
Forth i

Two 1 Pro bEen

Safer Nu,

38 Con fr

as in ANS Forth

r ines

-0 the iRS

. Super-efficient implementation . Easy to add DLLs and to call
for speed (32-bit subroutine- DLL functions
threaded, direct code expansion) . DDE client services for Inter- . Full GUI advantages (like drag- application cornmunicatlon
and-drop ed i t~ng , hypertext . Files and blocks supported
source browsing; visual stack, . Simple creatlon of windows,
watchpolnts, and memory wln- menus, dlalogs, etc - no
dows) but retains traditional th~rd-party tools needed

Greetings from the FIG office!
This is the year the FORML Conference turns 20! What a

milestone. We already have participants giving us titles for

voice: 831.373.6784 fax: 831.373.2845
Taygeta Scientific Inc. 1340 Munras Avenue, Ste. 314 Monterey, CA 93940 e-mail: office@forth.org

the talks they are planning to present. If you'd like to see
what we've got lined up, just log on to the Forth Interest
Group web site (www.forth.org), scroll to Forth Conferences,
and there you have it. By now, you should have received a
purple flyer with the FORML registration information. If not,
you can check our web site for that information, too, or con-
tact the office and we will be happy to mail, fax, or e-mail the
registration information to you. In addition to the regular
registration, there are three levels of increased financial spon-
sorship for FORML available: Bronze, Silver, and Gold. If you
or your company would like to become a FORML sponsor,
and/or have equipment and/or services you would like to offer,
please contact the office and we will give you the details. We
are looking forward to seeing you in November!

The Forth Interest Group is kept running with your mem-
bership dues and kind donations. We continue to add new
members every month; however, we also lose members. We
need your help to steadily increase our membership. If you
do have friends or colleagues who are interested in joining,
please contact us at the office and we will be happy to send
membership information along with a complimentary issue
of Forth Dimensions for their review.

Just a reminder, it is important to renew early. We don't
want you to miss an issue of Forth Dimensions. If you have any
questions as to when your membership expires, just contact
us-Eddy or I will be happy to help you with that informa-
tion. And it is always printed above your name on the address
label that comes with your Forth Dimensions. When you do
renew late, we try to make sure that you don't miss issues, but
it is an added expense and is labor-intensive to do that. While
you're renewing your membership, please consider increasing
your level of membership and/or making an additional con-
tribution to your organization. Every bit helps, and so many
of you are very generous in this way. It is greatly appreciated.

Also take a moment now to look at the mail-order form in
the center of this issue. Isn't there something you have been
thinking about getting? There is a wide selection of books
and software for you to purchase. Some of these items are in

very limited supply, and we encourage you
to purchase them before the Christmas rush.

can call our 24-hour message
e-mail: kalman@taygeta.com line at 408-641 -0647. For your
fax: 408-641 -0647 convenience, we accept Master-
voice: 408-641 -0645 Card and VISA.
mail: send vour check or monev order in U.S. dollars to:

Forth Dimensions XX.2

Trace Carter, Administrative Manager
Forth Interest Group
100 Dolores Street, Suite 183
Carmel, CA 93923 USA

-

This classic is no longer out o f print!

Poor Man's Explanation of
Kalman Filtering
or, How I Stopped Worrying and
Learned to Love Matrix Inversion

by Roger M. du Plessis

$1 9.95 plus shipping and
handling (2.75 for surface U.S.
4.50 for surface international) u t

You can order in several wavs:

And remember, members get an additional
10% off their purchases!

We are continuing to update our mem-
bership database. ~f YOU have not received
an e-mail from the FIG office, there is a good
chance that we do not have your e-mail
address in our database. Please take a mo-
ment and send us your e-mail address. Re-
member to keep us informed when your
address and/or phone number changes.
Speaking of which, like many of you, our
telephone area code has changed. Our old
area code was 408, and our new area code is
831. Please make a note of it in your files.

And remember-together we can make
a difference!

Cheers,

Finite State Machines in Forth
by Julian V. Noble
Certain programming problems are simpler to solve using abstract finite state machines. This paper
provides methods for constructing deterministic and non-deterministic finite state automata in Forth.
The "best" method produces a one-to-one relation between the definition and the state table of the
automaton. An important feature of the technique is the absence of (slow) nested I F clauses.

Safer Numeric Input
I
I 1 4 by Jerry Avins i n "Safety" is, perhaps, something many programmers don't have to worry about. But when your em-

bedded system is controlling a medical device or a piece of heavy machinery, such concerns become
paramount. Specialists in the field know there are many aspects to the subject; this article addresses
one concern-that the operator's display accurately represent the data the program is using.

EXPRESS Factory Control
by Allen Anway
EXPRESS is a Forth-based system for running machinery or a factory. Its specialty is real-time perfor-
mance. This application runs four lime kilns. In this case, EXPRESS works in concert with Program-
mable Logic Controllers (PLCs) distributed at various use sites throughout the plant.

Forth to the IRS
25 by Len Zettel El The annual U.S. tax-filing ritual brings great stress as the April 15 deadline mars an otherwise lovely

time of year. We can file extensions and go through the emotional trauma again in a few months, or
do as this author did, and dilute the dread with the pleasure of Forth programming ...

Report: EuroForth 1998 Conference
26 by Paul E. Bennett

Forth might have nominal roots in the United States, but it migrated to Europe almost immediately. It
has strong supporters and developers there, and many significant applications. The annual Forth con-
ference is the primary venue of intellectual exchange and camaraderie among Forth users in Europe.

Two Problems in ANS Forth
3 2 by Thomas Worthington

The author addresses his concerns about potential problems in ANS Forth: colon-sys on the control-
flow stack, and the inability of the programmer to assign the input stream to an arbitrary block of
memory. The problems are described along with solutions-which present a bonus benefit.

DEPARTMENTS

2 OFFICE NEWS 22 STRETCHING STANDARD FORTH
Character Tests

I EDITORIAL 30 AUTHOR RECOGNITION PROGRAM

3 1 FREEWARE & SHAREWARE
13 WRITERS GUIDELINES JForth enjoys download frenzy

20 STANDARD FORTH TOOL BELT 34 FREEWARE
Lines and Strings Public-domain transputer Forth news

2 1 THEVIEW FROM GOAT HILL 35 SPONSORS & BENEFACTORS
Local Variables for Misers

1
Forth Dimensions XX.2 3

Published by the
Forth Interest Group

Marl~n Ouverson

Circulotion/Order Desk
Trace Carter

Forth Dimensions welcomes editorial ma-

from its readers. No responsibility is as-
sumed for accuracy of submissions.

100 Dolores Street, suite 183

Administrative offices:

righted by the individual authors of the
articlesand by Forth lnterest Group,Inc., ... Forth programs should have a tab indent of respectively.Any reproduction or useof
this periodical as it is compiled or the

40 spaces.That wiay we won't be tempted articles, except reproductions for non-
commercial purposes,without the writ-

ta write huge muiti-ievei controi structures, ten permission of ~o r th Interest Group,
Inc. is a violation of the Copyright Laws. and will want to factor a little* Any code bearing a copyright notice,

-Andrew McKewan however,can be used only with perrnis-

(from comp.lang.forth) sion of the copyright holder.

The Forth lnterest Group
The Forth lnterest Group istheassocia-
tion of programmers, managers, and

first-hand information about the activities of your Forth friends in Germany? engineers who create practical, Forth-
based solutions to real-world needs.
FIG provides a climate of intellectual

Become a member of the German Forth Society exchange and benefits intended to as-
("Deutsche Forth-Gesell~chaft") sist each of its members. Publications,

conferences, seminars, telecommuni-

80 DM (50 US-$) per year cationsand area chapter meetings are
among its activities.

or 32 DM (20 US-$) for students or retirees
FORTH DIMENSIONS (ISSN 0884-0822)

quarterly issues of Vierte Dimension. For more information, please contact:
CA 93940. Periodicals postage rates

Fred Behringer paid at Monterey CA and at additional

Planegger Strasse 24
81241 Muenchen

This note provides methods for constructing determinis- describes several high-level Forth implementations. Finite
tic and non-deterministic finite state automata in Forth. The state machines have been discussed previously in this jour-
"best" method produces a one-to-one relation between the nal [3, 41. The present approach improves on prior methods.
definition and the state table of the automaton. An impor-
tant feature of the technique is the absence of (slow) nested 2. A Simple Example

Consider the task of accepting numerical input from the
keyboard. An unfriendly program lets the user enter the entire

1. Introduction number before informing him that he typed two decimal points
Certain programming problems are difficult to solve pro- after the first digit. A friendly program, by contrast, refuses to

cedurally even using structured code, but simple to solve us- recognize or display illegal characters. It waits instead for a
ing abstract finite state machines (FSMs) [I]. For example, a legal character or carriage return (signifying the end of input).
compiler must distinguish a text string representing, say, a It permits backtracking, allowing erasure of incorrect input.
floating-point number, from an algebraic expression that To keep the example small, our number-input routine al-
might well contain similar characters in similar order. Or a lows signed decimal numbers without power-of-10 exponents
machine controller must select responses to predetermined (fixed point, in FORTRAN parlance). Decimal points, numer-
inputs that occur in random order. als, and leading minus signs are legal, but no other ASCII

Such problems are interesting because a program that re- characters (including spaces) will be recognized. Here are some
sponds to indefinite input is closer to a "thinking machine" examples of legal numbers:
than a mere sequential program. Thus, a string that repre- 0.123, .123, 1.23, -1.23, 123, etc.
sents a floating-point number is defined by a set of rules; it
has no definite length, nor do the symbols appear in a defi- From these examples we derive the rules:
nite order. Worse, more than one form for the same number Characters other than 0-9, -, and . are illegal.
may be permissible-user-friendliness demands a certain flex- Numerals 0-9 are legal.

A traditional procedural approach might look something

\ history semaphores

(c -- f) ASCII . = ;

PREVIOUS. DP? @ NOT AND ;
\ horrible example

an FSM into one of several languages such DUP DIGIT?
as BASIC, Modula-2, Pascal, or C), or IF DROP TRUE DUP PREVIOUS.MINUS? !
AYECO, Inc.'s COMPEDITOR (that per- ELSE DUP FIRST .MINUS?
forms a similar translation). [These CASE IF DROP TRUE DUP PREVIOUS.MINUS? !
tools were available at least as recently as ELSE FIRST. DP?
1993 from The Programmer's Shop and other IF TRUE DUP PREVIOUS.DP? !
developer-oriented software discounters.] ELSE FALSE

Forth is a particularly well-structured THEN
THEN

ion of the Journal of

Forth Dimensions XX.2 5

i Input OTHER? D I G I T ? MINUS? DP?
State shes Trans Does Trans m ILEBl Does Trans
0 X -+ 0 E + 1 E + 1 E + 2
1 X + 1 E - 3 1 X + 1 E - 3 2
2 X - + 2 E + 2 X + 2 X + 2

Listing TWO HS/Forthls CASE : . . . ; CASE incurs virtually no
run-time speed penalty relative to executing the

: G e t a f i x words themselves. Now, how do we use CASE : ...
FALSE PREVIOUS. MINUS? ! FALSE PREVIOUS. DP? ! ; CASE to implement an FSM? First we need a state

\ i n i t i a l i z e h i s t o r y s e m a p h o r e s variable (initialized to 0) that can assume the val-
BEGIN KEY DUP CR o WHILE ues 0, 1, and 2. To test whether an input character

LEGAL? I F DUP ECHO APPEND THEN is a numeral, minus sign, decimal point, or "other,"

Figure One. State table summarizing the rules for fixed-point numbers.
E stands for echo (to the CRT) and X for do nothing.

6 Forth Dimensions XX.2

REPEAT ;

The word that does the work (with apologies to Uderzo
and Goscinny, creators of Asterix) is shown in Listing Two.

What makes this example-whose analogs appear fre-
quently in published code in virtually every language-hor-
rible? Each character whose legality is time-dependent requires
a history semaphore. It is therefore difficult to tell by inspec-
tion that the word LEGAL?'S logic is actually incorrect, de-
spite the simplification obtained by partial factoring and logi-
cal arithmetic.

3. Forth Finite State Machines
The FSM approach replaces the truelfalse historical sema-

phores with one state variable. The rules can be embodied in
a state table that expresses the response to each possible in-
put in terms of a concrete action and a state transition, as
shown in Figure One.

In the state table,
The illegality of "other" characters is expressed by the
uniform action X and the absence of state transitions.

8 The special status of the first character is expressed by the
fact that all acceptable characters lead to transitions out
of the initial state (0).
An initial - sign or digit leads to state 1, where a - sign is
unacceptable.
A decimal point always moves the system to state 2,

/ where decimal points are not accepted.

While some FSMs can be synthesized with BEGIN .. . WHILE
... REPEAT or BEGIN ... U N T I L loops, keyboard input does not
readily lend itself to this approach. We now explore three imple-
mentations of the state table of Figure One as Forth FSMs.

3.1. Brute-Force FSM
I The "brute-force" FSM uses the Eaker CASE statement, ei-

ther in its original form [S] or with a simplified construct
from HSIForth 161. HSIForth provides defining words CASE :
... ;CASE whose daughter words execute one of several words
in their definition, as in:
CASE :

CHOICE WORDO WORD^ WORD2 WORD3 . . . WORDn
;CASE

3 CHOICE (e x e c u t e s WORD3) Qk

we define the words in Listing Three [Note: the ANSI
Standard [7] renames A S C I I to C H A R and UNDER to

TUCK; also, DDUP is specific to HS/Forfh and should be replaced
with 2 D U P for ANSI compliance. W I T H I N as used here returns
T R U E if a I n I b, which is different from the ANS specification.
These remarks apply here and below, except as noted.]:

Now, to use CASE : ;CASE we define three words to handle
the tests in each state; see Listing Four.

Finally, in Listing Five we define the words that use the
definitions given in Listing Four.

3.2. A Better FSM
While the approach outlined above in 93.1 (essentially

the method described recently by Berrian [a]) both works and
produces much clearer code than the binary logic tree of 92,
it nevertheless can be improved. The words (0) , (I), and
(2) are inadequately factored (they contain the tests per-
formed on the input character). They also contain I F ... ELSE
... THEN branches (which we prefer to avoid for the sake of
speed and structure). Finally, each FSM must be hand crafted
from numerous subsidiary definitions.

We want to translate the state table in Figure One into a
program. The preceding attempt was too indirect-each state
was represented by its own word that did too much. Perhaps
we can achieve the desired simplicity by translating more
directly. In Forth, such translations are most naturally accom-
plished via defining words. Suppose we visualize the state
table as a matrix, whose cells contain action specifications
(addresses or execution tokens), whose columns represent
input categories, and whose rows are states. If we translate
input categories to column numbers, the category and the
current value of the state variable (row index) determine a
unique cell address, whose content can be fetched and ex-
ecuted.

Translating the input to a column number factors the tests
into a single word that executes once per character. This word
should avoid time-wasting branching instructions, so all de-
cisions (as to which cell of the table to EXECUTE) will be com-
puted rather than decided. For our test example, the prelimi-
nary definitions are given in Listing Six and the input trans-
lation is carried out by the definitions in Listing Seven.

Now we must plan the state-table compiler. In general, we
define an action word for each cell of the table that will per-
form the required action and state change. At compile time,

Listing Three

VARIABLE m y s t a t e m y s t a t e O!
: WITHIN (n a b -- f) DDUP MIN -ROT MAX ROT

UNDER MIN -ROT MAX = ;
: D I G I T ? (c -- f) A S C I I 0 A S C I I 9 WITHIN ;

: DP? (c -- f) A S C I I . = ;
: MINUS? (C -- f) A S C I I - = ;

Listing Four

: (0) (c h a r --) DUP
D I G I T ? OVER MINUS? OR
I F EMIT 1 m y s t a t e ! ELSE DUP DP?
I F EMIT 2 m y s t a t e ! E L S E DROP THEN THEN ;

(char --) DUP D I G I T ?
I F EMIT 1 m y s t a t e ! E L S E DUP MINUS? 1 I F 1 m y s t a t e ! E L S E DUP DP?
I F EMIT 2 m y s t a t e ! E L S E DROP
THEN THEN THEN ; 1 : (2) (c h a r --) DUP
D I G I T ? I F EMIT E L S E DROP THEN ;

! Listing Five
I

1 CASE: < F i x e d . P t # > (0) (1) (2) ;CASE
I

I : G e t a f i x 0 m y s t a t e ! \ i n i t i a l i z e s t a t e
I BEGIN
I

I KEY DUP 1 3 o \ n o t CR ?

I WHILE m y s t a t e @ < F i x e d . P t # > \ e x e c u t e FSM

I REPEAT ;

1 Listing Six
I

' VARIABLE m y s t a t e 0 m y s t a t e !

: WITHIN (n a b -- f) DDUP MIN -ROT MAX
i ROT TUCK MIN -ROT MAX = ;

: D I G I T ? (n -- f) A S C I I 0 A S C I I 9 WITHIN ;

: DP? A S C I I . = ;
/ : MINUS? A S C I I - = ;

1 Listing Seven
I 1 : c a t - > c 0 1 # (n -- n')

DUP D I G I T ? 1 AND \ d i g i t -> 1
I OVER MINUS? 2 AND + \ - -> 2
I SWAP DP? 3 A N D + \ dp -> 3
I
I ' \ o t h e r -> 0

the defining word will compile an ar-
ray of the execution addresses (execu-
tion tokens in ANS-Forth parlance [9])
of these action words. At run time, the
child word computes the address of
the appropriate matrix cell from the
user-supplied column number and the
current value of m y s t a t e , fetches the
execution address from its matrix cell,
and EXECUTES the appropriate action.
Since a table can have arbitrarily many
columns, the number of columns
must be supplied at compile time.
These requirements lead to the defi-
nitions in Listing Eight.

Here CREATE makes a new header
in the dictionary, , stores the top num-
ber on the stack in the first cell of the
parameter field, and] switches to com-
pile mode. The run-time code com-
putes the address of the cell contain-
ing the vector to the desired action,
fetches that vector, and executes the
action. mote: This simple and elegant
implementation only works with indirect-
threaded Forths. An ANSI Standard alter-
native is provided in the Appendix.]

Now we apply this powerful new
word to our example problem. From
Figure One we see that transitions
(changes of state) occur only in cells
(0,0), @,I), (0,2), (1,0), and (1,2).
These are always associated with
EMIT (E in the figure). No change of
state accompanies a wrong input, and
the associated action is to DROP the
character. There are, thus, only two
distinct state-changing actions we
need define:

: (0 0) E M I T 1 m y s t a t e ! ;
: (0 2) E M I T 2 m y s t a t e ! ;

Since we must test for four condi-
tions on the input character, the state
table will be four columns wide:

Listing Eight

: TUCK COMPILE UNDER ; \ ANS c o m p a t i b i l i t y
: WIDE ; \ NOOP f o r c l a r i t y
: CELLS COMPILE 2* ; \ ANS c o m p a t i b i l i t y
: CELL+ COMPILE 2 + ; \ ANS c o m p a t i b i l i t y
: PERFORM COMPILE @ COMPILE EXECUTE ; \ a l i a s
: FSM: (w i d t h --) CREATE ,]

DOES> (n adr --)

TUCK @ m y s t a t e @ * + CELLS CELL+ +
(a d r ') PERFORM ;

Forth Dimensions XX.2

4 WIDE FSM: < F i x e d . P t # > (a c t i o n # --)

\ o t h e r num - \ s t a t e
DRO P (0 0) (0 0) (0 2) \ 0
DROP (0 0) DROP (0 2) \ 1
DROP (0 2) DROP DROP ; \ 2

The word that does the work is:

: G e t a f i x
0 m y s t a t e !
BEGIN KEY DUP 1 3 0 \ n o t C R
WHILE DUP c a t - > c o l # < F i x e d . P t # > REPEAT

We can immediately test the FSM, as follows:

FLOAD F : X . 1 L o a d i n a F : X . 1 o k
ASCII 3 c a t - > c o l # . 1 o k
ASCII 0 c a t - > c o l # . 1 o k
ASCII - c a t - > c o l # . 2 o k
ASCII . c a t - > c o l # . 3 o k
ASCII A c a t - > c o l # . 0 o k

: G e t a f i x
0 m y s t a t e !

BEGIN KEY DUP 1 3 <> WHILE
DUP c a t - > c o l # < F i x e d . P t # > REPEAT ; Q&

G e t a f i x - 3 . 1 4 1 5 9 7 5 d
G e t a f i x 5 5 . 3 2 5 9 Q&

The incorrect input of excess decimal points, incorrect
minus signs, or non-numeric characters does not show be-
cause, as intended, they were dropped without echoing to
the screen.

3.3. An Elegant FSM
The defining word FSM: of 93.2, while useful, neverthe-

less has room for improvement. This version hides the state
transitions within the action words compiled into the child
word's cells. A more thoroughly factored approach would
explicitly specify transitions next to the actions they follow,
within the definitions of each FSM. Definitions will become
more readable, since each looks just like its state table; that
is, our ideal FSM definition will look like Listing Nine, so we
would never need the words (0 0) and (0 2) . Fortunately, it
is not hard to redefine FSM : to include the transitions explic-
itly. We may use CONSTANTS to effect the state transitions:

0 CONSTANT > O
1 CONSTANT > 1
2 CONSTANT > 2

and modify the run time portion of FSM: accordingly (List-
ing Ten).

Note that we have defined the run-time code so that the
change in state variable precedes the run-time action. Some-
times the desired action is an ABORT and an error message.
Changing the state variable first lets us avoid having to write
a separate error handler for each cell of the FSM, yet we can
tell where the ABORT took place. If the ABORT were first, the
state would not have been updated.

The FSM is then defined as in Listing Eleven, which is
:lear and readable. Of course, one could define the run-time
(D O E S >) portion of FSM: to avoid the need for extra
:ONSTANTS > 0, > 1, etc. The actual numbers could be stored
In the table via the code in Listing Twelve.

However, for reasons given in 94 below, it is better to imple-
ment the state transition with CONSTANTS rather than with
numeric literals.

4.The Best FSM So Far
Experience using the FSM approach to write programs has

motivated two further improvements. First, suppose one ~ e e d s
to nest FSMs, i.e., to compile one into another, or even to
RECURSE. The global variable m y s t a t e precludes such fi-
nesse. It therfore makes sense to include the state variable for
each FSM in its data structure, just as with its WIDTH. This
modification protects the state of an FSM from any acciden-
tal interactions, at the cost of one more memory cell per FSM,
since if the state has no name it cannot be invoked. Second,
suppose one or other of the action words is supposed to leave
something on the stack, and that, for some reason, it is desir-
able to alter the state after the action rather than before (this
is, in fact, the more natural order of doing things). Since there
is no way to know in advance what the stack effect will be,
we use the return stack for temporary storage, to avoid colli-
sions. The revision is, thus, as shown in Listing Thirteen.

The revised keyboard input word of our example is

: G e t a f i x
0 ' < F i x e d . P t # > !

BEGIN KEY DUP 1 3 <> WHILE
DUP c a t - > c o l # < F i x e d . p t # > REPEAT ;

Note that the state variable is initialized to zero because we
know it is stored in the first cell in the parameter field of the
FSM which can be accessed by the phrase < F i x e d . P t # > (or
the equivalent in the Forth dialect being used-see Appendix).

5. Non-deterministic Finite State Machines
We are now in a position to explain why defining a CON-

STANT to manage the state transitions is better than merely
incorporating the next state's number. First, there is no obvi-
ous reason why states cannot be named rather than num-
bered. The Forth outer interpreter itself is a state machine
with two states, COMPILE and INTERPRET; i.e., names are of-
ten clearer than numbers.

The use of a word rather than a number to effect the tran-
sition permits a more far-reaching modification. Our code
defines a compiler for deterministic FSMs, in which each cell
in the table contains a transition to a definite next state. What
if we allowed branching to any of several next states, follow-
ing a given action? FSMs that can do this are called non-de-
terministic. Despite the nomenclature, and despite the mis-
leading descriptions of such FSMs occasionally found in the
literature [lo], there need be nothing random or "guess-like"
about the next transition. What permits multiple possibili-
ties is additional information, external to the current state
and current input.

Here is a simple non-deterministic FSM used in my
FORmula TRANslator [ll]. The problem is to determine
whether a piece of text is a proper identifier (that is, the name
of a variable, subroutine, or function) according to the rules

Forth Dimensions XX.2

Listing Nine

4 WIDE FSM: < F i x e d . P t # >
\ i n p u t : I o t h e r ? I num? I m i n u s ? I d p ? I
\ s t a t e : ...

(0) DROP 0 EMIT 1 EMIT 1 EMIT 2
(1) DROP 1 EMIT 1 DROP 1 EMIT 2
(2) DROP 2 EMIT 2 DROP 2 DROP 2 ;

Listing Ten

: FSM: (w i d t h --) CREATE ,] DOES> (c o l # --)

TUCK @ (-- a d r c o l # w i d t h)
m y s t a t e @ * + 2* CELLS CELL+ + (-- o f f s e t)

DUP CELL+ PERFORM m y s t a t e ! PERFORM ;

Listing Eleven

4 WIDE FSM: < F i x e d . P t # >
\ i n p u t : I o t h e r ? I num? I m i n u s ? I d p ? I
\ state: ...

(0) DROP >O EMIT > 1 EMIT > 1 EMIT > 2
(1) D R O P > l E M I T > l D R O P > l EMIT > 2
(2) DROP > 2 EMIT > 2 DROP > 2 DROP > 2 ;

Listing Twelve

4 WIDE FSM: < F i x e d . P t # >
\ i n p u t : I o t h e r ? I num? I m i n u s ? I d p ? 1
\ s t a t e : ...

(0) DROP [0 ,] EMIT [1 , I EMIT [1 ,] EMIT [2 ,]
(1) DROP [1 ,] EMIT [1 , I DROP [1 ,] EMIT [2 , 1
(2) DROP [2 ,] EMIT [2 , I DROP [2 ,] DROP [2 , 1 ;

Listing Thirteen

: 2 @ COMPILE D@ ;

: WIDE 0 ;
: FSM: (w i d t h 0 --)

CREATE , , 1
DOES>

DUP >R 2 @ *
2* 2+ CELLS
DUP > R
PERFORM
R> CELL+
PERFORM
R> ! ;

\ a l i a s

c o l # a d r --)

-- c o l # + w i d t h * s t a t e)

-- o f f s e t - t o - a c t i o n)
-- o f f s e t - t o - a c t i o n)
?)
-- o f f s e t - t o - u p d a t e)
-- s t a t e ')
u p d a t e s t a t e '

of FORTRAN. An ID must begin with a letter, and can be up
to seven characters long, with characters that are letters or
digits. To accelerate the process of determining whether an
ASCIl character code represents a letter, digit, or "other," we
define a decoder (fast table translator):

I

Forth Dirnensi -- YX.2 9

: TAB: (#bytes --)

CREATE HERE OVER ALLOT
SWAP 0 FILL DOES> + C@ ;

and a method to fill it quickly:

: install (col# adr char.n char.1 --)

\ fast fill
SWAP 1+ SWAP
DO DDUP I + C! LOOP DDROP ;

The translation table we need for detecting IDS is

128 TAB: [id]
1 ' [id] ASCII Z ASCII A install
1 ' [id] ASCII z ASCII a install
2 ' [id] ASCII 9 ASCII 0 install

: CASE:
CREATE]
DOES> (n --) OVER + + @ EXECUTE ;

: ; CASE [COMPILE] ;
; IMMEDIATE (or just use ;)

However, it will not work with a direct-threaded Forth like
F-PC. It fails because what is normally compiled into the body
of the definition (by using I to turn on the compiler) in a
direct-threaded system is not a list of execution tokens. The
simplest alternative (it also works with indirect-threaded sys-
tems) factors the compilation function out of CASE:
: CASE: CREATE ;

: I 1
I , \ F83 and ANS version

: ;CASE \ no error checking
DOES> OVER + + PERFORM ;

This follows the Forth-79 convention that ' returns the
PFA. To convert to Forth-83 or ANSI replace ' by ' >BODY .

Thus, e.g.:

ASCII R [id] . 1 ok
ASCII s [id] . 1 ok
ASCII 3 [id] . 2 ok
ASCII + [id] . 0 ok
\ to convert to ANSI replace ASCII by CHAR

Now how do we embody the ID rules in an FSM? Our first
attempt might look like Listing Fourteen.

To make sure the id is at most seven characters long, we
had to provide eight states. The table is rather repetitious. A
simpler alternative uses a VARIABLE to count the characters
as they come in. The revision is shown in Listing Fifteen.

The resulting FSM is non-deterministic because the word
>1? induces a transition either to state 1 or to (the terminal)
state 2. It has fewer states and consumes less memory, de-
spite the extra definitions. Because we have stuck to subrou-
tines for mediating state transitions, going from a definite
transition (via a CONSTANT such as > o or > 1) to an indefinite
one requires no redefinitions.

The FSM in Figure Sixteen detects properly formed float-
ing-point numbers. The FSM (fp#) does not count digits in
the mantissa, but limits those in the exponent to two or fewer.
A non-deterministic version of (fp#) reduces the number of
states, while counting digits in both the mantissa and expo-
nent of the number (Listing Seventeen).

The task of fleshing out the details-specifically, the words
+mant, +expi ? + 1, > O? , > I?, and > 3? -is left as an exercise
for the reader.

Here is a usage example:
CASE: TEST I * I / I + I - ; CASE
3 4 0 TEST . <u>12 ok</u>

12 4 1 TEST . <u> 3 ok</u>
5 7 2 TEST . <u>12 ok</u>
5 7 3 TEST . <u>-2 ok</u>

Although the CASE statement can be made to extend over
several lines if one likes, readability and good factoring sug-
gest such definitions be kept short.

The same technique can be used to provide a version of FSM :
that works with F-PC and other F83-based or ANS-compliant
systems, for those who want to experiment with FSM: but lack
HS/Forth to try the version 54 with. The definitions are:
: I I I I \ F83 and ANS version
: WIDE 0 ;

: FSM: (width 0 --) CREATE , ;

: ; FSM DOES> (col# adr --)

DUP >R 2@ * + (-- col#+width*state)

2* 2+ CELLS (-- offset-to-action)

DUP >R (-- offset-to-action)
PERFORM (?
R> CELL+ (-- ? offset-to-update)
PERFORM (-- ? state')

R > ! ; (?) \ update state

The FSM of S3.3 now takes the form of Listing Eighteen.

6. Acknowledgments
1 am grateful to Rick Van Norman and Lloyd Prentice for

positive feedback about applications of the FSM compiler in
areas as diverse as gas pipeline control and educational com-
puter games.

10 Forth Dimensions XX.2

-- - -.

8. References
[I] See, E.G., A. V. Aho, R. Sethi and J.D. Ullman, Compilers:

Principles, Tools and Techniques (Addison Wesley Publishing
Company, Reading, MA, 1986); R. Sedgewick, Algorithms
(Addison Wesley Publishing Company, Reading, MA, 1983).

7. Appendix
Here is a high-level definition of the HS/Forth CASE:

... ;CASE (albeit it imposes more overhead than HS/Forthls
version) that works in indirect-threaded systems:

[2] J.V. Noble, "Avoid Decisions", Computers in Physics 5:4
(1991) p 386.

[3] J. Basile, "A Forth Finite State Machine", I. Forth Appl. and
Res. 1:2 (1982) pp 76-78

[4] E. Rawson, "State Sequence Handlers", 1. Forth Appl. and
Res. 3:4 (1986) pp 45-64.

[6] HS/Forth, Harvard Softworks, P.O. Box 69, Springboro, OH [lo] A.K. Dewdney, The Turing Omnibus: 61 Excursions in Com-
45066. puter Science (Computer Science Press, Rockville, MD, 1989),

Proc. 1989 Rochester Forth Conf., (Inst. for Applied Forth Res.,
Inc., Rochester, NY 1989) pp. 1-5.

[5] C. E. Eaker, Forth Dimensions Vol I1 No. 3 SeptemberIOcto-
ber 1980, pp 37-40.

[9] J. Woehr, Forth: The New Model (M&T Books, San Mateo,
CA, 1992) p. 43ff.

Listing Fourteen

[7] ANSl X3.215-1994, American National Standard for
Infomation Systems -Programming Languages -Forth, Ameri-
can National Standards Institute, New York, NY 1994.

[8] D.W. Berrian, "Forth Based Control of an Ion Implanter",

3 WIDE FSM: (id)
\ input: I other I letter I digit I

p. 154ff.

[l 11 J.V. Noble, Scientific Forth: a modem language for scientific
computing (Mechum Banks Publishing, Ivy, VA 1992). See esp.
Ch. 11 and included program disk.

NOOP >8
NOOP >8
NOOP >8
NOOP >8
NOOP >8
NOOP > 8
NOOP >8
NOOP >8

1+ >1
1+ >2
1+ >3
1+ >4
1+ >5
1+ >6
1+ >7

NOOP >8

NOOP >2
1+ >2
1+ >3
1+ >4
1+ >5
1+ >6
1+ >7
NOOP >8 ;

: state<
[COMPILE] ' L I T E R A L ; IMMEDIATE

\ compile address of "state" cell of a FSM
\ for F83 or ANS replace ' with ' >BODY

: <id> ($end $beg -- f)
0 state< (id) !
BEGIN DUP C@ [id] (id)

DDUP >
state< (id) @ 2 <
AND

WHILE 1+
REPEAT DDROP
state< (id) @ 8 < ;

Listing Fifteen

f = T for id, F else
initialize state to 0
run fsm
Send > $beg ?
not terminated ?
combine flags
$beg = $beg+l
finish loop, clean up
leave flag

1 VARIABLE id.len 0 id.len !
: +id.len id.len @ 1+ id.len ! ; \ increment counter
: > l? id.len @ 7 < DUP 1 AND SWAP NOT 2 AND + ;

' (-- 1 if id.len < 7, 2 otherwise)

3 WIDE FSM: (id)
\ input: I other I letter I digit I
\ state

(0) NOOP >2 +id.len >1 NOOP > 2
(1) NOOP >2 +id.len >1? +id.len >1? ;

: <id> ($end $beg -- f)
0 id.len ! 0 state< (id) !
BEGIN DUP C@ [id] (id)

DDUP >
state< (id) @ 2 <
AND

WHILE 1+ REPEAT DDROP
state< (id) @ 1 = ;

f = -1 for id, 0 else
initialize
run fsm
Send > $beg ?
not terminated ?
combine flags
$beg = $beg+l
leave flag

Forth Dimensions XX.2 11

Listing Sixteen

128 TAB: [fp# l \ d e c o d e r f o r f p #

I ' [fp#l ASCII E ASCII D i n s t a l l
1 ' [fp#] ASCII e ASCII d i n s t a l l
2 ' [f p #] ASCII 9 ASCII 0 i n s t a l l
3 ' [f p #] ASCII + + C!
3 ' [f p #] ASCII - + C!
4 ' [f p #] ASCII . + C!

: #err CRT \ r e s t o r e no rma l o u t p u t
." Not a c o r r e c t l y fo rmed fp#" ABORT ; \ f p # e r r o r h a n d l e r

5 WIDE FSM: (f p #)
\ i n p u t : I o t h e r I
\ s t a t e : -------------

(0) NOOP > 6
(1) NOOP > 6
(2) NOOP > 6
(3) NOOP > 6
(4) NOOP > 6
(5) NOOP > 6

dDeE I
. - - - - - - - - - - -
NOOP > 6
1 + > 2
e r r > 6
e r r > 6
e r r > 6
#err > 6

d i g i t I

1+ > o
1+ >1

NOOP >4
1 + > 4
1+ >5

+ o r - 1

NOOP > 6
e r r > 6
1+ > 3
e r r > 6
e r r > 6
e r r > 6

: s k i p - DUP C@ ASCII - = - ; \ s k i p a l e a d i n g -
\ E n v i r o n m e n t a l dependency : a s s u m e s " t r u e " i s -1

: < f p # > ($end $beg -- f)
0 s t a t e < (f p #) ! \ i n i t i a l i z e s t a t e
s k i p - \ i g n o r e l e a d i n g - s i g n

1- BEGIN 1 + DUPC@ [f p #] (f p #) \ r u n fsm
DDUP < \ $end < $beg ?
s t a t e < (f p #) @ 6 = OR \ t e r m i n a t e d by e r r o r ?

UNTIL DDROP \ c l e a n u p
s t a t e < (f p #) @ 6 < ; \ l e a v e f l a g

1 Listing Seventeen ~
1 5 WIDE FSM: (f p #)
I \ i n p u t : I o t h e r I dDeE I d i g i t I + o r - I d p I
j \ s t a t e : ...

(0) NOOP > 4 NOOP > 4 +mant > O ? NOOP > 4 1 + > 1

(1) NOOP > 4 ? I + >2 +mant >1? # e r r > 4 # e r r > 4

(2) NOOP > 4 # e r r > 4 + e x p > 3 1+ > 3 # e r r > 4

(3) NOOP > 4 #err > 4 +exp >3? # e r r >4 # e r r >4 ;

(Listing Eighteen

1 4 WIDE FSM: < F i x e d . P t # >
i \ i n p u t : I o t h e r ? I num? I mi.nus? I dp? I

(0) I DROP I > O I EMIT I >1 I EMIT I > I I EMIT 1 > 2
(1) I D R O P I > ~ I E M I T I > l (D R O P l > 1 I EMIT 1 > 2
(2) I DROP 1 > 2 1 EMIT 1 > 2 1 DROP 1 > 2 1 DROP 1 > 2 ;FSM

I : s t a t e < i
>BODY LITERAL ; IMMEDIATE

: G e t a f i x 0 s t a t e < < F i x e d . P t # > !
BEGIN KEY DUP 1 3 <> WHILE
DUP c a t - > c o l # < F i x e d . p t # > REPEAT ;

12 Forth Dimensions XX.2

I once received an author's manual from another tech-
nical magazine. It was 26 pages of intimidating restrictions,
rules, and regulations. You got the impression that, even if
you managed to learn and obey all those constraints, the
editors would be doing you a big favor if they deigned to
publish your work.

Our guidelines, by contrast, are meant to encourage you.
They are minimal, in order to accommodate different kinds
of writing (scholarly/academic, anecdotal, philosophical,
editorial, how-to, tutorial, etc.) and so as not to discourage
anyone from sharing their Forth knowledge and experience.

Being published in the most widely read Forth periodi-
cal brings both personal and prfessional benefits. And the

Forth community's vitality springs from good ideas, well com-
municated, circulating through many interesting and in-
formed minds. We encourage you to write, and we hope that,
like our other authors, you will be pleased when your article
appears and will want to write often.

If you have an idea but aren't sure if it would make an
appropriate article, or if you have any other questions, please
feel free to contact me. It will be my pleasure to assist.

-Marlin Ouverson, Editor
editoT@forth.org

C/O Forth Dimensions
100 Dolores Street, Suite 183

Camel , California 93923 USA

/ What Makes a Good FD Article !
We'd like to hear your suggestions. If you feel a subject is impor-
tant, interesting, befuddling, or helpful, chances are good that many
of your fellow readers of FD will agree. Here are just a fav ideas
from our list of editorial wishes:

Tutorials about fundamental Forth techniques like
factoring, minimizing stack juggling, and readability.
Description of interesting details of ANS Forth that differ
from previous practice.
Application stories that show Forth in action. Describe
the challenges, tell how you arrived at a solution, and
share the final results.
Classical programming problems demonstrated in Forth
(e.g., sorts, filters, date routines) and efficient Forth

versions of useful features found in other languages (e.g.,
strings a la Snobol, grep from C).
Human-interest profiles of successful Forth vendors,
corporate users, implementors, and innovators.
Hardware-related pieces about, for example, Forth chips,
embedded systems, robotics, and data acquisition. Such
articles are most useful if they include "how-to" info.
Experimental work that charts new directions for Forth or
that addresses perceived deficiencies.
Work that consolidates previously published material or
that builds on or subtantially improves earlier articles.
Ways to improve Forth's visibility and acceptance.
Academic papers, including Computer Science perspec-
tives, are welcome although FD is not formally refereed.

Forth Dimensions XX.2 13

Tips for New Writers - and getting rid of "blocks"
Every writer in an individual, so what encourages one may in-
hibit another. But if you can't seem to get started--or to fin-
ish--one of these ideas might help.

Plan your article. Try top-down design and bottom-up
writing: Start with your subject, make an outline, and
check the logical flow of the information. Write the .
sub-sections, then work on smooth transitions be-
tween them. Add a motivational introduction and .
overview, then write a conclusion with observations,
suggestions, and a summary.
Thinking too critically or analytically while writing
can dry you up. If this happens, just relax and jot
down all your important points without regard for
logic, format, spelling, etc. This is the brain-dump
phase, and no one but you will see it. Later, simply re-
write and organize for clarity, focus, conciseness,
organization, and completeness.
Challenge the reader. When you take a stand or issue a
challenge, readers tend to get involved, thinking and

acting on their own-a worthy goal of many writers. SO
provoke readers to improve upon or extend your work,
and to test it in their own environments; and encourage
them to report their findings to FD in an article or letter
to the editor.
Have a beta test. Ask a friend or co-worker to read your
article, or present it at a local FIG Chapter meeting to see if
it communicates as well as you hope and to elicit useful
feedback. Accept advice that makes your code or tech-
nique or article better (and tactfully ignore the rest).
Ask for help. Often there are people at work, at the local
FIG Chapter, or at on-line Forth venues who are happy to
critique your ideas or even to co-author an article.
Finally, learn when to let go. No one ever feels completely
ready to deliver that code or manuscript. Like many an
application program, an article is subject to endless
revision, refinement, and improvement until it ships. If it
communicates well enough, is complete enough, and is
accurate, ship it and move on! on page 31.)

If, in a 16-bit Forth, you type:

the system responds:

Often, it's not OK. Many will remember that a patient was
killed when an X-ray treatment machine delivered a massive
overdose. The operator's display had shown the proper dose
but, because of attempted corrections to the input, the dis-
played number was not the internally active number. Ever
since I read that report, I have made sure that such an error
could never occur in any of my programs. On a CRT with
addressable cursor, I erase and rewrite the entire number af-
ter each change.

I am now designing a system that uses a 20-key keypad
and an LCD display as the operator interface. It is built around
an NMIY-0020 board from New Micros Inc., and its 68HC11
processor has a MAXforth kernel in ROM. The keypad and
display are standard devices, and the board has built-in inter-
faces to them.

My intention is that one or the other
of these checks ... suffices to

guarantee a number on the stack that
matches the number on the display.

Keypad code supplied by New Micros uses a table-driven
translator to map the keys to ASCII. By switching two pairs of
wires, I am able to read the keypad directly as numbers, sim-
plifying some of my code. The keys are labeled 0-F, and four
blank keys with removable transparent covers are easy to la-
bel as desired. The keys, together with the interface, produce
hex codes 0-13; with my alteration, they mean what they
say. Codes 10-13 are minus, clear, backspace, and end.

The display I use is a passive liquid crystal display, but lighted
LCDs and plasma displays that have the same pinout and re-
spond to the same command set are available. The displays
accept ASCII characters, have addressable cursors, and can re-
port cursor position and the character at the cursor. They also
have enough RAM so that eight characters can be defined by

the program. (I can have a ", the degree symbol-nice!)
Thecode in the listings doesn't erase and rewrite after ev-

ery change. Rather, the number is built on the display, and is
read from the display when the operator presses End. The
application must address the cursorto the part of the display
where the number is to appear before using ~ c d # to build the
number. ~ c d # expects TOS to be a number that sets the maxi-
mum number of digits, and leaves with a validity flag in TOS,
and the number itself below it. It works in any base from
binary to hex, and accepts only keys that have meaning in
the current base. ~ c d # won't accept more digits than speci-
fied, but a minus sign (accepted only as the first character)
doesn't count as a digit.

~ c d # can handle 16-bit numbers. The validity flag doesn't
check all possible errors. Because the checks appropriate to
signed and unsigned numbers differ, and ~ c d # can input ei-
ther, either a final check must be made by the callingappli-
cation, or the code must be further specialized. The variable
i n v e r t # contains the intended sign of the returned number.
It has meaning until another number is built. For unsigned
numbers, it must be zero (or the user entered a minus sign-
you can check); and for signed numbers, it must agree with
the actual sign of the returned number. My intention is that
one or the other of these checks, combined with the validity
flag, suffices to guarantee a number on the stack that matches
the number on the display.

There is a way to get a wrong input, but it is easily avoided.
The cursor will wrap from the end of the display back to the
beginning, but not the other way. An attempt to build a num-
ber in a place where it can wrap around the end must be
avoided. I can fix the code, but why?

There are many people I must-thank for the help they
provided in making this code better than 1 could have made
it on my own: Rob Chapman, for the insights he provided
into MAXforth; the people at NMI, who produced my nifty
little system, supplied it with sample code, and made it a joy
to use; and the many participants at comp.lang.forth from
whom I learned much simply by reading their posts to oth-
ers, and who always answered my how-do-I questions.

Additional code
The author can share "a little more code" that might be of

interest to someone who wants to put messages on a display
(e.g., lcd-type); contact hfm via e-mail.

14 Forth Dimensions XX.2

(Listing Zero: words needed t o load the r e s t

/ : \ 0 WORD DROP ; IMMEDIATE \ Skip-rest-of-line word. (I like to have two.)

I : WITHIN (n lo-limit hi-limittl -- ?) OVER - > R - R> U< ;

I

\ Listing One

1 BASE @ HEX

1 \ Support for 2 line by 40 character display. Thanks with nod to NMI JYA 2aug98

I

I B080 CONSTANT lcd-cmd B081 CONSTANT lcd-data

\ Wait until the LCD isn't busy. (This can hang. Multitasking is better.)
: lcd-wait (--) BEGIN lcd-cmd C@ 80 AND O= UNTIL ;

\ Send command or data to LCD.
: lcd-cmd! (C --) lcd-wait lcd-cmd C! ; 1 : lcd-emit (C --) lcd-wait lcd-data C! ; \ LCD analog of EMIT

\ Make specific LCD command words.
: lcd-make (c --) CREATE , DOES> (--) @ lcd-cmd! ;

1 lcd-make lcd-clear 2 lcd-make lcd-home 8 lcd-make lcd-off
C lcd-make lcd-on (On, no cursor) E lcd-make lcd-cur (On, with cursor)

: lcd-attr (blink? cursor? display? --) \ Sets three display attributes
0= 3 + 2* SWAP O= 1+ OR 2* SWAP O= 1+ OR lcd-cmd! ;

\ Initialize the LCD. Specific to a two-line by 40 display. ! : lcd-init (--) 01 OC 06 38 38 5 0 DO lcd-cmd! LOOP ;

I / \ The next 2 words translate cursor locations by number to and from LCD
\ data RAM addresses and add (on write) or strip (on read) the control bits
\ They too are specific to a two-line by 40 display.

I : lcd-at (a --) 80 OR DUP A7 > IF 18 + THEN lcd-cmd! ; \ Write cursor addr 1 (Undocumented: FF lcd-cmd! resets the cursor, so BS doesn't need to check.)

: Icd-at? (-- a) lcd-cmd C@ DUP 27 > IF 18 - THEN ; \ Get current cursor.
\ This supposes that the display isn't reading GC RAM. The supposition is
\ true if cg-addr! hasn't been executed, or if lcd-at was executed after it.
\ (cg-addr! is used to generate special characters in character-generator RAM.

) \ That code isn't part of this listing.)

\ Carriage return, line feed, backspace, ->, and <-. All but BS and lcd- wrap.
: lcd-cr (--) lcd-at? 28 / 28 * lcd-at ; \ Beginning of line
: lcd-lf (--) lcd-at? DUP 27 > IF 28 - ELSE 28 + THEN lcd-at ; \ Other line
: lcd-bs (--) lcd-at? 1- DUP lcd-at BL lcd-'emit lcd-at ; \ Destructive BS
: lcdt (--) lcd-at? 1t lcd-at ; \ Advances cursor position
: lcd- (--) lcd-at? 1- lcd-at ; \ Backs cursor position

BASE !

Forth Dimensions XX.2 15

\ Listing Two

\ Grayhill Keypad Series 86, marked 86JB2-202 G-97-059-J-9742 D$FPJ
\ Leads H <-> J and L <-> M are interchanged to simplify decoding.
\ NMI's Keypad.4th, modified. JYA; 7Aug98 Revised for F.D. 21Sep98

1 \ KEYPAD ROUTINES

I BASE @ HEX

BOOA CONSTANT keypad

i \ True if a keypad key is pressed. Debouncing doesn't seem to be problem! 1 : ?keypad (-- flag) 8000 C@ 1 AND ;

(Wait for keypad key to be released. This can hang at the user's whim!
: kp-release (--) BEGIN ?keypad O= UNTIL ;

\ wait for a keypad key
: get-key (-- button) (

BEGIN ?keypad UNTIL keypad C@ 2 / 2/ 2/ ;

1 : num->char (n -- c) DUP A < IF 30 ELSE 37 THEN + ;

\ Return the key number, wait for key release)

: kp-key (-- n) get-key kp-release ; \ Keypad analog of KEY

(NUMBER INPUT VIA keypad AND DISPLAY

(wait for a single digit. Reject any non-digit and continue waiting
(return the value of the digit 0 to BASE 1-
: lDIGIT (-- n) (n -> LCD

BEGIN kp-key DUP BASE @ < NOT WHILE DROP REPEAT
DUP num->char lcd-emit ;

BASE !

\ Listing Three

\ A relatively foolproof way to read numbers with a keypad and alphanumeric
\ display. The number is first built on the display (in any base) and then
\ read back onto the data stack. TOS is validity flag which reports overflow
\ and catches non-numeric characters. The application can check twos-
\ complement wrap-around by comparing the sign of the result with the contents
\ of invert# before another number is built. When building the number, only
\ allowed keys are accepted. That is, only numeric keys are effective in base
\ 10, the minus sign works only in the first p~sition, and only as many
\ entries are accepted as the calling the argument specifies. (The editing
\ keys continue to work.) JYA 9Aug98 Revised for F.D. 21Sep98

BASE @ HEX 0 CONSTANT NO -1 CONSTANT YES
VARIABLE invert# VARIABLE #symbols VARIABLE valid#
: new# (--) NO invert# ! 0 #symbols ! YES valid# ! ;
: good-key (n -- n ?) \ Flag is false if key need not be dealt with

DUP 2DUP (n n n n)
10 > SWAP (n n ? n)
BASE @ < OR SWAP (n ? n)
10 = #symbols @ O= AND
invert# @ O= AND OR ; (n ?

16 Forth Dimensions XX.2

: lsymbol (-- n) (10 through 13: -, ESC, BS, enter)

BEGIN kp-key good-key NOT WHILE DROP REPEAT ;

: key-bs (--) \ Remove the last entry
#symbols @ I F
lcd-bs #symbols I-!

E L S E
invert# @ I F

lcd-bs NO invert# !
THEN

THEN ;

: restart# (--) \ Remove all entries
#symbols @ invert# @ + ?DUP I F
0 DO lcd-bs LOOP

THEN new# ;

: char->num (c -- n)

DUP DUP 3 A 41 WITHIN SWAP 30 < OR I F NO valid# ! THEN
DUP 39 > I F 37 E L S E 30 THEN - :

: build# (n-max -- n-actual) new# lcd-cur \ n is the number of digits.
BEGIN lsymbol DUP 13 = NOT WHILE

DUP 10 = I F invert# l+! 2 D lcd-emit THEN
DUP 11 = I F restart# THEN
DUP 12 = I F key-bs THEN
OVER #symbols @ > OVER 10 < AND IF

#symbols I+! num->char lcd-emit E L S E DROP
THEN

REPEAT 2DROP #symbols @ ;

: read# (n-actual -- result valid-flag) \ lcd-on
0 SWAP DUP I F

DUP lcd-at? SWAP - lcd-at
0 DO BASE @ UM* lcd-data C@ char->num DUP
BASE @ < NOT I F NO valid# ! THEN
0 D+ I F NO valid# ! THEN LOOP

invert# @ I F NEGATE THEN
ELSE NO valid# ! DROP
THEN valid# @ ;

: Lcd# (n-max -- value valid-flag) build# read# ;

BASE !

Forth Dimensions XX.2 17

EXPRESS is a programming and operating system for the
IBM type of computer, especially suitable for running ma-
chinery or running a factory. Years of development by FORTH,
Inc. have made it competitive with programs written by large
programming companies. Its particular specialty is real-time
performance-more difficult than one would think but, of
course, well-suited to Forth. An electrician testing my system
pressed the switches on my simulator to see how fast the soft-
ware would follow, pronouncing it successful in contrast to
other systems he had seen. An industrial program requires
industrial prices to keep it supported, so you won't see EX-
PRESS in a hobby environment.

My system took four years to develop and is 4.2 Mega-
bytes of compiled Forth, large by EXPRESS standards. It runs
almost all of four lime kilns, rock and lime distribution, and
a crusher having nothing to do with the rest of the lime plant.
Local control is effected with locally placed General Electric
Programmable Logic Controllers (PLCs) distributed at the
various use sites. A Stargate computer card from FORTH, Inc.
provides eight RS-232 ports with eight individual small pro-
grams communicating with those ports. The PLCs are used
mostly as dumb I10 terminals with the following exceptions:
The more-distant PLCs and the complicated ones have a PLC
program that toggles a bit back and forth at about 112 Hz,

The superintendent told me
to not listen to the workers,

so I went out of my way to hear
what they had to say.,,

said bit to be read by EXPRESS. Another toggling bit is estab-
lished at the EXPRESS end for each PLC. If either end or both
ends fail to receive the other's toggling bit for five seconds,
the PLC shuts down the chosen machinery outputs for safety
purposes. If shutdown happens, the operator must re-establish
kiln rotation, by computer or other means, or the lime kiln
will be damaged. In real life, most of these errors have taken
place by software blunders, especially by yours truly, but, we
rapidly get the plant operating again without harm. By "we," I
mean myself and the electrician assigned to help me. I am not
allowed to tamper with software alone while on site.

To help writing the new program, FORTH, Inc. provides
an already known good program. MIXER.SRC illustrates good
programming techniques, which one can then modify to ac-
complish the new goal. (FORTH, Inc. also provides training

classes to help the starting programmer.)
The way I actually started was to program a minimalist belt

system to distribute limestone. The virtues of this approach
were that I could practice writing and could introduce the
workers to a simple system in order not to overwhelm them. It
is important to consider workers' fear, and one should not dis-
count it. At a lime plant hundreds of miles away, the prospect
of facing a new, full-blown, running computer system with
minimal training was so daunting that several men resigned
their jobs. Why? If you wreck a $10,000,000 lime kiln, man-
agement will look at you real funny for a long time.

Starting on my end with a simple stone belt distribution
system, I drew a screen background with PC Paintbrush in 16
colors. One calls this background into place with the EXPRESS
screen editor and then uses other EXPRESS software to lay
icons and pushbuttons on this screen. I had a hard time start-
ing up programming and made numerous phone calls to
Dennis Ruffer, the main EXPRESS wizard at that time. My
main difficulty lay in doing all the steps to make one
pushbutton or one digital icon. I have since written my own
instructions for doing this.

After getting this program working, we redid it in light of
the worker' experiences. The superintendent told me to not
listen to the workers, so I went out of my way to hear what
they had to say; I mostly got away with implementing their
desires. I quickly changed the meaning of the color icons.
Now, green is only used for an electric motor running; stopped
is gray or dark gray. Red is never used for stop, it means dan-
ger, instead. Dark green means that switches are set okay; the
opposite is gray, dark gray, or red for tripped fuse. Dark red
means a minor danger. This is in contrast to their hard-wired
electrical panels, where green may mean a motor is running,
but red may mean the same.

In contrast to establishing the icons, programming the
logical operations in the PRoCEsses wasn't so hard. EXPRESS
uses a partial infix notation to make the instructions English-
like. Also, they have set up the logic as a state machine, which
was a new form of logic to me. The idea of a state machine is
that if you use a statement to turn an output on, you have to
use another statement(s) to turn it off, rather than relying on
the negation of the original statement. For example, see List-
ing One.

In this state machine, the first statement will turn cs2-
LI on forever without the second statement. It requires the
second statement or equivalent statements to provide for turn-
ing off c s2 -LI. The state machine does not scan through the
list of rules over and over again like the PLC logic does, for
example. The state machine remains idle until an event oc-
curs. In this example, the event is the turning on or turning
off of cs2-au or cs2-ov. Then it will scan the list of rules

18 Forth Dimensions XX.2

1

FORTH INTEREST GROUP MAIL ORDER FORM
HOW TO ORDER: Complete form on back page and send with payment to the Forth lnterest Group. All items
have one price. Enter price on order form and calculate shipping & handling based on locatlon and total.

A volume consists of the six issues from the volume year (May-April).

Volume 1 Forth Dimensions (1 974-80) , 01 - $35
Introduction to FIG, threaded code, TO variables, fig-Forth.

Volume 6 Forth Dimensions (1 984-85) 106 - $35
Interactiveeditors, anonymous variables, list handlin ,integer
soluti?ns, control struqtures. debugging tecfni?es:
recurs~on, semaphores, simple I/O words, Qu~cksort. ~gh
level packet communications, China FORML.

Volume 7 Forth Dimensions (1 985-86) 107 - $35
Generic sort, Forth spreadsheet, control structures, pseudo-
interrupts, number editing, Atari Forth, pretty printing, code
modules, universal stack word, polynomial evaluation, F83
strlngs.

Volume 8 Forth Dimensions (1 986-87) 108 - $35
lnterru t-driven serial input, database functions, TI 99/4A,
XMOD~M, on-line documentation, dual CFAs, random
numbers, arrays, file query, Batcher's sort, screenless Forth,
c l a s ~ s in Forth, Bresenham line-drawing algorithm, unsigned
division. DOS file I/O.

Volume 9 Forth Dimensions (1 987-88) 1 09 - $35
Fractal landscapes, stack error checking, perpetual date
routines, headless compiler, execution security, ANS-Forth
meeting, computer-alded instruction, local variables,
transcendental functions, education, relocatable Forth for
68OGQ.

Volume 10 Forth Dimensions (1 988-89) l1 O - $35
dBase file access, string handlin , local variables, data
structures. object-oriented Forth, fnear automata, stand-
alone applications, 8250 drivers, serial data compression.

Volume 1 1 Forth Dimensions (1 98S90) 111 -$35

Local variables, graphic filling algorithms, 80286 extended
memory, expert systems, quaternion rotation calculation,
multiprocessor Forth, double-entry bookkeeping, binary
table search, phase-angle differential analyzer, sort contest.

Volume 12 Forth Dimensions (1 990-91) 112-$35

Floored division, stack variables, embedded control, Atari
Forth, o timizing compiler, dynamic memory allocation,
smart F ~ M , eet~nded- recision math. interrupt handling,
neural nets, Soviet ~ortE, arrays, metacompilat~on.

Volume 13 Forth Dimensions (1 991-92) 113-835 '

Volume 14 Forth Dimensions (1 992-93) 114 -$35

Volume 15 Forth Dimensions (1 993-94) 115 - $35
Volume 16 Forth Dimensions (1 994-95) 116 -$35

Volume 17 Forth Dimensions (1 995-96) 117-$35

Volume 18 Forth Dimensions (1 99697) - $35

F O R M (Forth klodiification I-abratory) is an educational forum for
sharing and discussing new or unproven proposals intended to benefk
Forth, and is for discussion of technical aspects of applications in Forth.
Proceedings are a compilation of the papers and abstracts presented at
the annual conference. FORML IS part of the Forth Interest Group.

1981 FORML PROCEEDINGS 31 1 - $45
CODE-less Forth machine, uadruple-precision arithmetic,
overlays, executable vocabaa stack, data typing in Forth,
vectored datastructures, using;l)orth in aclassroom, pyramid
files, BASIC, LOGO, automatic cueing language for
multimedia, NEXOS - a ROM-based multitasking operating
system. 655 pp.

1982 FORML PROCEEDINGS 31 2 - $30
Rockwell Forth processor, virtual execution, 32-bit Forth.
ONLY for vocabularies, non-IMMEDIATE looping words,
number-input wordset, I/O vectoring, recurslve data
structures, programmable-logic compiler. 295 pp.

1983 FORML PROCEEDINGS 313 - $30
Non-Von Neuman machines, Forth instruction set, Chine*
Forth, F83, compilerBinterpreterco-routines, &exponent~al
function, rational arithmetic, transcenden3 functions in
variable-precision Forth, portable file-system interface, Forth
coding conventions, expert systems. 352 pp.

1984 FORML PROCEEDINGS 314 - $30
Forth expert systems, consequent-reasonin inferenceengine,
Zen floating point, portable graphics worjset. 32-bit Forth,
HP71 B Forth, NEON-object-orientedpr ramming, decom-
piler design, arrays and stack variables.?78 pp.

1986 FORML PROCEEDINGS 31 6 - $30
Threading techniques, Prolog, VLSl Forth microprocessor,
natural-Ian uage interface, expert system shell, inference
engine, mugiple-inheritance system, automatic programming
environment. 323 pp.

1988 FORML PROCEEDINGS 318 - $40
Includes 1988Australian FORML. Human interfaces, simple
robotics kernel, MODUL Forth, parallel processing,
programmable controllers, Prolog, simulations, language
topcs, hardware, Wil's workings & Ting's philosoph , Forth
hardware applications, ANS Forth sesslon, future of Forth in
Al applications. 310 pp.

1989 FORML PROCEEDINGS 319- $40
Includes papers from '89 euroFORML. Pascal to Forth,
extensible optimizer for compiling, 30 measurement with
object-oriented Forth, CRC polynomials, F-PC, Harris C
cross-com iler, modular approach to robotic control. RTX
recom iler g r on-line maintenance, modules, trainable neural
nets. 833 pp.

1992 FORML PROCEEDINGS 322 - $40
Object-oriented Forth based on classes rather than
prototypes, color vision sizing processor, virtual file systems,
transparent target development, signal-processing pattern
classification, optimization in low-level Forth, local variables,
embedded Forth, auto displa of di ital images, graphics
package for F-PC, 8-tree in Arth 280 pp.

1993 FORML PROCEEDINGS 323 - $45
Includes papers from '92, euroForth and '93 euroForth
Conferences. Forth In 32-bit protected mode, HDTV format
converter, graphing functions, MIPS eForth, umbilical
compilation, portable Forth engine, formal specifications of
Forth, writ~ng better Forth, Holon -.a new way of Forth,
FOSM-a Forth string matcher, Logon Forth, programming
product~vity. 509 pp.

1994-1 995 FORML PROCEEDINGS (in one volume!) 325 - $50

FORTH PROGRAMMERS HANDBOOK,
I Edward K. Conklin and Elizabeth D. Rather

1 ALL ABOUT FORTH. 3rd ed.. June 1990, Glen B. Haydon 201 - $90

Annotated glossary of most Forth words in common use,
including Forth-79, Forth-83, F-PC, MVP-Forth. Implementa-
tion examples in high-level Forth and/or 8086/88 assembler.
Useful commentary gtven for each entry. 504 pp.

eFORTH IMPLEMENTATION GUIDE, C.H. Ting 215 - $25

eForth is a Forth model designed to be portable to many of
the newer, more powerful processors available now and
becoming available in the near future. 54 pp. (wldisk)

Embedded Controller FORTH, 8051, William H. Payne 216 - $76

Describes the im lementation of an 8051 version of Forth.
More than half ofihis book is composed of source listings
(w/disks C050) 51 1 pp.

F83 SOURCE, Henry Laxen & Michael Perry 21 7 - $20

A complete listing of F83, including source and shadow
screens. Includes introduction on getting started. 208 pp.

F-PC USERS MANUAL (2nd ed., V3.5) 350 - $20

Users manual to the public-domain Forth system optimized
for IBM PC/XT/AT computers. A fat, fast system wlth many
tools. 7 43 pp.

F-PC TECHNICAL REFERENCE MANUAL 351 - $30

A must if you need to know F-PC's inner workings. 269 pp.

THE FIRST COURSE, C.H. Ting 223 - $25

This tutorial goal exposes you to the minimum set of Forth
instructions you need to use Fyth to solve practical problems
in the shortest possible time. ... This tutorial was developed
to complement The Forth Course whlch skims too fast on
theelementary Forth instructionsand dives too quickly in the
advanced topics in an upper-level college mlcrocomputer
laboratory ...' A running F-PC Forth system would be very
useful. 44 pp.

THE FORTH COURSE, Richard E. Haskell 225 - $25

This set of 11 lessons is designed to make it easy for you to
learn Forth. The material was developed over several years
of teaching Forth as part of a seniodgraduate course In the
design of embedded software computer systems at Oakland
University in Rochester, Michigan. 156 pp. (w/disk)

FORTH NOTEBOOK, Dr. C.H. Ting 232 - $25

Good examples and applications - a great learning aid.
polyFORTH IS the dialect used, but some conversion advice
IS tncluded. Code IS well documented. 286 pp.

FORTH NOTEBOOK II, Dr. C.H. Ting 232a - $25

Collection of research pa ers on various topics, such as
ima e processin , para~lerprocessin~, and miscellaneous
appfcations. 23Qpp.

This reference book documents all ANS Forth wordsets
with detalls of more than 250 words), and describes the
' . '
orth v~rtual machine. imolementation strateaies. the im~act

of multitasking on p;bg% design, Forth a&emblers,' and
codlng style recommendat~ons. I

INSIDE F-83, Dr. C.H. Ting 235 - $25 I
Invaluable for those using F-83.226 pp. I

OBJECT-ORIENTED FORTH, Dick Pountain 242 - $37 I
Implementation of data structures. First book to make
object-oriented programming available to users of even very
small home computers. 118 pp.

STARTING FORTH (2nd ed.) Limited Reprint, Leo Brodie 245a - $50 1
In this edition of Startin Forth-the most popular and
complete introduction to grth-s ntax has been expanded
to include the Forth-83 standard (The ori inal printing is
now out of stock, but we are m a w avalgble a special,
limited-edition reprint with all the original content.) 346 pp.

THINKING FORTH, Leo Brodie 255 - $35

Back by popular demand! To rogram intelligently, you
must first think intell~gently. and tt?at8s where f inking Forth
comes in. The bestselling author of Starting Forth IS back
again with the first gutde to using Forth for applications. ?is
book captures the ph~losophy of the language, showlng
users how to write more readable, better maintainable
ap lications. Both b inning and experienced programmers
wily ain a better unzrstanding and mastery of topics like
~ o r t f style and conventions, decomposit~on, factoring,
handling data, simplifying control structures. And, to ive
ou an idea of how these concepts can be applled, ~ h n i n

forth contains revealin interviews g t h users and wita
~orth 's creator ~har les I? Moore. Reprlnt ofong1nal,272pp.

WRITE YOUR OWN PROGRAMMING LANGUAGE USING C++,
Norman Smith 270 - $1 6

This book is about an application language. More specifically,
it is about how to write your own custom application
language. The book contains the tools necessary to begin
the process and a complete sample language
implementation. (Guess what language!) Includes disk wtth
complete source. 7 08 pp.

WRITING FCODE PROGRAMS 252 - $52 I
This manual is for designers of SBus interface cards and
other devices that use the FCode interface language. It
assumes familiarity with SBus card design requlrements
and Forth programming. Discusses SBus development for
OpenBoot 1 .O and 2.0 systems. 414 pp.

LEVELS OF MEMBERSHIP
Your standard membership in the Forth Interest Group brings
Forth Dimensions and participation in FIG's activities-like
members-only sections of our web site, discounts, special
interest groups, and more. But we hope you will consider
joining the growing number of members who choose to show
their increased support of FIG's mission and of Forth itself.

Ask about our special incentives for corporate and library
members, or become an individual benefactor!

Forth Dimensions, Article Reference 151 -$4
An indexof Forth articles, by keyword, from Forth Dimensions
Volumes 1-1 5 (1 978-94).

Library - $1 25
Benefactor - $1 25
Standard - $45 (add $1 5 for non-US delivery)

FORML, Article Reference 152-$4
An indexof Forth articles by keyword, author, and date from
the FORML Conference Proceedings (1 980-92).

Forth Interest Group
See contact info on mail-order form, or send e-mail to:

offce&forth.org

F-PC TEACH V3.5, Lessons 0-7 Jack Brown C20l - $8

I Forth classroom on disk. First seven lessons on learnlng
Forth, from Jack Brown of B.C. Institute of Technology. -

1 The "Contributions from the Forth Communitv" disk librarv contains I It IBM HD, F-PC, 790 Kb I
author-submitted donations, generally includhg source, fdr a variety
of computers & disk formats. Each file is designated by the author as
public domain, shareware, or use'with some restrictions. This library
does not contain "For Sale" applications. To submit your own contri-
butions, send them to the FIG Publicatrons Committee.

VP-Planner Float for F-PC, V1.O1, Jack Brown C202 - $8
Software floatin polnt englne behlnd the VP-Planner
spreadsheet. 80-&t (temporary-real) routines with transcen-
dental functions, number I10 support, vectors to support
numeric co- rocessor overlay & user NAN checking.
*t IBM, p-PC, 350 Kb

Games in Forth COO2 - $6
Misc. games, Go, TETRA, Life ... Source. * IBM, 760Kb

FLOAT4th.BLK V1.4 Robert L. Smith -
Software floating-point for fig-, poly-, 79-Std., 83-Std.
Forths. IEEE short 32-bit, four standard functions,
square root and log.
**t IBM, 190Kb, F83

A Forth Spreadsheet, Craig Lindley COO3 - $6
This model s readsheet flrst appeared in Forth
~irnensions ~11/?,2. hose issues contain docs & source. * IBM, 100Kb

F-PC Graphics V4.6. Mark Smiley C203 - $1 0
The latest versions of new graphics routines, including CGA,
E*, and VGA support, wlth numerous improvements over
earher versions created or supported by Mark Sm~ley.
*t IBM HD, F-PC, 605 Kb

Automatic Structure Charts, Kim Harris COO4 - $8
Tools for analysis of large Forth programs, first presented
at FORML conference. Full source; docs included in
1985 FORML Proceedings.
It* IBM, 114Kb

' A Simple Inference Engine,,Martln Tracy COO5 - $8
Based on Inference englne In Wlnston & Horn's book
on LISP, takes you from pattern variables to com lete
unification al orlthm, with running commentary on forth
philosophy f st le. Incl. source. ** IBM, 1 6 J ~ b

The Math Box, Nathaniel Grossman COO6 - $1 0
Routines by foremost math author in Forth. Extended
double-precision arithmetic, complete 32-bit fixed-point
math & auto-ranging text. Incl. graphics. Utilities for
rapid polynom~al evaluation, continued fractions & Monte
Carlo factorlzatlon. Incl. source & docs.
It+ IBM, 1 18 Kb

AstroForth & AstroOKO Demos, I.R. Agumirsian COO7 - $6
AstroForth is the 83-Standard Russian version of Forth.
Incl. window interface, full-screen editor, dynamic
assembler & a great demo. AstroOKO, an
astronavi ation system in AstroForth, calculates sky
r i t i o n o?several objects from different earth positions.

emos only.
Sr IBM, 700 Kb

Forth List Handler, Martin Tracy COO8 - $8
List primitives extend Forth to provide a flexible, high-
s eed environment for Al. Incl. ELlSA and Winston &
&rn9s micro-LISP as examples. Incl. source & docs. ** IBM, 170 Kb

8051 Embedded Forth, William Payne C050 - $20
8051 ROMmable Forth operatin system. 8086-to-
8051 target compiler. Incl. source.%ocsare in the book
Embedded Controller Forth for the 805 7 Family. Included
wlth item #216 *** IBM HD, 4.3 Mb

68HC11 Collection C060 - $1 6
Collection of Forths, tools and floating-point routines
for the 68HC11 controller. *** IBM HD, 2.5 Mb

F83 V2.01, Mike Perry & Henry Laxen ClOO - $20
The newest version, ported to a variety of machines.
Editor, assembler, decompiler, metacompiler. Source
and shadow screens. Manual available separately (items
21 7 & 235 . Base for other F83 applications. * I B d 83.490 Kb

F-PC V3.6 & TCOM 2.5, Tom Zimmer C200 - $30
A full Forth system with pull-down menus, se uential
files, editor, forward assembler, metacompiler,?loatin
point. Complete source and help files. ~ a n u a l for ~ 3 . g
available separately (items 350 & 351). Base for other
F-PC appl~catlons. * IBM HD, 83, 3.5Mb

PocketForth V6.4. Chris Heilman C300 - $12
Smallest complete Forth for the Mac. Access to all Mac
functions, events, files, graphics, floating oint, macros,
create standalone applications and DAs. Based on fig &
Startrn Forth. Incl. source and manual. * %AC, 640 Kb, System 7.01 Compatible.

Kevo V0.9b6, Antero Taivalsaari C360 - $1 0
Complete Forth-like object Forth for the Mac. Object-
Prototype access to all Mac functions, files, gra hics, floating
point. macros, create standaloneapplications Kernel source
Included, extensive demo files, manual. *** MAC, 650 Kb, System 7.01 Compatible.

Yerkes Forth V3.67 C350 - $20
Complete object-oriented Forth for the Mac. Object access
to all Mac functions, files, graphics, floating point, macros,
create standalone applications. Incl. source, tutorial,
assembler & manual. +* MAC, 2.4Mb, System 7.1 Compatible.

Pygmy V1.4. Frank Sergeant C500 - $20
A lean, fast Forth w~th full source code. Incl. full-screen
editor, assembler and metacompiler. Up to 15 files open at
a time. ** IBM, 320 Kb

KForth, Gu Kelly C600 - $20
A full Forth system with windows, mouse, drawing and
modem ackages. Incl. source & docs. ** I ~ M , 83,2.5 Mb

Mops V2.6, Michael Hore C710 - $20
Close cousin to Yerkes and Neon. Very fast, compiles
subroutine-threaded & native code. Object oriented. Uses
F-P co-processor if present. Full access to Mac toolbox &
system. Supports System 7 (e.g., AppleEvents). Incl.
assembler, manual & source. ** MAC. 3 Mb, System 7.1 Compatible

BBL & Abundance, Roed Green C800 - $30
BBL public-domain. l2-bit Forth with extensive support of
DOS, meticulously optimized for execution speed.
Abundance is a publc-domain database language wrltten in
BBL. Incl. source & docs. *** IBM HD, 13.8 Mb, hard disk required

Return the old version with the FIG labels
and get a new version replacement for 112

the current version price. I
t -Starting ** - Intermediate *** -Advanced

Volume 18 818 - $20 I MuP21 - programming, demos. eForth 111 pp. I
Volume 10 (January 1989) 810-$15

RTX reprints from 1988 Rochester Forth conference, object-
oriented cmForth, lesser Forth engines. 87 pp.

Volume 11 (July 1989) 811 -$I5
RTXsu plement to Footsteps in an Empty Valley, SC32.32-
bit ~o r tg engine, RTX interrupts utility. 93 pp.

Volume 1 2 (April 1990) 812-$15
ShBoom Chip architecture and instructions, neural
com utin module NCM3232. pi Forth. binary radix sort on
802f6,68010, and RTX2000.8 pp.

Volume 1 3 (October 1990 813 - $15
PAL-s of the R T X ~ O O ~ Mini-BEE. EBForth. AZForth. RTX-

Volume 19 819 - $20
More MuP21 - programming, demos, eForth 135 pp.

Volume 20 820 - $20
More MuP21 - programmin demos, F95. Forth Spec~fic
Language Microprocessor R n t 5.070.451 126 pp.

Volume 2 7
MuP21 Kit; My Troubles with This Dam 82C51; CT100 Lab
Board; Born to Be Free; Lawsof Com uting; Trafficcontroller
and Zen of State Machines; ~ h g b o m Micro rocessor;
Pro rammable Fieldbus Controller 1x1 ; Logic Besign of a
16-8it Microprocessor PI6 98 pp.

1 2101.8086 e~orth, 8051 e ~ o i h : 707 pp. I . I

Volume 15 815-$15
Moore: new CAD system for chip design, a ortrait of the
P20; Rible: QS1 Forth processor. QS2. ~ 1 ~ 8 n g it all; P20
eForth software s~mulator/debugger. 94 pp.

Volume 14 814-$15
RTX Pocket-Sco eForth for muP20, ShBoom, eForth for
CP/M & 280, X ~ D E M for eForth. 176 pp.

Volume 16 816 - $15 1 OK-CADSvstem. MuP20 eForth svstem words. 386eForth.

T-shirt, "May the Forth Be With You" 601 - $1 8
(Spcify size: Small, Medium, Large, X-Large on order form)
wh~te desian on a dark blue shirt or areen desian on tan shirt. - - -

BIBLIOGRAPHY OF FORTH REFERENCES 340 - $18 I
3rd ed., January 1987) b ver 1900 references to Forth articles throughout computer

I
literature. 104 pp. Cast 5

803% prokcted modeoperat~on: FRP 1600-1 16-B1t real
t~me processor. 104 pp.

Volume 17
P21 chi and specifications;
8051, {ansputer 128 pp.

817-$15
Pic1 7C42; eForth for 68HC11,

Annual Forth issues, including code for Forth applications. I
September 1982, September 1983, Sepember 1984 (3 issues)

425 - $10

deliveries: include

CHECK ENCLOSED (payable to: Forth Interest Group) sub-total
VISA/MasterCard:

rnagaztne Forth Dimenstons FIG also offers its members an on-line data base, a large selection of Forth l~terature and other services. Cost is $45 per year for U.S.A all other countries $60 per year.
Thls fee includes $39 for Fonh Dimensions. No sales tax, handling fee, or dlscount on membership.

CardNumber exp. date

When you join, your first issue will arrive in four to six weeks; subsequent issues will be malled to you every other month as they are published--six issues in all. Your mernbersh~p entitles you to a 10%
discount on publ~cations and functions of FIG. Dues are not deductible as a charitable contr~bution for U.S. federal income tax purposes, but may be deductible as a business exrwnse. 1

Shipping and handling (see chart above)
Membershipm in the Forth Interest Group

New Renewal

PAYMENT MUST ACCOMPANY ALL ORDERS
PRICES: All orders must be prepaid. Prlces are SHIPPING B HANDLING: SHIPPING TIME: 'CALIFORNIA SALES TAX BY COUNTY:
subject to change wlthout notae. Credit card orders All orders calculate sh~pping Books in stock are sh~pped within 7,75%: D~~ N ~ ~ ~ ~ , F ~ ~ ~ ~ ~ , Imperial, Madera, Orange, will be sent and billed at current prices. Checks must & handling based on order seven days of receipt of the order. sacramento, santa Clara, santa Barbara. Sari Ber-
be In U.S. dollars, drawnon aU.S. bank. Aslocharge dollar value. Special handl~ng SURFACE DELIVERY:
wtll be added for returned checks.

nardino. San Diego, and San Joaquin; 8.25%: Alameda. Contra
available on request. U.S.: 10 days Costa. Los Angeles San Mateo. San Francisco. San Ben~to, and

other: 3&60 days Santa Cruz; 7.25%: other counties.
XX.2

Signature TOTAL

If cs2-au is on and cs2-ov is on then on to cs2-LI ;
If cs2-au is off or cs2-ov is off then off to cs2-LI ;

Listing Two

I

If cf2-bu is on then off to cf2-bu
if cf2-au is on and cf2-ru is on then off to cf2-ru end
if cf2-OM is off and cf2-au is on

and cm2-ru is on then on to cf2-ru end ;

Listing One

Listing Three
best programming style, which would in-
clude subordinate Drocesses of processes.

. . . if . . . then . . . endif \ endif: go to following
Processes are intended to be independent

if . . . then . . . else . . . endif \ instruction.
and to have minimal communication with

if . . . then end \ end: jump to
each other for good programming strategy.

if . . . then . . . else ... end \ end of the word ;
Since this is Forth, one can force communi-
cation between independent processes with

I I

Forth Dimensions XX.2 19

Listing Four the TASK command but I use it sparingly,
trying to keep good programming practice.

PROCESS Example For processes that depend on each other,
BOSS BOSS the usual way to send information between
MODE State them is to define the communication dic-

\ one may define 1/0 here tionary APPLICATION-MESSAGES and fill it
\ one may perform logical operations on the I/O with whatever words one wants to mention,
~f BOSS commands start then on to State like fault. The word really has no mean-
~f BOSS commands reset then off to State ing as we think of it. To the computer, it's

\ 'commandsr is synonym for 'is' just an index number in the dictionary. The
END-PROCESS subordinate Example will say, as in a logi-

cal output statement ... [...see Listing Five].
Listing Five Then one catches this pseudo-command

in Master and says something like Listing Six.
\ Process Example, here I/O detects a fault, so communicate Recall that this is a state machine and

. . . fault to BOSS ; \ same to superior. one must turn all these "commands" off
with separate instructions, or else they stay

Listing Six stuck on. Also, I found out that if I invoked
rapid-fire logical situations to the BOSS from

\ Process Master the same subordinate process, the Boss
If Xexample is fault then . . . \ operate warning system. couldn't be relied upon to keep things

straight. So I simplified the system by mostly
exchanging warning system messages,
which are less frequent.

until all updates have been made, then will remain idle. Not While I programmed the General Elec-
all things are events. A variable known as an INTEGER is not
an event, and so cannot be placed before the then because
the rule would not fire properly.

FORTH, Inc. has expanded the above structure for more
elaborate programming. Consider the rule in Listing Two,
taken from an actual program.

The only event required above is cf 2-bu being on. In the
sub-rules, starting with if, the situations coded are not required
to be events; this is especially good for analog situations which
are not events. Thus, non-event logic can be written as shown
in Listing Three.

A few in the Forth community have found the partial in-
fix notation to be uncomfortable, but I can see its point and
I feel at home with it now.

The unit of programming in EXPRESS is the PROCESS. The
absolute minimum PROCESS is given in Listing Four.

I have all my processes reporting to the PROCESS Master
which must be the head process. FORTH, Inc. has complained
that my processes are too few and too big compared with the

tric ladder diagram logic, I was always counting the limited
number of timers to be sure I wouldn't run out. With EX-
PRESS, I have an abundance of these resources, a great conve-
nience.

The biggest advantage is the Forth ability to change the
entire system if one wants to. When I first got the system, 1
made a wish list of how I would like things to be: (a) multiple
color icons rather than two colors, (b) choice of decimal-point
position in analog readouts, (c) better scales for historical
trends, etc. Over the years, I got these features (and so did
other EXPRESS programmers) by getting my company to pay
a modest fee to FORTH, Inc., and then waiting a week or two
for the programming. Changes to non-Forth languages cost
ten times more and take a year to accomplish, assuming one
can get the vendor to agree to change.

Competition is stiff from other companies, but EXPRESS
has true real-time interactive control, which most competi-
tion cannot manage. It certainly has worked out well for our
application for effective factory control.

NEW and OLD Lines
Here is a convenient method for managing two versions

of a source file. This may be an existing version and a revi-
sion, standard code and a more efficient environmentally
dependent version, code you've acquired and your changes
to it, etc.

Instead of eliminating or commenting out old lines, pre-
fix them with [o] and a space. Prefix your new lines with
[N] and a space.

The [N] -lines will be processed and the [o] -lines ignored.
To revert to the old lines in whole or in part, do Rever-

sion ON before processing old and new lines. Reversion
OFF turns that off.

To convert to the new form, use an editor to discard [N]
and lines prefixed with [O] .

1 1 VARIABLE Reversion ('Reversion ON' for old lines.)

I I
3 : [N] Reversion @ IF POSTPONE \ THEN ; IMMEDIATE I

1 5 : [O] Reversion @ 0= IF POSTPONE \ THEN ; IMMEDIATE I
Special Characters in Strings

S" ccc" gives us a string literal. But a " can't be in that
string. Neither can control characters.

For this purpose, the Tool Belt has S. Like other functions
in the Tool Belt, S takes the first character of the next word as
a delimiter.

S I Just say "NO". 1 TYPE 1 I
s also uses A before the 32 characters beginning at @ to

yield control characters 0 through 31. A? yields 127.
S Just sayAMA JAIAINOAMA J'' puts a CRLF (carriage

return and linefeed) and two tabs before NO, and CRLF after.
If ccc does not contain a " or A then S " cccw is equiva-

lent to S" ccc".

I 7 : ?maxim- (n max -- n) OVER < ABORT" Maximum SizeExceeded " ; 1
9 (' s t r l e n c a d d r > c o n t r o l > ' c o p i e s a s t r i n g f rom s t r l e n

10 (t o c a d d r , c o n v e r t i n g c h a r a c t e r s a f t e r A t o c o n t r o l c h a r a c t e r s .
11 (I t r e t u r n s c a d d r and t h e c o n v e r t e d l e n g t h .)

13 : >control> (s t r l e n c a d d r -- c a d d r k)
0 2>R (R: c a d d r k)

BEGIN DUP WHILE (s t r + i l e n - i)
OVER C@ [CHAR] A CASE? IF

20 Forth Dimensions XX.2

1 / S T R I N G
OVER C@ 6 4 XOR

THEN (. . c)
2 R @ CHARS + C ! (str+i l e n - i)
R> 1+ 80 ?maximum > R
1 / S T R I N G

RE PEAT 2 DROP
(c a d d r k) (R :)

If you know the name of the buffer used by your system for string literals, use it instead of SBUF.

2 7 8 0 CHARS BUFFER: S b u f

2 9 : S ("<char> c c c < c h a r > " -- c a d d r k)

30 CHAR PARSE (c a d d r k) S b u f >contro l>
3 1 STATE @ I F POSTPONE S L I T E R A L THEN
32 ; IMMEDIATE

Appendix

: RESERVE (n --) HERE SWAP DUP ALLOT ERASE ;
: BUFFER: (n --) CREATE RESERVE ;

: PARAMETER BL WORD COUNT EVALUATE ;
: ?? St' I F " EVALUATE PARAMETER S" THEN " EVALUATE ; IMMEDIATE

: CASE? (x y -- true I x false) OVER = DUP ? ? N I P ;

Local Variables for Misers
The following implements the function of local variables

with two pre-named variables.

2VARIABLE TEMP
MACRO PUSH " DUP @ > R ! "

MACRO POP " R> SWAP ! "

MACRO 2PUSH " DUP 2 @ 2 > R 2 ! "

MACRO 2POP " 2R> ROT 2 ! "

At the beginning of your definition: v a l p e TEMP PUSH.
At the end: TEMP POP.

Or, at the beginning of your definition:
va lue ' va lue TEMP 2PUSH.
va lue ' is in TEMP CELL+.
At the end: TEMP POP.

Within your definition you can use TEMP and TEMP CELL+.
This recovers and improves the old use of 1 and 1 ' . The

values in TEMP and TEMP CELL+ are available in called defi-
nitions.

Forth Dimensions XX.2 21

In the preceding installment of "Stretching Forth," func-
tions to test characters were given.

lsalnum isalpha iscntrl isdigit isgraph
islower isprint isspace isupper isxdigit

In this episode, more functions are given, especially to
test characters in a string.

In 1982, KLAUS SCHLEISIEK introduced SKIP andS-. They
were employed in the LAXEN-PERRY F83. I used them and
-TRAILING happily for many years.

However, they are not powerful enough to handle the text
I want to massage today. In particular, they consider only a
single character at a time, and do not handle a space charac-
ter as Standard Forth requires.

Take -TRAILING. It scans a string from back to front look-
ing for a non-blank. This was fine when source and text were
on blocks, but today I want to skip back across control char-
acters as well.

First, let's factor the backward scan process into two parts.

1 MACRO BACK1 " BEGIN DUP O> WHILE 1- 2DUP CHARS + C@ "
2 MACRO IBACK " O = UNTIL 1+ THEN "

The traditional -TRAILING can be defined:

: -TRAILING (s t r l e n -- s t r l e n - i) BACK1 BL = IBACK ;

Now let's define a modern version of -TRAILING that will
back over blanks and control characters.

4 : BL? (char -- flag) [CHAR] ! - 94 U< NOT ;

6 : TRIM (s tr l e n -- s t r l e n - i) BACK1 BL? [BACK ;

BL? is used to identify characters that match a blank in
Standard Forth parsing.

TRIM was adopted from Snobol. First I updated -TRAILING
but there are uses of -TRAILING surviving that need the origi-
nal definition.

SKIP has also been replaced with a pair of macros. ,

8 MACRO SKIP1 " BEGIN DUP WHILE OVER C @ "
9 MACRO ISKIP WHILE 1 /STRING REPEAT THEN

Definitions of SKIP and SCAN can be written.
I

22 Forth Dimensions XX.2

: SKIP (str l e n ch -- s t r + i l e n - i) > R S K I P 1 R@ = [S K I P W D R O P ;
: SCAN (str l en ch -- s t r + i l e n - i) > R S K I P 1 R@ - I S K I P D D R O P ;

Balancing TRIM, we often want to skip past blankish char-
acters. I

13 : JUST (s t r l e n -- s t r + i l en- i) S K I P (BL? 1 S K I P ;

To parse strings from a longer string, use SPLIT 1 ... I SPLIT.

15 MACRO SPLIT(" 2DUP S K I P l "
16 MACRO ISPLIT " O= I S K I P DUP > R 2SWAP D - "

18 : SPLIT-AT-SPACE (a n -- a+k n - k a k) S P L I T 1 BL? I S P L I T ;

I

Forth-type words can be parsed from a line with JUST and
SPLIT-AT-SPACE.

The test functions we have work for common classes of
characters. Sometimes we want more or less.

One way is to use the SKIP l . . . (SKIP and SPLIT I
. . . I SPLIT macros with an expression in the middle. Thus,
suppose we wanted to skip past digits, commas, periods, and
dollar signs.

Or suppose we wanted a test that a character is a vowel.
Functions to do this are not difficult, but still are a bother

to write.
For problems like these, we want to batch characters in a

test. For this we define [ANY].
The stack effect is (char "<chas><space>ccc<char>" -flag).
The two instances above can be written:

SKIP1 [ANY] " 0-9, .$" I S K I P

: isvowel (char -- f l a g) [ANY] " A E I O U a e i o u " ;

The delimiter may be something else than " when we want
to test for " in the batch.

The function works by compiling the string into a bitmap.
Individual characters or ranges of characters may be given.
Control characters can be given by the Ax convention.

As a character - must be first or last, A must be last. - and
A may end an x-y range. Control characters AX may not be
in ranges.

In the compilation, set-char-match converts from a
character string to the bitmap. It goes across the string given
in the source, character by character, treating each as a con-
trol character, range, or single character. Special tests are made
on the first and last characters.

set-bit takes a character as a bit offset, and the working
bitmap, and sets the appropriate bit in the bitmap.

addrdmask converts a bit offset and a bitmap to an ad-
dress and mask.

bit&byte takes a bit offset and converts it to a bit and
byte offset.

get-bit-as-flag is used to get the result. It takes a char-
acter as a bit offset, a bitmap, and the length of the bitmap
(which it discards), and returns true when the appropriate
bit in the bitmap is set.

SLITERAL compiles the bitmap.

2 1 16 CONSTANT Bit-Map-Size (1 6 o r 32)

23 B i t - M a p - S i z e CHARS BUFFER: The-Bit-Map

(C o n v e r t b i t o f f s e t t o b i t&byte o f f s e t .)

: bithbyte (n -- bi t byte)

DUP 7 AND SWAP 3 R S H I F T (C o u l d be " 8 /MOD I')
28 ;

30 (C o n v e r t b i t o f f s e t a n d s t r i n g t o a d d r & m a s k .)

31 : addrhmask (n s t r -- a d d r m a s k)
32 > R b i t & b y t e CHARS W + (bi t a d d r ') 1 ROT L S H I F T
33 ;

35 (S e t b i t n i n a s t r i n g .)

36 : set-bit (n s t r --)
3 7 a d d r & m a s k (a d d r m a s k) OVER C@ OR SWAP C !
38 ;

40 (G e t b i t n i n a s t r i n g a s TRUE\ FALSE.)

Forth Dimensions XX.2 23

41 : get-bit-as-flag (n s tr l e n -- f l a g)
4 2 DROP (n s t r) addr&mask (a d d r m a s k) SWAP C@ ANDO<>
43 ;

45 (A s a s i n g l e c h a r ' - ' m u s t be f i r s t o r l a s t , ' ^ ' m u s t b e l a s t .)

46 (T h e y m a y e n d a 'x-y' r a n g e .)

47 (C o n t r o l c h a r s '^X' m a y n o t be i n r a n g e s .)

49 : set-char-match (s t r l e n - -)

50 The-Bit-Map Bit-Map-Size 0 FILL
51 DUP ANDIF OVER C@ [CHAR] - = THEN (T a k e c a r e o f l e a d i n g s - ' .)

52 IF [CHAR] - The-Bit-Map set-bit 1 /STRING THEN
5 3 1- BEGIN DUP O> WHILE
54 OVER C @ [CHAR] A = IF (C o n t r o l c h a r)

5 5 1 /STRING
5 6 OVER C@ 6 4 XOR
5 7 The-Bit-Map set-bit
58 ELSE
5 9 OVER C@ [CHAR] - = IF (R a n g e x-y)

60 OVER 1 CHARS - C@ >R
61 OVER CHAR+ C@ 1+ R> (. . h i l o)
62 2DUP > NOT IF 2DROP ELSE
63 DO I The-Bit-Map set-bit LOOP
6 4 THEN (s tr l e n)
65 1 /STRING
6 6 ELSE (O r d i n a r y)

6 7 OVER C@ The-Bit-Map set-bit
68 THEN THEN (s t r l e n)
69 1 /STRING
70 REPEAT (s t r l e n)
71 DUP O= IF OVER C@ The-Bit-Map set-bit THEN (L a s t c h a r .)

72 2DROP
73 ;

[ANY] (c h a r " < c h a r > s t r i n g < c h a r > " -- f l a g)
CHAR PARSE set-char-match ()

STATE @ IF
The-Bit-Map Bit-Map-Size POSTPONE SLITERAL
POSTPONE get-bit-as-flag

ELSE
The-Bit-Map Bit-Map-Size get-bit-as-flag

THEN (f l a g)
IMMEDIATE

Here is how the Standard character test functions might have been written.

: isupper
: islower
: isalpha
: isalnum
: isdigit
: isxdigit
: isgraph
: isprint
: iscntrl
: isspace

[ANY] "
[ANY] "

[ANY] "
[ANY] "

[ANY] "
[ANY] "

[ANY] "
[ANY] "
[ANY] "
[ANY] "

A-Z" ;
a-z" ;
A-Za-z" ;
A-Za-zO-9" ;
0-9" ;
0-9A-Fa-f" ;

1 -,.,I1 .
-,I1 .
-,I@ NOT ;
AIAJAKALAM" ;

24 Forth Dimensions XX.2

Forth Dimensions XX.2

-

I hate making out tax forms (who doesn't?). When I was still
doing my own a few years ago, I decided to ease the sting a bit
by combining the task with something I really liked to do--
programming Forth. 1 am showing you what I did as an ex-
ample of simple system design for a specific purpose. Note! The
actual code shown here conforms to the U.S. tax code as it was
thirteen years ago. There have been numerous changes since,
so this code cannot be used "as is" to figure your 1999 taxes!

The actual task of developing the system was really one of
translation, because the 1040 tax booklet is already a pro-
gram with a few peculiarities. It is written in English (sort of!)
and designed to be executed by humans. Like any program,
the goal is to be complete, unambiguous, and correct. ,411 I
had to do was select the portions relevant to my situation
and translate them into Forth.

Form 1040 can be looked at as a top-down design, a tree
structure of calculations and sub-calculations ("Dividends
(attach schedule B if over $400) ... subtract line 9b from line
9a and enter the result.. ." etc., etc.). A little thrashing around
established a good general pattern for a Forth-based approach:
Rule 1: Use a separate Forth word for each calculation step.
Rule 2: All words take zero arguments and leave one double-
precision value on the stack.

This combination made it easy to extend the calculations
as necessary in a top-down design (implemented bottom-up,
of course). As usual in Forth-based U.S. financial calculations
on 16-bit systems, all amounts are in cents and in double
precision.

In addition, I found the following utility word useful:
: $. (dl - - -)

\ Print an amount in cents as
\ dollars and cents
< # # # 46 HOLD #S #> TYPE ;

Now to some of the system specifics.
(Note to financial voyeurs: the numbers have been

changed to protect the innocent.) My wife and I both worked.
We lived in a suburb of Detroit, and she worked in the city,
so we had to calculate federal, state, and local (Detroit) in-
come taxes. Federal taxes were on both our incomes, Detroit
taxes just on hers, at the non-resident rate.

So we set up the following on the income side:
32535.71 2CONSTANT GAIL.W2.WAGES '

I 59708.43 2CONSTANT LEN.W2 .WAGES
3 CONSTANT EXEMPTIONS

Note that this follows the general rule that a word leaves
one value on the stack. We are also taking advantage of the
Forth convention that numeric input goes to double-preci-

sion integers when the number has a decimal point, but its
position is ignored, so results will be expressed as an integer
number of cents. This is an environmental dependency.

Then we have:
: CITY . DEDUCT IONS (- - - dl)

\ Total city income deduct ions
600.00 DROP EXEMPTIONS UM* ;

: CITY.TAX (--- dl) \ City income tax
GAIL. W2. WAGES CITY. DEDUCTIONS D- 15 1000 M* / ;

The city tax rate for non-residents was 1.5% after deductions.
For the feds, the hierarchy works this way:

: TAXES. DUE (--- dl)
INCOME. TAX WITHHOLDING D- ;

: WITHHOLDING (--- dl) 9927.57 3153.05 D+ ;
: INCOME. TAX (--- dl)
TAXABLE. INCOME
47670.00 D- 38 100 M*/ 10171.60 D+ ;

This is the Forth translation of "tax owed is $10,171.60
plus 38% of the amount over 47670."

As an example of breaking things down as far as we need
to, but not farther, let's look at
: DEDUCTIONS (--- dl)
TAXES INTEREST D+ CHARITY D+ MISC D+ ;

: MISC (--- dl)
DUES BOOKS D+ CONFERENCES D+ ;

: DUES (--- dl)
144.00 (NASW)
15.00 (SEMCO) D+ 56.00 (AIAA) D+
96.00 (ESD) D+ 56.00 (ASA) D+
50.00 (TIMS) D+ 20.0 (FIG) D+ ;

Here we have an improvement on an adding machine tape;
all the amounts are commented to identify them, they are
aligned in columns for easy reading when the screen is printed,
and if necessary they can be corrected or extended by editing.

That should be enough to give a flavor of the process. The
full system is just more of the same, tailored to the specific cal-
culation needed. Each line on the tax form can be arrived at by
typing the appropriate word followed by $. My estimate is that
-it took a little longer than it would have by hand. On the other
hand there was the personal pleasure of expressing it in code,
and the opportunity to correct mistakes or add last-minute items
without having to re-do everything. Finally, by printing ten
screens, I had a permanent record of exactly how I had done all
the calculations. QED (quite easily done). The whole thing is
only ten screens, because I only had to code for my taxes, not
those of the whole world. This brings home ChuckMoorefs wis-
dom when he recommends avoiding over-generalization.

Getting There
This year, my son Jason and myself were to be traveling

companions. Jason is a fairly typical seven year old, with defi-
nite likes and dislikes. Introducing him to new food ideas
was going to be an interesting challenge. We flew from Bristol
Lulsgate Airport on the first leg of our Journey, Brussels and
the delights of Belgium. The idea was to look up a few friends
from my time at Europay and to do a bit of sightseeing (mainly
Brussels and Waterloo).

During our few (albeit wet and windy) days, we managed
to see the attractions of the Atomium (a very large model of
an iron atom), Autoworld (a historical car museum), the
squares and statues of Brussels (including its most famous,
a he Mannekin Pis). In Waterloo, or rather more south near
Braine L'Allieu, we steeped ourselves in the history of 1815-
the Battle of Waterloo.

On the Thursday, we left Waterloo for Brussels and thence
to Luxembourg. I had planned a stop-over for few hours as a
break from a train journey of over sixhours. We walked round
for a while then spotted a touring Dotto which had a recorded
presentation explaining the history of Luxembourg (well
worth the fare if you only have a short while). It seems that
Luxembourg was built up and destroyed several times over
during its more than 1000 year history.

Finally, we boarded our next train, for Trier, getting into a
discussion on programming with two Spaniards and an En-
glishman. Naturally, yours truly espoused the benefits of pro-
gramming in Forth. At Trier, just time for a quick refresh-
ment then on to Saarbruken by the next train. At Saarbruken,
we took the train to ~urkismuhle (which turned out to be
two, with a change at Saint Wendell) and then a taxi to Schloss
Dagstuhl (near Wadern).

The Venue - Schloss Dagstuhl
Schloss Dagstuhl, or Dagstuhl manor house, was built in

1760 by the then-reigning prince Count Anton von Ottingen-
Soetern-Hohenbaldern. After the French Revolution and oc-
cupation by the French in 1794, Dagstuhl was temporarily in
the possession of a Lorraine ironworks. In 1806, the manor
house, along with the accompanying lands, was purchased
by the French Baron Wilhelm de Lasalle von Louisenthal. In
1959, the House of Lasalle von Louisenthal died out, at which
time the manor house was taken over by an order of
Franciscan nuns, who set up an old-age homethere. In 1989,
the Saarland government purchased the manor house for the
purpose of setting up the International Conference and Re-
search Center for computer Science. The first seminar in
Dagstuhl took place in August of 1990. Every year, approxi-
mately 2,000 research scientists from all over the world at-
tend the 30-35 Dagstuhl Seminars and an equal number of
other events hosted at the center.

Internationalisation Workshop
The Internationalisation (i18n) Workshop preceded the

main conference, occupying the Friday morning. The need
for this was the result of the ANS to IS0 Fast-Track vote when
the European Forth Community declared a need for
internationalisation (i18n) issues to be considered in the
amendments to the ANS document. I18n issues cover not only
language and cultural aspects, but also time and date format-
ting. There was a concern that any effort in i18n should not
break existing code. This ruled out changing the character-
access words c@, c !, CMOVE, and COUNT. This led to the pro-
posal that a new Internationalisation Wordset be created.
Some of the discussion related to the adequacy or otherwise
of UNICODE characters. Whilst it is true that the most com-
mercially significant languages are catered for, there are still
a number of languages and character sets that are not. Many
of these are variable-length characters. The workshop ended
by agreeing on the basic wording of a proposal to the ANS
Technical Committee.

There is an Internet mailing list which is in operation to
continue discussion of the specific proposals, and anyone who
needs to make their views known on this issue should join
the discussion. This is run by Anton Ertl and you can sub-
scribe by sending e-mail to:

anton@mips.complang.tuwein.ac.at

The Conference
The conference proper began in the afternoon. The first

session was on "Forth Philosophy and Standardisation" and
was kicked off with a paper by M.L. GASSANENKO but presented
by SERCEI BARANOF. Russia and its economic problems meant
that Sergei's ticket had to be organised from outside Russia,
leaving Sergei to represent Russia in its entirety (or as much
as he was able). The subject of the first paper was "Context-
Oriented Programming."

EGMONT WOITZEL then gave us "Transient Scope, Word Lists
and Language Construction." This compared the state-driven
method and prefix-driven methods. In the state-driven method,
the search order is made implicit by state transitions. In pre-
fix-driven methods, there needs to be a consideration of the
search order as it is effected by the modularity strategy, parse
strategy, and the transient scope strategy. The paper identified
the need for improvements in interface and naming conven-
tions and source code management. Header suppression was
seen as a complicating matter for maintenance and debugging.
The audience felt that this was more about scoping control for
personal use rather than wider area of usage.

PETER KNAGGS then took the floor to explain the structure
and form of the continuing ANS (and subsequently ISO)
standardisation efforts. It seems that Forth was the first "ex-

26 Forth Dimensions XX.2

tensible" language to be standardised. He briefly covered
Forth's problem (extensibility) and a solution to gaining
standardisation via an open pre-standardisation review. This
revolved around gaining a wide review audience for new words I and wordlists proposed for standardisation. There is, there-
fore, a new procedure proposed which is under consideration
by the TC.

Peter went on to inform us about the changes in ANS com-
mittee structures. The ANS Technical Committees are now
IT1 Technical Committees (even though the standards publi-
cations remain ANS). NCITS (which was the X3 secretariat)
now incorporates J14 (the Forth Sub-committee). The result
of all this is that the committee has a new designation and is
now known as NCITS/J14.

The first ANS standard was "fast-tracked" to an IS0 stan-
dard, and ANS have the responsibility for its maintenance.
However, when the IS0 standard was issued, there was a pro-
viso that the Internationalisation Issues be looked at for the
next revision. The ANS standard is now up for revision, and
the following changes are expected to be made:
a) All words marked as obsolescent in the current standard

to be deleted.
b) Ratification of all clarifications issued in response to the

nine requests already answered and the two requests
that remain outstanding.

c) Support for embedded and ROMable systems.
d) Support for internationalisation and extended character

sets.

Items c) and d) are, of course, both demands from the IS0
fast-track process.

Updating the ANS standard is a two-year process.
Anyone can join the TC if they fulfill the membership

criteria. This includes paying $300 per year and attending
the first two meetings (in the USA) and two thirds of all meet-
ings. You also have to vote in more than 80% of all letter (e-
mail) ballots. Meetings are July and November.

The NCITSlJ14 committee can set up task groups to look at
specific items and produce a report. Membership to this is open
to anyone for $300 per year (TC members get on for free).

Finally, it was proposed that a public notice board be es-
tablished as part of the NCITSlJ14 web site:

file://ftp.uu.net/vendor/minerva/uathena.htm
This would enable announcements and posting of the new

proposed words and wordsets to be aired for comment.
JOHNATHON MORRISH of Micros Engineering managed to do

a paperless paper on the PIC entitled "Spiders and Forth."
This featured the device in various sizes of configuration and
packaging, and mentioned some real applications (including
one involving "Cats-Eyes," the devices that divide the lanes
on UK roads). NICK NELSON, of the same company, also did a
paperless paper, "A Grid Control in Forth," which dealt with
graphical objects in windows environments. REUBEN THOMAS
expounded on "Mite: a Fast and Flexible Virtual Machine,"
while SERGEI BARANOF covered again for M.L. GASSANENKO and
presented "Open Interpreter: Portability of Return Stack Ma-
nipulations."

Within session four, on old and new words, ANTON ERTL
attacked state-smart words and proposed some interesting
solutions, comparing various other system implementations
in the process. We also had MICHAEL MILENDORF talking about
the proper use of CATCH and THROW, and MANFRED MAHLOW

All this is linked from Peter Knaggs' Forth pages at:
http://www.dec.bournemouth.ac.uk/Forth/

and KLAUS SCHLEISIEK spoke about PRELUDE and FINALE, con-
text-switching words which apply limited pre- and post-ex-
ecution facilities.

The final session kicked off with the double act of PAUL
BENNETT and MALCOLM BUGLER relating the experience gained
in applying software certification to a Forth-based medical
"life-support" product. The fact that such certification was
considered late in the project and was completed in three
weeks was partly due to the use of Forth and to the effort and
dedication of Paul's team of code reviewers. The certification
documentation was accepted by the notified body who were
evaluating the product for CE marking under the Medical
Devices Directive and further work towards FDA approval.
The process did identify some serious flaws in the code which
were put right by the authors prior to the CE marking evalu-
ation, and it was recertified. BERND PAYSAN presented another
astounding demonstration of MINOS and the way 3-D graph-
ics could be integrated. The final paper of the conference was
presented by STEPHEN PELC, who presented a "Portable Forth
Optimising Native Code Compiler."

The Conference Circuit
EuroForth is settling down to a three-year cycle. The cycle

has a year in the UK (various locations), a year in Germany
(mostly at Schloss Dagstuhl), and a year in a guest country.
As the 1997 conference was in Oxford, England, and this year
was at Schloss Dagstuhl, next year is the turn of a guest coun-
try. St. Petersburg has been proposed for 1999, with Vienna
in reserve. A final decision will be made in February 1999.
This leads the venue back to the UK for the year 2000 and, as
this is going to be a significant year for locations meridian,
the organisers have decided to pursue the possibilities that
might be afforded by Cambridge.

In conjunction with the above, it was also decided that a
EuroForth mailing list be established to assist in the
organisation (by e-mail) of future conferences and open dis-
cussion of conference topics. An announcement has been
made in the newsgroups and by e-mail to this year's partici-
pants already. For others wishing to subscribe, an e-mail to
euroforth-subscribe@egroups.com will get you on. An archive
of the mailing list will be available from:

http://www.egroups.com/lists/euroforth/

Impromptu Papers
MALCOLM BUGLER - "EPP, the forgotten standard," discussed

probably the most useful port on the PC, the parallel port.
Having presented a little history, Malcolm went on to espouse
the merits of using the port. He also displayed some code for
interfacing to the port in EPP mode.

REUBEN THOMAS - "Demi Doubles," a short exploration of
double-cell values and words that utilise them.

KLAUS SCHLEISIEK - "Uses of other ASCII codes," really a
request for opinions on the standard uses of some of the ASCII
punctuations. He was looking for one or two characters for
which there was not an already common usage.

PETER KNAGGS - "Journal of Forth Application and Research
UFAR) Status." This report on the current status of the JFAR
publication was an update of the report given at last year's
conference. Peter has now managed to install himself in the

I

Forth Dimensions XX.2 27

position of editor and has begun to publish accepted papers
on the web. There are plans to print paper copies of the mate-
rial when enough are collected to make it worthwhile, and to
publish the collected papers on CD also. The back-issue paper
publications will be fully indexed on-line and may also be in-
cluded on CD when they are scanned in. The web sites are at:

http://dec.bournemouth.ac.uk/Forth/JFAR/ (main site)
http://www.jfar.org/ (mirror of main site)
PETER KNAGGS - "USA Conferences," mainly a quick talk

about The Washington Forth Party which was tentatively
booked for the 23rd and 28th July in Washington DC.

HOWERD OAKFORD - "Angles, Trig and Complex Numbers,"
mainly a plea for help. Howerd expounded the problems he
was having considering the more complex maths involved
in resolving trigonometric calculations from a complex num-
ber input. He felt that keeping the complexors as a pair of
cells made sense until the last possible moment before usage.
Several offers were made to share code with him.

The Conference Workshops
There were three workshop stream topics this year:

Methods and Objects
This workshop reported that there now seems to be a con-

vergence of ideas and techniques amongst those who are in-
terested in object-oriented wordsets. It seems like a bit more
discussion and work may actually get a concensus on this
subject. We may even be able to look forward to an 00
wordset being propased for consideration by NCITSlJ14.

Project Management
This discussion centred on three aspects.
"Project Start," which identified customers as belonging

to two types: those with and those without a specification.
This seemed to imply that each type would be best served by
different system development models, these being "waterfall"
and "spiral," respectively. It was agreed that the waterfall
model of development had been written up and explained
often enough to be clear to everyone. However, there seemed
to be scant information on the spiral model, and it was only
alluded to in many reference books without being fully de-
scribed in project terms.

For a spiral development model, it was agreed that risk
assessment, awareness of the customer's overall business goals,
and early review of applicable standards and legislation. The
client contact needs to be offered the means to "buy-in" to a
proposal it to the rest of his company. It was also identified
as important to do a "post-mortem" on each and every project
to see if there are lessons to be learnt.

"Administration" identified a need for good support tods
for version management, problem reporting and tracking and,
in essence, good configuration management. Reviews were
seen as necessary to ensure compliance of code to "house"
coding and documentation styles, technical integrity of the
product, and general quality. A reminder was issued that docu-
mentation errors are also bugs, and English documentation
is needed with the code to explain the code to non-program-
mers who may be part of the review team.

"Group Workingu--even in Forth, programmers are work-
ing in teams. This requires that projects be properly struc-
tured, in step with the structure of the product. This helps in
team management and provides stronger componentisation.

iirtual Machines
Since Forth is frequently implemented using a virtual stack

machine, the available implementation techniques have been
itudied in some detail over the years. This workshop showed,
however, that a number of new questions are being raised in
this area. These involve the deployment of Forth virtual ma-
zhines in complex environments involving Windows and
networking, and in particular we discussed issues raised by
client-server programming.

"Implementation." Could a stack-based virtual machine
be a basis for just-in-time compilation? It was noted that ad-
vanced optimisation techniques for converting Forth into
native code are being implemented in the latest MPE Forth
compilers. Similar techniques could be used for JIT conver-
sion from token or threaded code. Current work on both stack-
and register-based virtual machines was discussed. It was noted
that Forth, unlike Java, retains a trap door to the underlying
physical machine through the ability to add code definitions.
This allows it to be tuned very effectively to particular appli-
cations.

"Functionality and Portability." The virtual machine needs
extending to provide access to GUI toolkits (e.g., TK) and
communication technologies (e.g., TCP/IP) at an appropriate
level of abstraction.

"Client-Server Deployment." Forth will perform well in a
client-server environment, particularly where extended func-
tionality is required. Distributed functionality can be obtained
by communicating Forth source text between nodes, possi-
bly in tokenised form. Security issues need to be investigated.

The Competition
It has long been a tradition at Forth conferences to have a

fun competition (which may or may not include coding). This
year, it was decided that we should relate Forth to everyday
life. The task was to write some code that must be:

a) Readable
b) Portable
c) Maintainable

The participants had to work with a well-known phrase
containing three previously defined Forth words and three
undefined words. The participants had to provide:

1) Name for the definition
2) Stack comment
3) A description
4) Definitions for undefined words

The well known phrase that was provided as a starter wa5
SEX, DRUGS, ROCK AND ROLL.

As is usual with this kind of competition, extra points werc
obtainable for imaginative use of commas, and all attempt:
to influence the judges are, naturally, gratefully received.

Sadly, not many entries made it by the deadline. The en,
tered codings were all highly amusing, despite some entrant!
displaying the fact that they had not fully understood the speci,
fications. After due deliberation by the contest judging panel
PAUL BRUIN won through to receive the coveted "Fat Cigar'
award, a prize deemed fitting the content of the competition

One entry that arrived by e-mail, but which did not receivt
a prize, was from a Mr. W. Clinton, of Little Rock, Arkansas.

Forth Dimensions XX.2

DEFER DRUGS \ n - - - - - , . context sensitive
: BILL'S-DRUGS \ n ----- ; attitude

INHALE? NOT ME!
THROW

: SEX \ --- u; none of your business

PRIVACY CONTEXT !
JOURNALIST @ EXECUTE
MONICA @

: ROCK \ ---
SHAKE RATTLE ROLL

I

: LIFE \ attitude. -- report
IS DRUGS
BEGIN

SEX DRUGS ROCK AND
TERM TIME-OUT?

UNTIL
ROLL OVER

BILL'S-DRUGS LIFE

Though this was conside~ed useable as a model, it had

I Listing One - the winning entry

1 CONSTANT XY \ Male object (constant is best used)
0 CONSTANT YY \ Female object (variable may be better)

: WAYZLIVE (no-fixed-address\XY\YY --)

\ Forth proposal for a better ANS standard (of living)
\ Note: ANS = another non-standard standard

SEX, \ Having fun without spawning child processes
DRUGS, \ an unconventional (~141) technique
ROCK \ sorting and fine-tuning
AND \ consolidation of resources
ROLL \ prioritising your life
I \ and keeping the results

SEX (nfa\XY\YY --nfa\XY)
\ Having fun without spawning child processes
2 PICK @ \ if there's anyone at home
IF 1 PICK 0 \ we'll try and pick her up

?DO \ then check if she does!
OVER \ if successful, do it over..
OVER \ and over again (if possible)
+ \ add it all together
IF \ if we got a result
LEAVE \ . . . we'll make a fast exit

THEN
LOOP

THEN
DROP \ if she's still around at this stage, we'll drop her

DRUGS, (nfa\XY --- NFA\YX)
\ trying to scramble/unscramble the data
OVER >R \ hold on to the important stuff . . .
R@ ! \ before we change the current state
R@ W@ \ if we aren't completely fulfilled . . .
R@ 2+ W@ \ we should try all our options
SWAP \ now we must priorotise things .
R@ W! \ try to hide some stash here
R@ 2+ W! \ ..and hide the rest over here
W @ \ finally, we try to find ourselves

ROCK (nfa\YX --- nfa\XY\XY\XY)
\ sort, stabilise and fine-tune the data
DRUGS, \ start off with some more of this
1 PICK \ now try some string manipulation (m12n)
OVER 4* \ use some clever cellular tricks
ERASE \ and prepare our bass (sorry, should be base)
DU P \ first make a back-up copy
DU P \ before making a master copy

Forth Dimensions XX.2

some serious problems in the coding (obviously not tested).
Another entry, which unfortunately arrived too late for in-
clusion, but which did work well, was by MALCOLM BUGLER.
This entry is not included in this report but may be available
for download from the EuroForth web-site with the electronic
version of this report.

MICHAEL MILENDORF gave us:
HEX \ A hex value

\ BABE hex value
\ FACE hex value

: SEX (--) RECURSIVE
SEARCH A BABE
F I N D I F

S E E FACE AND EVALUATE ,
P I C K BABE , EMIT WORDS ,
DO ROCK AND ROLL LOOP ,
DO DRUGS LOOP ,
BEGIN

FORGET WORDS
MOVE AND ROLL WITHIN OPEN SPACE
THROW

U N T I L
ELSE

SEX
THEN

: ROCK (--)

BEGIN
MOVE AND ROLL !
DUMP AND THROW !
DROP

UNTIL

: DRUGS (--)

BOTTLE P I C K AND OPEN
BEGIN

R E F I L L GLASS
DRUNK

UNTIL
BOTTLE DUMP

This, it was felt by the judges, had missed some of the
essence of the competition rules. However, the winning en-
try presented in Listing One had more merit and was accepted
in the obvious spirit of universal harmony that it displayed
(or perhaps the author likes having sex with aliens).

Obviously, you need to use the backwards loader to get this
one into the computer, as it was written top-down fashion.

Other Prizes
Other prizes were awarded for the best papers and presen-

tation, and a "best dressed for dinner" prize:
ANTON ERTL, for a paper displaying a most-incisive applica-

bility.
PAUL BENNETT and MALCOLM BUGLER, for best real-life appli-

cation of Forth
JASON BENNETT, best dressed for dinner (stealing the title from

Malcolm Bugler).

The Survivors Party
After dinner, Malcolm Bugler organised us into teams of

four, passed round the words of a song and tasked us to per-
form it as a barbershop quartet. After a little practice, the
teams gave their often-amusing renditions. There followed a
few more impromptu songs and plenty more boozing.

Author Recognition Program
To recognize and reward authors of Forth-related articles, the Forth Interest Group (FIG) has adopted the 1 following Author Recognition Program.

Articles
The author of any Forth-related article published in a pe-

riodical or in the proceedings of a non-Forth conference is
awarded one year's membership in the Forth Interest Group,
subject to these conditions:

a. The membership awarded is for the membership year
following the one during which the article was pub-
lished.

b. Only one membership per person is awarded in any
year, regardless of the number of articles the person
published in that year.

c. The article's length must be one page or more in the
magazine in which it appeared.

d. The author must submit the printed article (photo-
copies are accepted) to the Forth Interest Group, in-
cluding identification of the magazine and issue in
which it appeared, within sixty days of publication. In
return, the author will be sent a coupon good for the
following year's membership.

e. If the original article was published in a language other
than English, the article must be accompanied by an
Engish translation or summary.

Letters to the Editor
Letters to the editor are, in effect, short articles, and so

deserve recognition. The author of a Forth-related letter to
an editor published in any magazine except Forth Dimensions
is awarded $10 credit toward FIG membership dues, subject
to these conditions:

a. The credit applies only to membership dues for the
membership year following the one in which the let-
ter was published.

b. The maximum award in any year to one person will
not exceed the full cost of the FIG membership dues
for the following year.

c. The author must submit to the Forth Interest Group a
photocopy of the printed letter, including identifica-
tion of the magazine and issue in which it appeared,
within sixty days of publication. A coupon worth $10
toward the following year's membership will then be
sent to the author.

d. If the original letter was published in a language other
than English, the letter must be accompanied by an
English translation or summary.

30 Forth Dimensions XX.2

By 11:30 (a.m.) EST (USA) on Tuesday 11 August 1998, the
[Forth download site had been deluged with hundreds of
download requests, overwhelming the system. The system
went down for eight hours.

Despite that outage, in the 24-hour period ending mid-
night of the 11th (the first day), an incredible 1,649 hits had
been recorded on the primary site. Auditing is not available
for the secondary, ftp site.

In the 21 days after the JForth release on 10 August 1998,
the primary download site at www.softsynth.com/jforth had
931 downloads of JForth. The temporary ftp site did not have
tracking information (so the actual number is probably a lot
higher) and is now closed.

Following the release of JForth freeware on the 10th Au-
gust 1998, we are now proud to announce the availability of
the JForth web site at home.tampabay.rr.com/jforth/.

JForth is an implementation of Forth designed specifically
for the Commodore Amiga. JForth uses a 32-bit stack and
compiles directly to 68000 machine code. This makes JForth
faster than most Forths. JForth also provides an extensive set
of tools for accessing the special features of the Amiga. You
can call any Amiga Library routine by name and reference
any Amiga structure using constructs similar to those of C.

(Continued from page 13.)

What to Include
O Your name as you wish it to appear in print.
O Your city, state (or province), and nation of residence.
tl Brief autobiographical information to share with

readers-such as education, relevant employment, your
introduction to and use of Forth, current projects, and
other interests.

O Your e-mail address for publication, so interested readers
can contact you. If you have a personal Web site, you
can include that URL as well.

tl If your article depends on a specific Forth dialect or
implementation, be sure to specify it (e.g., ANS Forth,
Forth-83,

Ci Your complete mailing address, so we can mail compli-
mentary contributor's copies of the issue in which your .
work appears.

0 Permission to post your code, in the form you have sent
it to us, on one or more FTP sites so readers can down-
load it; and/or include the URL of an FTP site where you
will post the code.

tl Daytime and evening telephone numbers and a fax
number (if any). These will not be published, and will be
used only if we have questions or problems during the
editing process.

O If you send hard-copy manuscript, artwork, or disks that
need to be returned to you, include a self-addressed
envelope with adequate postage affixed to it.

Forth Dimensions XX.2

JForth also has some special toolboxes that support simple
graphics, Intuition menus, IFF files, and other Amiga features.
These toolboxes can be used directly to simplify Amiga pro-
gramming. Source code for these toolboxes is provided so you
can customize them or study them as examples of Amiga pro-
gramming. JForth also provides over a dozen small sample
programs for those, like me, who learn best by example.

JForth also allows you to do things that are unique in the
Forthexperience, the most dramatic being CLONE. This ex-
ceptional utility allows you to create a totally independent,
standalone version of your program of minimal size.

Clone will take a compiled JForth program, extract out all
of the code and data needed to run it, and re-assemble a smaller
version of it. All of the JForth development tools, the name
fields and link fields and any other unused words are left be-
hind. The final image size is comparable to images created us-
ing a C compiler and linker. Images can be saved with a sym-
bol table for use with WACK or other debuggers (if needed).
The JForth Source Level Debugger can also be used with Cloned
programs. Most programs will Clone without modification if
they follow a few simple rules regarding run-time initializa-
tion of variables or arrays containing Forth addresses.

Copyright Q August 1998 by Martin Randall

How to Submit Your Work
I f in doubt, just ask-we can work out the details.

E-mail
The fastest, most convenient way for us to receive your ma-
terial is via e-mail to the editor@forth.org address. Binary (e.g.,
formatted text) files must be uuencoded to be sent as e-mail,
but ASCII files can be sent as-is.

"Snail" mail
Or, mail a hard copy with PC or Mac diskettes containing
your material to FD Editor, c/o the Forth Interest Group.

File formats
If your article includes equations or other items highly de-
pendent on your particular software and/or fonts, include a
Postscript file, if submitting electronically, so we can gener-
ate a reliable hard copy for proofing. Formatted files that can
be read by MS Word are acceptable (e.g., RTF, WordPerfect,
and many others); or just send the text as ASCII-you can
indicate any critical formatting with informal tags, e.g.,
<italic>like HTML<end-italic>.

lllustrations
Figures are black-and-white and can be vector (Postscript) or
bitmapped. They likely will be re-drawn for clarity, style, and
compatibility.

3 1

Introduction
I doubt that anyone is happy with all of ANS Forth and

that any programmer could not list off three or four things
which they would class as significant losses or missed oppor-
tunities when ANS is compared to F83. Recently, when I sug-
gested on comp.lang.forth that the biggest "bug" in ANS Forth
is the presence of colon-sys on the control-flow (and, there-
fore, potentially on the data stack), I was exaggerating the
problem slightly; I really think it's the second biggest prob-
lem, but I had already found a workaround for the biggest
problem, which, in my eyes anyway, is the inability of the
programmer to assign the input stream to an arbitrary block
of memory.

The ensuing, rather vigorous, response to my assertion on
the newsgroup happily led to Elko Tchernev offering a
workaround for the colon-sys problem, which he attributed
to Wil Baden and so I am now in the fortuitous position of
having a solution for my pet ANS-hates. I still don't like the
locals wordset, but at least I don't need to use it.

I present below a short discussion of how these two ques-
tions affect the programmer, a general guide to how to solve
them, and finally an example of code which gets around
them both and does something useful in its own right; viz.,
it implements a finite state machine wordset which is then
used to build an FSM which translates ASCII text into Plain
TeX format.

The Problems
1. The problem with colon-sys is that the programmer has

no obvious way of determining whether it exists and, if it
does, how big it is. This makes it difficult to take into ac-
count, to say the least. The colon-sys problem really comes
to the fore in applications where a special form of colon is
needed but there is no need to have a special semi-colon. The
natural word to turn to at these times is : NONAME but this has
the stack diagram (-- xt colon-sys). If we want the "special
colon" to build a word which uses that xt, we have to get it
out from under a stack item we do not know the size of. Gen-
erally, the solution I have used up to now is to make a special
semi-colon to match the new colon word, which performs
the normal semi-colon action first, to remove colon-sys, and
then does whatever is required to xt. This solution is ugly
and annoying.

2 . The input stream words such as PARSE, WORD, and > I N
seem, at first glance, a gift to the programmer who wants to
write a simple parser for text files of various sorts. First im-
pressions are deceiving, however. Since there is no ANS-sanc-
tioned method of setting the input stream without transfer-
ring control to the (supposedly) Forth words contained in it
(i.e., EVALUATE), it is often the case that the function of these

words is re-written by the programmer into words which take
an input stream definition c-addr length pair. This is a waste
of programmer effort and is plain inelegant when the code
manifestly exists in the Forth kernel already. Indeed, just to
rub salt into the wound, the "missing" word we are looking
for must be a factor of EVALUATE.

The Solutions
1. The size of colon-sys is, in fact, easily determined by a

program as it compiles:
: SOMEWORD [DEPTH] LITERAL . . . ;

Since we know from the ANS Forth document that the
only thing added to the stack by colon is a colon-sys (or noth-
ing at all, if the control stack is separate), then the depth
reported above is the size, on the data stack, of a colon-sys,
assuming that nothing was placed on the stack by the pro-
gram before hand. This allows ROLL or PICK to be used to
retrieve items that lie under the colon-sys:
: GET-XT [DEPTH] LITERAL ROLL ;

: REPORTXT: (<NAME> -- colon-sys)

:NONAME GET-XT DUP ." N e w x t i s : " .
CREATE ,

DOES>
@ EXECUTE

This allows the new word REPORTXT to be completed by
the normal semi-colon. This method is used below to allow
the definition of the FSM's state's actions after the state names
themselves are defined, making it much easier for states to
reference each other.

2. This one is harder and less attractive. To allow a word
to use the normal parsing words in an arbitrary region of text,
we first ALLOT or ALLOCATE a region of memory big enough
for the word which is going to perform the action, plus a
space character, plus the length of the text to be parsed. Then
we copy in the name of the word, a space character, and fi-
nally the text to be parsed. The start address of this buffer is
passed, along with its total size, to EVALUATE and hey, presto!
the word's actions are applied to the text following it in
memory.

The example FSM below uses this method to allow the
FSM to parse a file, replacing any characters which would
give TeX trouble with the required control sequences in the
output file.

A better solution for everyone would be to expose the code
in EVALUATE which redirects the input source to the passed
string. Call it something like > SOURCE or > INPUT or just READ.

32 Forth Dimensions XX.2

- - - - - - - -

The Example
I recently downloaded a very large text from the Gutenburg

Project which I wanted to be able to treat as a TeX document.
However, some ASCII characters, such as "1" and "1" and "&",
are treated as commands by TeX and, additionally, the nor-
mal ASCII double quote mark " is better as either " or " in
TeX, depending on whether it represents an opening quote
mark or a closing quote mark.

Clearly, this was a job for a finite state machine which
would scan through the text, outputting most text as it ap-
peared in the original but replacing special characters with
their TeX equivalents. It would have two states, expecting
the next double quote to be an open or a close, and passing
to the other state when a quote mark was encountered.

First, I build a set of words for defining and running an
FSM:
FsM A variable which holds the current state of the

machine, as an x t . (I couldn't very well call it
STATE, could I?).

GO Simply executes the next state until the DONE or
ERROR State is arrived at.

STATES (n <namel> ... <namen> --) Predefines the
names of all the states so that they can refer to
each other without constant recourse to DEFER
and IS.

(STATE) Simply defines the action of one of the above
states, i.e., it sets the current value of F S M to the
state's xt.

DONE Transfers the machine to a final, accepting state.
ERROR Transfers the machine to a final, non-accepting

state.
STATE : (<name> -- colon-sys) Starts the definition of a

state's action, where the state has already been
declared by STATES.

This is the code for these words:
VARIABLE FSM

: GO \ simply read the current state and if it
\ is not DONE or ERROR perform its
\ action; repeat.

BEGIN
FSM @ DUP O>

WHILE
EXECUTE

REPEAT
DROP

: DONE 0 FSM ! ;
: ERROR -1 FSM ! ;

\ a reference to a state causes a transition
\ to that state on the next loop through GO
: (STATE) DOES> @ FSM ! ;

\ Declare your states before you start.
: STATES (N <NAMEl> <NAME2> . . <NAMEN> --)

0 ?DO CREATE -1 , (S T A T E) LOOP ;

\ This uses the colon-sys trick discussed in

\ the text to set up the state's action without
\ having to make a special form of semi-colon.
: STATE: (<NAME> --)

[DEPTH I L I T E R A L (COLONSIZE)
> R :NONAME (XT COLONSYS I r: COLONSZ)
R> ROLL (COLONSYS XT <NAME> --)

>BODY !

And that's it! These words are enough to declare any FSM-
so let's use them.

ASCIbTeX. Needs the file words and the memory alloca-
tion words.

: >= < INVERT ;

\ move to next character in the input stream.
: +CHAR (--) 1 > I N + ! ;

\ get the next character in the input stream,
\ unless we have run out of stream.
: CHAR> (-- CHAR TRUE I F A L S E)

SOURCE > I N @ >= I F
> I N @ + C @ -1

E L S E DROP 0
THEN

\ for keeping the handle of the output file
VARIABLE O U T F I L E

\ write a string to the output file.
: >OUT (ADDR LEN --) O U T F I L E @ WRITE-FILE

ABORT" Write fail!" ;

\ declare our states
2 STATES NORMAL " WAIT

\ This is the name of the word which will do
\ the work, it is the FSM word GO
: PARSES (-- CADDR LEN) S" GO " ;

\ This ungainly word makes a dynamic buffer for
\ the input file plus the above string,
\ reads in the input file, closes it (in case
\ we are going to over-write it.), places
\ the action word at the start of the buffer
\ (where we have left room for it) and
\ returns the address of the buffer and the
\ total length.
: GETINPUT (HANDLE -- ADDR LEN)

DUP > R F I L E - S I Z E OR
ABORT" File read problem" (. S I Z E l r : HNDL)

PARSES N I P + DUP ALLOCATE
ABORT" Out of memory." (S Z ADDRIH)

TUCK PARSES N I P + SWAP R@ READ-FILE
ABORT" Read failed!"

(ADDR L E N l I R: HND)
R> CLOSE-FILE DROP
PARSES (ADDR L E N l CADDR L E N 2)
3 PICK SWAP MOVE \ PUT GO into start of file
PARSES N I P + \ add length of PARSES to

\ file length

Forth Dimensions XX.2

\ Converts a character from ASCII to TeX if
\ required, otherwise just passes it through.
: FILTER (CHAR --)

CASE
[CHAR] \ OF S" \backslash" >OUT ENDOF
[CHAR] { OF S" $ \ { $" >OUT ENDOF
[CHAR]) OF S" $ \ } $" >OUT ENDOF
[CHAR] $ OF S" \ $" >OUT ENDOF
[CHAR] & OF S" \ &" >OUT ENDOF
[CHAR] # OF S" \ #" >OUT ENDOF
[CHAR] % 0 F S" \ %" >OUT ENDOF
[CHAR] - OF S" \-" >OUT E N W F
[CHAR] % OF S" \ %" >OUT ENDOF
[CHAR] / OF S" \slash " >OUT ENDOF

DUP HERE C! HERE 1 >OUT
ENDCASE

\ allows input of a string in
\ "words and spaces" form.
: "WORD" ("<text>" -- caddr length)

[CHAR] " PARSE 2DROP [CHAR] " PARSE ;

\ load the input file, open the output file,
\ run the FSM, and close everything afterward.
: CONVERT ("<nameFrom>" "<nameTo>" --)

" WORD" R/O OPEN-FILE
ABORT" File not found."

>R "WORD" W/O CREATE-FILE
ABORT" Can't open output file"

OUTFILE !
R> GETINPUT (ADDR LEN)
OVER >R \ keep for FREE
NORMAL EVALUATE \ Start FSM in NORMAL
R> FREE

ABORT" Error releasing memory ."
OUTFILE @ CLOSE-FILE

ABORT" Error closing output file ."
FSM @ O<

ABORT" WARNING: Quotes not balanced!"

\ Finally, the two states: NORMAL waits for an
\ open quote, "WAIT waits for a close quote.
STATE: NORMAL
CHAR>
IF (CHAR)
DUP [CHAR] " =

IF DROP S" "" >OUT +CHAR "WAIT
ELSE FILTER +CHAR

THEN
ELSE DONE THEN

STATE: "WAIT
CHAR>
IF (CHAR)
DUP [CHAR] " =

IF DROP S" ' "' >OUT +CHAR NORMAL

ELSE FILTER +CHAR
THEN

ELSE SOURCE 1+ >IN ! DROP
\ Scrap rest of input

ERROR THEN

Once compiled, the program is used by typing

CONVERT " f ilenamel" " f ilename2"

where filename1 is the original ASCII file and filename2 is the
new TeX file to be generated.

The current version does not filter the characters " and -
or < and > as these rarely appear in the sort of text which I
wrote the program to convert.

Support for older systems
Hands-on hardware and software

Computing on the Small Scale
Since 1983

Subscriptions
1 year $24 - 2 years $44

All Back Issues available.

I TCJ
The Computer Journal

P.O. Box 3900
Citrus Heights, CA 95611 -3900
800-424-8825 1 91 6-722-4970

Fax: 91 6-722-7480
BBS: 91 6-722-5799

Forth Dimensions XX.2

The following are corporate sponsors and individual benefactors
whose generous donations are helping, beyond the basic member-
ship levels, to further the work of Forth Dimensions and the Forth In-
terest Group. For information about participating in this program,
please contact the FIG office (office@forth.org).

Forth-based OSSCA and MULTOS.

An interactive programming environment for writing Win-
dows NT and Windows 95 kernel mode device drivers in Forth.

Corporate Sponsors

AM Research, Inc. specializes in Embedded Control applica-
tions using the lang;age Forth. Over 75 microcontroli&s are
su~~or ted in three families. 805 1.681 1 and 8xC16x with both
hzware and software. W; supply development packages, do
applications and turnkey manufacturing. - -

Clarity Development, Inc. (http://www.clarity-dev.com) pro-
vides consulting, project management, systems integration,
training, and seminars. We specialize in intranet applications
of Object technologies, and also provide project auditing ser-
vices aimed at venture capitalists who need to protect their
investments. Many of our systems have employed compact
Forth-like engines to implement run-time logic.

Computer Solutions, Ltd. (COMSOL to its friends) is Europe's
premier supplier of embedded microprocessor development
tools. Users and developers for 18 years, COMSOL pioneered
Forth under operating systems, and developed the
groundbreaking chipFORTH hotltarget environment. Our
consultancy projects range from single chip to one system
with 7000 linked processors. www.comp~ter-~olution~.co.uk.

Digalog Corp. (www.digalog.com) has supplied control and
instrumentation hardware and software products, systems, and
services for the automotive and aerospace testing industry for
over 20 years. The real-time software for these products is Forth
based. Digalog has offices in Ventura CA, Detroit MI, Chicago
IL, Richmond VA, and Briahton UK.

vices fo; real-timhapplicatio~ skce 1973. Today, companies in
banking, aerospace, and embedded systems use our powerful
Forth systems for Windows, DOS, Macs, and micro-controllers.
Current developments include token-based architectures, (e.g.,
Open Firmware, Europay's Open Terminal Architecture), ad-
vanced cross-compilers, and industrial control systems.

Silicon Composers (web site address www.silcomp.com) sells
single-board computers using the 16-bit RXT 2000 and the 32-
bit SC32 Forth chips for standalone, PC plug-in, and VME-
based operation. Each SBC comes with Forth development soft-
ware. Our SBCs are designed for use in embedded control, data
acquisition, and computation-intense control applications.

T-Recursive Technology specializes in contract development
of hardware and software for embedded microprocessor sys-
tems. From concept, through hardware design, prototyping,
and software implementation, "doing more with less" is our
goal. We also develop tools for the embedded marketplace
and,onoccasion,special-purposesoftwarewhere"small"and
"fast" are crucial.

Taten0 Dennou, Inc. was founded in 1989, and is located in
Ome-city Tokyo. Our business is consulting, developing, and
reselling products by importing from the U.S.A. Our main
field is DSP and high-speed digital.

AS0 Bldg., 5-955 Baigo, OmelTokyo 198-0063 Japan
+81-428-77-7000 Fax: +81-428-77-7002

http://www.dsp-tdi.com E-mail: sales@dsp-tdi.com

Forth Engineering has collected Forth experience since 1980.
We now concentrate on research and evolution of the Forth

, principle of programming and provide Holon, a new genera-
tion of Forth cross-development systems. Forth Engineering,
Meggen/Lucerne, Switzerland - http://www.holonforth.com.

FORTH, Inc. has vrovided hiah-verformance software and ser-

The iTV Corporation is a vertically integrated computer corn:
pany developing low-cost components and information ap-
pliances for the consumer marketplace. iTVc supports the
Forth development community. The iTVc processor instruc-
tion set is based on Forth primitives, and most development
tools, system, and application code are written in Forth.

Taygeta Scientific Incorporated specializes in scientific soft-
ware: data analysis, distributed and parallel software design,
and signal processing. TSI also has expertise in embedded
systems, TCP/IP protocols and custom applications, W W
and FTP services, and robotics. Taygeta Scientific Incoporated

1340 Munras Avenue, Suite 314 Monterey, CA 93940
408-641-0645, fax 408-641-0647 http://www.taygeta.com

Keycorp (www.keycorp.com.au) develops innovative hardware
and software solutions for electronic transactions and bank-
ing systems, and smart cards including GSM Subscriber Identi-
fication Modules (SIMs). Keycorp is also a leading developer of
multi-application smart card operating systems such as the

Triangle Digital Services Ltd.-Manufacturer of Industrial Em-
bedded Forth Computers, we offer solutions to low-power,
portable data logging, CAN and control applications.
Optimised performance, yet ever-increasing functionality of
our 16-bit TDS2020 computer and add-on boards offer versa-
tility. Exceptional hardware and software suvvort to devel-
opeis make us the choice of the professional.A A

Individual Benefactors

Makoto Akaishi Marty McGowan
Everett F. Carter, Jr. Gary S. Nemeth
Edward W. Falat Marlin Ouverson
Michael Frain John Phillips
Guy Grotke Thomas A. Scally
John D. Hall Werner Thie
Guy Kelly Richard C. Wagner
Zvie Liberman

Forth Dimensions XX.2 35

"Forth Interfaces

November 20-22,1998 Pacific Grove, California I

FORML welcomes papers on a variety of Forth-related topics,even those which do not adhere strictly to the published
theme. Papers submitted at press time include the following (see www.forth.org/Papers.htm for updates):

Color Forth 98, and Open Network Forth --
A New Command-Line Interface, Charles Moore Control system for the Munich accelerator

facility, ~ " d w i ~ Rohrer and Heinz Schnitter
Source to RTF,
Object-Oriented Programming in Forth Forth Multiprocessing, Dr. C.H.Ting
Made Simple, and
The Full Tool-Belt, Wil Baden An ANS Forth Target Compiler, John Rible

OOP and Multitasking USER Variables, Dian Blew Report: the ANS Forth Organizational Meeting,
Elizabeth D. Rather

Reconfigurable Forth Processor, John Hart
Internationalisation-the User Perspective,

Forth Philosophy 1998, Glen Haydon Stephen Pelc,Willem Botha, Nick Nelson,
Peter J. Knaggs

Asynchronous Serial I10 with the PSCl000,
Bradford J. Rodriguez, Ph.D. Issues in International Programming, and

Typing Forth, Peter J. Knaggs, Ph.D.
ThelZTAR'MIDl Controller,
Bradford J. Rodriguez, Ph.D., and Harvey Starr Object Forth Wraps C Structures, John Sadler

Advance registration required. FIG members are Conference attendee in double room $595"
eligible for a 10% discount on any registration fee. Non-conference guest in same room 5435"

Under 18 years old in same room
Inquiries about conference registration may be

Conference attendee in single room
$225"
$ 795*

directed to office@forth.org or to FORML Conference under two years in same room-free
Registration, c/o Forth Interest Group, 100 Dolores
Street, Suite 183, Carmel, California 93923.

Conference Chairman: Marlin Ouverson - editor@forth.org
Conference Director: Robert Reiling - ami@best.com

The FORML Conference is held at the Asilomar Conference Center, a National Historic Landmark noted for i t s
wooded grounds just yards from Pacific Ocean dunes and tidepools on California's Monterey Peninsula.

"Lodging and allmeals areincluded with conference registration, and spouses and guests of conference participants
can join numerous recreational outings and activities.

Please confirm your attendance early-accommodations may be limited due to this facility's immense popularity.

Please submit the subject of your paper as soon as E-mail submissions may be sent to editor@forth.org
possible in order to be included in pre-conference withWFORML paperVin the subject line. Hard copy may
publicity. Completed papers should be received by be mailed to FORML Conference Chairman, c/o Forth
November 1 in order to be included in the conference Interest Group, 100 Dolores Street, Suite 183, Carmel,
notebooks that are distributed to all attendees. (Late California 93923.
titles and papers will be accepted.)

