$10 Volume XX, Number 3 September 1998 October

F 43 R 4 W

What's new at the FIG business office? We're in the process
of revising and updating our database of members. From time
to time, we hope to be sending you “Notes of Interest” in your

All-pew development environment from FORTH, Inc.

SwiftForth"

for Windows 95/98 and Windows NT

Fonim, 28
L4 &
EM CPONT
PROGHERS

- 0% .

~ [AUTOCHECKROY
" JUPDOUN: #RICHEDL
TATIC HEDITBOX &

w Super-efficient implementation = Fasy to add DLLs and to call
for speed (32-bit subroytine- DLL functions

threaded, direct code expansion] = DDE client services for inter-
Full GUI advantages {like drag- application communication
and-drop editing; hypertext a Files and biocks supported
source browsing; visual stack, » Simple creation of windows,
watchpoints, and memary win- menus, dialogs, etc. — na
dows) but retains traditional third-party tools needed
command-line control and tools » Flexible, extensible access 1o
Complies with ANS Forth, in- system callbacks and mes-
cluding most wordsets sages, and exception handler

FORTH, Inc.
111 N. Sepulveda Blvd., #300
Manhattan Beach, CA 90264-6847
800.55.FORTH » 310.372.8493 u Fax 310.318.7130
forthsales@forth.com = www.forth.com

mailbox from the FIG office. Do we have your current e-mail
address? Are you on-line? Or are you not? These are a few of
the questions you can help us with. If you are not on-line but
would still like to receive the special “Notes of Interest,” let me
know and we'll find a way to get them to you.

Please just take a minute now and send us your current e-
mail address, even if you think you've done it recently. I'll be
happy to receive it again. Remember, that one of the benefits
of being a member of the Forth Interest Group is that we can
provide e-mail forwarding to you. For example: your e-mail
account may actually be with a provider like AOL or Prodigy.
With the e-mail forwarding benefit from your membership,
your e-mail address could be yourname@forth.org and we would
forward that to your actual account. Just get in touch with us
and let us know, we'll be happy to get this service up and run-
ning for you!

Here’s my first piece of “Notes of interest”: The next issue
of Forth Dimensions will have a revised Mail Order Form. Many
of the prices of disks, back issues, FORML Proceedings, and
other books we carry will be going up. Sorry about that but,
unfortunately, we do need to raise the prices, as many of the
prices have been raised on us. But, fortunately, for you there
is ane last chance.., if you order now, before we publish the
next issue of Fortlr Dimensions with the new increased prices,
you can get a deal by paying the lower current published price
listed in this issue of Forth Dimensions. So now is the time to
order those back issues you thought might order someday, or
the previous year's FORML Proceedings, or disks of programs
you thought might be cool to have.

Recently, several of you who are outside of the United
States have suggested that when we receive an e-mail from
vou for renewal or to place an order, that we send off a simple
reply that we did indeed get your e-mail. 'm not sure why
we didn't think of that—it's quick and easy, and it helps to
keep you better informed. Most often, we simply process the
order, but it can be four to six weeks be-
fore you get the shipment (o1 the renewal

This classic is no longer out of print!
Poor Man’s Explanation of
Kalman Filtering

or, How I Stopped Worrying and
Learned to Love Matrix Inversion

by Roger M. du Plessis

$19.95 plus shipping and :
handiing (2.75 for surface U.5,,
4.50 for surface international) &

You can order in several ways:

e-mail: kalman@taygeta.com
fax: 408-641-0647

voice: 408-641-0645

mail: send your check or money order in U.S. dollars to:

Taygeta Scientific Inc. « 1340 Munras Avenue, Ste. 314 » Monterey, CA 93940

For information about
~ ather publications offered
¢by Taygeta Scientific Inc., you

can cali our 24-hour message
line at 408.641-0647. For your
convenifence, we accept Master-
Card and VI5A.

invoice receipt). In the meantime, you're
left wondering if we got the information

made the suggestion—we will now imple-
ment it.

[f you have suggestions that you feel
will help to make us more efficient, or
which will increase or improve cominuni-
cations, we're always open to listening.
And we may even implement your idea.

Again, it's always a pleasure to work
with Forth Interest Group members.

Eilitn W Cheers,

Trace Carter

Administrative Manager

Forth Interest Group

100 Dolores Street, Suite 183

Carmel, CA 93923 USA

voice: 831.373.6784 « fax: 831.373.2845
e-mail: office@forth.org

or not. So, thank you ta those of you who |

|
l
|
J

2

Forth Bimensions XX.2

17

19

Porting hForth to the StrongARM SA-170 RISC Processor
by Neal Crook

The author was working for DEC’s semiconductor division as an applications engineer and settled
upon the idea of doing a port to the 64-bit Alpha RISC processor. But his group won the task of
supporting StrongARM chip sales, and he started work on the design of a board that would be used as
a hardware verification and evaluation platform for the first StrongARM chip, the SA-110.

The Stuttering Context Switch
by Martin Schaaf

How to build the context-switching part of a Forth engine? The auther had been focussed on opti-
mizing the time-wasting stack-shuffling operations, devising a method of buffering the top three
items on the stack and performing stack shuffling in parallel with other operations. Task switching,
however, he had to learn about from his plumbing.

Linearizing a Thermocouple with Two-Step Interpolation

by Jerry Avins

When building a profiling temperature controller for a small oven, one of the necessary details is a
way to read a thermocouple that is to indicate temperature in degrees F and be suitable for use in a

control loop. Thermocouples are only slightly nonlinear. Nevertheless, a simple way to linearize them
also works well with functions that have much greater nonlinearity, and it is presented here.

ANS Appendix to “Finite State Machines in Forth”
by Julian V.Noble

ANS-compatible code to accompany the author’s article (which appeared in our preceding issue), and
an erratum to the code that appeared previcusly in these pages.

A Forth Switchblade

by Rick VanNorman

An example of a swifch in Forth is the CASE statement. The execution-time behavior of CASE and OF can
be optimized until your system implementor is exhausted, and performance will be similar to that of a
C version. So why would anyone want to implement a new switch construct in Forth? For SwiftForth,
the reason was the need for extensibility—to be able to define the base structure and to extend it at will.
The traditional CASE statement does not lend itself to being extended after it is defined.

Point and Do
by Richard W."Dick” Fergus
A pointing device can be very useful to interface the user with the intricacies of a program. Herewith,

the author supplies relevant support code for Pygmy Forth although, with minor modifications, they
should be applicable to other Forth dialects.

15

16

OFFICE NEWS 26 STANDARD FORTH TOOL BELT
Changes on the horizon - Number Conversion and Literals
EDITORIAL 29 STRETCHING STANDARD FORTH
Only Standard Definitions

CROSSWORD — “Stacks”

34 URLs — a selection of on-line Forth resources
PRESIDENT’S LETTER
Ready for an eFD? 35 SPONSORS & BENEFACTORS

Forth Dimensions XX.3

EDITORIAL

Please see this issue’s “Office News” for important information about changes taking
place to the rates on our mail-order form—current prices will only remain in effect until our
revised form can be published (which is planned for the next issue).

We received the following suggestion in response to a plea we issued some months ago
for more Forth articles, both in this magazine and in publications directed outside the
immediate Forth community:

Dear editor,
An opportunity has come up that could propel Forth to the forefront of com-
puter languages. I am speaking of the Design Your Own Processor™ Tools at:

http://www.dnai.com/~jfox/fpgakit.htm

If we get on top of this and write about it, we could be the language of reconfig-
urable computing.
—M. Simon ¢ msimon@tefbbs.com

I 'hope that both activists and the curious will take note of this and other opportunities
to explore, and to point out to others, Forth’s suitability in particular application and engi-
neering domains. Waiting to be discovered is a sure way to insularity!

Those who tried Julian Noble's Finite State Machines code (see our preceding issue) might
have had a bit of difficulty, and a one-line “fix” is provided in this issue. Julian remarks,
“This is a good example of a cautionary tale—why one must never trust a listing printed in
a book or journal. (I have long known that scribal errors make it impossible to trust formu-
las taken from texts and journals, and it looks as though this is the case with program
listings as well.)” It’s also a good example of the perils of technical publishing, whatever the
medium, although we go to great lengths to avoid such things.

As a concluding note for now (we are already working on the next issue and will have
more to say then), Fred Behringer's (behringe@mathematik.tu-muenchen.de) transputer Forth
package now is also available from ftp://ftp.taygeta.com/pub/forth/compilers/native/dos/
transputer/ for downloading.

—Marlin Ouverson

Would you like to brush up on your German and, at the same time, get
first-hand information about the activities of your Forth friends in Germany?

Become a member of the German Forth Society
(“Deutsche Forth-Gesellschaft”)

80 DM (50 US-$) per year
or 32 DM (20 US-$) for students or retirees

Read about programs, projects, vendors, and our annual conventions in the
quarterly issues of Vierte Dimension. For more information, please contact:

Forth-Gesellschaft e.V.

Postfach 161204

18025 Rostock

e-mail: SECRETARY@ADMIN.FORTH-EV.DE

Forth Dimensions
Volume XX, Number 3
September 1998 October

Published by the
Forth Interest Group

Editor
Marlin Ouverson

Circulation/Order Desk
Trace Carter

Forth Dimensions welcomes edlitorial ma-
terial, letters to the editor,and comments
from its readers. No responsibility is as-
sumed for accuracy of submissions.

Subscription to Forth Dimensions is in-
cluded with membership in the Forth In-
terest Group at $45 per year (U.S.) $60
(international). For membership,change
of address,and to submit items for pub-
lication, the address is:

Forth Interest Group

100 Dolores Street, suite 183
Carmel, California 93923
Administrative offices:
408-37-FORTH Fax: 408-373-2845

Copyright © 1998 by Forth Interest
Group, inc.The material contained in this
periodical (but not the code) is copy-
righted by the individual authors of the
articles and by Forth Interest Group, Inc.,
respectively. Any reproduction or use of
this periodical as it is compiled or the
articles, except reproductions for non-
commercial purposes, without the writ-
ten permission of Forth Interest Group,
inc.is a violation of the Copyright Laws.
Any code bearing a copyright notice,
however,can be used only with permis-
sion of the copyright holder.

The Forth interest Group

The Forth Interest Group is the associa-
tion of programmers, managers, and
engineers who create practical, Forth-
based solutions to real-world needs.
FIG provides a climate of intellectual
exchange and benefits intended to as-
sist each of its members. Publications,
conferences, seminars, telecommuni-
cations, and area chapter meetings are
among its activities.

FORTH DIMENSIONS (ISSN 0884-0822)
is published bimonthly for $45/60 per
year by Forth Interest Group at 1340
Munras Avenue, Suite 314, Monterey
CA 93940. Periodicals postage rates
paid at Monterey CA and at additional
mailing offices.

POSTMASTER: Send address changes to
FORTH DIMENSIONS, 100 Dolores Street,
Suite 183, Carmel CA 93923-8665.

Forth Dimensions XX.3

i e bt

Porting hForth to the

StrongARM SA-110 RISC Processor

1.Background

Once upon a time I downloaded Julian Noble’s
FPRIMER.ZIP from a SIMTEL archive and discovered eForth
V1.0. I was fascinated by the way eForth used an assembler’s
macro expansion capability to generate all of the header and
dictionary structures for a Forth compiler. I ported eForth to
the Z80 (not knowing that this had already been done); I
chose the Z80 because I was familiar with it and I had a de-
velopment environment for it. Doing the Z80 port was not
useful, except as a Great Learning Experience.

At the time [started playing with eForth, I was working
for Digital Equipment Corporation’s semiconductor division
(Digital Semiconductor, DS) as an applications engineer. Hav-
ing completed the eForth port to the Z80, I was casting around
for another fun spare-time project, and I naturally settled upon
the idea of doing a port to the 64-bit Alpha RISC processor.
However, before I could get started on this project, DS took a
license for the Advanced RISC Machines Ltd. ARM architec-
ture, and announced that it was developing StrongARM. My
group won the task of supporting StrongARM chip sales, and
I started work on the design of a board that would be used as
a hardware verification and evaluation platform for the first
StrongARM chip, the SA-110.

When the board design was completed, I had about a
month to spare whilst the board was in layout and manufac-
ture. The SA-110 itself was still in the last stages of design. I
took some code examples from another engineer, who was
writing the diagnostic and test code, and set about the task
of learning ARM assembler programming, with a view to port-
ing eForth to the SA-110.

I debugged the ARM eForth port on an instruction-set
simulator, and then on an ARM610 processor evaluation
board. Meanwhile, my board had come back from assembly
and I had done as much testing as you can do on a processor
board when it has no processor. Boards were shipped to Aus-
tin, Texas where the SA-110 design team were headquartered,
and I eagerly awaited SA-110 prototypes.

Finally, we had word that the SA-110 was due out of fab
imminently. A software engineer and I travelled to Austin.
We powered the very first SA-110 chip up in the last week of
November, 1995 and, within a day, the diagnostics were up
and running (well done, Anthony). The code for talking to "
the debug tools presented more of a problem, and there wasn’t
much I could do to help. It was time to blow an EPROM on
my own account.

A couple of days (and many cycles through the EPROM
eraser) later, eForth was up and running (it was the third or
fourth program ever to run on SA-110 silicon). It was imme-
diately useful for writing code one-liners to exercise logic and

to measure power consumption. In addition, I added facili-
ties to allow the processor’s caches to be turned on and off
under software control so we could measure the impact on
speed and power consumption.

Overall, eForth proved to be very useful during the course
of the project, but in the meantime I had discovered the ANS
Forth standard, and 1 wanted to try some of the features that
eForth lacked. I began to modify eForth to bring it in line
with the ANS standard. One day, during a bit of web brows-
ing, I came across Dr. Wonyong Koh'’s hForth[1]. When I saw
what Dr. Koh had achieved, using eForth as a starting point,
I abandoned eForth and started a port of hForth.

2.Problems
There were three basic problems to address:
* Coding low-level routines for the target processor
¢ Tool chain
e Portability issues in the code

2.1 Coding low-level routines for the target processor

hForth is a direct-threaded code (DTC) Forth, and it is
designed to be built using a macro assembler. Macros are used
in the source code to express Forth constructs like constants,
variables, colon definitions, and code definitions. To simplify
the porting effort, a minimal number of definitions must be
coded in assembler; the remainder are colon definitions. The
first step in the porting process is to map registers of the Forth
virtual machine to real registers in the target processor. The
ARM has 15 general-purpose registers, named RO through R14;
R1S is the program counter. R14 has a special role during
subroutine calls: it stores the return address from the subrou-
tine (unlike CISC processors, RISC processors do not tend to
have dedicated hardware stack pointers). The instruction set
is highly orthogonal (another RISC characteristic), so it makes
little difference which register is used for which function. I
chose this register assignment:

Name Register Description

dsp R12 Data stack pointer

Isp R11 Return stack pointer

fpc R10 Forth virtual machine program counter
tos R9 Top of (data) stack

The assembler source defines aliases for these four regis-
ters, so they can be referred to by name.

Having allocated registers, the second stage in the porting
process is to design the virtual machine and code the low-
level routines. The main difference between eForth and hForth
in these areas is that hForth uses the common technique of

Neal Crook * Reading, England

nac@forth.org

Neal Crook graduated from Southampton Universityin 1984 witha BSc.
in Physics with Electronics, He is a hardware engineer, and is co-named
inventor on nine granted patents in the field of data corimunications.

Forth Dimensions XX.3

5

keeping top-of-stack in a processor register. That meant that |
could reuse much of my existing code with only minor modi-
fications. In any case, the amount of work is small; in ARM
assembler, the longest “required” code definition is about ten
lines of assembler code. The hForth source highlights a num-
ber of words that should be coded in assembler for speed, but
also provides colon definitions that can be used during the
initial debug of a new port.

2.1.1 Example code fragments
This section shows how hForth definitions are expressed
in the assembler source and how the macros expand to gen-
erate code for the target. The ARM and 8086 implementa-
tions are compared by considering this colon definition:
DOUBLE (n -- n) DUP + ;

In the source code, this could be represented as a colon
definition, which would be portable across processors:
$COLON 6, 'DOUBLE', DUBBLE, SLINK
DEFW DUP, PLUS,EXIT

$COLON is a macro that expands to perform three tasks:

* generate an entry in the name dictionary for the word
DOUBLE, and associate an execution token (xt) with the
name. The value of the xt is the assembler label DURBLE,
and its value is a forward reference that will be resolved by
the assembler in the usual way. SLINK is an assembler
variable used to build a link to the previous entry in the
name dictionary. By using different variables here, mul-
tiple wordlists can be intertwined in the name dictionary.

» generate a label in the code dictionary with the name
DUBBLE.

¢ generate a processor-dependent call to the inner interpreter,
DoLIST.

DEFW is an assembler pseudo-op, and is followed by a list
of labels. Each label corresponds to an xt that will have been
created by some other macro expansion. The labels may be
forward or backward references because they will all be re-
solved by the assembler in the usual way. In this example,
the values will be the execution tokens for DUP, +, and EXIT,
respectively.

For the 8086, the cell size is 16 bits and the opcode size is
variable. The call to the inner interpreter is a call to an abso-
lute address. The opcode for CALL is one byte, so this is pre-
fixed with a one-byte NOP to keep

address, the branch destination (to the label DoL1ST) is en-
coded as a 24-bit, signed, PC-relative offset within the opcode.
This only makes a sub-set of the 32-bit address space acces-
sible, but the range is more than adequate. As before, the
execution tokens are absolute addresses. The BL stores a r1e-
turn address in processor register R14 (R14 must be preserved
before another BL can be executed). The value of R14 is used
by the inner interpreter to access the execution tokens that
make up the definition.

The result of using the $COLON macro is that the colon defi-
nition of DOUBLE is portable, even though the macro and result
of the macro expansion are not portable. Next, we will look at
how the same definition would be expressed as a (processor-
dependent) code definition. For the 8086 it looks like this:

$CODE 6, 'DOUBLE’', DUBBLE, SLINK
MOV AX, BX

ADD BX, AX

SNEXT

While for the ARM it looks like this:
SCODE 6, 'DOUBLE’, DUBBLE,_SLINK
ADD tos, tos, tos
SNEXT

The macro $CODE expands out to generate a label and a
name dictionary entry as before, but does not generate any-
thing in the code dictionary. The macro $NEXT terminates
the definition by returning control to the caller of this defi-
nition. Everything in between is expanded by the assembler
to generate opcodes for the particular processor. Remember
that tos is simply an alias for the register R9, which is used to
hold the top-of-stack value.

For the 8086, the expansion of $NEXT generates this code:

LODSW ; get the next code address into AX
JMP AX ; jump directly to the code address

Whilst for the ARM, the expansion of SNEXT generates

this code:
MOV pc,l fpcl , #CELLL

This instruction can be read as “load the PC (i.e., branch
to) with the value that is stored in the cell addressed by the
current value of fpc, and post-increment fpc (by the cell-
size) to address the subsequent cell.”

To understand these examples more clearly, we need to

the code aligned to a cell boundary. .
The definition looks like Figure One. | Figure One

DOLIST is a label, r.eSOIVed by the NOP 1 byte } Macro expansion.. processor
assembler. The execution tokens are .

CALL DoLIST 1 +.2 bytes } native code
absolute addresses. The CALL pushes XT-DUP 2 bytes)
a return address onto the hardware Y . .
R . XT-+ 2 bytes } Executed by inner interpreter
stack and this return address is used X -
. R XT-EXIT 2 bytes } on Forth Virtual Machine

by the inner interpreter to access the
execution tokens that make up the
definition. _ Figure Two

For the ARM, the cell size and the
opcode size are both 32 bits; the BL DoLIST 4 bytes } Macro expansion.. processor
definition looks like Figure Two. } native code

The BL (branch-and-link) in- XT-DUP 4 bytes }
struction is a single 32-bit opcode. XT-+ 4 bytes } Executed by inner interpreter
Rather than specifying an absolute XT-EXIT 4 bytes } on Forth Virtual Machine

6

Forth Dimensions XX.3

see how the inner interpreter, DoLIST, is implemented. Re-

member from the discussion above that DoLIST takes an in-

put parameter; the address of the first xt to be executed, and
that this parameter is passed to the DoLIST code in a proces-
sor-specific way:

¢ For the 8086, DoLIST is entered through a native CALL,
and the parameter is passed on the hardware stack, since
it is the return address for the call.

» For the ARM, DoLIST is entered through a native BL and
the parameter is passed in R14, since this is the return
(link) address for the BL.

For the 8086, DoLIST looks like this:
$CODE COMPO+6, 'doLIST',DoLIST, SLINK

SUB BP, 2

MOV [BP] ,SI ;push return stack
POP SI ;new list address
$NEXT

For the ARM, DoLIST looks like Figure Three.

The STR (store) instruction performs a store of the current
fpc value onto the return stack, then updates the fpc with
the parameter passed in R14. The[rsp , # - CELLL]!
means, “store at the location addressed by rsp but first dec-
rement rsp by the value of CELLL”—in other words, this in-
struction implements a “push” with rsp as the stack pointer

and fpc as the data.

Now that we’ve seen how definitions are generated by the
assembler, there's one final thing we need to consider: the
processor-dependent parts of generating a new definition
when hForth is up and running on the target. Again, we will
consider the definition for DOUBLE.

The only processor-dependent part of the compilation
process is the generation and detection of the call to DoLIST.
In hForth, this is handled by the words? call and xt,.?call
is used to check whether a given location contains a direct-
threaded code call; it is used for optimisation purposes and
by SEE (the word decompiler). xt, takes an xt as a parameter
and compiles a direct-threaded code call to that location.

8086 versions, where call-code is 0xE890 (opcode for a
NOP followed by a CALL) [see Figure Four.]

ARM versions, where call-code is 0xEBOOO0OO (opcode
for BL, with an offset of 0) [see Figure Five.]

The final call to IDflushline is required to support the
caches on the SA-110, and it is discussed further below.

2.2Tool chain

eForth and hForth both rely on macro expansion in an
8086 assembler in order to build code and name dictionaries
for the target image. Some ports to other processors have con-
tinued to use the 8086 macro assembler; in this technique,

Figure Three

$CODE COMPO+6, 'doLIST',DoLIST, SLINK

STR fpc, [rsp, # - CELLL]! ;preserve forth PC
MOV fpc, R14 ;first xt of definition
SNEXT
Figure Four
: ?call DUP @ call-code =

IF CELL+ DUP @ SWAP CELL+ DUP ROT + EXIT THEN
\ Direct Threaded Code 8086 relative call .

0 ;

: xt, xhere ALIGNED DUP TOxhere SWAP
call-code code, \ Direct Threaded Code
xhere CELL+ - code, ; \ 8086 relative call

Figure Five

: ?call DUP @ 0f£f000000h AND call-code =
IF DUP DUP @ OQffffffh AND
bUP 007fffffh > IF

00f£000000h OR \ sign extend the offset

THEN

2 LSHIFT

+ CELL+ CELL+

SWAP CELL+ SWAP EXIT
THEN O ;

: xt, =xhere ALIGNED DUP TOxhere SWAP
xhere - cell- cell- 2 RSHIFT
Q0ffffffh AND
call-code OR
xhere swap
code, IDflushline ;

P

\ it’s a branch..

\ convert to byte offset
\ fix up for pipeline prefetch

get signed offset

mask off high-order sign bits
make the opcode

remember where it will go
emit it and purge the block

the low-level words are hand-as-
sembled and edited into the assem-
bler source files as DEFW (define
word) statements. This is some-
what tedious but entirely effective.
That technique was unsuitable for
the ARM port because the 8086
macro assembler is designed to use
16-bit addresses, whereas the ARM
uses 32-bit addresses. Therefore, it
was logical to use the assembler
and linker in ARM Ltd.’s Software
Development Toolkit (SDT). This is
where I hit a major problem.

The macros work by repeatedly
changing the value of ORG—the
position in the target image at
which code/data is being generated.
They do this because each macro
expansion generatess stuff in both
the code dictionary and name dic-
tionary, and these are in separate
memory areas. The problem is that
the ARM assembler does not allow
ORG to be changed. (At the time I
learned this, it came as something
of a shock. I have since learnt that
it is a common restriction in mod-
ern single-pass assemblers.)

The only solution to this prob-
lem was to change the structure of
the assembler source so that every
definition was broken into two
parts (one that generated code dic-
tionary entry and one that gener-
ated name dictionary entry). Rather
than embarking on a major editing

get offset

Forth Dimensions XX.3

7

session, I used the AWK scripting language to process the as-

sembler source. I ended up with three separate scripts:

¢ The first script makes syntax changes to the assembler
source to suit the ARM assembler

» The second script expands all the macros and generates
three output files: one representing the code dictionary,
one representing the name dictionary, and one represent-
ing a jump table and ASCII strings for the system THROW
(error) messages

¢ The third script reverses the order of the entries in the
name dictionary so that entries logically grow down from
high memory.

The assembler source is run through these three scripts, and
the three output files (code dictionary, reversed name dictio-
nary, and throw table) are concatenated and fed through the
ARM assembiler. The final stage is to link them using the ARM
linker. The entire build processs takes about five seconds.

The AWK scripts took some weeks to develop, but I had
already made that investment for eForth, and the modifica-
tions for hForth were relatively minor (adding the throw table,
for example, since this was not present in eForth). The whole
process had a major benefit that I did not anticipate: my as-
sembler source file had a relatively small number of changes
from the 8086 version. When Dr. Koh made new releases of
his code, [was able to use the excellent ediff feature in GNU
Emacs to view differences between my old code and Dr. Koh'’s
new release, and patch (with a single keystroke) any revision
that affected my port.

2.3 Portability issues

eForth and hForth were originally written for a 16-bit pro-
cessor, the 8086, with a 16-bit cell size. My target machine was
a 32-bit processor, with a 32-bit cell size. I had found a couple
of places in eForth (loop counters in the division and multipli-
cation routines) where the code relied on a 16-bit cell size, and
I had changed these to get the 32-bit version working. I checked
for these same problems in hForth but I found they had al-
ready been abstracted to a constant, cell-size-in-bits. [was later
able to conclude that there were no portability issues in the
code related to cell size (at least, none that affected the transi-
tion from 16 to 32 bits). In addition, as Dr. Koh predicted[1],
the multitasker ran without modification.

One area that limited portabilty was an environment string
called systemID. As previously described in [1], hForth has
three closely associated implementations; ROM model, RAM
model, and EXE model. Different assembler source code is
used to build each model, and generates the basic kernel of
the Forth system. Additional functionality is added by
INCLUDEing Forth source files on the running system. The
definitions in these files are coded to work correctly for any
of the models. Where data structures vary for the different
models, systemIDis tested to see which version to use. Origi-
nally, the environment string systemID expanded to “8086
ROM Model”. For the ARM port, this was changed to “ARM
ROM Model”, but this stopped the Forth source files from
working. Dr. Koh revised hForth to solve this problem; he
split the environment string into two parts; CPU (for example,
“8086") and Model (for example, “ROM Model”). As a result,
most of the high-level files only needed to test Model, and
became CPU-independent. The only time where the CPU en-
vironment string must be tested is for definitions that use

(CPU-dependent) assembler. For example, see Figure Six.

3. Additions to the functionality
In addition to re-coding the low-level routines, I made
these modifications to hForth:
¢ Changed the I/O to support simple terminal I/O and file
download.
¢ Added some primitive code to help in the debug of new
ports.
¢ Added support for processor caches.

3.11/O routines

The 8086 hForth is designed to run under MS-DOS. It uses
software interrupts to DOS to perform character I/O and file
I/O. My target platforms had no underlying operating envi-
ronment, so I had to write initialisation code for the system
memory controller and I/O devices, and character input and
output routines to control a UART. I connected to the UART
on the target using an RS232 connection from a PC running
a terminal emulator.

I added a simple file-download function, which relies on
an ASCII file download from the terminal emulator and XON/
XOFF flow control within hForth. This facility copies the FILE/
HAND technique used by eForth.

All the target boards I ran hForth on had on-board Flash
ROM. hForth was stored in ROM but copied into RAM at startup
so it would run more quickly. I added Forth definitions to al-
low me to take a running RAM image of hForth (including all
the definitions that had been added interactively or by file
download) and program this image back into Flash.

3.2 Debugging

The initial debug of both the eForth and hForth ports was
done using ARM Ltd.’s SDT. This includes an instruction set
simulator that runs under the control of a debugger to allow
single-stepping, source-level debug, and breakpointing.

Both eForth and hForth use a minimal number of words
defined in machine code (code definitions); the bulk of the
image consists of the name dictionary (which the debugger
just treats as data) and threaded lists of execution tokens. By
definition, a breakpoint can only be set on an opcode, and
for a DTC Forth there is only one opcode in each colon defi-
nition: the DTC call to DoLIST.

Simply trapping on the call to DoLIST leads to multiple
unwanted traps. For example, consider a definition that in-
cludes this fragment:

R> SWAP 2DUP + ALIGNED >R

If a breakpoint is set on the call to DoLIST for each of
these words, the breakpoint would also be triggered if, for
example, the definition of ALIGNED used SWAP. It would be
useful to step through each word in turn (and check its effect
on stacks and other data areas) without diving down into
other definitions. The threaded nature of the code makes it
very difficult to step through a particular definition in this
way using breakpoints.

Conventional Forth programming philosophy encourages
you to test and debug each low-level word and work your
way upwards to a complete, debugged program. However,
when you are trying to bring up Forth with no particular tools
to help you, you have no “test harness” to exercise a word
other than the entirety of the Forth compiler.

Forth Dimensions XX.3

My solution to this problem was to modify $NEXT to imple-
ment a micro debugger, uDebug.

All definitions end with $NEXT—either directly (code defi-
nitions) or indirectly (colon definitions terminating in EXIT,
which is itself a code definition). The normal action of $SNEXT
is to use the fpc to fetch the xt of the next word and jump to
it. The modified action of $NEXT is to make a jump (not a call)
to the routine uDebug. Invoking this modified behavior is a
build-time option that requires you to reassemble the code.

In ARM assembler, uDebug looks like Figure Seven.

To invoke uDebug for a particular definition:

1. Set a debugger breakpoint at the DTC call to DoLIST at
the start of the definition to be debugged, and run until
you hit this breakpoint.

2. Load the location trapfpc with the address of the first
xt in the definition to be debugged.

3. Set a debugger breakpoint on the final instruction in the
ubebug routine.

When you run the code, the debugger will now trap after
the execution of the first xt in the definition. Run again and
it will stop after the execution of the second. To disable
uDebug, set the location trapfpc to 0.

This technique has a number of limitations:

* It depends upon an xt of 0 being illegal (since this acts as
a magic value to turn uDebug off)

¢ [t does not allow you to automatically debug a code
stream that includes inline string definitions, or any
other kind of inline literal; you must step into the word
that includes the definition, then hand-edit the appropri-
ate new value into trapfpc.

These limitations could be overcome by making uDebug
more complex—but at a risk of introducing bugs into the
debugger code itself. uDebug has now been incorporated into
Dr. Koh's hForth source.

Another technique I used early in eforth debug was even
simpler: a definition called DXIT, which has behavior identi-
cal to EXIT, but with a different xt. To use this to debug a
definition:

1. Set a debugger breakpoint on the DTC call at the start of

DXIT.

2. In the definition to be debugged, patch the xt of EXIT
with the xt of DXIT.

Now when you run the code, the debugger will trap at the
end of the definition to be debugged, an ideal point at which
to examine the stack effects. A duplicate DoLIST could be
used in a similar way but, for the ARM, patching in a BL to
DoLIST requires a fiddly calculation of a relative offset.

Once hForth was up and running on my target hardware,
I re-coded some colon definitions as code definitions, to im-
prove performance. I started by giving a code definition a
different name from its colon definition and debugging it
interactively. After testing, [replaced the colon definition with
the code definition and reassembled.

3.3 Caches

Everything described so far applies equally to SA-110 and
any other ARM processor. However, the architecture of the SA-
110 caches differs from that of earlier ARM processors. In com-
mon with many RISC processors, but unusual for an ARM pro-
cessor, the SA-110 has a modified Harvard architecture: sepa-
rate instruction and data caches, but a unified 32-bit address
space accessed through a single external bus interface. This
cache architecture introduced two problems for the hForth port:
¢ keeping the I-cache coherent during code generation
¢ achieving high cache utilisation

3.3.1 Cache coherence
As is usual on RISC processors, the SA-110 has no hard-
ware mechanism to keep the I-cache coherent with the rest

Figure Six
CHAR " PARSE CPU" ENVIRONMENT? DROP
CHAR " PARSE 8086" COMPARE
[IF] DROP
CODE D-
BX DX MOV, AX POP, BX POP, CX POP,
CX PUSH, DX BX SBB, NEXT,
END-CODE
{ ELSE]
D- DNEGATE D+ ;
[THEN]

Figure Seven

uDebug 1dr r0,=AddrTrapfpc
ldr r1,{ r0]

cmps rl, fpc ;

; next xt from
ldrne pc, [fpcl, #CELLL ;
add rl, fpc, #CELLL ;
str rl, [r0]

l1dr pc, [fpc], #CELLL ;

compare the stored address with
; the address we’ re about to get the

not the trap address,
next time trap on the next xt

make debugger TRAP at this address

of the system (D-cache and
main memory). Therefore,
whenever a value is written
into memory and that value
is to be used as an opcode,
the coherence of the caches
must be enforced under soft-
ware control. This has two
well-known consequences:
¢ self-modifying code
requires careful attention
¢ after loading a new
executable image into
memory, the caches must
be flushed before the
code can be executed

AX CX SUB,

Forth can be regarded as
a special case of self-modify-
ing code, in the sense that an
image that is executing
makes additions to its own
code space. When hForth is
running, the only opcode
generated is the BL DoLIST
at the start of a definition.

so we’ re done

Forth Dimensions XX.3

9

This is generated by xt, and so, for the ARM port, xt, was

modified by the addition of a call to IDf1ushline. The func-

tion of IDflushline is to take an address and to force cache

coherence at that address. The SA-110 has a write-through

data cache and, therefore, the sequence performed by

IDflushline is:

¢ clean D-cache entry at this address (force dirty data line
to main memory)

¢ flush I-cache entry (force a cache miss at this address)

Subsequently, an opcode fetch from the address will cause
the I-cache to miss and force the opcode to be fetched from
main memory.

For a system without caches, or where I-cache coherence
is enforced in hardware, IDflushline can simply be DROP.

3.3.2 Cache utilisation

Consider what happens when the colon definition of
DOUBLE is executed for the first time. Recall that the defini-
tion occupies 16 bytes:

[BL DoLIST]} [XT-DUP} [XT-+] [XT-EXIT]

To start execution of the word, the SA-110's program counter
is loaded with the address of the BL. DoLIST. The SA-110 checks
the I-cache to see if a value for this address is present, and
cache misses. A cache miss is serviced by loading a naturally
aligned block of eight 32-bit words from main memory into
the cache (in this case, the I-cache). The size of the block is
called the line size, and results in seven other 32-bit words be-
ing read into the I-cache. Depending upon the alignment of
DOUBLE in memory, some of these words may be part of the
definition of DOUBLE or they may be values associated with
earlier or later definitions in memory. Once the cache-miss
data has been loaded, the SA-110 executes the BL and branches
to the inner interpreter which will generate a fetch from the
address at which [XT-DUP] is stored. This is a data fetch, so
the SA-110 checks the D-cache and, again, cache misses. Again,
the miss is serviced by loading a naturally aligned block of
eight 32-bit words into the D-cache. Often, these will be ex-
actly the same eight words already stored in the I-cache.

This example shows that intermingling code and data leads
to low cache utilisation; the I-cache is polluted with execu-
tion tokens that can only be used as data and, to a lesser
extent, the D-cache is polluted with branches to DoLIST,
which can only be executed as instructions.

Cache utilisation is a “figure of merit” for a piece of code;
it is calculated as the proportion of values that, having been
loaded into a cache line, are subsequently used at least once
before being discarded to make way for some other value.

Low cache utilisation reduces performance for two reasons: __

¢ The processor is stalled whilst the cache line is loaded;
loading values that never get used wastes processing cycles.

¢ Compared with an ideal system (one with full cache
utilisation), the system performs as though it had a cache
that is only a fraction of its actual size.

Intermingled code and data would be more appropriate
for a system with a unified cache, but this architecture is rarely
used in high-performance systems, because a modified
Harvard architecture is an easy way of increasing the instruc-
tion/data bandwidth into a processor core.

For the SA-110, the cache utilisation could be improved dra-

matically by changing from a direct-threaded code to a subrou-
tine-threaded code implementation. This would eliminate the
BL DoLIST at the start of each definition, and change the list of
execution tokens in a definition to a list of BL instructions. The
design of the compiler and decompiler would be complicated
slightly, but the whole thing probably could be factored effi-
ciently and incorporated into hForth as a build-time option.

4, Applications of hForth

My use of hForth on SA110-based target systems has been
for testing and debugging hardware. Since the ARM port was
released, there have been a few sightings of its use elsewhere,
including modifications to the build procedure to support
the use of the GNU ARM assembler/linker.

5.0ther projects in progress

The frustration of having to use AWK scripts to preprocess
the assembler source file led me to start thinking about other
ways to generate an executable image. Several Forth implie-
mentations have successfully used C as a source environment,
but I was reluctant to go down that path, because the exist-
ing structure of hForth makes it suitable for processors for
which no C compiler is available.

The logical solution is to metacompile hForth and thereby
do away with any external tool problems. I have a prototype
system running on pfe (a 32-bit ANS Forth compiler) under
Linux. After loading two ANS programs (an ARM assembler
and the metacompiler), it is possible to read the hForth source
(somewhat modified, since the source is now entirely ex-
pressed in Forth) and spit out an ARM binary. More about
that in another article...

6.Conclusions

hForth lived up to its author’s goal of being easily portable
to other processors. If you want a public-domain Forth that runs
on an embedded target, it is worthy of serious consideration.

A.Acknowledgments

I am grateful for Dr. Koh'’s timely responses to numerous
e-mails when I asked questions about various aspects of his
implementation that were unclear to me. We should be grate-
ful that Dr. Koh was kind enough to take comments and code
fragments from many people and use them to improve the
clarity and portability of his source code.

Most of the work I did on porting hForth to the SA-110 was
done in my private time. However, some of it was also sup-
ported by my then-employer, and I am grateful to acknowledge
Digital Semiconductor’s permission to place all this work in the
public domain under the same restrictions as Dr. Koh's original
work: all commercial and non-commerical uses are granted.

B.Download

hForth packages for the 8086, Z80, and StrongARM are
on-line at:
http://www.taygeta.com/forthcomp.html or
ftp://ftp.taygeta.com/pub/Forth/Compilers/native/dos/hForth

These packages include an HTML version of Dr. Koh's article
from FD XVIIL.2.

C. References
[1] “hForth: a Small, Portable ANS Forth” Wonyong Koh, FD
XVIIL.2,

10

Forth Dimensions XX.3

The Stuttering Context Sy

My toilet has developed a stuttering problem. While per-
forming the foreground process of flushing, the background
process of refilling the tank proceeds in a noisy, stuttering
manner. However, the tank still fills in a reasonable time
frame. So, being a software kind of guy, I'm willing to live
with it.

My toilet’s current mode of operation is rather much like
the answer to a question asked of me some fifteen years ago,
or rather, the answer I should have come up with fifteen
years ago. The question I was asked was how to build the
context-switching part of a Forth engine. At the time, I was
focussed on optimizing the time-wasting stack-shuffling
operations. My theory is that the ideal computer-in-the-sky
will always have its data available. Time spent finding and
getting the data is time wasted! | had come up with a method
of buffering the top three items on the stack and perform-
ing stack shuffling in parallel with other operations. Task
switching, however, had not yet shown up on my radar and
the question brought my pattern-matching processor to a
complete halt.

Fifteen years of mulling over the problem produced this
solution:

1. Internally, the processor contains two identical proces-
sors. (Stop throwing things at me! I am not reinventing
the Pentium!)

Context switching is thus reduced to switching from one
processor to the other, one or two clock ticks. There are, how-
ever, some consequences to this design:

1. The flushing and refilling time of the background
processor is determined by the mix of instructions
running in the foreground processor. In the worst case,
none of the previous state will be saved before the next
context switch. However, this is the same overhead as
on conventional processors.

2. At least one hardware instruction must be a multi-cycle
instruction.

3. Programming such a system will include optimizing
tradeoffs, such as using DIVIDE rather than SHIFT or
throwing in NOOP instructions to allow the background
processor time to flush and refill. A small, tightly
optimized process could actually degrade performance
by interfering with background context switching!

Pattern-matching computers, such as the human brain,
are orders of magnitude slower than digital computers at se-
quential processing. Given enough time, however, they can
come up with solutions that, like my toilet’s current mode of
operating, are elegantly just good enough.

2. While the foreground
processor is running, the
background processor is
suppressed, except
during excessively long
instructions, such as
DIVIDE. During such
instructions, the back-
ground processor flushes
the prior process and
loads the next process.

3. If a context switch
happens before the
background processor
has completed loading
the next process, the
loading of the next
process will proceed at
full speed, followed by
running the next process.

Martin Schaaf, M.S.* mas@jps.net
Alameda, California

Forth Dimensions XX.3

Arrows show the multiple data paths necessary to read, write, and shuffle
the top three stack items.These are going to be five port RAM!

Martin Schaafis a licensed therapist, the'wsbmaster of the Bay Area
Association of Disabled Sailors (http.//www.jps.net/personality/
baads/baads.html) and the slave of a 9 1/2 pound calico cat.

1

Problem statement

I am building a profiling temperature controller for a small
oven that is used for enameling and the preparation of in-
vestment casting molds. One of the necessary details is a way
to read a thermocouple that is to indicate temperature in
degrees F and be suitable for use in a control loop. Thermo-
couples are only slightly nonlinear. Nevertheless, a simple
way to linearize them also works well with functions that
have much greater nonlinearity, and I present it here.

Function approximation is often done by expanding a
polynomial. The polynomial can require many terms, even if
the function is only modestly nonlinear, and determining
the best coefficients can be time consuming. (Thermocouple
polynomials are typically ninth order.) Evaluating the poly-
nomial at run time may take too long, especially on the small,
slow processors used in many embedded systems. For these
systems, a good routine will execute in few cycles using fixed-
point arithmetic, and will have adequate accuracy and reso-
lution for the job at hand. It may be important that the reso-
lution be greater than the accuracy. Control systems usually
need to differentiate the approximated result, and smooth
differentiation requires high resolution.

Polynomial approximations require more terms as the
range of the function increases. The technique described di-
vides the function into segments small enough that each seg-
ment is adequately characterized by a parabola. For each seg-
ment, we must calculate ax? + bx + c. The programmer’s task
is to determine the proper form of x, and the values of a and
b. Errors can be minimized by proper choice of the end points
of the segments and the internal value at which the error
becomes zero. The method I use here is devoid of subtlety; I
simply use some of the leading bits— in this case, three—to
define the segment, and construe the rest as a fraction 0 < f<
1. I make the end points exact, and force the error to zero
also at the midpoint of the segment. With such a “tame” curve
as a thermocouple’s, more sophistication gives no better re-
sults, not even for continuity of slope. To achieve smooth
control in the intended application, I want to read to the
nearest degree F. I therefore calculate temperature times four.

Design method
My measurements come from a 12-bit converter, making

the gain of the converter system, and represents 2250 de-
grees F. After dividing to identify one of eight segments, the
remainder is up to 511. The variable x now takes the form
{remainder/512], and c is evidently the temperature of the
beginning of the segment. It is fairly easy to see whata and b
must be. The temperature at the end of the segmentisa + b +
¢, and the middle temperature is a/4 + b/2 + c. The comput-

Jerry Avins * Kendall Park, New Jersey
jya@ieee.org

12

the full range 4096 counts. This corresponds to 50 mv., given -

Linearizing a Thermocouple
with Two-Step Interpolation

ing equation is x(ax + b) + ¢, and the multiplications by x
require normalizing divisions. Raw thermocouple data are in
tables with one degree increments that give the signal to the
nearest microvolt. I use a spreadsheet to interpolate the tem-
perature values from the table and to calculate the coefficients.
They are then used in a Forth table.

Tables One and Two are examples of the work. The first
column is the count from the converter. The second shows
the corresponding millivolts. The next three columns are read
from the table and entered by hand; highest temperature not
exceeding the millivolt column, millivolts at that tempera-
ture, and millivolts one degree higher. The next columns are
the interpolated temperature, four times that, rounded to an
integer (eight times for Celsius), and the calculated coeffi-
cients. (The column marked “4T (c)” shows temperatures at
the end and midpoint of segments. These are all needed for
subsequent calculations, but only the endpoint values are
coefficients.) Working code is also shown.

implementation details

Since the error is forced to zero (within the accuracy of the
coefficients) at the ends and at the middle of each segment,
the obvious places to look for errors are the one- and three-
quarter points. | have found no error exceeding © degree, the
best that could be expected. Since it is unlikely that any given
thermocouple will give a reading closer than two degrees of
the reference value, the approximation is clearly better than
necessary. It might seem that four segments would be adequate.
There is good reason to retain eight, and little incentive to
reduce the number. (Naturally, it is desirable to make the num-
ber of segments a power of two.) The computation time would
be the same in either case, and only 12 cells would be saved.
However, the effect on the computation would be drastic. The
maximum x (before normalization) would double, b would
double, and a would quadruple. It would not then be possible
to control round-off. Notice the rounding step in the second
line of interpolate, adding 256 to the product: 2@ ROT *
256 + 512 / +.That keeps the error from being one-sided
over the range. In order to do that, * / cannot be used, so the
multiplication must be kept in bounds. With only four seg-
ments, that couldn’t be done in single precision. The net re-
sult would be going from unnecessarily good to unacceptably
poor. Without additional tricks, there is nothing in between.
Such tricks aren’t warranted here.

We could get by with four segments if the precision were
limited to one degree; fine for display and adequate for pro-
portional control, but skimpy for the derivative. However,
the raw converter data could be used for that. The sensitivity
of the thermocouple varies between 20 and 24 microvolts
(1.6 to 2 counts) per degree over the range, a variation of +10

Theauthorheld positions at RCA Laboratories’David Sarnoff Research
Center, New Brunswick Scientific, and others before retiring in 1987.

Forth Dimensions XX.3

percent. In some cases, the gain
variation in the derivative

Table One. Fahrenheit coefficient calculation

might actually be less objec- Count Millivolts T lower mV lower mV upper T 4T (c) a b
tionable than the inevitable ===~~~ 00T T
staircasing of the linearized : . . -
value Clefﬂy we can’t read to 256 3.125 169 3.104 3.127 169.91 680
DR AT G0 510 6.250 307 6.249 6.271 307.05 1228 -26 1137
® degree with a 12-bit converter. ;44 9.375 447 9.363 9.385 447.55 1790
What we can do is, given a 1024 12.500 584 12.484 12.505 584.76 2339 -14 1083
count, report accurately the 1280 15.625 719 15.622 15.646 719.13 2877
temperature that would pro- 1536 18.750 852 18.749 18.772 852.04 3408 -2 1059
duce it. Table Two shows the 1792 21.875 984 21.872 21.895 984.13 3937
(unimplemented) calculated 2088 23-000 18 ZE.000 ZR-000 10iCios 40ee
coefficients to return 8x Celsius = 5 31.250 1383 31.237 31.260 1383.57 5534 20 1086
temperature directly. Thaveno 55,6 35375 1520 34.366 34.389 1520.39 6082
reason to believe that its per- 3977 37.500 1659 34.480 37.502 1660.00 6640 26 1125
formance would be inferior. 3328 40.625 1802 40.619 40.640 1802.29 7209

A few variations make it 3584 43.750 1947 43.734 43.756 1947.73 7791 36 1174
possible to use this two-step in- 3840 46.875 2096 46.861 46.881 2096.70 8387
terpolation method with more 4096 50.000 2250 49.996 50.016 2250.20 9001

difficult functions. Increasing
the number of segments is the
most obvious. There is much
less to be gained by moving the
end points off the true curve

Count Millivolts

than with segmented (piece- 25(6) gzcl)gg 72
wise) linear interpolation, but 32 6.250 152
moving the internal point of 768 9.375 230
no error from the midpoint to- 1024 12.500 307
ward a region of greater curva- 1280 15.625 381
ture can sometimes halve the 1536 18.750 455
maximum error in the seg- %Z)zg ‘;1 -875 528

. 5.000 603
ment. That complicates the 53454 53 125 676
computation of thea'sand b’s, ;560 31.250 750
but not inordinately. The end- 2816 34.375 826
point remains a + b + ¢, butthe 3072 37.500 904
internal point of no error be- 3328 40.625 983
comes a/n? + b/n + ¢, in which ggig 32-;?}2 ﬁ’gf‘l
n is the point in the segment 2096 50.000 1232

where the error is to be re-
moved, expressed as a fraction
of the segment size. Segmented third-order interpolation
would probably handle the most difficult cases encountered
in practice.

Common practice might place interpolate as a DOES>
in fahrenheit. Separating them allows more than one table
to use the same code, provided that the segment sizes are the
same. There are two reasons why interpolate does not sepa-
rate the argument into index and remainder: the address of
the table is already on the stack when it begins, complicating
the stack, and there may be a need to adjust the index before
using it for tables which do not start from zero.

Another example

The rough-and-ready sine/cosine generator shown in List-
ing Two, with the calculations in Table Three, is another ex-
ample of what this interpolation method can do. It has
roughly slide-rule accuracy, enough for many purposes. As
written, the routines work for angles of any size, positive or
negative. In the application described, this generality is un-
necessary. It is merely a side effect of the 8181 AND needed
for cosine to work, and of the cyclic nature of the function.

[have a two-phase incremental rotation encoder with 2048

T lower mV

Table Two. Celsius coefficient calculation

lower mV upper T 8T (¢) a b
0.000 0.050 0.00 0 -8 1230
3.100 3.141 76.61 613
6.218 6.258 152.80 1222 -32 1266
9.341 9.381 230.85 1847

12.498 12.539 307.05 2456 -~14 1203
15.594 15.636 381.74 3054
18.725 18.768 455.58 3645 14 1167
21.834 21.876 528.98 4232
24.987 25.029 603.31 4826 30 1151
28.12 28.162 676.12 5409
31.214 31.256 750.86 6007 34 1198
34.339 34.380 826.88 6615
34.484 37.524 904.99 7240 36 1238
40.605 40.645 983.50 7868
43.739 43.777 1064.29 8514 38 1305
46.873 46.910 1147.05 9176
49.998 50.024 1232.08 9857

pulses per turn on each phase. Such encoders can produce er-
rors if they move (or vibrate) around a single transition, and
my (patented) circuit to prevent that automatically provides
double or quadruple resolution. It is not magic: the four states
of the two phases already contain the extra information. This
is not the place for hardware discussion, but I will be happy to
respond privately to any who want to know how to do this
with two XOR gates in front of the a counter, or with software.

Some day, this encoder may be used in a robot arm, where
trigonometry would be needed to calculate the hand posi-
tion. It will be convenient to get sines and cosines directly,
rather than to determine the quadrant as a preliminary. I
therefore generate the values over a full turn, with the count
of 8192 representing 360 degrees. The values returned are 512
times actual, allowing nine bits of precision, about three deci-
mal digits; that is as much as can be had without modifying
interpolate. interpolate also dictates segments of 512
counts spanning 22.5 degrees, so that one turn requires six-
teen of them.

The computed table entries make the error zero at the cen-
ter of the segment, and no significant improvement seems
possible, at least as far as I have investigated. The “corrected”

Forth Dimensions XX.3

13

L. . . . Table Three. Sinecoefficient calculation
table entries in the listing slightly increase the average error
over the entire segment, but provide better continuity of slope Degrees Count Sine (c) a b
atthepeaks. e
0.00 0 0 -8 204
11.25 256 100
22.50 512 196 -20 186
Listing One 33.75 768 284
45.00 1024 362 -34 145
interpolate (rem index adr -- value) 56.25 1280 426
SWAP 3 cells * + 2DUP (rem adr rem adr) 67.50 1536 473 -38 77
2@ ROT * 256 + 512 / + (rem adr partial) 78.75 1792 502
ROT 512 */ (adr offset) 90.00 2048 512 -38 -1
SWAP 2 cells + @ + ; { n*temperature) 101.25 2304 502
112.50 2560 473 -34 =77
CREATE fahrenheit (-- adr) -8 , 1108 , 128 , 123.75 2816 426
-26 , 1137 , 1228 , 135.00 3072 362 -20 -146
(4 times actual temperature) -14 , 1083 , 2339 , 146.25 3328 284
-2 , 1059 , 3408 , 157.50 3584 196 -8 -188
14 , 1055 , 4465 , 168.75 3840 100
20 , 1086 , 5534 , 180.00 4096 0 8 -204
26 , 1125 , 6640 , 191.25 4352 -100
36 , 1174 , 7791 , 202.50 4608 -196 20 -186
213.75 4864 -284
: >temp (n -- 4*temperature) 225.00 5120 -362 34 -145
512 /MOD DUP 0 8 WITHIN 236.25 5376 -426
IF fahrenheit interpolate 247.50 5632 -473 38 =71
ELSE ABORT" Out of range." 258.75 5888 -502
\Real code will shut down. 270.00 6144 -512 38 1
THEN ; 281.25 6400 -502
292.50 6656 -473 34 77
\ Words for testing: 303.75 6912 -426
315.00 7168 -362 20 146
: mv 4096 25 */ 1+ 2/ ; 326.25 7424 -284
337.50 7680 -196 8 188
¢ >temp 4 /mod 1 .R ASCII EMIT 25 * . ; 348.75 7936 -100
360.00 8192 0
tmv c;
Listing Two
CREATE sine-table (-- adr)
-8, 204 , 0, Summary
-20 , 186 , 196 , This is a useful (but not earthshaking) way to produce arbi-
-34 , 145 , 362 , | trary functions by segmented second-order interpolation. The
(Corrected segment) =37, 78 , 473 , | accuracy is modest, but enough for many applications, and
\ Computed segment -38 , e, 473 , | can approach all that can be expected from integer calcula-
\ (Corr eCtgd segment) :gg ’ g ’ gig s | tion. Computation time is much less than for ordinary poly-
Computed segment 314’ -77 ' 273 ' | nomial expansions of the same accuracy (which usually need
-20 T 146 ! 362 . | many more terms), especially on processors without cell-wide
14 7 14 . . :
-8, -188 , 196 , | hardware multipliers. The examples shown are for 16- bit sys-
8, -204, 0 , | tems. Of course, 32-bit systems can directly extend the method
20 , -186 , -196 , | to much higher precision, but they need more segments to
34 , -145, -362 , | attain it. I have shown that even with 16 bits, the method
\ ((C:°r r eigzd seg‘;‘e’t‘ t) g; ’ ';?’ ' ‘27]3 + | provides as much accuracy as is useful for thermometry, and
ompu segmen ' - P A : it
(Corrected segment) 38 | 1. -s12 | accurate enough trigonometry for most control applications.
\ Computed segment §2 . 72 . _Z% " | Acknowledgments:sorry!
20 , 146 , -362 , The idea of making interpolate a separate word came
8 , 188 , -196 , | fromreading Julian V. Noble’s recent “Finite State Machines in
Forth” (Forth Dimensions XX.2). I invented the rest about 15
sin (n -- 512*sine) years ago out of necessity, for use on a 12 MHz 8086 that would
gigl /ﬁgg not otherwise have been fast enough, despite its built-in as-
sine-table interpolate ; sen}bly-cc?ded polyno_rnlal evaluator. I negd to use it again, and
polished it out of pride of craftsmanship. It has likely been
cos (n -- 512*cosine) 2048 + sin ; done many times by many others, but I don’t know who or
when. Priority is hereby ceded to all who wish to claim it.
14 Forth Dimensions XX.3

Stacks 1

A crossword by 2
Neal Bridges * nbridges@interlog.com
www.interlog.com/~nbridges/

Across

3. (X1 X2 X3 x4 -- X3 x4 x1 x2)

4. ((x --)

5. (x1 x2 --) 4

7. (x1 x2 —-- x2 x1 x2)

8. (x1 x2 -- x1 x2 x1)
Down
1 (x1 x2 -- x2)

3 6 2. (x1 x2 -- x2 x1)
3. (x1 x2 -- x1 x2 x1 x2)
4 (x =— X X) 5. (x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2)
6 (X1 x2 x3 -- x2 x3 x1)
7
8

Support for older systems
Hands-on hardware and software
Computing on the Small Scale
Since 1983

Subscriptions
1 year $24 - 2 years $44
All Back Issues available.

TCJ

The Computer Journal
P.O. Box 3900
Citrus Heights, CA 95611-3900
800-424-8825 / 916-722-4970
Fax: 916-722-7480
BBS: 916-722-5799

Forth Dimensions XX.3

PRESIDENT'SLETTER

Growth and Changes

It has been some time since your president has written to
you, and a lot has happened, so now is a good time to update
you on where things are and where they are going.

I think 1998 ended on a downside for pretty much every-
body. This includes FIG. We started the year with a steadily
growing membership, starting with just under 900 members.
However, at the end of the year the membership dropped
substantially and is now about 700. In order to improve this
situation, the FIG Board of Directors has decided upon sev-
eral changes that we hope will help. But remember, FIG is a
member-driven organization; if you want FIG to go in a cer-
tain direction, please tell us and we will do what we can.

First, the Board itself has changed. Jeff Fox and Nick
Solntseff are no longer on the Board, and new member Randy
Leberknight has been added. This new Board membership,
and the long interval since the last Board elections, has
prompted the current Board to call for new elections. The
Forth Interest Group will hold elections for a new Board of
Directors, consisting of nine members, in June 1999. The
November/December issue of Forth Dimensions will coritain
the official announcement of the elections and the date. The
Board has appointed a nominating committee to select nine
nominees. In addition to the nominees that the committee
submits, you, the members of FIG, can also nominate some-
one. The requirements are that the candidate be a current

member of FIG and obtain 25 signatures of other FIG mem-
bers in a nominating petition which must be delivered to the
FIG office 90 days before the election.

We have also decided to add a new membership category,
the e-member. An e-member will have all the benefits of a
regular member, except they do not receive a mailed copy of
Forth Dimensions. Instead, an e-member obtains an electronic
copy of Forth Dimensions (in PDF format) through the web
site. We are working out the logistical details of this now,
look for an announcement in FD and on the web site for
when it becomes available. '

We keep enhancing the web and FTP sites, with lots of
help from you. We get an average of 700 accesses (not just
hits) per day from all over the world. The demand for Forth
and information about Forth continues to be quite vigorous.

Interest in Forth will contribute to interest in FIG. Help-
ing keep Forth visible is vital. We desperately need authors.
Not only do we need authors for Forth Dimensions, but also
for other journals (Dr. Dobbs has had a few Forth articles in
the last couple of years, and Embedded Systems Journal has
given Forth the occasional nod). Even more important, we
need Forth books! 1 can go to my local Borders bookstore and
pick up more books on Rexx than on Forth! This needs to
change. 1 am working on a couple of writing projects and
would be happy to hear of what others are doing. When you
are able to get Forth noticed, make sure it's a positive experi-
ence. Be professional about it, use a consistent coding style,
provide comments that are useful enough for someone else
(1) to maintain the code, and document both the design and
the implementation.

The Forth Interest Group needs your help in moving for-
ward. Please remember that the FIG office is run by contrib-
uted and volunteer labor—there is no paid staff. This means
that sometimes not everything that needs to be done can
actually get done. Consequently, a major contribution that
you can make to FIG is to volunteer to help out.

Skip Carter » Monterey, California

skip@taygeta.com

Skip-Carter, a scientific and software consultant,and leader of the
Forth ScientificLibrary project, maintains www.taygeta.com.Heisalso
the President of the Forth interest Group:

Forth Dimensions XX.3

ANS Appendix to

Finite State Machines in

Editor’s note: Following is ANS compatible code to accompany the
author’s paper which was published in our preceding issue. A cor-
rection to the code that appeared in the original paper appears on
the following page.

\ code to create state machines from tabular representations

\ If needed, : PERFORM @ EXECUTE ;

I v, \ add two xt's to data field
: wide o \ aesthetic, initial state = 0
fsm: (width state --) \ define fsm
CREATE , (state) , (width in double-cells) ;
; £sm DOES> ({ x col# adr -- x')
DUP >R 2@ (x col# width state)
x4 (x col#+width*state)
2* 2 + CELLS (X relative offset)
RE + (x adr] action])
DUP >R (x adr action])
PERFORM (x')
R> CELL+ (x' adr update])}
PERFORM (X' state')
rR> ! ; (x') \ update state

\ set fsm's state, as in: 0 >state fsm-name

: >state POSTPONE defines ; IMMEDIATE (state " fsm-name" --)
state: ("fsm-name" -- state) \ get fsm's state
'‘dfa \ get dfa
POSTPONE LITERAL POSTPONE @ ; IMMEDIATE
0 CONSTANT >0 3 CONSTANT >3 6 CONSTANT >6 \ these indicate state
1 CONSTANT >1 4 CONSTANT >4 7 CONSTANT >7 \ transitions in tabular
2 CONSTANT >2 5 CONSTANT >5 \ representations
\

end fsm code

The automatic conversion tables are useful but not neces-
sary for fast conversion of input to column numbers (in the
state table).

\ Automatic conversion tables
table: { #bytes --)
CREATE HERE OVER ALLOT SWAP 0 FILL.
DOES> + C@ ;

install (col# adr char.n char.1 --) \ fast fill
SWAP 1+ SWAP DO 2DUP I + C! ©LOOP 2DROP ;
\ end automatic conversion tables

Julian V. Noble « Charlottesville, Virginia Julian Noble isamong thosewh«ﬁisplay«emgitimﬁn Forth and who

also can writelucidly about it. His work'may be enjoyed online (e.g.,

jyn@fermi.clas.virginia.edu compiangforth) and, we are pleased to note, in these pages.

Forth Dimensions XX.3 17

Errata

Finite State Machines in Forth

I am grateful to Jerry [Avins] for pointing out a la-
cuna in the FSM code that appeared in FD. I hasten to
add the same line is missing from the code that appeared
in JFAR (http://www.jfar.org/article001.html).

Here is how the word ; FsM should actually have
appeared, and my heartfelt apologies to anyone who
was inconvenienced by the error (except Jerry Avins,
who owes me a beer for providing him with a wonder-
ful learning experience .

: ;FSM DOES>
DUP >R 2@
* 4
2* 2 + CELLS

col# adr —)

o~~~ o~

\ the following line was missing

REG + { — x offset-to-action)

\ I sure am sorry.

DUP >R (— x offset-to-action)
PERFORM (—x)

R> CELL+ { — x* offset-to-update)
PERFORM (— x' state’)

R> ! ; (¥) \ update state

I have separated the DOES> portion from the CREATE
section of the FSM compiler:

¢ FSM: (width 0 —) CREATE ' ;

...following a suggestion from Morgenstern in an old FD. (I
think that is the right reference.) It is not necessary to do
this, and the code Jerry sent me keeps this in the FSM: defini-
tion. De gustibus non disputandum est.

—Julian V. Noble ¢ jvn@virginia.edu

— X col# width state)
— X col#+width*state)
— x relative offset)

18

Forth Dimensions XX.3

FORTH INTEREST GROUP
MAIL ORDER FOR N

HOW TO ORDER: Compiete form on back page and send with payment to the Forth Interest Group. All items
have one price. Enter price on order form and calculate shipping & handling based on location and total.

FORML CONFERENCE PROCEEDINGS

FORML (Forth Modification Laboratory) is an educational forum for
sharing and discussing new or unproven proposals intended to benefit
Forth, and is for discussion of technical aspects of applications in Forth.

Proceedings are a compilation of the papers and abstracts presented at

FORTH DIMENSIONS BACK VOLUMES

A volume consists of the six issues from the volume year (May-April).

Volume 1 Forth Dimensions (1979-80) 101 - $35

Introduction to FIG, threaded code, TO variables, fig-Forth.

Volume 6 Forth Dimensions (1984-85) 106 - $35
Interactive editors, anonymous variables, list handling, integer
solutions, control structures, debugging techniques,
recursion, semaphores, simple I/O words, Quicksort, high-

level packet communications, China FORML.

Volume 7 Forth Dimensions {(1985-86) 107 - $35
Generic sort, Forth spreadsheet, control structures, pseudo-
interrupts, number editing, Atart Forth, pretty printing, code
modules, universal stack word, polynomial evaluation, F83
strings.

Volume 8 Forth Dimensions (1986~-87) 108 - $35

Interrupt-driven serial input, database functions, Tl 99/4A,
XMODEM, on-line documentation, dual CFAs, random
numbers, arrays, file query, Batcher's sort, screenless Forth,
classesin Forth, Bresenham line-drawing algorithm, unsigned
division, DOS file I/0.

Volume 8 Forth Dimensions (1987-88) 109 - $35

Fractal landscapes, stack error checking, perpetual date
routines, headless compiler, execution security, ANS-Forth
meeting, computer-aided instruction, local variables,
trag(s)%endental functions, education, relocatable Forth for

Volume 10 Forth Dimensions (1988-89) 110 - $35

dBase file access, string handlin?, local variables, data
structures, object-oriented Forth, linear automata, stand-
alone applications, 8250 drivers, serial data compression.

Volume 11 Forth Dimensions (1989-90) 111 -$35

Local variables, graphic filling algorithms, 80286 extended
memory, expert systems, quaternion rotation calculation,
multiprocessor Forth, double-entry bookkeeping, binary
table search, phase-angle differential analyzer, sort contest.

Volume 12 Forth Dimensions {1990-91) 112-$35

Floored division, stack variables, embedded control, Atari
Forth, optimizing compiler, dynamic memory allocation,
smart RAM, extended-ﬁrecision math, interrupt handling,
neural nets, Soviet Forth, arrays, metacompilation.

Volume 13 Forth Dimensions (1991-92) 113 - $35
Volume 14 Forth Dimensions (1992-93) 114 -$35
Volume 15 Forth Dimensions (1993-94) 115 -835
Volume 16 Forth Dimensions (1994-95) 116 - $35
Volume 17 Forth Dimensions (1995-96) 117 -$35
Volume 18 Forth Dimensions (1996-97) 118 - $35

the annual conference. FORML is part of the Forth Interest Group.

1981 FORML PROCEEDINGS . 311-845
CODE-less Forth machine, quadruple-precision arithmetic,
overlays, executable vocabulary stack, data typing in Forth,
vectored datastructures, using Forthin a classroom, pyramid
files, BASIC, LOGO, automatic cueing language for
multimedia, NEXOS - a ROM-based multitasking operating
system. 655 pp.

1982 FORML PROCEEDINGS 312-$30
Rockwell Forth processor, virtual execution, 32-bit Forth,
ONLY for vocabularies, non-IMMEDIATE looping words,
number-input wordset, /O vectoring, recursive data
structures, programmable-logic compiler. 295 pp.

1983 FORML PROCEEDINGS 313-8$30
Non-Von Neuman machines, Forth instruction set, Chinese
Forth, F83, compiler & interpreter co-routines, lo? &exponential
function, rational arithmetic, transcendental functions in
variable-precision Forth, portable file-system interface, Forth
coding conventions, expert systems. 352 pp.

1984 FORML PROCEEDINGS o 314 -$30
Forthexpert systems, consequent-reasoninginference engine,
Zen floating point, portable graphics wordset, 32-bit Forth,
HP7 1B Forth, NEON - object-oriented programming, decom-
piler design, arrays and stack variables. 378 pp.

1986 FORML PROCEEDINGS 316 - $30
Threading techniques, Prolog, VLSI Forth microprocessor,
natural-language interface, expert system shell, inference
engine, multiple-inheritance system, automatic programming
environment. 323 pp.

1988 FORML PROCEEDINGS) 318 -$40
Includes 1988 Australian FORML. Human interfaces, simple
robotics kernel, MODUL Forth, parallel processing,
programmable controllers, Prolog, simulations, language
topics, hardware, Wil's workings & Ting’s philosophy, Forth
hardware applications, ANS Forth session, future of Forth in
Al applications. 370 pp.

1989 FORML PROCEEDINGS 319 - $40
Includes papers from '89 euroFORML. Pascal to Forth,
extensible optimizer for compiling, 3D measurement with
object-oriented Forth, CRC polynomials, F-PC, Harris C
cross-compiler, modular approach to robotic control, RTX
recompiler tor on-line maintenance, modules, trainable neural
nets. 433 pp.

1992 FORML PROCEEDINGS 322 -$40

- Object-oriented Forth based on classes rather than
prototypes, color vision sizing processor, virtual file systems,
transparent target development, signal-processing pattern
classification, optimization in low-level Forth, local variables,
embedded fForth, auto dlsplia:y of d'gital images, graphics
package for F-PC, B-tree in Forth 200 pp.

1993 FORML PROCEEDINGS 323 - $45
Includes papers from '92 euroForth and '93 euroForth
Conferences. Forthin 32-bit protected mode, HDTV format
converter, graphing functions, MIPS eForth, umbilical
compilation, portable Forth engine, formal specifications of
Forth, writing better Forth, Holon — a new way of Forth,
FOSM - a Forth string matcher, Logo in Forth, programming
productivity. 509 pp.

1994-1995 FORML PROCEEDINGS (in one volume!) 325 - $50

Fast service by fax: 408.373.2845

BOOKS ABOUT FORTH

ALL ABOUT FORTH, 3rd ed., June 1990, Glen B. Haydon 201 - $90

Annotated glossary of most Forth waords in common use,
including Forth-79, Forth-83, F-PC, MVP-Forth. Implementa-
tion examples in high-level Forth and/or 8086/88 assembler.
Useful commentary given for each entry. 504 pp.

eFORTH IMPLEMENTATION GUIDE, C.H. Ting 215 - $25

eForth is a Forth model designed to be portable to many of
the newer, more powerful processors available now and
becoming available in the near future. 54 pp. (w/disk)

Embedded Controller FORTH, 8051, William H. Payne 216 - $76

Describes the implementation of an 8051 version of Forth.
More than half of this book is composed of source listings
(w/disks C050) 511 pp.

F83 SOURCE, Henry Laxen & Michael Perry 217 - $20

A complete listing of F83, including source and shadow
screens. Includes introduction on getting started. 208 pp.

F-PC USERS MANUAL (2nd ed., V3.5) 350 - $20
Users manual to the public-domain Forth system optimized

for IBM PC/XT/AT computers. A fat, fast system with many
tools. 743 pp.

F-PC TECHNICAL REFERENCE MANUAL 351 - $30

A must if you need to know F-PC's inner workings. 269 pp.

THE FIRST COURSE, C.H. Ting 223 - $25

This tutorial goal exposes you to the minimum set of Forth
instructions you need to use Forth to solve practical problems
in the shortest possible time. “... This tutorial was developed
to complement The Forth Course which skims too fast on
the elementary Forthinstructions and dives too quickly in the
advanced topics in an u per-level college microcomputer
laboratory ..." A running F-PC Forth system would be very
useful. 44 pp.

THE FORTH COURSE, Richard E. Haskell 225 - $25

This set of 11 lessons is designed to make it easy for you to
leam Forth. The material was developed over several years
of teaching Forth as part of a senior/graduate course in the

design of embedded software computer systems at Oakland
University in Rochester, Michigan. 156 pp. (w/disk)

FORTH NOTEBOOK, Dr. C.H. Ting 232 - $25
Good examples and applications - a great leaming aid.
polyFORTHIs the dialect used, but some conversion advice
Is included. Code is well documented. 286 pp.

FORTH NOTEBOOK II, Dr. C.H. Ting 232a - $25

Collection of research papers on various topics, such as

image processing, parallel processing, and miscellaneous
applications. 237 pp.

“We're Sure You Wanted To Know...”

151 - $4
Anindexof Forth articles, by keyword, fromForth Dimensions
Volumes 1-15 (1978-94).

Forth Dimensions, Article Reference

FORML, Article Reference 152 - $4
An index of Forth articles by keyword, author, and date from
the FORML Conference Proceedings (1980-92).

FORTH PROGRAMMERS HANDBOOK,
Edward K. Conklin and Elizabeth D. Rather

This reference book documents all ANS Forth wordsets
Q_Nith details of more than 250 words), and describes the
orthvirtual machine, implementation strategies, the impact

of multitasking on program design, Forth assemblers, and
coding style recommendations.

260 - $57

INSIDE F-83, Dr. C.H. Ting 235 - $25
Invaluable for those using F-83. 226 pp.
OBJECT-ORIENTED FORTH, Dick Pountain 242 - $37

Implementation of data structures. First book to make
object-oriented programming available to users of even very
small home computers. 778 pp.

STARTING FORTH (2nd ed.) Limited Reprint, Leo Brodie 245a - $50

In this edition of Starting Forth—the most popular and ‘
complete introduction to Forth—syntax has been expanded :

to include the Forth-83 Standard. (The ori?inal printing is
now out of stock, but we are making avallable a special,
limited-edition reprint with all the original content.) 346 pp.

THINKING FORTH, Leo Brodie 255 - $35

Back by popular demand! To program intelligently, you
must first think intelligently, and that's where Thinking Forth
comes in. The bestseliing author of Starting Forth is back
again with the first guide to using Forth for applications. This
book captures the philosophy of the language, showing
users how to write more readable, better maintainable
apf)llcations. Both beginning and experienced programmers
will gain a better understanding and mastery of {opics like
Forth style and conventions, decomposition, factoring,
handling data, simplifying control structures. And, to give
ou an idea of how these concepts can be applied, Thinkin,
orth contains revealing interviews with users and witl
Forth's creator Charles H. Moore. Reprint of original, 272pp.

WRITE YOUR OWN PROGRAMMING LANGUAGE USING C++,
Norman Smith 270 - $16

This book is about an application language. More specifically,
it is about how to write your own custom application
language. The book contains the tools necessary to begin
the process and a complete sample language
implementation. (Guess what language!) Includes disk with
complete source. 708 pp.

WRITING FCODE PROGRAMS 252 - $52

This manual is for designers of SBus interface cards and
other devices that use the FCode interface language. It
assumes familiarity with SBus card design requirements
and Forth programming. Discusses SBus development for
OpenBoot 1.0 and 2.0 systems. 414 pp.

LEVELS OF MEMBERSHIP
Your standard membership in the Forth Interest Group brings
Forth Dimensions and participation in FIG's activities—like
members-only sections of our web site, discounts, special
interest groups, and more. But we hope you will consider
joining the growing number of members who choose to show
their increased support of FIG's mission and of Forth itself.

Ask about our special incentives for corporate and library
members, or become an individual benefactor!

Company/Corporate — $125

Library - $125

Benefactor — $125

Standard - $45 (add $15 for non-US delivery)

Forth Interest Group
See contact info on mail-order form, or send e-mail to:
office@forth.org

Fast service by fax: 408.373.2845

DISK LIBRARY

ontributions from the Forth Community

The “Contributions from the Forth Community" disk library contains
author-submitted donations, generally including source, for a variety
of computers & disk formats. Each file is designated by the author as
public domain, shareware, or use with some restrictions. This library
does not contain “For Sale” applications. To submit your own contri-
butions, send them to the FIG Publications Committee.

FLOAT4th.BLK V1.4 Robert L. Smith C001 - $8
Software floating-point for fig-, poly-, 79-Std., 83-Std.
Forths. |EEE short 32-bit, four standard functions,
square root and log.
*kk IBM, 190Kb, F83

Games in Forth C002 - $6
Misc. games, Go, TETRA, Life... Source.
* 1BM, 760Kb
A Forth Spreadsheet, Craig Lindley C003 - $6

This modsl spreadsheet first appeared in Forth
Dimensions V1i/1,2. Thoseissues contain docs & source.
* IBM, 100Kb

Automatic Structure Charts, Kim Harris C004 - $8
Tools for analysis of large Forth programs, first presented
at FORML conference. Full source; docs included in
1985 FORML Proceedings.
*% IBM, 114Kb

A Simple Inference Engine, Martin Tracy CO005 - $8
Based on inference engine in Winston & Hom’s book
on LISP, takes you from pattern variables to complete
unification algorithm, with running commentary on Forth
philosophy & style. Incl. source.

** IBM, 162 Kb

The Math Box, Nathaniel Grossman C006 - $10
Routines by foremost math author in Forth. Extended
double-precisionarithmetic, complete 32-bit fixed-point
math & auto-ranging text. Incl. graphics. Utilities for
rapid polynomial evaluation, continued fractions & Monte
Carlo factorization. Incl. source & docs.

*% [BM, 118 Kb

AstroForth & AstroOKO Demos, |.R. Agumirsian C007 - $6

AstroForthis the 83-Standard Russian version of Forth.
Incl. window interface, full-screen editor, dynamic
assembler & a great demo. AstroOKO, an
astronavigation system in AstroForth, caiculates sky

osition of several objects from different earth positions.

emos only.

* IBM, 700 Kb

Forth List Handler, Martin Tracy C008 - $8
List primitives extend Forth to provide a flexible, high-
speed environment for Al. Incl. ELISA and Winston &
orn’s micro-LISP as examples. Incl. source & docs.
*%x (BM, 170 Kb

8051 Embedded Forth, William Payne C050 - $20
8051 ROMmable Forth operating system. 8086-to-
8051 target compiler. Incl. source, Docs are in the book
Embedded Controller Forth for the 8051 Family. Included
with item #216
*%% IBMHD, 4.3 Mb

68HC11 Collection C060 - $16
Collection of Forths, tools and floating-point routines

*%% IBMHD, 2.5 Mb

F83 V2.01, Mike Perry & Henry Laxen C100 - $20
The newest version, ported to a variety of machines.
Editor, assembler, decompiler, metacompiler. Source
andshadow screens. Manual available separately (items
217 & 235). Base for other F83 applications.
* IBM, 83, 490 Kb

F-PC V3.6 & TCOM 2.5, Tom Zimmer C200 - $30
A fult Forth system with pull-down menus, sequential
files, editor, forward assembler, metacompiler, floatin
point. Complete source and help files. Manual for V3,
available separately (items 350 & 351). Base for other
F-PC a‘%blications.
* IBM HD, 83, 3.5Mb

for the 68HC11 controller. o

F-PC TEACH V3.5, Lessons 0-7 Jack Brown C201 - $8
Forth classroom on disk. First seven lessons on leaming
Forth, from Jack Brown of B.C. Institute of Technology.

* IBMHD, F-PC, 790 Kb

VP-Planner Float for F-PC, V1.01, Jack Brown C202 - $8
Software floating-point engine behind the VP-Planner
spreadsheet. So-git (temporary-real) routines with transcen-
dental functions, number 1/0O support, vectors to support
numeric co-E ocessor overlay & user NAN checking.

*% [BM, F-PC, 350 Kb

F-PC Graphics V4.6, Mark Smiley o ~ €203 -$10
The latest versions of new graphics routines, including CGA,
EGA, and VGA support, with numerous improverments over
earlier versions created or supported by Mark Smiley.
%% [BM HD, F-PC, 605 Kb

PocketForth V6.4, Chris Heilman C300 - $12
Smallest complete Forth for the Mac. Access to all Mac
functions, events, files, graphics, floating énomt, macros,
create standalone applications and DAs. Based on fig &
Starting Forth. Incl, source and manual.

* MAC, 640 Kb, System 7.01 Compatible.

Kevo V0.9b6, Antero Taivalsaari C360 - $10
Complete Forth-like object Forth for the Mac. Object-
Prototype access to allMac functions, files, graphics, floating

int, macros, create standalone applications. Kernel source
included, extensive demo files, manual.
%k %k MAC, 650 Kb, System 7.01 Compatible.

Yerkes Forth V3.67 . C350 - $20
Complete object-oriented Forth for the Mac. Object access
to all Mac functions, files, graphics, floating point, macros,
create standalone applications. Incl. source, tutorial,
assembler & manual.
*% MAC, 2.4Mb, System 7.1 Compatible.

Pygmy V1.4, Frank Sergeant C500 - $20
A lean, fast Forth with full source code. Incl. full-screen
editor, assembler and metacompiler. Up to 15 files open at

atime.
& |1BM, 320 Kb

KForth, Guy Kelly o €600 - $20
A full Forth’system with windows, mouse, drawing and
modem Bpackages. Incl. source & docs.

*k |BM, 83, 2.5 Mb

Mops V2.6, Michael Hore C710 - $20
Close cousin to Yerkes and Neon, Very fast, compiles
subroutine-threaded & native code. Object oriented. Uses
F-P co-processor if present. Full access to Mac toolbox &
system. Supports System 7 (e.g., AppleEvents). Incl.
assembler, manual & source.

*% MAC, 3 Mb, System 7.1 Compatible

BBL & Abundance, Roedy Green) €800 - $30
BBL public-domain, 32-bit Forth with extensive support of
DOS, meticulously optimized for execution speed.
Abundance is a public-domain database language written in
BBL. Incl. source & docs.

*%% IBM HD, 13.8 Mb, hard disk required

Version-Replacement Policy

Return the old version with the FIG labels
and get a new version replacement for 1/2
the current version price.

* - Starting %* - intermediate %% - Advanced

Fast service by fax: 408.373.2845

o E/

MORE ON FORTH ENGINES Volume 18 818 - $20

MuP21 - programming, demos, eForth 174 pp.

Volume 10 (January 1989) 810 - $15 Vv

i ject- olume 19 819 - $20

5}?{%%”2}3&%? %ii?ﬁgﬁﬁ‘g{,';?n”e’;f’gr}f‘f,},e,”ce' object More MuP21 - programming, demos, eForth 135 pp.

820 - $20
Volume 11 (July 1989) 811 - $15 VOIUTAG 20 ' 2(
i I ,32- ore MuP21 — programming, demos, F95, Forth Specific

b%gﬁ%pé%ﬁgt, t&&?éfé?ﬁ%galﬁiﬁt’apé}é\fpéy SC82,32 Language Microprocessor Patent 5,070,451 126 pp.

Volume 12 (April 1990) 812-$15 Volume 21

; \ . . MuP21 Kit; My Troubles with This Darn 82C51; CT100 Lab
ShBoom Chip architecture and instructions, neural Board; Born to Be Free; Laws of Computing; Traffic Controller
computing module NCM3232, pigForth, binary radix sort on and Zen of State Machines; ShBoom MiCroprocessor;
80286, 68010, and RTX2000. 87 pp. Programmable Fieldbus Controlier IX1; Logic Design of a
16-Bit Microprocessor P16 98 pp.

Volume 13 (October 1990 813 -$15
PALs of the RTX2000 Mini-BEE, EBForth, AZForth, RTX-
2101, 8086 eForth, 8051 eForth. 107 pp.

OK-CAD System, MuP20, eForth system words, 386 eForth,
80386 protected mode operation, FRP 1600 - 16-Bit real

time processor. 104 pp. DR. DOBB’S JOURNAL back issues

Volume 14 814 -$15
RTX Pocket-Scope, eForth for muP20, ShBoom, eForth for T-shirt, “May the Forth Be With You” 601 - $18
CP/M & Z80, XMODEM for eForth. 776 pp. {Specify size: Small, Medium, Large, X-Large on order form)
white design on a dark blue shirt or green design on tan shirt.
Volume 15)) ~ 815-8%15
Moore: new CAD system for chip design, a portrait of the BIBLIOGRAPHY OF FORTH REFERENCES 340 - $18
P20; Rible: QS1 Forth processor, QS2, RISCing it all; P20 3rd ed., January 1987)
eForth software simulator/debugger. 94 pp. er 1900 references to Forth articles throughout computer La s
literature. 104 pp. ts
Volume 16 816 -$15

Volume 17 817 - %15 Annual Forth issues, including code for Forth applications.
P21 chip and specifications; Pic17C42; eForth for 68HC 11,
8051, Transputer 128 pp. September 1982, September 1983, Sepember 1984 (3 issues)
425 - $10
For credit card orders or customer service:
DR 3 4 2 Phone Orders 408.37.FORTH
weekdays 408.373.6784
9.00 - 1.30 PST 408.373.2845 (fax)
Non-Post Office
Name deliveries: include g 8
Company special instructions. o andhing
S . Surface Up to $40.00 $7.50
treet voice U.S. & International $40.01 to $80.00 $10.00
City fax $80.01 to $150.00 $15.00
. . Above $150.00 10% of Total
Stat'e/Prov. Zip e-mail international Alr 40% of Total

See $15 + courier costs
FGE AWTHOLT NCTICE

nit Price

Courier Shipments

t

U

The Forth Interest Group (FIG) is a worldwide, non-profit, member-supported organization with over 1,000 members and 10 chapters. Your membership includes a subscription to the bi-monthiy
magazine Forth Dimensions. FIG also offers its members an on-line data base, a large selection of Forth literature and other services. Cost is $45 per year for U.S.A; all other countries $60 per year.
This fee includes $39 for Forth Dimensions. No sales tax, handling fee, or discount on membership.

When you join, your first issue witl arrive in four to six weeks; subsequent issues will be mailed to you every other month as they are published—six issues in all. Your membership entitles youto a 10%
discount on publications and functions of FIG. Dues are not deductible as a charitable contribution for U.S. federal income tax purposes, but may be deductible as a business expense.

{3 CHECK ENCLOSED (payable to: Forth Interest Group) sub-total
O ViSAMasterCard: ber#
Sales tax* on sub-total (California only) ﬂ

Card Number exp. date Shipping and handling (see chart above)

Membership* in the Forth Interest Group

New Renewal
Signature TOTAL
: - » . - - - . »

PAYMENT MUST ACCOMPANY ALL ORDERS

PRICES: All orders must be prepaid. Prices are SHIPPING & HANDLING: SHIPPING TIME:

subject to change without notice. Credit card orders All orders calculate shipping Books in stock are shipped within
will be sent and billed at current prices. Checks must & handling based on order seven days of receipt of the order.
beinU.S. dollars, drawnonal.S. bank. A$10charge dollar value, Special handling SURFACE DELIVERY:

will be added for returned checks. available on request. U.S.: 10 days Costa, Los Angeles San Mateo, San Francisco, San Benito, and

other: 30-60 days Santa Cruz; 7.25%: other counties.

Fast service by fax: 408.373.2845 XX.3

*CALIFORNIA SALES TAX BY COUNTY:

7.75%: Del Norte, Fresno, Imperial, Inyo, Madera, Orange.
Riverside, Sacramento, Santa Clara, Santa Barbara, San Ber-
nardino, San Diego, and San Joaquin; 8.25%: Alameda, Contra

A Forth Switchblade

Always searching, never satisfied, I tend to accumulate tools
and techniques in Forth. Some are invented, some are ported,
and some are outright stolen. One of my current favorites is
ported from my assembly language days. It is called a switch.

A switch performs the function of a case statement. It is
found in most languages and is quite prevalent in C usage.
For instance, a very truncated example from a C program
which handles Windows messages looks like the code in List-
ing One. This is the skeleton of a window message handler
found in most C applications written for Windows 95 or NT.

A typical example of a switch in Forth is the CASE state-
ment. The ANS-Forth-suggested case statement implementa-
tion of the above code C might look like Listing Two. The
execution-time behavior of CASE and OF can be optimized
until your system implementor is exhausted and performance
will be similar to that of the C version.

the messages may not be defined until much later. To use the
CASE statement would require either a mass of DEFERed defi-
nitions, another mechanism to allow the OF-branches to be
added later, or a convolution of the factoring such that the
message handler is at the end of the program, after all the pro-
cedures are defined.

The SwiftForth switch structure fulfills all of these require-
ments.

Implementation

A switch is made up of a head and a list of clauses, each
with an associated numeric key. The head consists of the name
by which the list is invoked and the default behavior if no
clause is matched; the list of clauses defines what will hap-
pen when it is called with each possible key value.

The head of the switch structure is built by : SWITCH and

Given this, why would
anyone want to implement
a new switch construct in
Forth? For SwiftForth, the |
reason was the need for ex- switch (wMsg)
tensibility—to be able to de- (
fine the base structure and

Listing One

LONG APIENTRY PolyProc (HWND hWnd,

UINT wMsg, WPARAM wParam, LONG lParam)

to extend it at will. The tra-
ditional CASE statement
does not lend itself to being
extended after it is defined.

Motivation

While building this Win-
dows Forth, one of the big-
gest problems was needing
to define the callback behav-
iors which had to respond to
Windows messages. This is
fine if, when you write the
message handler, you know
all the messages you want to
deal with. However, Forth is
an interactive environment
and [wanted to be able to
extend the message handler
at any time, either in source
code while compiling the
system or from the keyboard
while testing.

Also, the message handler
needs to be defined early in
a Windows program, while
the behaviors associated with

Rick VanNorman * Manhattan Beach, California

rvn@forth.com

Forth Dimensions XX.3

case WM_CREATE:
PolyCreateProc (hWnd) ;
break;

case WM _MOVE:
PolyRedraw (hWnd) ;
break:

case WM _TIMER:
PolyDrawBez (hWnd) ;
break:;

default:
return (DefMDIChildProc (hWnd, wMsg, wParam, 1Param)) ;
}

return{0l);

}

Listing Two
POLYPROC (hwnd msgwparam lparam -- res)
LOCALS| lparam wparam msg hwnd |
msg CASE N
WM_CREATE OF hwnd PolyCreateProc ENDOF
WM_MOVE OF hwnd PolyRedraw ENDOF
WM _TIMER OF hwnd PolyDrawBez ENDOF

DUP OF
ENDCASE ;

hwnd msg wparam lparam DefMdiChildProc ENDOF

Rick VanNarman; a 'Forth gypsy for almost 20 yeats, finally found a
home at FORTH, Inc.

|

19

looks like:
} link | defaultxt |

The link of this structure points to the last clause associated
with the switch. The switch clauses are built by <SWITCH and
look like:

| link | key | matchxt |

where each link points to a previous link and the last link is
zero.

A switch is executed by passing a value to it, and the list
of clauses is traversed looking for a key that matches the value.
If a match is found, the value is discarded and the associated
xt is executed. If no match is found, the value is left on the
stack and the switch'’s default xt is executed. This permits the
chaining of switches, implementing a kind of inheritance of
behaviors. SWITCHER traverses the list of clauses and executes
appropriately:

SWITCHER (i*x n head -- j*x)
DUP CELL+ @ >R (save default xt)
BEGIN

LINK@ ?DUP WHILE (n a)
2DUP CELL+ @ = IF (match)
NIP CELL+ CELL+ @ EXECUTE
R> DROP EXIT
THEN
REPEAT R> EXECUTE ;

A simple example might be:

: ONE (--) ." One" ;
™WO (--) O Two"
THREE (--) ." Three"
MANY (n --) . ." more" ;

' MANY :SWITCH NUMBERS
\ MANY is the default for switch NUMBERS

' NUMBERS >BODY
' ONE 1 <SWITCH
' TWO 2 <SWITCH
' THREE 3 <SWITCH
DROP

The list can be extended at any time by repeating the same
pattern:

FOUR ." Four"
FIVE M Five"

' NUMBERS >BODY
' FIVE 5 <SWITCH
' FOUR 4 <SWITCH
DROP

Named Forth words are not required:

' NUMBERS >BODY

:NONAME ." Six"
:NONAME ." Seven" ;
DROP

6 <SWITCH
7 <SWITCH

A previously defined switch may be overwritten, since the
list is searched from newest entry to oldest:

' NUMBERS >BODY
:NONAME ." Uno"
DROP

1 <SWITCH

Enhancements
Obvious enhancements to the switch component include:

¢ Error checking during list building. In SwiftForth, a flag is
left on the stack under the switch’s address by [SWITCH
which is used by RUNS and RUN: to make sure that the
switch clause is appended to an actual switch.

¢ An optimized version of switch execution procedure.
SWITCHER is presented here in high-level code for
portability; any serious implementation should optimize
it in native code.

¢ Syntactic sugar—automatic parsing for defined words and
:NONAME definitions. The SwiftForth equivalent of the
above toy application would be:

[SWITCH NUMBERS MANY (n —--)
1 RUNS ONE
2 RUNS TWO
3 RUNS THREE

SWITCH]

[+SWITCH NUMBERS
5 RUNS FIVE
4 RUNS FOUR

6 RUN: ." Six" ;

7 RUN: ." Seven" ;

1 RUNS ." Uno" ;
SWITCH]

This “sugar” allows very concise and simple extension of
existing switch statements without a tremendous textual
overhead.

[SWITCH defines a switch with a default behavior.

[+SWITCH extends the existing switch.

RUNS builds a switch item with a predefined action. This is
most useful where a single action will be used for multiple
items or where the action is complex.

RUN: builds a switch item with a :NONAME action. This is
useful for simple, single-use actions.

¢ Housekeeping, which in SwiftForth extends the MARKER
concept to allow the truncation of switch structures by the
user. This is done in SwiftForth by keeping a list of all
switches defined, and extending the behavior of MARKER to
include pruning all items defined after a marker is declared.

¢ More data types for the match response than a simple xt.
One of my favorites is to implement a switch which
returns the address of a string, which makes a very nice
string table.

In Practice
In SwiftForth, all Windows message handling is done via
switches. This means the user interface can be built up in

20

Forth Dimensions XX.3

parts and extended at will. For instance,

MARKER FOO
Z0T (—-)
HWND 2" Caught you!" 2" SwiftForth" MB_OK

MessageBox DROP ;

[+SWITCH MESSAGES
WM_LBUTTONDOWN RUNS ZOT
SWITCH]

extends the main SwiftForth Windows message handler to
respond to left mouse button presses with a message box.
The behavior can be typed in at the keyboard, tested interac-

tively, and discarded by executing the marker FOO. This means
that—without reloading, or patching, or anything magic—I
can extend the behavior of my predefined programming en-
vironment. With this technique, I can trivially insert debug
code and monitor what messages and parameters Windows
is sending my application.

Conclusions

The switch construct has been an absolute boon to my
efforts at programming for Windows. With it, I can dynami-
cally define responses to Windows messages, and monitor
their effects. v

The values on which a switch acts are very similar to mes-
sages being passed to objects, and we will see more of this
next time.

Listing Three

\ Replace LINK@ and LINK, with your favorite list building words.

\ These are the methods used by SwiftForth.

LINK@
LINK,

@REL ;

HERE OVER @REL ,REL SWAP !REL ;

\ High level implementation of the switch construct

SWITCHER searches the linked list from its head for a match to the

leave N on the stack and execute

\
\ value N. If a match is found, discard N and execute the associated
\ matched XT. If no match is found,
\ the default XT.
SWITCHER (i*x n head -- j*x)
DUP CELL+ @ >R (save default xt)
BEGIN

LINK@ ?DUP WHILE (n a)
2DUP CELL+ @ = IF (match)
NIP CELL+ CELL+ @ EXECUTE
R> DROP EXIT
THEN
REPEAT R> EXECUTE ;

\ Create a code switch whose default behavior is given by XT. Leave the

\ address of the head of its list on the stack.

:SWITCH (xt -- addr)

CREATE HERE 0 , SWAP , DOES> SWITCHER ;

\ Define a new clause to execute the xt when the key N is matched.

<SWITCH (head xt n -- head)
2 PICK LINK, r o s

\ A little syntactic sugar to make switches with.

\ Define a new switch with its default. Use: [SWITCH name default
\ The head of the switch is left on the stack for defining clauses.

Forth Dimensions XX.3

21

: [SWITCH (-- head)
CREATE HERE 0 , ', DOES> SWITCHER ;

-

Return the address of the given switch, leaving the head for
\ clauses to append to.

: [+SWITCH (-- head)
' >BODY ;

\ Discard the switch head from the stack. Used after defining clauses.

SWITCH] (head --)
DROP ;

\ Parse for the xt of a new clause.

RUNS (head n —--)
' SWAP <SWITCH ;

\ Define a nameless clause for the given key.
\ this may be non-portable use of :NONAME

RUN: (head n --) .
:NONAME [CHAR] ; PARSE EVALUATE POSTPONE ; (xt) SWAP <SWITCH ;

Listing Four

\ An example of a simple switch

: ONE (--) ." One" ;
TWO (--) " Two"
THREE (--) " Three"
MANY (n --) . ." more"

[SWITCH NUMBERS MANY (n --)
1 RUNS ONE
2 RUNS TWO

SWITCH]

{ +SWITCH NUMBERS
3 RUNS THREE

5 RUN: ." Five"
4 RUN: ." Four"
SWITCH]

[+SWITCH NUMBERS
1 RUN: ." Uno"
SWITCH]

22

Forth Dimensions XX.3

Point and Do

In today’s PC environment, the mouse has become an in-
tegral part of the system. A pointing device can be very use-
ful to interface the user with the intricacies of a program. To
supply this function for Forth, the following definitions are
presented. The definitions were written for my “embellished”
Pygmy Forth! although, with minor modifications, they
should be applicable to other Forth dialects.

Description

To apply “point and do,” the computer screen is divided
into a number of blocks. When the mouse cursor is moved
into a block, up to three functions are available. First, a move-
ment (selection) function is invoked which can be used to
highlight a command, to display pointed data, etc. (button
clicks not required). Separate functions can be called with a
single left or right mouse button click.

A set of functions (menu) is listed in an array. Each menu
item is described with five entries: upper-left x cursor posi-
tion, upper-left y cursor position, CFA of movement word,
CFA of left-button word, and CFA of right-button word. A
relatively unlimited number of menu arrays may be as-
sembled. As will be shown, the menu scan always starts with
the current menu variable; therefore, a button action in one
menu may set a different menu for the next scan. It should
be noted that each menu listing requires an appropriate dis-
play screen.

Operation

Screen 1 describes the menu creation and variable defini-
tions which control the point-and-do function. The M*X and
MY variables are used to determine mouse movement. An
(ITEM variable is set by a scan of the current menu array and
provides pointers to the selected action words. The (MENU
variable contains the address of the current menu array.

The PNT&DO word (Screen 2) fetches the mouse cursor po-
sition (pixels) and button action via M@P/S. If a button click
has occurred, the CFA of the menu action item is fetched and
a loop is entered to wait for the button release. During the
wait loop, the CFA will be zeroed if simultaneous button ac-
tion occurs. On release of the button, the fetched CFA (if non-
zero) will be executed. Since the action CFA is determined
when the button is first clicked, the mouse may be moved to
a new location before release, thus providing a means for
modified actions (drag and drop, etc.).

If a button click has not occurred, the last and currenf'

cursor position is checked for movement. The movement
check may seem unnecessary, but it was included to elimi-
nate unnecessary screen updating (possible flicker) and to
minimize CPU usage. Any movement will update the last
cursor position and initiate a menu scan. The menu selection

Richard W.”Dick” Fergus * Lombard, Illinois
Rfergus@delphi.com

Forth Dimensions XX.3

BEGIN loop begins with the lower-right item (largest cursor

* values) and continues while either mouse cursor x or y posi-

tion is less than the menu item x or y data (above or right).
On exit, the menu item address is saved (for button action
reference) and the movement action CFA word is executed if
non-zero.

This rather crude cursor comparison does not provide com-
plete freedom of block location. At first, it may be difficuilt to
comprehend the rules for block definition. The menu scan
will stop when the current mouse position is between the x,y
data of the current and prior item in the menu array. There-
fore, the item x,y data defines the upper-left block corner,
and the larger x,y data of the prior item defines the lower-
right block corner.

If the blocks are arranged in a column-row format, the
menu listing should start with the lower-right block, through
the row items from right to left, and continue similarly with
the higher row. For block arrangements that are not aligned
in a column-row format, the general rule of “bottom-right to
upper-left” should be followed, although some experimenta-
tion may be necessary. This may seem awkward, but I have
found it to be sufficient for applications to date.

It should be noted that “dummy” row-columns may be
necessary to unmark adjacent marked blocks or to provide
areas of mouse inactivity.

Obviously, the PNT&DO word must be called repeatedly. It
can be inserted in the keyboard query word. Since the full
keyboard function is not required with the PNT&DO action, I
usually define a limited keyboard function and include it with
the PNT$DO in a RUN word which may also include flag sam-
pling for a real-time applications.

Example

Screens 3, 4, 5, and 6 are excerpts from an application and
should help demonstrate these functions. This application
displays local weather data in both graphical and numerical
formats, with commands to retrieve selected data from the
data collection hardware.

Several weather parameters are plotted by day (in hour
increments) and by hour (two hours, in minute increments).
The display screen consists of a command section (top), two
graphical sections (left and right center), and a numerical tabu-

"lation (bottom).

When the cursor is on the command section, various com-
mands are highlighted as the cursor is moved. Two commands
save the displayed data to disk (D. SAVE or H. SAVE) when the
left button is clicked. Other commands allow a number
(month, day, hour, or minute) displayed above the command
to be incremented or decremented by clicking the left/right
button, respectively (H+HR, H-HR, etc.).

AForth user for 14 years, Mr. Fergus is.heavily involved in apersonal;
severe weather warning project (www.theramp.net/sferics). He ap-
preciates Forth's *interactive control and limited restrictions.”

23

As the cursor is moved on the
center sections, the numerical val-
ues for the pointed plot time (de-
rived from the x cursor position)
will be displayed (HR.PNT or
DY.PNT) at the bottom of the
screen. Clicking the left button on
either data plot will retrieve new
data (GET.DY or GET.HR), as indi-
cated by the displayed time/date
above the command words. Click-
ing the right button on the daily
plot will retrieve and plot
(GET.D>H) the minute data of the
pointed hour.

The MARK and UN.MARK words
are defined on screen 3. For this
application, the MARK word
unmarks the previous “mark,” and
highlights (bright white) six char-
acter positions from the x,y data of
the selected menu item. This x,y
position is also saved for use by
UN.MARK, which will return the
character attributes to normal
white.

Screen 4 builds the menu item
array. Since the mouse position is
reported in pixels, some calcula-
tion is necessary to relate the pixel
and character positions. As men-
tioned previously, the menu array
must start with the lower-
rightmost position and continue
toward the upper-leftmost item.
The x,y position of the last item
must be 0,0 to assure the search
loop will exit properly. Two menu
items (lines 6 and 14) are used to
unmark the area above and below
the command labels. Lines 1, 4,
and 15 define areas of “no action.”

Screen # 1

0

W U d W

o

10
11
12
13
14
15

\

\
\
\
\
\
\
\
\

VARIABLE M"X

V.

POINT & DO

Each menu item consists of upper left x/y position,

movement action, left button

Menu example

CREATE XXXXXX (First
X , Yy , ' [movement] , '
«e 7 .o 7 ' .o ’ '
o, 0, "I " 1.,

cursor
and right button action
(10 bytes per item
item lower right most position
[left] , ' [right] , (Item 1

action,

v
r .. ’

t"™ 1, 't " 1,

(Item n

(Last item position must be x=0 y=0

VARIABLE M"Y

ARIABLE (MENU VARIABLE (ITEM

: MMX@ (--- n) M*X @ ;

: MYY@ (--- n) MY @ ;

: MENU! (adr ---) (MENU ! ;
ITEM@ (--- adr) (ITEM @ ;

Screen # 2

0
1

2
3
4
5
6
7
8

9
10
11
12
13
14
15

\

\ Cursor position

\ Current menu/item

\ Get x cursor position
\ Get y cursor position
\ Set menu

\ Get pointed item

MOUSE MENU CONTROL

PNT&DO (---)

M@P/S ?DUP IF 2* 4+ ITEM@ + @
BEGIN 100 MS M@P/S NIP NIP
DUP 2 > IF 2DROP 0 -1 THEN

0= UNTIL

?DUP IF EXECUTE THEN 2DROP

ELSE OVER M"X@ - OVER M"Y@
OR IF MY ! MAX !
(MENU @ BEGIN
DUP @ M"X@ >

OVER 2+ @ M"Y@ > OR WHILE

10 + REPEAT DUP (ITEM !

4+ @ ?DUP IF EXECUTE THEN

ELSE 2DROP THEN
THEN ;

Screen # 3

0

\

MARK/UNMARK

1 2VARIABLE (MARK

2
3
4
5
6
7
8

9
10
11
12
13
14
15

UN.MARK (---)
M-CUR \
(MARK 2@ 6 7 ATTRS \
M+CUR ; \
: MARK (---)
UN.MARK M-CUR \

ITEM @ 8 / ITEM @ 2+ @ 16 \
2DUP (MARK 2! 6 15 ATTRS \
M+CUR ; ™

Click? --get routine CFA

Cancel if both buttons
Wait for button release
If not null, do it

No click--mouse moved?
Save cursor position
Scan current menu
Compare x's

Compare y's

Save match item address
Movement action?

Pl A O P

Cursor off
Normal cursor 6 chars at xy
Cursor on

Restore prior "mark"
Get current xy and save
High white attributes

)
)
)

)

Get button--drop position

24

Forth Dimensions XX.3

Screen # 4

0 CREATE MENU (---)

1 o, 320 , 0, 0, 0 , \ Bottom

2 600 , 4 16 * , 0, o, 0 , \ Right border
3 360 ’ 4 16 * , ' HR.PNT , ' GET.HR , 0 , \ Hour plot
4 280 , 4 16 * , o, 0, 0 , \ Plot center
5 40 , 4 16 * , ' DY.PNT , ' GET.DY , ' GET.D>H , \ Day
6 0, 316 * , ' UN.MARK , 0, 0 , \ Divider
766 8* , 216 * , ' MARK , ' H.SAVE , 0 , \ Day save

g8 61 8* , 216 * , ' MARK , ' H+tHR , ' H-HR , \ Hour +-hour
9558* , 216 * , ' MARK , ' H+DAY , ' H-DAY , \ Hour +-day
10 49 8* , 2 16 * , ' MARK , ' H+MON , ' H-MON , \ Hour +-month
11 23 8*, 216 * , ' MARK , ' D.SAVE , 0 , \ Day save
12 18 8 * , 216 * , ' MARK , ' D+DAY , ' D-DAY , \ Day +-day
13128*, 216 * , ' MARK , ' D+MON , ' D-MON , \ Day +-month
14 o, 16 , " UN.MARK , o, 0, \ 2nd line
15 o, 0 . 0, o, 0 , \ Top line
Screen # 5

0

1 FORM (---) 7 COLOR!

2 12 2 SETCUR ." Month" 19 2 SETCUR ." Day"

3 24 2 SETCUR ." Save"

4 49 2 SETCUR ." Month" 56 2 SETCUR ." Day"

5 61 2 SETCUR ." Hour" 67 2 SETCUR ." Save"

6 7 COLOR! 2 23 SETCUR ." Temperature"

7 6 COLOR! 20 21 SETCUR ."™ Pressure"

8 7 COLOR! 22 23 SETCUR ."™ Rain"

9 5 COLOR! 39 21 SETCUR ." MPH"

10 1 COLOR! 35 23 SETCUR ." Direction"

11 4 COLOR! 55 21 SETCUR ." Red sky"

12 2 COLOR! 55 23 SETCUR ." Green sky"

13 3 COLOR! 71 21 SETCUR ." Max Ion I"

14 3 COLOR! 71 23 SETCUR ." Min Ion I"

15 7 COLOR! ;
Screen # 6

0

1 : WX.CMDS (-=--)

2 HIGPH \ Clear screen-VGA 640x480

3 MENU MENU! \ Set menu commands

4 FORM ; \ Draw screen

5

6 RUN (---)

7 WX .COMDS \ Initial screen display/menu

8 BEGIN

9 PNT&DO \ Check mouse

10 KEY? 27 = \ Exit on ESC

11 UNTIL ;

12 ..
13

14

15

The corresponding screen display is
generated with the FORM word of
screen 5. Obviously, there must be cor-
relation between the menu x,y loca-
tions and the text positions on the
screen.

This application is initiated with
the RUN word (screen 6), which calls
WX .CMDS and enters a loop with
PNT$DO and KEY? (check for keypress).
The routine is exited with an Esc
keypress. The Wx.CMDS word sets the
{MENU variable and draws the initial
screen. Although not used in this ap-
plication, other menus can be incor-
porated by calling other setup words
similar to WX . CMDS with a mouse-but-
ton action. The number of additional
menus is limited only by the imagina-
tion and memory available.

Summary

Although the point-and-do func-
tion has some rough edges, I have
found it very useful to provide mouse
action for several monitoring and data
accumulation programs, with a mini-
mum of program overhead. With a
little effort, mouse action can provide
program control while providing an
informative menu for the user.

1. Richard W. Fergus, “Pygmy
Embellishments,” Forth Dimen-
sions XI1X.3 (Sept-Oct 1997).
Also available at
http://www.theramp.net/sferics
as the file pyg_embl.exe in
“Misc. Downloads.”

Forth Dimensions XX.3

25

String-to-number conversion

On page 248 of Starting Forth , 2nd edition, there are defi-
nitions of NUMBER? and NUMBER that I take as authoritative.
Here is a transcription to Standard Forth. The numeric punc-
tuation characters have been extended to be those of Forth
Programmer’s Handbook .

In Classical Forth, the characters : , - . / canbeused
freely in a double number. This lets a social security number
be written 123-45-6789; a telephone number 555-1212 or,
with 32~bit cells, 1-714-546-9894; a date 10/29/98 or 10-
20-98;atime 9:30 0r 23:59:59; an ISBN 0-201-89684-2;
and so on. + has been added to that, and zip+four can be
written 92626+6162.

DPL gives the length of the last field, or -1 if there are no

1 (variable for decimal point location.

2 VARIABLE DPL

4 (Numeric Punctuation +, - . / test.)

5 PUNCTION? (¢ -- flag) DUP [CHAR] = SWAP [CHAR] + - 5 U< OR ;
7 (Check that string is a number.)

8 : NUMBER? (str len -- num flag)

9 -1 DPL !
10 (Reject empty string.)
11 dup 0= if false exit then
12 OVER C@ [CHAR] - = DUP >R 1 AND /STRING (R: sign)
13 (Reject lone minus sign.)
14 dup 0= if r> drop false exit then
15 (Reject lone punctuation.)
16 dup 1 = if over c@ punction?
17 if r> drop false exit then
18 then
19 0 0 2SWAP (num str len)
20 BEGIN >NUMBER DUP WHILE
21 OVER C€ punction?
22 (Reject successive punctuations.)
23 over dpl @ <> and o
24 WHILE 1 /STRING DUP DPL {
25 REPEAT THEN
26 NIP ROT ROT R> IF DNEGATE THEN (len num .)(R:)
27 ROT 0= (num flag)
28 ;
30 : NUMBER (str len -- num) NUMBER? 0= ABORT" ? " ;

Wil Baden * Costa Mesa, California

wilbaden@netcom.com

)

punctuation characters. A number ending with a punctua-
tion character will return 0. This gives the way to tell whether
the number is single or double integer.

With an application, it can be used as a partial check for
validity. With money, you can let whole dollar (or whatever)
amounts be in single-number format and convert.

I have added several lines in lower case. They reject an
empty string, a lone minus sign, a lone punctuation charac-
ter, and two successive punctuation characters.

The code in Starting Forth accepts all of these as valid num-
bers. I consider that shoddy. Others think it’s practical and
economical.

If your implementation is case-sensitive, you may have to
change the lower case to upper case.

Wit Baoen; after many years of profane language, has retired to Stan-
dard Forth.For a copy of the source for thisarticle,send e-mail request-
ing Standard Forth Tool Belt #7:"Number Conversion and Literals.”

Forth Dimensions XX.3

S T AN DA AR D F O R T H T O O L

Base-coded literals
For cross-development, the following is a popular conven-
tion for binary numbers.
Numbers are prefixed by $§ for hex, # for decimal, @ for
octal, and % for binary.

: NUMBER (str len -- num .) DUP 0= IF FALSE EXIT THEN

BASE @ >R
OVER C@ CASE
[CHAR] $ OF HEX 1 /STRING ENDOF
[CHAR] # OF DECIMAL 1 /STRING ENDOF
[CHAR] @ OF 8 BASE ! 1 /STRING ENDOF
[CHAR] % OF 2 BASE ! 1 /STRING ENDOF
ENDCASE
NUMBER?

R> BASE !

0= ABORT" ? "

The only one I ever can remember is § for hex. I think the
eforth and Open Firmware approach is better. Precede all lit-
erals by B#, D#, H#, or o#. Then there can’t be a conflict with
a defined word or wrong base.

My own practice is to use decimal as the default base value

and H# before each sedecimal number. Decimal is for people;
sedecimal is for machines; I'm people.

1l (Compile or interpret a number.)

2 : BUILD-NUMBER (Iohaf hihaf -- lohaf | lohaf hihaf)
3 DPL @ O< IF DROP THEN

4 STATE @ IF

5 DPL @ 0O< NOT IF SWAP POSTPONE LITERAL THEN

6 POSTPONE LITERAL

7 THEN

8 ;

10 (Define word to build a number in a given base.)

11 : base# (u "<spaces>newname" --)
12 CREATE IMMEDIATE |,

13 DOES> @ BASE PUSH ()(R: base)

14 BL WORD COUNT NUMBER (num .)

15 BASE POP (R:)

16 BUILD-NUMBER (num | num .)
17 ;

19 (Build binary number.)
20 2 base# B#

22 (Build decimal number.)
23 10 base# D#

25 (Build hex number.)
26 16 basei# H#

28 (Build octal number.)
29 8 base# O#

The following has been included here to balance BUILD-
NUMBER. They and NUMBER? will be needed with “Simple Ob-
ject Oriented Programming.”

Forth Dimensions XX.3

27

S T AN D A R D F O R T H T O O L B E L T - #7
31 (Compile or interpret execution token. SOOP)

32 : BUILD-WORD (xt 1[/-1 -- [??2?2])

33 0< STATE @ AND IF COMPILE,

34 ELSE EXECUTE

35 THEN

36 ;

PAD-free number display and stack dump

This was started when testing a new system before output
formatting was installed. In the last three systems I've worked
with, I like this format better than the system’s .S format. For
a very long time . . has been my favorite debug routine.

1 (Recursion for PAD-free number display.)

2 : (.%) (n--)
3 0 BASE @ UM/MOD (rem qguot) ?DUP IF RECURSE THEN (rem)
4 DUP 9 > 7 AND + [CHAR] 0 + EMIT ()
5 ;
7 (Display number without using PAD. Non-decimal is unsigned.)
8 : .# (n--)
9 BASE @ 10 = IF
10 DUP 0< IF NEGATE [CHAR] - EMIT THEN
11 THEN
12 (.#) SPACE
13 ;
15 (Concise stack dump bracketed by parens.)
16 : . : (... -—- same)
17 ot
18 DEPTH BEGIN ©?DUP WHILE DUP PICK .# 1- REPEAT
19 Ly
20 ;
22 (Destructive stack dump. Nothing printed for empty stack.)
23 : .. (... -- none)
24 DEPTH 0> IF X
25 DEPTH 0 DO DROP LOOP
26 THEN
27 ;

(. #) is interesting because it uses recursion. Here it is with
the recursion removed.
(.#) (n --)
-1 SWAP (-1n ...)
BEGIN 0 BASE @ UM/MOD
DUP 0=

UNTIL DROP
BEGIN DUP 9 > 7 AND + [CHAR] Q + EMIT

DUP 0O<
UNTIL DROP “()

Sedecimal output H . works like the old time H. does.

The base I use is normally decimal. When I want to dis- H .SOorH .Xgives the stack dump in hex.
play in hex, I change the base to 16, print with any appropri- Of course, if the base is hex, I don’t need to do this.
ate output word, and change BASE back to decimal. # before 1 :8 (n--) S" HEX " EVALUATE
the output word does the base flip-flop. Because my normal 2 BL WORD COUNT EVALUATE
base is decimal, I don’t have to save the base, change to hex, 3 S" DECIMAL " EVALUATE
print, and restore the base. 4 ; IMMEDIATE

Thus, -1 H u. will give FFFFFFFF with 32-bit cells.

6 (BYE)

28 Forth Dimensions XX.3

|
T o

G S T A

ONLY STAND!

N D A R D

F O R T H

This file establishes a wordlist that initially has only Stan-
dard definitions. The intent is to give you a bare system you
can use to check that your application does employ just the
Standard words.

To enter this mode:

ONLY STANDARD DEFINITIONS

To get out of it:
-1 SET-ORDER DEFINITIONS

The method is to put definitions into the STANDARD
wordlist for all Standard words. It does this by setting current
to STANDARD-WORDLIST when making the definition. Con-
text is set to FORTH-WORDLIST.

(Bump value of a stored character.)
C+1! { n addr --) DUP >R C@ +

R> C! ;

A name that belongs to a word that is not immediate can
usually be defined in STANDARD as:
name name ;

A name that belongs to a word that is immediate can usu-

ally be defined in STANDARD as:
name POSTPONE name ; IMMEDIATE

Standard words that are not defined in your system will
compile, but will display “Undefined.” when executed. This
lets you test that the application would be compiled if the
missing word were present.

The following are Tool Belt words. Eliminate the ones you
already have.

(str len addr PLACE Store character string as counted string.)
PLACE 2DUP 2>R CHAR+ SWAP CHARS MOVE 2R> C! ;

(str len addr APPEND Append character string to counted string.)

: APPEND 2DUP 2>R COUNT CHARS +

SWAP CHARS MOVE

2R> C+! ;

(Convenient factor for several Tool-Belt Definitions.)

PARAMETER BL WORD COUNT EVALUATE ;

(Conditionally compile
?? S" IF " EVALUATE

the next word.)
PARAMETER S" THEN "

(Next Word Across Line
(Length of string is 0 at end of file.)
: NEXT-WORD (-— str len)

BEGIN BL WORD COUNT (str len)
DUP ?? EXIT
REFILL
WHILE 2DROP
REPEAT (str len)

Wordlist to be initialized to Standard words only.
1 WORDLIST CONSTANT STANDARD-WORDLIST

3 (Vocabulary for Standard wordlist.)
4 STANDARD

5 GET-ORDER DUP 0= ?? 1 NIP

6 STANDARD-WORDLIST SWAP
7 SET-ORDER

Wil Baden » Costa Mesa, California

wilbaden@netcom.com

EVALUATE ; IMMEDIATE

Breaks as a Character String)

Wi Baoen, after many years of profane language, hasiretired to Stan-
dard Forth. For a copy of the source for this article, send e-mail

Forth Dimensions XX.3

requesting Stretching Forth #22: ONLY STANDARD DEFINITIONS.

29

S T ANDAIRD F O RT H -

The Standard says POSTPONE TO is ambiguous, so we write
our own.

10 STANDARD-WORDLIST SET-CURRENT (STANDARD definitions.)

: VALUE CREATE , DOES> @ ;

TO
' STATE @ IF POSTPONE LITERAL POSTPONE >BODY POSTPONE !
ELSE >BODY !
THEN
; IMMEDIATE
{ Counting on °' something® to be constant, but allowing the

(body to depend on where code has been loaded at this time.)

That will fail for local variables. I feel the Standard should
have used To for VALUE words and -> for locals.

The Standard says 8* may have only one buffer, as well as
some other problems. So again we code our own.

FORTH-WORDLIST SET-CURRENT { FORTH definitions.)
12 CREATE SBUF 80 CHARS ALIOT
14 STANDARD-WORDLIST SET-CURRENT (STANDARD definitions.)

S" [CHAR] " PARSE
STATE @ IF POSTPONE SLITERAL
ELSE 80 MIN >R SBUF RE@ CHARS MOVE SBUF R>
THEN
; IMMEDIATE

Non-immediate words that do or may affect the return
stack also must be postponed.

: >R POSTPONE >R ; IMMEDIATE

: R> POSTPONE R> ; IMMEDIATE
R@ POSTPONE R@ ; IMMEDIATE
2>R POSTPONE 2>R ; IMMEDIATE
2R> POSTPONE 2R> ; IMMEDIATE
2R@ POSTPONE 2R@ ; IMMEDIATE
: EXIT POSTPONE EXIT ; IMMEDIATE

e se

LEAVE POSTPONE LEAVE ; IMMEDIATE

(So 'ONLY FORTH' will work "normally".)

: PORTH (--) STANDARD ;
: ONLY (--) ONLY STANDARD ;
FORTH-WORDLIST SET-CURRENT (FORTH definitions.)

30

Forth Dimensions XX.3

S TRETU CHI NG S TA NDARD

16 : ORDINARY-WORD (str len --)
17 s . " PAD PLACE

18 2DUP PAD APPEND

19 st " PAD APPEND

20 PAD APPEND ()
21 s" ;" PAD APPEND

22 PAD COUNT EVALUATE

23 ;

25 : IMMEDIATE-WORD (str len --)
26 s"To. " PAD PLACE

27 2DUP PAD APPEND

28 s" POSTPONE " PAD APPEND

29 PAD APPEND ()
30 s" ; IMMEDIATE " PAD APPEND

31 PAD COUNT EVALUATE

32 ;

34 : .Undefined ." Undefined. " ;

36 : UNDEFINED-WORD (str len --)
37 st " PAD PLACE

38 PAD APPEND ()
39 s" .Undefined " PAD APPEND

40 s" ;" PAD APPEND

41 PAD COUNT EVALUATE

42 ;

44 (Define the words that follow into STANDARD wordlist.)

45 : CLONE-THESE-WORDS (---)

46 STANDARD-WORDLIST SET-CURRENT

48 BEGIN NEXT-WORD (str len)
49 2DUP S" \\" COMPARE

50 WHILE 2DUP FORTH-WORDLIST SEARCH-WORDLIST DUP ?? NIP
52 ?DUP 0= IF UNDEFINED-WORD
53 ELSE 0< IF ORDINARY-WORD
54 ELSE IMMEDIATE-WORD
55 THEN THEN

57 REPEAT 2DROP

59 FORTH-WORDLIST SET-CURRENT

60 ;

Words are in reverse-alphabetic sequence so WORDS will show
Standard words in order, except for specially defined words.

62 CLONE-THESE-WORDS

64 1 \ [THEN]
65 [ELSE] [COMPILE] [CHAR]
66 [XOR WRITE-LINE

[IF]
(']
WRITE-FILE

F O R T H

- #22

Forth Dimensions XX.3

31

I N G S T A NDAWRD F O R TH -
67 WORDS WORDLIST WORD WITHIN
68 WHILE W/0 VARIABLE VALUE
69 UPDATE UNUSED UNTIL UNLOOP
70 UM/MOD UM* u> U<
71 U.R U. TYPE TUCK
72 TRUE TIME&DATE TIB
73 THRU THROW THEN SWAP
74 STATE SPAN SPACES SPACE
75 SOURCE-ID SOURCE SM/REM SLITERAL
76 SIGN SFLOATS SFLOAT+ SFALIGNED
77 SFALIGN SF@ SFE'! SET-PRECISION
78 SET-ORDER SET-CURRENT SEE SEARCH-WORDLIST
79 SEARCH SCR SAVE-INPUT SAVE-BUFFERS
80 S$>D RSHIFT ROT
81 ROLL RESTORE-INPUT RESIZE-FILE RESIZE
82 REPRESENT REPOSITION-FILE REPEAT - RENAME-FILE
83 REFILL RECURSE READ-LINE READ-FILE
84 R/W R/0
85 QUIT QUERY PREVIOUS PRECISION
86 POSTPONE PICK PARSE PAGE
87 PAD OVER ORDER OR
88 OPEN-FILE OF NIP
89 NEGATE MS MOVE MOD
90 MIN MAX MARKER M+
91 M*/ M* LSHIFT LOOP
52 LOCALS| LOAD LITERAL LIST
93 KEY? KEY J
94 INVERT INCLUDED INCLUDE~-FILE IMMEDIATE
95 1F I HOLD HEX
96 HERE GET-ORDER GET-CURRENT F~
897 FVARIABLE FTANH FTAN FSWAP
98 FSQRT FSINH FSINCOS FSIN
99 FS. FROUND FROT FREE
100 FOVER FORTH-WORDLIST FORGET
101 FNEGATE FMIN FMAX FM/MOD
102 FLUSH-FILE FLUSH FLOOR FLOG
103 FLOATS FLOAT+ FLNP1 FLN
104 FLITERAL FIND FILL FILE-STATUS
105 FILE~-SIZE FILE-POSITION FEXPM1 FEXP
106 FE. FDUP FDROP FDEPTH
107 FCOSH FCOS FCONSTANT FATANH
108 FATAN2 FATAN FASINH FASIN
109 FALSE FALOG FALIGNED FALIGN
110 FACOSH FACOS FABS F@
111 D F< FO= FO<
112 ¥/ F. F- F+
113 F** F* F! EXPECT
114 EXIT EXECUTE EVALUATE ERASE
115 ENVIRONMENT? ENDOF ENDCASE EMPTY-BUFFERS
116 EMIT? EMIT ELSE EKEY?
117 EKEY>CHAR EKEY EDITOR DUP
118 DUMP DU DROP DOES>
119 DO DNEGATE DMIN DMAX
120 DFLOATS DFLOAT+ DFALIGNED DFALIGN
32 Forth Dimensions XX.3

.

S TR ETUOCH I N G S T A NDAIRD F O R T H - #22
121 DF@ DF! DEPTH DELETE~FILE
122 DEFINITIONS DECIMAL DABS D>S
123 D>F D= D< D2/
124 D2~* DO= DO< D.R
125 D. D~ D+ CS-ROLL
126 CS-PICK CREATE~-FILE CREATE CR
127 COUNT CONVERT CONSTANT COMPILE,
128 COMPARE CODE CMOVE> CMOVE
129 CLOSE-FILE CHARS CHAR+ CHAR
130 CELLS CELL+ CATCH CASE
131 C@ C, c" c!
132 BYE BUFFER BLOCK BLK
133 BLANK BL BIN BEGIN
134 BASE AT-XY ASSEMBLER AND
135 ALSO ALLOT ALLOCATE ALIGNED
136 ALIGN AHEAD AGAIN ACCEPT
137 ABS ABORT" ABORT @
138 ?DUP ? DO ?
139 >NUMBER >IN >FLOAT >BODY
140 > = <> <#
141 < ; CODE ; :NONAME
142 : 2VARIABLE 2SWAP 2ROT
143 20VER 2LITERAL
144 2DUP 2DROP 2CONSTANT 2@
145 2/ 2% 2!
146 1- 1+ 0> 0=
147 0<> o< /STRING /MOD
148 / .S .R A
149 " . -TRAILING -
150 , +1LOOP +! +
151 */MOD */ * (LOCAL)
152 | ! #TIB #S
153 #> # !
155 \\
Testing
157 : BRI (--) ." Welcome to Expanded Forth. " ;
159 ONLY STANDARD DEFINITIONS (STANDARD definitions.)
HI (--) ." Welcome to Standard Forth. " ;
CR HI
-1 SET-ORDER DEFINITIONS (FORTH definitions.)
161 CR HI
Forth Dimensions XX.3 33

URLs — a selection of Web-based Forth resources

The Mops public-domain development system for the Macintosh
with OOP capabilities like multiple inheritanice and a class library
supporting the Macintosh interface.

Frank Sergeant’s Forth Page
~httpziiwww.eskima.;oml~pygmyfforth.html
Pygmiy Forth and related files.

EE Toolbox: Software Development: FORTH Inteme'c Resources
http.tlww‘ega.comlsoftdlforth htm

“EG3 identifies, summarizes, and organizes the wealth of Internet
information available for practical electronic design.”

The Pocket Forth Repository
:' http.llcbemlab‘pc,maritnpa.e&ulpncket.html
A haven for programs written using Chris Heilman’s Pocket Forth,
afreeware Forth forthe Macintosh.

AM Research, Inc., The Embedded Control Experts
_ http:/lwww.amresearch.com/
AM Research has specialized in embedded control systems
since 1979, and manufactures single-board computers
| asiwell as complete development systems.

Forth on the Web
http://pisa.rockefeller.edu:8080/FORTH/
A collection of links to on-line Forth resources.

Laboratory Microsystems, Inc,
http:/iwww.cerfnet.com/~Imi/
The commercial site of LML, with product information:

The Forth Source

http://theforthsource.com/

Mountain View Press provides educational software and hardware
models of Forth with documentation for stidents and teachers,

The Journal of Forth Application and Research
http://www.jfar.org/

A refereed journal for the Forth community, from the
Institute for Applied Forth Research.

COMSOL
http://www.computer-solutions.co.uk
-Computer Solutions Ltd. supplies Forth and other tools for

and contental Europe.

MicroProcessor Engineering, Ltd.
http://www.mpeltd.demon.co.uk/
MPE specialises in real-time and embedded systems.

Forth Interest Group in thé United Kingdom
http://www.users.zetnet.co.uk/aborigine/forth.htm
A major on-line resource for Forth in the UK.

embedded microprocessor designers and programmers in'the UK.

The Home of the 4tH Compiler
http://www.geocities.com/SiliconValley/Bay/2334/index.htm
A personal site rich in graphics and audio, as well as

technical content.

Space-Related Applications of Forth
http://forth.gsfc.nasa.gov

A large table presenting space-related applications of Forth
microprocessors and of the Forth programming language.

FORTH, Inc.

http://www.forth.com

Product descriptions, applications stories, links, announcements,
and a history of Forth.

Forth Interest Group Home Page
http://www.forth.org/fig.htm!

Extensive selection of links, files, education,and a
members-only section.

Forth Information on Taygeta
http://www.taygeta.com/forth.htmi

A selection of tools, applications, and info about the
Forth Scientific Library.

Jeff Fox and Ultra Technology Inc.
http://www.dnai.com/~jfox/
Information about Forth processors.

Offete Enterprises, Inc.
http://www.dnai.com/~jfox/offete;htm}

Offete Enterprises has Forths for many systems and
documentation about some public-domain systems.

Forth Online Resources Quick-Ref Card
http://www.complang.tuwien.ac.at/forth/forl.htmi
Extensive list of links to Forth enterprises and personalities.

The Forth Research Page
http://cis.paisley.ac.uk/forth/
Peter Knaggs' list of Forth résources.

Yahoo Page on Forth
http://www.yahoo.com/Computers . and Internet/
Programming Languages/Forth/

Some of the search engine's hits on ‘Forth.”

The Open Firmware Home Page
http://playground.sun.com/pub/1275/

Information published by the Open Firmware Working Group,
provided as a free service:

American National Standard Forth Information
ftp://ftp.uu.net/vendor/minerva/uathena htm

Courtesy of Athena Programming;inc, working documents
are posted here by direction of Technical Committee X314,
at the discretion of the X3 Secretariat.

34

Forth Dimensions XX.3

The following are corporate sponsors and individual benefactors
whose generous donations are helping, beyond the basic member-
ship levels, to further the work of Forth Dimensions and the Forth In-
terest Group. For information about participating in this program,
please contact the FIG office (office@forth.org).

Corporate Sponsors

AM Research, Inc. specializes in Embedded Control applications us-
ing the language Forth. Over 75 microcontrollers are supported in
three families, 8051, 6811 and 8xC16x with both hardware and soft-
ware. We supply development packages, do applications and turn-
key manufacturing.

Clarity Development, Inc. (http://www.clarity-dev.com) provides con-
sulting, project management, systems integration, training, and semi-
nars. We specialize in intranet applications of Object technologies,
and also provide project auditing services aimed at venture capitalists
who need to protect their investments. Many of our systems have
employed compact Forth-like engines to implement run-time logic.

Computer Solutions, Ltd. (COMSOL to its friends) is Europe’s pre-
mier supplier of embedded microprocessor development tools. Us-
ers and developers for 18 years, COMSOL pioneered Forth under
operating systems, and developed the groundbreaking chipFORTH
hot/target environment. Our consultancy projects range from single
chip to one system with 7000 linked processors. www.computer-
solutions.co.uk.

Digalog Corp. (www.digalog.com) has supplied control and instru-
mentation hardware and software products, systems, and services
for the automotive and aerospace testing industry for over 20 years.
The real-time software for these products is Forth based. Digalog has
offices in Ventura CA, Detroit M, Chicago IL, Richmond VA, and
Brighton UK.

Forth Engineering has collected Forth experience since 1980. We now
concentrate on research and evolution of the Forth principle of pro-
gramming and provide Holon, a new generation of Forth cross-de-
velopment systems. Forth Engineering, Meggen/Lucerne, Switzerland
- http://www.holonforth.com.

FORTH, Inc. has provided high-performance software and services for
real-time applications since 1973. Today, companies in banking, aero-
space, and embedded systems use our powerful Forth systems for Win-
dows, DOS, Macs, and micro-controllers. Current developments include
token-based architectures, (e.g., Open Firmware, Europay’s Open Ter-
minal Architecture), advanced cross-compilers, and industrial control
systems.

The iTV Corporation is a vertically integrated computer company
developing low-cost components and information appliances for the
consumer marketplace. iTVc supports the Forth development com-
munity. The iTVc processor instruction set is based on Forth primi-
tives, and most development tools, system, and application code are
written in Forth.

Keycorp (www.keycorp.com.au) develops innovative hardware and
software solutions for electronic transactions and banking systems,
and smart cards including GSM Subscriber Identification Modules
(SIMs). Keycorp is also a leading developer of multi-application smart
card operating systems such as the Forth-based OSSCA and MULTOS.

www.kernelforth.com

An interactive programming environment for writing Windows NT
and Windows 95 kernel mode device drivers in Forth.

SPONS ORS & BENEFACTORS

MicroProcessor Engineering supplies development tools and
consultancy for real-time programming on PCs and embedded sys-
tems. An emphasis on research has led to a range of modern Forth
systems including ProForth for Windows, cross-compilers for a wide
range of CPUs, and the portable binary system that is the basis of
the Europay Open Terminal Architecture. http://www.mpeltd
.demon.co.uk

www.theforthsource.com

Silicon Composers (web site address www.silcomp.com) sells single-
board computers using the 16-bit RXT 2000 and the 32-bit SC32 Forth
chips for standalone, PC plug-in, and VME-based operation. Each SBC
comes with Forth development software. Our SBCs are designed for
use in embedded control, data acquisition, and computation-intense
control applications.

T-Recursive Technology specializes in contract development of hard-
ware and software for embedded microprocessor systems. From con-
cept, through hardware design, prototyping, and software implemen-
tation, “doing more with less” is our goal. We also develop tools for
the embedded marketplace and, on occasion, special-purpose soft-
ware where “small” and “fast” are crucial.

Tateno Dennou, Inc. was founded in 1989, and is located in Ome-
city Tokyo. Our business is consulting, developing, and reselling prod-
ucts by importing from the U.S.A. Our main field is DSP and high-
speed digital.

ASO Bldg., 5-955 Baigo, Ome, Tokyo 198-0063 Japan
+81-428-77-7000 * Fax: +81-428-77-7002
http://www.dsp-tdi.com e E-mail: sales@dsp-tdi.com

Taygeta Scientific Incorporated specializes in scientific software: data
analysis, distributed and parallel software design, and signal process-
ing. TSI also has expertise in embedded systems, TCP/IP protocols
and custom applications, WWW and FTP services, and robotics.
Taygeta Scientific Incoporated ¢ 1340 Munras Avenue, Suite 314 ¢
Monterey, CA 93940 « 408-641-0645, fax 408-641-0647 » http://
www.taygeta.com

Triangle Digital Services Ltd.—Manufacturer of Industrial Embedded
Forth Computers, we offer solutions to low-power, portable data log-
ging, CAN and contro] applications. Optimised performance, yet ever-
increasing functionality of our 16-bit TDS2020 computer and add-
on boards offer versatility. Exceptional hardware and software sup-
port to developers make us the choice of the professional. ‘

Individual Benefactors

Makoto Akaishi
Everett F. Carter, Jr.
Edward W. Falat
Michael Frain

Marty McGowan
Gary S. Nemeth
Marlin Ouverson
John Phillips

Guy Grotke Thomas A. Scally
John D. Hall Werner Thie
Guy Kelly Richard C. Wagner

Zvie Liberman

Forth Dimensions XX.3

35

>

Articles
The author of any Forth-related
article published in a periodical or in
the proceedings of a non-Forth con-
ference is awarded one year's mem-
bership in the Forth Interest Group,
subject to these conditions:

a. The membership awarded is for
the membership year following
the one during which the ar-
ticle was published.

b. Only one membership per per-
son is awarded in any year, re-
gardless of the number of ar-
ticles the person published in
that year.

c. The article’s length must be
one page or more in the maga-
zine in which it appeared.

d. Theauthor must submit the
printed article (photocopies
are accepted) to the Forth
Interest Group, including
identification of the maga-
zine and issue in which it
appeared, within sixty days
of publication. In return,
the author will be sent a
coupon good for the follow-
ing year’s membership.

e. If the original article was
published in a language
other than English, the ar-
ticle must be accompanied
by an Engish translation or
sumrnary.

WANTED

BY THE FORTH INTEREST GROUP

“Silicon Slick” (an alias)

...and any and all Forth
programmers and other
SOFTWARE RENEGADES roaming the
range in pioneer territories. ..

...10 wiite articles about their
DISCOVERIES & TECHNIQUES,
PERILOUS MISADVENTURES, and
MYSTIFYING ENCOUNTERS with
STRANGE CHARACTERS and with
FORTH FEATURES obvious and suhtie.

REWARD —

To recognize and reward authors of Forth-related
articles, the Forth Interest Group (FG) has adopted

the following Author Récognition Program.

The fastest, most convenient way for us to receive your
material is via e-mail (a vast improvement over the tele-
graph, a.k.a “talking wire") to the editor@forth.org ad-
dress. Binary (e.g., formatted text) files must be
uuencoded to be sent as e-mail. but ASClI files can be

sent as-is.

”\Q\-\(\V.MW" AT -

w8 G eI @l o e 8o el

- e s

A L et % 2 e)
. - w

=

Letters to the Editor

Letters to the editor are, in effect,

short articles, and so deserve recogni-
tion. The author of a Forth-related let-
ter to an editor published in any maga-
zine except Forth Dimensions is awarded
$10 credit toward FIG membership
dues, subject to these conditions:

a. The credit applies only to mem-
bership dues for the member-
ship year following the one in
which the letter was published.

b. The maximum award in any
year to one person will not ex-
ceed the full cost of the FIG
membership dues for the fol-
lowing year.

c. The author must submit to the
Forth Interest Group a photo-
copy of the printed letter, in-
cluding identification of the
magazine and issue in which it
appeared, within sixty days of
publication. A coupon worth
$10 toward the following year’s
membership will then be sent
to the author.

If the original letter was pub-
hshed ina language other than

