 

The fastest, most coiivenient way for us to receive your 
material is via e-mail (a vast improvement over the tele- 
graph, a.k.a "talking wire") to the editor@forth.org ad- 
dress. Binary (e.g., formatted text) files must be 
uuencoded to be sent as e-mail, but ASCII files can be 
sent as-is. 


