


- 

2 Forth Dimensions XIX.6 

Forth Interest Group 
Membership Benefits, SIGs, and FORML 

In 1997, many changes took place in the Forth Interest 
Group. (I wonder when it will be that I don't write to you 
about changes?) The development of new levels of member- 
ship support was one important change. Another important 
change was the establishment of the Special Interest Group 
mail boxes in the members-only section of the FIG web site. 
A third change was the availability of sponsorships for FORML. 
There were many more, as you know, but these are the ones I 
would like to give you more information about. 

Each of these activities was conceived and implemented 
both to help the Forth Interest Group to expand its available 
member services and, in turn, to help us more easily fund 
operations. 

The following is a listing of our current membership lev- 
els and their benefits. Regardless of what type of member- 
ship you choose, please know that each and every member is 
a valued member. 

Forth Interest Group Membership Levels 
Standard Membership, $45.00 per year 
(non-U.S. addresses add $75.00) 
Benefits: 

One-year subscription to Forth Dimensions, FIG'S 
bi-monthly magazine 
10'W) discount on all publications and products 
Full access to FIG site on World Wide Web, including 
access to Special Interest Groups on the members-only 
Page 
e-mail forwarding service 

Benefactor Membership, $125.00per year 
Benefits: 

All the benefits of Standard Membership, plus 
Special listing in Forth Dimensions as a Benefactor Member 
First Class postal delivery of Forth Dimensions 

Company/Corporate Membership, 5 125.00 per year 
Benefits: 

All the benefits of Standard Membership, plus 
Five copies of each issue of Forth Dimensions sent First 
Class postal rate, for employees to share. 
Fifty-word "Corporate Member" listing in Forth Dimen- 
sions to describe your products and services. 
Corporate Member Advertising Rate sheet for Forth 
Dimensions. 
Corporate Members listing on the Forth Interest Group 
home page and a link to  your Web site. 

Library Membership, $125.00 per year 
Benefits: 

All Standard Membership benefits, plus: 
An extra set of the year's Forth Dimensions (six issues) at 
the end of the publishing year. 
A copy of the FORML Proceedings, the written record of 
each year's FORML Conference. 
Link to your Web site from the Forth Interest Group's 
home page. 

We are also in the process of changing the way our mem- 
bership information database is used. More and more, we are 
trying to obtain current e-mail addresses. It would be help- 
ful-if you haven't received e-mail from the FIG office before 
or if you've recently changed your e-mail or forgot to tell 
us-to send us an update. Doing this will help us to  increase 
the range of services we can provide to  you. 

For example, in the near future (I'm not  sure exactly how 
near that will be) we hope to automate our membership re- 
newal date reminders, for those of you who have Internet 
access. Getting renewals in a timely fashion helps us to keep 
Forth Dimensions coming to you uninterrupted. It will be cru- 
cial to have current e-mails (if you have e-mail) to be able to 
do this. If you don't have e-mail, not to worry: we will still 
send out hard copy reminders. 

Special lnterest Groups 
Here is a list of the current SIGs available to  you: 
fig-camel f i g - ~ ~ g m ~  
fig-games fig-robotics 
fig-linux fig-safety 
fig-mops fig-win32for 
fig-palmtops form120 
fig-pilot 

As a member in good standing, you can have your e-mail 
linked to any of these mailbox discussion groups. They are 
established for your use, and are an excellent way to meet 
and share information with those who have the same "spe- 
cial interests." 

Here's how to join a Special Interest Group: 
1. Go to the FIG home page at http://www.forth.org 
2. Click on the link for the Special Interest Group mail 

servers 
3. Click the box next to the group(s) you would like to join 
4. Fill out the form with your name, FIG member number, 

and 
e-mail address 

5. Click the button that says, "Join SIGs" 

After your request is sent, you will be added within the 
next day or so. We feel this is an exciting new service. Is there 
a Special Interest Group you would like to  see added? Let us 
know, we're here to serve you. 

FORML 
This year's FORML Conference will be our 20th! Already 

we have participants giving us titles for the talks they are 
planning on presenting. As we get closer to  November, more 
information will be available (or you can sign up for the SIG 
FORML20@forth.org and have up-to-date information). Our 
editor, Marlin Ouverson, has agreed to be the Program Chair 
this year, and Bob Reiling is FORML's Director. With your 
participation, it's guaranteed to be the best FORML ever! 

A change that was implemented last year, and that we 
would like to continue this year, is the availability of increased 
financial sponsorships for FORML. Last year, we had three 
sponsors: FORTH, Inc. was a Bronze Sponsor; John D. and Jae 

Continued on page 5 



Stack ~ymnastics Made Easy 
by Ronald T: Kneusel 
Forth's stack nature is one of its strong points, but manipulating a large number of stack items can be 
somewhat difficult with traditional stack words. What is described here is based on a similar con- 
struct found in a Forth-ish programming language the author saw a number of years ago, and makes 
complex stack manipulations very easy. 

Building a Remote Target Compiler 
by Dave Taliaferro 
This represents the culmination of this three-part series about remote target compilation. A remote 
Forth target compiler runs on an embedded development host machine and allows interactive pro- 
duction of executable Forth and assembler routines for a target microprocessor. As keyboard defini- 
tions or source files are interpreted by the host Forth, the resulting code and data is transparently 
uploaded to the target for immediate testing and further programming. 

Mushroom Identification 
by Charles Samuels 
The plan was to allow users to point and click to describe an unknown mushroom to the program, 
and to get an identification. But the author had not done any serious programming for the past 12 
years, and Windows had passed him by. So he had to create a serious data set and catch up on Win- 
dows programming. With LMI's WinForth and a third-party app to help with the interface, he devel- 
oped what he hopes will become a commercial success. 

An Extensible User Interface 
byJohnJ.Wavrik 
Interface design, whether graphical or not, deserves far more attention that it usually receives. It is, after 
all, how most others will experience-and, hopefully, use-our code. The author shows his research 
work to non-programmer mathematicians and students, and an obscure interface would result in even 
greater obscurity for his subject material. Here he provides his command-line interface tool. 

Runstk - Stack Utility 
28 by Warren Heath 

This text editor allows the display of the data stack symbolically anywhere within a word shown on 
the display. It allows the safe virtual running of source code, and can also automatically check cumu- 
lative stack effects against the given stack picture for the word. It can put the cumulative stack picture 
into the source for documentation, and can also show the stack picture of any word in the system. 

- 
D E P A R T M E N T S  

2 OFFICE NEWS 

4 EDITORIAL 
Around the world 

5 LETTERS 
Why is Forth not more popular? 

8 FORTH ON THE WEB 

32 NEW PRODUCT ANNOUNCEMENT 

3 2 STANDARD FORTH TOOL BELT 
Character Literals 

33 STRETCHING STANDARD FORTH 
Double-Number Arithmetic 

3 5 SPONSORS & BENEFACTORS 

Forth Dimensions XIX.6 3 



- - - 7 

Forth Dimensions 
Volume XIX. Number 6 

tional Forth community! 
We cannot ignore Forth and the Forth users who happen to live on the other side of 

some geographical divide or political boundary. Some of them are doing exciting Forth 
research (albeit sometimes documented in a language we do not read well), while others of 
them are reminding us how to communicate Forth to the newly initiated; and still others 
are re-discovering Forth's strengths in resource-constrained environments, something on 
which we who earn a living from this language (or hope to) might capitalize. 

On a more purely human note, of course, we are always happy to find common interests 
with those from differing circumstances and cultures. We are strengthened by diversity, 
even while we appreciate our differences. 

Forth Dimensions invites written contributions from all Forth users, but particularly re- 
minds our international readers that we would like to hear from them. And the FORML 
Conference this year (see the back cover) would welcome more international participants. 
It is this Conference's 20th anniversary, so we hope you will come both to share in the 

Around the World 

, 

technical program and to celebrate with us! 
-Marlin Ouverson, Editor 

March 1998 Apr~l 

Publ~shed by the 
Forth lnterest Group 

Ed~tor 
M a r l ~ n  Ouverson 

That Forth is an international phenomenon is taken for granted by everyone. Major 
conferences have been held in several European countries and in Australia, and a formi- 
dable technical troupe visited Forth sites in China some years ago. There is a Forth web site 
in French, and an interesting Remote Experiment Lab in Brazil that lets web browsers ex- 
ecute their code remotely on an 8051 microcontroller; it uses CamelForth by Brad Rodriguez 
(a Canadian), and it isn't a net-based simulation. There is a considerable amount of Ger- 
man Forth information available, including a content-rich magazine, thanks to the long- 
standing efforts of Forth experts in that country. The U.K. is home to several Forth institu- 
tions and many Forth users, and to another admirable journal, Forthwrite, some of whose 
contributors have written for our own publication (and we hope will do so again!). 

Of course, this cursory look cannot include all our respected readers and authors, from 
The Netherlands, Austria, Switzerland, Mexico, Japan, and other countries where Forth has 
taken root. We salute them all and welcome their continued participation in the interna- 

Would you like to brush up on your German and, at the same time, get first- 
hand information about the activities of your Forth friends in Germany? 

Become a member of the 
German Forth Society 

("Deutsche Forth-Gesellschaft") 

80 DM (50 US-$) per year 
or 32 DM (20 US-$) for students or retirees 

Read about programs, projects, vendors, and our annual conventions in the 
quarterly issues of Vierte Dimension. For more information, please contact: 

Fred Behringer 
Planegger Strasse 24 
81 241 Muenchen 
Germany 

E-mail: behringet3mathematik.t~-muenchen.de 

Circulotion/Order Desk 
Trace Carter 

Forth Dimensions welcomes editorial ma- 
teria1,letters to the editor,and comments 
from its readers. No responsibility is as- 
sumed for accuracy of submissions. 

Subscription to Forth Dimensions is in- 
cluded with membership in the Forth In- 
terest Group at $45 per year (U.S.) $60 
(international).For membership,change 
of addressand to submit items for pub- 
lication,the address is: 

Forth lnterest Group 
100 Dolores Street, suite 183 
Carme1,California 93923 
Administrative offices: 
408-37-FORTH Fax: 408-373-2845 

Copyright O 1998 by Forth lnterest 
Group,Inc.The material contained in this 
periodical (but not the code) i s  copy- 
righted by the individual authors of the 
articles and by Forth lnterest Group, Inc., 
respectively.Any reproduction or use of 
this periodical as it is compiled or the 
articles, except reproductions for non- 
commercial purposes,withoutthe writ- 
ten permission of Forth lnterest Group, 
Inc.is a violation of the Copyright Laws. 
Any code bearing a copyright notice, 
however,can be used only with permis- 
sion of the copyright holder. 

The Forth lnterest Group 
The Forth lnterest Group is the associa- 
tion of programmers, managers, and 
engineers who create practical, Forth- 
based solutions to real-world needs. 
FIG provides a climate of intellectual 
exchange and benefits intended to as- 
sist each of its members. Publications, 
conferences, seminars, telecommuni- 
cations,and area chapter meetings are 
among its activities. 

FORTH DIMENSIONS (ISSN 0884-0822) 
is published bimonthly for $45/60 per 
year by Forth lnterest Group at 1340 
Munras Avenue, Suite 314, Monterey 
CA 93940. Periodicals postage rates 
paid at Monterey CA and at additional 
mailing offices. 

POSTMASTER: Send address changes to 
FORTH DIMENSIONS,100 Dolores Street, 
Suite 183,Carmel CA 93923-8665. 

- - - 

4 Forth Dimensions XIX.6 



Why is Forth not more popular? 
The editorial in the JanuaryIFebruary issue posed the ques- 

tion "...why is Forth not more popular?" I would like to ad- 
dress this issue, at least in the Windows arena. First we have 
to realize that there are at least two types of people who use 
programming languages: the professionals and laymen. For 
every professional programmer, there are probably 1,000 
people who program to solve specific tasks related to their 
profession. I belong t o  the  latter group, who are only 
interested in solving the problem in the fastest way possible. 

Computer hardware has made enormous advances in the 
last 15 years, but software development is still in the dark 
ages. Changes in computer languages and operating systems 
have primarily made them more complex and difficult, espe- 
cially for the non-professional or occasional programmer. 

What is needed is a programming application (PA) where 
GUIs can be used to  create complex programs. This idea is 
used to some extent in some of the web-page creation pro- 
grams and in Borland's Resource Workshop. 

Drag-and-drop of mouse-selected objects can create com- 
plex dialogs, menus, and display items. Selection of such ob- 
jects in the run-time program could execute Forth words or 
display other objects or windows. The programming applica- 
tion should hide the complexity of the operating system and 
handle all the mundane garbage. The end product of the 
PA would be an executable file of minimal size. 

A well-designed PA could make creating Windows appli- 
cations simple. I am a firm believer in the idea that a better 
mousetrap sells. Forth could leapfrog ahead of other program- 
ming languages by going after those 1,000 programmers who 
largely have been abandoned. 

Charles Samuels 
fungus@gte.net 
http://www.alaska.net/-arktika/discover.html 

m Super-efficient implementation . Easy to add DLLs and to call 
for speed (32-bit subroutine- DLL functions 
threaded, direct code expansion) DDE client services for inter- . Full GUI advantages (like drag- application communication 
and-drop editing; hypertext . Files and blocks supported 
source browsing; visual stack, . S~mple creation of windows, 
watchpoints, and memory win- menus, dialogs, etc. - no 
dows) but retains traditional third-party tools needed 
command-line control and tools . Flexible, extensible access to 

I This classic is no longer out of  print! 

Office News, continued from page 2 
H. were Silver Sponsors; and Taygeta Scien- 
tific was a Silver Sponsor. Lockheed-Martin 
was an equipment contributor. 

We would like to see more sponsors for 
our 20th year! If you are interested in being 
a Bronze, Silver, or Gold Sponsor, or have 
equipment and/or services you would like 
to offer, please contact the office and we 
will give you the details. 

As always, together we make a difference. 

Cheers, 

Trace Carter 
Forth Interest Group 
100 Dolores Street, Suite 183 
Carmel, CA 93923 

, office@forth.org 

Poor Man's Explanation o 
Kalman Filtering 
or, How I Stopped Worrying and 
Learned to Love Matrix Inversion 

by Roger M. du Plessis 

$ 1  9.95 plus shipping and 
handling (2.75 for surface US., 
4.50 for surface international) 

You can order in several ways: 
can call our 24-hour message 

e-mail: kalman@taygeta.com line at 408-641 -0647. For your 
fax: 408-641 -0647 convenience, we accept Master- 
voice: 408-641 -0645 Card and VISA. 
mail: send your check or money order in U.S. dollars to: 

Taygeta Scientific Inc. 1340 Munras Avenue, Ste. 314 Monterey, CA 93940 

Forth Dimensions XIX.6 5 



r ---- - 

Stack Gymnastics Made Easy 

6 Forth Dimensions XIX.6 

Forth's stack nature is one of its strong points, but ma- 
nipulating a large number of stack items can be somewhat 
difficult with traditional stack words. What is described here 
is based on a similar construct found in a Forth-ish program- 
ming language I saw a number of years ago, and makes com- 
plex stack manipulations very easy. 

The complete Stacker program is found in Listing One. 
This version is for Pocket Forth on the Macintosh. It is meant 
for use within a colon definition to generate a specific stack 
arrangement based on a given resequence string. For example, 
the following definition takes the top three stack values and 
removes the one second from the top: 

: example1 ( a b c -- b c ) 

abc ==> bc ; 

Of course, this could be done just as easily with a rot 
drop sequence but what if, instead, we needed something 
like this: 

: example2 ( a b c d -- c a d b ) 

abcd ==> cadb ; 

Here the traditional stack-manipulation words would be 
cumbersome. The Stacker notation, which mirrors the stack 
comment, makes this a much simpler task. Of course, there is 
a price to pay, which will become clear below, but it is gener- 
ally a small one. 

Stacker works as an immediate word, executing as soon as 
it is encountered. When ==> is executed, the next token is 
read as the resequence string, which must be in upper case. 
Here, Pocket Forth "uppercases" for us. It then compiles first 
a call to >store to place the stack items into the storage ar- 
ray, and then compiles as many calls to @store as are needed 
to reproduce the resequence string. Note that Pocket Forth 
uses r where most other Forths would use i. For example, 

: example3 ( a b c -- b c a ) abc ==> bca ; 

is compiled as, 

: example3 ( a b c -- c b a ) 

abc >store \ top three stack items to 
\ the array 

l @store \ fetch the second item, "b" 
2 @store \ fetch the third item, "c" 
0 @store ; \ fetch the first item, "a" 

This is where the price has to be paid. Using Stacker re- 
sults in code that is slower than the traditional stack words. 

I 

When to use Stacker and when to use the faster stack words is 
a judgment call. Naturally, a complex stack word used only 
once will result in a negligible increase in execution time. 

Looking at Listing One shows lines three through ten de- 
fining simple constants. Stacker expects the top stack item to 
be the number of stack items to be resequenced. The con- 
stants makes the code easier to read. Lines 12 and 13 define 
storage for the stack values, here set for eight 16-bit value, 
and for the resequence string, which may be up to 80 charac- 
ters long. Note that this version includes no  error control; 
nothing stops the user from referencing array cells that aren't 
valid, as in abc ==> abf. Lines 15-18 define access words 
for the storage array. Stack values are placed in the array so 
that the highest stack item is the highest array element. This 
makes is easier to convert a character of the resequence string 
into an array index. 

The main word, ==>, is defined in lines 22 through 28. It 
is an immediate word, because we want it to execute while in 
compile mode. Line 23 gets the resequence string text and 
moves it to the text$ buffer. Token is predefined in Pocket 
Forth; it gets the next token from the input stream and places 
it at here as a counted string. This text is then copied to the 
text$ buffer to prevent it from being overwritten as words 
are compiled into the dictionary. Line 24 contains the cryp- 
tic phrase, 

[ ' >store literal ] compile 

which takes the execution address of >store and compiles it 
as a literal into the definition of ==>, which is only being 
defined at this point. When ==> is executed as an immediate 
word while defining a new word, the execution address of 
>store will be compiled as a subroutine call into the new word 
being defined. Pocket Forth's use of compile is non-standard. 
This phrase appears again in line 26 to set up the call to @store 
necessary to re-load the storage array elements. Specifically, 
lines 25-27 set up the loop which places repeated calls to 
@store to retrieve the appropriate array elements according 
to the resequence string. It loops over the resequence string 
elements, turning them into indices into the storage array, 
and compiles them as literals into the word being defined. 
Finally, line 28 ends the definition and marks ==> as an im- 
mediate word. Lines 32 through 37 serve as examples of how 
one could redefine the traditional stack words using Stacker. 

Stacker is small and easily added to any program. I t  makes 
the sometimes annoying task of stack manipulation just a 
little easier. Additionally, Stacker can be added to virtually 
any Forth system. This, of course, will surprise no  one who is 
familiar with the power of Forth. 



Listing One 

\ Stacker - Stack manipulator 

1 constant a \ constants to make things pretty 

2 constant ab \ really number of stack items to fiddle with 

3 constant abc 

4 constant abcd 

5 constant abcde 

6 constant abcdef 

7 constant abcdefg 

8 constant abcdefgh 

CREATE store 16 allot \ storage for stack values (8 max) 

CREATE text$ 80 allot \ storage for token text 

: ) ( n -- addr ) 2* store + ; 
: @store ( n -- v ) ( )  @ ; \ get nth 

: >store ( a b . . . n -- ) \ put stack values in storage, in order 
1- 0 swap DO r ( )  ! -1 +LOOP ; 

\ Use this only in a colon definition 

: ==> ( -- ) \ get a resequence string and compile appropriate words 

token here text$ here c@ 1+ cmove \ save token text 

[ ' >store literal ] compile \ get values 

text$ text$ c@ 1+ + text$ I+ DO 

r c@ 65 - literal [ ' @store literal ] compile \ put a value 

LOOP 

; IMMEDIATE 

\ Standard stack words re-defined with ==> 

: swap. ( a b -- b a ) ab ==> ba ; 
: dup. ( a -- a a ) a ==> aa ; 
: over. ( a b -- a b a ) ab ==> aba ; 
: nip. ( a b -- b ) ab ==> b ; 
: rot. ( a b c -- b c a )  abc ==> b c a ;  
: 2dup. ( a b -- a b a b ) ab ==> abab ; 

Forth Dimens ions  XIX.6 7 





- 

Building a Remote Target Compiler 1 
At long last we reach the apex in this three-part expose 

that rips the lid off the obscure yet powerful embedded de- 
velopment technique known as remote target compilation. 

In the first article (FD XIX.3), we observed the CREATE 
DOES> mechanism for implementing defining words which 
can generate classes of child words with identical run-time 
behavior and variable data attributes. In the second article 
(FD XIX.5), it was seen that defining words can easily spawn 
data-compiling child words, and when these words are fed 
into the Forth interpretation stream a custom assembler or 
compiler emerges in a few lines of code. 

A remote Forth target compiler runs on an embedded de- 
velopment host machine and allows interactive production 
of executable Forth and assembler routines to a target micro- 
processor. As keyboard definitions or source files are inter- 
preted by the host Forth, the resulting code and data is trans- 
parently uploaded to the target for immediate testing and 
further programming. 

In this article, I will demonstrate how a remote target com- 
piler can be built using defining words, the Forth interpreter, 
and a few other nifty tricks. Since we have already covered 
the necessary groundwork, this piece will first explore the 
basic elements of remote Forth target compilation, then will 
describe a 56002 DSP target compiler I wrote using a handful 
of Forth concepts that collectively do something amazing- 
interactively compile and execute code from one architec- 
ture to another. These ideas are merely an extension to the 
last article, "Easy Target Compilation." 

Because I used a standard macro assembler to write the 
56K Forth, my target compiler had some interesting twists to 
true Forth target compilation, which uses a Forth assembler 
to generate the target nucleus. In addition to producing a 
target Forth kernel, the macro assembler provides a means 
for the host Forth to "clone" the target Forth. Using a listing 
of the target Forth code addresses generated during the 
nucleus assembly process, a new dictionary is created on the 
host that enables the interactive development of Forth and 
assembler routines on the target. 

This technique makes remote target compiler construc- 
tion accessible to the pedestrian Forth programmer. Public- 
domain Forths exist in assembly form for most processors; 
coupled with any host Forth on their favored operating sys- 
tem, the development environment described here can be 
easily duplicated. 

Some basic concepts of 
remote Forth target compilation 

A resident ~ o r t h  contains the Forth interpreter and com- 
piler entirely on the native processor the Forth is running 
on. In the original eForth for the 56002, the target contained 

an interpreter, compiler, and name dictionary, in addition to 
the target-executable code dictionary. This consumed about 
9 K  processor words in the 56002. The goal of the remote tar- 
get compiler concept is to move the Forth interpretation and 
execution tasks from the target microprocessor to the host 
computer. This leaves the minimal executable target Forth 
system needed to create and execute new applications inter- 
actively, and to act as an operating system for applications 
when the host computer is removed. 

In other words, the embedded target includes a run-time 
interpreter to execute the application Forth source routines 
but does not include the interactive Forth interpreter/com- 
piler. The interactive development occurs on the host ma- 
chine; a run-time interpreter and the Forth kernel words on 
the target communicate with the host during development 
and allow for immediate testing of routines. When develop- 
ment is complete, a binary image is produced for ROMing or 
loading on the target. 

This opens up interesting possibilities for embedded de- 
velopment, for now the target system's behavior can be con- 
trolled by ASCII text scripts interpreted on the host Forth. 
Both host and target code execution and compilation can 
occur within the same source code scripts. 

Forth exhibits metacompilation, the ability to reproduce 
itself on the machine on which it is running or on another 
computing system. For a Forth to regenerate itself to a differ- 
ent architecture, a target assembler implementing the target's 
instruction set is written (see the preceding article, "Easy Tar- 
get Compilation"), which is used to construct a Forth virtual 
machine for the target, which is itself used to build a high- 
level Forth model. This compilation process generally takes 
place in the host Forth's memory, producing an image of the 
target Forth that can be loaded into the target memory for 
execution. 

In the 56002 target compiler, metacompilation is used to 
"clone" the target nucleus, which already exists in the form 
of the eForth macro assembly source code. The tricky task of 
cross-metacompiling the host Forth to a target architecture 
Forth is eliminated. The assembler source provides the ad- 
dresses for all the words in the target Forth's dictionary, which 
are used to create a target clone dictionary on the host. (This 
new target dictionary may be identical to the host's own Forth 
dictionary; depending on the state of target compilation, ei- 
ther dictionary may have the correct homograph.) 

Metacompilation becomes simple, because now we merely 
use CREATE DOES> to construct a defining word that creates 
host clones for each target word, and then use [ to interpret 
those words. With the addition of some serial communica- 
tion routines and the embedded Forth virtual machine, re- 
mote target compilation is easily achieved. 

Forth Dimensions XIX.6 9 



A minimal target Forth system would contain the core 
primitives (about 32 in eForth), and whatever additional words 
are needed to support the application. In a well-tuned appli- 
cation, this could amount to a few hundred bytes of code. 
Each assembly primitive consists of a few lines of machine 
code that implement some operation in the Forth virtual 

of the inner interpreter, called  LIST, and the core primi- 
tives that implement the stack-based virtual computer. 

In the eForth assembly source code, macros are used to 
create a linked list of the Forth dictionary. The macros pack- 
age each definition with a sequence of interpreter instruc- 
tions that keep the chain of threaded execution resolved. 

machine, such as pushing a data item to the stack or trans- These same macros also define the address for each word in 
mitting a byte out the serial interface. 1 the Forth dictionary, and links to the next and previous word. 1 - .  

One important primitive provides a threading mechanism, 
called the inner interpreter, that executes the list of addresses 
that comprises a high-level Forth definition. This primitive 
can be called through a communication routine to remotely 
execute target Forth definitions. 

Thus, the component parts of a generic remote target com- 
piler include: 

A target Forth nucleus consisting of the inner interpreter 
and core primitives. 
A host ~ o r t h  for target program development and file 
management. 
The host Forth target compiler-a program running on 

The address of an executable Forth word (routine) is called 
the word's code address. 

A high-level Forth word in memory is, basically, a list of 
data and/or the code addresses of other Forth words that make 
up the definition. 

The code address, the first address in this list, contains a 
jump to the Forth inner interpreter, ~ O L I S T ,  the mechanism 
for executing the list of data and code addresses that make 
up the word being executed. 

To boot e ~ o r t h  on an embedded micro, the first instruc- 
tions after hardware initialization set up the Forth VM by 
initializing the Forth stack pointer, return pointer, and the 

the host that interactively compiles executable code into 
the target. 
Host and target communication routines; how one Forth 

target compiler development system universe. 

inner interpreter pointer. T; initiate the ~ o r t h  machine, the 
code address of a high-level Forth word is copied into the 
interpreter pointer register. The code then jumps to the loca- 

I talks to another. 

1 Figure One gives a celestial representation of the remote 

Simple example: 
A remote Forth target compiler for the 56002 DSP 
The target Forth nucleus-56002 eForth 

The Motorola 56002 is a 24-bit digital signal processor (DSP) 
with a Harvard architecture that can execute memory opera- 
tions in parallel. The multiple address registers and three 

tion pointed to by the register, which for everyhigh-level (or 
colon) Forth word, is a jump to ~ O L I S T .  

For an embedded application, the first word may be a con- 

memory spaces allow it to operate on time sequences of input 
samples, the basis of digital filtering and signal processing. 

I ported eForth, by C.H. Ting, to the 56002 by convert- 
ing the MASM 8086 source to Motorola's freeware 56K macro 
assembler. Since eForth and its descendant, hForth, are de- 
signed for porting, the task was pretty straightforward. Imple- 
mentations for a number of microprocessors exist in the 
public domain. 

At reset, a microprocessor fetches its starting code loca- 
tion from a specific hardware address, called the reset vector. 
It then jumps to that location and begins executing what- 
ever instructions are there. From this raw beginning, the 
system's hardware configuration is set up, after which the 
application code is started. On even the simplest architec- 
ture, we can breathe life into silicon by having a Forth virtual 
machine awaiting the execution path of the microprocessor 
after hardware initialization. For 56002 eForth, this consists 

trol program of some sort. In a resident eForth, the first Forth 
instruction is COLD, which initializes the stack, the TIB, and 
the terminal 110, then enters Q U I T ,  the familiar interactive 
Forth interface, also known as the outer interpreter. 

To use the 56K nucleus in a target compiler system, the 
name dictionary was removed by modifying the assembly 
macros. In the target compiler, we don't need it, since name 
interpretation takes place on the host. Only the code addresses 
are necessary. Most of the words that make up the high-level 
Forth model were also removed, leaving the primitives and 
math words. With the addition of simple communication 
routines, the eForth nucleus becomes fully usable for remote 
target development. 

The hForth host 
The host Forth system used for this project is hForth 86 

by Wonyong Koh of South Korea. This is a public-domain, 
ANS-compliant Forth that runs under MS-DOS. The kernel 
can be adapted to non-DOS x86 systems and other micros as 
well. h ~ o r t h  is a derivative of eForth 86, which was the model 
used for eForth 56-the target kernel. 

Any decent Forth can be used, since the target and host 
do not have to be the same model. For the 68HC11, Pygmy 
would be a good candidate to try this out on, since the regis- 
tered version ($15) comes with a metacompiler, a 68HCll 

10 Forth Dimensions XIX.6 



I 1 When T :  initiates a new target definition, LOCATE ! sets 1 
I 

Host Forth interpretive Figure Two "umbilical compilingWto the target 
[ 5 6 k e 4 t h . a s m  l i n e  1 3 9 1 :  d o L I S T  code add res s :  AOFh TO create new target Forth definitions 
[ 5 6 k e 4 t h . a s m  l i n e  1 6 5 1  : n e x t  code address :  A 1 6 h  interactively, which is a foundation of the 
[ 5 6 k e 4  t h . a s m  l i n e  1 8 7 1  : ? b r a n c h  code a d d r e s s :  A 2 8 h  Forth paradigm, we can co-opt the host 

Forth interpreter and compiler to generate 
... etc. executable code for the target, even if it has 

Forth Dimensions XIX.6 11 

Forth assembler, and serial I/O routines. 

The host Forth remote target compiler-HFTCOM56 
When the 56K target Forth nucleus is assembled through 

the Motorola 56000 DOS assembler, the assembly macros write 
the ASCII names for the Forth words, along with their code 
addresses, to a text file. (See Figure Two.) 

Thus, we have a listing of the 200+ words that make up 
the operating system/language known as Forth, as well as the 
target system code addresses for each word. 

Send in the clones... 
Using the listing from the target56.asm assembly, a Forth 

compiler can be produced by parsing each line for a name 
and code address. A host Forth "clone" definition is created 
with the same name as the target word, and contains the 
code address in the host definition. Listing One (see next page) 
shows the essential target compiler. 

The target compiler reads the listing file and creates an 
executable host "clone" of each embedded target nucleus 
word. Observe the defining word TCLONE in Listing One. 
When this word is executed, it creates a host Forth word with 
a parameter field value that is either a target word code ad- 

1 dress, or the address for the target HERE-the next available 
I dictionary location in the target. The run-time behavior of 

the new child word is defined by TCOMPILE? : 

if the host is in target compile mode: the clone word 
compiles its code address into the host memory target 
image (where a new word is being compiled) 
if the host is in remote mode: the clone word transmits its 
code address to the target for remote execution 
if the host is in host mode: the clone word pushes its code 

1 address onto the host stack 

I The host Forth system has also been modified so that stack 
items entered in the interpreter are either compiled into the 
host target image or pushed onto the target stack, depending 
on the state of the remote flag. 

To clone the target Forth dictionary from the assembly 
listing file, each line of the file is parsed into a buffer, to which 
the string TCLONE is appended. The buffer is passed to EVALU- 
ATE, which performs the normal Forth input stream inter- 

1 pretation. 
We now have one leg of the target compiler-a means 

through TCLONE to create executable clones of the target 
nucleus. The next step is to devise a means to create new 
target routines using the nucleus clones and data in Forth 
definitions. We again use the defining word TCLONE and the 
Forth interpreter to create a target compiler for the target ar- 
chitecture. 

a different architecture. 
When a new target definition is created 

in the host Forth it is umbilical compiled to the target trans- 
parently. This means that the list of target Forth code ad- 
dresses or assembly object code that comprises the new defi- 
nition is linked into the target memory as soon as the defini- 
tion has been correctly entered. The code is now a part of the 
target Forth operating system. 

T : and T ; from Listing One define the rest of the remote 
target compiler. To create a new target word, the user enters 
T : (pronounced "t colon") and the desired name for the new 
word, its definition, and T;  ( "t semi"), which terminates the 
compilation sequence. 

T :  MYWORD TARGETWORD1 . . . TARGETWORDn . . . T ;  

We could have named these routines : and ; because T : and 
T;  reside in a separate dictionary than the Forth dictionary. 

A target definition buffer is created in host memory with 
a Motorola .lod file header and the j m p  ~ O L I S T  opcode. As 
the programmer types existing target word names into the 
host terminal interface, they are executed by the host. On / 
execution, they compile their code addresses into the defini- 
tion buffer. 

When the programmer ends his definition (by typing T ;  ), 
another .lod directive is appended to the host target defini- 
tion image. The image is then transmitted to  the embedded 
target and becomes part of the target Forth. 

A "clone" of the newly defined word is also created at this 
time, and if the host Forth is not in the target compiling state, 
the word can be executed on the embedded target by typing 
its name into the host Forth terminal interface. As more defi- 
nitions are added, the compiled code is appended to the im- 
age buffer. This buffer can be transmitted to the target or saved 
to a DOS .lod file for later use. 

On reset, the target retains the new definitions-this is 
useful in case the programmer locks up the target. With some 
additional programming, new definitions could be written 
into target flash RAM (as on the 56002 EVM)-allowing the 
target to power-on autostart the new Forth application. 

How the target compiler works 
Here again is the essential target compiler : 

: TCLONE 
CREATE , DOES> TCOMPILE? ; 

: T; 
' T E X I T  @ EXECUTE !TCOMPILE DEF>T ; 

/ : T : 
LOCATE ! THERE? TCOMPILE TCLONE 
JMPDOLIST,  [ ] ; 



Listing One 

The essential target compiler source code 

( compile a numeric string into target code space - used to compile 24-bit numbers ) 

( WHERE $numeric count -- ) 

: T-, 
DUP 6 SWAP - > R  ROT R> + 
ROT ROT 
0 DO DUP C@ ROT 2DUP C !  1+ DUP WHERE! \ copy chars into buffer 
SWAP DROP SWAP 1+ LOOP DROP \ and inc WHERE for ea char 
DUP BL SWAP C !  1 +  WHERE! \ insert blank after number 
1 THERE + !  ; 

( compile a 16-bit number into target space ) 

( target code addr -- ) 

: T ,  WHERE? SWAP S>D (d.) T-, ; 

\ ( target code addr -- ) execute target address and get response 
: T@EXEC BASE @ > R  

HEX 
@ SPUSH \ fetch target word code pointer and send to target 
TEXEC I N ? ?  \ get ascii response, if any 
R> BASE ! ; \ restore base 

\ if we are in target compile mode, the word code addr is compiled into the defbuff 
\ else 
\ if we are in REMOTE mode, the word code addr is sent to the target 
\ if we are in HOST mode, the word code addr is pushed on the host stack 

: TCOMPILE? TSTATE I F  
@ \ fetch target word code pointer 
T ,  \ compile into host target space 

E L S E  
REMOTE I F  T@EXEC \ send code address to target and execute 

E L S E  @ \ else push on host stack 
THEN 

THEN ; 

\ compile the opcode for jmp doLIST into target space 
: JMPDOLIST,  WHERE? ' JMP 2@ (d.) T-, ; 

\ the 56k target compiler 

: TCLONE CREATE , DOES> TCOMPILE? ; 

: T; ' T E X I T  @ EXECUTE !TCOMPILE DEF>T ; 

: T :  LOCATE! THERE? TCOMPILE TCLONE JMPDOLIST,  [ ] ; 

12 Forth Dimensions XIX.6 



I 

Forth Dimensions XIX.6 13 

the host's target buffer Listing Two 
pointers. THERE? 
fetches the next avail- : tar9etAlso 
able target code address 
and pushes it on the (dO~bleAls0) \ the normal numeric interpretation routine 
host stack. TCOMPILE 
sets the host to target TsTATE IF \ if we are in target compile mode . . .  
compile mode. When 'doLIT @ EXECUTE \ compile target doLIT 
the code address and 
name string (MYWORD in \ doubleAlso leaves 1 on stack if number is a single 

the example above) are 1 = IF T, \ if single, target compile it 
passed to TCLONE, a ELSE \ if double, target compile it 
new host Forth defini- WHERE? ROT ROT (d. ) T-, 
tion is created whose THEN EXIT 
run-time behavior 
(TCOMPILE?) is to trans- THEN 
mit its code address to REMOTE IF \ if we are in remote mode . . .  
the target, compile it 
into the  host target 1 = IF SPUSH EOT TX \ if single, push on target stack 
definition buffer, or ELSE 
push it to  the  host  (d. ) DPUSH EOT TX \ if double, push on target stack 
Forth stack. THEN EXIT 

At this point, we be- 
gin compiling the new THEN DROP ; 
target word's defini- 
tion-the assembly object code that executes on the target. 
This high-level Forth object code is composed of addresses of 
other target words or literals (embedded numeric values), ar- 
ranged as a list to be executed by ~oLIST, the Forth inner 
interpreter. JMPDOLIST, compiles a jump to doLIST into the 
code address for each new word. 

[ in the T : definition puts Forth in interpretation state; 
that is, it parses the blank-delimited words from the input 
stream and executes them. 

When each clone word entered in a new target definition 
executes, it compiles its code address into the target defini- 
tion buffer. That's all there is to it. 

The compilation is actually finished before the user types 
in T; - notice that, when the user hits CR after entering a 
sequence of literals or previously defined Forth words, the 
system is returned to compile mode by the word ] ("r brack"). 
T; thus appends a code address for EXIT, the target Forth 
primitive that ends a colon definition-the complement to 
jmp doLIST. ! TCOMPILE turns off target compilation so that 
DEF>T can transmit the new definition to the target. 

Now you may be wondering how literals, numeric data 
entered in definitions, get compiled into target code. I won- 
dered myself, as the project deadline loomed. The host Forth 
outer interpreter would have to be changed so that it would 
understand when to target compile numbers. For instance, a 
definition containing hex numbers : 

/ strobe the pins on port B 
T : STROBE-PORTB 

0 PBD C! FF PBD C ! 0 PBD C! T; 

The problem is that, normally, Forth would see the num- 
bers, Oh and FFh, and push them on the host stack, when we 
need them compiled into the target. This level of Forth pro- 
gramming seemed beyond my reach, but luckily I had cho- 
sen hForth, which offered a simple solution (fortuitously de- 
scribed in the distribution readme file). 

During interpretation, when Forth encounters a token it 
first searches the dictionary to find a word match; on failure, 
it tries to convert it to a number. In hForth, the interpreta- 
tion number-conversion routines are vectored in a table. To 
add new number types or to change Forth's behavior with 
numeric input, one merely has to write the handling routine 
and store its address in the interpretation vector table, called 
' doword. 

Listing Two gives a definition that causes hForth to target 
compile literals. 

In a target compiled definition, a literal must end up on 
the target stack when the routine is being executed by the 
target kernel. ~ O L I T  is a target word that extracts a literal 
from the memory location following ~ O L I T  and pushes it on 
the Forth stack. 

To store the address of targetAlso in the interpretation 
table, we simply enter: 

' targetAlso ' doword 3 CELLS + ! 

How the newly compiled word 
is remotely executed on the target 

At the beginning of the colon word is a jump to doLIST, 
which processes the word by threading through the addresses 
(other Forth words) in the definition. If the host is not in 
target compiling mode when a target clone is executed, the 
clone's code address is transmitted to the target instead of 
getting compiled into a new definition. The target system 
has a small monitor routine, affectionately called the mini-  
interpreter, which picks up this code address and passes it to 
~OLIST for execution. Since the mini-interpreter is the first 
address in the threading chain, it is the place execution re- 
turns to when the Forth program (starting from the code ad- 
dress, a high-level word) is finished. 



Communication between host and target 
Target-to-host communication interface 

The embedded target, in addition to containing th  
ecutable Forth nucleus words and the inner interpreter mr 
nism, has a small assembly-level routine (the mini-interpi 
for communicating with the host computer. This routinc 
ognizes two commands: 
1. push a 24-bit value (data or address) to the target FOI 

stack 
2. execute the target Forth word code address which is I 

the target Forth stack 

This is all that is required for complete hostltarget 
munication and control, since the routines for program 
ing, character 110, etc. are all part of the target Forth nuc 
and are executed by placing their code addresses on the 
and remotely executing them through the mini-interp 
(See page 16.) 

Listing Four is the mini-interpreter assembly source I 
The mini-interpreter employs a jump table to  retriev 

command vector to execute, and recognizes single-byte I 

commands in the range 10h - 1Fh. This allows for dum 
minal testing of the interface. Currently, three comn- 
are in the table, with room for 13 more. Character 110 i! 
tored to remove dependence on the serial port for hos 
get control. The three commands are: 

"T push data to stack (must be followed by 04h - EOT) 
"U execute address on stack 
"V jump to resident Forth 

To insert a new command, the address of the desirec 
routine is written into the table. Pressing the correspor 
terminal key will then execute the function. Usually, th 
nel code would be re-assembled, although it is possit 
modify the interpreter while it is RAM. 

Host-to-target communication interface 
On the host side are the Forth routines to commur 

with the target. Given the two commands required b 
target, the host Forth can be modified to transmit coc 
dresses and stack elements to the target. The host can 
late target routines by having the host "clones" transmit 
code addresses to the target stack and executing them. 

Here is the Forth source code for pushing data to th 
get and executing target routines. TX and RX are the PC 
port character transmit and fetch routines. EOT sign2 
end of transmission to the target mini-interpreter. 
\ s e n d  a n  a s c i i  n u m e r i c  s t r i n g  t o  t a r g e t  
\ ( a d d r  c o u n t  -- ) 

: TYPE>T 
? D U P  I F  0 DO DUP C@ TX CHAR+ LOOP THEN 1 

\ s e n d  a d o u b l e  t o  t a r g e t  ( u p  t o  24 b i t s )  
: D>T ( d . )  S P I L L  TYPE>T ; 

\ s e n d  a n  a s c i i  s t r i n g  t o  t a r g e t  
: $ > T  S P I L L  COUNT TYPE>T ; 

1 \ s e n d  a  s i n g l e  t o  t a r g e t  ( u p  t o  1 6  b i t s )  
: S > T  S>D D>T ; 

\ p u s h  a  1 6 - b i t  s i n g l e  number t o  t h e  t a r g e t  s t a c k  
: SPUSH "T TX S > T  EOT TX ; 

e ex- 
xha-  
peter) 
2 rec- 

.th 

on 

com- 
load- 
:leus, 
stack 
reter. 

code. 
e the 
$SCII 
b ter- 
~ands  
j vec- 
tltar- 

I sub- 
lding 
e ker- 
)le to 

licate 
y the 
le ad- 
emu- 
their 

le tar- 
serial 
11s an 

IRO P 

\ p u s h  a  2 4 - b i t  d o u b l e  number t o  t h e  t a r g e t  s t a c k  
: DPUSH "T TX D>T EOT TX ; 

\ 

\ 

\ 

, 

1 

i 

\ e x e c u t e  w o r d  o n  t a r g e t  s t a c k  
: TEXEC "U TX ; 

From these primitives, the rest of the host-target interac- 
tion is established. 

A real-time linker? 
I didn't have time to write a Forth assembler for the 56K, 

but wanted to demonstrate that the system could interac- 
tively target compile assembly object code. To do this, I came 
up with a host word : ASM5 6  that shells from hForth to DOS, 
where the assembly module is written and assembled, and 
then reads the resulting object code file into hForth and links 
it as a Forth word into the target. 

To create an assembly language routine that integrates di- 
rectly into the target kernel, the user defines a new Forth word 
with the desired name (e.g., : AsM5 6  FIRBLKl.  ASM). 

On entering the new definition name, the host Forth: 
1. Fetches the current target code pointer. 
2. Opens an assembler template file containing macros and 

hardware equates pertinent to the target system 
memory map. 

3. Copies the template file, and the current target code 
pointer, to a file named in the definition (e.g., 
FIRBLKl .ASM). 

4. Shells to DOS. 

At this point, any DOS editor can be used to add code into 
the new file, which has the necessary pointers for the assem- 
bler to locate the code correctly. After the code has been ed- 
ited, assembled, and converted to a COFF format file (.lod 
file) without errors, the user exits back to the host Forth (type 
c : > e x i t ) .  

When the host Forth is returned, it "clones" the assembly 
object code into the host target dictionary, and transmits the 
.lod file to the target. The new executable assembly object 
code exists on the target, and can be executed by typing its 
name into the host Forth interpreter while it is in REMOTE 
mode. It can also be used with other target Forth words in a 
new T : definition. 

This entire process is transparent to the user, with the ex- 
ception of the editinglassembling loop. : ASM5 6  thus performs 
the duty of a real-time linker by allowing new assembly object 
code to be located into the target Forth operating system. 

Listing Three is a screen dump, with additional comments, 
of the shell process.. . 

Parting thoughts 
To execute filter code on the DSP, the full address register 

must be available. The 56K nucleus contains a mechanism to 
push the Forth virtual machine context and enter assembly 
object code, then return to  Forth. Thus, filter routines called 
as high-level Forth words will run at assembly speed. 

The different concepts that made the compiler work are 
fertile ground for additional embedded tool building using 
Forth, and are worthwhile topics for the student or researcher. 

Forth Dimensions XIX.6 



Listing Three I 
:ASM56 FILTER1.ASM 
Now edit your new assembly source file : FILTER1.ASM 
. . .  and run it thru asm56000.exe . . .  
press a key to shell to dos 

\ at this point edit the file filterl.asm, assemble, and convert to a .lod file 

c:> code filterl \ this batch file runs filterl.asm thru the assembler 

c:> fix filterl \ this runs the strip and lod utilities 

c:> exit \ exit DOS to hForth.. . 

Target word name : FILTER1 
.ASM file : FILTER1.ASM 
. LOD file : FILTER1 . LOD 

\ FILTER1 is now part of the target vocabulary and can be executed by entering 
\ its name into hForth 

WORDS 

FILTER1 CTOP COLD :CODE RESET GETLINK SETLINK 'BOOT WARMhi hi ?CSP !CSP t.S 
tDUMP X Y P PMEM YMEM XMEM - t. U. U.R .R PACE EMIT KEY ?KEY D2F STR2FRAC 
FRACTABL DECPNT tDECIMAL tHEX FILL MOVE CMOVE @EXECUTE HERE 

In a professional environment, one would want to opt for 
a complete development system from a Forth vendor. A prob- 
lem is that these packages are priced out of the reach of the 
curious, and therefore limit Forth's exposure. (But they still 
cost less than comparable embedded C development systems. 
A typical C cross-compiler costs on the average $1 - $2K, and 
remote source-level debugging tools range from $750 - $20K). 

In my latest job, I have been using VxWorks, a pricey, em- 
bedded UNIX-style operating system running under a UNIX 
or Windows host. It includes cross-compiling, source-level 
debugging, and dynamic linking, among other features. The 
host-side development tools are written in the Tcl scripting 
language, which has parallels in Forth. 

The remote target compiler described in this article shares 
some of these features: cross-compilation, dynamic linking, 
and a scripting interface. The target nucleus and mini-inter- 
preter could easily be extended to implement a C or assem- 
bly remote source-level debugger for embedded micros, which 
could be used with the numerous C cross-compilers. 

Given Forth's power, the scope of such a project is fairly 
small. If an embedded C remote source-level debugger writ- 
ten in Forth were made freely available to the masses of 
microcontroller programmers, Forth could gain greater ex- 
posure, and (I hesitate to be so bold) help return Forth to its 
rightful status as the language of choice for embedded pro- 
gramming. 

Forth Dimensions XIX.6 

Support for older systems 
Hands-on hardware and software 

Computing on the Small Scale 
Since 1983 

Subscriptions 
1 year $24 - 2 years $44 

All Back Issues available. 

TCJ 
The Computer Journal 

P.O. Box 3900 
Citrus Heights, CA 95611 -3900 
800-424-8825 / 91 6-722-4970 

Fax: 91 6-722-7480 
BBS: 91 6-722-5799 

15 



/ Listing Four 

1 Mini-interpreter assembly code 

;; the mini-interpreter 

; init forth vitual machine 
; synchronize with host 
; vm - init : clear sp 

init forth virtual machine 

; cmdloop : move #cmdtable, rl 
inchar? 

no -> jmp cmdloop 

Yes 
hi nibble == I? ; valid commands 10h-1Fh 

no -> jmp cmdloop 

Yes 
mask low nibble -> nl 
p: (rl+nl) , rO 
jmp rO ; execute command 

jmp cmdloop 

; set up forth virtual machine 

j sr tack 
move #0, sp 
move #SPP,r7 
move #RPP, r6 

; ack forth word executed 
; clear the stack 
; init vm 

; To exit a primitive to NEXT or a colon to EXIT need to have loaded r5, the Forth 
; instruction pointer, with address of vm-init - the forth virtual machine 
; initialization. 

I move #vm-init, r5 

cmdloop move #cmdtable, rl 
clr a 

I j sr getchar 

gotchar move a, YO 

move #>$01,x0 

rep # 4 
lsr a 

CmP xO,a 
j ne cmdloop 

move yo, a 
move #>$000f,xl 
and xl,a 
move a, nl 

noP 

; character in a0 

; save input character 

; test if high nibble == 1 

; no - not valid character 

; yes - move low nibble into no 
; mask out high nibble for table index 

16 Forth Dimensions XIX.6 



move p: (rl+nl), rO ; set up mini-interpreter command jump 

j mp r 0 ; execute mini-interpreter command 

j mp cmdloop 

;; mini-interpreter command routines 

; valid commands : (only two needed for forth kernel interface . . .  ) 

tpush - push data to target stack 
execute - execute address of forth word on target stack 

tpush 

execute 

eforth 

j sr indata ; get up to 6 ascii chars and convert to number 
move b,x:- (r7) ; push the number on forth stack 
1 mp cmdloop ; return to mini-interpreter 

move x: (r7) +, r4 ; pop code address off forth stack 

nap 
j mp (r4) ; execute forth word 
j mp cmdloop ; return to mini-interpreter 

j mp eFORTH ; go start resident eForth 

;; mini-interpreter command table 

; Command table interpreter jumps on control characters. "P is a problem 
; since it locks up hForth (print command). So we are starting with "T thru 
; "Z as usable control chars in DOS, which puts the entries at location 4 thru 
; 10 ; ascii 14h thru 1Ah. Empty positions in table vector to cmdloop. 

cmdtable d c 
dc 

cmdloop 
cmdloop 

cmdloop 
cmdloop 
tpush 
execute 

eforth 
cmdloop 
cmdloop 
cmdloop 
cmdloop 
cmdloop 
cmdloop 
cmdloop 
cmdloop 
cmdloop 

; 0 10h - "P 
; 1 llh - "Q 

Forth Dimensions XIX.6 



: show-about 
" about" [ ' 1  about-dialog loaddlg drop ; 

In 1996, I retired (for the second time) and, with time on 
my hands, decided to create a computer program to identify 
mushrooms to the species level. Over the years, I had had 
some experience designing specialized database programs and 
was interested in the possibilities of using the power of com- 
puters to identify wild mushrooms. 

My original plan: obtain a digital data set of mushroom 
species and their characteristics from the U.S. government, 
or from university researchers; create a way for a user to enter 
similar data into a computer; and create a search engine to 
compare the two data sets. Estimated time to completion: 
two or three months, tops. 

Well, that pipe dream lasted about as long as it took to 
make a few calls and search the internet. There is no  such 
data set, at least not that I could find. Being brave and more 
than little stupid, I decided I could create this database. I mean, 
how hard could it be? Right? I won't bore the readers with 
the effort it took to research and record identification char- 
acteristics for 1,000 species of wild mushrooms, the arbitrary 
number I had selected. However, I will say that it took months. 

The next step was to create the data entry program. The 
plan was for the user to point and click to  describe the un- 
known mushroom to the program. I had not done any seri- 
ous programming for the past 12 years, and Windows had 
passed me by. So, not only did I have to create a serious data 
set, I also had to play catch-up on Windows programming. 
Since I have used LMI Forth packages from the early days, I 
decided to use LMI's WinForth. 

WinForth had just about everything I needed, including 
the hooks into the operating system. But some of the com- 
mands to create check boxes and other items in dialog boxes 
were difficult to use and required considerable trial and error. 
The result was less than satisfactory. I decided to abandon 
the use of WinForth to  create the dialog boxes and, instead, 
use Borland's Resource Workshop, which has drag-and-drop 
and other functions specifically intended to make it easy to 
create dialog windows and menus. 

After the dialogs and menus are created and stored in the 
.exe file as a static resource, they can be called as needed from 
WinForth. E. g., 

In the example, " about" is the name of the static resource in 
the .exe file, " about-dialog" is the dialog handler which 
sets up lists and then, when the dialog is exited, recovers user 
actions. Loaddlg is the WinForth command to load the dia- 
log. 

This combination of WinForth and Borland Resource 

Workshop made for a fast and powerful development system. 
A great-looking dialog window with numerous check boxes, 
bitmapped graphic buttons, and lists can be created in a mat- 
ter of a couple of minutes. And this was invaluable, as the 
program eventually consisted of over 200 bitmaps, 30 menus, 
and 65 dialogs. Some of the dialogs had more than 20 but- 
tons, checkboxes, lists, and other items. 

Because I elected to  use some specialized Borland items 
within the dialogs, it was necessary to load the Borland li- 
brary at the start of the program: 

: loadlib D S O  
" bwcc.dl1" asciiz loadlibrary equ borlib ; 

The command loadlibrary is a WinForth command to call 
the Windows API to load the library. The variable borlib is 
used to hold the return so that the library can be released 
when the program exits, i.e., borlib f reelibrary. 

The remainder of the programming was pretty straight- 
forward, except for the search routines. Because of the ambi- 
guity of many descriptions (e.g., is the cap brownish red, red- 
dish brown, or perhaps rust brown?) a form of fuzzy logic 
was used in the search routines. For each attribute, an "im- 
portance" and a "nearness" value was assigned. This allowed 
the program to find the correct mushroom even when some 
of the data entered were not identical to  the data stored in 
the database. 

If I were designing a Windows-based Forth, I would omit 
all commands to create buttons and other dialog items, and 
concentrate on building in commands to integrate third-party 
software and to make it easy to use the Windows API func- 
tions. The availability of programs like Borland's Resource 
Workshop and Microsoft's Help Workshop, which can be used 
by any programming language, make it unnecessary to rein- 
vent the wheel. The combination of these programs makes it 
a snap to create sophisticated user interactions. 

I learned a great deal during the endeavor and it was well 
worth the effort, even if it turns out a complete commercial 
failure. The fun was in the doing. 

"I became involved with Forth when I wrote a weather observation 
database program in BASIC for an early Apple. It was so slow that it 
was unusable, and Forth was the only other language available. I 
ported the program to Forth and it ran great. The program was ported 
to LMI Forth shortly after the IBM PC first appeared. 

"The mushroom identification program is my first commercial ven- 
ture and,while it does not have glitzy graphics, it works and it is the 
first wild mushroom identification program on the market." 

18 Forth Dimensions XIX.6 



- - - - .- 

An Extensible User Interface I I 

Almost all the Forth applications I write for research work 
in mathematics have one or two dozen top-level commands. I 
use these systems in interactive sessions: data is entered, some 
commands are invoked, the results are examined, then further 
commands are issued. New commands may be temporarily 
introduced during a session; as the research project evolves, 
new features may also be added permanently. Thus, Forth is 
used to provide a computing environment which is interac- 
tive and an underlying system which is flexible. The research 
system is extended and modified as it is used. 

The present article is the outgrowth of work to prepare 
Forth systems for use by others. I am interested in showing 
my research work to other mathematicians and in integrat- 
ing computer use with some of the pure mathematics courses 
I teach. In both cases, very few members of my intended au- 
dience know anything about computer programming, and 
essentially none know Forth. My earliest attempts to show 
my work to others involved providing supplementary writ- 
ten material on Forth. This would allow my applications to 
be used in essentially the same way I used them (see FORML 
90). This approach was successful with some instructional 
material used in a course in which I was teaching Forth. In 
general, however, it assumes that people are willing to learn 
the basics of a computer language in order to use an applica- 
tion (or even to find out if the application interests them). 
Very few people are willing to do this. I, therefore, wanted to 
find a simple way to add a user interface to existing applica- 
tions. There were several criteria for such an interface: 
1. It should be easy to use. 
2. It should be easy to add to an existing application 

(without requiring the application to be specially 
written). 

3. It should be easy to extend as the underlying applica- 
tion is extended. 

4. It should allow the user to invoke all the top-level 
commands. 

5. It should have an integrated help system. 

An interface which satisfies these criteria is described in 
this article. It is a commands-completion interface: The user 
sees a list of commands. He types enough letters to  identify 
a command uniquely, and the rest of the command name is 
completed for him. At this point, the command immedi- 
ately starts execution. The user is prompted for any input 
needed to carry out the command. Typing the command 
INFO and then another command will provide descriptive 
information about the command (rather than executing it). 
The enclosed source code also shows an alternative: type 
the command name preceded by a question mark. 

This interface has solved several problems. For instruc- 

tional programs, it has provided students an easy way to in- 
teract with an application. They can learn to  use it very 
quickly. It allows mathematical applications to  be used when 
there is no time to teach programming. It allows me to modify 
and extend an application and interface without recompiling 
the code of the system. (I turn software over to the computer 
center at the start of a course and do not have access to it 
thereafter.) I can also produce optional modules which ex- 
tend the interface as well as the application. 

This interface may also be useful to  others to allow Forth 
work to be shown outside the Forth community. Forth appli- 
cations usually do not run "standalone." To run an applica- 
tion, a Forth system is needed. This fact puts Forth at a disad- 
vantage with respect to  compiled languages. Anyone who 
wishes to show their Forth applications to those outside the 
Forth community must usually supply a Forth system with 
the application or force potential users to  obtain one on their 
own. In some cases, this means they must mess with adapt- 
ing source code to another version of Forth. The user inter- 
face provides an alternative: Elizabeth Rather informs me that 
Forth, Inc. and other vendors of commercial Forth systems 
allow their systems to be supplied without fee or license with 
turnkey applications. A Forth application with this user in- 
terface can be "turnkeyed" (i.e., headers removed, one top- 
level word, and the application saved as an executable). A 
Forth application can, therefore, be supplied in a trouble-free, 
load-and-run form just like applications written in compiled 
languages. 

Example 
Figure One presents an  example showing the interface 

used for an  instructional application in  Group Theory. The 
application computes information about groups of order up 
to 32 (see FORML 90). In these examples, the user's input is 
underlined. 

Implementation 
The menu names of commands are stored in a binary tree 

together with the execution token of the Forth word needed 
to carry out the command. When the user types a character, 
the tree is searched. If a unique entry is found, the command 
is completed. If no match is found, the system beeps and 
removes the erroneous letter. If several matches are found, 
the system waits for further letters. 

New commands are added by >CMD <menu-name> 
< F o r t h w o r d > .  The Forth word must prompt the user for 
information needed to carry out the command. The group 
table for group 8, for example, is obtained in the underlying 
Forth system by "8 Table". A new word, %Table, is created 
which contains the help information, prompts for input of a 

Forth Dimensions XIX.6 19 



: %Table 
Help : 

This prints a table for the group requested 
(and makes that the current group). Elements 
are represented by letters A to Z and the symbols 
[ \ I ^ - a n d  ' 

Help; 
Input" for group number \Get-Num " CR Table ; 
>CMD TABLE %Table 

Figure One. Example use of interface. 

CENTER CENTRALIZER CHART CONJ-CLS 
COSETS EVALUATE EXAMPLES GENERATE 
GROUP HELP INFO ISOMORPH ISM 
LEFT NORMALIZER ORDERS PERMGRPS 
POWERS QUIT RESULT RIGHT 
SEARCH STOP SUBGROUPS TABLE 
X 

GI>> U A R T  Order of Groups (1-32 or 0) Number 12 
20 21 22* 23* 24* 
There are 5 Groups of order 12 
2 abelian and 3 non-abelian 

GI>> W A R T  Order of Groups (1-32 or 0) Number 6 
7 8 * 
There are 2 Groups of order 6 
1 abelian and 1 non-abelian 

GI>> TABLE for group number 8 

G8>> JJFO 
This will provide information about the next 
command you use. INFO and X do the same thing 
but X is quicker to use. 

G8>> EVALUATE 
This is used to evaluate an expression in the current 
group. An expression is a collection of group elements 
and inverses which is evaluated left to right. An 
apostrophe following a letter is used to indicate the 
inverse of the letter. Thus BC'D will give the product 
of B followed by the inverse of C followed by D 

I J 

20 Forth Dimensions XIX.6 



G8>> EVALUATE (use ' for inverse) M= F 
G8>> EVALUATE (use ' for inverse) &= E 

I This system has a sub-menu of commands for permutations: 

G8>> BRMGRPS 
CREATE ELEMENTS HELP INFO 
INSTALL MAIN MULTIPLY QUIT 
X 

PERM>> ?CREATE 
This will determine the subgroup of Sn generated by 

a given set of permutations (given as a product of 
cycles). You must put in n (for Sn) and then the 
generators using numbers l..n for example 
(1 2) (3 4 5). The program will only compute groups 
up to order 51. If the resulting group has order 32 
or less, you can install the table as one of the groups 
1-5. 

PERM>> CREATE 
Subgroup of Sn -- what is n? Number 4 

Put in generators as product of cycles. 
End with a blank line 

Generator (1 2) (3 41 
Generator (1 2 3 4) 
Generator 
Group is of order 8 
A 0 
D ( 1 2 3 4 )  
G ( 1 4 3 2 )  

Source Code Listing 

) Supplements to ANS-Forth 

1. The words Comment: and Comment; can be defined in a similar 
way to Help: and Help; below. 

2. AT (same as AT-XY) and AT? are used to set and find cursor 
position. 

3. UPC ( ch -- ch') converts a character to upper case 
UPPER ( addr cnt -- ) converts a string in place 

4. DEFER and IS are used for vectored execution 
5. ( . " )  is the literal string handler put in place by ." 
6. NUMBER? ( addr len -- d flag ) 

flag is TRUE if number was properly converted 
d is the double number obtained 

7. The following are common: 
: 3DUP 2 PICK 2 PICK 2 PICK ; 
: -ROT ROT ROT ; 
: NOTO= ; 

: >= < NOT ; 
: CELL 1 CELLS ; 
: BEEP 7 EMIT ; 
: OFF FALSE SWAP ! ; 
: ON TRUE SWAP ! ; 

Forth Dimensions XIX.6 21 



Source Code 

\ * * * *  Command Completion Interface * * * *  
\ John J Wavrik Dept of Math 
\ Univ of Calif - San Diego 

30 CONSTANT Max#Cmds 
16 CONSTANT CmdSize \ make a multiple of bytes/cell 

0 VALUE #Cmds 
CmdSize CELL + CONSTANT Entrysize 

commen t : 
A user is presented with a list of commands and needs only 
to type enough letters to identify the command uniquely. 

New commands are introduced by >CMD <listname> <executable> 
where <listname> is the name made available to the user and 
<executable> is a Forth word to be executed. (Typically the 
executable is a Group package Forth command which has been 
supplemented by queries for input). 

The listwords are stored alphabetically in a binary tree 
to enable partial words to be easily found. Each node 
has a name (the list word) which is a string (maxsize SZ), 
and three addresses (cells): the CFA of the executable, 
and the address of left and right subtrees. 

comment; 

\ * * * *  Binary Search Tree for Strings * * * *  

\ Counted String Operations 

: $ !  ( $ addr -- ) OVER C@ 1+ MOVE ; \ no test for fit 
: $ .  ( $ - - )  COUNT TYPE SPACE ; 
: $Compare ( $1 $2 -- -1 I 0 I 1 ) 

\ -1 = $1 is before $2 
\ 0 = $1 equal to $2 
\ 1 = $1 is after $2 

>R COUNT R> COUNT COMPARE ; 

: $< $Compare O< ; 

: $= $Compare O= ; 

: NCompare ( $1 $2 n -- -1 I 0 I 1 ) 

\ compare first n characters 
\ must pad strings with blanks if n is big 

ROT 1+ ROT 1+ ROT ( addrl addr2 n ) 

TUCK COMPARE ; 

Max#Cmds CONSTANT #Nodes 
CmdS i ze CONSTANT SZ \ maximum string size for names 

SZ 3 CELLS + CONSTANT NodeSZ \ size of node in bytes 
0 VALUE FreeNode \ address of free node variable 
VARIABLE Len-Name \ length of longest name 

: $ ! !  ( $ addr -- ) 

OVER COUNT Len-Name @ MAX Len-Name ! DROP 
$ !  ; 

CREATE 'Tree1 #Nodes NodeSZ * ALLOT 
VARIABLE FreeNodel 
CREATE 'Tree2 #Nodes NodeSZ * ALLOT 
VARIABLE FreeNode2 

Forth Dimensions XIX.6 



comment : 
In this application there is a main menu (using Treel) 
and a submenu (using Tree2) activated by a command on 
the main menu. The same idea can be used to allow multiple 
submenus. 

comment; 

'Treel VALUE Tree \ can extend to several trees 

: Tree.Init Tree #Nodes NodeSZ * ERASE 
Tree FreeNode ! 1 Len-Name ! ; 

\ All operations refer to the "current tree". 
\ The address of the root of the current tree is 
\ given by Tree. The address of the last filled 
\ node is given by FreeNode 

: Treel 'Treel TO Tree FreeNodel TO FreeNode ; 
: Tree2 'Tree2 TO Tree FreeNode2 TO FreeNode ; 
Tree2 Tree.Init 
Treel Tree.Init 

: NewNode ( -- addr ) NodeSZ FreeNode + !  
FreeNode @ DUP NodeSZ ERASE ; 

\ there is no error trap here if the tree is full 

: Left ( n-addr -- 1-addr ) SZ + @ ; 

: Right ( n-addr -- r-addr ) SZ + 1 CELLS + @ ; 
: Exec ( n-addr -- ) SZ + 2 CELLS + @ EXECUTE ; 
: Left! ( x n-addr -- ) S Z + !  ; 

: Right! ( x n-addr -- ) SZ + 1 CELLS + ! ; 
: Exec! ( e-addr n-addr -- ) SZ + 2 CELLS + ! ; 
: Name! ( $ n-addr -- ) DUP SZ BLANK $ ! ! ; 
: Leaf? ( n-addr -- flag ) 

DUP Right O= SWAP Left O= AND ; 

comment: 
Notice that we assume (and use) the fact that the name 
of a node is stored at the address of the node -- while 
pointers are stored at offsets from thrs name address. 

Notice also that storing a name (by Name!) pads the 
name with blanks -- to allow use of NCompare 

comment; 

DEFER (>Tree) \ this allows recursive definition for 
\ storing a new name in the tree 

: Go-Left ( $ n-addr -- ) DUP Left 
IF Left (>Tree) ELSE 

SWAP NewNode TUCK Name! 
SWAP Left! THEN ; 

: Go-Right ( $ n-addr -- ) DUP Right 
IF Right (>Tree) ELSE 

SWAP NewNode TUCK Name! 
SWAP Right! THEN ; 

: (>Tree)-AUX ( $ n-addr -- ) 
DUP C@ O= IF Name! ELSE 
2DUP $Compare 
DUP -1 = IF DROP Go-Left ELSE 

1 = IF Go-Right ELSE 
( 0 =  IF) 2DROP THEN THEN THEN ; 

I (>Tree) -AUX IS (>Tree) 

Forth Dimensions XIX.6 23 



\ Put a new name in the tree -- eventually the execution 
\ address will be stored also. Note that this does not 
\ store duplicate names. 

: >Tree ( $ -- ) Tree (>Tree) ; 
\ Given a string $,  count n, and node address n-addr 
\ Find a node in the subtree with root at n-addr so 
\ that the name matches the string up to n characters 

: (NFind) ( $ n n-addr -- n'-addr t 1 f ) DUP O= 
IF DROP 2DROP FALSE ELSE 

3DUP SWAP NCompare 
DUP -1 = IF DROP Left RECURSE ELSE 

1 = IF Right RECURSE ELSE 
>R 2DROP R> TRUE THEN THEN THEN ; 

: NFind? ( $ n n-addr -- t I f ) 
(NFind) DUP IF SWAP DROP THEN ; 

\ See if a string matches the first n characters of 
\ some node in the tree. Indicate if multiple match 
: NFind ( $ n -- n-addr -1 I n-addr 1 I f ) 

\ -1 = more than one match 
2DUP Tree (NFind) ( $ n addr t I $ n f ) 

IF >R 2DUP R@ Left NFind? -ROT 
R@ Right NFind? OR 

R> SWAP IF -1 ELSE 1 THEN 
ELSE 2DROP 0 THEN ; 

: N0de.L ( node -- ) ?DUP IF 2 SPACES COUNT DROP 
Len-Name @ TYPE 

THEN ; 

: CR-4 ( cnt -- cnt' ) ?DUP O= IF CR 4 THEN 1- ; 

: (Print-Nodes) ( cnt tree -- cnt' ) ?DUP 
IF DUP Leaf? NOT 

IF TUCK Left RECURSE 
OVER Node .L CR 4 
SWAP Right RECURSE 

ELSE N0de.L CR-4 THEN 
THEN ; 

: Print-Nodes CR 3 Tree (Print-Nodes) DROP ; 

\ * * * *  Keyboard Input Routines * * * *  

VARIABLE Tfound VARIABLE TAddr 
8 CONSTANT BS 7 CONSTANT BELL 27 CONSTANT ESC 127 CONSTANT DEL 

\ ClrKey 
\ If the user types in more characters than needed 
\ to complete a command, this clears the extra characters 
\ from the keyboard buffer. 

: ClrKey BEGIN KEY? WHILE KEY DROP REPEAT 30 MS ; 

\ Del-In Do-ESC 
\ The following are actions to be taken by BS or DEL 
\ and ESC. n is the number of characters so far in the 
\ input word. c is an arbitrary character (it is dropped 
\ but included for compatibility with other action words) 

: Del-In ( n c -- 0 I n-1 ) 

DROP DUP IF 1- BS EMIT SPACE BS 
ELSE BELL THEN EMIT ; 

24 Forth Dimensions XIX.6 



: Do-ESC ( n c -- ) 

DROP TFound ON TAddr OFF 
DUP 0 ?DO 0 Del-In LOOP 
." * * *  cancelled * * *  " CR ; 

: Check-Tree ( a n char -- a ntl ) \ sets tfound 
3DUP EMIT + C! 1+ ( a ntl ) 

OVER 1- ( $ ) OVER NFind 
DUP 1 = ( unique ) IF DROP TFound ON TAddr ! ELSE 

0= ( none ) IF BELL EMIT BS Del-In ELSE 
( several ) TFound OFF DROP THEN THEN ; 

\ Notice that characters from keyboard are uppercased 

VARIABLE Help? VARIABLE Firstchar 

: TExpect SZ PAD 1+ \ get characters until found in tree 
0 ( len adr 0 ) TFound OFF TAddr OFF FirstChar ON 
BEGIN 2 PICK OVER - ( len adr #so-far #left ) 

O<> TFound @ O= AND 

WHILE KEY UPC ( len addr #so-far char ) 

DUP [ CHAR] ? = FirstChar @ AND 
IF EMIT Help? ON ELSE 

DUP BS = IF Del-In ELSE 
DUP DEL = IF Del-In ELSE 
DUP ESC = IF Do-ESC ELSE 
DUP BL > IF Check-Tree ELSE 
DROP THEN THEN THEN THEN THEN 
FirstChar OFF 

REPEAT DUP 0 ? DO BS EMIT LOOP 2DROP DROP 
ClrKey 
TFound @ IF TAddr @ $ .  2 SPACES THEN 
TFound @ O= ABORT" character count exceeded " ; 

: CExpect ( -- ) 
TExpect TAddr @ 
?DUP IF Exec THEN ; 

\ * * * *  Command Completion Module * * * *  

\ Notice that command names are uppercased 

: >CMD ( -- ;;; follow by <name><action> ) 
#Cmds Max#Cmds >= 
IF ." Command list is full " CR BEEP 
ELSE BL WORD DUP COUNT UPPER 

DUP >Tree 
DUP C@ NFind 1 = 

IF ' SWAP Exec! ELSE 
TRUE ABORT" Error in insertion " THEN 

THEN ; 

\ * * * * *  a Help System for Command Words * * * * *  

: Make, ( delimiter - -  ) 
\ Defining word for words that compile input 
\ string up to delimiter. 

CREATE , 
DOES> @ PARSE HERE >R DUP C, DUP ALLOT 

R> 1t SWAP MOVE 0 C, ALIGN ; 

0 Make, ,O \ compile entire line as counted string 
CHAR " Make, ," \ compile up to a quote 

Forth Dimensions XIX.6 25 



CHAR \ Make, , \ \ compile up to a backslash 

comment: 
The words Help: and Help; are used to bracket text 
which describes what a command does and/or how it is 
used. This text is put at the start of a definition. 
If the user presses X or type INFO before a command, 
this information is displayed instead of having the 
command action carried out. Help: and Help; should 
be at the start of new lines with the descriptive 
text on lines between (just as "comment:" and "comment;" 
are used to bracket the current paragraph). 

commen t ; 

: HelpX 0 Help? ! ; 

: Help: ( -<text> Help;>- ) \ the word Help; must start 
\ a new line 

POSTPONE Help? POSTPONE @ POSTPONE IF 
BEGIN >IN @ BL WORD DUP COUNT UPPER 

COUNT S" HELP;" COMPARE O =  
IF DROP TRUE 
ELSE >IN ! POSTPONE ( ." ) POSTPONE CR 

REFILL O= 
THEN 

UNTIL 
POSTPONE HelpX 
POSTPONE CR POSTPONE EXIT POSTPONE THEN ; IMMEDIATE 

: %INFO CR 
This will provide information about the next" CR 
command you use. INFO and X do the same thing" CR 
but X is quicker to use." C R 

-1 help? ! ; 

\ * * * *  Main Loop * * * * 

: %END 
C R 

This will end the command interface (but not the" cr 
." groups program). You can resume use of the commands" cr 

interface by typing 'commands'." cr cr 
* * *  Exit the program by typing 'bye' * * *  " cr 

DROP 
TRUE ABORT" .................................... " ; 

: %Help 
Help: 
This prints a list of all current commands 
Help; 
CR Print-Nodes CR ; 

\ Commands 
\ This is the top Level word used to start 
\ the interface 

: Commands FALSE %Help 
BEGIN 

CR ." >> " 

[ ' 1  CExpect CATCH DROP DUP 
UNTIL DROP ; 

26 Forth Dimensions XIX.6 



Tree1 Tree. Init 
>CMD INFO %INFO >CMD X %INFO 
>CMD STOP %END >CMD QUIT %END 
>CMD HELP %Help 

\ * * * *  Commands for prompted input * * * * *  

\ Get-TIB 
\ This is a word which gets (and edits) keyboard input until terminated by 
\ pressing ENTER. The input must be placed at the start of the terminal 
\ input buffer. The buffer pointer is reset. The input should be displayed 
\ right after the prompt. When Get-TIB is finished the cursor should be 
\ right at the end of input. ANS standards do not specify the display and 
\ editing actions for ACCEPT -- so some systems may require a custom version. 

: Get-TIB ( -- ) 
AT? QUERY AT \ Put cursor at end of prompt 
>IN @ 0 WORD \ Put cursor at end of input 
COUNT TYPE >IN ! ; 

\ x * * * Samples for prompted input * * * *  
comment : 

The following prompted input words are included as samples. 
An input word should be designed for each type of data. It 
should provide a prompt; get an input line (using get-TIB); 
process the line and perhaps check for validity; and leave 
on the stack whatever the action word expects to find. 
Invalid input can either throw an exception or discard the 
invalid input to allow the user to try again. 

comment ; 

ZVARIABLE Save-Pos 
: Get-Num ( -- n ) 

AT? Save-Pos 2! 
BEGIN Save-Pos 2@ AT \ reposition to start 

Get-TIB BL WORD 
COUNT ?DUP O= THROW \ empty input aborts the command 
NUMBER? IF DROP TRUE 

ELSE 2DROP BEEP FALSE \ invalid input starts over 
THEN 

UNTIL ; 

\ Fancy input routine 

: Pos ( char -- pos ) \ pos = 0 if not found 
>IN @ SWAP PARSE 2DROP 
>IN @ #TIB @ > ( past end of buffer ) 

IF 0 ELSE >IN @ THEN 
SWAP >IN ! ; 

: Input" 
BEGIN 

[ CHAR] \ Pos 
IF POSTPONE ( . " )  ,\ 

BL WORD DUP COUNT UPPER 
FIND O= ABORT" word not found" 
COMPILE, FALSE 

ELSE 
[ CHAR] " Pos 
POSTPONE ( . " )  ," 

THEN 
UNTIL ; IMMEDIATE 

Forth Dimensions XIX.6 



-- 

Runstk - Stack Utility 
I --I 

Ever need more than three things on the stack? 
Ever wanted to quickly know for sure what is on the stack 

while writing or maintaining a word? 
Can you remember the stack effects of words you wrote 

last month or last year? 
Do all your word branches have the correct stack outputs? 
Do you sleep well? 
Well cheer up! Your stack nightmares are over. 

Abstract 
The Runstk development tool is a text editor that allows 

the display of the data stack symbolically anywhere within a 
word shown on the display. It allows the safe virtual running 
of source code, and can also automatically check cumulative 
stack effects against the given stack picture for the word. It 
can put the cumulative stack picture into the source for docu- 
mentation, and can also show the stack picture of any word 
in the system. 

I have been thinking about writing this article for several 
years, but was finally motivated by the article in the May- 
June 97 Forth Dimensions. Julian Noble wrote about a simple 
way to check the stack condition after a series of words ex- 
ecutes. His goal was to write a small, portable tool, and he 
succeeded admirably. Runstk is the other side of the coin, a 
large, not-too-portable, somewhat complicated piece of code. 

However, Runstk does have some advantages: 

1. Fast lookup of all previous names, so new names can be 
chosen uniquely. 

2. Consistent, annotated, well-written stack pictures using 
meaningful symbols can also serve as a quick reference 
manual for your system during edits-the stack effects 
of that word you almost remember. 

3. For ROM-based systems, you can make sure any word 
changes will have correct stack operations before the 
ROM is burned. 

4. Check the stack picture at any point in a word and 
optionally put that picture on a line as a comment. 

5. Check the whole word for input and output stack 
picture correspondence by exercising all branches in a 
word. 

6. Warns if anything is left on the return stack. 
7. Could check all the branches in your application for 

stack effects. 
8. Part of this stack picture system is the ability to sym- 

bolically run a word while in the editor. This may be 
useful1 for education, since stacks seem to bother most 
new users and may possibly improve Forth acceptance if 
all stack effects can be seen easily while writing a 
word-no surprises later. 

9. Can handle dual-output stack pictures. 

Disadvantages 
1. Have to put a stack picture for every word in the source 

(prototyping). 
2. Have to run all of the source through Xref before stack 

pictures are available for fast use in the editor, but will 
look up new word stack pictures in the current file. 

3. Need large program space to run, since this program 
itself is over 64K. 

4. Has to be integrated into an editor, so not fully portable. 
5. Only recognizes ANS stack picture conventions now, so 

your system may not work with it. 
6. Cannot handle dual-input stack pictures (I only had one 

of these and rewrote it as a single input). 
7. Need a fairly fast computer and hard disk for large 

source projects, since there is a large amount of process- 
ing (a 33 MHz 486 is okay). 

I am now using Forth for an instrument control program 
on the IBM PC with a pigtail development system for the 
R65F12 processor. I know the 6502 is old, but it is still very 
adequate for distributed processing. 

I have had the unusual opportunity to write, change, 
maintain, and add to this program (among other things) for 
the  last ten years or so in LMI1s PCForth+. The stack 
documenter discussed in this article was a necessary tool to 
develop to make this process possible and still get some sleep. 

How It Works 
Runstk needs stack pictures written in a consistent stack 

picture "language" in order to find the stack pictures and 
understand them. 

General stack pictures: 

Variable name ( comment about variable ) variable init here 
non-colon defining word stack picture added by Runstk or Xref 

: wordname ( N1 N2 -- N3 T I F \ comment ) 

\ ANS style + comment 
other lines of word ; 

Current stack picture language: 
1. The picture is a valid parenthetical comment, as shown 

above following the word name. 
2. Symbols must be separated by white space (e.g., ~1 and 

-- are symbols) to ease the parsing chore. 
3. The input data stack side is on the left and the output 

data stack side is on the right after execution of the word. 
4. The execute symbol -- separates the input and output 

28 Forth Dimensions XIX.6 



sides ( --- and -->  re also 1 Figureone 
allowed). 

5. -yhetop of any stackis to the right, : P I C K  ( N 1  N2 N 3  2 -- N 1  ?I2 N 3  '1; 0-based s t a c k  posltlons 

as usual. 

to the next 'I 
. (I ( text" -- addr n l e n  ) 

Words using other text delimiters have to be specially 
written in Runstk. 

11. Uses < > to enclose an expression in which stack item 

6. Uses the \ character to  separate the 
stack from any comments-not standard or required. 
[Figure One] 

7. Uses I to separate different output stack possibilities- 
not required. The true case must be listed leftmost for 
the branch checker. 
: FIND ( AS -- N t o k  1 / AS O \ 0= n o t  f o u n d  ) 

8. Uses a blank (or - symbol) to indicate an empty stack - .  

on that side of the execute symbol: 
: DROP ( ~1 -- ) 

if no output, -- may be omitted: 
: DROP ( N 1  ) 

if no input, -- is required: 
: HERE ( -- Adhere ) 

9. Uses sylnbol starting with name to ignore next word in 
source, which helps show the action of a word such as 
tick: 
1 ( nameword -- Adcfa ) 

10.Uses a n y t e x t "  that ends with a "  to ignore source up 

symbols are substituted. Blanks are not required within 
expressions. Useful to document postfix math into infix 
expressions; see example below. 

: TYPE ( S 1  -- ) 

or 
: TYPE ( C-addr u l e n  -- ) 

: COUNT ( A0 -- S 1  ) 

Or 
: COUNT ( A0 -- c-addr ulen ) 

The Xref companion development tool combs through all 
of your source code, and saves in a file the name, stack pic- 
ture, file where defined, and line or screen of the word. All 
lines in the Xref file are sorted by word name for fast lookup 
by binary search. This must be redone after every session 
which changes the stack effects of enough words about which 
you care for the section where you are working. 

The S5pic.txt stack picture file is used by Runstk, has stack 
pictures of most ANS words, and is included instead of Xref. 
Made from Rick VanNorman's ANS DPMI-based Forth S4.4 

: ( N 1  N 2  -- G N ~ + N ~ >  ) 

12. May use s : to indicate data stack: 
: DUP ( S :  N 1  -- N l  N 1  ) 

13. Pictures with other stack indicators (e.g., c : , I? : , and 
R :) are ignored, so be sure the data stack picture comes 
first after the word name. 

14. Stack picture lookup is case sensitive. 
15. Has a few different data types according to the first 

letter of any symbol (sugar, anyone?). These data types 
are used to make stack pictures easier to write, but still 
allow the correct number of items on the internal 
symbol stacks: 
D- (or d) double number has two items on the stack, 

split internally to keep track. 
S - counted string has address of first character and 

length on stack, split internally to the ANS c-addr ulen 
style. Lower-case s is still considered a single number, 
fdr old code compatibility 

R - real is handled as a single number for now whether 
on the data or separate float stack. This will work out if 
words are carefully written independent from the ac- 
tual floating-point representation. 

t - Triple now handled by writing stack picture manu- 
ally with three items-see S5pic.txt T* (i.e., not com- 
monly used). 

All other initial letters assume the symbol is a single num- 
ber. 

Stack Picture Examples: 

source file. I have modified the stack pictures to work with 
Runstk but have not verified the correctness of them all. 

A decompiler program could add the stack picture and a 
comment about its source file and line or screen number from 
the Xref file while in the editor for fast reference. Runstk 
doesn't decompile, but will show the stack picture of a word. 

The Runstk program sets up its own symbolic data and 
return stacks initialized from the input stack picture of the 
word being checked. 'The cursor is within the word to check. 
Then the stack picture of each word in the body acts in turn 
on  these internal stacks until the cursor or the semicolon at 
the end of the word is encountered. The internal stacks have 
each stack item saved as separate symbols; i.e., a double puts 
two symbols on the internal data stack. 

When the cursor is encountered, the stack picture at that 
point is shown, along with anything left on the return stack. 
You may elect to insert the stack picture at that point into 
the source file as a comment. I f  the cursor is at the end of the 
word, warnings are also given about stack depth differences 
compared to the output stack picture for the word, or a non- 
empty return stack. Dual-output words will make these warn- 
ings less definitive, however. 

How the Internal Stacks Work 
[See Figure Two-a.] Since there is an expression (enclosed 

in < >) on the output stack, first-for each symbol in the 
expression-we substitute what is on the data stack in the 
same position as the input stack position for that symbol. 
[Figure Two-b] 

Then we unify the symbols in the stacks. Take the data 
stack symbol for each input stack position, and substitute it 
in the output stack for all occurrences of the input stack sym- 
bol in the output stack. This is easier to show than describe. 
[Figure Two-c] 

Finally, pop the number of input stack items off the inter- 
nal data stack and push the entire output stack on the inter- 
nal data stack. [Figure Two-d] 

This system documents postfix to infix notations very well, 1 
: DUP ( N 1  -- N1 N1 ) 1 especially if symbols are chosen carefully. For example, see 

Forth Dimensions XIX.6 29 



Figure Three. 
Of course, there are some details not noted above. An as- 

terisk is added to the beginning of all actual symbols on the 
internal input and output stacks. This hopefully makes the 
internal symbols unique, to prevent double substitutions. 

If the internal symbols were not unique, a word with the 
stack picture: 
( N1 N2 -- N2 N 1  N2 ) ( TUCK ) 

would come out incorrectly. 

Assume an initial data stack as shown in Figure Four-a. 
After the first unification of N1 from the input stack, the 
output stack becomes as in Figure Four-b. Then, after the sec- 
ond unification of N2 from the input stack, the output stack 
becomes that given in Figure Four-c. 

and a line of code meant one line of assembler containing a 
single opcode. Today, a line of code is a single, non-empty line 
of source, no matter how many words are used or defined on 
that line. This definition has always seemed a little loose to 
correlate well to program complexity. I count branches and 
total word uses to  get a better feel for complexity. 

A branch is a section of code that the program may ex- 
ecute, and relates to the complexity of a program. For ex- 
ample, an IF  always has two branches, and a CASE has the 
number of OFS + 1 branches. Each branch must be checked 
for stack effects, debugged, and exercised. Obviously, we're 
not talking about the possible number of branch combina- 
tions, which even further increases complexity. 

The total number of word uses (TWU), not how many 
words are defined, is important because each word use can 
be a possible error, and has to be maintained. 

In the past, I was faced with documenting Forth complex- 
ity savings for a project in converting a BASIC program to 
Forth. TWU allowed comparing dissimilar languages some- 
what, and also showed that the Forth version was only one- 
half as complex as the BASIC one, even though more features 
were added during conversion (of course). 

Factoring and reusing sections of code obviously reduces 
branches and total word uses and, therefore, complexity. 

Clearly this is not the correct result after TUCK. 
Words that handle the data stack in an enumerated way- 

such as PICK, ROLL, BURY, NDROP, and NDUP-also have to be 
specially written, since this stack picture language Cannot un- 
derstand them. Also, Forth-79 and Forth-83 have a different 
stack-position numbering system. 

Words that manipulate the return stack have to be spe- 
cially written. The return stack is not part of the stack picture 
language, since it almost always has to  be unchanged at the 
end of a word. 

Control structure words also have to  be specially written. 
Words that contain control structures cause Runstk to ask 
which branch to execute when a word such as IF, UNTIL, 
WHILE, LOOP, or O F  is encountered. Runstk can also automati- 
cally check all branches of a word against the expected out- 
put. Runstk cannot yet handle the new ANS extended con- 
trol structures using multiple WHILES, etc. 

Other words, such as [ CHAR] , are also written specially to 
limit the number of stack picture reserved words. 

I have only seen minimal discussion about program size 
and complexity, for Forth or otherwise. There are programs 
on the Internet-such as concordance.fth and ftags.fth on 
Taygeta.com-to analyze Forth projects. 

My current system has about 2 megs of source screens, is 
about 500K compiled, has about 8500 words at last count, 
6200 possible branches, 18K lines of code, and 77K word uses. 

Compare this to F-PC as delivered, with about 2.5 Mb 
source and 3000 words, or Win32Forth with 1.7 Mb of source 
and over 5000 words. 

When the world began, only assembler code was available 

30 

I bought my first Apple I[+ in late 1979, with a full 16K RAM, and dis- 
covered the joys of BASIC spaghetti code.1 discovered Forth through 
the BYTE Forth issue (Aug. l980).The language looked interesting, so 
I bought a copy of 4th from Information Unlimited Software to save , 
typing in the fig-Forth 6502 Model,which I also bought. 

I had only programmed a little Fortran in engineering college before 
this,and didn't feel up to debugging 6502 assembly language yet.Af- 
ter several months of occasional pecking away at this new language, I 
finally experienced the paradigm shift known as understanding Forth. 

This knowledge, along with the knowledge from a book on struc- 
tured programming by Warnier and Orr, helped land my first profes- 
sional Forth position in 1983, leading a team that programmed the 
first Forth versions of StockpakII andTrendline for Standard & Poors. 
We used MVP Forth for the Apple I I  and the new IBM PC,running and 
developing totally on two floppy disks. (The PC was probably just a 
fad,its instruction set was so obtuse compared to the RISC-like 6502, 
but it did have huge 360K floppies.) I have been using Forth ever 
since for real-time control of instruments. 

I am a long time user of LMl's PcForth+ and NMl's RSC-Forth in the 
R65F12 processor sold by Rockwell. I even used MultiForth on the 
Amiga for many projects while earning a masters degree with a con- 
centration in artificial intelligence.1 have also used other Forths,such 
as Pygmy, Jforth Amiga, F-PC, LMI WinForth, and MPE Proforth. F-PC 
was not available when my current project started, and its limited 
heads space of about 5000 words was too small for the number of 
words required. 

Forth Dimensions XIX.6 



Figure Two-a 

Stack Position 4 3 2 1 TOP 
Internal Data Stack E D C B A Initial 

Next Word stack picture ( N1 N2 -- N2 <Nl+N2> \ comment ) 

Next Word stack picture symbols split into 
Stack Position 1 TOP 

N1 N 2 Input Stack Picture 
N2 <Nl+N2> Output Stack Picture 

Figure Two-b 

Stack Position 1 TOP 
N1 N2 Input Stack Picture 
B A Internal Data Stack 

N 2 <Nl+N2> Output Stack Picture Original 
N 2 <B+A> Output Stack Picture with expression Substituted 

Figure Two-c 

Stack Position 1 TOP 
N1 N 2 Input Stack Picture 
B A Internal Data Stack 

N2 <B+A> Output Stack Picture with 
expression Substituted 

A <B+A> Output Stack Picture with symbols unified 

Figure Two-d 

Stack Position 4 3 2 1 TOP 
Internal Data Stack E D C B A Initial 
Internal Data Stack E D C A <B+A> After word executes 

Figure Three 

Example: 
: N A 2  ( N -- <NA2> ) 

DUP * ; 

: PI* ( N -- <PI*N> ) 

31416 10000 * /  ; 

: CYLVOL ( Nlength Nradius -- Nvolume \ all in same units ) 

NA2 PI* * ; ( <Nlength*<PI* <Nradius"2>> ) 

Figure Four-a 

Stack Position 1 TOP 
N2 N1 notice the non-unique symbols in the 

data stack and in the input stack picture 

Figure Four-b 

Stack Position 2 1 TOP 
N 2 N2 N 2 output stack 

Figure Four-c 

Stack Position 2 1 TOP 
N1 N1 N 1 output stack 

Forth Dimensions XIX.6 3 1 



I Character Literals 
A silly thing about the Standard is [CHAR] x for the char- 

acter "xu. Eight characters of code to represent one charac- 
ter? When interpreting, we can do it in six characters, CHAR 
x, which is still silly. 

Of course, this being Forth, we don't have to put up with 
this silliness. We can rename and combine [CHAR] and CHAR. 

But to what? And how? 
We don't want to test STATE to do it because that would 

violate some Forthers' religious preferences. 
& has been used for this, but it has no intuitive or mne- 

monic connection. In bed and in the dark, where I do a lot of 
good stuff, 1 think c would be a good name. It's short for 
"character" and can be used to replace CHAR and [CHAR]. C# 
is almost as good, but some systems already use it for current 
column number, and besides, it's longer. 

Now how do we get c x to work compiling and interpret- 
ing without our testing STATE? 

: [ LITERAL] 
BASE @ >R DECIMAL 
0 < #  #S #> EVALUATE R> BASE ! ; 

This definition of [LITERAL] is for people who think that 

testing STATE is treason or worse. For those who want to de- 
fine it the old-fashioned way: 

: [ LITERAL] 
STATE @ IF POSTPONE LITERAL THEN ; 

: C CHAR [ LITERAL] ; IMMEDIATE 

Another useful literal is for control characters. I like CTRL 
for this. 

: CTRL CHAR 64 XOR [ LITERAL] ; IMMEDIATE 

CTRL G CONSTANT <BELL> 
CTRL H CONSTANT <BACKSPACE> 
CTRL I CONSTANT <TAB> 
CTRL J CONSTANT <LINEFEED> 
CTRL M CONSTANT <RETURN> 
CTRL ? CONSTANT <DELETE> 

//CTRL I . I @ G H  I J M ?  \ \  
( 0 7 8 9 10 13 127 ) 

NEW WINDOWS-BASED FORTH 
DEVELOPMENT SYSTEM 

SwiftForth Combines Simple Interface to  
Windows With Top Performance 

MANHATTAN BEACH, CA - FORTH,Inc. announces the 
release of SwiftForth, an extremely fast Forth system that is 
fully integrated with the Windows 95INT operating systems 
and capable of as much real-time performance as is possible 
in these environments. The system is fully compliant with 
ANS Forth, but also retains much compatibility with FORTH, 
Inc.'s successful polyFORTH product line. 

A pre-release version of the system has been operational 
and available on a limited basis to "early adopters" with good 
prior Forth experience since Fall, 1997. User response has been 
enthusiastic. 

Extensive use of Windows user interface features facilitates 
all aspects of programming and testing software. The system 

provides easy access to all WIN32 functions and all 32-bit 
DLLs. 

SwiftForth's 32-bit subroutine-threaded implementation 
with direct code expansion yields benchmark times more than 
three times faster than other popular Windows Forths, and 
compilation speeds of -8,000 lines/second on a 200 MHz PC. 

The product includes advanced debugging features such 
as live "watch points" and memory windows. Interactive de- 
velopment features LOCATE (source display), SEE (code disas- 
sembly), hyperlinked source view and cross-reference, and 
many more convenient features. 

FORTH, Inc. also provides custom programming and en- 
gineering services, along with a full line of Forth-based de- 
velopment systems for embedded systems and MacOS pro- 
gramming, and the EXPRESS industrial controls package. 

FORTH, Inc. 
11 1 N. Sepulveda Blvd., Suite 300 
Manhattan Beach, CA 90266 
(800) 55-FORTH or (310) 372-8493, FAX (310) 318-7130 
forthsales@forth.com http://www.forth.com 

32 Forth Dimensions XIX.6 



Double Number Arith-metic 

The Double-Number word set is unusual in that all the 
words in it can be defined in Core words. 

We're not going that far yet. However, we are going to 
define the fundamental operations of addition and subtrac- 
tion. We will also define multiplication and division, even 
though these are not part of the Double-Number word set. 

1 : +CARRY ( a b -- a+b c a r r y  ) D U P  > R  + D U P  R> U< 1 AND ; 

2 : -BORROW ( a b  -- a - b  b o r r o w  ) OVER > R  - R> OVER U< ( -1 AND ) ; 

4 : D +  ( a . b . -- a+b . ) ROT + > R  +CARRY R> + ; 
5 : D- ( a . b . -- a - b  . ) ROT - > R  -BORROW R> - ; 

Forth Dimensions XIX.6 33 

These definitions presume 2's complement arithmetic: 1 
AND in the definition of +CARRY can be replaced by NEGATE. 
And as shown, -1 AND in the definition of -BORROW is done 
for you. 

+CARRY and -BORROW will be used in division. If D+ and 
D- are already in your system, then you can define them: 

: +CARRY ( a b -- a+b c a r r y  ) 0 TUCK D+ ; 

: -BORROW ( a b -- a-b  b o r r o w  ) 0 T U C K  D- ; 

Multiplication of two double numbers to get a double num- 
ber result is a little trickier. It requires three multiplications. 

7 : D* ( a . b . - -  a * b  . ) 

8 >R S W A P  > R  ( a b )  ( R: bhi ahi) 
9 2 D U P  UM* 2 S W A P  ( a*b . a b )  

10  R> * SWAP R> * + + ( a * b  . ) (  R :  ) 

11 ; 

Those were simple routines, so it was a surprise to dis- 
cover the complexity of Double Number Division. 

DU/MOD ( divd . divr . - rem . quoc . ) 
Given an unsigned 2-cell dividend and an unsigned 2-cell 

divisor, return a 2-cell remainder and a 2-cell quotient. 
"Double Unsigned Division with Remainder". 

The algorithm is based on Knuth's algorithm in volume 2 
of his Art of Computer Programming, simplified for two-cell 
dividend and two-cell divisor. 

DU/MOD ( divd . divr . - rem . quot . ) 
Given an unsigned 2-cell dividend and an unsigned 2-cell 

divisor, return a 2-cell remainder and a 2-cell quotient. 
"Double Unsigned Division with Remainder". 

The problem in long division can be demonstrated by di- 
viding 99 by 19 in decimal. The first attempt at guessing the 
quotient is 9 - l x  goes into 9x 9 times. That's too much, so 
we lower our guess to 8, then 7, then 6, and at last 5. 

If we were using 32-bit cells as the base instead of decimal 
digits, for the equivalent problem FFFFFFFEFFFFFFFF by 
00000001.FFFFFFFF we would reduce our first guess 2 billion 
times before getting it right. 

So we want a way to make our first guess close to the right 
value. 

Knuth shows that if you normalize the divisor and adjust 
the dividend accordingly, you can make a first guess that's 
no more than 2 greater than the right guess. 

Normalizing the divisor means to make the high-order 
digit not less than half the base. 

For decimal 99/19, we normalize by multiplying top and 
bottom by 3 or 4. So the problem becomes 297157 or 396176 
and we guess 5 at once. 

With 2's complement arithmetic we normalize by shift- 
ing left until the hi-bit is set. 

Looking at the code in DU/MOD you can see that Forth is 
not designed for functions like that. Forth is optimized for 
functions of one or two variables. DU/MOD needs two cells for 
the original dividend, three cells for normalized dividend1 
remainder, two cells for divisor, one cell for quotient, three 
cells for quotient-times-divisor, one cell for normalization 
factor. So it will be messy, even with local variables or in a 
profane (i.e., not in the temple of Forth) language. 

Here's the logic. 



Handle case of leading zero in divisor. 
With non-zero leading "digit" in divisor: 
Normalize divisor and dividend. 
Guess leading "digit" of quotient, multiply the normal- 

ized divisor by it, and subtract the product from normalized 
dividend. 

If the result is negative, subtract 1 from quotient and add 
normalized divisor to dividend; if the result is still negative, 
do  it again. 

Undo normalization of dividend to get remainder. 

This routine should work for 16-bit arithmetic or 32-bit 
arithmetic. It can be modified to work with half-cells to de- 
fine UM/MOD given /MOD. 

1 3  ( D o u b l e  Number D i v i s i o n  ) 

1 5  ( TUM* TUM/ T r i p l e  U n s i g n e d  M i x e d  M u l t i p l y  a n d  D i v i d e  ) 

1 6  : TUM* ( n  . m p r  -- t . . ) 2 > R  R@ UM* 0 21U UM* D+ ; 

1 7  : TUM/ ( t . . d v r  -- n  . ) DUP > R  UM/MOD I U  SWAP > R  UM/MOD N I P  R> ; 

1 9  ( T+ T-  T r i p l e  A d d a n d S u b t r a c t :  t l  . . t 2  . . -- t 3  . . ) 

2 0  : T +  > R  ROT > R  > R  SWAP > R  +CARRY 0 I U  I U  +CARRY D+ R> R>. + + ; 
2 1  : T- > R  ROT > R  >R SWAP > R  -BORROW S>D R> R> -BORROW D+ R> R> - + ; 

2 3  : n o r m a l i z e - d i v i s o r  ( d i v r  . -- d i v r '  . s h i f t  ) 

2 4  0 > R  BEGIN DUP O< NOT WHILE D2* I U  1 +  > R  REPEAT I U  
2 5  ; 

DU/MOD D o u b l e  U n s i g n e d  D i v i d e  w i t h  R e m a i n d e r  ) 

DU/MOD ( d i v d  . d i v r  . -- r e m  . q u o t  . ) 
?DUP O =  I F  ( T h e r e  i s  a  l e a d i n g  z e r o  " d i g i t "  i n  d i v i s o r .  ) 

> R  0 R@ UM/MOD I U  SWAP > R  UM/MOD 0 SWAP R> 
E X I T  THEN 
( N o r m a l i z e  d i v i s o r  a n d  d i v i d e n d .  ) 

n o r m a l i z e - d i v i s o r  DUP > R  ROT ROT 2 > R  ( d i v d  . s h )  ( R :  sh d v r  . )  

1 SWAP L S H I F T  TUM* ( d i v d  . . )  

( G u e s s  l e a d i n g  " d i g i t "  o f  q u o t i e n t .  ) 

DUP R@ = I F  -1 E L S E  2DUP R@ UM/MOD N I P  THEN 
( M u l t i p l y  d i v i s o r  b y  t r i a l  q u o t  a n d  s u b t r a c t  f r o m  d i v d .  ) 

2 R @  ROT DUP > R  ( d i v d  . . d v r  . q u o t )  ( R:  s h i f t  d v r  . q u o t )  
TUM* T -  ( d i v d '  . . )  

( I f  n e g a t i v e ,  d e c r e m e n t  q u o t  a n d  a d d  t o  d i v i d e n d .  ) 

DUP O< I F  R> 1- 2 R @  ROT > R  0 T +  
( I f  s t i l l  n e g a t i v e ,  d o  i t  o n e  m o r e  t i m e .  ) 

DUP O< I F  R> 1- 2 R @  ROT > R  0 T +  
THEN THEN 

( Undo n o r m a l i z a t i o n  o f  d i v i d e n d  t o  g e t  r e m a i n d e r .  ) 

R> 2R> 2DROP 1 I U  ROT > R  L S H I F T  TUM/ ( r e m  . )  ( R :  q u o t )  
R> 0 ( r e m  . q u o t  . ) (  R:  ) 

Thanks to Martin Laueter for help with TUM*. 

34 Forth Dimensions XIX.6 



The following are corporate sponsors and individual benefactors 
whose generous donations are helping, beyond the basic member- 

/ ship levels, to further the work of Forth Dimensions and the Forth In- 
terest Group. For information about participating in this program, 
please contact the FIG office (office@forth.org). 

Corporate Sponsors 

AM Research, Inc. specializes in Embedded Control applica- 
tions using the language Forth. Over 75 microcontrollers are 
supported in three families, 805 1, 681 1 and 8xC16x with both 
hardware and software. We supply development packages, do 
applications and turnkey manufacturing. 

Clarity Development, Inc. (http://www.clarity-dev.com) pro- 
vides consulting, project management, systems integration, 
training, and seminars. We specialize in intranet applications 
of Object technologies, and also provide project auditing ser- 
vices aimed at venture capitalists who need to protect their 
investments. Many of our systems have employed compact 
Forth-like engines to implement run-time logic. 

Digalog Corp. (www.digalog.com) has supplied control and 
instrumentation hardware and software products, systems, and 
services for the automotive and aerospace testing industry for 
over 20 years. The real-time software for these products is Forth 
based. Digalog has offices in Ventura CA, Detroit MI, Chicago 
IL, Richmond VA, and Brighton UK. 

Forth Engineering has collected Forth experience since 1980. 
We now concentrate on research and evolution of the Forth 
principle of programming and provide Holon, a new genera- 
tion of Forth cross-development systems. Forth Engineering, 
MeggenlLucerne, Switzerland - http://www.holonforth.com. 

FORTH, Inc. has provided high-performance software and ser- 
vices for real-time applications since 1973. Today, companies in 
banking, aerospace, and embedded systems use our powerful 
Forth systems for Windows, DOS, Macs, and micro-controllers. 
Current developments include token-based architectures, (e.g., 
Open Firmware, Europay's Open Terminal Architecture), ad- 
vanced cross-compilers, and industrial control systems. 

The iTV Corporation is a vertically integrated computer com- 
pany developing low-cost components and information ap- 
pliances for the consumer marketplace. iTVc supports the 
Forth development community. The iTVc processor instruc- 
tion set is based on Forth primitives, and most development 
tools, system, and application code are written in Forth. 

Keycorp (www.keycorp.com.au) develops innovative hardware 
and software solutions for electronic transactions and bank- 
ing systems, and smart cards including GSM Subscriber Identi- 
fication Modules (SIMs). Keycorp is also a leading developer of 
multi-application smart card operating systems such as the 
Forth-based OSSCA and MULTOS. 

An interactive programming environment for writing Win- 
dows NT and Windows 95 kernel mode device drivers in Forth. 
- - - 

Forth Dimensions XIX.6 

silicon Composers (web site address www.silcomp.com) sells 
;ingle-board computers using the 16-bit RXT 2000 and the 32- 
>it SC32 Forth chips for standalone, PC plug-in, and VME- 
3ased operation. Each SBC comes with Forth development soft- 
rvare. Our SBCs are designed for use in embedded control, data 
~cquisition, and computation-intense control applications. 

r-Recursive Technology specializes in contract development 
of hardware and software for embedded microprocessor sys- 
tems. From concept, through hardware design, prototyping, 
and software implementation, "doing more with less" is our 
goal. We also develop tools for the embedded marketplace 
and, on occasion, special-purpose software where "small" and 
"fast" are crucial. 

Tateno Dennou, Inc. was founded in 1989, and is located in 
Ome-city Tokyo. Our business is consulting, developing, and 
reselling products by importing from the U.S.A. Our main 
field is DSP and high-speed digital. 

AS0 Bldg., 5-955 Baigo, Ome,Tokyo 198-0063 Japan 
+81-428-77-7000 8 Fax: +81-428-77-7002 

http://www.dsp-tdi.com E-mail: sales@dsp-tdi.com 

Taygeta Scientific Incorporated specializes in scientific soft- 
ware: data analysis, distributed and parallel software design, 
and signal processing. TSI also has expertise in  embedded 
systems, TCP/IP protocols and custom applications, WWW 
and FTP services, and robotics. Taygeta Scientific Incoporated 

1340 Munras Avenue, Suite 314 Monterey, CA 93940 8 

408-641-0645, fax 408-641-0647 http://www.taygeta.com 

Triangle Digital Services Ltd.-Manufacturer of Industrial Em- 
bedded Forth Computers, we offer solutions to low-power, 
portable data logging, CAN and control applications. 
Optimised performance, yet ever-increasing functionality of 
our 16-bit TDS2020 computer and add-on boards offer versa- 
tility. Exceptional hardware and software support to devel- 
opers make us the choice of the professional. 

Individual Benefactors 

Everett F. Carter, Jr. Zvie Liberman 
Edward W. Falat Marty McGowan 
Michael Frain Gary S. Nemeth 
Guy Grotke Marlin Ouverson 
John D. Hall Richard C. Wagner 
Guy Kelly 



Twentieth Anniversary of the 
FORML Conference 

"Forth Interfaces 
to the World" 

November 20-22,1998 Pacific Grove, California 
FORMLwelcomes papers on a variety of Forth-related topics,even those which do not adhere strictly to the published 
theme. Some theme-related topics of interest,and for which papers are particularly sought, include: 

Overcoming the Limits to Growth Forth on New 32-bit Embedded Chips 

Forth in "Foreign" Embedded Environments Forth in a Windows World 
(e.g., Windows CE, Inferno, pSOS,Vrtx) 

Co-Existing with C 
Forth and Rapid Application Development (RAD) 

Forth and the InternettJava 

"20120: Hindsight andvision" is planned as a two-part evening panel.Part one will offer a look at Forth's history- 
what worked well and what might have been done differently-and will feature participants who played key 
roles in Forth's evolution; part two will evaluate Forth's current status and propose courses of action to lead 
Forth into a stronger position in coming years. 

Among the expected presenters and attendees: 

Wil Baden, author ofnStretching Standard Forthnand Charles H. Moore, inventor of Forth 
"Forth Tool Belt" series in Forth Dimensions 

William Ragsdale, founding FIG President and 
Everett F."Skip"Carter,Jr.,President of Forth lnterest original FIG board member, programmer, 
Group, author of Forth Dimensions"Forthwarenseries, entrepreneur, and financial publisher 
President and owner ofTaygeta Scientific 

Elizabeth D. Rather, President of FORTH, Inc.and 
John D. Hall,former FIG President, Open Firmware co-author of Forth Programmer's Handbook 
engineer at Apple Computer 

C.H.Ting, owner of Offete Enterprises, former FIG 
Glen Haydon, owner of Mountain View Press, author board member, custodian of eForth 
of All About Forth, and Forth philosopher 

Conference Chairman: Marlin Ouverson - editor@forth.org 
Conference Director: Robert Reilinq - ami@best.com 

The FORML Conference is held at the Asilomar Conference Center, a National Historic Landmark noted for its 
wooded grounds just yards from Pacific Ocean dunes and tidepools on California's Monterey Peninsula.Lodging 
and all meals included with conference registration,and spouses and guests of conference participants can join 
numerous recreational outings and activities. 

Please confirm your attendance early-accommodations may be limited due to this facility's immense popularity. 

Please submit the subject of your paper as soon as E-mail submissions may be sent to editor@forth.org 
possible in  order t o  be included in pre-conference withUFORML paperUin the subject line.Hard copy may 
publicity.Final titles with abstracts are due by October be mailed to FORML Conference Chairman, c/o Forth 
1, 1998. Completed papers should be received by Interest Group, 100 Dolores Street, Suite 183, Carmel, 
November 1 in order to be included in the conference California 93923. 
notebooks that are distributed to all attendees. 

Inquiries about conference registration may be directed to office@forth.org or to the address above. 


