510 Volume XX, Number 1 May 1998 June

) R § .5

pe eyl FE. N S @ NS

OFFICE NEWS

This issue of Fortir Dimensions heralds the beginning of
the 20th year of the Forth Interest Group. For me, someone
who joined this legacy only in the last two years, this mile-

All-new development environment from FORTH, Inc.

SwiftForth”

ITON
[DR& 0N HPROG - HUPD
#SCROLLBAR #LISTROX SSTATIC BEDITBO

Super-efficient implementation = Easy to add DLLs and to call
for speed (32-bit subroutine- DLL functions

threaded, direct code expansion) = DOE client services for inter-
Full GUI advantages (like drag- application communication
and-drop editing; hypertext « Files and blocks supparcted
source browsing, visual stack, » Simple creation of windows,
watchpoints, and memory win- menus, dialogs, etc. — no
dows} but retains traditional third-party tocls needed
commang-line control and tools w Flexible, extensibla access to
Complies with ANS Forth, in- system callbacks and mes-
cluding most wordsets ages, and exception handler

FORTH Inc.

111 N. Sepulveda Blvd., #300
Manhattan Beach, CA 902566-56847
800.55.FORTH » 310.372.8493 u rax 310.318.7130
forthsales@forth.com = www.forth.cam

stone seems to signify many years of dedication and innova-
tion on behalf of the programmers and developers who usea
language that is used s reliably and silently around the world.

If you've been reading Office News regularly, you know
about some of the changes we've been making here at the
main office. We may need to make more changes in the com-
ing months. We are acquiring new members at a greater rate
than we had been, however, if each member could invite sev-
eral friends to join the Forth Interest Group, we at the office
would be happy te send a complimentary issue of Forth Di-
mensions for their review. March is our major renewal time,
and quite a few of you haven't yet renewed at press time.
Timely renewal is important to keep Forth Dimensions com-
ing to you without interruption.

Cost-wise, we run the Forth Interest Group as lean as we
can. FIG is being kept alive by the kind donations of many.
Last year, FORTH, Inc. donated a new modem, and the print-
ing of 1000 membership brochures that we use to solicit new
members, Taygeta Scientific Inc. donates the space for the
forth.org web site and Brandon Yeager's time for system ad-
ministration of that site. Taygeta also provides Eddy Hamelin's
time to answer the phone, to take your orders, and to assist
me in any way [need.

This past year, with your donations, we've upgraded the
memaory on our computer. We had been running with only a
200 Mb hard drive; we now have a 2 Gb external hard drive
and have added to the RAM. Qur laser printer is beginning to
show quite a bit of wear (creaks and groans that don’t sound
healthy seranade us each time we print); in all likelihocod we
will need to buy a new one this year. If anyone would like to
donate a new laser printer to FIG, please contact us at the
main office. We are sincerely grateful to those members who
make generous contributions just because they want to. Your
extra donations are put to good use.

To be starting our 20th year is quite an accomplishment.
The people who have contributed to Forth comprise an im-
pressive list of talented, innovative, and

(This classic is no longer out of print!

Poor Man’s Explanation of
Kalman Filtering

or, How I Stopped Worrying and
Learned to Love Matrix Inversion

by Roger M. du Plessis

$19.95 plus shipping and
handling (2.75 for surface U.S., ¥
4.50 for surface international)

You can order in several ways:

e-mail: kalman@taygeta.com
fax: 408-641-0647

voice: 408-641-0645

mail: send your check or money order in U.S. dollars to:

Taygeta Scientific Inc. » 1340 Munras Avenue, Ste. 314 » Monterey, CA 93940

~ other publications offered
vby Taygeta Scientific Inc., you
can call gur 24-hour message
line at 408-641-0647. for your
convenience, we accept Master-
Card and VISA.

| dedicated individuals. They gave life 10 this
organization, and gave you a place to begin
your knowledge of Forth or to enhance your
ability to use it. The question before us is
the one that will be explored at FORML: how
™ does the Forth Interest Group change and
grow and continue to meet the needs of the
Forth community? We look forward to your
continuing support and participation! Hope
to see you at FORML...

Together we make the difference!
Cheers,

Trace Carter

Administrative Manager
Forth Interest Group

100 Dolores Street, Suite 183
Carmel, CA 93923 USA !
voice: 408-373-6784 = fax: 408-373-2845
e-mail: office@forth.org

2

Forth Dimensions XX.1

CONTENTS

eForth for Java
by Michael Losh

Extending Forth’s potential to reach into the on-line world, this high-level implementation for the
Java Virtual Machine (JVM) runs as a console-style applet which can be apened in a Java-enabled web
browser such as Netscape Navigator or Microsoft Internet Explorer, jeForth can open new opportuni-
ties for promoting and teaching Forth to a wide audience over the Internet.

Forth in Control: Temperature Monitoring
13 | byKenMerk

Temperature is one parameter of our environment which has an affect on all living things. Even
machines perform differently through a range of temperatures. Many opportunities arise with the
need to measure temperature accurately and then perform certain tasks accordingly. This article cov-
ers how to interface a digital thermometer sensor chip to your computer's parallel port. The device
used is Dallas Semiconductor’s DS1620, which contains the sensor itself and a three-wire serial inter-
face inside an eight-pin DIP package.

LOAD” Module”
by Dave Edwards

This article provides a method to organize programs into sections by using the first line of each
screen—the line usually left for comments—and thereby attain a far greater degree of flexibility and
control. The idea was developed to organize the loading of programs, but can even be used to imple-
ment, for instance, a simple help engine. The abitity to use the data on the “header” line for struc-
tural information provides a surprising amount of functionality from such a simple mechanism.

2 OFFICE NEWS 27 STRETCHING STANDARD FORTH
What's a Character?

4 EDITORIAL 31 FORTHWARE

Around the world Adaptive PID, part two

5 NEW PRODUCT ANNOUNCEMENT 34 FREEWARE
Transputer Forth, Mops

5 ANS FORTH UPDATE 34 OFF THE NET
A shot in the foot

24 STANDARD FORTH TOOL BELT

Local Macros 35 SPONSORS & BENEFACTORS

Farth Dimensions XX.1 3

and experiences (and, yes, your code} with your fellow Forth users.
LI

verage and greater opportunities for all concerned.

authors) know your reactions.

previous velumes.

demic community) widely disseminated.

both Forth Dimensions and in JFAR."

Skip Carter
President, FIG

Larry Forsley
The Forth Institute

In an editor's life, there is one constant: the search for good material to publish that will
satisfy the range of tastes evinced by a publication’s readers. That's why you find me fre-
quently reminding you to write for us. We gre actively seeking new articles, announcements,
letters ta the editor, and even an occasional columnist, Please consider sharing your thoughts

Change can be disconcerting, but it can also bring new opportunities. Over the years,
numercus discussions have taken place about the varicus resources of the werld-wide Forth
community and about how better cooperation and ceordination can provide additional le-

In that vein, below is an announcement from the leaders of the Forth I[nterest Group
and The Forth Institute. We are looking forward to the results of this news. In fact, the first
tangible results will appear in these pages in the next issue—stay tuned, and let us (and our

—Marlin Ouverson, Editor

“For several years, the Journal of Forth Applications and Research has been the pre-eminent
location for refereed papers on Forth technology and its application. Beginning with Vol-
ume VII of the Journal, JFAR has become electronic and can be found on the Web at
www.jfar.org. Its new editor is Dr. Peter J. Knaggs, of the Bournemouth University in the
U.K, As an additional service to the Forth community, selected refereed papers from JFAR
will now appear in a special section of each issue of Forth Dimensions. These papers will
represent both the currently electronically published velume and significant papers from

“It is our hope that, through Forth Dimensions, these papers will find a new and larger
audience. By expanding Forth Dimensions to include a section for the hard copy publication
of peer-reviewed papers from JFAR, the Journal section of Forth Dimensions can now provide
an important means of getting important papers about Forth (particularly from the aca-

“We hope you will be inspired by these papers to explore your own work in detail, in

hand information about the activities of your Forth friends in Germany?

Become a member of the
German Forth Society
{“Deutsche Forth-Gesellsq!\aft”)

80 DM {50 US-8) per year
or 32 DM (20 US-$) for students or refirees

guarterly issues of Vierte Dimension. For more information, please contact:
Fred Behringer
Planegger Strasse 24
81241 Muenchen
Germany
E-mail: behringe@mathematik.tu-muenchen.de

Would you like to brush up on your German and, at the same time, get first-

Read about programs, projects, vendors, and our annual conventions in the

Forth Dimensions
Valume XX, Number 1
May 1992 lune

Published by the
Forth Interest Group

Editor
Marlin Quverson

Cireutation/Order Desk
Trace Carter

Farth Dimensions welcomes editorial ma-
terial, letters tothe editor,and comments
from its readers. No responsibility is as-
sumed for accuracy of submissions.

Subscription to Forth Dimensions is in-
cluded with membership inthe Forth In-
terest Group at $45 per year {5} 560
international). For membership, change
of address, and to submit items for pub-
licatian, the address is:

Forth Interest Group

700 Delores Street, suite 183
Carmel, California 93923
Administrative offices:
408-37-FORTH Fax:408-373-2845

Copyright @ 1998 by Forth Interast
Group,Inc. The material contained inthis
periodical {but not the code} is copy-
righted by the individual authors of the
artictes and by Forth Interest Group, Inc.,
respectively, Any repraduction or use of
this periodical as it is campiled or the
articles, except reproductions for non-
commercial purposes, without the writ-
ten permission of Forth Interest Group,
Inc.is a violation of the Copyright Laws.
Any code bearing a copyright notice,
however, can be used only with permis-
sion of the copyright halder.

The Forth Interest Group

The Forth Interest Group is the assacia-
tion of programmers, managers, and
engineers who create practical, Forth-
based solutions ta real-world needs.
FIG provides a climate of inteliectual
exchange and benefits intended to as-
sist each of its members. Publications,
conferences, seminars, telecommuni-
cations, and area chapter meetings are
among its activities.

FORTH DIMENSIONS (IS5N 0884-0822)
is published bimanthly for $45/60 per
year by Forth Interest Group at 1340
Munras Avenue, Suite 314, Monterey
CA 93940, Periodicals postage rates
paid at Monterey CA and at additional
mailing offices,

POSTMASTER: Send address changesto
FORTH DIMENSIONS, 100 Dolores Street,
Suite 183, Carmet CA 93923-8665,

Forth Dimensions XX.1

340 Mbyte Continuous Fast Storage for

Pocket Data Logger Modulie

Victor, NY.—The TDS2020D is a Forth-based, pocket-sized
datalogger module which now provides continuous fast data
collection to PCMCIA cards, without any break caused by
transfer of data to hard disk or flash-ATA card. It will work
fram a small battery for months, storing data on Windows-,
DOS- or 0O5/2-formatted cards.

Fast data-logging under interrupt into PCMCIA disks or
flash-ATA cards is achieved with a double data cache. One
cache is used for data collection under interrupt, while data

in the other buffer is being transferred to the PCMCIA card
' by the foreground routine {or another task, if the multitasker

is installed). Data collection speeds of over 100,000 bytes per
second can be achieved.

High-level, ANS Forth data-logging programs provided can
be used immediately, but are customizable far individual ap-
plications. By taking several samples on each interrupt, data
rates over 100,000 bytes of ten-bit A-to-D data per second

can be achieved. The rate at which data can be collected into
one half of the buffer is ultimately limited by the time needed
for the foreground program to push the alternate half of the
data to disk.

For use anywhere large amounts of portable data have to
be obitained, the TDS2020D stores data in PC-file format onto
PCMCIA cards for subsequent analysis on a PC.

Typical current for computer, adapter and hard disk is
350uA standby, 30mA operating. For example, 24 bytes of
digital, analog, and time information logged every minute
will cause the hard disk to power up for only five seconds
every two weeks.

Returning the PCMCIA disk from the field, the storage
device can be put into a PC's PCMCIA slot and, without any
special software, data can be copied to a PC file.

Saelig Company LLC

1193 Moseley Road

Victor, NY 14564

716-425-3753; fax 716-425-3835

saelig@acl.com » www.saelig.com

\j

Excerpts from a letter by the chair of the ANS Forth Technical

Committee (TC)—According to rules governing ANSI standards,

four years after a standard is published, its TC must vote to

“reconsider, reaffirm, or withdraw" it. As ANS Forth was pub-

lished in 1994, this is the year. Note that if we fail to act, it

will be withdrawn for us....

1. The TC shall get a letter ballot to vote to “reconsider” the
standard. If this fails, the other two choices are to “reaf-
firm” or “withdraw,” which would be a subject of a sec-
ond ballot in that case. If it passes, we’'ll propose a first
meeting to coincide with the 20th FORML Conference at
Asilomar, California, on the weekend of Nov. 20-22 and a
second meeting to coincide with the next Rochester Con-
ference (to be held somewhere other than Rochester).

2. If we vote {0 “reconsider,” we will do so with an agenda
limited to the following items: (a) Withdrawal of “obso-
lescent words,” {b} Ratification of “clarifications” passed
since publication of the Standard, (c) Support for embed-
ded and ROMable systems, and (d) Support for interna-
tionalization and extended character sets.

| 3. The above agenda may have additional topics added by a

2/3 vate of the membership,

4. People have requested consideration of additional toplcs,

such as graphics and multitasking. However, consistént
“commeon practice,” or proposals reflective of existing
“commoeon practice,” seems to be in short supply. The cur-
rent SD-2 provides a mechanism for such issues: a “Tech-
nical Group” (TG}, which is a sub-group of the TC given a
specific mission, whose product is a “Technical Report.”
A TR doesn’t have the official standing of a Standard...but
can serve as a basis for implementations...until the tech-
nolegy has matured sufficiently for a standard.

We propose to require that all proposals be submitted elec-
tronically, and meet [certainj criteria...

...The present annual fee for TC members and observers is
$300. There was a question of whether an additional $300
would be assessed for international representation; the rul-
ing is that, since we do not have an active ISO liaisen or work-
ing group, it is not applicabte,

The $300 fee pays for a principle and one alter-
nate....Membership of TGs is not limited to TC members; how-
ever, TG members who aren’t TC members must pay $300/yr.

Until our next meeting, you can become a full member by
voting in two successive letter ballots (your vote on the sec-
ond one counts). For this reason,] think it's a good idea to
submit letter ballots on the issues from the organizational
meeting. When we become active, it still takes two meetings,
although NCITS [National Committee for Information Tech-
nology Standards, pronounced “insights”; formerly X3.] is
considering liberalizing this, sinice many groups meet infre-
quently (as we propose)... You can lose your membership by
failing to pay yvour fees, by failing to respond to B0% of the
letter ballots in a calendar quarter, or by failing to attend three
successive meetings. Both the attendance and letter ballot
voting requirements apply; you may not skip meetings and
just vote electronically!There will be no 1EEE fee waivers.

If you are not presently a TC member and wish to be in-
cluded in the letter ballots in order to become a member,
please notify me (erather@forth.com) and Greg Bailey
{greg@athena.com).

Membership is open to any person or organization who is
“materially affected” by the subject matter (by their own defi-
nition). It is not limited to U.S. members, so long as we are
strictly an ANSI group....A consultant who wishes to be a
member must not receive primary fanding (e.g., »50%) from
any voting member,

—Elizabeth Rather

Forth Dimensions XX.1

erort ; for Java |

eForth for Java, or jeForth, is a high-level Java implementa-
tion of eForth for the Java Virtual Machine (JVM). It Tuns as a
console-style applet which can be opened in a Java-enabled
web browser such as Netscape Navigator or Microsoft Internet
Explorer. This version of eForth has been extended to provide
teatures common in other Forth systems, such as FORGET,
CREATE .., DOES>, DO ... LOOP, and simulated BLOCK 1/O.

jeForth can open new opportunities for promoting and
teaching Forth 1o a wide audience over the Internet. The au-
thor intends to freely distribute this system, including its
source code, to non-commercial users and organizations such
as the Forth [nterest Group.

Purpase

Another Forth written in Java? Yes, and | think this ver-
sion is substantially different and useful in its intended niche.
Starting back in 1995 with the introduction of Java technol-
ogy, my vision was to create a simple Forth to demonstrate
and promote over the Internet. The popular web browsers
support Java applets, 5o it occurred to me that many people
could easily try a “live” Forth on the Internet if it is built
from Java. Furthermore, a Forth applet can be surrounded
with and linked te tutorial texts, making it easy for a student
of Forth to experiment while referring to lessons online. Low-
ered hurdles to learning about Forth may help revive wide-
spread interest in our favorite language and development toal!

A secondary and more personal purpose for this project
was to learn more about Java, | have several years of experi-
ence with C++, and learned that Java is another object-ori-
ented language with similar syntax and flavor. At least from
an academic point of view, I liked some Java features that
make it easier and more reliable to use than C++, but I knew
that 1 would not truly understand its benefits and limitations
unless I did a substantial project with it. And like many Forth
enthusiasts, 1 could not resist the urge to implement Forth
on an emerging platform, So a Forth applet in Java seemed
like a fun and worthwhile exercise. It has been, all in all, but
Java’s security restrictions and problems with early Java tools
have made design and development less joyful than 1 had
hoped.

A third possible purpose for a Java-based Forth is as a gen-
eral internet/intranet application development language. The

current version of jeForth is too limited for serious internet

application development, lacking such services as HTTP GET
and PUT requests, HTML forms processing, Java Bean inte-
gration, Java Database Connectivity, and Remote Method In-
vocation, | am planning another Forth, more suitable for com-
mercial internet purposes, which may include the features
listed above and others that web developers would want. Such
a commercial package will have a different name and license

Michael A.Losh » Detroit, Michigan
mlosh@tir.com

restrictions. But for non-commercial uses, jeForth is released
as an open system, so you can improve and extend it as you
wish.

Approach

I considered various Forth models, including some writ-
ten in C since Java is very simifar to it. But the C-based Forth
systems are fairly large and | do not have much experience
with them. eForth is small and I understand it well, so I chose
it to be the foundation. The initial eForth model was imple-
mented for the 8086 processor family by Bill Muench and Dr.
C.H. Ting using the MASM macro assembler. Other imple-
mentations for various platforms have since been developed,
some using MASM with additional macros or hand assembly
of the cross-platform portions, some in other languages.
eForth has a small number of kernel words in native code,
then provides the rest of the Forth environment as high-level
“colon” words.

MASM source is not a good match for Java, so [ended up
using java to develop something between a cross-compiler
and a Forth metacompiler, which is described below. The
MASM source was ported to this special syntax. The result is
not very elegant, but it works. When you open the jeForth
applet, it takes a moment to actually build the high-level Forth
words in memory using these metacompiling routines,

When running, jeForth is mostly in this high-level Forth,
The kernel words and Forth VM are implemented in high-
level Java code, which itself runs on the Java VM, whose vir-
tual machine instruction bytecodes are interpreted (like Forth’s
inner interpreter) or compiled into native code, possibly with
a “Just-In-Time"” compiler. These multiple software layers in-
hibit performance, but should suffice for demonstration and
training purposes. Furthermore, by providing most of the
Forth system as colon definitions, a student can more easily
get “under the hood” to understand how Forth systems are
designed and operate.

eForth Virtual Machine

The eForth VM is a set of Java data structures and routines
{methods in Java-speak) organized into the ForthMachine
class. The eForth memory is 65536 words of 32 bits each,
plus another 8192 words for BLOCK I/Q buffers, stored in an
array of Java 32-bit integers named “m.” To simplify porting,
the memory organization was kept very close to the original
eForth except for the USER variables, which are stored in low
memory. All eForth data, including parameter and return
stacks, code, name dictionary entries, and user variables are
located in m, Figure One shows a memory map.

Forth usually assumes fairly free access to all memory; lava
does not. In the name of security and program robustness,

The authoris a Microsoft Certified Trainer for Windows programming
with the Win32 API,Visual C++, and MFC, and isithie director of soft-
ware consulting at American Systeéms Technology,Inc.

Forth Dimensions XX,1

0x00012000
\ BLOCK 1O Buffers

0x00010000 BUFFEROQ
Unused
0x0CGOOFFO0

0x0000FEF8

EM
RPO

Return Stack l

Terminal Input Buffer T

: 0xD00OFE78
0x0000FE70

TIB
SPO

Data Stack l

0x000QFEGQ
0x0000FDFS§

BSSP
NAMEE

Name Dictionary

NP

Free Space

User-defined
High-Level Forth [
0x00000C99 CP
Pre-defined
High-Level Forth

0x00000180 CODEE

User Vanables

Figure One, Memory map

Java does not offer pointets like C and C++. Mark Roulo did a
good job describing these issues in his article on Misty Beach
Forth in the November/December 1997 issue of Forth Dimen-
sions. From what [read, he used a more sophisticated approach
using multiple data types and [ava references. [simply allo-
cate a big array and use indices as pointers. After all, what
more is a "real” memory address than an index to a RAM
location? My approach was easy to use, but undoubtedly sac-
! rifices speed,

I also sacrifice some space, because this Forth does not
address bytes! Each eight-bit character is stored in a 32-bit
cell. Of course, this scheme wastes 75% of its bits, but it greatly
simplifies the VM to have everything treated as 32-bit cells.
Java strings can be converted to the 32-bit characters easily,
as needed, using the routines ForthMachine.strlit and

me to opitmize away some of the alignment instructions, as
well as replacing CELL+ and CELL- with fast 1+ and L- primi-
tives. CELL+ and CELL- can still be used by applications, of
course. The current version uses 2841 cells (11,364 bytes) for
code tokens, and 2158 cells (8632 bytes) for the Name Dic-
tionary, so the actual waste is not excessive, considering that
platforms running Java typically have far more memory than
this. The lack of byte addressing may put off some people
but, in a way, addressing eight-bit bytes is somewhat archaic
in this day and age of cheap and plentiful 32-bit processors.
\‘jeForth proves that Forth (or any programming system) does

not need byte addressing.

ForthMachine.makeString. The consistency of cells allowed |

jeForth supports token threading. The eForth kernel is a
siall set of primitive words that are implemented in native
code, which in this case is high-level Java Development Kit
{JDK) 1.0 code and Application Programming Interface {API)
calls, The 32-bit integer tokens for these primitive routines
have kit 17 set (0x00020000}. High-level words, such as co-
lon words, use their code “address” (array index in m) as a
taken. Note that all valid code addresses will be smaller than
the value implied by the primitive bit. During execution of
Forth words, the inner interpreter (found in the function
ForthiMachine. run of the ForthMachine object class, shown
below) gets the next instruction token, If the token is a primi-
tive routine, the function ForthMachine.doPrim is called.
This function is really a large CASE structure with the Java
instructions for each primitive. Otherwise, if the token indi-
cates a high-level word, the inner interpreter nests into that
routine, first saving a return address on the return stack. To-
ken threading works well for a virtual machine implemented
in a high-level language. A few of the eForth kernel words
had to be redesigned, because they assume direct threading
and direct execution of native CPU instructions.

{See Listing One}

A few primitives were added to the kernel: UM and UM/
MOD for math, 1+ and 1- for fast increments and decrements,
PICK and DEPTH for working with the stack, a few diagnostic
control routines, a primitive to set up the USER variables area,
and BIOCK [/O primitives for reading and writing the BLOCK
file. Some of these were required by the eForth VM; others
were added for performance or feature improvements.

The eForth Name Dictionary was implemented in a way
very similar to other eForth systems, but the name length
and special flags are stored in a 32-bit cell instead of a single
byte, and each character of a word’s name is stored in a sepa-
rate 32-bit cell,

Metacompiler

Porting to Java,] had to replace some of the functionality
of MASM. In some ways, | went beyond what MASM does. 1
defined Forthiachine.header to set up a header in the name
area of the dictionary. ForthMachine.primitive isa spe-
cial routine to set up a special header for a primitive word.
There are routines to mark words as IMMEDIATE of COMPILE-
ONLY. For putting code and data of different kinds into the
code area of the dictionary, I made ForthMachine.code and
ForthMachine.literal. | had te implement dictionary
searching for ForthMachine.call so I could compile calls
to other high-level Forth words. The Java dictionary search-
ing functions are only used for building the jeForth dictio-
nary and code image at initialization, not for later colon-com-
piling the user’s words.

To metacompile control structures,] implemented several
Java routines with names like ForthMachine.compIF, and
ForthMachine.compTHEN, Here | departed quite a bit from
the MASM coding style because it would be difficult to imple-
ment MASM-like labels for branch targets. I went with the
Forth approach instead! Here is a sample of the metacompiler
“code” for the high level word FORGET [see Listing Two).

A few of the more complex eForth words were a little diffi-
cult to convert to this style, but the “eForth in Forth” listing
published by Dr. Ting in the eForth Implementation Guide helped,
as did a temporary tool I built to display a word’s raw code,

Farth Dimensions XX.1

Listing One

public void run(}
{
try
{
// Inner interpreter loop
while {!bGone}
{

try
{
int inst = mf ip++] ; // Read current instruction,
// advance instr. pointer
if {{(m TRACING] & SHOWING) !'= 0)
{
infarm{inst) ; // Report state if tracing

}
if (inst > PRIMITIVE) // Check for primitive bit
{
// Strip off primitive instruction bit,
// execute primitive
doPrim{inst - PRIMITIVE);
}

else // NHest into colon word
(
rp--:
ml rp] = ip; // save ip for return
ip = inst; // "inst" is word's address

}
catch (ArrayIndexQutOfBoundsException e}
{
app.print{" address");
// Duplicate Forth THROW
rp = m HANDI] ;
m{ HANDL] = m rp] §
rpt+;
sp = i rp) ;
rp++;
pop ()}
push (NULLSTR}; // blank error string
doPrim(EXITY ;
}
} // end while
}
catch {IOException ea}
{
app.showStatus ("Runtime Exception: " 4+ e.toString(}):
return;

¥ A

public void doPrim{int inst) throws IOException

{
int a, b, ¢, i, n: // temporary integers
char ch; f/ temporary character

switch (inst)

[
/{ BYE { --) Exit eForth.
case BYE: bGone = true; break;

L
8

Forth Dimensions XX.1

// ?RX { -~ ¢ T | FI
// Return input character and true, or a false if no input.
case QRX B

yvield({):
if {keys() > 0)
{

push {dequeueKey{)] ;
push {TRUE) ;

}

else

{
push {FALSE};

1

break;
/] TX! ic -
// Send character ¢ te the cutput device.
case TXSTO
ch = (char) {pop() & 255);
app.emitChar (ch) ;
yield();
break;
/7 10 { -—— 3 Initialize the serial I1/0 devices.

case STOIO: break;

/7 doLIT { —— w)} Push an inline literal.
// ip points to inline value,

// push it on stack and advance ip

case DOLIT: push{ml ip++]); break;

/O EXIT (--) Terminate a colon definition.
// resume instruction at saved address
case EXIT: ip = nf rpl; rp++; break;

// BEXECUTE (ca --) Execute the word at ca.
case EXECU:

rp——:

m rp] = ip; // save current ip

i =popl);

if (i>PRIMITIVE}
i
// Execute Primitive
doPrim{i - PRIMITIVE):;
}

else

{ // point to new code so it will execute next
ip = i;

}

break;

(The rest is omitted.)

Forth Dimensions XX}

Listing Two

// TFORGET (“pame™ -- }
// the named werd in the CURRENT wvocabulary.
header {" FORGET" 1 ; literal (32); call ("WORD");
literal (CRRNT}: code{(AT):
call ("fingd"):; code (DUPP);
complF () ;
code (SWAP) ;
code {STORE) ;
code {(DET) ;
code (AT) ; code (DUPP) ;
literal {LAST};

code {DECY; code{DEC);
literal (NP} ;
call ("OVERT") ;
compELSE () ;
cade (DROEB) ;
literal {(-1};
strlit("which ");
compTHEN () ;
cade (EXIT) ;

code {DROP) ;

// Forgets all the recent words back to and including

literal (CP);
// <-- opt for CELL-

code (STORE) ;
// opt below for: 2 CELLS -

code (STORE) ;

call ("abort\""});

BLOCK storage, | implemented a “simulated”
BLOCK wordset. The simulation comes from the
fact that your changes to any block are not per-
manent: once you leave or restart the applet, the
BLOCKs revert to whatever source code is defined
in its web page. This rather significant limita-
tion comes from Java’'s inherent security philoso-
phy, sometimes called the Java sandbox.
Untrusted Java applets are not allowed to read
or write to any lacal files on the client computer
and cannot access other potentially sensitive re-
sources, such as the system clipboard. The only
way to load or save information is to use the
applet’s server. Since 1 did not want to get into
serious server-side development at this time, |
have left it out. In the initial release of jeForth,
up to ten source blocks can be defined in the
hosting web page’'s applet section, using PARAM
tags. For example, here is a section of the HTML
web page demonstrating release 1.00 of jeForth
[see Listing Three].

During the applet initialization, this code will
be read into a large character array that repre-

Console and 1/O
The jeForth applet class provides a simple consale-style
user interface that can be opened in a web browser. In its
current forim, it presenis a 20 row by 72 column display with
a simple underline cursor. You may type Forth commands
and use the backspace key, but other cursor movement keys
are not (yet) supperted. The display will automatically scroll
up as needed.
[The Forth VM and the console communicate through two
. circular queues stored in the ForthMachine object: one for
keyboard characters, and one for display characters. Since the
eForth VM and the console run under different Java threads,
the queues provide a synchronized interface between them.
The current console is not very fast, but optimizations have
been made to avoid some of the
window repainting. The overall

| effect of using the console is like Keys
' working with a Forth system Keystroke
over a serial link at a modest Buifer

baud rate. The overall architec-

. missing from regular eForth but Chas

common to other Forth sys-

tems. I wanted the system to be compatible with Leo Brodie's
I excellent introductory book Starting Forth. To achieve these
goals, | have added several features to the eForth foundation.
Compliance with American National Standard (ANS) Forth
would also be nice, but it has not been a priority for me.
Wonyong Koh has developed a variation of eForth called
- hForth, for 8086 and other processors, that is ANS compli-
ant; perhaps some of that system can be incorporated into
jeForth at a later date.

I

jeForth console

sents the user's BILOCK file, The user can then
view the current INDEX, LI5T individual BLOCKs, LOAD them,

and edit them using most of the Starting Forth’s "TFind - Put”
line-editing commands. The fact that permanent capies of
your Forth code changes cannot be made is not crippling for
a demonstration and teaching environment, but is unfortu-
nate. If jeForth can send GET and PUT (or POST) HTTP re-
quests, then the server could store the user’s BLOCKs. [hope
this can be attempted in the future.

In the example HTML for jeForth, you will notice the pa-
rameter tag with a name of “boot.” Once jeForth reads its
BLOCK parameter statements, it will load and execute any boot
string you provide. This allows the web page 1o be self-boot-
ing into vour application. The block and boot parameter tags
give a web developer a means to build a rudimentary but fully
interactive web site. Also
note that placing single or
double quotation marks in
the tag source statements is
tricky. In HTML, you can
place single quotes in a

Key Events

Java

ture is shown in Figure Two. ForthMachine object (extends Enabled double-quoted string, and

I object | Java Applet) Web vice versa, but it is difficult

eForth Extensions Output Browser to do both. In the line with

As a demoenstration and Character “blockl.1” name, you can see

teaching system, [wanted Ruffer a "'" this is HTML's way
jeForth to have many features

of inserting a specific ISO-en-
coded character—in this
case, the single quote.

Some other obvicus additions to eForth were Do ... LOOP
and CREATE ... DOES> words, D0 and LOOP have been Forth’s
traditional indexed looping words. Like Frank Sergeant's
Pygmy Forth, eForth offers the simpler FOR and NEXT for in-
dexed looping, based on the influence of Chuck Moore's
cmForth, But 1 thought that providing the DO ... LOOP words
is important for a teaching system. Examples from Starfing
Forth and other tutorials using DO ... LOOP now work in jeForth.

Regular eForth provides the CREATE word for defining

Graphics Output

To help teach new Forth programmers aboﬂ

10

forth Dimensions XX.1

Listing Three

<APPLET code="jeForth.class" width=540 height=310>

<param name=blockl valueg="">
<param name=blockl.(walve='{ Chapter 1, "Fundamental Forth") s
<param name=blockl.l wvalue='{(Sample Farth from Leo Brodie's "3Starting Forth" book) T
<param name=blockl.2 wvalue=" "
<param name=blockl.3 wvalue="{ LARGE LETTER~F } g
<param name=blockl.4 +value=": STAR 42 EMIT ; "o
! ¢param name=blocki.5 wvalue=": STARS 1- FOR STAR NEXT : ">
<param name=blockl.® wvalue=": MARGIN CR 30 SPACES ; ">
<param name=blockl.? wvalue=": BLIP MARGIN STAR : s
<param name=hlockl.8 wvalue=":; BAR MARGIN 5 STARS ; ">
<param pame=blockl.9 walue=": F BAR BLIP BAP. BLIP BLIP <R ; o
<param name=blackl.l(wvalue=" 4
<param name=blockl.ll value=': GREET " Hello, 1 speak Forth ™ Y
<param name=bklockl.12 value="; FOUR-~-MORE 4 + ; "
<param name=blockl.13 wvalue=": SIDES STAR SPACES STAR ; "o
<param name=blockl.14 value=": NOTHING (do nothing) ; ">
<param name=blockl.15 value=" "
<param name=poot value="CR 1 10 INDEX">

< /APPLET>

named areas in memory, but does not provide the DOES> com-
mand to associate special run-time behavior with the name.

! Since extensibility and defining words are important concepts
. for students of Forth, I added DOES> to jeForth.

Another command conspicuous in its absence from eForth
is FORGET, used to remove recent words from the dictionary.
I have added it to jeForth, but it only searches the CURRENT
vocabulary, I have not added any of the common vocabulary
creation and management words, but these words can be

added later.

Experienced programmers can see in their minds what is
geing on in the Forth VM in terms of stack operations, sub-
routine nesting, and so on. If less experienced users of Forth
can actually see these actions, they too will quickly learn to
visualize them. To provide this visibility, [have added two
words: TRACE and STEP. TRACE looks up the name of the word
following it, then executes that word showing a display of
the important VM parameters between each token execution.
The display includes the top stack item, top return stack item,

and the current instruction pointer and the name of the to-
ken to which it points. If there is more than one item on the
parameter stack, up to three mote items in each stack are
shown along with the depths of the stacks. STEP does the
same thing, but waits for a user keystroke between each to-
ken execution. Either will revert to “quiet” execution if the
user presses the escape key. Here is a sample output from ap-
plying TRACE to execution of the word PAD [see Listing Four].

Another frustrating area for new Forth prograrmers is
memory access, since it is so easy to get stack arguments in
the wrong order or otherwise use an invalid address. For bet-
ter performance and flexibility, typical Forth systems do not
try to detect this situation and will crash when a bad address
is used. [have used a free feature of Java to detect and warn
the user of the problem. Java “throws” exceptions which can
be “caught” in a nested way in Java source code,

One type of exception is for “invalid array index.” The
inner interpreter code (see above) catches this exception, then
executes the equivalent to the eForth THROW code, printing

an error message and restoring the stacks.
Listing Four The impact of this feature is negligible on

performance because Java will do these
TRACE PAD enter) checks anyway, so we might as well take
stack: ~—- return: 2245 ip: 2245 PAD advantage of it. The user sees an “address
stack: ——— return: 2245 ip: 718 . HERE ?" warning when executing something like
stack: —-- return: 718 ip: 714 doLIT “-1 a@", or something that seemns perfectly
stack: 34 return: 718 ip: 716 ., @ reasonable like “ ' SWAP 20 DUMP”, By
stack: 3225 return: 718 ip: 717 EXIT the way, the DUMP example fails because
stack: 3225 return: 2245 ip: 719 doLIT SWAP is a kernel primitive and its token is

: stack: 80 return: 2245 ip: 721 : not a valid address. The code for SWAP is

{2} 3225 {10} 2258 written in the doPrim(} function, which
stack: 80 return: 721 ip: 513 UM+ is completely outside the memory “view-
(2) 3225 (1) 2245 able” from jeForth execution. To see the
stack: 0 return: 721 ip: 514 DROP code for DUP, look at the Java source code!
{2} 3305 {10} 2245
stack: 3305 return: 721 ip: 515 EXIT
stack: 3305 return: 2245 ip: 722 EXIT ok

Farth Dimensions XX.1

11

Performance

As discussed earlier, jeForth is not designed for perfor-
mance, Larly versions of it were very slow, hampered by im-
proper use of Java threads and the yield() function, Early
display routines were also inefficient, causing a lot of un-
needed repainting of the applet window. These basic prob-
lems have been fixed, but there is room for a lot of improve-
ment. To give you some idea of the relative performance of
jeForth, | have applied the following benchmarks used by
Matk Roulo:

Stack test:
INNER 10000 0 DO 34 DROP LOOP ;
: QUTER 10000 O DO INNER LOOP ;

Variables test:
VARTABLE TEMPE

INNER 10000 9 DO 34 TEMP ! LOOP
: QUTER 10000 0 DO INNER ILOOP ;

However, for the slower jeForth, [only ran 1000 loops in
the OUTER word and multiplied the result time by 10. The
figures helow may not be extremely accurate. The test system
is a Gateway 2000 486 running at 66 MHz with 24 Mb of
RAM. The software environment includes Microsoft Windows
95 and Internet Explorer 3.0. The word QUTER was timed for
two native code Forth systems for Windows: LMI WinForth
(16-bit Windows 3.1 code) and the public domain
Win32Forth, as well as the Java Forth systems Misty Beach
Forth and jelorth:

Stack test Variable test

Forth System {(seconds) {seconds)
LMl WinForth 1.01 (optimized) 8 12
LMI WinForth 1.01 70 107
Win32Forth 3.5 build 41 65 128
Misty Beach Forth v0.30

on IE 3.0 (Java) 199 350
jeForthv0.94

or ‘'t 3.0 (Java) 1076 1891

% you can see, jeForth is about five times slower than
Misty Beach Forth on the same hardware, and much slower
than either native code Forth systemns for Windows. My re-
sults for Misty Beach Forth were not as good as those ob-
tained by its author, who tested on a Pentium PC and Win-
dows NT 4.0. Offsetting the slower execution speed of jeForth
somewhat is its small size. The two Java bytecode .class files
for jeForth total about 36 Kb, which is much smaller than.
Misty Beach Forth and quicker to download. For a demon-
stration and teaching tool, fast downloads are probably ntore
important than execution speed. Any serious student of Forth
will move on to better performing native inplementations,
unless doing web-oriented development,

Development Notes

[started with the Sun Java Development Kit DK 1.0} to
compile Java code, and test it. The very first versions of jeForth
ran as a command-line text application and could not run in
a browser. Once I based the code on the Applet class, [started
using the Sun Applet Viewer and Netscape Navigator version

3.0 for testing. Scon, I felt limited by the constraints of the
JDK command-iine compiler, so I switched to Microsoft Vi-
sual J++ 1.0. This package compiled Java quickly and had the
nice graphical debugger with which [was familiar from Vi-
sual C++. However, each time] ran the applet, J++ launched
Microsoft Internet Explorer 2.x, which took a very long time
to come up cn my 486, perhaps one or two minutes! [specu-
iate that |E 2.x was waiting for some TCP/IP timeout before
opening the local HTML and Java .CLASS files. How frustrat-
ing! Later, Microso{t Visual J++ 1.1 came out, which works
with [E 3.0 and opens the browser and applet in a reasonable
amount of time, although still very slow by Forth-interac-
tion standards.

Testing a Forth that contains a lot of high-level defini-
tions can be a chalienge. You can use the debugging tools
provided by your assembler or compiler, but those tools will
not understand the Forth data structures and run-time envi-
renment very well. And if the Forth outer (command-line}
interpreter is not working, interaction tends to be quite lim-
ited. During this phase, | developed test scaffolding to place
different strings of jeForth tokens in memory and execute
them. Later I added several debugging features to the Java
ForthMachine class and to eForth itself. [nitially these rou-
tines sent output to the standard output stream. Only recently
did I re-engineer them to output text inte the applet window
and add the interactive TRACE and STEP commands.

I 'have used the following books to learn about Java:
The Java Programming Language, by Ken Arnold and James
Gosling.
fava in a Nutshell, by David Flanagan.

The following books from Offete Enterprises describe
eForth:

eForth Implementation Guide, Dr. C.H. Ting
eForth and Zen, Dr. C.H. Ting

Availability

The web pages for jelorth beta versions up to 0.95 have
been hosted by Jack Woehr, the Author of Forth: The New
Model, at his Rocky Cost Free Board: |
http://www.well.com/user/jax/rcfb/forth html#eForth !

Starting with version 1.00, jeForth can be found at the |
following site: l
http:/fwww.amsystech.com/mlosh/

The jeForth applet and source code are copyrighted
freeware released under a license for non-commercial users
such as educational institutions and students, non-profit or-
ganizations such as the Forth Interest Group and government
agencies, and individual users. If you fall into such a category,
you may copy and use the jeForth applet on any weh server
you own of rent hosting services from. You may aiso copy,
use, or modify the jeForth source code for any non-commer-
cial purpose as long as you retain the copyright information
and a description of your modifications. The jeForth applet
and source code are offered without any warranty and with-
out any specific promise of support. Potential commercial
users should contact me for availability and pricing of a fu-
ture Java-based Forth. Please see the web site for the full terms

{Continues on page 16} \

12

Forth Dimensions XX.1

Forth in Cantrol o

Temperature Monitoring

Temperature is one parameter of our environment which
has an affect on all living things. We turn up the fumace
when we are cold, and switch on the air conditioner in the
heat of the summer. Farmers with fruit orchards and cran-
berry fields watch out for early frost conditions which can
decrease their crop vield. Factories closely monitor their pro-
cess control to ensure the quality of their product is consis-
tent. Machines even perform differently through a range of
temperatures. The ignition timing and fuel delivery of your
cat changes from a cold start to a warmed up engine. Many
opportunities arise where there is a need to measure tempera-

. ture accurately and then perform certain tasks accordingly.

In this article, we will cover how to interface a digital ther-
mometer sensor chip to your computer's parallef port: The

. device we are using is Dallas Semiconductor’s D§1620, which

contains the sensor itself and a three-wire serial interface in-
side an eight-pin DIP package. The sensor measures tempera-
tures from -55 degrees 10 +125 degrees Celsius in .5 degree
increments. This works out to -67 degrees to +257 degrees
Fahrenheit in .9 degree increments. Temperature is tead from
the synchronous serial interface as a nine-bit valve. From 0
to 70 degrees Celsius, thermometer error is .5 degrees in-
creasing to +2 degrees at the temperature limit extremes. The
sensor is factory set and requires no calibration. The chip has
two modes of operation:
1. Three-wite thermometer mode, which communicates
ambient temperature data to your computer,
2. Standalone thermostat mode, which needs no computer
interface.

Upper and lower temperature values are programmed into
the chip’s TH and TL nonvolatile EEPROM r1egister memory.
The chip has three pins dedicated to alarm outputs, which
are active in both modes. T-HIGH goes high when the tem-
perature is greater than the value stored in the TH register. T-
LOW goes high when the temperatuse is less than the vaiue
in the TL register. The T-COM pin goes high when the tem-
perature is greater than TH and stays high until the tempera-
ture falls below that of TL. In this way, any amount of hysfer-
esis can be obtained.

When designing a threshold detector circuit, it is good
practice to incorporate hiysteresis into the trigger point. If you
don’t, as the temperature slowly approaches the single trig~
ger point, and passes through, it will flutter just below and
just above, causing ocutput “chatter.”

To solve this chatter problem, we make two trigger thresh-

I olds, T-HIGH which will turn on the output, and T-LOW which
- will turn off the output. The difference between these two

thresholds is the hysteresis. As an example, when you set your
furnace control to 70 degrees, the furnace will run until it

Ken Merk » Langley BC, Canada

krem@vancouver.net

Forth Gimensions XX.1

hits 72 degrees and will stay off until the temperature drops
to 68 degrees. This keeps your furnace from cycling off and
on around 70 degrees,

‘We will use Forth (F-PC) to control the interface hardware
through the parallel printer port. [Listing begins on page
17.] All commands te and from the D51620 sensor will be
buffered by the 741338 chip. This interface will have the ca-
pability to program all EEPROM memory locations in the
DS1620 chip for customn configurations and standalone op-
eration.

Pin #1 of the chip is the bi-directional data line (DQ). Data
is read to and from the chip via this pin. Data over the inter-
face is communicated LSB first.

Pin #2 is the clock input to which the data is synchro-
nized, The clock transitions are used to determine when to
read or send data. A clock cycle is a sequence of a falling edge
followed by a rising edge. The data line goes to a high imped-
ance state while the clock is high.

Pin #3 is the Reset input line. All data transfers are initi-
ated by driving the RST line high. Driving the line low termi-
nates communications by forcing the data line into a high
impedance mode.

Fower (5 volts) is applied to pin #8 (Vo) and Gnd to pin #4,

Pin #5 is the High/Low combination trigger output. It goes
high when the temperature exceeds TH, and resets to low
when temperature falls below TL.

Pin #6 is the Low temperature trigger output. It goes high
when the temperature falls below TL.

Pin #7 is the High temperature trigger output. [t goes high
when the temperature exceeds TH.

Data sheets for the D$1620 can be downloaded from Dal-
las Semiconductor’s web site (http://www.dalsemi.com)

Three-Wire Thermometer Mode

Build up the circuit as per schematic [page 15]. A nine-
volt battery or an AC power adapter can be used for the power
supply. Use an IC socket to hold the D51620 chip, s it can
be easily removed after programming. Because this is a syn-
chronous serial link, we must remember to keep the cable
between the computer and circuit board as short as possible.
We are using the edges of the clock line as a sync signal for
transmitting and receiving data. Extra long lines pick up noise,
introduce crosstalk between wires, and increase line capaci-
tance, which can cause data to be corrupted.

Plug the DB25 connector into your parallel printer port
and power up the board. Run F-PC and, at the "ok” prompt,
type FLOAD DS1620.5EQ. If no errors are encountered, type
SHOW. TEMP. A simple display will appear which will continu-
ously show ambijent temperature. To verify correct operation

Ken Merk works for Canadian Pacific Railway. His “Forth In Control”

-appears periodically in Forth Dimensictis; see 1ssues XVIL2,XVIIL4,and

¥IX 4 for'other mstallments iri thie series.

13

place your finger on the DS1620 chip, which should cause
the temperature reading to slowly increase, (A hair dryer will
cause a faster response.) Place a cold object on the chip to see
the temperature reading drop. All temperature readings should
change in .5 degree increments. Press any key to exit.

The DPS1620 is continuously performing temperature con-
versions and storing the results in a holding register. We read
the contents of the register to update our temperature dis-
play. To access the register we send a “Read Temperature”
command byte {AA Hex) over the serial link. The next six-
teen clock cycles will output the contents of this register. The
temperature is coded in a two-byte format. The most-signifi-

I cant byte holds the sign bit, and the least-significant byte

holds the value of the actual temperature. If the sign bit is
high, the temperature is negative and the actual temperature
value is in two's complement form. If the sign bit is low, the
temperature is positive and the actual temperature value is
contained in the least-significant byte,

Temperature data can be logged and stored in a file for
future reference, or certain tasks can selected depending on
temperature values. [Table Cnej

Standalone Mode

In the standalone mode, the D51620 continuously does
temperature conversions and compares them to the pre-pro-
grammed threshoeld values. In this configuration, the chip
can menitor temperatures on its own and drive control re-
lays or alarm circuits directly. A computer could poll these
outputs, if all you need is a temperature limit detector. Even
if your computer misses an alarm output, the DS1620 has a
set of Temeratures High/Low flags which remember if a tem-
perature threshold has ever been exceeded. The flags will re-
main high until reset by writing a zero into this location or
by removing power from the device. This feature provides a
method of determining whether the D51620 has ever been
subjected to temperatures above threshold limits. These two
flags are mapped as bits 5 and & in the configuration register.
[Table Two)

Te configure the chip for standalone operation, we must
first program the T-low and T-high values into the chip, and
then enable the standalone mode.

To program the Threshold registers, we need a sign byte
and a tempetature value byte on the stack, then type
WRITE.THOF WRITE.TL. AS an example, if we wanted 1o pro-
gram T-high with +25.5 degrees, the sign byte would be 00
and the temp value byte would be (25.5 * 2) = 51 (33 Hex).

00 51 WRITE.TH

If we wanted to program T-low with -25.0 degrees, the
sign byte would be 01, and the temp value byte would be (25
* 2) = 50, then invert and add 1 -—> 206 (CE Hex).

01 206 WRITE.TL

To verify your values, type SHOW, PARAM to display the thresh-
old temperatures:

T-HIGH ---> 25.5
T-LOW =---»> -25.0

Program T-low and T-high a few degrees above and below

Table One.D51620 nine-bit temp/data

Terng Binary Value Decimal Hex
+125 00000000 11111010 00250 00 FA
+25 00000000 00110010 OO 50 00 32
+1.5 00000000 00000001 00 01 0001
0 00000000 00000000 00 OO 00 00
-0.5 ¢0000001 111131111 D1 255 01 FF
-25 00000001 11001110 O 206 01 CE
-55 00000001 10010010 01 146 01 92
Sign byte®* Temp byte

* Anly the low bit of the sign byte is used,
the ather seven bits are zeros.

Table Two. Configuration register map

Function

Name

) 1 Shot 0 = continuous conversions
1 = 1-shot conversion
1 Ccru 0 = standalone mode
1 = three-wire mode
2 X Don't care
3 X Don’t care
4 X Don'’t care
5 TL Flag 0 =Temp >TL
1 =Temp <TL
6 TH Flag 0 =Temp < TH
1 =Temp = TH
7 Done 0 = conversion in progress

1 = conversion done

room temperature, Force the temperature trigger points by
heating and cocling the chip, and watch the output LEDs
change accordingly. Type SHOW.PARAM to see the tempera-
ture limit flags. They both (bit 5 and 6) should be high, indi-
cating that the values were exceeded.

CONFIG ---> 01100000

To enable the standalone mode, type STAND. ALONE. The
chip is now ready to be embedded into your custom tem-
perature control application using the standalone circuit as
per schematic {page 16].

14

Forth Dimensions XX.1

BESTVL
-

aND v
Y wondaag

21eb pasnun

!
N Q
Zl

Ll

CCLENT

g

[4444\ 14

. L
NT'T nA | i
£ 7 @oag

TZTINT
WODL —{ [woaL anNo [
1.// I._.L.//] C
1 sl w_ vveal
L D [. -
VOLY oLy |
g>n oa [—

W Emm.lﬂl uio_h_l “
Hn_‘ 7_ .+IHI z_ Dzw ._.DO Hﬁ

SOO¥NI

SO08L

Three-Wire Mode

15

Hod |9esed 03 sz7-9Q

0z915d N~

Forth Dimensions XX.1

Standalone Mode

VD C

IN40Q5

T 33pf

7805

Opf

-1

2N2222

2.2K

DS1620

UI.J§
e
= o
) [el
Q
g X 55 z
B O & 6
||
—

{eForth far Java, fram page 12)

of the license.

Please watch the Usenet newsgroup comp.lang.forth for
future announcements on jeForth and any FIG-sponsdred
prejects. I am available via e-mail at mlosh@tir.com for ques-
tions or comments.

Future Directions
{but not a conclusion)

The current version of jeForth demonstrates that Java pro-
vides a good platform for demonstrating Forth on the Internet.
I'hope that the Forth community will recognize the opportu-
nity to promate Forth through Java. Furthecmore, I hope the
Forth Interest Group will organize a project to develop a com-

pelling web site with a great tutorial for the jeForth applet. 1
am willing to guide such a project, but | would like the ideas
and the expertise of others. Please contribute your time and
talent to this endeavor!

Michael A, Losh has been a Forth enthusiast since stumbling upon
Leo Brodie’s books in a physics laboratory in 1990. Currently he is a
Microsoft Certified Trainer for Windows programming with the Win32
AP, Visual C++, and MFC, and is the director of software consulting
at American Systems Technology, Inc. (www.amsystech.com), a
Microsoft Solutions Pravider and Microsoft Authorized Technical
Education Center near Detroit, Michigan.

16

Forth Dimensions XX.1

Listing One. Forth in Control: Temperature Monitoring

v DS51620.5EQ Ken Merk May/9B8
W F-PC
S Forth Code to Interface DS1620 Thermometer
\ RS R R R TR EE R EE SRR EEREREEE R R R R e R E T
DECIMAL
50040 50008 QL Y\ Look for active LPT1 port
U= #IF VW If no port found then abort
CLS
23 8 AT ,{ Parallel printer port not found.)
CLOSE QUIT
#ENDIF
$0040 $0008 @L COWMSTANT #PORT \ Find port addr for printer card

\ assign to constant ¥PORT

0 VALUE TEMP \ Temp data storage

0 VALUE MASK Y Mask value

d VALUE NEG \ Neg flag

1 CONSTANT CLK \ assign weighting

2 COWNSTANT RST Y to CLK and RST

q CONSTANT DIRECTION Y Direction bit

g CONSTANT DQ v Data I/0

code bset (b #port --) \ will SET each bit in #port that matches

pop dx A every high bit in byte b.

pop bx

in ax, dx

or al, bx

out dx, al

next

2nd-code

code breset (b #$port --) \ will RESET each bit in #port that matches

pop dx \ every high bit in byte b.

pop bx

not bhx

in ax, dx

and al, bx

out dx, al

next

end-code ™
HIGH {b --) $PORT bset ; \ turn ON output
LOW { b —— #PORT breset ; \ turn OFF output
WRITE {b --1 #PORT PC! H \ write byte to data port
DQ.HIGH { ——- 13 DO HIGH F \ write 1 -- > DQ bit
D, LOW { -—) DQ LOW i YV write 0 ——- > DQ bit
DQ.HIGH? { ~—- L)

08 #PORT 1+ PCE AND Q<> \ read DQ bit --high?

Forth Dimensions XX.1

17

-

PORT.INIT {(--) 05 WRITE ; \ CLK=1 RST=0 DIR=1
DELAY {f ~——) 1 Ms$; Y create 1 MS delay
To check the accuracy of the MS time delay which can wvary with computer

speed, type TIMER 2000 MS and check that the time delay i1s 2 seconds.
Adjust by changing the variable FUDGE accordingly.

PULSE.CLK { —-
CLK LOwW v CLE=0
DELAY Y 1 M5 delay
CLK HIGH Yy CLE=1
DELAY N1 MS delay
INVERT.BYTE { bl -- b2) S5FF XOR ;
INVERT .WORD { ul —-- u2) SFFFF XOR ;
: WRITE.BYTE {tb-—-9
1 =: MASK
INVERT.BYTE
DIRECTION LOW Y write direction
g8 0 DO dup MASK AND (= \ send eight bits
Ir CQ.LOW PULSE.CLK

ELSE DQ.HIGH PULSE.CZLE
THEN MASK 2* !'> MASK Y shilft left
LCOP drop

READ.BYTE { == b}
Q =: TEMP
DIRECTION HIGH Y read direction
B 0 DO Y read eight bits
CLK 1LOW DELAY
CQ.HIGH?
CLK HIGH DELAY
TEMP 2/ !> TEMP \ shift right
1T TEMP 128 OR !> TEMP THEW
LOOP
TEMP
INVERT.BYTE ;

READ .WORD { —- u)

0 =:; TEMP

DIRECTION HIGH % read direction

16 0 DO Y read sixteen bits
CLK LOW DELAY ™~
DQ.HIGH?
CLK HIGH DELAY
TEMP U2/ '»> TEMP Y shift right
IF TEMP 32768 OR !> TEMP THEN

LOCP

TEMP
INVERT.WORD :

WRITE.TH { bl b2 —- } \ write T-High req
RST HIGH

18

Forth Dimensions XX.1

FORTH INTEREST GROUP
MAIL ORDER FORM

HOW TO ORDER: Complete form on back page and send with payment to the Forth Interest Group. All items
have one price. Enter price on order form and calculate shipping & handling based on location and total.

FORTH DIMENSIONS BACK VOLUMES

A volume consists of the six issues from the volume year (May-Aptil).

FORML CONFERENCE PROCEEDINGS

FORML (Forth Modification Laboratory) is an educational forum for
sharing and discussing new or unproven proposals intended to benefit
Forth, and is for discussion of technical aspects of applications in Forth.
Praceadings are a compilation of the papers and abstracts presented at

Volume 1 Forth Dimensions (1979-80) 101 - $35

Intreduction to FIG, threaded codse, TO variables, fig-Forth.

Volume 6 Forth Dimensions (1984-85) 106 - $35

Interactive editors, anonymous variables, listhandling, integer
solutions, control structures, debuggirg technigués,
recursion, semaphores, simple /0 words, Quicksort, high-
level packat communications, China FORML.

Volume 7 Forth Dimensions {1985-86} 107 - $35
Genatic sort, Forth spreadsheet, control structures, pseudo-
interrupts, number editing, Atari Forth, pretty printing, code
modules, universal stack word, polynomial evaluation, F&3
strings.

Volume 8 Forth Dimensions (1986-87) 108 - $35

Interrupt-driven serial input, databasse functions, T1 99/4A,

XMODEM, on-line documenitation, dual CFAs, random

numbars, arrays, file query, Batcher's sort, scresnless Forth,

classssin Forth, Bresenhamline-drawing aigorithm, unsigned
division, DOS file 1/O.

Volume & Forth Dimensions {1987-88) 109 - $35
Fractal landscapes, stack error checking, perpetual date
routines, headless compiler, execution security, ANS-Forth
meeting, computer-aided instruction, local variables,
‘gggg%endemal functions, education, relocatable Forth for

Volume 10 Forth Dimensions {1986-89) 110 - %35

dBase file access, string handlin?, local varigbles, data

structures, object-criented Forth, linear autorata, stand-

alone applications, 8250 drivers, serial data compression,
Volume 11 Forth Dimensions (1989-90) 111 -$35
Local variables, graphic filing algorithrms, 80286 extended
mamory, expert gystems, quaternion rotation calculation,
multiprocessor Farth, double-entry bookkeeping, binary
table search, phase-angle differential analyzer, sort contest.

Volume 12 Forth Dimensions {1990-31} 112 - $35

Floored division, stack variables, embedded controi, Atari
Forth, optimizing compiler, dynamic memary allocation,

smart RAM, extt_ended—ﬁrecision math, Interrupt handling,
neural nets, Soviet Forth, arrays, metacompifation.

Volume 13 Forth Dimensions (1991-92) 113 - 835
Volume 14 Forth Dimensions {1992-83) 114 - §35
Volume 15 Forth Dimensions (1993-94) 115 - $35
Volume 18 Forth Dimensions (1994-95) 116 - %35
Volume 17 Forth Dimensions {1995-96) 117 - $35
E2% volume 18 Forth Dimensions (1996-97) 118 -$35

the aninual conference. FORML is part of the Forth Interest Group.

1981 FORML PROCEEDINGS 311 ~ §45
CODE-less Forth machine, quadruple-precision arithmetic,
overlays, executable vocabulary stack, data typing in Forth,
vectored data structures, using Forthina classroom, pyramid
fles, BASIC, LOGO, automatic cusing language for
multimedia, NEXOS — a ROM-based multitasking operating
systemn. 655 pp.

1982 FORML PROCEEDINGS 312 - %30
Rockwell Forth processcr, virtual execution, 32-bit Forth,
ONLY for vogabularies, non-IMMEDIATE looping words,
rnumber-input wordset, /O vectoring, recursive data
structures, programmabile-logic compiler. 295 pp.

1983 FORML PROCEEDINGS 313 - %30
Neon-Von Neuman machines, Forth instruction set, Chinese
Forth, FB3, compiler & interpreter co-routines, log & exponential
function, rational arithmetic, transcendental functions in
variable-precision Forth, portable file-system interface, Forth
coding conventions, expert systems, 352 pp.

1984 FORML PROCEEDINGS 314 - $30
Forthexpert systems, consaquent-reasoninginferenceengine,
Zen floating peint, portable graphics wordset, 32-bit Forth,
HP7 1B Forth, NEON - object-oriented programming, decom-
piler design, arrays and stack variables. 378 pp.

1986 FORML PROCGEEDINGS 316 - $30
Threading techniques, Prolog, VL3I Forth microprocessor,
natural-language interface, expert system shell, inference
engine, multipls-inheritance system, automatic programming
environment. 323 pp.

1988 FORML PROCEEDINGS 318 - %40
inchides 1988 Austrafian FORML. Human interfaces, simple
robotics kernel, MODUL Forth, parallel processing,

rogrammable controliers, Prolog, simulations, language
opics, hardware, Wil's workings & Ting's philosophy, Forth
hardware applications, ANS Forth session, future of Forth in
Al applications. 370 pp.

1989 FORML PROCEEDINGS 319 - $40
Includes papers from ‘88 eurof ORMI. Pascal to Forth,
extensible optimizer for compiling, 3D measuremeant with
object-otientad Forth, CRC polynomials, F-PC, Harris C
cross-compiler, modular approeach to rebotic controf, RTX
recompiler for on-line maintenancs, madules, trainablensural
nets. 433 pp.

1952 FORML PROCEEDINGS 322 - %40
Object-oriented Forth based on classes rather than
prototypes, color vision sizing processor, virtual file systems,
transparent target development, signal-processing pattern
classification, optimization in low-level Farth, [ocal variables,
embedded Forth, auto dispI%v of digital images, graphics
package for F-PC, B-tres in Forth 200 pp.

1993 FCRML PROCEEDINGS 323-%45
includes papers from_ ‘92 euroForth and '93_euroforth
Conferences. Forth in 32-bit protected mode, HDTV format
convertar, graphing functions, MIPS eForth, umbilical
compilation, portable Forth engine, formal specifications of
Forth, writing better Forth, Holon — a_new way of Forth,
FOSM-—a Forth string matcher, Logoin Forth, programming
productivity. 509 pp.

1994-1995 FORML PROCEEDINGS (in one volume!) 325 - $50

Fast service by fax: 408.373.2845

BOOKS ABOUT FORTH

ALL ABQUT FORTH, 3rd ed., June 1990, Glen B. Haydon 201 - $30

Annctated glossary of most Forth words in common use,
including Forth-79, Forth-83, F-PC, MVP-Forth. implermenta-
tion examples in high-level Forth and/or 8086/88 assambler.
Useful commentary given for each entry. 504 pp.

eFORTH IMPLEMENTATION GUIDE, C.H. Ting 215 - %25

eForth is a Forth model designed 1o be portable to many of
the newer, more powerful processors_available now and
becoming available in the near future. 54 pp. {w/disk)

Embedded Controller FORTH, 8051, Wiliam H. Payne 216 - $76

Describes the implementation of an 8051 version of Forth.
Mare than half of this book is compased of source listings
{w/disks COSQ) 511 pp.

F&3 SOURCE, Henry Laxen & Michael Parry 217 - $20

A complete listing of F83, including source and shadow
screens. Includes introduction on getting started. 208 pp.

F-PC USERS MANUAL {2nd ed., V3.8} 350 - $20

Users manual 1o the public-domain Forih system optimized
for IBM PC/XT/AT computers. A fat, fast system with many
tools. 143 pp.

F-PC TEGHNICAL REFERENCE MANUAL 351 - $30

A must if you need to know F-PC's inner workings. 269 pp.

THE FIRST COURSE, C.H. Ting 223 - $25

This tutorial goal exposas you to the minimum set of Forth
instructions you need to use Forth to solve practical problems
in the shortest possible time. "... This tutorial was developed
to complement The Forth Course which skims too fast an
the elementary Forthinstructions and dives too quickly in the
advanced topics in an upper-level college microgomputer
laboratory ..." & running F-PC Forth system would be vary
useful, 44 pp.

THE FORTH COURSE, Richard E. Haskall 225 - %25

This set of 11 lessons is designed tg rake it easy for you to
{earn Forth. The material was developed over several years
of teaching Forth as part of a senior/graduate course in the
design of embedded software computer systems at Qakland
University in Hochester, Michigan. 756 pp. {w/disk}

FCRTH NOTEBQOK, Dr. C.H, Ting 232-%25
Good examples and applications — & great learning aid.

polyFORTH is the dialect used, but some conversion advice
15 included. Code is wall docurnentead. 286 pp.

FOATH NOTEBOOK U, Dr. C.H. Ting 232a - $25
Collection of research papers on various topics, such as

image processing, parallel processing, and miscellanecus
applications. 237 pp.

“We're Sure You Wanted To Know...”

Forth Dimensions, Article Reference 151 - 54
Anindex of Forth anlicles, by keyword, from Forth Dimensions
Volumes 1-15 (1976-04).

FORML, Article Reference 152 - 34
Anindex of Forth articles by keyword, author, and date from
the FORML Conference Proceedings (1980-92).

FORTH PROGRAMMERS HANDBOOK,
Edward K. Conklin and Elizabeth D. Rathar

260 - $57

orth virtlual machine, implementation strategies, thaimpact
of multitasking on program design, Forth assemblers, and
coding style recommendations,

INSIDE F-83, Dr. C.H. Ting 235 - $25
Invaluable far those using F-83. 228 pp.
OBJECT-ORIENTED FORTH, Dick Pountain 242 - §37

Implementation of data structures. First book to make
object-oriented programming available to users of even very
small home computers. 178 pp.

STARTING FORTH (2nd ed.) Limited Reprint, Leo Brodie 245a - $50

in this edition of Starfing Forth—the most popular and
compigtgintroduction to Forth—syntax has been expanded
1o include the Forth-83 Standard. (The orf?r'na! printing is
now out of stock, but we are making avarlable a special,
limited-edition reprint with afl the original content.) 346 pp.

THINKING FORTH, Lea Brodis 265 - $35

Back by popular demand! To program intelfigently, you
must first think intslligently, and that's where Thinking Forth
comes in. The bestselling author of Starting Forth is back
again with the first guide to using Forth for applications. This
book captures the philosophy of the language, showing
users how tg write more readable, better maintainable
api)lications. Both baginning and experienced programmers
will gain a better understanding and mastery of topics like
Farth style and conwentions, decomposition, faciorng,
handling data, simplifying control structures, And, to give
oU an idea of how these concepts can be applied, Thinkin
orth contains revealing interviews with users and wil
Forth's creator Charles H. Moore, Reprint of original, 272pp.

WRITE YOUR OWN PROGRAMMING LANGUAGE USING C++,
Narman Smith 270 - %16

This bock is about anapplication language. More specifically,
it is about how to write your own custom apglication
language. The book contains the tools necessary to begin
the process and a complete sampls language
implementation, (Guess what language!) Includes disk with
complete source. 108 pp.

WRITING FCODE PROGRAMS 252 - §52

This manual is for designers of SBus interface cards and
other devices that use the FCode interface language. It
assumes familiarity with SBus card design requirements
and Forth programming, Discusses SBus development for
OpenBoot 1.0 and 2.0 systems. 474 pp.

LEVELS OF MEMBERSHIP
Your standard membership in the Forth Interest Group brings
Forth Dimensions and participation in FIG's activities—like
members-only sections of our web site, discounts, special
{.interest groups, and more. But we hope you will consider
joining the growing number of members who choose to show
their increased support of FIG's mission and of Forth itself.

Ask about our special incentives for corporate and library
members, or become an individual benefactor!

Company/Corporate - $125

Library — %125

Benefactor — $125

Standard - $45 (add $15 for non-US delivery)

Forth Interest Group
See contact info on mail-order form, or send e-mail to:

office@forth.arg

Fast service by fax: 408.373.2845

This reference book documents all ANS Forth wordsets [34eRgle]
with details of more than 250 words), and describes the INIUE (R3]

DISK LIBRARY
ontributions from the Forth Community

The “Contributions from the Forth Community” disk library contains
author-submitted donations, generally including source, for a variety
of computers & disk formats. Each file is designated by the author as
public domain, shareware, or use with some restrictions. This library
does not contain “For Sale” applications. To submit your own contri-
biitions, send them lo the FIG Publications Comrmitiee.

FLOAT4th.BLK V1.4 Robert L. Smith CoD1 - $8
Software floating-point for fig-, poly-, 79-Std., 83-Std.
Forths. IEEE short 32-bit, four standard functions,
squars root and log.
%% |BM, 180Kb, FB3

Games in Forth co02 - $6
Misc. games, Go, TETRA, Life... Source.
* B, 780KD
A Forth Spreadsheet, Craig Lindley €003 ~ $6

This mode! s}preadsheet first appeared in Forth
Dimensions VIlA 2. Thoseissues contain docs & source.
4 1BM, 100KDb

Automatic Structure Charts, Kim Harris C004 - %8
Tools for analysis of large Forth programe, first presented
at FORML conference. Full source; docs included in
1985 FORML Procesdings.
*k |BM, 114Kb

A Simple Inference Engine, Martin Tracy C005 - $8
Based on inference engine in Winston & Horm's baok
on LISP, takes you from pattern variables to complete
unification algonthm, with running commentary on Forth
philoso%hy st%rle. Inel. source,
*%k {BM, 162 Kb

The Math Box, Nathaniel Grossman C006 - $10
Routines by foremost math author in Forth, Extended
double-precision arithmetic, complete 32-bit fixed-point
math & auto-ranging text. Incl, graphics. Utilities for
rapid polynomial evaluation, continued fractions & Monte
Carle factorization. Incl, source & docs.

*% IBM, 118 Kb

AstroForth & AstroOKQ Demos, |.R. Agurmirsian C007 - 36

AstroForth is the 83-5tandard Russian version of Forth.
Incl. window interface, full-screen editor, dynamic
assembler & a great demo, AstroOKO, an
astronavigation system in AstroForth, calculates sky

osition of several objects from different earth positions.

emos only.

* IBM, 700 Kb

Forth List Handler, Martin Tracy . €008 - $8
List primitives extend Forth to provide a flexible, high-
speed environmertt for Al. Incl. ELISA and Winston &
orn's micro-LISP as examples. Incl. source & docs.
%% IBM, 170 Kb

8051 Embedded Forth, William Payne G050 - $20
8051 ROMmable Forth operating system. 8086-to-
8051 target compiler. Incl. source. Docs areinthe book
Embeddéd Controfler Forth for the 8051 Family. Included
with item #216
*% % IBMHD, 4.3 Mb

68HC11 Collection G060 - $16,
Collection of Forths, tools and floating-point routines -
for the BEHC11 controller.
*¥k IBM HD, 2.5 Mb

FB83 V2.01, Mike Perry & Henry Laxen C100 - $20
The newest version, ported to a variety of machines.
Editor, assembler, decormpiler, metacompiler. Source
and shadow screens. Manual available separately {iterms
217 & 235), Base for other F83 applications.
* |BM, 83, 490 Kb

F-PC V3.6 & TCOM 2.5 Tom Zimmer C200 - $30
A full Forth systern with pull-down menus, seguential
files, editor, forward assembler, metacompiler, floatin
peint, Complete source and help files. Manual for V3.
available separately {items 350 & 351). Base for other
F-PC a%)hcahons.
* [BMHD, 83, 3.5Mb

F-PC TEACH V3.5, Lessons 0-7 Jack Brown C201 -%8

Forth classroom on disk. First seven lessons on sarning
Forth, from Jack Brown of B.C. Institute of Technolegy.
“* |IBM HD, F-PC, 790 Kb

VP-Planner Float for F-PGC, V1.01, Jack Brown C202 - 58

Software floatin%-point engine behind the VP-Planner
spreadshest, BO-bit {temporary-real) routines with transcen-
dental functions, number I/Q support, vectors to support
numaric co-processor overlay & user NAN checking.

*% |BM, F-PC, 350 Kb

F-PC Graphics V4.6, Mark Smilay C203-$10

The latest versions of new graphics routines, including CGA,
EGA, and VGA support, with numerous imgrovements over
earlier versions created or supported by Mark Smiley.

% IBM HD, F-PC, 805 Kb

PocketForth V6.4, Chris Heilman C300 -~ 512

Smallest complete Forth for the Mac. Accass to all Mac
functions, events, files, graphics, floating point, macros,
create standalone applications and DAs. Based on fig &
Srarrfn%lForth. Ingl. source and manual.

* MAC, 640 Kb, Systern 7.01 Compatible.

Kevo V0.9b6, Antero Taivalsaari Ca60 - $10

Complste Forth-like object Forth for the Mac. Object-
Prototypsaccess to all Mac functions, files, graphics, floating
point, macros, create standalone applications. Kermel source
included, extensive demo fites, manual.

A MAG, 650 Kb, System 7.01 Compatible.

Yerkes Forth V3.67 €350 - $20

Complete object-oriented Forth for the Mac. Object access
to all Mag functions, files, graphics, floating point, macros,
create standalons applications. Incl. source, tutorial,
assemblar & manual.

*¥ MAC, 2.4Mb, System 7.1 Compatible,

Pygmy V1.4, Frank Sergeant C500 - $20

A lean, fast Forth with full source code. Incl. full-screen
editor, assembler and metacompiler. Up to 15 files open at

atime.
& IBM, 320 Kb

KForth, Guy Kelly C600 - $20

A full Forth system with windows, mouse, drawing and
modem packages. Incl. sourca & docs.
ok |BM, 83, 2.5 Mb

Mops V2.6, Michasl Hore C710 - $20

Close cousin to Yerkes and Neon. Very fast, compiles
subroutine-threaded & native code. Chject oriented. Uses
F-P co-processor if present. Full access to Mac toolbox &
system. Supports System 7 {(e.g., AppleEvents). Incl.
assembler, manual & source.

*& MAC, 3 Mb, Systern 7.1 Compatible

BBL & Abundance, Roec:iay Green €800 - $30

BBL_ public-domain, 32-bit Forth with extensive support of
DOS, meticulously optimized for execution speed.
Abundanceis a public-domain database language writtenin
BBL. In¢l. source & docs.

Yok [BM HE, 13.8 Mb, hard disk required

Version-Replacement Policy

Return the old version with the FIG labels
and get a new version replacement for 1/2
the current version price.

* = Starting % - Intermadiate % %% — Advanced

Fast service by fax: 408.373.2845

MORE ON FORTH ENGINES Volume 18 818 - $20

MuP21 - programming, demos, eForth 174 pp.

Valuma 10 (January 1989) 810 - $15
- et Volume 19 819 - $20
Il 1058 Pophenir ortogaroo, o Vs P21 - programming,damos,sForn 125 5o
-$20
Volume 11 {July 1989) 811 -$15 Volume 20 . 820 - 52
; ley, _ lore MuP21 - programming, demos, F85, Forth Specific
Eﬁ:grut péenr&ﬁgftg&’?;féfﬁ%gaﬁif&%}é%ﬁ?y SCaz,32 Language Microprocessor Patent 5,070,451 726 pp.

Volume 12 (April 1990) 812 - 315 s i My Troubles with This Dam 82C51; CT100 Lab
ShBoom Chip architecture and instructions, neural Board; Born 1o Be Free; Laws of Computing; Traffic Controlier
computing module NCM%QSQ. p|?Forth. binaryradix sorton and Zen of State Machines: ShE?oorn Microprocessor;
802886, 68010, and ATX2000. 87 pp. Programmable Fieldbus Controller IX1; Lagic Design of a

16-Bit Microprocesser P16 88 pp.
Volume 13 (Qctober 1990 813 - %15

Ls of the RTX2000 Mini-BEE, EBForh, AZFonh, RTX-

2101, B8 erortn, BOST ererih. 107 00 MISCELLANEOUS

i Volume 14 814 - %15
|/TX Pocket-Scchae, afForth for muP20, ShBoom, eForth for T-shirt, “May the Forth Be With You” 601 - %18
CP/M & Z80, XMODEM for eForth, 116 pp. (Specify size: Srmall, Medium, Largs, X-Largs on order form}
white design on a dark blue shirt or green design ontan shirt.
Volume 15) . B15-%15
Moore: new CAD system for chip design, a portrait of the BIBLIOGRAPHY OF FORTH REFERENCES 340 - 518
P20; Rible: Q51 Forth processor, Q32, RISCing it all; P20 3rd ed., January 1987)
eForth software simulator/debugger. 94 pp. ver 1900 references 1o Forth articles throughout computer Ly
Iterature. 104 pp. St g
Volume 16 816 -§15

OK-CAD Systern, MuP20, eForth system words, 386 eForth,
80386 protectad mode operation, FRP 1600 - 16-Bit real

time processor. T04 pp. DR. DOBB’S JOURNAL back issues

Volume 17 B17 - $15 Annual Forth issues, including code for Forth applications.
P21 ¢chip and specifications; Fic17C42; sForth for B8HC11,
8051, Transputer 128 pp. September 1982, Septamber 1983, Sepember 1984 {3 issues)
. 425 - $10
I

FORTH INTEREST GROUP Lt Lo
. . . N . weeKaays) . 4
100 Dolores St., Suite 183 » Carmel, Culifornia 93923 = office@forthi.org X0 T:VSO PST 408.373.2845 (fax)

Non-Pas| Office

T
| Name defvaries: includs
| Company special nstructions. _
. Surfacs Up 10 $40.060 .
Street voice U.S. & Intgrnational $40.01 10 $80.00 $10.00
Sy fax w?agﬁ b ::gg'g 10% s '?3
. . DvE 5 Lo
SIBTBIPI‘O\L £l P e-malil Internastional Alr 40% ol Tolal

L_Nation Courler Shipments $15 + courier casls

Unit Price

r_
i

] CHECK ENCLOSED (payable to: Forth interest Group) sub-total

O VISAMasterCard: 10% Member Discount [{SiglelEle
Sales tax* on sub-total (California only)
Card Number exp. date Shipping and handling (see chart above)
Membership® in the Forth Interest Group

N D New Rangwal

Signature TOTAL

: L] L) . - - - . L)
The Forth Interesl Graup {FIG) is 8 welldwids, non-profit, membar-supported organization wilh ovar 1,000 members and 10 chaplers. Your membership includes a subscnption ko the bi-menthly

manazing Forth Dimensions. FIG also offers its members an on-hne data base, a large selection of Forth literature and other services. Cost is $45 per year for U.S.4; all other countries $60 per year.
This fae includes $32 for Forth Dimansions. Mo sales tax, handling fee, or discount on membership.

When you jain, your first issue will arrive in four to six weeks; subsequant issuas will be mailed to you avery other manth as Ihey ara published—six issues in all. Your mambership entiles youta a 10%
discount on publications and functions of FIG. Dues are not deductible as a charltable contribution for U.S. faderal income tax purposes, but may be deductible as a business expense.

PAYMENT MUST ACCOMPANY ALL OCRDERS

PRICES: All orders must be prapaid, Frices are SHIPFING & HAMDLING: SHIPFING TIME:

subject to change without notice. Cradd card crdars Al arders csleulate shipping Bagks in stock gre shipped withm
will be sant and billad at gurrent pricas. Chacks must & handiing hased on order seven days of racaipt of the arder
beinU.S. dallars, drawnona U.S. bank. A$10charge dollar valus. Spacal nandiing SURFACE DELIVERY:

will be: added for returned checks. avadable on request. U.S: 10 days Costa, Los Angeles San Mateo, San Francisco, San Banita, and
other- 30-60 days Sama Cruz; 7.25%: other countigs.

Fast service by fax: 408.373.2845 XX.1

"CALIFQORNIA SALES TAX BY COUNTY:

7.78%: Del MNortes, Fresna, Impanasl, Inyg, Madara, Orange,
fiversice, Sacramente, Santa Chara, Sama Barbara. San Ber-
nardine, San Diego, and San Joagquin, B.25%: Alameda, Comra

[

: WRITE.TL

PGS . FORMAT

NEG. FORMAT

LBIN

SHOW.TH

SHOW.TL

{

{

501 WRITE.BYTE \ send "Write TH" command byte $01
WRITE.BYTE \ write temp value - b2

WRITE.BYTE \ write sign byte - bl

RST LOW

10 M3 ; \ walt for eeprom write cycle

{ bl b2 --) Y\ write T-Low reg

RET HIGH

$02 WRITE.BYTE \ send "Write TL" command byte $02
WRITE.BYTE \ write temp value - b2
WRITE.BYTE . write signp byte - Dbl
R5T LOW
10 M3 : \ wait for =eprom write cycle
u -- 3 space 0 <# # asecii hold #5 §> type 2 spaces
u == 0 <# 4 ascii hold #5 ascii - hold #> type
2 spaces
h —-) base @ >r binary 0 <% # # # & % & # # #> type

space r>» base ! ;

{-— % Display T-High value in degrees
RS5T HIGH

$A1 WRITE.BYTE
READ.WORD DUP
RES5T LOW

10 M8

256 AND 0=

IF OFF> NEG 10 * U2/

ELSE QN> WEG SFEFE AND INVERT.BYTE 1+ 10 * U2/
THEN .“ -——=x " HEG

Y\ send "Read TH" command bytes $Al

IF NEG.FORMAT \ Display Temp
ELSE POS.FORMAT
THEN cr H

{ —) % Display T-Low value in degreas

RST HIGH

FB2 WRITE.BYTE % send “Read TL* command byte §A2

READ.WORD DUF

R5T LOW

10 MS

256 AND 0=

IF OFF> NEG 10 * U2/

ELSE ON» NEG $FEFF AND INVERT.BYTE 1+ 10 * U2/

THEN .* -——> " NEG b
IF NEG.FORMAT
ELSE POS5.FORMAT
THEN cr H

\ display Temp

START.CONVERSION (—--)

RST HIGH
$EE WRITE.BYTE
RST LOW ;

Y send "Start conversion”
\ command byte SEE

Farth Dimensions XX.1

19

S5TOP.CONVERSION

WRITE.CONFIG

SHOW,CONYIG

SHOW. PARAM

STAND. ALONE

REAL. TEMP

SHOW. TEMP

(-

RST HIGH

522 WRITE.BYTE Y send "Stop conversion”

RST LOW \ command byte $22

{ b -——) Y write byte to config reg

R5T HIGH

50C WRITE.BYTE Y\ send "Write config" command
WRITE.BYTE \ byte 50C

RST 1LOW

10 Ms ;

- \ Display config reqg in binary

RST HIGH

$AC WRITE.BRYTE \ send "Read config” command
READ.BYTE \ byte SAC

M -——— " .BIN CR

RST LOW

10 Ms ;

{ —) A\ Display all chip parameters
Cr cr

MOT-HIGH " SHOW.TH % display T-Righ in degrees
MO T-LoW " SHOW.TL \ display T-Low in degrees
." CONFIG ™ SHOW.CONFIG M\ display Config reg in binary
cr ;

{ —-

00 WRITE.CONFIG ; \ configure for stand alone mode

{ —— bl b2y
RST HIGH

5AA WRITE.BYTE
READ.WORD DUP
R3T LOW

256 AND 0=

IF OFF> NEG 10 * U2/

Y\ raad temp conversion reg

% send "Read Temp” command byte $AA

ELSE OW> NEG $FEFF AND INVERT.BYTE 1+ 10 * U2/

THEN ;

(- \ display temperature in degrees
PORT.INIT

502 WRITE,CONFIG
START.CONYERSION
1 seconds

CLS cursor-off

\ set up config reg for 3 wire

\ wdit for complete conversion

BEGIN
20 12 at ."™ TEMP ---> " READ,TEMP
NEG IF WNEG.FORMAT \ display temp
ELSE POS.FORMAT
38 12 at ." Degrees C "
THEN key? \ hit any key to quit
UONTIL <¢r c¢ursor-on

STOP.CONVERSION ;

20

Forth Dimensions XX.1

This article outlines a method for organising program sec-
ticns (called modules) utilising the top line (line 0) on each
screen—the line usually left for “notes” in most screen edi-
tors. The idea was primarily developed to organise the load-
ing of programs, but can be used to implement, for instance,
a simple help engine.

The program listing is for LMI's UR/FORTH (Forth-83}.

This idea had its beginnings in the use of the first line of a
screen (line 0) for notes. [t seems almost all Forth screen edi-
tors use this convention—I have notes going all the way back
to 1979 (in Forth-79!} that use this idea.

For some time before I wrote this program, it seemed to
me that this first line could be used for much more than
notes—it could virtually be used as a record “header,” with
the rest of the screen as the “data,” which led to the idea that
a program could scan through screens, using the data on line
0 for structural information.

This thinking was proceeding along with other thoughts
about program organisation (and version control and so on),
especially the desire to divide programs up into chunks—not
necessarily different files, just different sections. The main
problem in using standard loading screens like either:

1 LOAD

10 LOAD

20 LOAD etc. (when using -->)
ot:

1 9 THRU
10 16 THRU
20 27 THRU etc, (when not using ~->)

is that, when editing screens, especially when inserting and
deleting screens, almost ali the numbers in the above state-
ments have to be changed. We were looking for a system
which did not need this editing. If possible, the ideal aim was
to do away with screen numbers altogether (at least when
defining a loading screen!).

Finally, these ideas came together in what we at Jarrah
Computers call modules. Each section of a program, called a
module, has the name of the module on the top line (line 0)
of the screen. Modules consist of a consecutive series of screens,
with the same identifying string on line 0 of each screen.

The main word in this program is FINDmodule which ag.
cepts a string as its argument, and then scans the file Jooking
for the first screen with the given string on the first line. H no
screen is found, a false flag is left.

If a screen with a matching string is found, the screen
number is saved as the start screen, and a second search is
undertaken, examining subsequent screens untit the match
string is not found. In this case of a found string, FINDmodule
leaves the starting screen, the ending screen+1, and a true

Dave Edwards, Perth, WA, Australia

jarrah@inf.net.au

Forth Dimensions XX.1

flag on top. We decided to make the second argument end
screen+1 50 that the arguments could be fed directly into a
DO LOQP (after a SWAP!).

To handle the “given string,” and to make the process
nestable, we implement a string buffer which can hold up to
ten (nests, in fact) strings. Effectively, the string buffer, and
the variable $NEST make up a string “stack.” Utility word
>$BUF moves a string to the string buffer (“pushing” it onto
the string stack), and . $BUF displays the (top) of the string
buffer. The word $[runs > SBUF and then nests a level, and
the word] § unnests. So, the syntax:

" ModuleName" 3 ModuleFUNCTIONs] 5

will push the string ModuleName onto the string stack, and
the ModuleFUNCTIONs in the $[1 $ brackets will be run
using ModuleName as their argument. After | $ the string is
popped, leaving the stack in the same state as at entry.

After defining FINOmodule, we can easily write a FIND
word which is used
FIND” aModule" or FIND" bModule"
etc., primarily for interactive use.

Having developed FINDmodule, all that remains is to put
it to use in applications!

The first real use to which we put FINDwodule is to LOAD
screens, as in LOADmodule. [f the module is found, all we
need to say is 1~ THRU, Of course, if it is not found, we sim-
ply provide a message. Again, from LOADmodule, it is easy to
define LOAD" (asin LOAD" ThisQrThat"). With these tools,
we can write a set of loading commands like:

LOAD" StartModule"

LOAD" MainFuncticonals"
LOAD" DisplayFunctionals"
LOAD" MainProcesses™
LOAD” OuterLoop"

toload an entire program—without specifying screen numbers!

Of course, the next thing that happens is that these com-
mands themselves occupy a set of screens, which can be de-
fined as a module! At Jarrah Computers, we call this the pro-
gram module, and it has the format, for example,
" ThisProgram” or" ThatProgram” and is usually the
first module defined in a screen file. To load the entire pro-
gram, all we have to say is
LOAD" ThisProgram”

{or, aiternatively, LOAD" ThatProgram"!}

Another simple (but very handy!) function is to define a
module" RELOAD", 2 screen which usually contains only:
FORGET FirstWordInTheProgram

LOAD" TheProgram”

Dave Edwards is a qualified electronic engi Fln 1984, he formed
Jarrah Computers, specialising in custom microcontrollers—e.g. the
HCO5,65F11/12,HC11-and, of course, Forth chips from the Novix an,

21

and we can then LOAD" RELOAD",

It is quite easy to extend this system to load modutes from
other files, all we require is to buffer the filenames (again,
nestably), functions which we do not need to cover here, We
called this word USE_LOAD", used in the form:

" Filename.abc" USE LOAD" Module"

Another handy function we call BROWSEing (included in
the listing) has been used to implement a simple help sys-
tem. All we need to do is FIND the module and, if it is found:
START with the StartScreen {returned by a
successful FINDmodule)

BEGIN LIST the current screen, wait for key...

If pgup: Decrement the current screen
{(bounded by StartScreen)

If pgdn: Increment the current screen
{hounded by EndScreen)

If Esc exit, Else continus

In this example, we use a simple LIsT facility to display
the screen, but this could be any desired display (in its owm
“window,” etc). Finally, to implement the help facility, all

. that is needed is to put phrases like:

etc., wherever required in the cade. Note that it is very easy
to implement the" PAGE UP previous” and" PAGE DOWN
next" prompts (which disappear when they are no longer
relevant), as we have made copies of the START and END
screens. The main advantage of using this system is that the
help file can be edited at any time and the program will dis-
play all the new screens without need to modify the program
(again, provided that the module names have been included
on line O of each new screen).

Dave Edwards is a qualified electrohic engineer who formed Jarrah
Computers,an embedded systems developmentcompany using Forth,
in 1984, His company has specialised in design of custom
microcontrollers ranging from the HCOS single-chip family, through
the Rockwell 65F11/12, the 6BHC11 and, of course, has investigated
the range of Forth chips ever since the Novix appeared.Dave presented
a paper on applications of the Navix to the Australian Forth Sympo-
sium and has previously contributed articles to Forth Oimensions.

Dave's other interests include music—both performance and com-
position.In 1993, he wrote an opera ("Giles - Is That You?"} and is cur-
rently working on a second opera (“Giles at Fort Meuller”). The MIDI
music system used for the two productions was programmed by Dave

BROWSE" ThisSectionHelp” in Forth especially for the productions, and he still does some ses-
or sion work as a keyboard player around Perth,

BEOWSE" ThatSectionHelp”

Listing One

{ Code Following)
v HModules

Code for LMI's UR/FORTH (F83} for modules of

FIND" with 3Buffer Nesting.
Loan" with ¥o File Nesting.
BROWSE" for implementing simple Help,

Version ONLY for ForthDimensions Article,

Copyright (C) Jarrah Computers 1993-1993,

N LOADT -
64 CONSTANT CH/LN
24 CONSTANT Mad"Size
10 CONSTANT NESTS

09:57 22.06.98

code.

09:55 22.06.9%8

{ Characters/Line)
{(Module3tringSize)
VARIABLE SNEST $NEST COFF

{ SNestLevel)

CREATE $BUFS MNESTS Mod"Size * ALLOT (Buffer For Strings}
SBUE (-- A) 3BUFS SNEST @ 0 MAX NESTS MIN Mod"Size * + ;
>SBUF (A --) $BUF Mod"Size + DUP QFF OVER CR 1+ CMOVE ;
5 >$BUF SNEST @ NESTS 1- < IF 1 SNEST +! THEN ;
1§ SNEST @ 0> IF -1 SNEST +! THEN ;

22

Forth Dimensions XX.1

I : '"SQOURCE [' SQURCE »>BODY] LITERAL ; {For Source resetting)

.
Y LOAD" 09:53 22.06.98
: SonLined (Scr# -- F) \ True if $BUF String on Lined of Scri
BLOCK 2+ { Point to word After ™ _“)
CH/LN 'SOUKRCE 2! 0 >IN ! { NewSource)
SBUF CQUNT BL WORD COUNT STRCMP 0= ; { SMatch?)
FiNDmodule (—— F | nl n2 T)} %V nl StartScr, n2 EndScr+l

>IN @ »F EBELK @ >R SQOURCE »>R »R {Save Snurce)
FALSE { Segd the =stack)
P7SCREENS 0 ?DO I SonLine(IF DROF I TRUE LEAVE THEN LOOP
IF ? SCREENS 2DUP SWAP (How search for EndQOfModule]
D0 I SonLine0 NOT IF DROP I LEAVE THEN LOQP TRUE
EL5SE FALEE
THEN R> R> 'SOURCE Zz! R» DUP BELK ! BLOCX DROP F» >IN ! ;

Y LOAD" 09:58 22.06.98

.$BUF { --) \ For displaying Modules as we are loading
OUT @ 80 SBUF CR& 1+ - > IF CR THEN
SBUF COUNT TYPE SPACE :

: LoADmodule (-- } \ Loads Screens with $=S$BUF
.$BUF FINDmodule IF 1- THRU
ELSE ABORT" .. not found " THEN ;
: FIND" ASCITI " FEED ${ FINDmodule 15 ; IMMEDIATE
o LoaDT ASCITI " FEED $[LOADmodule 15 ; IMMEDIATE
{ and that's the end of "-->"1)
\ Browse - for implementing Help 09:38 22.06.98
PECIMAL
| VARIABLE MODSTART { Start Screen of madule)
" VARTABLE MODERD { End Screen of module)
: DISP-S5CR DUP LIST {n-—-n)

CR ." ES5C to exit "
DUP MODSTART @

NQT IF ." PAGE UP previous "
ELSE .* »
THEN DUP MODEND R

NOT IF ." PAGE DOWMN next "

ELSE ." "
THENW :
\ Browse - for implementing Help " 09:58 22.06.98
: BLIP 200 15 BEEP ;
¢ WITHIN 1+ QVER - »R - R» U< ;
© : HELP+ DUP MODEND @ < IF 14 ELSE BLIP THEN ; {n--n'}
» HELP- DUP MODSTART @ > IF 1- ELSE BLIP THEN ; {n--n")

(Code continues on page 26.)

L

Forth Dimensions %X.1

23

S T A N D AR D

Simple macros can be implemented in Standard Forth with
string literals and BVALUATE, .

:GG $" ANEW NONCE {GO) " EVALUATE ;
IMMEDIATE

GO S" (GQ) NONCE " EVALUATE ;
IMMEDIATE

This means that code :60 will be resolved by evaluating
ANEW NONCGE : (GO). That starts the definition of {go).
When the definition has been completed with ;, then o
will execute (G0} and automatically forget it along with
HONCE.,

S0 macros are sharthand. We have shorthand for creating
the shorthand.

{ Simple Macro -- No parameters.)
MACRO {

“name <char> ccc<char>’ --)

CHAR PARSE POSTPONE SLITERAL POSTPONE EVALUATE

POSTPONE ; IMMEDIATE

H
The two macros above can be written:

MACRO :GO "
MACRO GO "

ANEW NONCE
(GO) NONCE "

(GD) w

Forth macros can be used when interpreting or compil-
ing, and are known globally in a search order.

C macros are compile only. An application can have many
macros, which disappear after the compilation. This is con-
venient for factoring the application for the time now only.
We can define macros, use them, and lose them.

Global macros, as defined above, are put into the Forth
dictionary. When the Forth interpreter recognizes them, it
executes the word and evaluates the associated text. Macros
are immediate and so are not compiled. The evaluated text
may be.

Local macros are not put into the Forth dictionary. In-
stead, a commeon area is used and re-used as files are com-
piled. The size of the area, My-Maerog-gize, will deperid on
your use, and you can increase or decrease it.

The macros are stored as strings—name and what's to be
evaluated—in the familiar last-in, first-found sequence. The
word my followed by a name fooks the name up and evaluates
the associated string when the name is found. Within local

macros, my must also be used to resolve other local macros.

You use CLEAR-MY-MACROS to empty the list of macros
before putting your present ones in.

Local macros ate defined similarly to global macros:
my MACRC name " what's to be evaluated "
Any non-blank character may be used instead of . The de-
limiter should not occur in the text. I generally use | when »
is in the text,

Local macros are not Forth definitions. They do not take
any dictionary space. Define them, use them, and throw them
away.

In the Stretching Forth article “What's a Character?” local
macros moderate what would have been an excessive num-
ber of definitions.

The source code includes definitions of PLACE, BUFFER:,
CHAR-DO, CHAR-LOOP, and Uppercase~Pad.

Wil Baden * Costa Mesa, California
wilbaden@netcom.com

Wil Baden is a professional programmer with an interestin Forth.Far
a copy of the source for this article, send e-mail requesting “Standard
Forth Tool Belt #5: Local Macros.” e

Forth Dimensions XX.1

ST A NDARTD F O R T H T 0O O 1L B E L T

1 { Local Macros)} l
i
3 (User words:

i

H

CLEAR-MY-MACROS

5 my MACRO _newmacroname_ " What to do *

& my _macroname_
P70
i
P9 2000 CHARS CONSTANT My-Macroa-fize { Whatever you need.)
‘ 10 My-Macros—-Size BUFFER: My-Macros
|

12 MACRO node@ " @ " MACRO node! " i - 1

14 { Scan for ltem in a list, one by one. } 1
(

© 15 Called by ‘my' to find macro. }

i 16 : scan-item { str len head -- item | 0)

‘ 17 ROT ROT 2>R { 1ist}{ R: str len)
|18 BEGIN node@ DUP WHILE '

i 19 DUP CELL+ COUNT 2R@ COMPARE 0=

i 20 UNTIL CELL+ (item)

Loz THEN

122 2R> 2DROP

.23

! 25 { Check that there’s still enough room in macro space.)
| 26 (Called by "MY-MACRQ".)

| 27 : my-macros-enough { n addr —- same)
28 OVER 1+ CHARS OVER + My-Macros My-Macros-Size + Ux>
29 ABORT" My Macros Full. ”

Lo30

: 32 { Make name upper case for case insensitivity. }
| 33 (Called by 'MY-MACRO' and ‘my’.)
i

34 : raise-case { str len ~-- str’ len }

35 31 MIN Uppercase-Pad PLACE Uppercase-Pad COUNT
) \ 2DUP charg-to-upper
; 37 2DUP CHAR-DO T C@ DUP [(CHAR] a - 26 U< BL AND - 1 C!' CHAR-LOCP
| 38

40 { Find where new macro will go, and link to top of Iist.)
41 { Called by "MY-MACRO .)

. 42 : My-New-Macro { -— addr)}
© 43 My-Macrog node - { addr)
44 DUP 0= IF DROP My-Macros CELL+ (First macro) ..
.45 ELSE CELL+ COUNT CHARS + COUNT CHARS + ALIGNED |
46 THEM i
P47 DUP My-Macroz 2DUP node@ SWAP node! node! i
| 48 CELL+ |
49 ;

51 { Place macro name and replacement in macro lizt.)

52 { called by ‘my .) |
| 53 : MY-MACRO { " name <char> string<char>" --)
1

Forth Dimensions XX.1 25

S T AANDA AR RD F O R T H T O O L B E L T

54 My-New-Macro >R { Y(R: addr)
55 BL WORD COUNT (str len) raise-case (str len)

56 R@ my-macros-enough PLACE ()

57 CHAR PARSE R> COUNT CHARS + my-macros-enough PLACE (R:)
58 ;

60 (Use 'my’ before local macro names and before 'MACRO'.)

61 : my (" name" -- 2?7)
62 BL WORD COUNT (str len) raise-case (str len)
63 2DUP S" MACRO" COMPARE 0=

64 IF 2DROP MY-MACRO EXIT THEN

65 My-Macros scan-item DUP 0= ABORT" Not my macro. "

66 COUNT CHARS + COUNT EVALUATE

67 ; IMMEDIATE

69 (Start a new set of local macros.)
70 : CLEAR-MY-MACROS (--) 0 My-Macros !

’

Load” Module” code, continued from page 23.

GET-KEYS KEY DUP { —— n
0= IF DROP KEY 8 SHIFT
ELSE DUP ASCII a ASCII z WITHIN IF 223 AND THEN
THEN BEGIN ? TERMINAL WHILE KEY DROP REPEAT

; converts to uppercase)

’

HEX
001B CONSTANT <ESC> 4900 CONSTANT <PGUP> 5100 CONSTANT <PGDN>
DECIMAL
-—>
\ Browse - for implementing Help 09:58 22.06.98
[("™ str" --- ; String of Screens to display)
BROWSE ${ CR ." Locating: " .$BUF (For slow disks!)

FINDmodule IF 1- MODEND ! DUP MODSTART ! (Set Screen Limits)
(Scr On Stack) BEGIN DISP-~SCR GET-KEYS)

CASE <ESC> OF TRUE ENDOF
<PGUP> OF HELP- FALSE ENDOF
<PGDN> OF HELP+ FALSE ENDOF
DUP OF RBLIP FALSE ENDOF ENDCASE
UNTIL DROP (Drop remnant screen#)
ELSE ." Module Not Found .. "™ KEY DROP
THEN 1§ ; (Denest at End)
l : BROWSE" ASCII " FEED BROWSE ; IMMEDIATE

26

Forth Dimensions XX.1

S TRETU CHTI NG S T A NDA ARD F O R TH - #20

What's a Character?

Forth has all the character and string manipulation func- isecntrl Control character
tions it needs for interpreting and compiling Forth and for isdigit Decimal digit
running target systems. isgraph Not space

When we want to use Forth for more advanced text han- islower Lowercase
dling on host systems, we need more. isprint Printing character, including space

One of the first inconveniences is naming. I suspect that ispunct Neither space nor letter nor digit
converting a character to uppercase is a common function in isspace Space, tab, return, linefeed
virtually every system, but there is no common name. isupper Uppercase

I've used implementations that have called it >UPPER, UPC, isxdigit Sedecimal digit
UBCASE, UPPERCASE, c>C.

My solution is to adopt the name from the Standard C tolower Convert and return lower-case letter.
Library together with the other related functions. Then I can toupper Convert and return upper-case letter.
explain by saying “it’s the same as the Standard C Library.”

Here is a minimum storage high-level implementation of
isalnum Alpha-numeric character those.

isalpha Upper- or lower-case letter

1 (CTYPE Functions -- Short)
3 ANEW --CTYPE-- DECIMAL (Slow version -- will be overlayed.)
4 (char -- flag)
5 : isalpha BL OR [CHAR] a - 26 U< ;
6 : isentrl 1+ 127 AND 34 < ;
7 : isdigit [CHAR] 0 - 10 U< ;
8 : isalnum DUP isalpha ORIF DUP isdigit THEN NIP ;

| 9 : isgraph [CHAR] ! - 94 U< ;

10 : islower [CHAR] a - 26 U< ;
] 11 : isprint BIL - 95 U< ;

12 : isupper (CHAR] A - 26 U< ;

13 : ispunct DUP isgraph ANDIF DUP isalnum NOT THEN NIP ;
14 : isspace DUP BL = ORIF DUP 9 - 5 U< THEN NIP ;
15 : isxdigit DUP isdigit ORIF DUP BL OR [CHAR] a - 6 U< THEN NIP ;

16 { char -- char')
17 : toupper DUP [CHAR] a - 26 U< BL AND - ;
18 : tolower DUP [CHAR] A - 26 U< BL AND + ;

The most used of those is toupper. If you're going to be
doing a lot of text massaging, this should be improved.

If your system has a CODE version of this function, you
can adopt it.

MACRO toupper " UPCASE "

Another approach is to use a translation table.
[Continues on next page.]

8 de osta Mesa California Wil Baden is a professional programmer with an interest inForth. For
acopy of the:source for this article, send e-mail requesting “Stretch-
ing Forth #20: What's'a Character?.”

Forth Dimensions XX.1 27

I N G S T A NDA AIRD F O RTH -

1l ANEW --CTYPE-- DECIMAL (Fast version. Let's keep this one.)
3 256 CHARS BUFFER: Uppercase-Table

5 :GO 256 0 DO

6 I DUP [CHAR] a - 26 U< BL AND - Uppercase-Table I CHARS + C!
7 LOOP ; GO

9 MACRO toupper " CHARS Uppercase-Table + C@ "

This is much faster than the CODE version on the system
I'm using, and I have enough space, so the translation table
version is the one I have adopted.

(The code gets optimized in the loop cycle and I can’t tell
how long it takes.)

MIL 1000000 * ;

NOTHING ; IMMEDIATE

MACRO toupper " CHARS Uppercase-Table + C@ "
>UPPER DUP [CHAR] a - 26 U< BL AND - ;
WITHIN OVER - >R - R> U< ;

BETWEEN 1+ WITHIN ;
UPPERCASE DUP [CHAR] a [CHAR] z BETWEEN BL AND XOR ;
// :GO COUNTER 1 MIL 0 DO 127 32 DO I | DROP LOOP LOOP TIMER ; GO CR |

NOTHING toupper UPCASE >UPPER UPPERCASE
A\

3833 MS
3834 MS
4783 MS
10300 MS
18734 MS

s

I also adopted a translation table for tolower.
11 256 CHARS BUFFER: Lowercase-Table

13 :GO 256 0 DO

14 I DUP [CHAR] A - 26 U< BL AND + Lowercase-Table I CHARS + C!
15 LOOP ; GO

17 MACRO tolower " CHARS Lowercase-Table + CQ "

The string conversion routines are:

19 (str len --)
20 : chars-to-upper CHAR-DO I C@ toupper I C! CHAR-LOOP
21 : chars-to-lower CHAR-DO I C@ tolower I C! CHAR-LOOP

’

’

28

Forth Dimensions XX.1

S TRETU CHII NG

S T ANDA ARD

F O RTH -

To accelerate the character-tests, a 256-byte table of bit-
codes is used. Macros set and test those codes. 15 macros are
defined to do this. These macros have no other purpose out-
side these definitions and at this time.

These macros are set up as local macros. Their definitions
will go away and the space for them will be recovered. There’s

less here than meets the eye.

The only definitions that will remain will be Char-code
and the 11 issomething functions.

See Tool Belt #5, “Local Macros,” for code for local vari-
ables. That should be loaded first. // is iterated interpreta-
tion, presented in Tool Belt #3.

23 (CTYPE Character Type Functions -- Fast)

1 25 CREATE Char-Code (Table for character codes.)
27 CLEAR-MY-MACROS

29 (Character Testing Functions)

31 my MACRO Control-Char " 1 *
32 my MACRO Motion-Char 2
33 my MACRO Space-Char "4 0"
34 my MACRO Punctuation "8 "
35 my MACRO Digit “ 16 "
36 my MACRO Hex-Digit v 32
37 my MACRO Lower-Case " 64 "
38 my MACRO Upper-Case "128

40 (Nothing has been compiled since ‘Char-Code'; so the following
41 (bytes go there. Each byte has one bit on.)

43 // my | C, |

45 Control-Char Control-Char Control-Char Control-Char
46 Control-Char Control-Char Control-Char Control-Char
47 Control-Char Motion-Char Motion-Char Motion-Char
48 Motion-Char Motion-Char Control-Char Control-Char
50 Control-Char Control-Char Control-Char Control-Char
51 Control-Char Control-Char Control-Char Control-Char
52 Control-Char Control-Char Control-Char Control-Char
53 Control-Char Control-Char Control-Char Control-Char
55 Space-Char Punctuation Punctuation Punctuation
56 Punctuation Punctuation Punctuation Punctuation
57 Punctuation Punctuation Punctuation Punctuation
58 Punctuation Punctuation Punctuation Punctuation
60 Digit Digit Digit Digit

61 Digit Digit Digit " Digit

62 Digit Digit Punctuation Punctuation
63 Punctuation Punctuation Punctuation Punctuation
65 Punctuation Upper-Case Upper-Case Upper-Case
66 Upper-Case Upper-Case Upper-Case Upper-Case
67 Upper-Case Upper-Case Upper-Case Upper-Case
68 Upper-Case Upper-Case Upper-Case Upper-Case

Forth Dimensions XX.1

29

S T RETIU CMHI NG S T ANDA AU RD F O R T H - #20
70 Upper-Case Upper-Case Upper-—-Case Upper-Case
71 Upper-Case Upper-Case Upper-Case Upper-Case
72 Upper-Case Upper-Case Upper-Case Punctuation
73 Punctuation Punctuation Punctuation Punctuation
75 Punctuation Lower-Case Lower-Case Lower-Case
76 Lower-~Case Lower-Case Lower-Case Lower-Case
77 Lower-Case Lower-Case Lower-Case Lower-Case
78 Lower-Case Lower-Case Lower-Case Lower-Case
80 Lower-Case Lower-Case Lower-Case Lower-Case
81 Lower-Case Lower-Case Lower-Case Lower-Case
82 Lower-Case Lower-Case Lower-Case Punctuation
83 Punctuation Punctuation Punctuation Control-Char
85 \\
86 128 RESERVE (Clear the rest of the table.)
88 (Include hex-digits in “Char-Code’ table.)
90 // CHAR | CHARS Char-Code + DUP C@ my Hex-Digit OR SWAP C! |
91 0123456789 ABCDEFabecde €
82 \\
94 my MACRO Letter " my Lower-Case my Upper-Case OR "
95 my MACRO Alphanumeric " my Letter my Digit OR "
96 my MACRO Graphic " my Alphanumeric my Punctuation OR
97 my MACRO Printable " my Graphic my Space-Char OR "
98 my MACRO Whitespace " my Motion-Char my Space-Char OR "
99 my MACRO Control " my Motion-Char my Control-Char OR *
!
101 nmy MACRO Char-Code " CHARS Char-Code + C@ *
103 (char -- flag)
104 isalnum my Char-Code my Alphanumeric AND 0<> ;
105 isalpha my Char-Code my Letter AND 0<> ;
106 isentrl my Char-Code my Control AND 0<> ;
107 isdigit my Char-Code my Digit AND 0<> ;
108 isgraph my Char-Code my Graphic AND 0<> ;
109 islower my Char-Code my Lower-Case AND 0<> ;
110 isprint my Char-Code my Printable AND 0<> ;
111 ispunct my Char-Code my Punctuation AND 0<> ;
112 isspace my Char-Code my Whitespace,Z AND 0<> ;
113 isupper my Char-Code my Upper-Case AND 0<> ;
114 isxdigit my Char-Code my Hex-Digit AND 0<> ;
30

Forth Dimensions XX.1

FORTHWARE-#12

Partlil

Adaptive PID

Introduction

Let's continue with our investigation of adaptive PID con-
trollers by looking at how to implement the plant identifica-
tion part of such controllers. For those of you that have lost
track, PID controllers achieve the goal of regulating a system
by combining a signal that is proportional to the error input,
plus an integral of the error signal, and the derivative of the
error signal. Controlling by just using the proportional sig-
nal tends to cause oscillations; adding the integral term re-
duces these. Adding the derivative term makes the system
more responsive to signal changes. If we know enough about
the system that we are controlling, then, in principle, we can
adjust the gains for the separate proportional integral and
derivative terms to achieve an optimal (critically damped)
controller.

The problem with this is that one is often faced with a
system that is not characterized well enough to do this, or
the system that is under control has unsteady parameters.
When we are faced with this situation, an adaptive control-
ler is a good choice to handle it.

Mathematical recap
First let’s take a look at quick summary of the equations.
Our controller is,
de(t)

t
y(t) = Kpe(t) + K /0 edr + Ky =

(1)
where K is the proportional gain, K, is the integral gain, and
K, is the differential gain. The quantity & is an error signal
that is the difference between the commanded input, x and
the output of the controlled plant z.

Our controlled plant is defined by the differential equa-
tion,

ZZ
F(z) = a®

. ﬁdz + @)
=a— - z

a " Tar T
where o, B, and y are known constants and F(z) represents
the imposed external forces on the plant (the input).

The controller and the plant are coupled by,
£ = (:II - I&’sz) Ix"o

)

where K, is a known input gain of the controller and K, is a
known feedback gain that is output from the plant.

Note that we have changed variable names slightly, as com-
pared to last time, so that we can consistently hook every-
thing up together. To summarize: x is the input signal, y is

the controller output and the plant input, and z is the plant
output. The controller input is € as defined in (3).

The optimization

The controller is optimally tuned when the expected mean
squared value of system error is minimized (i.e., we are doing
another least-squares problem). It is very easy to get lost here
and lose track of what we are doing, so let’s be explicit about
what we are dealing with. We are combining an input signal,
x with the actual plant output, z, to create an error signal &.
The error signal is then used as a control input, y, into the
actual plant. If we knew the characteristics of the actual plant,
a, B, and ¥, we could adjust the PID controller gains Kp, K,
and K, so that it is critically damped.

In the last installment, we derived the equations neces-
sary to achieve the proper gains given the plant parameters.
However, in our current scenario, we do not know the actual
plant parameters. So we estimate the plant parameters, given
y and z. We then use these estimated plant parameters to
choose our controller gains.

So we want to minimize the mean square of the differ-
ence between the output of the actual plant and the currently
estimated plant,

n n

J(e,B,7) = z:(error)2 = E(Z — z)?

k=1 k=1

4)

where Z is the actual plant output and z, is the modeled plant
output. Now. since we are going to be creating a digital imple-
mentation of the controller, at some point we are going to
have to switch from using differential equations to finite dif-
ference approximations to them. If we make that switch at
this point in our analysis, things will be somewhat simpler
$0, using second order finite difference approximations, our
model plant equation becomes

_ (4o —2yH? + BH — 2a + 2H?
A=\ BH+2a) T \BH 1 22) T BH+ 22710

(where H is the time step size), simplifying the notation again,

2z = @124-1 + @212 + by (6)
or more generically, we can write this as,
P q
0= arze—k + 3 bkyr—k 7
k=1 k=1

Using this form, we can always go back to the original

Skip Carter « Monterey, California
skip@taygeta.com

Skip Carter, a scientific and software consultant; and leader of the
Forth Scientific Library project, maintains wwwi.taygeta.com.Heisalso
the President of the Forth Interest Group.

Forth Dimensions XX.1

31

FORTHWARE

parameters,
H2
= ——(ay—1 ®)
“ TR
H
B = g‘(az'ﬂ)
1
l-a—a
¥ = bl

The steps we go through next are exactly the same as we
did for solving the least-squares straight line problem in FD
XIX.3. Once again we can use a symbolic mathematics pack-
age (I use Mathematica) to help avoid making an error in the
derivation of the equations for the next steps, which are
straightforward but rather tedious to do.

We need to determine when the derivative of J with re-
spect to the parameters is zero,

aJ 9)
— = 0

6(11

aJ

5a; =

oJ

=0

aby

These expand out to equations (10), (11), and (12).

a; Z z;_ +ay Z 2121-2+ b Z Ze-1Y1-1 Z Zz-1 (10)
a; 2 Zi-12t-2 + a2 E Z,+bh Z Zi—2Yr-1 = E Zz2 (11)
a1) z-1ye-1 + az Z Zi-ayt-1+ b Z Yy = Z Zyi-r (12)

which need to be solved for a,, a,, and b,.

Let's step back and take a look at what we have arrived at.
We now have three equations and three unknowns, so unless
one of equations (10) through (12) turn out to be redundant
(they are not), we can ultimately manipulate them to solve
for our unknown terms. Further, we can see that our solu-
tions are going to give us the plant parameters ¢, B, and y
solely in terms of the histories (because of the sums) of the
controller output y, the actual plant output signal Z, and the
previous estimated plant output signal values z.

The need to maintain the histories creates something-of a
problem because the terms in (10) through (12) will have to
be reevaluated at each time step, which will impact the per-
formance of the controller in a real-time environment. The
equation in its general form (7) is known as an ARMA (Auto-
Regressive Moving Average) model. ARMA models are ex-
tremely important models for discrete systems and appear in
many contexts. Techniques for efficiently solving ARMA
models were worked out in the '50s, when you just couldn’t
throw a couple more MIPS and megabytes at the problem.
One of the most suitable methods is called Plackett’s algorithm

(Plackett, 1950), which takes a current estimate of the pa-
rameters and combines them with the new data to get the
new estimate. It is important to recognize that Plackett’s al-
gorithm is not an approximation to the solution of (10)
through (12), it is mathematically exactly the same—it just
looks very different.

Deriving Plackett’s algorithm without the use of matrix or
linear algebra is tedious in the extreme, so I won't derive it
here. Using linear algebra and something called the Gauss-
Markov theorem (scary sounding words, but it’s really just
matrix-speak for linear least squares, which we already un-
derstand), we arrive at the set of matrix equations,

T
Pt—lxt—-lxt_lpt-l

P,=P,_, —
t - 1+ x7 PyyXiy

(13)

Pt—lxt—l(sz_let—l - }’t)

0, =0, —
fTo 14+ x7 1 PoyXy

(14)

The new quantities are:

* x,is a vector containing the inputs and plant outputs—the
z and y values in (7)—stacked one above the other.

P, is the covariance matrix of the estimation error. It
quantifies how good the current estimate is. It is calcu-
lated from the output statistics of the model. The covari-
ance matrix is where the controller history information
went to from the direct formulation.

* q,is a vector containing the current plant parameter—the
a and b values in (7)—estimates stacked up.

This is what is known as a recursive estimator, it makes a
new estimate based upon the current estimates plus the new
data.

Equations (13) and (14) give a practical method to esti-
mate the plant parameters, given the past statistics and the
new data. In this installment, we will look at how to imple-
ment this; next time, we will go to the final step and use this
estimate to adapt the controller.

The numerical implementation

For all the messy, complicated math, the implementation
of all this is actually pretty straightforward once you have
the equations and a Forth version of the linear algebra opera-
tions. The matrix inverse (the matrix algebra version of di-
vide) is part of the Forth Scientific Library; the other matrix
operations we have to write ourselves.

When writing a simulation of an adaptive controller, you
have to remember to simulate the plant, too. In an actual
application, this part would be replaced with a sub-system
that aquires the digitized data from the physical system.

Listing One [not available at press time, the code will be
available via FTP and will be printed in our next issue. —Ed.]
is a ANS Forth implementation that will demonstrate a PID
controller plant identification using a simulated input sig-
nal. Just to make it interesting, the (simulated) real plant
actually changes a couple of times, so the estimate is forced
to change, too. Initially, we have no idea what the model
parameters are; we describe this uncertainty quantitatively

32

Forth Dimensions XX.1

FORTHWARE

by initializing the covariance matrix P, to be large values on
the diagonal and zero off the diagonal.

The rest of the program directly implements equations (13)
and (14). The program is designed to create an output time
series that can be captured and used with gnuplot.

Tricks to make it work better

The implementation of an adaptive controller often has
extra features I have not described so far, such as not recalcu-
lating the gains every time step, but only after an interval of
several steps. Once this is done, the accumulated sums are
also reset, thus reinitializing the adaption section. Doing this
helps tame the controller, particularly in a noisy system where
it would eventually try to adapt to the noise. This is just one
of many practical issues that make the use of adaptive PID
controllers both a science and an art.

There are two other common tricks, both of which are
intended to keep the integral term under control. Remember
that the purpose of the integral term is to smooth out oscilla-
tions, but the fact that it is accumulated over the entire run
time of the system can cause problems with responsiveness.
The first trick is to limit the size the integral can grow to; this
is especially valuable to do when the controller is imple-
mented in scaled-integer or fixed-point arithmetic. The sec-
ond useful trick is to reset the integral to zero when its sign is
opposite of the error, & this makes the integral term able to
respond more quickly to the changing system, which is why
the error changed sign (thanks to Jerry Avins for pointing
out this one).

Conclusion, Partll

We have now achieved the ability of being able to iden-
tify the plant for a PID controller based upon its response to
the incoming data. This is the final background piece we need
in order to get to the ultimate: understanding and implement-
ing an adaptive PID controller in Forth. I want to re-empha-
size the fact that the details of what we have arrived at in this
example are very dependent upon the choices we made for
the plant model and how it is linked into the controller. Lots
of other configurations are possible; the choice depends
strongly upon the application. If you try to compare this with
other derivations in the literature you will almost certainly
see something different. What you will see in a comparison is
that the methods used are basically the same.

Feedback

Please don't hesitate to contact me through Forth Dimen-
sions or via e-mail if you have any comments or suggestions
about this or any other Forthware column.

References

Dutton, K., S. Thompson, and B. Barraclough, 1997; The Art
of Control Engineering, Addison-Wesley, Reading Mass. ISBN
0-201-17545-2

Plackett, R.L., 1950; Some theorems in least squares,
Biometrica, V. 37, pp. 149-157.

Contact Conference
Organiser or Conference

Chair for details.

euroFORTH '98
The 14th euroFORTH conference on the
FORTH programming language and FORTH processors

(Including an Internationalisation Workshop)

September 18-21, 1998

Conference delegates are welcome and encouraged to give
papers on subjects related to the conference topics. As usual
there will be a "4th" day, which will include an exhibition (DM
100 per stand) and a chance for delegates to review the
conferences. As in the previous years delegates from all parts
of Europe and other continents are expected.

Internationalisation Workshop

When the International Organisation for Standardisation
accepted ANS Forth as an International Standard, they asked -
the ANS to address two areas in their next review. The two
areas where:

* Internationalisation

* Requirements for embedded systems programmed in Forth

It was agreed at euroForth '97 that we would hold a special
workshop on internationalisation to investigate the issues the
standard will need to address in order to allow programmers to
develop multi-lingual applications.

Conference Chair

Dr. Peter Knaggs
Bournemouth University,
Talbot Campus, Fern Barrow,
Poole. Dorset.

UK BH12 5BB

Tel: +44 1202 595625

Fax: +44 1202 595314

Conference Organiser
Marina Kern

C/o m2c
Schauenburger Str. 15
D 20095 Hamburg,
Germany.

Tel: +49 40 325682-10
Fax: +49 40 325682-90

" Net: m2c @ mail.hamburg.com Net: pik@bcs.org.uk

Cost: A discount price (given in brackets) is available for delegates
registering before the end of July. Note that all prices are exclusive of VAT
(currently 16%).

Resident Delegate DM 790 (DM 720)

conference fee, accommodations, 3 meals a day

Student - Limited openings! DM 400 (DM 340)
conference fee, accommodations, 3 meals a day

Guest DM 380 (DM 340)
accommodations, 3 meals a day

4th Day DM 135 per person
accommodations, meals, exhibition and additional workshop

Forth Dimensions XX.1

33

FREEWARE

FROMTHE NET

Fred Behringer’s Transputer Forth package F-TP 1.00 is now
available at
ftp://ftp.leo.org/pub/comp/os/dos/programming/forth/
transputer/

This is a 32-bit nearly ANS, complete Forth for the T800
for use with the INMOS B004, or compatible, board on an
IBM compatible PC. It also works with the T400. The server
on the host side is based on Turbo Forth, as are the cross-
assembler and the metacompiler. The package is freeware and
900 Kb in ZIP form. This includes a precompiled example of
a multisystem (many Forths in one). The actual package is
substantially smaller.

For information, send e-mail to:

Fred Behringer

behringe@mathematik.tu-muenchen.de

Mike Hore released Mops version 3.2.

Mops is a public-domain development system for the Mac.
It's based on Forth, with extensive QOP extensions, along
the lines of Smalltalk. It comes with a class library which gives
support for all the normal Mac interface functions. While
not as full-featured as PowerPlant or MacApp, say, it's very
adequate for the kind of applications which might be devel-
oped by one programmer.

Mops is derived from Neon, which was one of the first
languages for the Mac that allowed actual development on
the Mac itself. It's a close cousin to Yerk, which is a more
“conservative” development of Neon, basically aimed at keep-
ing up with later Macs and systems while remaining fully
compatible with Neon. Mops is more “radical”. It'sa omplete
reimplementation which compiles native (68K and PowerPC)
code instead of the usual Forth threaded variety. It's very fast
— about as fast as anything on the Mac in fact. It has a few
other improvements over the original Neon, such as mul-
tiple inheritance, public ivars and temporary (local) objects.

http://www.netaxs.com/~jayfar/mops.html

ftp://ftp.taygeta.com/pub/Forth/Mops/

(taygeta is the main FIG ftp site)

A Shot in the Foot

Bart Lateur wrote: The major problem with Forth is the
fact that it's so damn easy to shoot yourself in the foot. Just
accidently do something like 0 @ and you’ll get a system
crash, on many systems.

Anton Ertl replied: That's a problem of the system. Gforth
on Linux gives:

0@

:1

0@

Error: Invalid memory address
and I end up in the text interpreter (or whatever CATCHes
this exception).

By the way, with C you can shoot yourself in the foot in
the same way (although a little more verbosely):

main()

return *(char *)0;

}

Compiling and running this on Linux gives:
Segmentation fault (core dumped)

and I end up in the shell. Catching this with a signal han-
dler is somewhat more work than using CATCH in Forth.

LEVELS OF MEMBERSHIP
Your standard membership in the Forth Interest Group brings
Forth Dimensions and patrticipation in FIG's activities—like
members-only sections of our web site, discounts, special
interest groups, and more. But we hope you will consider join-
ing the growing number of members who choose to show their
increased support of FIG's mission and of Forth itself. -~

Ask about our special incentives for corporate and library
members, or become an individual benefactor!

Company/Corporate - $125

Library - $125

Benefactor - $125

Standard - $45 (add $15 for non-US delivery)

Forth Interest Group
See contact info on mail-order form, or send e-mail to:
office@forth.org

34

Support for older systems
Hands-on hardware and software
Computing on the Smalt Scale
Since 1983

Subscriptions
1 year $24 - 2 years $44
All Back Issues available.

TCJ

The Computer Journal
P.O. Box 3900
Citrus Heights, CA 95611-3900
800-424-8825 / 916-722-4970
Fax: 916-722-7480
BBS: 916-722-5799

Forth Dimensions XX.1

SPONS ORS & BENEFACTORS

The following are corporate sponsors and individual benefactors
whose generous donations are helping, beyond the basic member-
ship levels, to further the work of Forth Dimensions and the Forth In-
terest Group. For information about participating in this program,
please contact the FIG office (office@forth.org).

Corporate Sponsors

AM Research, Inc. specializes in Embedded Control applica-
tions using the language Forth. Over 75 microcontrollers are
supported in three families, 8051, 6811 and 8xC16x with both
hardware and software. We supply development packages, do
| applications and turnkey manufacturing.

Clarity Development, Inc. (http://www.clarity-dev.com) pro-
vides consulting, project management, systems integration,
training, and seminars. We specialize in intranet applications
of Object technologies, and also provide project auditing ser-
vices aimed at venture capitalists who need to protect their
investments. Many of our systems have employed compact
Forth-like engines to implement run-time logic.

Computer Solutions, Ltd. (COMSOL to its friends) is Europe’s
premier supplier of embedded microprocessor development
tools. Users and developers for 18 years, COMSOL pioneered
Forth under operating systems, and developed the
groundbreaking chipFORTH hot/target environment. Our
consultancy projects range from single chip to one system
with 7000 linked processors. www.computer-solutions.co.uk.

Digalog Corp. (www.digalog.com) has supplied control and
instrumentation hardware and software products, systems, and
services for the automotive and aerospace testing industry for
over 20 years. The real-time software for these products is Forth
based. Digalog has offices in Ventura CA, Detroit MI, Chicago
IL, Richmond VA, and Brighton UK.

Forth Engineering has collected Forth experience since 1980.
! We now concentrate on research and evolution of the Forth
principle of programming and provide Holon, a new genera-
tion of Forth cross-development systems. Forth Engineering,
Meggen/Lucerne, Switzerland - http://www.holonforth.com.

FORTH, Inc. has provided high-performance software and ser-
vices for real-time applications since 1973. Today, companies in
banking, aerospace, and embedded systems use our powerful
Forth systems for Windows, DOS, Macs, and micro-controllers.
Current developments include token-based architectures, (e.g.,
Open Firmware, Europay’s Open Terminal Architecture), ad-
vanced cross-compilers, and industrial control systems.

The iTV Corporation is a vertically integrated computer com-
pany developing low-cost components and information ap-
pliances for the consumer marketplace. iTVc supports the
Forth development community. The iTVc processor instruc-
tion set is based on Forth primitives, and most development
tools, system, and application code are written in Forth.

Keycorp (www.keycorp.com.au) develops innovative hardware
and software solutions for electronic transactions and bank-
ing systems, and smart cards including GSM Subscriber Identi-
fication Modules (SIMs). Keycorp is also a leading developer of
\;nulti-application smart card operating systems such as the

Forth-based OSSCA and MULTOS.

www.kernelforth.com

An interactive programming environment for writing Win-
dows NT and Windows 95 kernel mode device drivers in Forth.

www.theforthsource.com

Silicon Composers (web site address www.silcomp.com) sells
single-board computers using the 16-bit RXT 2000 and the 32-
bit SC32 Forth chips for standalone, PC plug-in, and VME-
based operation. Each SBC comes with Forth development soft-
ware. Our SBCs are designed for use in embedded control, data
acquisition, and computation-intense control applications.

T-Recursive Technology specializes in contract development
of hardware and software for embedded microprocessor sys-
tems. From concept, through hardware design, prototyping,
and software implementation, “doing more with less” is our
goal. We also develop tools for the embedded marketplace
and, on occasion, special-purpose software where “small” and
“fast” are crucial.

Tateno Dennou, Inc. was founded in 1989, and is located in
Ome-city Tokyo. Our business is consulting, developing, and
reselling products by importing from the U.S.A. Our main
field is DSP and high-speed digital.

ASO Bldg., 5-955 Baigo, Ome, Tokyo 198-0063 Japan
+81-428-77-7000 » Fax: +81-428-77-7002
http://www.dsp-tdi.com e E-mail: sales@dsp-tdi.com

Taygeta Scientific Incorporated specializes in scientific soft-
ware: data analysis, distributed and parallel software design,
and signal processing. TSI also has expertise in embedded
systems, TCP/IP protocols and custom applications, WWW
and FTP services, and robotics. Taygeta Scientific Incoporated
* 1340 Munras Avenue, Suite 314 » Monterey, CA 93940 o
408-641-0645, fax 408-641-0647 http://www.taygeta.com

Triangle Digital Services Ltd.—Manufacturer of Industrial Em-
bedded Forth Computers, we offer solutions to low-power,
portable data logging, CAN and control applications.
Optimised performance, yet ever-increasing functionality of
our 16-bit TDS2020 computer and add-on boards offer versa-
tility. Exceptional hardware and software support to devel-
opers make us the choice of the professional.

Individual Benefactors

Everett E Carter, Jr.
Edward W, Falat
Michael Frain

Zvie Liberman
Marty McGowan
Gary S. Nemeth

Guy Grotke Marlin Ouverson
John D. Hall Richard C. Wagner
Guy Kelly

Forth Dimensions XX.1

35

Twentieth Anniversary of the
FORML Conference

Forth Interfaces
to the World”

November 20-22, 1998 ¢ Pacific Grove, California

FORML welcomes papers on a variety of Forth-related topics,even those which do not adhere strictly to the published
theme. Some theme-related topics of interest, and for which papers are particularly sought, include:

Overcoming the Limits to Growth Forth on New 32-bit Embedded Chips

Forth in “Foreign” Embedded Environments
(e.g., Windows CE, Inferno, pSOS, Vrtx)

Forth in a Windows World

Co-Existing with C
Forth and Rapid Application Development (RAD)
Forth and the Internet/Java

“20/20:Hindsightand Vision” is planned as a two-part evening panel.Part one will offer a look at Forth's history—
what worked well and what might have been done differently—and will feature participants who played key
roles in Forth's evolution; part two will evaluate Forth's current status and propose courses of action to lead
Forth into a stronger position in coming years.

Registration Information

SAVE UP TO 20%

Advanceregistration required. Complete registration
by October 15, 1998 to receive a ten percent discount.
FIG members are eligible for an additional ten percent

Inquiries about conference registration may be
directed to office@forth.org or to FORML Conference
Registration, c/o Forth Interest Group, 100 Dolores
Street, Suite 183, Carmel, California 93923.

discount on any registration fee. Conference attendee ir? double room $595
Non-conference guest in same room $435
Under 18 years old in same room $225
Conference attendee in single room $795

Infants under two years in same room—free

Conference Chairman: Marlin Ouverson - editor@forth.org
Conference Director: Robert Reiling - ami@best.com

The FORML Conference is held at the Asilomar Conference Center, a National Historic Landmark noted for its
wooded grounds just yards from Pacific Ocean dunes and tidepools on California’s Monterey Peninsula.Lodging
and all meals included with conference registration, and spouses and guests of conference participants can join
numerous recreational outings and activities. -

Please confirm your attendance early—accommodations may be limited due to this facility’simmense popularity.

: ‘ Call for Papers ‘

Please submit the subject of your paper as soon as E-mail submissions may be sent to editor@forth.org
possible in order to be included in pre-conference with”FORML paper”in the subject line. Hard copy may

publicity.Final titles with abstracts are due by October
1, 1998. Completed papers should be received by
November 1 in order to be included in the conference
notebooks that are distributed to all attendees.

be mailed to FORML Conference Chairman, c¢/o Forth
Interest Group, 100 Dolores Street, Suite 183, Carmel,
California 93923.

