

This issue of Forth Dimcnsions heralds the beginning of
the 20th year of the Forth Interest Group. For me, someone
who joined this legacy only in the last two years, this mile-

stone seems to signify many years of dedication and innova-
tion on behalf of the programmers and developers who use a
language that is used so reliably and silently around the world.

If you've been reading Office News regularly, you know
about some of the changes we've been making here at the
maill office. We may need to make more changes in the com-
ing months. We are acquiring new members at a greater rate
than we had been, however, if each member could invite sev-
eral friends to join the Forth Interest Group, we at the office
would be happy to send a complimentary issue of Forth Di-
mensions for their review. March is our major renewal time,
artd quite a few of you haven't yet renewed at press time.
Timely renewal is important to keep Forth Dimensions corn-
ing to you without interruption.

Cost-wise, we run the Forth Interest Group as lean as we
can. FIG is being kept alive by the kind donations of many.
Last year, FORTH, Inc. donated a new modem, and the print-
ing of 1000 membership brochures that we use to solicit new
members. Taygeta Scientific Inc. donates the space f o ~ the
forth.org web site and Brandon Yeager's time for system ad-
ministration of that site. Taygeta also provides Eddy I-Iamelin's
time to answer the phone, to take your orders, and to assist
me in any way I need.

This past year, with your donations, we've upgraded the
menlory on our computer. We had been running with only a
200 Mb hard drlve; we now have a 2 Gb external hard drive
and have added to the RAM. Our laser printer is beginning to
show quite a bit of wear (creaks and groans that don't sound
healthy seranade us each time we print); in all iikelihood we
wiIt need to buy a new one this year. If anyone would like to
donate a new laser printer to F[G, please contact us at the
main office. We are sincerely grateful to those inembers who
make generous contributions just because they want to. Your
extra donations are put to good use.

To be starting our 20th year Is quite an accomplishment.
The people who have contributed to Forth comprise an im-

This classic 1s no longer out of pr~nr! I
Poor Man's
Kalman Filtering
or, How I Stopped Worrying and
Learned to Love Matrix Inversion

by Roger M. du Plessis

61 9.95 plus shipping and
handling (2.75 for surface U.S.,
4.50 for surface international)

You can order in several ways:
can call our 24-hour message

e-mail: kalman@taygeta.com line at 408-641 -0647. For your
fax: 408-641 -0647 convenience, we accept Master-
voice: 408-64 1 -0645 Card and VISA.
mail: send your check or money order in U.S. dollars to:

Taygeta Scientlflc Inc. 1340 Munras Avenue, Ste. 314 Monterey, CA 93940

pressive list of talented, innovative, and
dedicated individuals. They gave life to this
organization, and gave you a place to begin
your knowledge of Forth or to enhance your
ability to use it. The question before us is
the one that will be explored at FOKML: how
does the Forth Interest Group change and
grow and continue to meet the needs of the
Forth community? We Iook forward to your
continuing support and partidpation! Hope
to see you at FORME.. .

Together we make the difference!

Cheers,

Trace Carter
Administrative Manager
Forth tnterest Group
100 Dolores Street, Suite 183
Carmel, CA 93923 USA
voice: 408-373-6784 fax: 408-3 73-2845
e-mail: ~ f f i c~ for th-org

Forth Dimensions XX.l

eForth for lava
6 by Michael Losh El Extending Forth's potential to reach into the on-line world, this high-level implerrlentation for the

Java Virtual Machine UVM) runs as a console-style applet which can be opened in a Java-enabled web
browser such as Netscape Navigator or Microsoft Internet Explorer, jeForth can open new opportuni-
ties for promoting and teaching Forth to a wide audience over the Internet.

Forth in Control: Temperature Monitoring
1 3 by Ken Merk El Temperature is one parameter of our environment which has an affect on a11 Iiving things. Even

machines perform differently through a range of temperatures. Many opportunities arise with the
need to measure temperature accurately and then perform certain tasks accordingly. This article cov-
ers how to interface a digital thermometer sensor chip to your computer's parallel port. The device
used is Dallas Semjconductor's DSI 620, which contains the sensor itself and a three-wire serial inter-
face inside an eight-pin DIP package.

LOAD" Module"
21 byDaveEdwards L I This article provides a method to organize programs into sections by using the first Iine of each

screen-the Iine usually left for comments-and thereby attain a far greater degree of flexibility and
control. The idea was developed to organize the loading of programs, but can even be used to imple-
ment, for instance, a simple help engine. The ability to use the data on the "header" line for struc-
tural information provides a surprising amount of functionality horn such a simple mechanism.

2 OFFICE NEWS 27 STRETCHING STANDARD FORTH
What's a Character?

4 EDITORIAL 31 FORTHWARE
Around the world Adaptive PID, part two

5 NEW PRODUCT ANNOUNCEMENT 34 FREEWARE
Transputer Forth, Mops

5 ANS FORTH UPDATE 34 OFF THE NET
A shot in the foot

24 STANDARD FORTH TOOL BELT
Local Macros 35 SPONSORS & BENEFACTORS

Forth Dimensions XX.l 3

Volume XX. hulnber 1
May 1998 J-ne

Ed~for
Marl~n Ouverson

In an editor's life, there is one constant: the search for good material to publish that will
satisfy the range of tastes evinced by a publication's readers. That's why you find me fre-
quently reminding you to write for us. I.Vt are actively setll;ittg new articles, announcements,
letters to the editor, and even an occasional columnist. Please consider sharing your thoughts
and experiences (and, yes, your code) with your fellow Forth users.

m e *

Change can be disconcerting, but it can also bring new opportunities. Over the years,
numerous discussions have taken place about the various resources of the world-wide Forth
community and about how better cooperation and coordination can provide additional le-
verage and greater opportunities for all concerned.

In that vein, below is an announcenlent from the leaders of the Forth Interest Group
and The Forth Institute. We are looking forward to the results of this new. Jn fact, the fjrst
tangible results will appear in these pages in the next issue-stay tuned, and let us (and our
authors) know your reactions.

-Marlin Ouversnn, Editor

"For several years, the Journal of forth Applications a ~ t d Research has been the pre-eminent
location for refereed papers on Forth technology and its application. Beginning with Vol-
ume VII of the Journal, JFAR has become electronic and can be found on the Web at
w. j fa r .org . Its new editor is Dr. Peter J. Knaggs, of the Bournemouth University in the
U.K. As an additional service to the Forth community, seIected refereed papers from JFAR
will now appear in a special section of each issue of Fnrth Dimensions. These papers will
represent both the currently electranicaIIy published volume and significant papers from
previous volumes.

"It is our hope that, through Forth Dimensions, these papers will find a new and larger
audience. By expanding Forth Dimensions to include a section for the hard copy publication
of peer-reviewed papers from !FAR, the Journal section of Forfh Dime~rsicr~rr can now provide
an important means of getting important papers about Forth (particularly from the aca-
demic community) widely disseminated.

"We hope yo11 will be inspired by these papers to explore your own work in detail, in
both Forth Dimensions and in JFAK."

Skip Cnrter Larry Forsley
President, FIG The Forth Ir~stitute

--

Would you like to brush up on your German and, at the same time, get first-
hand information about the activities of your Forth friends in Germany?

Become a member of the
German Forth Society

("Deutsche Forth-Gesellschaft") ..

80 DM (50 US-$) per yFar
or 32 DM (20 US-$) for students or retirees

Read about programs, projects, vendors, and our annual conventions in the
quarterly issues of Vierte Dimension. For more information, please contact:

Fred Behringer
Ptanegger Strasse 24
81 241 Muenchen
Germany

I E-mail: behringe@mathematik.tu-muenchen.de

Circulation/Clrder Desk
Trace Carter

FoffhDimenrionr welcomes editorial rna-
teria1,lettersto t he editor,andcomrnents
from its readers. No responsibility is as-
sumed for accuracy of submissions.

Subscription to Forth Dimensions i s in-
cfudedwith membership intheForth In-
retest Group at 545 per year (U.S.) 560
(internationa\).For membership,change
of address,and to submit items for pub-
lication, the address is:

Forth lnterest Group
700 Dolores Street, suite 183
Carmel, California 93423
Administrative oFfices
408-37-FORTH Rx: 408-37 3-2845 I
Copyright e 1998 by Forth lnterest
Group,lnc.The materialcontained in this
periodical (but not the code) is copy-
righted by the individual authors of the
articles and by Forth Interest Group,lnc.,
respectively. Any reproduction or useof
this periodical as it ir compiled or the
articles, except reproductions for non-
commercial purposes,withoutthe writ-
ten permission of Forth lnterest Group,
1nc.i~ a violation of the Copyright Laws.
Any code bearing a copyright notice,
however,can be used only with permis-
sion of the copyright holder.

The Forth lnterest Group
The Forth lnterest Group is the associa-
tion of programmers, managers, and
engineers who create practical, Forth-
based solutions to real-world needs.
FIG provides a climate of intellectual
exchange and benefits intended to as-
sist each of i ts members. Publications,
conferences, sernlnars, telecommuni-
cations,and area chapter meetings are
among i ts activities.

FORTH DIMENSIONS (ISSN 0884-0822)
is published bimonthly for $45/60 per
year by Forth Interest Group at 1340
Munras Avenue, Suite 314, Monterey
CA 93940. Periodicals postage rates
paid at Monterey CA and at additional

I
mailing offices.

POSTMASTER: Send address changes to
FORTH DIMENSIONS, 100Dolores Street,
Suite 183, Carmel CA 93923-8665.

4 Forth D~mensions XX.l

1 340 Mbyte Continuous Fast Storage for
I Pocket Data Logger Module

Victor, NY.-The TDS2020D is a Forth-based, pocket-dzed
dataIogger module which now provides continuous fast data
collection to PCMCIA cards, without. any break caused by

i transfer of data to hard disk or flash-ATA card. It will work
from a small battery for months, storing data on Windows-,

! DOS- or 0 5 J2-formatted cards.
Fast data-logging under interrupt into PCMCIA disks or

flash-ATA cards is achieved with a double data cache. One
cache is used for data collection under interrupt, while data

. in the other buffer is being transferred to the PCMCIA card
* by the foreground routine (or another task, if the multitasker

is installed). Data collection speeds of over 100,000 bytes per
second can be achieved.

High-level, ANS Forth data-logging programs provided can
' be used immediately, but ace customizable tor individual ap-
i plications. By taking several samples on each interrupt, data
] rates over 100,000 bytes of ten-bit A-to-D data per second

can be achieved. The rate at which data can be collected into
one half of the buffer is ultimately limited by the time needed
for the foreground program to push the alternate half of the
data to disk.

For use anywhere large amounts of portable data have to
be obtained, the TDS20ZOD stores data in PC-file format onto
PCMCIA cards for subsequent analysis on a PC.

Typical current for computer, adapter and hard disk is
350pA standby, 30mA operating. For example, 24 bytes of
digital, analog, and time information logged every minute
will cause the hard disk to power up for only five seconds
every two weeks.

Returning the PCMCIA disk frorn the field, the storage
device can be put into a PC's PCMCIA slot and, without any
special software, data can be copied to a PC file.

Saelig Company LLC
I I93 Moseley Road
Victor, NY 14564
7 16-425-3753; fax 7 16-425-383s
saelig@aoI.com www.saelig.com

I
I Excerpts fmm a letfer by the chair of the ANS Forth Ttrlmical
' Committee PC)-According to rules governing ANSI standards,

i four years after a standard is published, its TC must vote to
"reconsider, reaffirm, or withdraw" it. As ANS Forth was pub-
lished in 1994, this is the year. Note that if we fail to act, it
will be wjthdrawn for us
1. The TC shall get a letter ballot to vote to "reconsider" the

standard. if this fails, the other two cboices are to ''reaf-

I firm" or "withdraw," which would be a subject of a sec-
ond ballot in that case. I € it passes, we'll propose a first
meeting to coincide with the 20th FORML Conference at
Asilomar, California, on the weekend of Nav. 20-22 and a
second meeting to coincjde with the next Rochester Con-
ference (to be held somewhere other than Rochester).

2. If we vote to "reconsider," we will do so with an agenda
' limited to the following items: (a) Withdrawal of "obso-

I lescent words," @) Ratification of "clarifications" passed
since publication of the Standard, (c) Support for embed-
ded and ROMable systems, and (d) Support for interna-

l tionalization and extended character sets.
3. The above agenda may have additional topics added by a

2/3 vote of the membership.
4. People have requested consideration of additional topics,

such as graphics and multitasking. However, consistent
I

"common practice," or proposals reflective of existing 1 "common practice," reems to be in short supply. The cur-
rent SD-2 provides a mechanism for such issues: a "Tech-
nical Group" (TG), which is a sub-group of the TC given a
specific mission, whose product is n "Technical Report."
A TR doesn't have the official standing of a Standard ... but
can serve as a basis for implementations ... until the tech-
noIogy has matured sufficiently for a standard.

6. We propose to require that all proposals be submitted elec-
tronically, and meet Icwtainj criteria. ..

... The present annual fee far TC members and observers is
$300. There was a question of whether an additionaI $300
would be assessed for international representation; the rul-
ing is that, since we do not have an active I S 0 Liaison or work-
ing group, it is not applicable.

The $300 fee pays for a principIe a n d one alter-
nate Membership of TGs is not limited to TC members; how-
ever, TG members who aren't TC members must pay $3001yr.

Until our next meeting, you can become a full member by
voting in two successive letter balI~ts (your vote on the sec-
ond one counts). For this reason, I think it's a good idea to
submit letter ballots on the issues from the organizational
meeting. When we become active, it still takes two meetings,
although NCITS National Committee for Information Tech-
nology Standards, pronounced "insights"; forrnedy X3.j is
considering liberalizing this, since many groups meet infre-
quently (as we propose) ... You can lose your membership by
failing to pay your fees, by failing to respond to 80% of the
letter ballots in a calendar quarter, or by failing to attend three
successive meetings. Both the attendance and letter ballot
voting requirements apply; you may not skip meetings and
just vote electronically! There will be no IEEE fee waivers.

If you are not p~esently a TC member and wjsh to be in-
cluded in the letter ballots in order to become a member,
please notify me (erather@forth.com) and Greg Bailey
(greg@athena.com).

Membership is open to any person or organization who is
"materjally affected" by the subject matter my their own defi-
nition). I t is not limited to U.S. members, so long as we are
strictly an ANSI group A consultant who wishes to be a
member must not receive primary funding (e.g., >50oki) from
any voting member.

-Elizabeth Rather

Forth Dimensions XX.l

eForth for Java
, eForth for Java, or jeForth, is a high-level Java implementa-

; tion of eForth for the Java Virtual Machine UVM). It runs as a
I console-style applet which can be opened in a Java-enabled
1 web browser such as Netscape Navigator or Microsoft Internet

Explorer. This version of eForth has been extended to provide
features common in other Forth systems, such as FORGET,
CREATE ... MES.'., W ... M O P , and simulated B M l l K 110.

jeForth can open new opportunities for promoting and
teaching Forth to a wide audience over the Internet. The au-
thor intends to freeIy distribute this system, including its
source code, to non-commercial users and organizations such
as the Forth Interest Group.

1 Purpose
I Another Forth written in Java? Yes, and I think this ver-

I
sion is substantially different and useful in its intended niche.
Starting back in 1995 with the introduction of Java technol-
ogy, my vision was to create a sirnpIe Forth to demonstrate
and promote over the Internet. The popular web browsers
support Java applets, so it occurred to me that many people
could easily try a "live" Forth on the Internet i f it is built
from Java. Furthermore, a Forth appIet can be surrounded
with and linked to tutorial texts, making it easy for a student
of Forth to experiment while referring to lessons online. Low-
ered hurdles to learning about Forth may help revive wide-
spread interest in our favorite language and development tool!

A secondary and more personal purpose for this project
was to Iearn more about Java. I have several years of experi-
ence with C++, and learned that Java is another object-ori-
ented language with similar syntax and flavor. At least from
an academic point of view, I liked some Java features that

I make it easier a t d more reliable to use than C+t, but I knew
that 1 would not truly understand its benefits and limitations
unless I did a substantial project with it. And like many Forth
enthusiasts, 1 could not resist the urge to implement Forth

I on an emerging platform. So a Forth applet in Java seemed
I like a fun and worthwhile exercise. I t has been, a11 in all, but

Java's security restrictions and problems with early Java tools (have made design and developnlsnt Less joyful than 1 had
I hoped.
: A third possible purpose for a Java-based Forth is as a gen-

eral internetlintranet application development language. The
current version of jeForth is too limited for serious intern&
application development, lacking such services as HTTP GET , and PUT requests, HTML forms processing, Java Bean inte-
gration, Java Database Connectivity, and Reinote Method In-
vocation. I am planning another Forth, more suitable for com-
mercial internet purposes, which may include the features / listed above and others that web developers would want. Such i a commercial package will have a different name and license

restrictions. But for non-commercial uses, jeForth is released
as an open system, so you can improve and extend it as you
wish.

Approach
I considered various Forth models, including some writ-

ten in C since Java is very similar to it. But the C-based Forth
systems are fairly large and I do not have much experience
with them, eForth is small and I understand it well, so I chose
it to be the foundation. The initial eForth model was imple-
mented for the 8086 processor family by Bill Muench and Dr.
C.H. Ting using the MASM macro assembler. Other imple-
rr~entations for various platforms have since been developed,
some using MASM with additional macros or hand assembly
of the cross-platform portions, some in other languages.
eForth has a small number of kernel words in native code,
then provides the rest of the Forth environment as high-level
"coIonN words.

MASM source is not a good match for Java, so I ended up
using Java to develop something between a cross-compiler
and a Forth metacompiler, which is described below. The
MASM source was ported to this special syntax. The result is
not very elegant, but it works. When you open the jeFororth
applet, it takes a moment to actua1Iy build the high-Ievel Forth
words in memory using these metacornpiling routines.

When running, jeForth is mostly in this high-level Forth.
The kernel words and Forth VM are implemented in high-
level Java code, which itself runs on the Java VM, whose vir-
tual machine instruction bytecodes are interpreted (like Forth's
inner interpreter) or compiled into native code, possibIy with
a "Just-In-Time" compiler. These multiple software layers in-
hibit performance, b t ~ t should suffice for demonstration and
training purposes. Furthermore, by providing most of the
Forth system as colon definitions, a student can more easily
get "under the hood" to understand how Forth systems are
designed and operate.

eFortR Virtual Machine
Tile eForth V M js a set of Java data structures and routines

(methods in Java-speak) organized into the Fo r t hMachine
class. The ePorth memory is 65536 words of 32 bits each,
plus another 8192 words for BLOCK 110 buffers, stored in an
array of Java 32-bit integers named "m." To simplify porting,
the memory organization was kept very close to the original
eForth except for the USER variables, which are stored in low
memory. A11 eForth data, including parameter and return
stacks, code, name dictionary entries, and user variables are
located in m. Figure One shows a memory map.

Forth usually assumes fairly free access to all memory; Java
does not. In the name of security and program robustness,

6 Forth Dimensions XX.1

0x000 1 0000
Unused

OxOOOOFFOO
Ox0000FEF8

Free Space

- 7 . ..

OxOOOOOC99

0x00000lS0

i Figure one. Memory map
I

user-debned

he-defined

User Va~iables

EM
RPO

TIB
SPO

BSSP
NAMEE

CP

CODEE

] Java does not offer pointers like C and C+t . Mark Roulo did a

i good job describing these issues jn his article on Misty Beach
Forth in the November/December 1997 issue of Forth Dimen-

j sions. From what t read, he used a more sophisticated approach
usmg multipIe data types and Java references. I simply allo- 1 cate a big array and use indices as pointers. After all, what

1 more is a "reaI" memory address than an index to a RAM 1 location? My approach war easy to use, but undoubtedly sac-
' rifices speed.

I also sacrifice some space, because this Forth does not 1 address bytes! Each eight-bit character is stored in a 32-bit
cell. Of course, this scheme wastes 75% of its bi ts, but it greatly
sirrlplifies the V M to have everything treated as 32-bit cells.

, Java strings can be converted to the 32-bit characters easily,
as needed, using the routines ForthMachine. s t r l i t and

! ForthMachine .ma k e S tring. The consistency of cells allowed
: me to optimize away some of the alignment instructions, as
i
I well as replacing CELL+ and CELL- with fast 1+ and 1 - primi-
' tives. CELL+ and CELL- can still be used by applications, of
I course. The current version uses 284 1 cells (1 1,364 bytes) for
I code tokens, and 2155 celIs (8632 bytes) for the Name Dic-

tionary, so the actuaI waste is not excessive, considering that
platforms running Java typically have far more memory than
this. The lack of byte addressing may put off some people
but, in a way, addressing eight-bit bytes i s somewhat archaic
in this day and age of cheap and plentiful 32-bit processors.
jeForth proves that Forth (or any programming system) does
not need byte addressing,

I

Forth Dimensions XX.1

jePorth supports token threading. The eForth kernel is a
small set of primitive words that are implemented in native
code, which jn thjs case is high-level Java Development Ki t
UDK) 1.0 code and Application Programming Interface (API)
calls. The 32-bit integer tokens for these primitive routines
have bit 1 7 set (0x00020000). High-level words, such as co-
lon words, use their code "addressN (array index in rn) as a
token. Note that all valid code addresses will be smaller than
the value implied by the prjmi tive bit. During execution of
Forth words, the inner interpreter (found in the function
ForthMachine. run of the ForthMachine object class, shown
below) gets the next instruction token. If the token is a prirni-
tive routine, the function ForthMachine . doprim is called.
This function is really a large CASE Structure with the Java
instructions for each primitive. Otherwise, if the token indi-
cates a high-Ievel word, the inner interpreter nests into that
routine, first saving a return address on the return stack. To-
ken threading works well for a virtual machine implemented
in a high-level language. A few of the eForth kernel words
had to be redesigned, because they assume direct threading
and direct execution of native CPU instructions.

[See Listity One]
A few primitives were added to the kernel: rlM* and uM/

MOD for math, ~t and 1- for fast increments and decrements,
P ICK and DEPTH for working with the stack, a few diagnostic
control routines, a primitive to set up the USER variables area,
and BLOCK 110 primitives for reading and writing the BLOCK
file. Some of these were required by the eForth VM; others
were added for performance or feature improvements.

The eForth Name Dictionary was implemented in a way
very similar to other eForth systems, but the name length
and special flags are stored in a 32-bit cell instead of a single
byte, and each character of a word's name is stored in a sepa-
rate 32-bit cell.

Metacompiler
Porting to Java, I had to replace some of the functionality

of MASM. In some ways, I went beyond what MASM does. I
defined ForthMachlne .header to set up a header in the name
area of the dictionary. ForthMachine. p r i m i t i v e is a spe-
cial routine to set up a special header for a primitive word.
There are routines to mark words as IMMEDIATE or COMPILE-
orJLY. For putting code and data of different kinds into the
code area of the dictionary, I made ForthMachine . code and
Forth~achine . literal. I had to implement dictionary
searching for Fort hMachine . ca 11 so I could compile calls
to other high-level Forth words. The Java dictionary search-
ing functions are only used for building the jeForth dictio-
nary and code image at initialization, not for later colon-com-
piling the user's words.

To metacornpile control, structures, I implemented several
Java routines with names like Fa rthMachine . cornpIF, and
ForthMachine .compTHEN. Here I departed quite a bit from
the MASM coding style because jt would be difficult to impIe-
ment MASM-like labels for branch targets. I went with the
Forth approach instead! Here is a sample of the metacornpiler
"code" for the high level word FORGET [see Listing Two].

A few of the more complex eForth words were a little diffi-
cuk to convert to this style, but the "eForth in Forth" Listing
published by Dr. Ting in the eForth Implementatior~ Grdide helped,
as did a temporary tool I built to display a word's raw code.

Listing One

p u b l i c void r u n ()

I
try
I

/ / I n n e r i n t e r p r e t e r l oop
while {!bGonel
I

try
I

i n t inst = rn[ip++] ; / / Read c u r r e n t i n s t r u c t i o n ,
/ / advance instr. pointer

if ((m[TRACING] & SHOWING) ! = 0)
I

i n f o r m (inst) ; / / Report state if tracing
1
I£ (inst > PRIMITIVE) / / Check for primitive bit
I

/ / Strip o f f primitive i n s t r u c t i o n b i t ,
/ / execute primitive
d o P r i m (i n s t - PRIMITIVE) ;

1
else / / Nest into c o l o n word
t

rp--;
m[rpl = i p ; / / save i p f o r r e t u r n
i p s inst; / / " i n s t " is word's address

1
1
catch (A r r a y Index0utOfBoundsException e)

I
app.print(" address");
/ / D u p l i c a t e F o r t h THROW
rp = m[HANDL] ;
rn! HANDL] = m[rp] ;
rp++;
sp = d xpl ;
rp++;
POP 0 ;
push (NULLSTR) ; / / b l a n k error string
doPrim(EXIT1 ;

1
} / / e n d while

1
catch(T0Exception e)

I
app.showStatus("Runtime Exception: " 3 e.toString0);
return;

1

public void doPrim(int inst) throws 1 0 ~ x c e ~ t ' i i o n

I 1
int a, b, c, i, n; / / temporary integers
char ch; / / temporary character

switch (inst)
I

/ / BYE (--) E x i t e F o r t h .
case BYE: bGone = true; break;

I

8 Forth Dimensions XX.l

/ / ?RX { - - c T I F)
/ / R e t u r n input character and true, or a f a l s e if no input.
case QRX :

yield () ;

if (keys0 > 0)
I

push (dequeueKey {)) ;

push (TRUE) ;
1
else
I

push {FALSE) ;
1
break;

/ / T X ! (C - - j

/ / Send character c to the o u t p u t device.
case TXSTO :

c h = (char) (pop 0 6 2 5 5) ;
app.emitChar (ch) ;
y i e l d () ;
break;

/ / !I0 ! -- 1 Initialize the serial I/O devices.
case S T O I O : break;

/ doLIT (-- w) Push an inline literal.
/ / i p points to i n l i n e value,
/ / push it on stack and advance ip
case W L I T : push (M ip++J) ; break;

/ / EXIT (--) T e r m i n a t e a colon d e f i n i t i o n .
/ / resume instruction a t saved address
case EXIT: ip = m[rp] ; rp++; break;

/ / EXECUTE (ca -- 1 Execute t he word at ca.
case EXECU:

rp--;
ml rp1 = i p ; / / save current ip
i = pope;
if (i > P R I M I T I V E)

I
/ / Execute Primitive
doprim (i - PRIMITIVE) ;

1
else
{ / / p o i n t to new code so it will execute next

i p = i;
1
break;

rrhe rest is omitted.)

Forth Dimensions XX.1 9

10 Forth Dimensions XX.l

Listing Two

/ FORGET (" name" --)

/ / Forgets a l l t h e recent words back tc and including
/ / t h e named word i n t h e CURRENT vocabulary.

I header (" FORGET" 1 ; literal (3 2) ; call ("WORD") ;
literal (CP.RNT) ; code (AT) ;
c a l l (" f i n d ") ; code(D1JPP) ;

complF () ;
code (SWAP) ; llteral (CP) ;
code (STORE) ;

I
code lDEC) ; / / <-- opt f cr CELL-
code (A T) ; code (DUPP) ;
l i t e r a l (LAST) ; code (STORE) ;
/ / opt below for: 2 CELLS -
cadeIDEC): codeIDEC);
llteral (NP) ; code (STORE) ;
c a l l OVERT'^) ;

cornpELSE () ;
code (DP.GP) ; code (DROP) ;
llteral(-l) ; c a l l ("abort\"" 1 ;

i s t r l l t ("which ") ;
cornpTHE~ () ;

cuds (EXIT) ;

'ro help teach new Forth programmers about
BLOCK storage, I implemented a "simulated"
5 M C . K wordset. The simulation comes from the
fact that your changes to any block are not per-
manent: once you leave or restart the applet, the
BLOCKS revert to whatever source code is defined
in its web page. This rather significant limita-
tion comes fromlava's inherent security philoso-
phy, sometimes called the {ava sandbox.
Untrusted Java applets are not allowed to read
or write to any local fiIes on the client conlputer
and cannot access other potentialIy sellsitive re-
sources, such as the system clipboard. The only
way to load or save information is to use the
applet's server. Since I did not want to get into
seriol~s server-side deveIopment at this time, 1
have left it out. In the initial release of jeForth,
up to ten source blocks can be defined in the
hosting web page's applet section, using PARAM
tags. For example, here is a section of the HTML
web page demonstrating release 1.00 of jeForth
[see Listing Three].

During the appiet initialization, this code will L
be read into a large character array that repre-
sents the user's BLOCK file. The user can then

Console and 110
The jeForth applet cIass provides a simple console-style

view the current INDEX, LIST individual BLOCKS, LOAD them,
and edit them using most of the Starting Forth's "Find - Put" r , user interface that can be opened in a web browser. In its line-editing commands. The fact that permanent copies of

current form, it presents a ZU row by 72 column display with
a simple underline cursor. You may type Forth commands

I and use the backspace key, but other cursor movement keys
are not (yet) supported. The display will automatically scroll
up as needed.

The Forth VM and the console communicate through two

l circular queues stored in the ForthMachine object: one for
keyboard characters, and one for display characters. Smce the
eForth Vh4 and the console run under different Java threads,
the queues provide a synchronized interface between them.

8 The current console is not very fast, but optimizations have

your Forth code changes cannot be made i s not crippling for
a demonstration and teaching environment, but is unfortu-
nate. If jeForth can send GET and PUT (or POST) W'ITP re-
quests, then the server could store the user's BLOCKS. I hope
this can be attempted in the future.

In the example HTML for jeForth, you will notice the pa-
rameter tag with a name of "boot." Once jePorth reads its
BLOCK parameter statements, it wilI load and execute any boot
string you provide. This aIIows the web page to be self-boot-
ing into your application. The block and boot parameter tags
give a web developer a means to build a rudimentary but fully

1 been made to avoid some of the interactive web site. Also
window repainting. The overall note that placing single or

) effect of using the console is like
working with a Forth system
over a serial link at a modest
baud rate. The overall architec-
lure is shown In Figure Two.

1
eForth Extensions

As a demonstration and
teach ing system, I wanted

Keys Key Events
4 I

jeFotth console
object (extends
Java Applet)

, missing from regular eForth but C ~ V Graphics Output coded character-in this
jeForth to have many features

Keystroke
Buffer

ForthMachine
object

I

Java
Enabled
Web

,

doubIe quotation marks in
the tag source statements is
tricky. In HTML, you can 1
place single quotes in a
double-quoted string, and
vice versa, but it is difficult
to do both. In the line with

T I .I

Output
C baracter

, Buffer

comrnon to other Forth sys- case, the single quote.

"block1 . I " name, you can see
a "'" this is HTML's way

terns. 1 wanted the system to be compatible with Leo Llrdie's
excellent introductory book Srarting Forth. To achieve these
goals, I have added several features to the eForth foundation.
Compliance with American NationaI Standard (ANS) Forth
would also be nice, but it has not been a priority for me.
Wonyong Koh hds deveIoped a variation of eForth called
hForth, for 13086 and other processors, that is ANS compli-

i ant; perhaps some of that system can be incorporated into
]?Forth at a Iater date.

of inserting a specific JSO-en-

Some other obvious additions to eForth were DO ,. . LOOP
and CREATE . . . DOES> words. DO and Loo F have been Forth's
traditional indexed looping words. Like Frank Sergeant's
Pygmy Forth, eForth offers the simpler FOR and NEXT Eor in-
dexed looping, based on the influence of Chuck h.ioorels
cmForth. But I thought that providing the w ... LOOP words
is important for a teaching system. Examples from Starting
Forth and other tutorials using w ... mop now work in jeForch.

Regular eForth provides the CREATE word for defining

1 Listing Three I
I

<param name=blockl value=""> 1 ipararn name-block1 . 0 value=' (Chap te r 1, " Fundamental Forth1')

I Cparam name=blockl.l value='(Sample F o r t h f r o m Leo Brodie&t39;s "Starting
: <param name=blockl.2
I <param name=blockl.3
cparam narne=blockl. 4
(param narne=blockl.5
<param name=blockl.6
<param name-blockl.7
<param name=blockl.8
iparam name=blozkl - 9
<patarn name=blockl.lO
cparam narne=blockl.ll
<param name=blockl.l2
<param narne=blockl.l3

, <param narne=blockl.l4 I <param name=blockl.l5

valu2="
value=" (
v a l u e = " :
value=" :
value=" :
value=" :
value=" :
va lue=" :
va Lue="
value=' :
v ~ ~ u E = " :
value=" :
value-" :
value="

LARGE LETTER-F 1
STAR 4 2 EMIT ;
S T A R S 1 - F O K STAR N E X T ;
MARGIN CR 3 0 SPACES ;
B L I P MARGIN STAR :
BAR MARGIN 5 STARS ;
F BAR BLIP BAR BLIP BLIP CR ;

GREET ." Hello, I speak Forth " ;

FOUR-MORE 4 + ;
S I D E S STAR SPACES STAR ;
N O T H I N G (do n o t h i n g 1 ;

I <par am name-boat value="CR 1 10 INDEX",

' >
Forth" book) '>

" >
" :,
" >
" >
" >
" >
" >
" >
" >
'>

Ib >
" >
" >
" >

I

I named areas in memory, but does not provide the w ~ s > corn-

1 n~and to associate special run-t imr behaviot with the name.
Since extensibility and defining words are important concepts

: for students of Forth, I added wEs> to jeForth.
Another coil~mand conspicuous in its absence from eForth

is FORGET, used to remove recent words from the dictionary.
I have added it to jeForth, but it only searches the CURRENT
vocabulary. I have not added any of the common vocabulary
creation and management words, but these words can be
added later.

Experienced programmers can see in their minds what is 1 going on in the Forth VM in terms of stack operations, rub-

i routine nesting, and so on. If less experienced users of Forth
can actually see these actions, they too will quickly learn to

I visualize them. To provide this visibility, 1 have added two
words: TR4CE and STEP. TRACE looks up the name of the word
following it, then executes that word showing a display of
the important VM parameters between each token execution.

and the current instruction pointer and the name of the to-
k e ~ ~ to which it points. If there is more than one item on the
para mete^ stack, up to three more items in each stack are
shown along with the depths of the stacks. STEP does the
same thing, bu t waits for a user keystroke between each to-
ken execution. Either will revert to "quiet" execution if the
user presses the escape key. Here is a sample output from ap-
plying TRACE to execution of the word PAD [see Listing Four].

Another frustrating area for new Forth programnlers is
memory access, since it is so easy to get stack arguments in
the wrong order or otherwise use an invalid address. For bet-
ter performance and flexibility, typical Forth systems do not
try to detect this situation and will crash when a bad address
is used. I have used a free feature of Java to detect and warn
the user of the problem. Java "throws" exceptions which can
be "caught" ina nested way in Java source code,

One type of exception is for "invalid array index." The
inner interpreter code (see above) catches this exception, then

/ The display includes the top stack item, top return stack item,] executes the equivalent to the eForth THROW code, printing

I
I Listing Four
!
' TRACE PAD[e n t e r]
, s t a c k : --- return: 2245 ip: 2245 : PAD

I stack: --- stack: ---
stack: 34
stack: 3225

! s t a c k : 3 2 2 5
, stack: 8 0

(2
stack: 80
(2)
s t a c k : 0

(2)
s t ack : 3305

, stack: 3305

return:
return :
return:
return:
return :
return :
3 2 2 5 (10)
return:
3225 (10)
re t u r n :
3305 (1 0)
r e t u r n :
r e t u r n :

i p :
i p :
ip :
i p :
ip :
ip:
2258
i p :
2 2 4 5
i p :
2 2 4 5
i p :
1p :

718 : H E R E
714 ;;LIT
716 , @
717 E X I T
719 doL1T
7 2 1 : t

515 EXIT
722 EXIT ok

1
an error message and restoring the stacks.
The impact of this feature is negligible on
performance because Java will d o these
checks anyway, so we might as well take
advantage of i t . The user sees an "address
?" warning when executing something like
"- 1 @ ", or something that seems perfectly
reasonablelike" ' SWAP 20 DUMP".BY
the way, the DUMP example fails because
SWAP is a kernel primitive and its token is
not a valid address. The code for SWAP is
written in the doprim () function, which
is completely outside the memory "view-
able" from jeForth execution. To see the
code for D U P , look at the Java source code!

Forth Dimensions XX. l 11

~ o r t h in Control: ------I
I I Temperature Monitoring

Forth Dimensions XX.l 13

!

! Temperature is one parameter of our environment which
has an affect on all living things. We turn up the furnace
when we are cold, and switch on the air conditioner in the
heat of the summer. Farmers with fruit orchards and cran-
berry fields watch out for early frost cortditions which can
decrease their crop yield. Factories closely monitor their pro-
CeSS C O ~ ~ I O ~ to ensure the quality of their product 1s consis-
tent. Machines even perform differently through a range of
temperatures. The ignition timing and fuel delivery of your
car changes from a cold start to a warmed up engine. Many
opportunities arise where there is a need to measure tempera-

: ture accurately and then perform certain tasks accordingly.
; In this articIe, we will cover how to interface a digital ther-

mometer sensor chip to your computer's paralleL port. The
: device we are using is Dallas Semiconductorrs DS1620, which

contains the sensor itself and a three-wire serial interface in-
side an eight-pin DIP package. The sensor measures tempera-
tures from -55 degrees to +I25 degrees Celsius in .5 degree
increments. This works out to -67 degrees to +257 degrees

; Fahrenheit in .9 degree increments. Tetnperature is read from
I the synchronous serial interface as a nine-bit value. From 0
I to 70 degrees Celsius, thermometer error is k.5 degrees in-
! creasing to +2 degrees at the temperature litnit extremes. The

sensor is factory set and requires no calibration. The chip has
two modes of operation:
1. Three-wirr theri~lo~neter mode, which communicates

ambient temperature data to your computer.
2. Standalone thermostat mode, which needs no computer

interface.
I

) Upper and lower temperature values are programmed into
I the chip's TH and TL nonvolatile EEPROM register memory.

The chip has three pins dedicated to alarm outputs, which
are active in both modes. T-HIGH goes high when the tem-
perature is greater than the value stored in the TH register. T- I LOW goes hiah when the temperature is leS5 than the value
in the 1 . ~ register. The T-COM pin goes high when the tern- I perature is greater than TH and stays high until the tempera- 1 ture falls below that of TL. Ln this way, any amount of h~sfer-

i psis can be obtained.
When designing a threshold detector circuit, it is good

/ practice to incorporate hysteresis into the trigger point. If you
don't, as the temperature slowly approaches the single trii'
ger point, and passes through, it will flutter just below pnd
just above, causing output "chatter."

To solve this chatter problem, we make two trigger thresh-
, olds, T-HIGH which will turn on the output, and T-LOW which

will turn off the outpu~. The difference between these two
thresholds is the hysteresis. As an exa~nple, when you set your
furnace control to 70 degrees, the furnace will run until it

hits 72 degrees and will stay off untiI the temperature drops
to 68 degrees. This keeps your furnace from cycling off and
on around 70 degrees.

We will use Forth (F-PC) to control the interface hardware
through the parallel printer port. [Listing begins on page
1 7.1 AII to and from the DS1620 sensor will be
buffered by the 74LS3g chip, This interface will have the ca-
pability to program all EEPROM memory locations in the
DS1620 chip for custom configurations and standalone op-
eration.

Pin # I of the chip is the bi-directjonal data line (DQ). Data
is read to and from the chip via this pin. Data over the inter-
face is communicated LSB first.

Pin #2 is the clock input to which the data is spchro-
nized, The clock transitions are used to determine when to
read or send data. A clock cycle is a sequence of a falling edge
followed by a rising edge. 'rhe data line goes to a hjgh imp&
ante state while the clock is high.

Pin #3 is the Reset input line. All data transfers are initi-
ated by driving the RST lirle high. Driving the line [ow termi-
nates communications by forcing the data line into a high
impedance mode.

Power (5 volts) is applied to pin #8 (vcc) and Grid to pin #4.
pin #5 is the High/Low combination trigger output. It goes

high when the temperature exceeds TH, and resets to low
when temperature falls below TL.

Pin #6 is the Low temperature trigger output. It goes high
when the temperature falls below TL.

Pin #7 is the High temperature trigger output. It goes high
when the temperature exceeds TH.

Data sheets for the DS1620 can be downloaded from Dal-
las Semiconductor's web site (http://www.dalsemi.com)

ThreeWireThermometer Mode
Build up the circuit as per schematic [page 151. A nine-

volt battery or an AC power adapter can be used for the power
supply. Use an IC socket to hold the DS1620 chip, so it can
be easily removed after programming. Because this is a syn-
chronous serial link, we must remember to keep the cable
between the computer and circuit board as short as possible.
WE are using the edges of the clock line as a sync signal for
transmitting and receiving data. Extra long lines pick up noise,
introduce crosstalk between wires, and increase line capaci-
tance, which can cause data to be corrupted.

plug the DB25 connector into your parallel printer port
and power up the board. Run F-PC and, a t the "ok" prompt,
type F ~ A D DS 162 0 . SEQ. If no erroIs are encountered, type

TEMP. A simple display will appear which will continu-
ously show ambient temperature. To verify correct operation

14 Forth Dimensions XX.1

Table One. DS1620 nine-bit tem~/data

D a
+I25 0 0 0 0 0 0 0 0 l l l l l o l o 00250 00 M
+25 0 0 0 0 0 0 0 0 O O l l O O l O 00 SO 00 32
+6.5 0 0 0 0 0 o o o oooOOOo1 00 01 00 01.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 00 00 00
-0.5 O O O O O O O I 11111111 01255 01. FF
-25 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 01 206 01 CE
-5 5 O O O O O O O 1 1 O O 1 O O 1 O 01146 01 92

Sign byte* Temp byte
Only the low bit of the sign byte is used,

the other seven bits are zeros.

TableTwo-Configuration register map

a 0 = continuous conversions
I = 1-shot conversion

1 CPU 0 = standalone mode
1 = three-wire mode

2 X Don't care
Don't care

4 X TL Don't care
0 =Temp >TL
I = Temp < TL

TH O=Ternp < T H
1 =Temp 2TH

Done 0 = conversion in progress
I = conversion done

.

room temperature. Force the temperature trigger points by
heating and cooling the chip, and watch the output LEDs
change accordingly. Type SHOW. PARAM to see the tempera-
ture limit flags. They hottl (bit 5 and 6) should be high, indi-
cating that the values were exceeded.

C O N F I G ---> 0 1 1 0 0 0 0 0

To enable the standalone mode, type STAND. ALONE. The
chip is now ready to be embedded into your custom tern-
perature control application using the standalone circuit as
per schematic Ipage 161.

place your finger on the DS1620 chip, which should cause
the temperature reading to slowly increase. (A hair dryer wiIl
cause a faster response.) Place a cold object on the chip to see
the temperature readjng drop. All temperature readings should
change in .5 degree increments. Press any key to exit.

The DS1620 is continuously performing temperature con-
versions and storing the results in a holding register. We read
the contents of the register to update our temperature dis-
play. To access the reglster we send a "Read Temperature"
command byte (AA Hex) over the seriaI link. The next six-
teen clock cycles will output the contents of this register. The

I temperature is coded in a two-byte format. The most-signifi-
!

!

I

cant byte holds the sign bit, and the least-significant byte
holds the value of the actual temperature. If the sign bit is
high, the temperature j s negative and the actual temperature
value is in two's complement form. If the sign bit is low, the
temperature is positive and the actual temperature value is
contained in the leas t-significant byte.

Temperature data can be logged and stored in a file for
future reference, or certain tasks can selected depending on
temperature values. [Table One]

Standalone Mode
In the standalone mode, the DS1620 contjnuously does

temperature conversions and compares them to the pre-pro-
grammed threshold valuer. In this configuration, the chip
can monitor temperatures on its own and drive control re-
lays or alar~n circuits directly. A computer could poll these
outputs, if all you need is a temperature limit detector. Even
if your computer misses an alarm output, the DSl 620 has a

: set of Terneratures HighlLow flags which remember if a tern-
perature threshold has ever been exceeded. The flags will re-
main high until reset by writing a zero into this location or
by removing power from the device. This feature provides a
method of determining whether the DS1620 has ever been
subjected to temperatures above threshold limits. These two
flags are mapped as bits 5 and 6 in the configuration register,
[Table Two]

To configure the chip for standalone operation, we must
first program the T-low and T-high values into the chip, and
then enable the standalone mode.

To program the Threshold registers, we need a sign byte
and a temperature value byte on the stack, then type

/ WP.ITL. TH or WF.ITE. TL. AS an example, if we wanted to pro-
! gram T-high with +25.5 degrees, the sign byte would be 00

and the temp value byte would be (ZS.5 * 2) = 51 (33 Hex).
I

00 5 1 WRITE.TH

If we wanted to program T-low wjth -25.0 degrees, the
sign byte would be 01, and the temp value byte would be (2'5
* 2) = 50, then invert and add 1 ---> 206 (CE Hex).

, 01 206 HRITE.TL
I

TO verify your values, type SHOW. P A M to display the thresh-
old temperatures:

T-HIGH ---> 2 5 . 5
T-LOW - - -> - 25 .0

t Program T-low and T-high a few degrees above and below

Three-Wire Mode

Forth Dimensions XX. l 15

1 Standalone Mode I

(eForth for Java, from page 12)

of the license. ..
Please watch the Usenet newsgroup comp.lang.forth for

future announcements on jeForth and any FIG-sponsdred
projects. I am available via e-mail at rnlosh@tir.com for ques-
tions or comments.

Future Directions
(but not a concIusion)

The current version of jeForth demonstrates that Java pro-
vides a good platform for demonstrating Forth on the Internet.
I hope that the Forth community will recognize the opportu-
nity to promote Forth through Java. Furthermore, I hope the
Forth Interest Group will organize a project to develop a com-

pelling web site with a great tutorial for the jeForth applet. 1
am willjng to guide such a project, but I would like the ideas
and the expertise of others. Please contribute your time and
talent to this endeavor!

Michael A. Losh has been a Forth enthusiast since stumbling upon
Leo Brodie's books in a physics laboratory in 1990.Currently he is a
Microsoft CertifiedTrainerfor Windows programming with the Win32
API,Visual C++, and MFC, and is the director of software consulting
at American Systems Technology, Inc. (www.arnsystech.com), a
Microsoft Solutions Provider and Microsoft Authorized Technical
Education Center near Detroit, Michigan.

. .-

Forth Dimensions XX.l

: PORT.INIT (--) 0 5 WRITE ; \ C L K = l RST=O DIR=1

: DELAY (- 1 M S ; \ crea te 1 MS d e l a y

\ To check t h e accuracy of t h e M S t i m e delay which can vary w i t h computer
\ speed, t y p e TIMER 2000 MS and check t h a t t h e time delay is 2 seconds.
\ A d j u s t by changing the variable FUDGE accordingly.

: PULSE.CLK (--)

CLK M W
DELAY
CLK HIGH
DELAY ;

\ CLK=O
\ 1 MS delay
\ CLK=l
\ 3. MS de lay

: 1NVERT.BYTE (b l - - b2) $FF XOR ;

: 1NVERT.WORD (ul -- u2) SFFFF XOR ;

: URITE.BYTE i b - -)
1 =: MASK
INVERT. BYTE
DIRECTION LOW \ write direction
8 0 DO dup MASK AND O= \ send e i g h t bits

IF DQ.LOW PULSE.CLK
ELSE DQ.HIGH PULSE .CLK
THEN MASK 2* !> MASK \ shift left

LOOP drop ;

: READ.BYTE (- - b)
0 =: TEMP
DIRECTION H I G H \ read d i r e c t i o n
8 0 W \ read e i g h t bits

CLK LOW DELAY
DQ.HIGH?
CLK HIGH DELAY
TEMP 2 / !> TEMP \ shift r i g h t
IF TEMP 128 OR !> TEMP THEN

LOOP
TEMP
1NVERT.BYTE ;

: READ.WORD (- - U l

0 =: TEMP
D I R E C T I O N H I G H \ read d i r e c t i o n
16 0 DO \ read sixteen bits

CLK LOW DELAY * \

DQ. HIGH?
CLK HIGH DELAY
TEMP UZ/ ! > TEMP \ s h i f t r i g h t
I F TEMP 32768 O R !> TEMP THEN

LOOP
TEMP
INVERT. WORD ;

: WRITE. TH (b l b2 --) \ write T-High reg
RST HIGH

-

Forth Dimensions XX.1

FORTH INTEREST GROUP MAIL ORDER FORM
HOW TO ORDER: Complete form on back page and send with payment to the Forth Interest Group. All items
have one price. Enter price on order form and calculate shipping & handling based on location and total.

A volume consists of the six issues from the volume year may-April).

Volume 1 Forth Dimensions (1 97W0) 101 -$35

Introduction to FIG, threaded code, TO variables, fig-Forth.

Volume 6 Forth Dimensions (1 984-85) 1 06 - $35

lnteractiveeditors,anonymousvariables, list handlin integer
solutions, control structures, debu gin t e c h ues,
recursion, semaphores, slrnple i q worjs, #uioksort,Rgh-
level packet cornrnunicatlons, Chlna FORML.

Volume 7 Forth Dimensions (1 985-86) 1 07 - $35

Generic sort. Forth s~readsheet. control structures. Dseudo-
'nrerr-pts, number &d ring. ~ t a r i Forrh, pretty priht'hg, code
moo- es. universa stacd wora. ao.vnorn al eval,ation. F83 , . ,
strings.

Volume 8 Forth Dimensions (1 986-87) 108 - $35

Interrupt-driven serial input, database functions, TI 99/4A,
XMODEM, on-line documentation, dual CFAs, random
numbers, arrays, file query, Batcher's sort, scrwnless Forth,
classes in Forth, Bresenharn line-drawing algorithm, unsigned
division, DOS file I/O.

Volume 9 Forth Dimensions (1 987-88) 109-$35

Fractal landscaws, stack error checking, perpetual date
routines, headless compiler, execution security ANS-Forth
meeting, c~mputer~arded instruction, local variables,
transcendental funct~ons, education, relocatable Forth for
68000.

Volume 10 Forth Dimensions (1 988-89) 110-$35

dBase file access, string handlin , local variables, data
structures, object-oriented ~orih, Rear automate, stand-
alone applicat~ons, 8250 drivers, serial data compression,

Volume 11 For€h Dimensions [I 98S90) 111 -$35

Local variables, graphic filling algorithms, 80286 extended
memory, expert systems, quaternion rotation calculation,
multiprocessor Forth, double-ent,ry bokkeeping, binary
tablesearch, phase-angled~fferent~al analyzer, sort contest.

Volume 1 2 Foith Dimensions 11 9 9 M 1) 112-$35

Floored division, stack variables, embedded control, Atari ..
Forth, optimizing compiler, dynamic memory allocation,
smart RAM, extended- recision math, interrupt handling,
neural nets, Sov~et F A , arrays, rnetacompiat~on.

Volume 1 3 Forth Dimensions (I 991 -92) 113-$35

Volume 14 Forth Dimensions (1 992-93) 114-$35

FORML (Forth Modification Laboratory) is an educational forum for
sharing and discussing new or unproven proposals intended to benefit
Forth, and is for discussion of technical aspectsof applicationsin Forth.
Proceedings are a cornpllat~on of the papers and abstracts presented at
the annual conference. FORML is part of the Forth Interest Group.

1981 FORM1 PROCEEDINGS 311 - $45
CODE-less Forth machine, uadruple-precision arithmetic,
overlays, sxecutablevocabuqa stack, data typing I" Forth,
vectored data structures, usmgFrth in a classroom, pyramid
files, BASIC, LOGO, automatic cueing language for
multimed~a, NmOS - a ROM-based mult~taskrng operating
system. 655 pp.

1982 FORML PROCEEDINGS 31 2 - $30
Rockwell Forth processor, virtual execution, 32-bit Forth,
ONLY for vocabularies, non-IMMEDIATE looping words,
number-lnput wordset, 1/0 vectoring, recursive data
structures, programmable-logic compiler. 295 pp.

1983 FORML PROCEEDINGS 313 - $30
Non-Von Neuman machine, Forth instruction set, Chinese
Forth, F83,co,mpiler &interpmt~co-routines,12 8 ~ n e n i i y
function, rational arithmetic, transcendent functions In
variable-precision Forth, portable file-system interfaoe, Forth
coding conventions, expert systems. 352 pp.

1 984 FORML PROCEED1 NGS 314 - $30
Forth expert systems, consequent-reasonin inferenceenglne,
Zen floatiy point, portable graphics worjset, 32-bit Fonh,
H,P71 B Forth, NEON -object-oriented pr ramrnlng, decom-
pller design, arrays and stack vanablesT78 pp.

1986 FORML PROCEEDINGS 31 6 - $30
Threading techniques, Prolog, VLSl Forth microprocessor,
natural-Ian uage Interface, expert system shell, inference
engine, rnufiple-inheritance system, automatic programming
environment. 323 pp.

1988 FORM1 PROCEEDINGS 318-$40
lncludes 1988Australian FORML. Human interfaces, simple
robotics kernel, MODUL Forth, parallel processing,
programmable controllers, Prol simulations, langua e
opts. hardware, wills workings%ingls philosoph ~ 0 %

hardware ?ppioations, ANS Forth sesson. future of porth in
Al appl~catlons. 310 pp.

1989 FORML PROCEEDINGS 319 - $40
includes papers from '89 euroFORML. Pascal to Forth,
extensible optimizer for compiling, 3D measurement with
object-oriented Forth, CRC polynomials, F-PC, Harris C
cross-corn iler, modular approach to robotic control, RTX
recorn iler E r on-tine maintenance, modules, trainable neural
nets. 6333 pp.

1992 FORML PROCEEDINGS 322 - 540
Object-oriented Forth based on classes rather than
prototypes, color vision sizing processor, virtual file systems,
transparent target development, signal-prmessing pattern
class~fication, optimization in low-level Forth, localvariables,
embedded Forth, auto displa of di ital images, graphics
package for F-PC, B-tree in Arth 280 pp.

=t Volume 1 8 Forth Dimensions (1 99697)

Volume 15 Forth Dimensions (1 993-94) 115-$35

Volume 16 Forth Dimensions (1 994-95) 116-$35

Volume t 7 Forth Dimensions (1 99596) 117 -535
. .

t 994-1 995 FORML PROCEEDINGS (in one volume!) 325 - 550

1993 FORML PROCEEDINGS 323 - $45
Includes papers from '92 euroForth and '93 euroForth
Conferences. Forth in 32-bit protected mode, HOW format
converter, graphing functions, MIPS eForth, umbilical
compilation, portable Forth engine, formal specifications of
Forth, wrltlng better Forth, Holon - a new way of Forth,
FOSM-a productivity. Forthstring 509 pp. matcher, Logoin Forth, programming

ALL ABOUT FORTH, 3rd ed., June 1990, Glen B. Haydon 201 - $90

Annotated glclssary of most Forth words in common use,
including Forth-79, Forth-83, F-PC, MVP-Forth. Implementa-
tion examples in high-level Forth and/or 808W88 assembler.
Useful commentarj glven for each entry. 504 pp.

eFORTH IMPLEMENTATION GUIDE, C.H. Ting 215 - $25

eForth IS a Forth model des~gned to be portable to many of
the nower, more powerful processors available now and
becoming available in the near future. 54 pp. (wldisk)

Embedded Controller FORTH, 8051, William H. Payne 216 - $76

Describes the im lementation of an 8051 version of Forth.
More than half o?this book is composed of source listings
(w/disk COSO) 5 1 1 pp.

F83 SOURCE, Heny Laxen &Michael Peny 21 7 - $20

A complete listing of F83, including source and shadow
screens. Includes introduction on getting started. 208 pp.

F-PC USERS MANUAL (2nd ed., V3.5) 350 - $20

Users manual lo the publ~c-domain Forl h system optim~zed
for IBM PC/XT/AT computers. A fat, fast system w~th many
tools. 143 ,up.

F-PC TECHNICAL REFERENCE MANUAL 351 - $30
A must if you need to know F-PC's innerworkings. 269 pp.

THE FIRST COURSE, C.H. Ting 223 - f 25

This tutorial goal exposes you to the minimum set of Forth
instructions you need touse Forth tosolve practical problems
in the shortest possible time. "...This tutonal was developed
to complement The Forth Course which skims too fast an
the elementary Forth instructions and dives too quickly In the
advanced topics in an upper-level college microcomputer
laboratory ..." A running F-PC Forth systern would be very
usdul. 41 pp.

THE FORTH COURSE, Richard E. Haskell 225 - $25

This set of 11 lessons is designed to make it easy for ou to
learn Forth The matera was developed over severayyears
of teaching Fortli as part of a seniorlgraduate course In the
designof embedded softwarecomputer systems at Oakland
Univetsity in Rochesier, Michhgan. 156 pp. fwld~sk)

FORTH NOTEBOOK, Dr. C.H. Ting 232 - $25

Good examples and applications - a great learning aid.
polyFORTH 1s the dialect used, but some conversion advice
IS Included. Code IS well documented. 286 pp.

FORTH NOTEBOOK 11, Dr. C.H. 3ng 232a - $25

Collection ot research pa ers on varlous topics, such as
irna e processin parallerprocessing, and miscellaneous
appfcations. 23?bp.

This rderence book documents all ANS Forth wordsets
w~th details of more than 250 words), and describes the k . orth virtual . machine. imolementation strateaies. the i m ~ a c l
of multitasking on piogiam desiini Forth ~~~~~~~~~~~~~and
coding style recommendations.

INSIDE F-83, Dr. C.H. Tng 235 - $25 I
Invaluable for those uslng F-83. 226 pp. I

OBJECT-ORIENTED FORTH, Dick Pountain 242 - $37 I
implementation of data structures. First book to make
object-oriented programming available to usersof evenvety
small home computers. 118 pp.

STARTING FORTH (2nd ed.) Limited Reprint, Leo Brodle 245a - $50 [
In this edit~on of Startin Forth-the most popular and
ca~pleteintroduction to &rth--s ntax hasbeen expanded
to nclude the Forth-83 ~tandardi (The wi ma/ p n f m g e
now out of stock, but we are rnahlng eva&ble a specla/,
limited-edition reprint with all the origrnal content.) 346 pp.

THINKING FORTH. Leo Brodie 255 - $35
Back by popular demand! To program intelligently, you
must first think intsll~gently, and that's where Th~nIdng Fonh
comes in. The bestselling author of Starting Forth IS back
again with the first guide to using Forth for applications. This
book captures the philosophy of the language, showing
users how to write more readable, better maintainable
ap lications. Both be inning andexperienced programmsrs WIP aln a better un2rstandms and rnastely of taplcs like
FO& style and conventis, decornposit\on, factoring
handling data, slmplllying control structures. And, to IV;
ou an idea of how these concepts can be applied, 77?infin

E o ~ h contains revealin interviews with userr and wiR
~orth'screator~harlesF.9. Moore. Repr~nt ofarlglnal, 272pp.

WFllTE YOUR OWN PROGRAMMING LANGUAGE USING C++,
Norman Smith 270- $16

This bwkisabout anapptlcation language. Morespec~fically.
it is about how to write,your own custom applicalion
language. The book contains the tools necessary to begin
the process and a complete sample language
implementation. (Guess what language!) Includes disk wlth
complete source. 108 pp.

WRITING FCODE PROGRAMS 252 - $52 1
Th~s manual is for destgners of SBus interface cards and
other devices that use the FCode interface language. It
assumes familiarity with S<Bus card design requ~rements
and Forth programming. D~scusses SBus development for
OpenBoot 1 .O and 2.0 systems. 4 14 pp.

Forth Dimensions, Article Reference 151 -$4
An index of Forth arlicles, by keyword, from Forth Dimensions
Volumes 1-15 (197b94).

.a

Ask about our special incentives for corporate and library
members, or become an individual benefactor!

LEVELS OF MEMBERSHIP
Your standard membership in the Forth Interest Group brings
Forth Dimensions and participation in FIG's activities-like
members-only sections of our web site, discounts, special

.,interest groups, and more. But we hope you will consider
joining the growing number of members who choose to show
their increased support of FIG's mission and of Forth itself.

Library - $1 25
Benefactor - $1 25
Standard - $45 (add $1 5 for non-US delivery)

FORML, Article Reference 152-$4
An indexof Forth articles by keyword, author, and date from
the FORML Conference Proceedings (1 98G921.

Forth Interest Group
See contact info on mail-order form, or send e-mail to:

7 * - L L Volume 18 818 - $20 I MuP21 -programming, demos. *Forth I 74 pp. I
Volume 10 (January 1989) 810-$15

RTX reprrnts from 1 988 Rochester Forth conference, object-
oriented cmforth, lesser Forth engines. 87 pp.

Volume 1 1 (July 1989) 811 -$I5
RTX su plement to Footsteps in an Empty Valley, SC32,32-
bit ~ortE engine, RTX interrupts utility. $3pp

Volume 12 (April 1990) 812-815
ShBoom Chip architecture and instruct~ons, neural
cornputin module NCM3232, pi Forth, binary radixsort on
80286. 8801 0, and RTX2000. eQW,

Volume 13 (October l990J . ,- 813 -515
PALS of the RTXPOO M I ~ I BEE, EBForlh, AZForth, RTX-
2101, 8086 eForth, 8051 eForth. 107pp.

1

i Volume 14 814-$15
RTX Pocket-Sco eForth for muP20, ShBoom, eForth for 1 CP/M &LBO, X&DEM for eForth. 716 pp.

Volume 15 815-$15
Moore: new CAD system for chip des~gn, a ortrait of the
P20; Rible: QS1 Forth processor, QS2, ~ l S 8 n ~ it a ; P20
 forth software simulator/debugger. 94 pp.

Volume 16 816-815
OK-CAD System. MuP20, eFoflh system wo~ ds, 386 eForth,
80386 protected mode operat~on, FRP 1600 - 16-Bit real
time processor. '104 pp.

I Volume 17 817 - $15
I P21 chi and specifications; Pic1 7C42; eForth for 68HC11,
1 8051, {anspu ter 128 pp.

Volume 19 819-$20
More MuP21 - programming, demos, eForth 135 pp,

Volume 20 820 - $20
More MuP21 - programmin demos, F95, Forth Spec~fic
Language Microprocessor $;tent 5,070,451 126 pp.

Volume 21
MuP21 Kit; My Troubles with This Dam 82C51; CTIOO Lab
Board: Born to Be Free; Lawsof Corn uting; T r a c Controller
and Zen of State Machines: ~h'orn Micro rocsssor;
Pr ramrnable Fieldbus Controller 1x1 ; Logic d s g n of a
163it Microprocessor P16 98 pp.

T-shirt, "May the Forth Be With You" 601 - $1 8
(Speci size: Small, Medium, Large, X-Largeon order form)
whte2sign on adak blue shirt or green dergn on fan sh~rt.

BIBLIOGRAPHY OF FORTH REFERENCES 340-$18 1
3rd ad.. January 1987) b ver 1900 references lo Frjrth articles throughout computer

I
literature. 104 pp. Law 5

Annual Forth issues, including code for Forth applications. I
September 1982, September 1983, Sepember 1984 (3 issues)

425 - $1 0

.. 1 U New U Renewal
Signature

1 magazine ForlhD!rnens,ons FIG slsootfers ~ t s members an on-line data base. a large selection of Forth literature and other servrces Coat is $45 psr year for U.S.A, ell orhercountrles $60 yea;.
This fee rncludes $36 for Foiih Dlmsnsiorrs. No sales tax, handling fee, or discount on membership

- I I I
CHECK ENCLOSED (payable to: Forth Interest Group) sub-total
V[SAIMasterCard:

When you J O I ~ , your first Issue wlll arrive in four to sbx weeks: subsequent issues will be mailed to you every other month as lhsy are published-six Issues in all. Your rnembsrshipsntrtles you toa 10%
discount on publicatlons and functionsol FIG. Dues are not deductible as a cherltable contribution for U.S. federal Income tax purpases, but may be deductible as a business expense

PAYMENT MUST ACCOMPANY ALL ORDERS
PRICES: All orders must be prapsld. Prices are SHIPPING & HANDLING: SHlPPlMG TIME: "CALIFORNIA SALES TAX BY COUNTY:
subirct to change w~~hout notlce Crsabl card orders All orders calculate shipping Books in Slack are Shipped wlthrn 7,75% riel Norto, Fr86n0, lmpB,181, Inyo,
wll be sent and billed at currenl Prlcss Checksmust S handling based on order seven daysof rdcs~pt of the order R ~ ~ ~ ~ ~ ~ ~ ~ , Clara, sanAa ealbara. sneer.
te 1r1 u S dollars, drawnon a U S bank A$lOcharg? dollar value. Spaclalnandlrng SURFACE DELIVERY:
WIII bt added for relurned checks sv8#/abC on request. U S lodays

naralno. San Diego, and San JoaQu~n: 8.25%: Alarneda. Conlra
Costa. Los Angeles San Mateo. San Francisco, San8enit0, and

orher 2&KI days

Card Number exp. date

Sales tax* on sub-total (California only)
Shipping and handling (see chart above)

Memberehip* i n s e Forth Interest Group

$ 0 1 WRITE.BYTE \ send "Write TH" command byte $01
WF ITE. BYTE \ write temp value - b2
WRITE.BYTE \ w r i t e s s g n byte - bl
RST LOW

10 MS \ w a i t for eeprom write cycle

: WRITE.TL (b l b2 --) \ wri te T-Low reg
RST H I G H
$02 WRITE-BYTE \ s e n d " W r i t e TL" command b y t e $02
WRITE.BYTE \ write temp value - b2
WRITE-BYTE \ write sign byte - bl
RST LOW
10 MS \ wait f o r eeprom write cycle

: F O S . W ~ . ~ T (- - space 0 < # # ascii . h o l d #S #> type 2 spaces ;

: NEG.MRMAT (u --) 0 < # # ascii . hold #S ascii - hold #> t y p e
2 spaces ;

: .BIN (b --) base @ >r binary 0 < # # # # # # # # # #> t ype
space r> base ! ;

I : SI.(OW.TH (--) \ Display T-High value in degrees
I RST HIGH

$A1 WRITE.BYTE \ send "Read TH" command b y t e $A1
READ-WORD DUP
RST LOW

! 10 MS
256 AND O=
I F OFF> N E G 10 * U2/

I E L S E ON> MEG SFEFF AND 1NVERT.BYTE 1+ 10 U 2 /
THErl ." - - -> " NEG

IF NEG.FORMAT \ Display Temp
! ELSE POS. FORMAT

THEN cr
I
I
!

i : SHOW.TL { -- 1 \ D i s p l a y T-Low v a l u e i n degreqs
RST HIGH
$A2 WRITE. BYTE \ s e n d " Read TL" command byte $ A 2
READ. WORD DUF
EST LOW
10 MS
256 A N D O=
IF OFF> NEG 10 * U2/
ELSE ON> NEG SFEFF AND INVERT. BYTE 1+ 10 * U2/

I THEN ." --- > " NEG

I F NEG . FORMAT,, \ d ~ s p l a y Temp
E L S E POS. FORMAT
THEN c r

: START.CONVERSIOM (--)

RST HIGH
SEE WRITE. BYTE \ send "Start conversion"
RST LOW ; \ command byre SEE

I

Forth Dimensions XX.l 19

: 5TOP.CONVERSION (-- 1
RST H I G H
$ 2 2 WR1TE.BYTE \ s e n d " S t o p c o n v e r s i o n "
RST LOW ; \ command byte $22

: WRITE. C O N F I G (b - - 1 \ wri te byte to conf ig reg
RST H I G H
$OC URXTE.BYTE \ send "Wri te conf ig" command
WRITE . BYTE \ byte $ o C
RST LOW
10 MS ;

: SHOW. CONFIG (-- 1 \ D i s p l a y config reg i n binary
RST HIGH
SAC WRITE. BYTE \ send '' Read conf ig" command
READ. BYTE \ byte SAC

11 - - - > t t .BIN CR

RST LOW
10 MS ;

: SHOW. PARAM (-- 1 \ Display all chip parameters
CI cr
.I1 T-HIGH " SHOW .TH \ d i s p l a y T-High I n degrees
.I1 T-LOW " SHOW.TL \ display T-Low In degrees
." CONFIG " SHOW.CONFIG \ d i s p l a y C o n f i g r e g in b i n a r y
cr ;

: STAND-ALONE (-- 1
0 0 WRITE.CONFIG ; \ configure for standalone mode

: READ. TEMP (-- bl b2) \ r e a d temp convers ion r e g
RST H I G H

SAA WRITE.BYTE \ send "Read Temp" command byte $AA
READ. WORD DUP
RST LOW
256 AND O=
IF OFF> NEG 10 * U 2 /
ELSE ON> NEG SFEFF AND INVERT. BYTE 1+ 10 * U2/
THEN ;

: SHOW.TEMP (-- 1 \ display temperature in degrees
PORT. I N I T
$02 WRITE.CONFIG \ s e t up c o n f i g reg f o r 3 w i r e
START.CONVERSION
1 seconds \ &it f o r complete conversion
CLS c u r z o r - o f f

BEG I N
2 0 12 at ." TEMP - - -> " READ. TEMP
NEG IF NEG.MfiMAT \ d i s p l a y temp

ELSE POS.FORMAT
3 s 12 at ." Degrees C "

THEN key? \ h i t any key to quit
UNTIL cr cursor-on

ST0 P . CONVERSION ;

20 Forth Dimensions XX.l

LOADy Module"

Forth Dimensions XX. l 2 1

This article outlines a method for organising program sec-
tions (called modules) utilising the top line (line 0) on each
screen-the line usually left for "notes" in most screen edi-
tors. The idea was primarily developed to organise the load-
Ing of programs, but can be used to impIement, for jnstance,
a simple help engine.

The program listing is for LMl's URIFORTH (Forth-83).
This idea had its beginnings in the use of the first line of a

screen (line 0) for notes. It seems almost all Forth screen edi-
tors use this convention-I have notes going all the way back
to 1979 (in Forth-79! 1 that use this idea.

For some time before I wrote this program, it seemed to
me that this first line could be used for much 111ore than
notes-it could virtually be used as a record "header," with
the rest of the screen as the "data, which led to the idea that
a program could scan through screens, using the data on Iine
0 for structural information.

This thinking was proceeding along with other thoughts
about program organisation (and version control and so on),
especially the desire to divide programs up into chunks-not
necessarily different files, just different sections. The main
problem in using standard loading screens like either:

1 LOAD
10 LOAD
2 0 LOAD etc. (when using -->)

or:
1 9 THRU
10 I6 THRu
2 0 2 7 THRU etc. (when not using - ->)

is that, when editing screens, especiaIly when inserting and
deleting screens, almost all the numbers in the above state-
mentshave tobecllanged. WewereLookingforasystern
whichdidnotneedthjsediting.Ifpossible,theidealaimwas
to do away with screen numbers altogether (at least when
defining a loading screen!).

Finally, these ideas came together in what we at Jarrah
Computers call nlodules. Each section of a program, called a
module, has the name of the modute on the top line (line 0)
of the screen. Modules consist of a constlixtive series of screens,
wi th the same identifying string on line 0 of each screen.

The main word jn this program is FINDmodule which ark
cepts a string as its argument, and then scans the file looking
for the first screen with the given string on the first line. If no
screen is found, a false flag is left.

If a screen with a matching string is found, the screen
number is saved as the start screen, and a second search is
undertaken, examining subsequent screens until the match
string is not found. In this case of a found string, FINDmodule
leaves the starting screen, the ending screen+l, and a true

flag on top. We decided to make the second argument end
screen+l so that the arguments could be fed directly into a
w LOOP (after a SWAP!).

To handle the 'given string," and to make the process
nestable, we implement a string buffer which can hold up to
ten (nssts, in fact) strings. Effectively, the string buffer, and
the variable SNEST make up a string "stack." Utility word
r SBUF moves a string to the string buffer ("pushing" it onto
the string stack), and . SBUF displays the (top) of the string
buffer. The word $[runs >$WF and then nests a level and
the word 1 $ unnests. So, the syntax:
" Modul eName" $[Modul e F U N C T I O N s I $

wilI push the string ModuleName onto the string stack, and
the ModuleFUNCTIONs in the $[] $ brackets wiIl be run
using ModuleName as their argument. After I $ the string is
popped, leaving the stack in the same state as at entry.

After defining FINDmodule, we can easily write a FIND"
word which is used
FIND" aModuleW or E IND" bModuleW

etc., primarily for interactive use.
Having developed FINDmodule, all that remains is to put

it to use in applications!
The first real use to which we put FINDmodu le is to LOAD

screens, as in LOADrnodule. I f the module is found, all we
need to say is 1- THRU. Of course, if it is not found, we sim-
ply provide a message. Again, from LOADmodul el it is easy to
define LOAD" (as in LOAD" T h i SO r T h a t t t). With these tools,
we can write a set of loading commands like:
 LOAD^^ st artModule"
LOAD" Ma i nFunc t iona 1 s"
LOAD" D~splayFunctionals"
LOAD" MainProcessesV
LOAD" OuterLoop"

to load an entire program-without specifying screen numbers!
Of course, the next thing that happens is that these corn-

mands themselves occupy a set of screens, which can be de-
fined as a module! At Jarrah Computers, we call this the pro-
grarn module, and i t h a s the fonnat, for example,
" T h i s Program" or " ThatPrograml' and is usually the
first module defined in a screen file. To load the entire pro-
gram, all we have to say is
LOAWt T h i s Programl1
(or, alternatively, LOAD" ThatProgramq'!)

Another simple (but very handy!) function is to define a
module " REMAD" , a screen which usually contains on! y:
FORGET F i r s t W o r d I n T h e P r o q r a m

LOAD" TheProgram"

and we can tile11 LOAD1' KE LOAD" .
It: is quite easy to extend this system to load modules from

other files, all we require is to buffer the filenames (again,
nestably), fi~nctions which we do not need to cover here. We
called this word USE - LOAD", used in the form:
" Filenarn? . abc" USE-LOAD" Modulett

Another handy function we call BROWSEing (included in
the listing) has been used to implement a simple help sys-
tem. All we need to do is FINE the module and, if it is found:
START w i t h the StartScreen (returned by a
successfuL FINDmodule)

B E G I N LIST r h e c u r r s n t screen, wait for key . . .
If pgup: Decrement t h e current screen

(bounded by StartScreen)
If pgdn: Increment the current screen

(bounded by Endscreen)
If Esc : exit, Else c o n t i n u e

In this example, we use a simple LIST facility to display
the screen, but this could be any desired display (in its owl
"window," etc). Finally, to jmpIement the help facility, all
that is needed is to put phrases Iike:
BROWSE" ThisSectionHelp"

BRClWSE" ThatSectionHelpW

etc., wherever required in t he code. Note that it i s very easy
to implement thet' PAGE UP previous" and " PAGE LWWN
nexttt prompts (which disappear when they are no longer
relevant), as we have made copies of the START and E N D
screens. The main advantage of using this system is that the
help file can be edited at any time and the program will dis-
play all the new screens without need to modify the program
(again, provided that the module names have been included
on line 0 of each new screen).

Dave Edwards is a qualified electronic engineer who formed Jarrah
Computer~an embedded systems development company using Forth,
in 1984. His company has spec~alised in design of custom
microcontrollers ranging from the HCOS single-chip family, through
the Rockwell 65F11/12, the 68HC11 and, of course, has investigated
the rangeof Forth chips ever since the Novix appeared.Dave presented
a paper on applications of the Novix to the Ausfralian Forth Sympo-
sium and has previously contributed articles to Forth Dimensions.

Dave's other interests include music-both performance and com-
position. In 1 993, he wrote an opera ("Giles - Is That You?") and is cur-
rently working on a second opera ("Giles at Fort Meuller").The MlDl
music system used for the two productions was programmed by Dave
in Forth especiaIly for the productions, and he still does some ses-
sion work as a keyboard player around Perth.

Listing One

(Code Following)

Code for LMI1s UR/FORTH (F83) f o r modules o f code.

FIND" with $Buffer Nesting.

LOAD" with No Flle Nesting.

BROWSE" f o r implementing simple Help.

Version ONLY for FarthDimensions Article.

I Copyr~ght (C) Jarrah Computers 1993-1998.

I
1 \ LOAD" , 09 :55 22 .06 .98
1
: 64 CONSTANT CH/LN (Characters/Line)

; 2 4 CONSTANT M o d ' S l z e (ModuleStrlngSlze)
1 10 CONSTANT NESTS VARIABLE $NEST $NEST OFF (SNest~evel)

I CREATE $BUFS NESTS Mod" Size * ALLOT (Buffer For Strings)
I
! , : $BUF (- - A) SBUFS $NEST @ 0 MAX NESTS MIN Modl 'Size * + ;
I : >$BUF (A - - 1 SBUF M o d W S i z e + DUP OFF OVEP. C@ 1+ CMOVE ;

1 : 4 >$BUF $NEST @ NESTS 1- < IF 1 $NEST i! THEN ; 1 : I $ $NEST @ O> IF -1 $NEST + ! THEN ;

I

22 Forth Dimensions XX.1

I : 'SOURCE [' SOURCE >BODY] LITERAL ; (For Source resetting)

09:53 22.06.98

: $onLineO (Scr# - - E) \ True i f $BUF String on L i n e 0 o f Szr#
BLOCK 2t (Point to word After " \-")

CH/LN 'SOURCE 2 ! 0 > I N ! (NewSnurce)

$ B U F COUNT BL WORD COUNT STRCMP O= ; I $Match?)

: F T N O m o d ~ l l e (-- F' I nl n2 T) \ n l Sta r t s e t , n2 EndScr+l
>IN @ > R ELK @ >R SOURCE > R > R (Save S n u r c e)
FALSE (Seed the s t a c k)

?SCREENS 0 ?DO I $onLkneO IF DROP 1 TRUE LEAVE THEN LOOP
I F ?SCREENS 2DUP SWAP (Now search for EndOfModule)

7DC I $onLineO NOT IF DROP I LEAVE THEN LOOP TRUE
ELSE F.4LSE
THEN .Id W 'SOURCE 2 ! FV DUP ELK ! BLOCK DROP D >IN ! ; __.

'I LOAD" 09 :58 2 2 . 0 6 . 9 8

I : .$BUF (- - 1 \ For d i s p l a y i n g Mcldules as we are l o a d i n g
OUT @ 80 SBUF C @ I+ - > I F CR THEN
5 B U F COUNT TYPE SPACE ;

: LOADmodule (-- 1 \ Loads Screens with $-$Bur
. SBUF FINDmodule I F 1- THRU

ELSE ABORT" . . n o t f o u n d " THEN ;

: FIND" A S C I I " FEED $[FINDmndule] $; IMMEDIATE
i : LOAD" ASCII " FEED $[LOADmodule 1 $; IMMEDIATE
I
I
j (and that's the end of "-->"! 1

1
I
\ Browse - for implementing Help I 0 9 : 5 8 22 .06 .98
DECIMAL

I VARIABLE MODSTART (S t a r t Screen of module)
' VARIABLE MODEND (End Screen o f module)

: DISP-SCR DUP L I S T (n - - n)
CR ." ESC to exit "
DUP MODSTART @

= NOT IF ." PAGE U P previous "
ELSE ."
THEN GUP MODENI? @

= NOT IF ." PAGE DOWN next "
ELSE ." I T

THEN ;

\ Browse - f o r implementing Help

: B L I P 2 0 0 15 BEEF ;
: W I T H I N l + O V E R - > R - R> U< ;

: HELP+ DUP MODEND @ < IF 1+ ELSE B L I P THEN ; (n -- n ')
: HELP- DUP MODSTART @ > IF 1- ELSE BLIP THEN ; (n -- n')

(Code continues on page 26.)

Forth Dimensions XX.1 23

Simple macros can be implemented in Standard Forth with
string literals and EVALUATE.

: :GO S " ANEW NONCE : (GO) " EVALUATE ;
IMMEDIATE
: GO S " (GO) NONCE " EVALUATE ;
IMMEDIATE

This means that code :Go will be resolved by evaluating
ANEW NONCE : (GO) . That starts the definition of (GO).
When the definition has been completed with :, then GO
will execute (GO) and automatically forget it along with
NONCE.

So macros are shorthand. We have shorthand for creating
the shorthand.

(Simple Macro -- No parameters.)

: MACRO ("name <char> ccc<charr" --)

: CHAR PARSE POSTPONE SLITERAL POSTPONE EVALUATE
POSTPONE ; IMMEDIATE

The two macros above can be written:

MACRO :GO " ANEW NONCE : (GO) "
MACRO GO " (G O) NONCE "

Forth macros can be used when interpreting or compil-
ing, and are known globaliy in a search order.

C macros are compile only. A n application can have many
macros, which disappear after the compilation. This is con-
venient for factoring the application for the time now only.
We can define macros, use them, and lose them.

Global macros, as defined above, are put into the Forth
dictionary. When the Forth interpreter recognizes them, it
executes the word and evaluates the associated text. Macros
are immediate and so are not compiled. The evaluated text
may be.

Local macros are not put into the Forth dictionary. In-
stead, a common area is used and re-used as files are com-
piled. The size of the area, My-Macros- Size, will depedd on
your use, and you can increase or decrease i t .

The macros arc stored as strings-name and what's to be
evaluated-in the familiar Iast-in, first-found sequence. The
word my followed by a name looks the name up and evaluates
the associated string when the name is found. Within local

macros, my must also be used to resolve other local macros.
You use C L ~ - M Y - M A C R O S to empty the list of macros

before putting your present ones in.
Local macros are defined similarly to global macros:

my MACRO name " what 's to be evaluated "

Any non-blank character may be used instead of ". The de-
limiter should not occur in the text. I generally use 1 when n

is in the text.
Local macros are not Forth definitions. They do not take

any dictionary space. Define them, use them, and throw them
away.

In the Stretching Forth article "What's a Character?" local
macros moderate what would have been an excessive num-
ber of definitions.

The source code includes definitions of PWICE, BUFFER:,
CKAII-DO, CHAR-MOP, and Uppercase-Pad.

24 Forth Dimensions XX.1

. . - - - --

1 (Local Macros)

I
1 3 (User words:
/ 4 CLEAR-W-MACROS
I 5 my MACRO -nermacronarne- " What to do "

t. my _macronanIe-

9 2000 CHARS CONSTANT My-~acros-Size (Whatever you need.)

1 0 My-Macros-Size BUFFER: My-Macros

! 12 MACRO node@ " @ " MkCRO node! " ! "

Scan for i t e n 1 in a list, ol3e by one.)

Called by 'my' to f i n d macro. }

scan-itam (str l en head -- item / O)

ROT ROT 2>R (l i s t) (R : sts l e n)
BEGIN node@ DUP W H I L E

DUP CELL+ COUNT 2R@ COMPARE O=
UNTIL CELL+ (i tem)
THEN

2R> ?DROP

1 25 (Check t h a t khere's still enough room in macro s p a c e .)

i 2 6 (C a l l e d by 'MY-MACRO'.)
I 1 27 : my-macros-enough (n addr -- same)

OVER 1+ CHARS OVEF, + My-Macros My-Macros-Size t u> 1 3: ABORT" My Macros Full. "
\ 3 0 ;

I : 32 (Make name upper case fo r case insensitivity.)

1 3 3 (Called by 'MY-MACRO ' and 'my'.)

i 3 4 : raise-case (str l e n - - sts' len
35 31 MIN Uppercase-Pad PLACE Uppercase-Pad COUNT
36 \ 2DUP chars - to-upper

(37 2DUP CHAR-DO I C@ DUP (CHAR] a - 26 U< BL AND - I C! CHAR-

1 3 8 ;

4 0 (F i n d where n e w macro w i l l go, and link to top of l i s t . 1
' 4 1 (Called by 'MY-MACRO ' . 1
; 9 2 : My-New-Macro (-- addr

43 My-Macros node@ (addr)
: d.1 DUP O = IF DROP My-Macros CELL+ (First macro)

! 45 ELSE CELL+ COUNT CHARS 2 VOUNT CHARS + ALIGNED
: 4 6 THEN
i 4 7 DUP My-Macros 2DUP node@ SWAP node! node!
1 48 CELL+

i " ;
51 (P l a c e macro name and replacement in macro list.)

52 (C a l l e d by 'my'. 1
I 53 : MY-MLCRO (" name <char> string<char> " - -)

LOOP

Forth Dimensions XX.1 25

54 My-New-Macro >R () (R: addr)
55 BL WORD COUNT (str l e n) raise-case (str l e n)
56 R@ my-macros-enough PLACE ()

5 7 CHAR PARSE R> COUNT CHARS + my-macros-enough PLACE (R:)

58 ;

60 (U s e 'my ' b e f o r e l o c a l macro names and b e f o r e 'MACRO ' .)

61 : my (" name" -- ? ? ?)

62 BL WORD COUNT (str l e n) raise-case (str l e n)
63 2DUP S" MACRO" COMPARE O=
64 IF 2DROP MY-MACRO EXIT THEN
65 My-Macros scan-item DUP O= ABORT" Not my macro. "
6 6 COUNT CHARS + COUNT EVALUATE
67 ; IMMEDIATE

1 69 (S t a r t a new s e t of l o c a l macros.)

70 : CLEAR-MY-MACROS (--) 0 My-Macros ! ;

Load" Module" code, continued from page 23.

: GET-KEYS KEY DUP (-- n ; converts to uppercase)
O= IF DROP KEY 8 SHIFT
ELSE DUP ASCII a ASCII z WITHIN IF 223 AND THEN
THEN BEGIN ?TERMINAL WHILE KEY DROP REPEAT ;

HEX
OOlB CONSTANT <ESC> 4900 CONSTANT <PGUP> 5100 CONSTANT <PGDN>
DECIMAL

- ->
\ Browse - for implementing Help 09:58 22.06.98

(w str~l --- , . String of Screens to display)

: BROWSE $[CR ." Locating: " .$BUF (For slow disks!)
FINDmodule IF 1- MODEND ! DUP MODSTART ! (Set Screen Limits) . \

(Scr On Stack) BEGIN DISP-SCR GET-KEYS
CASE <ESC> OF TRUF ENDOF

<PGUP> OF HELP- FALSE ENDOF
<PGDN> OF HELP+ FALSE ENDOF
DUP OF BLIP FALSE ENDOF ENDCASE

UNTIL DROP (Drop remnant screen#)
ELSE ." Module Not Found . . " KEY DROP
THEN] $; (Denest at End)

j : BROWSE" ASCII " FEED BROWSE ; IMMEDIATE

Forth Dimensions XX.l

aracter?
I

Forth has all the character and string manipulation func-
tions it needs for interpreting and compiling Forth and for
running target systems.

When we want to use Forth for more advanced text han-
dling on host systems, we need more.

One of the first inconveniences is naming. I suspect that
converting a character to uppercase is a common function in
virtually every system, but there is no common name.

I've used implementations that have called it >UPPER, UPC,
UPCASE, UPPERCASE, c >C.

My solution is to adopt the name from the Standard C
Library together with the other related functions. Then I can
explain by saying "it's the same as the Standard C Library."

/ isalnum Alpha-numeric character
/ isalpha Upper- or lower-case letter
j

iscntrl
isdigit
isgraph
islower
isprint
i spunct
isspace
isupper
isxdigit

Control character
Decimal digit
Not space
Lowercase
Printing character, including space
Neither space nor letter nor digit
Space, tab, return, linefeed
Uppercase
Sedecimal digit

tolower Convert and return lower-case letter.
toupper Convert and return upper-case letter.

I

Here is a minimum storage high-level implementation of
1 those.

1 I 1 (CTYPE Functions -- Short) I
3 ANEW --CTYPE-- DECIMAL (Slow version -- will be overlayed.)
4 (char -- flag)

5 : isalpha BL OR [CHAR] a - 26 U< ;
6 : iscntrl 1+ 127 AND 34 < ;

7 : isdigit [CHAR] 0 - 10 U< ;
8 : isalnum DUP isalpha ORIF DUP isdigit THEN NIP ;
9 : isgraph [CHAR] ! - 94 U< ;

10 : islower [CHAR] a - 26 U< ;
11 : isprint BL - 95 U< ;
12 : isupper [CHAR] A - 26 U< ;
13 : ispunct DUP isgraph ANDIF DUP isalnum NOT THEN NIP ;
14 : isspace DUP BL = ORIF DUP 9 - 5 U< THEN NIP ;
15 : isxdigit DUP isdigit ORIF DUP BL OR [CHAR] a - 6 U< THEN NIP ;

16 (char -- char ')

17 : toupper DUP [CHAR] a - 26 U< BL AND - ;
18 : tolower DUP [CHAR] A - 26 U< BL AND + ;

The most used of those is toupper. If you're going to be ..,
doing a lot of text massaging, this should be improved.

if your system has a CODE version of this function, you
1 can adopt it.

MACRO toupper " UPCASE " I !
Another approach is t o use a translation table.

[Continues on next page.]

Forth Dimensions XX.l 27

1 ANEW --CTYPE-- DECIMAL (Fast version. Let ' s keep th i s one.)

3 256 CHARS BUFFER: Uppercase-Table

5 :GO 256 0 DO
6 I DUP [CHAR] a - 26 U< BL AND - Uppercase-Table I CHARS + C!
7 LOOP ; GO

9 MACRO toupper " CHARS Uppercase-Table + C@ "

This is much faster than the CODE version on the system
I'm using, and I have enough space, so the translation table
version is the one I have adopted.

(The code gets optimized in the loop cycle and 1 can't tell
how long it takes.)

: MIL 1000000 * ;

: NOTHING ; IMMEDIATE

MACRO toupper " CHARS Uppercase-Table + C@ "

: >UPPER DUP [CHAR] a - 26 U< BL AND - ;

: WITHIN OVER - >R - R> U< ;
: BETWEEN 1+ WITHIN ;
: UPPERCASE DUP [CHAR] a [CHAR] z BETWEEN BL AND XOR ;

/ / :GO COUNTER 1 MIL 0 DO 127 32 DO I I DROP LOOP LOOP TIMER ; GO CR I
NOTHING toupper UPCASE >UPPER UPPERCASE

\ \

I also adopted a translation table for tolower.

11 256 CHARS BUFFER: Lowercase-Table

13 :GO 256 0 DO
14 I DUP [CHAR] A - 26 U< BL AND + Lcibercase-Table I CHARS + C!
1 5 LOOP ; GO

1 7 MACRO tolower " CHARS Lowercase-Table + C@ "

The string conversion routines are:

1 9 (s t r len --)

20 : chars-to-upper CHAR-DO I C@ toupper I C! CHAR-LOOP ;
21 : chars-to-lower CHAR-DO I C@ tolower I C! CHAR-LOOP ;

28 Forth Dimensions XX.l

To accelerate the character-tests, a 256-byte table of bit-
codes is used. Macros set and test those codes. 15 macros are
defined to do this. These macros have no other purpose out-
side these definitions and at this time.

These macros are set up as local macros. Their definitions
will go away and the space for them will be recovered. There's

less here than meets the eye.
The only definitions that will remain will be char-code

and the 11 issamething functions.
See Tool Belt #5, "Local Macros," for code for local vari-

ables. That should be loaded first. / / is iterated interpreta-
tion, presented in Tool Belt #3.

1 23 (CTYPE C h a r a c t e r T y p e F u n c t i o n s -- F a s t)

I I
25 CREATE Char-Code (T a b l e f o r c h a r a c t e r c o d e s .)

I
27 CLEAR-MY-MACROS 1

1 29 (C h a r a c t e r T e s t i n g F u n c t i o n s)

1 I
31 my MACRO Control-Char
32 my MACRO Motion-Char
33 my MACRO Sgace-Char
34 my MACRO Punctuation
35 my MACRO Digit
36 my MACRO Hex-Digit
37 my MACRO Lower-Case
38 my MACRO Upper-Case

/ 40 (N o t h i n g h a s been c o m p i l e d since 'Char-Code ' ; s o the f o l l o w i n g
j 41 1 bytes go there. Each byte h a s o n e bi t o n .)

45 Control-Char Control-Char Control-Char Control-Char
4 6 Control-Char Control-Char Control-Char Control-Char 1 47 Control-Char Motion-Char Motion-Char Motion-Char

1 48 Motion-Char Motion-Char Control-Char Control-Char

5 0 Control-Char Control-Char Control-Char Control-Char 1 51

Control-Char Control-Char Control-Char Control-Char
52 Control-Char Control-Char Control-Char Control-Char

1 53 Control-Char Control-Char Control-Char Control-Char

i
Space-Char
Punctuation
Punctuation
Punctuation

Digit
Digit
Digit
Punctuation

Punctuation
Punctuation
Punctuation
Punctuation

Digit
Digit
Digit
Punctuation

Punctuation
Punctuation
Punctuation
Punctuation

.\
Digit
Digit "

Punctuation
Punctuation

Punctuation
Punctuation
Punctuation
Punctuation

Digit
Digit
Punctuation
Punctuation

65 Punctuation Upper-Case Upper-Case Upper-Case
66 Upper-Case Upper-Case Upper-Case Upper-Case
6 7 Upper-Case Upper-Case Upper-Case Upper-Case

Upper-Case Upper-Case Upper-Case Upper-Case

1 1

Forth Dimensions XX.l 29

70 Upper-Case Upper-Case Upper-Case Upper-Case
71 Upper-Case Upper-Case Upper-Case Upper-Case
72 Upper-Case Upper-Case Upper-Case Punctuation
73 Punctuation Punctuation Punctuation Punctuation

75 Punctuation Lower-Case Lower-Case Lower-Case
76 Lower-Case Lower-Case Lower-Case Lower-Case
7 7 Lower-Case Lower-Case Lower-Case Lower-Case
7 8 Lower-Case Lower-Case Lower-Case Lower-Case

8 0 Lower-Case Lower-Case Lower-Case Lower-Case
8 1 Lower-Case Lower-Case Lower-Case Lower-Case
8 2 Lower-Case Lower-Case Lower-Case Punctuation
8 3 Punctuation Punctuation Punctuation Control-Char

85 \ \
8 6 128 RESERVE (Clear the rest of the table.)

88 (Include hex-digi ts in 'Char-Code' table.)

90 / / CHAR I CHARS Char-Code + DUP C@ my Hex-Digit OR SWAP C! I
9 1 0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f
9 2 \ \

94 my MACRO Letter " my Lower-Case my Upper-Case OR "
9 5 my MACRO Alphanumeric " my Letter my Digit OR "
9 6 my MACRO Graphic " my Alphanumeric my Punctuation OR "
97 my MACRO Printable " my Graphic my Space-Char OR "
9 8 my MACRO Whitespace " my Motion-Char my Space-Char OR "
9 9 my MACRO Control " my Motion-Char my Control-Char OR "

1 0 1 my MACRO Char-Code " CHARS Char-Code + C@ "

isalnum
isalpha
iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit

Char-Code
Char -Code
Char-Code
Char -Code
Char-Code
Char-Code
Char-Code
Char-Code
Char -Code
Char-Code
Char-Code

(char -- flag)

my Alphanumeric AND O<> ;

my Letter AND O<> ;

my Control AND O<> ;

my Digit AND O<> ;

my Graphic AND O<> ;

my Lower-Case AND O o ;
my Printable AND Ox> ;

my Punctuation AND O o ;
my Whitespace, AND O<> ;

my Upper-Case AND O<> ;

my Hex-Digi't AND O<> ;

30 Forth Dimensions XX.l

Introduction
Let's continue with our investigation of adaptive PID con-

trollers by looking at how to implement the plant identifica-
tion part of such controllers. For those of you that have lost
track, PID controllers achieve the goal of regulating a system
by combining a signal that is proportional to the error input,
plus an integral of the error signal, and the derivative of the
error signal. Controlling by just using the proportional sig-
nal tends to cause oscillations; adding the integral term re-
duces these. Adding the derivative term makes the system
more responsive to signal changes. If we know enough about
the system that we are controlling, then, in principle, we can
adjust the gains for the separate proportional integral and
derivative terms to achieve an optimal (critically damped)
controller.

The problem with this is that one is often faced with a
system that is not characterized well enough to do this, or
the system that is under control has unsteady parameters.
When we are faced with this situation, an adaptive control-
ler is a good choice to handle it.

Mathematical recap
First let's take a look at quick summary of the equations.
Our controller is,

where Kp is the proportional gain, Ki is the integral gain, and
Kd is the differential gain. The quantity E is an error signal
that is the difference between the commanded input, x and
the output of the controlled plant z.

Our controlled plant is defined by the differential equa-
tion,

where a, p, and yare known constants and F(z) represents
the imposed external forces on the plant (the input).

The controller and the plant are coupled by,
E = (5 - ICfb2) ICo (3)

where KO is a known input gain of the controller and Kt, is a
known feedback gain that is output from the plant.

Note that we have changed variable names slightly, as com-
pared to last time, so that we can consistently hook every-
thing up together. To summarize: x is the input signal, y is

the controller output and the plant input, and z is the plant
output. The controller input is E as defined in (3).

The optimization
The controller is optimally tuned when the expected mean

squared value of system error is minimized (i.e., we are doing
another least-squares problem). It is very easy to get lost here
and lose track of what we are doing, so let's be explicit about
what we are dealing with. We are combining an input signal,
x with the actual plant output, z, to create an error signal E.

The error signal is then used as a control input, y, into the
actual plant. If we knew the characteristics of the actual plant,
a, p, and y, we could adjust the PID controller gains Kp, Kit
and Kd so that it is critically damped.

In the last installment, we derived the equations neces-
sary to achieve the proper gains given the plant parameters.
However, in our current scenario, we do not know the actual
plant parameters. So we estimate the plant parameters, given
y and z. We then use these estimated plant parameters to
choose our controller gains.

So we want to minimize the mean square of the differ-
ence between the output of the actual plant and the currently
estimated plant,

where Z is the actual plant output and z, is the modeled plant
output. Now. since we are going to be creating a digital imple-
mentation of the controller, at some point we are going to
have to switch from using differential equations to finite dif-
ference approximations to them. If we make that switch at
this point in our analysis, things will be somewhat simpler
so, using second order finite difference approximations, our
model plant equation becomes

(where His the time step size), simplifying the notation again,

zt = a ~ z t - 1 +.a2zt-2 + blyt-1 (6)

or more generically, we can write this as,

Using this form, we can always go back to the original

Forth Dimensions XX.l 31

parameters,

The steps we go through next are exactly the same as we
did for solving the least-squares straight line problem in FD
XIX.3. Once again we can use a symbolic mathematics pack-
age (I use Mathematica) to help avoid making an error in the
derivation of the equations for the next steps, which are
straightforward but rather tedious to do.

We need to determine when the derivative of J with re-
spect to the parameters is zero,

These expand out to equations (lo), (l l) , and (12).

which need to be solved for a,, a,, and b,.
Let's step back and take a look at what we have arrived at.

We now have three equations and three unknowns, so unless
one of equations (10) through (12) turn out to be redundant
(they are not), we can ultimately manipulate them to solve
for our unknown terms. Further, we can see that our solu-
tions are going to give us the plant parameters a, P, and y
solely in terms of the histories (because of the sums) of the
controller output y, the actual plant output signal Z, and the
previous estimated plant output signal values z.

The need to maintain the histories creates somethingof a
problem because the terms in (10) through (12) will have to
be reevaluated at each time step, which will impact the per-
formance of the controller in a real-time environment. The
equation in its general form (7) is known as an ARMA (Auto-
Regressive Moving Average) model. ARMA models are ex-
tremely important models for discrete systems and appear in
many contexts. Techniques for efficiently solving ARMA
models were worked out in the '50s, when you just couldn't
throw a couple more MIPS and megabytes at the problem.
One of the most suitable methods is called Plackett's algorithm

(Plackett, 1950), which takes a current estimate of the pa-
rameters and combines them with the new data to get the
new estimate. It is important to recognize that Plackettfs al-
gorithm is not an approximation to the solution of (10)
through (12), it is mathematically exactly the same-it just
looks very different.

Deriving Plackett's algorithm without the use of matrix or
linear algebra is tedious in the extreme, so I won't derive it
here. Using linear algebra and something called the Gauss-
Markov theorem (scary sounding words, but it's really just
matrix-speak for linear least squares, which we already un-
derstand), we arrive at the set of matrix equations,

The new quantities are:
x, is a vector containing the inputs and plant outputs-the
z and y values in (7)-stacked one above the other.
P, is the covariance matrix of the estimation error. It
quantifies how good the current estimate is. It is calcu-
lated from the output statistics of the model. The covari-
ance matrix is where the controller history information
went to from the direct formulation.
q, is a vector containing the current plant parameter-the
a and b values in (7)--estimates stacked up.

This is what is known as a recursive estimator, it makes a
new estimate based upon the current estimates plus the new
data.

Equations (13) and (14) give a practical method to esti-
mate the plant parameters, given the past statistics and the
new data. In this installment, we will look at how to imple-
ment this; next time, we will go to the final step and use this
estimate to adapt the controller.

The numerical implementation
For all the messy, complicated math, the implementation

of all this is actually pretty straightforward once you have
the equations and a Forth version of the linear algebra opera-
tions. The matrix inverse (the matrix algebra version of di-
vide) is part of the Forth Scientific Library; the other matrix
operations we have to write ourselves.

When writing a simulation of an adaptive controller, you
have to remember to simulate the plant, too. In an actual
application, this part would be replaced with a sub-system
that aquires the digitized data from the physical system.

Listing One [not available at press time, the code will be
available via FTP and will be printed in our next issue. -Ed.]
is a ANS Forth implementation that will demonstrate a PID
controller plant identification using a simulated input sig-
nal. Just to make it interesting, the (simulated) real plant
actually changes a couple of times, so the estimate is forced
to change, too. Initially, we have no idea what the model
parameters are; we describe this uncertainty quantitatively

Forth Dimensions XX.l

Tricks to make it work better
The implementation of an adaptive controller often has

1
extra featuies I have not described so far, such as not recalcu-
lating the gains every time step, but only after an interval of
several steps. Once this is done, the accumulated sums are
also reset, thus reinitializing the adaption section. Doing this
helps tame the controller, particularly in a noisy system where
it would eventually try to adapt to the noise. This is just one
of many practical issues that make the use of adaptive PID
controllers both a science and an art.

There are two other common tricks, both of which are
intended to keep the integral term under control. Remember
that the purpose of the integral term is to smooth out oscilla-

by initializing the covariance matrix P, to be large values on
the diagonal and zero off the diagonal.

The rest of the program directly implements equations (13)
and (14). The program is designed to create an output time
series that can be captured and used with gnuplot.

Conclusion, Part ll
We have now achieved the ability of being able to iden-

tify the plant for a PID controller based upon its response to
the incoming data. This is the final background piece we need
in order to get to the ultimate: understanding and implement-
ing an adaptive PID controller in Forth. I want to re-empha-
size the fact that the details of what we have arrived at in this
example are very dependent upon the choices we made for
the plant model and how it is linked into the controller. Lots
of other configurations are possible; the choice depends
strongly upon the application. If you try to compare this with
other derivations in the literature you will almost certainly
see something different. What you will see in a comparison is
that the methods used are basically the same.

Feedback
Please don't hesitate to contact me through Forth Dimen- 1 sions or via e-mail if you have any comments or suggestions

euroFORTH '98
The 14th euroFORTH conference on the

FORTH programming language and FORTH processors

I (Including an Internationalisation Workshop)

September 18-21,1998

Conference delegates are welcome and encouraged to give
papers on subjects related to the conference topics. As usual
there will be a "4th" day, which will include an exhibition (DM
100 per stand) and a chance for delegates to review the
conferences. As in the previous years delegates from all parts
of Europe and other continents are expected.

Internationalisation Workshop . \
When the International Organisation for Standardisation

accepted ANS Forth as an International Standard, they asked -
the ANS to address two areas in their next review. The two
areas where:

Internationalisation
Requirements for embedded systems programmed in Forth

It was agreed at euroForth '97 that we would hold a special
workshop on internationalisation to investigate the issues the
standard will need to address in order to allow programmers to
develop multi-lingual applications.

Conference Organiser Conference Chair
Marina Kern Dr. Peter Knaggs
C/o m2c Bournemouth University,
Schauenburger Str. 15 Talbot Campus, Fern Barrow.
D 20095 Hamburg, Poole. Dorset.
Germany. UK BH12 5BB
Tel: +49 40 325682-10 Tel: +44 1202 595625
Fax: +49 40 325682-90 Fax: +44 1202 59531 4
Net: m2c8mail.hamburg.com Net: pjk8bcs.0rg.uk
Cost: A discount price (given in brackets) is available for delegates
registering before the end of July. Note that all prices are exclusive of VAT
(currently 16%).
Resident Delegate DM 790 (DM 720)
conference fee, accommodations, 3 meals a day

Student - Limited openings! DM 400 (DM 340)
conference fee, accommodations. 3 meals a day

Guest DM 380 (DM 340)
accommodations, 3 meals a day

4th Day DM 135 per person
accommodations, meals, exhibition and additional workshop

Forth Dimensions XX.l 33

Fred Behringer's Transputer Forth package F-TP 1.00 is now
available at
ftp://ftp.leo.org/pub/comp/os/dos/programming/forth/
transputer1

This is a 32-bit nearly ANSI complete Forth for the T800
for use with the INMOS B004, or compatible, board on an
IBM compatible PC. It also works with the T400. The server
on the host side is based on Turbo Forth, as are the cross-
assembler and the metacompiler. The package is freeware and
900 Kb in ZIP form. This includes a precompiled example of
a multisystem (many Forths in one). The actual package is
substantially smaller.

For information, send e-mail to:
Fred Behringer
behringe0mathematik.t~-muenchen.de

Mike Hore released Mops version 3.2.
Mops is a public-domain development system for the Mac.

It's based on Forth, with extensive OOP extensions, along
the lines of Smalltalk. It comes with a class library which gives
support for all the normal Mac interface functions. While
not as full-featured as Powerplant or MacApp, say, it's very
adequate for the kind of applications which might be devel-
oped by one programmer.

Mops is derived from Neon, which was one of the first
languages for the Mac that allowed actual development on
the Mac itself. It's a close cousin to Yerk, which is a more
"conservative" development of Neon, basically aimed at keep-
ing up with later Macs and systems while remaining fully
compatible with Neon. Mops is more "radical". It's a omplete
reimplementation which compiles native (68K and PowerPC)
code instead of the usual Forth threaded variety. It's very fast
- about as fast as anything on the Mac in fact. It has a few
other improvements over the original Neon, such as mul-
tiple inheritance, public ivars and temporary (local) objects.

http://www.netaxs.com/-jayfar/mops.html
ftp://ftp.taygeta.com/pub/Forth/Mops/
(taygeta is the main FIG ftp site)

LEVELS OF MEMBERSHIP
Your standard membership in the Forth Interest Group brings
Forth Dimensions and participation in FIG's activities-like
members-only sections of our web site, discounts, special
interest groups, and more. But we hope you will consider join-
ing the growing number of members who choose to show their
increased support of FIG's mission and of Forth itself. .-
Ask about our special incentives for corporate and library
members, or become an individual benefactor!

CompanyICorporate - $1 25
Library - $1 25
Benefactor - $1 25
Standard - $45 (add $1 5 for non-US delivery)

Forth Interest Group
See contact info on mail-order form, or send e-mail to:

office8forth.org

34

A Shot in the Foot
Bart Lateur wrote: The major problem with Forth is the

fact that it's so damn easy to shoot yourself in the foot. Just
accidently do something like 0 @ and you'll get a system
crash, on many systems.

Anton Ertl replied: That's a problem of the system. Gforth
on Linux gives:

0 @
: 1
0 @

A

Error: Invalid memory address
and I end up in the text interpreter (or whatever CATCHes
this exception).

By the way, with C you can shoot yourself in the foot in
the same way (although a little more verbosely):

main()
{
return *(char *)O;

)

Compiling and running this on Linux gives:
Segmentation fault (core dumped)

and I end up in the shell. Catching this with a signal han-
dler is somewhat more work than using CATCH in Forth.

Support for older systems
Hands-on hardware and software

Computing on the Small Scale
Since 1983

Subscriptions
1 year $24 - 2 years $44

All Back Issues available.

TCJ
The Computer Journal

P.0. BOX 3900
Citrus Heights, CA 95611 -3900
800-424-8825 / 91 6-722-4970

Fax: 91 6-722-7480
BBS: 91 6-722-5799

Forth Dimensions XX.l

The following are corporate sponsors and individual benefactors
whose generous donations are helping, beyond the basic member-
ship levels, to further the work of Forth Dimensions and the Forth In-
terest Group. For information about participating in this program,
please contact the FIG office (office@forth.org).

Corporate Sponsors

AM Research, Inc. specializes in Embedded Control applica-
tions using the language Forth. Over 75 microcontrollers are
supported in three families, 8051,681 1 and 8xC16x with both
hardware and software. We supply development packages, do
applications and turnkey manufacturing.

Clarity Development, Inc. (http://www.clarity-dev.com) pro-
vides consulting, project management, systems integration,
training, and seminars. We specialize in intranet applications
of Object technologies, and also provide project auditing ser-
vices aimed at venture capitalists who need to protect their
investments. Many of our systems have employed compact
Forth-like engines to implement run-time logic.

Computer Solutions, Ltd. (COMSOL to its friends) is Europe's
premier supplier of embedded microprocessor development
tools. Users and developers for 18 years, COMSOL pioneered
Forth under operating systems, and developed the
groundbreaking chipFORTH hotltarget environment. Our
consultancy projects range from single chip to one system
with 7000 linked processors. www.computer-solutions.co.uk.

Digalog Corp. (www.digalog.com) has supplied control and
instrumentation hardware and software products, systems, and
services for the automotive and aerospace testing industry for
over 20 years. The real-time software for these products is Forth
based. Digalog has offices in Ventura CAI Detroit MI, Chicago
IL, Richmond VA, and Brighton UK.

Forth Engineering has collected Forth experience since 1980.
We now concentrate on research and evolution of the Forth
principle of programming and provide Holon, a new genera-
tion of Forth cross-development systems. Forth Engineering,
MeggenILucerne, Switzerland - http://www.holonforth.com.

FORTH, Inc. has provided high-performance software and ser-
vices for real-time applications since 1973. Today, companies in
banking, aerospace, and embedded systems use our powerful
Forth systems for Windows, DOS, Macs, and micro-controllers.
Current developments include token-based architectures, (e.g.,
Open Firmware, Europay's Open Terminal Architecture), ad-
vanced cross-compilers, and industrial control systems.

The iTV Corporation is a vertically integrated computer com-
pany developing low-cost components and information ap-
pliances for the consumer marketplace. iTVc supports the
Forth development community. The iTVc processor instruc-
tion set is based on Forth primitives, and most development
tools, system, and application code are written in Forth.

Keycorp (www.keycorp.com.au) develops innovative hardware
and software solutions for electronic transactions and bank-
ing systems, and smart cards including GSM Subscriber Identi-
fication Modules (SIMs). Keycorp is also a leading developer of
multi-application smart card operating systems such as the

Forth-based OSSCA and MULTOS.

An interactive programming environment for writing Win-
dows NT and Windows 95 kernel mode device drivers in Forth.

Silicon Composers (web site address www.silcomp.com) sells
single-board computers using the 16-bit RXT 2000 and the 32-
bit SC32 Forth chips for standalone, PC plug-in, and VME-
based operation. Each SBC comes with Forth development soft-
ware. Our SBCs are designed for use in embedded control, data
acquisition, and computation-intense control applications.

T-Recursive Technology specializes in contract development
of hardware and software for embedded microprocessor sys-
tems. From concept, through hardware design, prototyping,
and software implementation, "doing more with less" is our
goal. We also develop tools for the embedded marketplace
and, on occasion, special-purpose software where "small" and
"fast" are crucial.

Tateno Dennou, Inc. was founded in 1989, and is located in
Ome-city Tokyo. Our business is consulting, developing, and
reselling products by importing from the U.S.A. Our main
field is DSP and high-speed digital.

AS0 Bldg., 5-955 Baigo, OmelTokyo 198-0063 Japan
+81-428-77-7000 Fax: +81-428-77-7002

http://www.dsp-tdi.com E-mail: sales@dsp-tdi.com

Taygeta Scientific Incorporated specializes in scientific soft-
ware: data analysis, distributed and parallel software design,
and signal processing. TSI also has expertise in embedded
systems, TCP/IP protocols and custom applications, WWW
and ITP seyvices, and robotics. Taygeta Scientific Incoporated

1340 Munras Avenue, Suite 314 Monterey, CA 93940
408-641-0645, fax 408-641-0647 http://www.taygeta.com

Triangle Digital Services Ltd.-Manufacturer of Industrial Em-
bedded Forth Computers, we offer solutions to low-power,
portable data logging, CAN and control applications.
Optimised performance, yet ever-increasing functionality of
our 16-bit TDS2020 computer and add-on boards offer versa-
tility. Exceptional hardware and software support to devel-
opers make us the choice of the professional.

Individual Benefactors

Everett F. Carter, Jr. Zvie Liberman
Edward W. Falat Marty McGowan
Michael Frain Gary S. Nemeth
Guy Grotke Marlin Ouverson
John D. Hall Richard C. Wagner
Guy Kelly

Forth Dimensions XX.1

"Forth Interfaces
to the World"

November 20-22,19980 Pacific Grove, California
FORML welcomes papers on a variety of Forth-related topics,even those which do not adhere strictly to the published
theme. Some theme-related topics of interest,and for which papers are particularly sought, include:

Overcoming the Limits to Growth Forth on New 32-bit Embedded Chips

Forth in "Foreign" Embedded Environments Forth in a Windows World
(e-g., Windows CE, InfernoI pSOS,Vrtx)

Co-Existing with C
Forth and Rapid Application Development (RAD)

Forth and the InternetIJava

"20120:Hindsight andvision" is planned as a two-part evening panel.Part one will offer a look at Forth's history-
what worked well and what might have been done differently-and will feature participants who played key
roles in Forth's evolution; part two will evaluate Forth's current status and propose courses of action to lead
Forth into a stronger position in coming years.

SAVE UP TO 20% Inquiries about conference registration may be
directed to office@forth.org or to FORML Conference

Advance registration required.Complete registration Registration, c/o Forth lnterest Group, 100 Dolores
by October 15,1998 to receive a ten percent discount. Street, Suite 183, Carmel, California 93923.
FIG members are eligible for an additional ten percent
discount on any registration fee. Conference attendee in double room $595

Non-conference guest in same room $435
Under 18 years old in same room $225
Conference attendee in single room $795
Infants under two years in same room-free

Conference Chairman: Marlin Ouverson - editor@forth.org
Conference Director: Robert Reiling - ami@best.com

The FORML Conference is held at the Asilomar Conference Center, a National Historic Landmark noted for i ts
wooded grounds just yards from Pacific Ocean dunes and tidepools on California's Monterey Peninsula.Lodging
and all meals included with conference registration,and spouses and guests of conference participants can join
numerous recreational outings and activities. ,,

Please confirm your attendance early-accommodations may be limited due to thisfacility's immense popularity.

--

Please submit the subject of your paper as soon as E-mail submissions may be sent to editor@forth.org
possible in order to be included in pre-conference withi'FORML paperwin the subject 1ine.Hard copy may
publicity.Final titles with abstracts aredue by October be mailed to FORML Conference Chairman, c/o Forth
1, 1998. Completed papers should be received by lnterest Group, 100 Dolores Street, Suite 183, Carmel,
November 1 in order to be included in the conference California 93923.

~ notebooks that are distributed to all attendees.

