

For the past two years the Forth Interest Group has been / Autumn is beautiful in Carmel! We hope we'll be seeing
maintaining several e-mail based special interest sections.
These groups allow its members to exchange information
about special Forth topics directly with other members who

many of you at FORML '97 this year. The Monterey penin-
sula (Carmel, Monterey, Pacific Grove, Pebble Beach, Sand
City, and Seaside) is a fabulous place to "get away to" in late

share the same interest. November.
This can be much more efficient than using network I Did you know that FORML '97 Early Registration will give

newsgroups for asking questions about, say ~ i n 3 2 ~ o r , by
sending e-mail to fig-win32for@forth.org because fig-win32for
is a list of people who are particularly interested in Win32For.

Any FIG member can join any of the special interest mail-
ing lists by filling out the form at:

http://www.forth.org/fig/sigs.html

We have recently added an automated mailing list server
called Majordomo. This new service allows you to subscribe,
unsubscribe, and learn other information about any of the
lists purely by e-mail.

You still mail to, for example, fig-win32for@forth.org to
exchange messages with other members of that list. But you
use majordomo@forth.org to send messages about the man-
agement of the list (all of the lists, not just fig-win32for).

To get help on using the Majordomo mailserver, send e-
mail to majordomo@forth.org with "help" as the message
content. Majordomo will receive your request and e-mail its
help file back to you.

YOU can join a list by sending the message:

subscribe <listname>

Sending the message "lists" will cause you to receive a list
of all the special interest sections.

Details on these and other commands are given in the help
file, so sending a help request is the recommended first step.

. -

you an additional 10% off the Conference fee? And it helps
us to plan-please take advantage of it! The Early Registra-
tion cut-off is November 1st. Registrations taken after that
date will be at the full fee. Also, there are a limited number of
rooms, another reason to register early!

This year we also are offering Corporate Sponsorships. If
you work for a corporation, or own one, and would like to
know more about sponsorship, please contact the office and
we'll be happy to provide the details.

As an additional reminder, please let us know at your ear-
liest convenience the title of your talk for FORML '97. You
can use FORML@forth.org to get in touch with Guy Kelly,
Conference Chair.

The Forth Interest Group, as you know, is a member-sup-
ported, non-profit organization. This past year, FIG has under-
gone many changes in both personnel and office procedures.
We're currently in the process of revising the Chapter Kit to
better serve your needs to connect with each other and to
interact with the FIG office. And, of course, you've no doubt
noticed the new look and design of Forth Dimensions. On the
drawing board, we have a ~ e m b e r s h i ~ Drive to increase FIG'S
membership, as well as a planned Donation Drive and Fund
Raiser. More information about these activities will be in fu-
ture issues of Forth Dimensions. There are even plans for the
office to start posting weekly information about our activi-
ties on comp.lang.forth.

All in all, these activities are designed to keep you better
informed about your Forth Interest Group. Naturally, if you
have any questions, don't hesitate to contact me at the office.

Thank you all for your continued support!
I

Cheers!

e-mail: kalman@taygeta.com
fax: 408-641-0647
in person: 408-641-0645
mail: just send your check or money order

in U.S. dollars to:

Poor Man's Explanation of Kalman Filtering
or, How I Stopped Worrying and Learned to Love Matrix Inversion
by Roger M. d u Plessis

This classic is no longer out of print! You can now order it several ways:

Taygeta Scientific Inc.
1340 Munras Avenue
Suite 314
Monterey CA 93940

Trace Carter
Forth Interest Group
100 Dolores Street, Suite 183
Carmel, California 93923
voice 408-373-6784 fax 408-373-2845

For information about other publications offeied by Taygeta Scientific Inc.,
you can call our 24-hour message line at 408-641-0647.

For your convenience, we accept Mastercard and VISA.

2 Forth Dimensions XIX.3

i Writing a Macintosh Application with Pocket Forth by Ronald T. Kneusel
Forth is breathing some sanity into the world of GUI development. The author doesn't claim to be a
Mac expert, but demonstrates event-driven programming with this pared-down system. Turns out, a
familiar tool takes most of the curse off what many Forth programmers were avoiding for so long.

Yet Another Forth Structures Package by Anton Ertl
In the previous issue, the author proposed a model for object-oriented Forth, and referenced this
paper. The package presented here offers support for features like C's s t r u c t or Pascal's RECORD, and
includes automatic handling of alignment and optimization of fields with offset 0.

Approaching CREATE DOES> by Dave Taliaferro
Defining new defining words does not have to be the b@te noir of new Forth programmers. Instead, it
can be the switch that illuminates a deeper appreciation for, and greater proficiency with, the lan-
guage. The author presents this article in the spirit of helping others while he is himself still near
enough to the learning curve to remember the things that puzzled him.

Lookup Tables by Hans Bezemer and Benjamin Hoyt
Okay, they aren't glamorous, and they would rarely be called elegant. But the authors argue persua-
slvely that lookup tables are utilitarian, flexible, maintainable, extensible in various ways, and indeed
are the right solution to many problems. And with these tools, their implementation becomes easier.

Pygmy Embellishments by Richard W. Fergus
Years of using a Forth system brings more than proficiency, it likely brings a package of ancillary tools
one has designed for certain application domains, to correct perceived deficiencies, and to provide
"personal-favorite" facilities. Take this opportunity to explore the personal toolkit of a Pygmy pro.

2 OFFICE NEWS 6 SPONSORS & BENEFACTORS I

4 EDITORIAL

5 ROCHESTER'97 REPORT

28 STRETCHING STANDARD FORTH
Arcipher - alleged RC4

32 FORTHWARE
Least-squares estimation

6 EUROFORTH '97 REPORT 3 0 MPE's coding style standard concludes. ..

Forth Dimensions XIX.3

-. - - . . -. . -. -

Our Biggest Failure
A telling phrase shows up in this issue's report from the annual euroForth Conference.

The author comments that there appear to be more applications and users of Forth than
even its adherents believe.

This mirrors my own experience. As the (perhaps interminable) editor of this publica-
tion, one of my jobs through the years has been to find articles about interesting, and
hopefully inspiring, uses of Forth. But finding application stories has turned out to be one
of the more challenging aspects of this job, while some years have found debates over
CASE statements and the implementation details of object orientation filling our pages.
The latter kind of low-level discussion is, of course, both appropriate and welcome; if the
situation were reversed, I'd lament the lack of such material.

The fact is, our community has never excelled at putting its best face toward the spot-
light. I remember when a group of FIG personalities were photographed for Rolling Stone,
replete with FIG t-shirts and, if memory serves, wielding figForth listings. How more ap-
propriate, and what a different public perception would have been achieved, at least among
those readers, if the article had included a shot of a Forth-controlled laser light show.
(Presuming, of course, that Rolling Stone intended a straight story; but you get my drift.)

Of course, Forth applications abound, both large and small, embedded and not. It is in
cars, runs an international airport, puts the fun in amusement parks, and even operates
the national telephone network of a country in the Far East. There are other big apps, and
countless smaller ones, but we hear about very few. Most I only know about because of my
position with Forth Dimensions, and most of the insiders at such projects don't write about
them for us or for any of the industry trade publications.

The reasons, I've been told, are many. The programmers are too busy working on their
next project. The language used is a company secret. Writing doesn't pay enough. The team's
scarce narrative skills are conserved for code comments. The egos involved can deliver func-
tional, maybe brilliant, code (because they must and they can, and because it is judged on
familiar, defensible terms) but shy from exposing their prose to public criticism.

It isn't only application stories that we have been poor at telling. Perhaps as a side effect
of (usually unnecessarily) avoiding specific discussion of performance metrics, our collec-
tive voice has never, to my own way of thinking, learned to concisely, consistently, and
persuasively articulate the importance of things like development costs and the perfor-
mance/resource ratio.

The unfortunate result is that, like our European correspondent implies, the perception
grows that Forth isn't used much. In the absence of knowledge, in some quarters the belief
might even take hold that Forth isn't good for much. Now, it is easy to counter such atti-
tudes when they surface; but they rarely surface in the presence of someone capable enough
to dispel them-more often they lurk among the unspoken and subjective prejudices that
influence which solutions will even be considered for a project. It is for this reason, not for
our own general interest and morale, that Forth success stories need to be broadcast in as
many venues as possible. C

It has been pointed out to us that application stories do not sell products. But that is the
difference between sales and marketing, and what I am talking about is marketing-the
biggest failure of the Forth community as a whole. Marketing is the groundwork without
which every sale, every contract, is an exercise in persuasion and fortitude. Without it, we
have to stick our foot in the doorway; with it, the door is open and waiting for our call.

Not interested in marketing? Then get interested in your own Forth work, or that of
your colleagues. Budget into your estimates, as necessary overhead, the time that will be
required to document your projects in the best prose you can produce. Extend your atten-
tion span and write. Write for us, write for others-either way, such a collective practice
will accrue benefits to you (publicity), to the
Forth language (marketing), and to you
next negotiation (sales).

Forth Dimensions

Published by the
Forth lnterest Group

Editor
Marlin Ouverson

Circulation/Order Desk
Trace Carter

Forth Dimensions welcomes editorial ma-
teria1,letters to the editor,and comments
from its readers. No responsibility is as-
sumed for accuracy of submissions.

Subscription to Forth Dimensions is in-
cluded with membership in the Forth In-
terest Groupat $45 per year ($53 Canada1
Mexico, $60 overseas air). For member-
ship, change of address, and to submit
items for publication,the address is:

Forth lnterest Group
100 Dolores Street,suite 183
Carmel, California 93923
Administrative offices:
408-37-FORTH fax: 408-373-2845
office@forth.org
www.forth.org/fig.html

Copyright O 1997 by Forth lnterest
Group,Inc.The material contained in this
periodical (but not the code) is copy-
righted by the individual authors ofthe
articlesand by Forth InterestGroup,lnc.,
respectively.Any reproduction or use of
this periodical as it is compiled or the
articles, except reproductions for non-
commercial purposes,without the writ-
ten permission of Forth lnterest Group,
Inc. is a violation of the Copyright Laws.
Any code bearing a copyright notice,
however,can be used only with permis-
sion of the copyright holder.

The Forth lnterest Group
The Forth lnterest Group is the associa-
tion of programmers, managers, and
engineers who create practical, Forth-
based solutions to real-world needs.
FIG provides a climate of intellectual
exchange and benefits intended to as-
sist each of its members. Publications,
conferences, seminars, telecommuni-
cations,and area chapter meetings are
among its activities.

FORTH DIMENSIONS (ISSN 0884-0822)
i s published bimonthly for $45153160
per year by Forth lnterest Group at
1340 Munras Avenue, Suite 314,
Monterey CA 93940. Periodicals post-
age rates paid at Monterey CA and at
additional mailing offices.

POSTMASTER: Send address changes to
FORTH DIMENSIONS, 100 Dolores Street,
Suite 183, Carmel CA 93923-8665.

Forth Dimensions XIX.3

The 1997 Rochester Forth Conference on "Portable Soft-
ware" has come and gone. It was good to be there again, back
in Rochester, a chance to mingle with others in your field of
work and get exposed to new and interesting ideas others are
working on. A chance to catch up with annual friends.

Larry Forsley, the conference organizer, opened the small-
est conference gathering in years with the general warmth
and enthusiasm that is his nature. There were roughly 30 at-
tendees, and (according to the schedule) 21 talks in all.

Thursday and Friday were filled with talks followed by
working groups. On Friday, we wound up everything at a
wonderful Thai restaurant for supper. Saturday saw the 4K
run, walk, stroll, sleep. I elected for the 4K sleep, where the
unit of measure was not meters but seconds.

On Saturday, there were four one-hour focus sessions on
different topics. The closing of the conference brought to-
gether the stragglers (or, as Larry likes to call them, the survi-
vors) back at the Forth Institute for a barbecue.

The Talks
Thursday

Skip Carter opened with a talk on how his oceanic robot
(maybe it's an obot) evolved from smart instruments.

Allan Anway updated us about his continuing success and
growth using FORTH, Inc.'s Express software to control a lime
kiln.

I gave a talk (available on the web at http://www.
compusmart.ab.ca/rc/Timbre/AWritableComputer.html)
about my research with writeable computers over the last year
with a malleable model of a stack processor.

Richard Haskell described how Whyp was used to create
embedded systems, and demonstrated a digital, handheld
computer compass.

Elizabeth Rather gave a quick overview of where FORTH,
Inc. plans to take their cross-compiler technologies now and
in the future. They have some nice products, with report cards
to attest to the gains they've made with their next-genera-
tion compiler technologies.

I gave a talk (available on the web at http://www.
compusmart.ab.ca/rc/Timbre/TimbreUnitII.html) on Timbre,
introducing the ten forms of Timbre and the Tu of Timbre.

Peter Knaggs entertained us with his experiences of learn-
ing Per1 and then comparing it to Forth.

Randy Leberknight painted a picture of how Open Firmware
creates a nice, portable infrastructure for hardware systems.

Stephen Pelc talked about a portable open software archi;
tecture for industry.

John Rible, a man I consider one of the true miners of
Forth, treated us to an update on his gem, the QS2116 BRISC
Microprocessor and its hardware threaded-code interpreter.

Penio Penev concluded the talks for the day with an ac-
tive discussion about mapping the Forth virtual machine in
a RISC environment.

In the last part of the afternoon, Larry conducted a work-

ng group focused on: What are the year 2000 problems? This
~rought forth a lively discussion from the audience, with vari-
,us war stories, predictions, and some knowledge. I discov-
xed that my PowerBook rolled over a two-digit date at the
year 2019 to 1920, or something like that. It's probably when
:he warranty expires.

Friday
Friday morning brought us back together to hear Ken

f ifford talk about Ion Implanters for Dummies.
Olive Shank followed with Software Life Cycles.
Steve Kunz described how video image analysis can be

done with Forth.
Next was a talk on the Essential Service Nodes (ESNs) be-

ing developed within NASA towards plug-and-play spacecraft
systems.

Peter Knaggs described some work he'd been involved with
in marrying Tcl/Tk and ProForth, and how it was used as a
bilingual scripting environment.

Skip Carter updated us with Forth Script 11: Why Isn't Ev-
eryone Using It? (We are, but in different dialects ...)

We were then treated to a swift life story by Martha
Chernoch, and how she grew with the computing age.

Warren Bean gave a talk on growing hardware from hard-
ware.

The last talk was from a conference regular, Brad Rodriguez
(by now a Ph.D. graduate): Towa~d a Distributed, Object-Based
Forth.

The afternoon consisted of four working groups held so
that each person could attend at least two of them.

Saturday
The conference wrapped up with Saturday as an open day

for drop-in visitors and four one-hour tutorials.
I ran the first tutorial, on Timbre Tools and Applications.

I talked about how Timbre is used, and showed a kernel com-
piler, complete with optimizer, implemented in Timbre.

Elizabeth Rather ran the second tutorial, and spoke about
FORTH, Inc.'s cross-compilers.

I ran the third tutorial, after lunch, going much deeper into
the work I'd done with writeable computers. I explained the
architecture, and demonstrated it with statistical addition.

The fourth tutorial was a focus group on the Journal of
Forth Application and Research.

In Closing
The papers from these talks will, of course, be available in

the conference proceedings from the Forth Institute.

A Tribute to Larry
I've got to give the Forsleys (Brenda, Larry, Alex, and Amara)

lots of credit. They delivered the conference right on time, in
the year it was supposed to happen, with real-time defect re-
moval and software co-routines for those other problems.

Forth Dimensions XIX.3

euroFORTH '97 was held at St. Anne's College (Oxford, England) on
September 26-28, with the main topic of "Embedded Communica-
tions."A copy of the proceedings is available from MPE Ltd.

looked after the refereed papers. Joan Perham and Sarah Wind-
less performed the administration of the conference, and its
successful running is due to them. The conference sponsors
enabled money to be available for student sponsorship.

This year's conference had more delegates and visitors than
ever before, and demonstrated that Forth is more widespread
than even its practitioners believe. The applications handled
by Forth are increasing in size and complexity, and some of
the papers discuss methodologies to handle complexity in
software-in terms both of code size and of team program-
ming-that can be applied to modern Forth systems.

The theme of this year's conference was Embedded Com-
munications, and I am very pleased that we had several pa-
pers on this topic, including the use of the 1x1 stack, net-
working papers covering the CAN fieldbus, and a TCP/IP stack
in Forth. As ever, the actual topic of a euroForth conference
emerges when we recieve the papers. This year, one of the
emerging themes was safety and certification, particularly as
part of the problems of managing large software projects. This
is related to an interest expressed before the conference by
several delegates in source documentation and management.

Apart from our thanks to all delegates for their enthusi-
asm and their papers, our thanks also go to those who
organised the conference. Peter Knaggs and his committee

The following are corporate sponsors and individual benefactors
whose generous donations are helping, beyond the basic member-
ship levels, to further the work of Forth Dimensions and the Forth In-
terest Group. For information about participating in this program,
please contact the FIG office.

Corporate Sponsors

Clarity Development, Inc. (http://www.clarity-dev.com) pro-
vides consulting, project management, systems integration,
training, and seminars. We specialize in intranet applications
of Object technologies, and also provide project auditing ser-
vices aimed at venture capitalists who need to protect their
investments. Many of our systems have employed compact
Forth-like engines to implement run-time logic.

FORTH, Inc. has provided high-performance software and ser-
vices for real-time applications since 1973. Today, companies in
banking, aerospace, and embedded systems use our powerful
Forth systems for Windows, DOS, Macs, and micro-controllers.
Current developments include token-based architectures, (e.g.,
Open Firmware, Europay's Open Terminal Architecture), ad-
vanced cross-compilers, and industrial control systems.

This information is part of a report offered by Peter Knaggs on the
euroForth web page at http://www-cis.paisley.ac.uk/forth/euro/
ef97.htm1, where more details of the event can be found.

Silicon Composers (web site address www.si1comp.com) sells
single-board computers using the 16-bit RXT 2000 and the 32-
bit SC32 Forth chips for standalone, PC plug-in, and VME-
based operation. Each SBC comes with Forth development soft-
ware. Our SBCs are designed for use in embedded control, data
acquisition, and computation-intense control applications.

T-Recursive Technology specializes in contract development
of hardware and software for embedded microprocessor sys-
tems. From concept, through hardware design, prototyping,
and software implementation, "doing more with less" is our
goal. We also develop tools for the embedded marketplace
and, on occasion, special-purpose software where "small" and
"fast" are crucial.

Taygeta Scientific Incorporated specializes in scientific soft-
ware: data analysis, distributed and parallel software design,
and signal processing. TSI also has expertise in embedded
systems, TCP/IP protocols and custom applications, WWW
and FTP services, and robotics. Taygeta Scientific Incoporated

1340 Munras Avenue, Suite 314 8 Monterey, CA 93940 8

408-641-0645, fax 408-641-0647 8 http://www.taygeta.com

Individual Benefactors

John D. Hall

Forth Dimensions XIX.3

Pocket Forth by Chris Heilman is a small, freeware Forth
for the Macintosh. It is wonderful in its simplicity. This ar-
ticle will outline how to use Pocket Forth to write simple
Macintosh applications. I claim no expertise apart from that
gained by having done it before. Pocket Forth is not a com-
plete development system, and needs to be treated differently
than other Mac development systems, including the much
more powerful Mops/Yerk pair.

Most people learn best by example. Therefore, we will cre-
ate an example: a simple drawing program called MouseDraw.
Along the way, certain Mac features will be described, but
only so far as they relate directly to the task at hand. If you
want to learn the ins and outs of Mac programming buy the
Inside Macintosh books. Then come and teach me. To those
who shiver at the sight of the word "Macintosh," I urge you
to forge ahead. Using Pocket Forth is more a hacker's thing
than most Mac programming is. You just might like it!

Pocket Forth
PF is small, weighing in around 18K, including all the re- - -

sources. It is also reasonably fast. It has no editor, no assem-
bler, and the dictionary size is 26K. When run, you are given a
simple 64 x 16 character interpreter window and an o k prompt.
source files can be read from disk via --> filename, open,-or
the File menu. The last two display a standard Macintosh open
dialog. PF's native types are signed 16-bit integers and 10-byte
floats with a shared data stack. PF has no built-in disk access,
but makes up for this by its ability to access all of the Macintosh
Toolbox. In essence, PF is the minimum programming lan-
guage for the Macintosh. It provides complete access to the
whole machine, with the power of Forth as the means to tie it
all together. The dictionary can be saved and a startup word
defined (more on that later), so it is capable of creating fully
compiled, standalone applications.

In PF Toolbox access, this is handled via assembly lan-
guage traps. By design, PF's return stack is the system stack,
allowing necessary parameters to be passed to the return stack
just before a ~ o o l b o x routine is called. For example:

: pensize (height width --)

>r >r , $ A89B ;
i

Pensize takes two 16-bit arguments, passes them to the re-
turn stack, and calls the QuickDraw function to resize the
drawing pen (trap $A89B). In this way, any Toolbox function
can be used.

The goal
The goal is to create a standalone application. In order to

accomplish this, PF must be transformed. This is a two-step
process: first, load your code, replacing PF's handlers with
your own; second, use a resource editor to alter PF's resources
to complete the application. This is one step beyond the usual
turnkey approach.

Why two steps? All Macintosh files can contain a resource
fork and a data fork. Usually, applications are all resource
fork while everything else is all data fork. The Macintosh ac-
cesses the application's resources as needed. When an icon is
to be displayed, the icon is read from the resource fork. When
a new window is to be created, the necessary data is read
from the resource fork. This is why most Macintosh applica-
tions are completely contained within a single file. A resource
editor is absolutely essential to programming the Macintosh
in any language; ResEdit by Apple is as good as any other.
The PI: resources we will be concerned with here are those
that deal with menus, icons, dialogs, and windows.

The example
This is the goal: a simple program that will let us draw

with the mouse in a small window. For thrills we can add a
"button" for clearing the screen, and some menu options for
adjusting the size of the drawing pen. We also want the screen
to properly update itself when it needs to.

The events
There is one thing to remember: GUI systems, like the

Mac, are event driven. Basically, applications sit around and
wait for the user to do something, then they react to that
event. Most Mac applications deal with this via a Toolbox
routine called WaitNextEvent. Pocket Forth deals with this
by providing three words that, as a side-effect, handle events
for us. They are all related to the keyboard: key, expec t , and
? t e r m i n a l . These operate in the usual Forth way, but they
also handle events, such as mouse clicks and menu choices
via command-key sequences. So, our application will con-
tain an inner loop that listens for events:

: eventLoop (--)

(event loop, listen for events via KEY)

initialize
begin
10000 10000 !pen (move pen off screen)

key drop (get key presses & ignore)

again ;

The word i n i t i a l i z e sets up the application, followed

Forth Dimensions XIX.3 7

by the event loop, which never exits. At first glance, it ap-
pears this is a meaningless infinite loop which gets charac-
ters from the keyboard and throws them away. This is exactly
what it is. The secret lies in the fact that, while key is waiting
for a keypress, it is also listening for events and responding
to them via PF's built-in event handlers. Moving the pen off
the edge of the screen removes the cursor from view.

Whenever the user does something, it triggers one of PF's
event handlers. Most of these have default values and need
not be changed. Some, of course, will be changed to place
the application's response under the programmer's control.
Handlers are stored as addresses in a table of unnamed vari-

mouse 16 +md ! (mouse button handler)

Next, in order to update the screen properly, we need to
set the window update and activate handlers:

myAct 12 +md ! (new activate handler)

myUpd 14 +md ! (new update handler)

myVer 24 +md ! (new version handler)

Finally, we need to set the startup word so we can turnkey
the application:

ables accessed via offsets to a base word +md. The default
handler's address is replaced with the new handler's address:

whenever the user holds down the mouse
button. So we need to set the mouse-
down handler:

, eventLoop 26 +md ! (startup word)

myButton 16 +md !

This causes the word myButton to execute each time a
mouse-button-down event is encountered. The PF documen-
tation has a complete list of available handlers. For our sample
application, we will use the following: menu one, items one,
two, and four; the screen update handlers; the mouse button
handler; and the startup word.

While it is possible to get PF to create new menus, it is
easiest to the two existing menus and re-
assign handlers. The PF File menu contains eight items (three
of which are separator lines); the Edit menu contains another
six items. The menu handlers are stored in a list structure
(Figure words l8 +md return the address of a
which in turn points to the beginning of the menu structure.
The first element of the menu structure (two bytes) points to
a list containing the addresses of the menu item handlers.
So, to set the first menu's first item handler, we would use
the cryptic:

+pen 18 +md @ @ !

The remaining handlers are set in a similar fashion:

-pen 18 +md @ @ 2 + !
(2nd File menu item)

bye 18 +md @ @ 6 + !
(4th File menu item)

FI F-l menu choice handlers

Where are we now? We are working with a copy of Pocket
Forth which we will transform into our application. We have
an event loop which will process events while waiting for
keystrokes. We have decided which event handlers to update
and have written words which implement our new handlers.
Before proceeding further, let,s take a look at the code itself.

The code
The complete source to MouseDraw, with line numbers

added, is in Figure Two.
Lines seven through 42 define several Mac-specific utility

words for changing fonts, drawing rectangles, and storing
the application window for updates. Kects are rectangles, de-
fined by their top, left, bottom, and right coordinates. There
are several toolbox calls for drawing rects, erasing rects, and
for determining if a point lies within a rect. Fonts are chosen
by font number. The word wsize is used to resize the appli-
cation window on startup; an alternative would be to change
the default window size in the application,s WIND resource
(see below). The series of words in lines 23-42 are used to
create a picture in memory and then copy it to the current
window. This works for updating, because we set the han-
dlers to store a copy of the window when we click off the
application, and it is that copy that will be returned when
the application is active again (i.e., made the front running
application-the application will continue to run in the back-
ground).

The main program starts with line 47, which defines a word
to alter the drawing pen size, as seen above. Next, the drawing

File Edit

Figure One. Menu list structure
Notice that the third menu item han- Menu List

dler has not been reset. We will be alter- M~~~ list handle 0 2 4 offset (bytes)
ing the MENU resource to change the
names of the menu items. In the process,
we will set item three to be a separator @

line (which cannot be selected, so there
I

is no need to reset its handler).
The heart of our application is the 18 +md V

i v
word mouse, which is to be executed offset 0 4- Addresses of

8 Forth Dimensions XIX.3

- -

Figure Two. Complete source to MouseDraw.

001 \
002 \ A Simple Macintosh Application using Pocket Forth
003 \
004 \ RTK, 07-Feb-97, last update: 09-Feb-97
005 \
006
007 (font, rect and widow management words.. C. Heilman, PF examples)
008
009 : wsize (h v --) 2dup 8 +md 2! 0 +md 2@ 2>r 2>r 256 >r , $ A91D ;
010
011 : !FONT (n --) >r ,$ A887 ; macro (TextFont) (set font)
012 : !FSIZE (n --) >r , $ A88A ; macro (- - Textsize) (set size)
013 : monaco (--) 4 !FONT 9 !FSIZE ;
014 : chicago (--) 0 !FONT 12 !FSIZE ;
015
016 : rect (create a named rect) variable 6 allot ;
017 : fRect (rect --) a>r , $ A8A1 ; (FrameRect)
018 : eRect (rect --) a>r , $ A8A3 ; (-~rase~ect)
019 : pRect (rect --) a>r , $ A8A2 ; (-~aint~ect)
020 : !rect (t 1 b r rect --) >r swap r 4 + 2! swap r> 2! ;
021 : ?in (h v rect -- b) 0 >r rot rot 2>r a>r , $ A8AD r> ; (- PtInRect)
022
023 4 +md constant WRECT (addr of window's rect)
024 : WINDOW (-- window.pointer) 0 +md 2@ ;
025 : WPICT (-- dhandle) (the window picture's handle)
02 6 0 0 2>r window 2>r , $ A92F 2r> ; (GetWindowPic)
027 : KPIC (d --) 2dup or IF 2>r , $ A8F5 ELSE 2drop THEN ;
028 : PICTURE (rect -- dhandle) (open a picture leave its handle)
02 9 0 0 2>r a>r , $ A8F3 2r> ; (-0penPicture)
030 : PCLOSE (--) , $ A8F4 ; macro (ClosePicture)
031 : PKILL (addr --) 2@ kpic ; (~iil~icture at addr)
032 : WPASSIGN (handle --) (ASSIGN a Picture to Window)
0 3 3 window 2>r 2>r , $ A92E ; (SetWindowPic)
034 : BCOPY (rect --) (copy window bitmap to window)
0 3 5 window 2 0 d+ 2dup 2>r 2>r (window bits = source, destination)
036 dup a>r a>r 0 >r (source rect, destination rect, mode)
037 window 24 0 d+ dl@ 2>r (mask to port visrgn)
0 3 8 , $ A8EC ; (SrcCopy mode, CopyBits)
039 : WSAVE (--) (save the screen-for updating)
040 wpict kpic (Killpicture)
041 0 0 window 148 0 d+ dl! (zero window picture in window record)
0 4 2 wrect picture wpassign wrect bcopy pclose ;
043
044
045 (Start of MouseDraw code)
046
047 : pensize (height width --) (change the drawing pen size)
048 >r >r , $ A89B ; %

049
050 rect CLEAR 250 5 265 52 CLEAR !rect (CLEAR box)
051 rect DRAW 20 0 246 1024 DRAW !rect (drawing field)
0 5 2
053 variable x (last position)
054 variable y
055 variable p (current drawing pen size)
0 5 6
057 : initialize (--) (setup screen)
058 400 275 wsize (set window size)
059 1 p ! (set pensize)
060 page 3 15 !pen chicago ." MouseDraw"
061 monaco ." A simple drawing program" cr

Forth Dimensions XIX.3 9

CLEAR fRect 7 261 !pen ." CLEAR" (draw CLEAR button)

,

: +pen (--) (increment pen size by 1)
1 p + ! p @ 10 > if 10 p ! then
p @ dup pensize ;

: -pen (--) (decrement pen size by 1)
-1 p + ! p @ 1 < if 1 p ! then

p @ dup pensize ;

: ?click (-- t 1 f) (true if mouse button clicked)
?button if begin ?button O= until -1 else 0 then ;

: draw segment (x' y' --) (draw a segment from last point)
x-@ y @ !pen 2dup -to y ! x ! ;

: clear box (--) (check if CLEAR clicked)
?click IF initialize THEN ;

: mouse (--) (mouse button handler)
@mouse 2dup DRAW ?in IF

y ! x ! (set initial position)
ELSE 2drop THEN
BEGIN
?button (while button still down)
WHILE

@mouse (get mouse position)
2dup DRAW ?in IF (if in drawing rect)
draw-segment (draw the segment)

ELSE
CLEAR ? in IF

clear-box (otherwise, see if CLEAR clicked)
THEN

THEN
?terminal drop (process an event)

RE PEAT

: eventLoop (--) (event loop.. listen for events via KEY)
initialize
begin

10000 10000 !pen (move pen off the screen)
key drop (get key presses and ignore)

again ;

(update and activate - for restoring the window)

: myAct if null else WSAVE then ;
: myUpd WSAVE ; i

112 : myVer WSAVE [24 +md @ compile] ;
, 113
114 (setup handlers)
115
116 ' +pen 18 +md @ @ ! (1st file menu item)
117 ' -pen 18 +md @ @ 2 + ! (2nd file menu item)
118 ' bye 18 +md @ @ 6 + ! (4th file menu item)
119
120 ' mouse 16 +md ! (set up mouse button handler)
121 ' myAct 12 +md ! (new activate handler)
122 ' myUpd 14 +md ! (new update handler)
123 ' myVer 24 +md ! (new version handler)
124
125 ' eventLoop 26 +md ! (startup word)

10 Forth Dimensions XIX.3

& File Edit Resource Window Uiew

and clear rects are defined. All drawing
Packet Forth MPW e

I

will take place within the drawing rect.
The clear rect will act as a button for
erasing the drawing rect. The word i n i -
t i a l i z e sets up the window and draws
the text. It is called once by s t a r t u p ,
which then goes into the eventLoop
to listen for events. The handlers are set
up at compile time, in lines 116-125.

The application has a single menu,
with three options: increase pen size,
decrease pen size, and quit. These cor-
respond to the words +pen, -pen, and

iir; ii;; ~1 3; a nov t,m
.ii($ dER I10)

.:i;+;; Pool 11 10
CHP DI,2

0 100 0000 ... CTS

r,lmn a& ALRT BNDL cicn CODE

D ICT DlTL FREF hdlq hmnu hrct

The word ? c l i c k returns true if the
mouse button has been clicked (i.e., the
button was held down and then re-
leased). PF's own word, ?bu t ton , re-
turns true when the mouse button is
down. C l e a r box determines if the

bye, respectively. The function of +pen
and -pen is straightforward. The cur-
rent pen size is stored in p, and is in-
creased or decreased as needed.

mouse buttonhas been clicked within (icd
the clear rect. Draw segment draws a

-..- -.= ..= --- 4 4 -($
hwin ic14 ic13 ICN # ICOlrl ics*

ics8 MENU p4TH P ICT S lZE

line from the last place the mouse was
to the place it is now.

Mouse is where the actual drawing
happens. While it is true that mouse
could be more completely factored, I
chose to leave it as is to make it, per-

Forth Dimensions XIX.3 11

- - - a - .-.- ---
:+-=A- ---. -'--.-

STR* W IND

: mouse (--) (mouse button handler) cation menus to reflect
-- get where we are now (where the button was first held down) what MouseDraw expects.

and save it (lines 83-85) Last, we will change the ap-
-- while the button is still down (lines 86-98) plication window name. To

accomplish this we will use -- get the mouse position ResEdit 2.1, Apple's re- -- if in the drawing rect, draw the segment from the last source editor.
position If we open a copy of the

-- if in the clear rect, clear the screen PF application with ResEdit,
-- ?terminal drop - quickly check for an event we see a list of resources
I (Figure Three). Double-

clicking on one of these

haps, more readable (no flames, please!)
Structurally it is: FigureThree. Pocket Forth as it looks to ResEdit

-
? Terminal drop in the inner loop processes events while

the mouse button is down. Otherwise, PF would execute the
loop until the mouse button was released, without allowing
other events to be processed. MouseDraw is now 7594) corn-
plete. The code is written and runs as we want it to run. All
that is left is to transform a copy of PF into the application
the MouseDraw code expects.

The resources
We need to change several things in order to complete

MouseDraw as a standalone application. First, we will change
its creator and Finder icon. Second, we will change the
About ... dialog to our own. Third, we will change the appli-

icons will open an editor for that resource. What the editor
looks like depends on the resource type: For any of the icons,
which can be edited as a group by opening the ICN# resource,
a drawing editor is opened. For dialogs (type DITL), an editor
suitable to placing text and buttons is opened. If the resource
is a user-defined resource, or pure binary data, a simple hex
editor is used.

To change the Finder creator (a four-character identifier
used to associate files with applications) choose Get File/Folder
Info ... from ResEdit's File menu, then select the copy of PF
we are working with. Simply enter the new creator as any
four characters. This is done so that, once we change the icon,
we do not change the icon for the PF application itself. Also,

--.- EGJ - MENU "File Menu" I D = 2 from MouseDraw [Bow) F G e ? z

him Entire Menu:
I I Increment Pen Size % l 101 f

Enabled

0 h (Apple menu)

Color I

l tern T e ~ t Default:

Menu Background:

m
0

Figure Four. MouseDraw's File Menu.

check that the BNDL flag is selected. Then open the copy of
PF and double-click the ICN# icon. We want to edit ICN#
128. Double-clicking this displays a drawing window where
we can create our new icon. ICL8 and ICL4 are 8-bit and 4-bit
color icons. Make them the same as the ICN# icon. Lastly,
open the BNDL resource number 128 and make the signature
the same as the creator above.

We need to change the About ... dialog. This dialog is pre-
sented when the user selects the About ... item on the Apple
menu. Open DITL, then open number 257. Use the editor to
create a new dialog that says something intelligent about the
application. At least one element of this must be enabled so
the user can dismiss the dialog; I usually add an Okay but-
ton, along with some static text. Next, open ALRT resource
257 and resize it to match the new dialog.

Lastly, open the MENU resource. Change resource 1 to say
"About MouseDraw ..." Select resource 3 and click the "en-
abled" flag on each Edit menu item to disable it. Finally, se-
lect resource 2 and make it look like the one in Figure Four.
There is now only one thing left to change.

Open WIND resource 128. This is the application's default
window. Select Set 'WIND' Characteristics ... from the WIND

menu, and change the window name. If we so desire, we could
also change the default size here, instead of setting it with
wsize after the application has launched. Save all the changes
and quit ResEdit.

The last step is to load our source into the modified appli-
cation. Launch the modified PF application, which by now
should be called MouseDraw, and load the source via the word
open. Once loaded, enter save bye to save the dictionary
and exit. The application is now finished. To see the new
Finder icon, rebuild the desktop file or use a utility like Michael
S. Engber's "Save A BNDL."

Postscript
There are only a few Forths for the Macintosh. Of these,

Pocket Forth is the smallest that can be used to build applica-
tions. It can access all of the Macintosh Toolbox. It doesn't
need much memory-often less than 128K-and it doesn't
take mountains of disk space. It is fast enough for most appli-
cations, and has floating-point numbers, should you wish to
use it for scientific pursuits. The process outlined above may
be repeated for any program desired, thereby making Pocket

1 Forth the ideal tool for small applications.

I

12 Forth Dimensions XIX.3

-- .-

Yet Another Forth Structures Package
I

Many ways to add a feature like C's struct or Pascal's
RECORD have been presented and discussed in the Forth com-
munity. One of them was posted on the USENET newsgroup
comp.lang.forth in 1989 (unfortunately I don't remember, by
whom; possibly John Hayes), and convinced me with its sim-
plicity, elegance, and power (in a word, with its Forth-ness).

I have used this basic approach ever since, e.g., in the parser
generator Gray [ert197]. It also inspired my approach for an
object-oriented Forth extension. The package I present here
adds automatic handling of alignments, a bit of syntactic
sugar, and optimization of fields with offset 0.

Why explicit structure support?
If we want to use a structure containing several fields, we

could simply reserve memory for it, and access the fields us-
ing address arithmetic. As an example, consider a structure
with the following fields:

a is a float
b is a cell
c is a float

Given the (float-aligned) base address of the structure, we get
the address of the field:

a without doing anything further
b with float+
c with float+ cell+ faligned

It is easy to see that this can become quite tiring.
Moreover, it is not very readable, because seeing a cell+

tells us neither which kind of structure is accessed nor what
field is accessed; we have to somehow infer the kind of struc-
ture, and then look in the documentation to learn which field
of that structure corresponds to that offset.

Finally, this kind of address arithmetic also causes main-

This is much better in all respects. Of course, you still have to
change all later offset definitions if you add a field. You can
fix this by declaring the offsets in the following way:

0 constant a-offset
a-offset float+ constant b-offset
b-offset cell+ faligned constant c-offset

Since we always use the offsets with t, using a defining
word cf ield that includes the + in the action of the defined
word offers itself:

: cfield (n "name" --)

create ,
does> (name execution: addrl -- addr2)

@ + ;

0 cfield a
0 a float+ cfield b
0 b cell+ faligned cfield c

Instead of x-of f set +, we now simply write x.
The structure field words now can be used quite nicely.

However, their definition is still a bit cumbersome: We have to
repeat the name, the information about size and alignment is
distributed before and after the field definitions, etc. The struc-
ture package presented here addresses these problems.

Usage
You can define a structure for a (data-less) linked list with:

struct
cell% field list-next

end-struct list%

0 constant a-offset .+

0 float+ constant b-offset
0 float+ cell+ faligned c-offset

tenance troubles: If you add or delete a field somewhere in
the middle of the structure, you have to find and change all
computations for the fields afterwards.'

So, instead of using cell+ and friends directly, how about
storing the offsets in constants:

Now we can get the address of field x with X-of f set +.

With the address of the list node on the stack, you can
compute the address of the field that contains the address of
the next node with lis t-next. E.g., you can determine the
length of a list with:

1 You may ask why you would want to add a field in the middle. One
reason is if you have derived extended structures from a base structure,
and want to add a field to the base structure-the new field would
appear in the middle of the extended structures.

: list-length (list -- n)

\ "list" is a pointer to the
\ first element of a linked list
\ 'I is the length of the list

0 begin (listl nl)

over
while (listl nl)

1+ swap list-next @ swap
repeat
nip ;

Forth Dimensions XIX.3

You can reserve memory for a list node in the dictionary
with l i s t % % a l l o t , which leaves the address of the list node
on the stack. For the equivalent allocation on the heap, you
can use l i s t % %allot (or, for an al locate- l ike stack ef-
fect-i.e., with ior-use l i s t % % a l l o c a t e) .

Note that, in ANS Forth, the body of a c r e a t e d word is
a l i gned but not necessarily f a l igned; therefore, if you do a

create name foo% %allot

the memory allotted for foo% is guaranteed to start at the
body of name only if foo% contains only character, cell, and
double fields.

You can also include a structure foo% as a field of another
structure, with:

struct
. . .

foo% field . . .
. . .
end-struct . .

Instead of starting with an empty structure, you can also
extend an existing s t r u c t ~ r e . ~ E.g., a plain linked list without
data, as defined above, is hardly useful. You can extend it to
a linked list of integers, like this:

list%
cell% field intlist-int

end-struct intlist%

i n t l i s t % is a structure with two fields: l i s t - n e x t and
i n t l i s t - i n t .

You can specify an array type containing n elements of
type foo% like this:

You can use this array type in any place where you can use
a normal type, e.g., when defining a f i e l d , or with % a l l o t .

The first field is at the base address of a structure, and the
word for this field (e.g., l i s t - n e x t) actually does not change
the address on the stack. You may be tempted to leave it away
in the interest of run-time and space efficiency. This is not
necessary, because the structure package optimizes this case,
and compiling such words does not generate any code. So, in
the interest of readability and maintainability, you should
include the word for the field when accessing the field.

Naming convention
The field names that come to (my) mind are often quite

generic and, if used, would cause frequent name clashes. E.g.,
many structures probably contain a counter field. The struc-
ture names that come to (my) mind are often also the logical
choice for the names of words that create such a structure.

Therefore, I have adopted the following naming conventions:

2 This feature is also known as extet~tletl records [wirth88]. It is the main
innovation in the Oberon language; in other words, adding this feature
to Modula-2 led Wirth to create a new language, write a new compiler,
etc. Adding this feature to Forth just requires a few lines of code.

The names of fields are of the form struct-field, where
struct is the basic name of the structure, and field is the
basic name of the field. You can think of field words as
converting the (address of the) structure into the (address
of the) field.
The names of structures are of the form strucM~, where
struct is the basic name of the structure.

This naming convention does not work that well for fields
of extended structures; e.g., the integer list structure has a
field i n t l i s t - i n t , but has l i s t - n e x t , not i n t l i s t - n e x t .

Implementation
The central idea in the implementation is to pass on the

stack, not in some global variable, the data about the struc-
ture being built. Everything else falls into place naturally once
this design decision is made.

The type description on the stack is of the form align size.
Keeping the size on the top-of-stack makes dealing with ai-
rays very simple.

f i e l d is a defining word that uses c r e a t e and does>.
The body of the field contains the offset of the field, and the
normal does> action is @ + (i.e., add the offset to the ad-
dress), giving the stack effect a d d r l -- addr2 for a field.

This simple structure is slightly complicated by the opti-
mization for fields with offset 0, which requires a different
does> part (because we cannot rely on there being some-
thing on the stack if such a field is invoked during compila-
tion). Therefore, we put the different does> parts in separate
words, and decide which one to invoke, based on the offset.
For a zero offset, the field is basically a noop; it is immediate,
and therefore no code is generated when it is compiled.

Acknowledgments
Marcel Hendrix provided helpful comments on the paper.

Glossary

%align (align size --)
Align the data space pointer to the alignment a l i g n .

%alloc (size align -- addr)
Allocate s i z e address units with al ignmental ign, giving a
data block at addr; throws an ior code if not successful.

%allocate (align size -- addr ior)
Allocate s i z e address units with alignment a l i g n , similar
to a l l o c a t e .

%allot (align size -- addr)
Allot s i z e address units of data space with alignment a l i gn ;
the resulting block of data is found at addr .

cell% (-- align size)

char% (-- align size)

create-field (align1 offset1 align size
"name" -- align2 offset2)

name execution: -- addr
Like f i e l d , but without the does> part.

dfloat% (-- align size)

Forth Dimensions XIX.3

double% (-- align size)

end-struct (align size "name" --)
name execution: -- align size2

size2 is size aligned with align; this ensures that all ele-
ments of an array of name elements have alignment align.

field (align1 offset1 align size
"name" -- align2 off set2)

name execution: addrl -- addrl+off setl
Create a field name with offset off setl, and the type given
by size align. offset2 is the offset of the next field, and
align2 is the alignment of all fields.

float% (-- align size)

nalign (addrl n -- addr2)
addr2 is the aligned version of addrl with respect to the

sfloat% (-- align size)

struct (-- align size)
An empty structure, used to start a structure definition.

References
[ert189] M. Anton Ertl. GRAY - ein Generator fur rekursiv
absteigende Ybersetzer. Praktikum, Inst i tut fiir
Computersprachen, Technische Universitat Wien, 1989. In
German.

[ert197] M. Anton Ertl. GRAY - ein Generator fur rekursiv
absteigende Ybersetzer. In Forth-Tagung, Ludwigshafen, 1997.
In German.

[wirth88] Niklaus Wirth. "From Modula to Oberon." Sofhuare-
Practice and Experience, vol. 18 no. 7 pp. 661-670, July 1988.

I alignment n. ! 1
Listing One
Complete text and source code for this article and the objects package from the preceding issue are available at
http://www.complang.tuwien.ac.at/forth/objects.zip

\ data structures (like C structs)

\ This file is in the public domain. NO WARRANTY.

\ This program uses the following words
\ from CORE :
\ : 1- + swap invert and ; DOES> @ immediate drop Create rot dup , >r
\ r> IF ELSE THEN over chars aligned cells 2% here - allot
\ from CORE-EXT :
\ tuck pick nip
\ from BLOCK-EXT :

\ \
\ from DOUBLE :

\ 2Constant
\ from EXCEPTLON :

\ throw
\ from FILE :

\ (
\ from FLOAT :
\ faligned floats
\ from FLOAT-EXT :
\ dfaligned dfloats sfaligned sfloats
\ from MEMORY :

\ allocate

: nalign (addrl n -- addr2)

\ addr2 is the aligned version of addrl wrt the alignment size n
1- tuck + swap invert and ;

: dofield (--)

does> (name execution: addrl -- addr2)

@ + ;

--

Forth Dimensions XIX.3

: dozerofield (--)

immediate
does> (name execution: --)

drop ;

: create-field (align1 offset1 align size "name" -- align2 offset2)

create rot dup , (alignl align size offsetl)

+ >r nalign r> ;

: field (align1 offset1 align size "name" -- align2 offset2)

\ name execution: addrl -- addr2
2 pick >r \ this ugliness is just for optimizing with dozerofield
create-field
r> if \ offset<>O
dofield

else
dozerof ield

then ;

: end-struct (align size "name" --)

over nalign \ pad size to full alignment
2constant ;

\ an empty struct
1 chars 0 end-struct struct

\ type descriptors, all (-- align size)

1 aligned 1 cells 2constant cell%
1 chars 1 chars 2constant char%
1 faligned 1 floats 2constant float%
1 dfaligned 1 dfloats 2constant dfloat%
1 sfaligned 1 sfloats 2constant sfloat%
cell% 2* 2constant double%

\ memory allocation words
: %align (align size --)

drop here swap nalign here - allot ;

: %allot (align size -- addr)

tuck %align
here swap allot ;

: %allocate (align size -- addr ior)

nip allocate ; -
: %alloc (size align -- addr)

%allocate throw ;

16 Forth Dimensions XIX.3

- -

---- -- - -- -- -- - -- --

A gentle introduction to defining words.. .
Approaching CREATE DOES>

I

Most programmers who are curious about Forth probably
never get past the basic features of the language, such as the
stack and word definitions, which, while unusual, don't seem

Forth has become an indis-
pensable part of my embedded-
development toolbox. It has
taken a long time to reach this
point, because I was never sanc-
tioned by employers to even
consider using Forth. There-
fore, I had to learn it piecemeal
as the years went by, through
books and magazine articles

to offer much more than traditional languages. To make the
leap in productivity that is suggested about Forth, one has to
move beyond ordinary programming usage and into the pow-
erful features that set it apart as a fourth generation language.
These features provide the means to easily create macro tools
for application problem-solving that would be tedious in third-

Figure One

\ definition time. . .
0 VARIABLE BYTECOUN'I

\ execution time. . .
BYTECOUNT @

2 0 BYTECOUNT !

generation languages such as C. As with any powerful tool,
one has to scale the learning curve to put it to use. But that
price buys time-saving skills that can be applied quickly to prac-
tical problems.

I think I am still close enough to the learning process to

and by toying around with
public-domain Forth systems. Even so, I always remained on
the periphery of applying it to problems, because I was stuck
in the learning process and wasn't yet understanding the more
advanced concepts.

What attracted me to Forth, and kept my interest, were
the various hints I perceived about its usefulness in embed-
ded systems, such as the ability to selectively compile parts
of the Forth system into an application, and the technique of
remote interactive target compiling. Still other, more nebu-
lous ideas held my curiosity: that a Forth system emerges from
Forth source; and that, to understand Forth, one needs to
read the source code for the language itself.

explain it to others, so in this and in following articles, I will
try to explain some of the advanced techniques of Forth that
are useful for embedded systems development, and I will try
to do it in a way novices can understand. The source code
will be short and digestible, and will demonstrate practical
applications of Forth in embedded systems. My explanations
may gloss over some of the finer details but will, hopefully,
get you up and running quickly.

A gentle introduction to CREATE DOES>
The first technique we need to cover is the CREATE DOES>

construct for creating defining words, which puzzled me from
afar well into my Forth learning phase. I had read a few text-
book explanations, but was unable to grasp what it would be
used for. Discussion of "parent" and "child" words quickly

\ define a variable

\ fetch the variable value

\ store a new value in the variable

lost me. At that point, I had not encountered a need for it
and, thus, could not appreciate what a powerful tool it is.

I finally stumbled into a clearing and understood CREATE
DOES> when I was writing a target compiler for an embedded
micro. As I scratched out the requirements for the compiler, I
unwound Forth a little more each time I looked for a way to
achieve something. Forth always seemed to have the exact
answers and, eventually, I came to CREATE DOES>. I probably
did it the hard way, but the process unveiled Forth to me in
much the same way one has to learn a math concept: by work-
ing from the most rudimentary assumptions to an overall
method for solving a problem. I will try to help you jump past
the beginner's murk and start using this tool right away.

Despite its power and mystery, CREATE DOES> is quite
simple to understand and to apply. If you are a C program-
mer, consider it as something like a C function that could
define new C functions that share similar behavior-except
it is much easier to do in Forth than in C.

When CREATE DOES> is used in a Forth definition, it con-
fers upon that definition the status defining word, which means
the word is used to define other Forth words that behave in
the manner laid down by CREATE DOES>. VARIABLE is a good
example of a defining word; when a VARIABLE word is de-
fined, it is given a value. When the new word is executed, it
places its address on the stack, which can be used to fetch or
store a value in the variable (see Figure One).

Here is what you do with CREATE and DOES> when you
are trying to develop a defining word:

CREATE -Manipulate data to be associated with the new
word. In this section of your defining word, you can take
data from any source and compile it into the word being de-
fined. You can also execute Forth definitions while you are
defining the new words.

DOES> - Define the execution behavior the new word
will have. When the defined word (such as BYTECOUNT) is
executed, the parameter field address (PFA) of the word is placed
on the stack. This is, generally, the beginning address of the
data laid down in the CREATE section. You can now write
Forth code to operate on this data in any way you like.

A practical example I

Forth Dimensions XIX.3

Figure Two

: MSG \ MSG i s t h e name o f t h e d e f i n i n g word . When
\ i t i s u s e d t o d e f i n e a new F o r t h word, i t . . .

CREATE \ . . . c r e a t e s a new word t h a t c o n t a i n s t h e se t o f b y t e s t h a t was
\ on t h e s t a c k when t h e word was d e f i n e d . . .

DOES> \ . . . a n d when t h e new word i s e x e c u t e d ,
\ it t r a n s m i t s t h e b y t e se t o u t t h e s e r i a l p o r t .

t

Figure Three-a

80 A8 E8 0 MSG MY - MESSAGE msg s i z e = 5 b y t e s o k

Figure Three-b

MY - MESSAGE 80 A8 E8 0 FO o k (FO i s t h e checksum f o r t h e f o u r b y t e s)

Figure Four

80 54 0 5C 0 BE 0 0 55 60 79 0 B7 0 0 B8 0 0 MSG MESSAGE2
80 CO 11 C2 10 16 5B 23 6F 21 6F 22 11 34 5B 24 64 24 6E 24 MSG MESSAGE3

18 Forth Dimensions XIX.3

a great tool for testing the interface in ways the Windows
bus-analysis software we had purchased could not. What I
needed was a way to easily create variable byte messages to
transmit over the serial line, to be filtered by the embedded
micro. I envisioned a defining word that would take a string
of bytes for input and associate them with a message name.
During execution, I wanted the message word to transmit
the bytes onto the bus. (See Figure Two.)

To create a message, one simply types a string of bytes
followed by MSG and the desired name of the new word (this
can also be done in a source code file or block).
80 A8 E8 0 MSG MY - MESSAGE

The four bytes before MSG end up on the stack; when MSG
executes, it compiles those bytes into the new word. This is
what is happening during the CREATE phase of the above
MSG definition. When MY MESSAGE itself is executed, it trans-
mits the four bytes through the serial port. This behavior is
set up by the DOES> phase of the MSG definition.

Some other features needed in MSG were a checksum byte
to be appended to the byte string, and an indication of the
number of bytes entered in a new definition. We are free to
use Forth in the CREATE section of MSG however we like, to
set up the data for the new word when it executes. Thus, I -
added code to sum each byte for a checksum, and to print
the byte count to the terminal when a new word is defined.
In the DOES> section, I provided a simple loop to pull each
byte from the data section of the new word and transmit it
serially, as well as printing it on the screen.

So, when MY-MESSAGE is defined, the number of bytes
entered plus the checksum are displayed (Figure Three-a).
MY-MESSAGE in action is demonstrated in Figure Three-b.

Messages can be any length. More examples are given in
Figure Four.

Listing One [page 201 is a heavily commented listing for
the MSG definition. I've tried to explain every part of the defi-

nition in detail, so the novice will not be mystified by the
housekeeping actions needed to manipulate the stack data.
When one is new to Forth, constructs such as my Do loops
seem hopelessly confused, but experience reveals similar, ef-
ficient usage in many Forth definitions. The example w loops
use an address on the stack as a pointer to work through data,
in the same way that a language like C would use pointers:
f o r (i = 0; i = b y t e c o u n t ; i + +)

* b y t e p t r + + = * d a t a + + ; \ \ e t c .
et c .

One difference is that there are no pointer variables in my
Forth loops-the pointer is the address on the stack, which is
Duped on each pass and discarded when finished.

A defining word such as MSG represents object-oriented
programming at a rudimentary level: It has data (the stack
bytes) and functional behavior (defined by DOES>). By striv-
ing to use stack items instead of variables, we "hide" the data
and functions from the outside world. And the creation of
new MSG words with similar behavior but different data at-
tributes is akin to inheritance.

These examples expose another reason why Forth is bet-
ter than C for embedded systems testing: once the message-
defining word was finished, there was no need to create a
main loop or other C function to figure out what to do with
the message functions, because an elegant and extensible user
interface already exists in the form of the Forth interpreter.
Using the interpreter with the message words allowed me to
communicate over the serial bus with devices, in real-time
and in any conceivable variation. Contrast this with having
to edit, compile, link, and run (oops! error-repeat n times) C
source code every time one wants to try a new idea with a
device. In fact, many Forth practitioners use a host Forth to
talk to an embedded micro or remote device-I will try to
explore this useful technique in a later article.

Figure Six shows MSG with the comments removed.

Figure Five 1 1 0 VARIABLE CHKSUM I
: MSG CREATE 0 CHKSUM !

DEPTH

DUP 1 + BASE @ >R DECIMAL ." msg size = " . ." bytes" SPACE
R> BASE ! CR

DUP ,
0 DO DUP CHKSUM C@ + CHKSUM C! C, LOOP
CHKSUM C@ FF XOR 1 + C,

DOES> DUP @ DUP ROT + 2 + DUP >R SWAP
0 DO 1 - DUP C@ TX. LOOP DROP R> C@ TX. ;

Figure Six 1
: MSET CREATE DEPTH DUP , 0 DO , LOOP

DOES> DUP @ DUP 2 * ROT + SWAP
0 DO DUP @ EXECUTE DLY CR 2 - LOOP DROP ;

An improvement to the serial message example
Once MSG had been defined, a need to transmit groups of

messages became apparent. I devised a new word, similar to
M S G but called MSET, which could take a Set of previously
defined MSG words and collect them under a single word name
that could then transmit the messages in a burst. A timing
delay inserted between each message would provide a conve-
nient means to vary the serial bus loading. Thus, bus traffic
could be simulated easily by using MSET words within DO loops,
or in other definitions that respond to data on the bus by
transmitting message bursts.

Given the MSG words MY MESSAGE, MESSAGEl, and MES-
SAGE2, the problem is to group them using another defining
word, such as MSET. Forth provides the word ' (pronounced
"tick"), which takes the address of the next word in the input
stream and places it on the stack. Using DEPTH the same way
we did in MSG, we can take the addresses of a group of mes-
sages and compile them into an MSET word, and then, dur-
ing the execution phase (DOES>), take each compiled address
and pass it to another convenient Forth word, EXECUTE.

Now, to create a set of messages using MSET, one enters 1 before each MSG word in an MSET definition:

' MY MESSAGE ' MESSAGE1 ' MESSAGE1 i

MSET-SETI

Now we have a word called SET1 that, when executed,
will execute each word in sequence, with a variable delay
between each message.

Figure Six shows the uncommented source for MSET. List-
ing Two [page 211 is the unabridged version.

The wrap-up
The code for this article was developed in hForth, an ANS

Forth for the 8086 written by Dr. Wonyon Koh of South Korea.

A nice thing about hForth is that the assembly code for the
system has high-level Forth definitions inserted as comments
in the source, which provide good examples of Forth program-
ming technique. This system is also a good learning tool for
understanding how Forth is constructed, because it is derived
from eForth, a model for porting Forth to any processor.

In my testing setup using the message words, I have my edi-
tor running under Windows and hForth running as a DOS ap-
plication. To modify and test my source text, I task switch (us-
ing Alt-Tab in Windows) between hForth and the editor. hForth
also has a logging facility, so one can capture interactive ses-
sions to disk for later cleanup with an editor. To access the serial
port, I used the serial 110 routines provided with hForth.

In the next article, I will use CREATE DOES> with some
other Forth tools to demonstrate how easy it is to create a
custom macro language using Forth. Using this as a basis, we
can construct a target compiler system for an embedded mi-
croprocessor or remote computer.

References
W. Koh, "hForth: a Small, Portable, ANS Forth," Forth Dimen-
sions, Volume XVIII, Number 2.

L. Morgenstern, "Working With CREATE ... DOES>," Forth Di-
mensions, Volume XIV, Number 1.

DaveTaliaferro originally trained as a biologist but,to make a living, he
works as a software engineer in real-time embedded systems devel-
opment.He first encountered Forth while working with industrial ro-
botics, and afterwards was never able to shake his attraction to this
strange and beautiful language. When not learning Forth he is pon-
dering history and genealogy.
http://www.geocities.com/Heartland/Plains/6080/talindex.html

I I I

Forth Dimensions XIX.3 19

Listing One

0 VARIABLE CHKSUM \ define a checksum variable - one could probably
\ avoid this, if clever enough

: MSG CREATE \ create a new Forth word name

0 CHKSUM ! \ clear the checksum variable
DEPTH DUP \ get the number of bytes on the stack and make a copy

1 + \ add 1 for the additional checksum byte
BASE @ >R \ save the current base
DECIMAL \ I prefer to read the count in decimal
." msg size = " . ." bytes" SPACE \ print the count to the screen
R> BASE ! CR \ restore the base

\ compile the set of bytes into the new word
DU P \ make another copy of the byte count
I \ compile it into the word

\ Loop through the stack and compile each byte into the word while
\ adding it to the checksum. Notice that we have still one more copy
\ of the count to provide to the DO loop. Each pass DUPs the byte so
\ it can be added to the checksum.

0 DO DUP CHKSUM C@ + CHKSUM C! C, LOOP \ C, compiles bytes

\ after the loop is done the checksum is 2's complemented and compiled into the word
CHKSUM C@ FF XOR 1 + C,

DOES> \ Instill the following behavior in the new word . . .

\ Yikes! The bytes were compiled in reverse order since the
\ last byte entered becomes the first byte on the stack.
\ We can take care of this by transmitting them in reverse and
\ then appending the checksum.

\ The first thing the new word does during execution is to
\ place the address of the byte string on the stack.

DU P \ Make a copy of the parameter field address.
@ \ Fetch the count that was compiled into the new

\ word during CREATE and is pointed to by the pfa.

DUP \ We need a second copy of the count

\ The pfa address is added to the count to point to the last
\ byte, which is the checksum.

\ copy and save it to the return stack
ROT + 2 + DUP > R SWAP \ so it can be used to transmit the checksum

\ On entering DO we have the pfa. (which now points to the last
\ byte) and a count copy for use by the DO loop.

0 DO 1 - DUP C@ TX. LOOP \ Subtract 1 from the pfa on each
\ pass to loop backwards though the bytes

DROP \ We have to discard the last DUP'd address.

R> C@ TX. \ finally, pull the checksum address from
\ the return stack and transmit

Forth Dimensions XIX.3

Listing Two

(a an --)

: MSET CREATE \ Create a new word name

DEPTH DUP \ Get count of stack objects and make a copy.

I \ The first copy is compiled into the new word to be
\ used during the DOES> phase

0 DO , LOOP \ The second copy is used for a loop counter
\ to compile each address into the new word.

DUP @ \ DUP pfa provided by DOES> and fetch the DEPTH count
\ compiled during CREATE.

DU P \ Make another copy of the DEPTH count.

2 * ROT + SWAP \ The addresses are in reverse order so we have to walk backwards
\ through the compiled addresses. Multiply the count by 2 and add to
\ the pfa address to get the first MSG address.

\ using the depth count loop backward through the addresses and EXECUTE
\ them. DLY is a generic timxng routlne.

0 DO DUP @ EXECUTE DLY CR 2 - LOOP

DROP ; \ using DUP in a loop for address incrementing leaves
\ an extra address on the stack

FIG has reserved 100 complete
sets of FD Volume XI

Available o n a first-come, first-served basis
while supplies last.

For a little less than a year's memberhsip, you
can haveall this Forth knowledge on your book-
shelf,for immediate reference or leisurely study.
Your member discount applies, naturally. The
total member price of just $39.50 includes ship-
ping and handling (non-members pay $42.50;
California residents add the amount of sales tax
for your area before the shipping and han-
dling-see the mail-order form).

For an in-depth listing and analysis of the con-
tents of this important collection,see the review
in the XIX.l issue.

Forth Interest Group

100 Dolores Street, Suite 183
Carme!, California 93923

voice: 408-373-6784
fax: 408-373-2845

e-mail: office@forth.org

e new Windows-based, integrated

designed sp&ificall<for embedded systems.
Includes a cross-compiler, assembler, libraries,
debugging tools, and royalty-free, multitasking kernel.
SwiftX technology produces compact, efficient, reliable code.

Forth Dimensions XIX.3 21

-. --

Lookup Tables
I

"Personally, I consider the case statement an Why lookup tables?
elegant solution to a misguided problem: attempting The use of lookup tables is not limited to a single lan-
an algorithmic expression of what is more aptly guage or a single set of problems. We have even successfully
described in a decision table."

checks of large sets of data.
Introduction The data in one sheet is confronted with a lookup table,

If you think this article is goin ces a "not available" error when an
about an old controversy, you're d ntered. By searching the appropri-
present a new way to solve your
concept, called lookup tables.

easier to debug, and easier to main- speed processor, not even by mid-
tain. Furthermore, they usually are 1980s standards. So when Steve
smaller and run faster. We will pro- Townsend of PSION designed the
vide a few examples to make our engine for the Checkered Flag game
point. on the Sinclair Spectrum, he used

One possible reason for their lookup tables to link gears, speed,
relative scarcity is that lookup
tables can be hard to implement
strings are concerned. In this a
possible solutions to that problem.

Some might argue that OOF or other non-standard exten- w powerful lookup tables
sions offer even better ways t system you're working with is

cussion to be outside the scope of this article. in various ways. You can even apply any design method for
relational databases, if you need to. By building your own

characteristics. Using them a certain value. The only limit
objects that are used inside a

are not met.
This is a perfect exam

le, his friend had been able
rary, and that seemed to be

converted to ANS Forth by Marcel Hendrix. some scheme that would prevent this kind of problem. But
with whatever kind of documentation scheme he had come
up with, it still failed the specification.

1 Forth Dimensions. XVIII.3 2 Sinclmir User. Tune 1984

22 Forth Dimensions XIX.3

Together, they worked out a scheme that was finally ac-
cepted. Instead of giving each programmer the liberty to handle
an error in his own way, a set of centrally maintained tables
was designed. Every error message had to be channelled
through an error-handler, which had the following definition:

error-handler (c-addr u nl n2 n3 --)

\ c-addr u additional information
\ nl routine number
\ n2 error number
\ n3 severity

The routine number was an index to a centrally maintained
table, with this format:

Routine number (CELL)
Routine name (STRING)

Of course, numbers have little mnemonic value, so
CONSTANTS were added to minimize the chance of human
error, e.g.:

0 CONSTANT S DEBUG -
1 CONSTANT S I N F O -
2 CONSTANT S-WARN
3 CONSTANT S ERROR
4 CONSTANT S-FATAL -

0 CONSTANT E SOUTOFRANGE -

1 CONSTANT E EOUTO FRANGE -
2 CONSTANT E ROUT0 FRANGE -
3 CONSTANT E NODATA -
4 CONSTANT E E N D O F I L E -
(etc.)

if \ if ok; process the data
drop drop \ discard filename
S" None" R PROCESS E DATAOK S I N F O error-handler - -
(other code)

else \ if not ok; issue error
R - PROCESS E NODATA S FATAL error-handler - -
- 1 \ return dummy value

then
r

The error number was an index to another centrally main-
tained table, with this format:

Error number (CELL)
Message (STRING)

The severity indicated how serious an error was. It had one of
five different values:

Fatal (Abort program)
Error (Continue, but output is questionable)
Warning (Attention, will try to recover)
Info oust issuing some user information)
Debug (Debugging information)

FigureTwo. Lookup-based decompiler
- -- I

0 CONSTANT R - DATAENTRY
1 CONSTANT R - PROCESS
(etc.)

The use of the error-handler was mandatory, although a string
with additional information was allowed. Figure One shows
a typical use of the error-handler.

The error-handler did several things. First, it checked the
validity of the error, routine, and severity values. Second, it
would match the severity level against the message level. If
the severity level was equal to or greater than the message
level, a message would be issued. Third, it would match the
severity level against the abort level. If the severity level was

equal to or greater than the
abort level, the program

-1 constant EOT \ end of table delimiter

Figure One. Typical use of centralized error handler

process (c-addr u -- n)
over over \ duplicate filename
file-status 0= \ check file status

(search table for x, if found return corresp. value and true flag)
: search-table (x table -- value true I x false)
begin dup @ EOT = \ is it end of table?

if drop false exit \ no match found
then 2dup @ <> \ compare x with value in table

while [2 cells] literal + \ move to next table entry
repeat nip cell+ @ true ; \ fetch corresponding value

would be terminated.
Every software devel-

oper who wanted to do
business with this com-
pany had to comply with
this scheme from that day
on . It proved to be so
simple that most quality
assurance could be per-
formed by their own sys-
tem administrator (we do
have to confess that Forth
was not the language of
choice in that particular
environment).

Note that the program
returns a dummy value.
The reason for that is two-
fold. First, the original C
compiler issued a warning
when it was omitted. We
don't like warnings, since
you never know whether it
indicates a real error. Sec-
ond, an ambiguous condi-
tion would exist if some
smart programmer found a
way to correct the error

Forth Dimensions XIX.3 23

and changed the severity from "fatal" to "error." In Forth, it
could cause a stack underflow or, worse, introduce a hard-to-
find bug.

Case study Il:The For32 decompiler
The other co-author, Benjamin Hoyt, recently imple-

mented a Forth decompiler for his For32 system. He first
thought of implementing the main engine with one large
CASE statement. Then it clicked that a lookup table implemen-
tation could have its advantages, and he decided to give it a
whack. He came up with a simple lookup table and, to his
surprise, it worked the first time!

The table he used is basically a two-dimensional array with
the "special case" execution tokens in the first field-e.g.,
(L I T) , (S") , (TO) , and many, many more-and the
decompiling words in the second. To clue you in a bit, Figure
Two provides the definition.

Very simple indeed, as you can see. Of course, every lookup
table needs its own search routine. And if you don't want to
make one yourself, we will give a general definition later on.
Remember that on many (ANS compliant) systems, CASE is
not even available. If you have to code CASE yourself, take
our advice and make your own search routine. That is a whole
lot simpler than developing an entire CASE suite.

Apart from that, every single OF ... ENDOF pair amounts to
at least a literal, a compare, and two jumps. On some sys-
tems, this can add up to 40 bytes per OF ... ENDOF pair. A
similar entry in a lookup table needs only eight bytes. For
instance, the difference between the For32 decompiler using
CASE and the one using the lookup table amounts to 1.5 Kb.

Another good reason not to use CASE is that it often won't
do what you want. CASE only compares integers. If you are
not convinced yet, note that lookup tables are usually faster.

Some C compilers (like XL C on the RS16000) implement
the select() statement with a whole slew of jump and com-
pare instructions. This is rather time-consuming, especially
with a reasonably sized list of items. With a lookup table, the
search is done in a confined area of execution, and a definite
speed increase will be noticed.

The catch
The subtle elegance of lookup tables may be clear to you

now, but what's the catch? Why are so few Forth program-
mers using it? A good question, because there are, in fact,
one or two hitches you may run across.

For instance, take the string-comparing example men-
tioned before. Let's say you are coding a macro-command
processor. You decide to implement it with a lookup table.
You've coded your string-compare lookup routine, then you-
build your table using ," . This word isn't part of the ANS
Forth standard, but is available in many Forth systems.

create command-table (-- table)

," display" do-display ,
," end" do-end ,
," save" do-save ,
," load" do-load ,
EOT ,

But it dawns on you that you were too hasty. The strings
aren't of equal length, you have alignment problems, and

;he whole thing suffers from a complicated and slow search
routine. There are a few solutions to this problem, the sim-
plest of which involves using fixed-length strings like this:

zreate command-table (-- table)

," display" ' do-display ,
," end " ' do-end ,
," save " ' do-save ,
," load " ' do-load ,
EOT ,

This simplifies and speeds things up, and may work in some
situations. But what about the space wasted by longtshort
string combinations? You can get around this if you define
the strings first, retrieve their addresses, and compile them at
the appropriate field in the table. But that can get pretty ugly:

: push-address
C" 1 oad"
C" save"
C" end"
c" display"

push-address

create command-table (-- table)

I do-display ,
I do-end ,
I ' do-save ,
I do-load ,
EOT ,

Another solution is to write a definition called M" . It parses
a string and compiles it into the dictionary, while leaving its
address on the stack. Then you'd create your lookup table by
"comma-ing" all these addresses into it. (See Figure Three.)

This may work if you have only a few entries to compile,
but it gets hard to maintain when you have tens of entries.
The problem is that ," compiles strings on the spot, S" only
temporarily stores a string when in interpretation mode, and
c" lacks interpretation semantics all together. You might give
it another try and get something like this:

: display-s c" display" ;
: end-s C" end" ;
: save-s C" save" ;
: load-s C" load" ;

create command-table (-- table)

display-s , do-display ,
end- s I do-end ,
save-s I ' do-save ,
load-s I do-load ,
EOT ,

Okay, this works, too, and it can be maintained with a
little trouble, but it certainly doesn't feel good with all those

Forth Dimensions XIX.3

- -- - - ---

FigureThree. The MMapproach

\ string compiling suite)

(c-addr u dest --)

: place 2dup 2>r char+ swap chars move 2r> c! ;

(c-addr u --)

: name, here over 1+ chars allot place ;

("ccc<quote>" -- c-addr)

: m" align here [char] " parse name, ;

(table of macro commands)

m" display"
m" end"
m" save"
m" load"

(the addresses are all on the stack now, in reverse order)
create command-table (-- table)

I ' do-load ,
I do-save ,
I do-end ,
I do-display ,
EOT ,

(search table for string c-addr u)
(give xt true if found else c-addr u false)

: string-search (c-addr u table -- xt true I c-addr u false)

begin dup @ EOT = \ is it end of table?
if drop false exit \ no match found
then dup 2over rot @ count compare \ compare with c-addr u
while [2 cells] literal + \ move to next table entry
repeat nip nip cell+ @ true ; \ fetch xt from column 2

wasted headers. Let's see if we can change that.

Solutions and implementations
The 4tH compiler is a very different Forth compiler. Some

argue that it is not a Forth compiler at all. We consider this
an academic discussion, in this context.

What does matter is that 4tH provides an easy way to de-
fine lookup tables, having different segments for strings and
integers, and no distinction between compilation and inter-
pretation semantics. There are a number of ways to imple-
ment some of this functionality in ANS Forth.

You can try to implement the LMI Forth solution. This
compiler features a word called " , which roughly behaves like
C" with interpretation semantics. When interpreting, it uses
a circular buffer. The trouble is that you never know when
the system is about to wrap around.

Another work-around is to ALLOT your own string space
and compile your strings there. The catch is that your envi-
ronment is limited by the amount of string space you have
allocated. Once you run out of string space, you have to re-
start the system. This is one of the solutions Wil Baden pro-

posed (Figure Four).
There are several ways to get around the limited string

space. Redefining /STRING-SPACE is a possibility. An obvi-
ous way is to allocate the string space in dynamic memory,
and reallocate it when needed. But reallocation could invali-
date all previously compiled addresses, which is definitely
not what we want.

Another ingenious way to use dynamic memory comes
from Marcel Hendrix. He allocates each individual string in
dynamic memory, as demonstrated in the previously men-
tioned adventure game.

There are many solutions. Use the one that serves you best.
Still, there is the problem of the search routine. For your

convenience, we present a generic solution that can be imple-
mented on virtually every Forth system. For the strings, you
either have to create your own solution or use one of ours
(Figure Five).

We can even go one step further and define a word called
TABLE, which CREATES a lookup table that, when executed,
searches itself and returns the required value:

1 1

Forth Dimensions XIX.3 25

Figure Four. A solution from Wil Baden 1
(Reserve STRING-SPACE in data-space.)

2000 CONSTANT /STRING-SPACE
CREATE STRING-SPACE /STRING-SPACE CHARS ALLOT
VARIABLE NEXT-STRING 0 NEXT-STRING !

(caddr n addr --)

: PLACE 2DUP 2>R CHAR+ SWAP CHARS MOVE 2R> C! ;

("ccc<quote>" -- caddr)

: STRING" [CHAR] " PARSE
DUP I+ NEXT-STRING @ + /STRING-SPACE >

ABORT" String Space Exhausted. "
STRING-SPACE NEXT-STRING @ CHARS + >R

DUP 1+ NEXT-STRING + !
R@ PLACE

R>
r

CREATE months

STRING" January" , 31 ,
STRING" February" , 28 ,
STRING" March" , 31 I

STRING" April" , 30 I

STRING" May" , 31 ,
STRING" June" , 30 I

STRING" July" , 31 I

STRING" August" , 31 I

STRING" September" , 30 ,
STRING" October" , 31 ,
STRING" November" , 30 ,
STRING" December" , 31 ,

: .Month 1- 2* CELLS months + @ COUNT TYPE SPACE ;

(create search table called "name")
(when executed, searches its table for x)

: table ("name" --) create
does> (x -- value true I x false j

Lookup tables allow you to build fast, small, and easy-to-
maintain applications. In our opinion, this method has not
been used extensively in Forth, partly because there were few

(returning the table value and true if)
(found, else x and false)

. - ,
facilities to support it. We hope we have provided enough
material to give you some fresh ideas and to get you started
right away.

26 Forth Dimensions XIX.3

search-table ;

You can implement different versions with different search
methods for different kinds of lookup tables. That allows you
to create very powerful applications very quickly. Remember,
this is one of the privileges you have when you are using Forth!

Epilogue
Have you ever thought about implementing a Forth dic-

tionary, or even a whole Forth system, using lookup tables?
We bet it can be done! In fact, the entire 4tH compiler is
centered around four different lookup tables.

Benjamin Hoyt is a sixth-form student who loves programming as a
hobby. Before he discovered Forth, he experimented with graphics
and AdLib programming in 80x86 assembler.Over a year ago,he built
his first Forth compiler and has stayed loyal to the language ever
since. He currently uses and is working on his own ANS Forth called
For32, running under MS-DOS. Another of his major projects at the
moment is Forl6, a small, ANS-compliant Forth compiler running
under MS-DOS.

Hansnthe Beezr'Bezemer has been using Forth and C since the mid-
1980s. He is the author of several shareware programs and the
freeware 4tH compiler.4tH is available at ftp.taygeta.com.

Figure Five. A generic solution I begin (n3 nl a1 nl a1 n2) 1
\ : th cells + ;

0 Constant NULL

create MonthTable
1 , " January" , 31 ,
2 , " February " , 28 ,
3 , " March " , 31 ,
4 , " April " , 30 ,
5 , " May " , 31 ,
6 , " June " , 3 0 ,
7 , " July " , 31 ,
8 , " August " , 31 ,
9 , " September" , 30 ,
10 , " October " , 31 ,
11 , " November " , 30 ,
12 , I' December " , 31 ,
NULL ,

\ Generic table-search routine

\ Parameters: nl = cell value to search
\ a1 = address of table
\ n2 = number of fields in table
\ n3 = number of field to return

\ Returns: n4 = value of field
\ f = true flag if found

: Search-Table (nl a1 n2 n3 -- n4 f)
swap > r (nl a1 n3)
rot rot (n3 nl al)
over over (n3 nl a1 nl al)

swap over (n3 nl a1 nl n2 a1 n2)
t h (n3 nl a1 nl n2 a2)
@ dup (n3 nl a1 nl n2 n3 n3)
O> >r (n3 nl a1 nl n2 n3)
rot <>
r@ and

while
r> drop
r@ +
>r over
r>

repeat

(n3 nl a1 n2 f)
(n3 nl a1 n2 f)

(n3 nl a1 n2)
(n3 nl a1 n2)
(n3 nl a1 n2+2)

over (n3 nl a1 nl al)
(n3 nl a1 nl a1 n2+2)

(n3 nl a1 n2)

r@ if
>r rot r> (nl a1 n3 n2)
+ th @ (nl n4)
swap drop (n3)

else
drop drop drop (nl)

then

r> (n f)
r> drop (n f)

: Search-Month (n - -)

MonthTable 3 2 Search-Table

else
drop ." Not Found"

then cr

Continued from page 39
BLOAD can be used to send a full block to the slave to be
interpreted (loaded)[3].

Normally, when entering characters into the slave input
buffer, the characters would be echoed to the host and dis-
played immediately. With the above-described downloads,
the echoed characters are not displayed until a CR is received

Memory management includes, first, releasing most of the
memory assigned to the xxx.COM program by DOS with
SETBLOCK, then allocating a disk buffer (used by the CHANx
scheme) and a serial receive buffer with BLKALOC.

Summary

Forth Dimensions XIX.3 27

(function of SBUF.) from the slave, indicating it is finished,
This feature was included to ensure that the slave is finished
before any additional operations are attempted.

Load initialization (screens 4-7,230-23)
Different machines can be configured with combinations

of load and initialization screens. The load screens (examples
4 7) not only select the various functions to be compiled,
but also define three common display modes and set the path
to the COMMAND.COM file.

An initialization screen (examples 230-233) defines the
INIT word, which configures memory, sets several variables
to default values, resets the mouse driver (if available), and
enables the serial port.

These tools have been used for a number of projects dur-
ing the past few years. I find it enjoyable to develop a project
and never leave the Pygmy environment. Again, I would like
to thank Frank Sergeant for Pygmy Forth, which prompted
this adventure for me.

References
I.ftp://ftp.taygeta.com

file "pyg-embl.exeU in the /pub directory
2. http://www.theramp.net/sferics

File "pyg-embl.exeW is listed in "Misc. Downloads"
3. Richard W. Fergus, "Development Aids for New Micros,"

Forth Dimensions XVIII.3 Sept-Oct 1996

Arcipher - Alleged RC4
-

1 (C o d e d f r o m B r u c e S c h n e i e r , A p p l i e d C r y p t o g r a p h y , 2nd e d i t i o n .)

3 CREATE S-BOX 256 CHARS ALLOT

5 VARIABLE #I VARIABLE #J

7 : C+! (n a d d r --) DUP >R C@ + 255 AND R> C! ;
8 (W i t h 8 - b i t b y t e s ' 2 5 5 AND' i s u n n e c e s s a r y h e r e .)

1 0 : cexchange (a d d r l a d d r 2 --)

1 1 DUP C@ >R OVER C@ SWAP C! (a d d r l) R> SWAP C! ()

1 2 I

14 MACRO S[1 " CHARS S-Box + "

1 6 : RC4 (c h a r -- c o d e)

1 7 1 #I C+!
1 8 #I C@ S[] C@ #J C+!
1 9 #I C@ S[I #J C@ S[l cexchange
2 0 #I C@ S[1 C@ #J C@ S[1 C@ +
2 1 255 AND S[] C@ XOR (c o d e)
2 2 ;

28 Forth Dimensions XIX.3

-- - - - -

2 4 : rc4-init (k e y l e n --)

2 5 256 0 DO I DUP S[] C! LOOP
26 0 #J C!
2 7 256 0 DO (k e y l e n)
2 8 2DUP I SWAP MOD CHARS + C@ I S[] C@ + #J C+!
2 9 I S[1 #J C@ S[] cexchange
3 0 LOOP 2DROP
3 1 0 #I C! 0 #J C!
3 2 ;

We have an array of 256 bytes, all different. Every time
the array is used, it changes-by swapping two bytes.

The changes are controlled by counters i and j, each ini-
tially zero. To get a new i, add 1. To get a new j, add the array
byte at the new i .

Swap the array bytes at i and j. The code is the array byte
at the sum of the array bytes at i and j .

The array is initialized by first setting it to 0 through 255.
Then step through it using i and j, getting the new j by add-
ing to it a key and the array byte at i, and swapping the array
bytes at i and j.

All additions are modulo 256.
The name "RC4" is trademarked by RSA Data Security, Inc.

So anyone who writes his own code has to call it something
else. Here it's called "Arcipher."

From Schneier.
So, what's the deal with RC4? It's no longer a trade

secret, so presumably anyone can use it.. .
RC4 is in dozens of commercial cryptography

products, including Lotus Notes, Apple Computer's
AOCE, and Oracle Secure SQL. It is part of the Cellular
Digital Packet Data Specification.
Here is the announcement of the discovery of "Alleged

RC4":
Newsgroups:
sci.crypt,alt.security,comp.security.misc,aIt.privacy

From: sterndark@netcom.com (David Sterndark)
Subject: RC4 Algorithm revealed.
Date: Wed, 14 Sep 1994 06:35:31 GMT

I am shocked, shocked, I tell you, shocked, to discover

40 : Randomize TIME&DATE 12 * + 31 * + 24 * t 60 * + 60 * + srand ;

that the cypherpunks have illegaly and criminally
revealed a crucial RSA trade secret and harmed the
security of America by reverse engineering the RC4
algorithm and publishing it to the world.

Arnold G. Reinhold in his "Ciphersaber Manifesto" at
<http://ciphersaber.gurus.com> urges use of "Ciphersaber-1 ":

Ciphersaber-1 is a simple use of existing technology:
1. The encryption algorithm is RC4 as published in

the beginning of Chapter 17 of Applied Cryptography,
Second Edition, by Bruce Schneier, John Wiley & Sons,
New York, 1996. RC4 is on page 397 in the English
edition, ISBN 0-47 1-1 1709-9.

2. Each encrypted file consists of a ten byte initializa-

42 Randomize

tion vector followed by the cipher text. A new random
ten byte initialization vector should be created each
time encryption is performed.

3. The cipher key, the array K(i) in Schneier's nota-
tion, consists of the user key, in the form of an Ascii text
string, followed by the initialization vector.

The above is all a programmer needs to know in order
*to write a program that can encipher and decipher
Ciphersaber-1 files.

The ten-byte initialization vector doesn't have to be fancy.
Use any convenient RNG that is primed somehow with the
current time and date.

44 (So y o u c a n d u p l i c a t e I ' m u s i n g a c o n s t a n t i n s t e a d of R a n d o m i z e .)

35 VARIABLE Randseed
36 : srand Randseed ! ;
37 : Rand Randseed @ 3141592621 * 1+ DUP Randseed ! ;
38 : choose Rand UM* NIP ;

46 1 srand

48 : : 10 0 DO
4 9 S" Forth Dimensions" PAD place
5 0 PAD COUNT
51 10 0 DO (p a d l e n)
5 2 2DUP CHARS + 256 choose
5 3 DUP 0 HEX < # # # #> DECIMAL TYPE
5 4 SWAP C!
55 1 +
5 6 LOOP
5 7 rc4-init ()

5 8 S" Hello World" 0 DO (a d d r)
5 9 COUNT RC4 0 HEX < # # # #> DECIMAL TYPE
6 0 LOOP DRO P
61 CR
62 LOOP ;;

Forth Dimensions XIX.3 29

This example shows what the random initialization vector
can do for encrypting the same text with the same user key.

I've not implemented Ciphersaber-1 fully here, so you
can do it yourself and become a CipherKnight.

--

7 MPE's Forth Coding Style Standard

Continued from the preceding issue.
Portions of this document, including
parts of some of the examples, were
modified slightly to meet the require-
ments of magazine layout.

Formal data structures
Where a data structure is to be

defined, the organisation should
decide how it is to be defined. There
is an abundance of data structure
definition schemes in Forth, so \
choose one and stick to it. MPE has

Figure One

STRUCT PATHDATA \ - struct-size ; 1/0 structure
\ for paths

INT APP-HANDLE \ handle returned by OPEN
PTR DEVICE-VECTORS \ pointer to function table
128 FIELD PATHNAME \ zero-terminated file name

END-STRUCT

Figure Two

its own scheme, supplied in a file
called STRUCTUR.FTH.

The use of formal data struc-
tures will lead to reliability, and
makes the code much more main-
tainable. For example, see Figure
One, which is much more read-
able and obvious than:
DECIMAL
0 OFFSET APPHANDLE
4 OFFSET DEVICE-VECTORS
8 OFFSET PATHNAME
136 CONSTANT PATHDATA

This last is full of magic num-
bers, and contains little of use to
the maintenance programmer. In
systems without data structure
defining words (e.g., embedded
standalone systems), the layout in
Figure Two is more reasonable
because the size of each field is
much easier to see, and the struc-
ture can be reordered or extended
by moving single lines.

Case questions
The case of the words used in

a Forth application is a very deli-

field name size function
U

DUP OFFSET APPHANDLE 4 + \ handle from OPEN
DUP OFFSET DEVICE-VECTORS 4 + \ 1/0 pointer
DUP OFFSET PATHNAME 128 + \ ASCIIZ name

CONSTANT PATHDATA \ - size ; 1/0 structure
\ for paths

Figure Three

WORD 1
. . .
0 . .

\ n l n2 - ; word does . . .
\ lower-case code

\ nl - n2 ; word to . . .
\ lower-case code
\ upper-case structure

. . .
ENDIF

I

23 CONSTANT BILL
: word3 \ nl - ; function to . . .

I . . . \ lower-case code
BILL t \ upper-case constant

\ lower-case code

cate issue, as different program- I '

mers have different preferences.

traditional in some companies. In documentation however, / stants, or the name of the word as it is defined. Each

All MPE Forth systems are case-insensitive, and so the case
used is only a recommendation, not a requirement.

It is recommended that lower case be used throughout.
Firstly, this is easier to type, and secondly it is easier to read.
Using upper case throughout is not recommended, although

30 Forth Dimensions XIX.3

Forth source code should be written in capitals to distinguish
it from the body text. A fixed font such as Courier is also
recommended.

However, it may be found that certain classes of words are
better capitalized. These might be control structures or con-

gramming for Windows, the word
GETWINDOWHANDLE

is much less readable than the word
GetWindowHandle

The examples in Figure Three are deliberately in mixed
case, and do not follow the convention detailed at the start
of the document.

MPE house rule
Lower case is preferred, especially for the standard Forth

keywords. Mixed case makes compound word names much
easier to read.

A hyphen or underscore can also be used in compound
names. MPE is moving away from hyphens to underscores,
particularly in mixed language systems where a hyphen may
be treated as a minus sign by many parsers.

Converting from screen files
We do not wish to reopen the screenltext file debate, ex-

cept to say that MPE uses text files unless there is no choice.
We do this for a variety of reasons including choice of edi-
tors, compatibility with version control systems, and com-
patibility with third party software.

The move from screens to text files for source code en-
courages better layout and commenting, as definitions do not
have to be crammed into the 14-15 useful lines of a screen.

There are several layout issues to be considered when con-
verting source code in screen files into text files.

The first, and major, issue is whether to maintain the code
structure as one page per screen, or to merge several screens
into better structured pages. The decision here will depend
on how scatter-loaded the existing code is. If the code is sim-
ply contiguous, it does not matter if the pages reflect the old
screen numbers. However, if the code is loaded one screen
here, then another over there, and another over here, etc.,
the page structure will have to reflect the screen layout in
order to avoid breaking the compile sequence. This decision
must be made on a per-project basis.

Another concern is that of actual layout. In a screen file,
code is often crammed into a screen simply to avoid it falling
off onto the next one, and the layout suffers accordingly. How-
ever, when converting to a text file, there is no concern over
the length of the page or the file, so the layout may be much
better. When code is converted from one format to the other,
it is easy and quick to simply leave the layout as it is. How-
ever, if the code is still to be maintained and upgraded, it is
worth the time and effort to relay the code to the layout stan-.. .
dard. The benefit will only be apparent later on.

The layout and use of comments can also improve when
converting code from screen files to text files. There is a ten-
dency to ignore the comments in order to get more code onto
the screen. This can be reversed when converting to a text
file, as there is plenty of room. The old technique of using
shadow screen for comments may be finished with in favour
of comment blocks, much like the header blocks for com-
ments in C. These chunks of comment may be either before
or after the code itself but, being in the same file, will be
printed and viewed with the code, using only standard tools.
It is also possible to extract the comment blocks from the

Forth Dimensions XIX.3

source for printed documentation.

Conclusion:
A note on consistency

This standard presents an approach to thorough coding
and layout. One of its main threads is consistency. Even if
the layout standard chosen does not entirely reflect this docu-
ment~ the layout should be consistent in what it does.
The key features for a standard are:

Consistency from one programmer
Consistency between many programmers
Easy to follow
Easy to understand
Code which is easy to read and understand
Code which is difficult to get wrong because of layout
A layout which is also pleasant
Unambiguous meaning

This concludes the series of articles about the MPE Forth coding
style. We would like to thank Stephen Pelc and Microprocessor
Engineering, Ltd. forgraciously sharing this document. We hope it
will inspire others to consider reasons for adopting a coding-style
standard and to implement one that is appropriate to their own
environment. -Ed.

Support for older systems
Hands-on hardware and software

Computing on the Small Scale
Since 1983

Subscriptions
1 year $24 - 2 years $44

All Back Issues available.

TCJ
The Computer Journal

P.0. BOX 3900
Citrus Heights, CA 95611 -3900
800-424-8825 1 91 6-722-4970

Fax: 91 6-722-7480
BBS: 91 6-722-5799

31

Least Squares Estimation
I

This month's column is not what I initially planned. I had
originally decided to set aside our current thread temporarily
and to look at something completely different-the process of
software development itself. This is a vitally important topic,
so I've decided to treat it as the next stage of these essays, in-
stead of as an aside. consequently, we will be charging ahead
with learning how to make an adaptive PID controller.

You may recall that all the adaptive filters we described
last time involved the phrase least squares. For adaptive PID
controllers, the concept will also show up. This month, we
will take a look at just what a least squares estimation is, and
how it can be used.

Optimal estimation
Least squares estimation is one of the techniques for do-

ing an optimal estimation. In these sorts of problems, we have
an adjustable model of the way our system is supposed to
behave and some actual measurements of the system. Because
our measurements are real world measurements, they will
contain some errors (due to calibration, or resolution limita-
tions, or because of noise). It's also possible that our model of
the way the system works is not the way it actually works, so
there could be some error in the description of it. Neverthe-
less, in spite of the presence of both types of errors, we want
to make the best possible estimation.

There are many ways to quantify what we mean by "the
best possible estimate." This measure of the quality of our
estimate is called a cost function and, frequently, the type of
application we are working with will dictate what the cost
function will be. A least squares cost function works in the
following way. Given a provisional set of model parameters:

for each measured data point, calculate what the model
would give;
take the difference between the two, this is the error;
square the error, and sum them for all the data points.

Squaring the errors eliminates any effect associated with
the difference between positive errors and negative errors (for
some problems, this is not a good idea) and turns out to be
particularly mathematically convenient (unlike, say, the su&
of the absolute values of the errors).

Fitting data to a straight line
The simplest example of the application of least squares

estimation is the fitting of data to a straight line. In this prob-
lem, our model of the system is the equation for a straight
line,

where a and b are the unknown adjustable parameters. If we
let z represent the measurements of what should be y, i.e.,

z = ax + b + error

then we can define our cost function as:

To apply the least squares formalism to this, we need to
figure out how to minimize J with respect to a and b. We do
this by applying a little bit of calculus. The extreme values of
a function (maximum and minimum) occur where the de-
rivative is zero.

The fact that it is straightforward to handle the derivative
of a squared quantity is what makes using the square more
attractive than the use of the absolute value. We have two
parameters, so we need to calculate the derivatives with re-
spect to both of them,

We need to expand these out and solve for a and b when
both of these equations are simultaneously set to zero.

Now we have derived from (3),

and from (4),

These can now be used to give equations for a and b,

for,

32 Forth Dimensions XIX.3

A nonlinear example
In the above example, we could solve for the optimal set

of parameters because we could separate out the equations to
give one just for a and one just for b. In order to do this, the
cost function must be linear with respect to the parameters: that
is, the parameters do not show up as nonlinear functions of
each other (e.g., a" or within transcendental functions, such
a cosine).

Sometimes this linearity can be achieved by applying a
transformation to the original problem, to arrive at a new
problem which is linear. For example, consider the problem
of estimating the amplitude and phase of a signal at a known
frequency,

0, = A sin(ot, + a) (9)
where w is known, 8, and t, are observed, and where A and a
are to be estimated.

The simplest cost function would be

2

D=rI$x; -[f .,)
k = ~ k=l

This is our optimal, least-squares estimate of u and b. Note
we should verify that this solution is the minimum solution
and not the maximum (remember that the first derivative is
zero at both places). This verification requires taking the sec-
ond derivatives and establishing that they are positive. This is
pretty easy to show, if one looks at (5) and (6). The second
derivative of J with respect to a is the derivative with respect
to a of the right hand side of (5)) which is

2 C x 2
Since this is the sum of squared quantities, it is positive, SO

the second derivative is positive. Doing the same for b, we
take the derivative with respect to b of the right-hand side of
(6) and we get 2n, which again is positive.

Listing One shows an example of a general-purpose, least
squares fit routine. It takes data pairs (x,z) and returns the
optimal estimates of a and b. For the sample data file in List-
ingTw0, You should get a slope of 0.1781 and an intercept of
0.3687. With a sufficient amount of patience (or by putting
Mathematica to work), we can work out equations like (7)
and (8) for any polynomial form, not just for a straight line.

n n

J(a, b) = z (error)' = (8, - A sin(ot, + a)12 (lo)
k=l k=l

involving successive iterations or some other method.
This problem, fortunately, has the nice property that it

can be transformed into another estimation problem which
is linear. If we let,

xk = A sin(w, + a) (1 1)

y, = ACOcos(~t, + a) (12)
then, with a little trigonometry, we can write our unknowns
A and , as,

A = .,/- (1 3)

a = tan-' m / y (14)
(as long as the amplitude and phase are constant, it does not
matter where in our data set we apply (13) and (14), so we
drop the indexing subscripts).

Now can we find an optimal estimate of and Y? ~f so, we
are all set. It turns out that we can. The complicating factor
here is that our cost function must now account for the two
components x and y, while we still are relying on the obser-
vations 0.

With lots of messy, tedious, but straightforward algebra,
we can solve this problem to arrive at:

1 " n

x = - sin2 atk x ek cos wt,
n (15)

Our equations now give us,

dJ n

- = -2x[sin(wtk + a)(@, - sin(mt, + a))] = 0
da k = ~

dJ n

- = - 2 x ~ [c o s (w , + a)(Bk - A sin(wtk + a))] = 0
db k=,

These equations are hopelessly intertwined-the aterms can-
not be pulled out into an equation for @ that is separate from
the A in the same way that we achieved (7) and (8). The di-
rect solution of these equations requires an approximation

o n n

y = - - x sin otk cos ork z ek cos o t ,
n

for,
n n

D = ox cos2 ot, C s i n 2 OX,

How does one come up with this kind of transformation
for a new problem? There are a few fairly standard transfor-
mations you can use, for instance,

can be converted to a straight line-fit problem by taking the
logarithm of both sides. But mostly, finding a suitable trans-
formation is a matter of experience, persistence, and luck.

Conclusion
Now we understand what least squares estimation is, and

we are comfortable with how to use it to determine an opti-
mal estimate of the parameters system. You probably won't
be surprised to learn that there are other complicating fac-
tors that could be considered, but that I have left them out
for this introduction. You will notice we have assumed that,
when we make a measurement, our knowledge of x was exact
and that all the uncertaintylerror was in z. We can reformu-
late the equations t o handle the situation where the error is

I I

Forth Dimensions XIX.3 33

in x and not in z, or even when there are uncertainties in
both x and z . We can also readily extend the equations to
handle the possibility that some x,z data measurements are
more accurate than others. I have also not shown how to
write any of this in matrix form. While the linear algebra
formulation is extremely powerful, I have discovered, after
years of being a professor, that the mere mention of the term
"linear algebra" causes students to quake in fear. It's really
not that difficult a subject, but I now know better than to
spring it on anyone without some prior preparation.

Least squares is the analytic tool we need to create an adap-
tive PID controller. Our model will be the PID equations, and
the parameters are the gains. Next time, we will work out the
optimal estimators for a PID controller and discuss how the
estimation equations can be written in a form suitable for a
real-time system.

Please don't hesitate to contact me through Forth Dimen-
sions or via e-mail with any comments or suggestions about
this or any other Forthware column.

Listing One

\ 1sq.fth Calculates the Least-Squares optimal fit to a straight line, y = ax t b,
\ from the sampled x,y data. Presumes that all the measurement uncertainty
\ is in the y
\
\ The input file consists of a single line giving the number of data points,
\ followed by that many lines of x y sample points.
\
\ This is an ANS Forth program requiring:
\ 1. The Floating point word set
\ 2. The File wordset
\ 3. The conditional compilation words in the PROGRAMMING-TOOLS wordset
\ 4. The Forth Scientific Library ASCII file 1/0 words
\ 5. The standalone version requires access to the command-
\ line arguments, the PEE version is implemented here
\ There is an environmental dependency in that it is assumed
\ that the float stack is separate from the parameter stack

\ This code is released to the public domain. August 1997 Taygeta Scientific Inc.

\ $Author: skip $
\ $Workfile: lsq. fth $
\ $Revision: 1.0 $
\ $Date: 27 Aug 1997 12:17:16 $
\ ..

S" /usr/local/lib/forth/fsl-util.fthV INCLUDED
S" /usr/local/lib/forth/fileio.fth" INCLUDED

FALSE CONSTANT STANDALONE \ set true to run as a standalone script

-1 VALUE fin \ input file handle

VARIABLE n \ count of data points
FVARIABLE sumx
FVARIABLE sumxz
FVARIABLE sumz
FVARIABLE sumx2

STANDALONE [IF]

I VARIABLE f index 1 f index ! - -

: next - file (-- c-addr u) \ get filename from the command line
\ when running as a standalone script

I I

34 Forth Dimensions XIX.3

\ this version is for PFE
f-index @ argc >= if

0 0
else

f-index @ argv
1 f - index + !

then
,

[ELSE]

: next-file (-- c-addr u)
bl word count

I

[THEN]

: F+! (addr -- , F: x --) \ + ! for floats, presumes separate float stack
DUP F@ F+ F!

I

: lsq-init (--)
O n !
O.OEO sumx F !
O.OEO sumxz F !
O.OEO sumx2 F !
O.OEO sumz F !

,

: calc-det (-- , F : -- d)

n @ S>F sumx2 F@ F*
sumx F@ FDUP F* F-

: estimate (-- , F: -- b a)

I calc-det

\ calculate b
sumx2 F@ sumz F@ F* sumx F@ sumxz F@ F* F- FOVER F/

FSWAP
\ now calculate a

-.

n @ S>F sumxz F@ F* sumx F@ sumz F@ F* F- FSWAP F /

: lsq (--<infile>--)
lsq-init

next-file

R/O OPEN-FILE ABORT" unable to open input data file"
TO fin

Forth Dimensions XIX.3 3 5

fin get-int DUP n ! \ read count of points

0 DO
I .

fin get-float \ get X point
FDUP F .

FDUP sumx F + !
FDUP FDUP F* sumx2 F+!

fin get-float \ get Z point
FDUP F .

FDUP sumz F+!
F* sumxz F+!
CR

LOOP

fin CLOSE-FILE DROP

estimate
.I' slope (a) : " F.
." intercept (b) : " F. CR

I

Listing Two

Forth Dimensions XIX.3

Pygmy Embellishments
I From many Forth applications over a number of years, a

collection of favorite tools has been assembled. These tools
were added to different Forth packages as the need arose. Af-
ter difficulties and work-arounds with the various Forth pack-
ages, Frank Sergeant's Pygmy has been the final step in the
development of my "ideal" Forth development platform. Not
only is the Pygmy source code readily available for embel-
lishment, but the editor, metacompiler, and multiple open
files make revision and application development a breeze.

Introduction
My applications are generally instrumentation and real-time

data acquistion/analysis with a combination of a PC and em-
bedded, Forth-based, single-board systems. The goal of my trek
through these developments was a single package which could
provide not only development tools, but also the running soft-
ware. Forth, specifically Pygmy, has made that goal possible.

As these developments progressed, a number of tools were
collected which gave Forth full control of the PC. The code is
divided between original and excerpts from many publica-
tions. At this time, I would like to express my appreciation
for the many authors who have published materials which
have been sources for ideas or for actual code. I view many
publications as a contribution to the "state of the art" and,
thereby, available to the development community. I hope
some of my efforts, which are available without restrictions,
will fit in the same category, or serve as "food for thought,"
for future Forth developers.

Caveats
The code was tested for the application at hand, but is not

guaranteed to be bulletproof.
The code is not included in this article, but is available by

FTP from Taygetall], my homepage[2], or directly from me
(disk and SASE please). These include a modified Pygmy ker-
nel, Pygmy program, and the complete screen file. For legiti-
mate use of the embellished program, the Pygmy distribution
and Bonus Disk should be obtained through normal channels,
so Frank Sergeant's efforts will be appropriately acknowledged.

Kernel
The original Pygmy kernel is essentially intact, although

the word screen locations have been rearranged. Two kernel-
load screens (screens 1 and 2) are available, to compile a 64K
or 128K version. I have found the 64K version sufficient for
most applications. If large data arrays are needed, I prefer to
allocate memory outside the program segment, thus saving
the program segment for code.

Several extension load screens have been sandwiched be-
tween the initial kernel load screens (1-3) and the remaining
kernel screens (10-96). These screens (4-6), in conjunction
with initialization screens at the end of the listing (230-233),

provide for different machine configurations.
Throughout the kernel, a number of words were added to

provide compatibility with code written for other Forth dia-
lects. Some of these words merely rename existing words,
while others provide slightly different functions. The descrip-
tions with the words should be sufficient and, therefore, will
not be provided at this time.

The number-display functions (screen 52) were modified
to accommodate double-significance numbers. Likewise, the
NUMBER function (screen 75) converts text strings to single-/
double-significance results, along with the DPL (decimal po-
sition) variable, in the traditional Forth manner while main-
taining Pygmy's on-the-fly number base selection.

The EMIT-related functions (screens 45 and 49) have been
expanded to provide printer or disk logging from the termi-
nal data. In addition, the current output devices are flagged
with various bits of the IOBYTE variable. More detail will be
presented with the description of the terminallhost functions.

The somewhat misnamed SHIFT? word (screen 48) returns
the condition of the keyboard control keys (Shift, Alt, Ctrl, etc.)

Two convenience words were added to the file-control func-
tions. REMOVE (screen 61) deletes a file from the open file list. I
use the file list as part of the documentation as a project
progresses, and REMOVE allows me to clean up the file list easily.

NEW-FILE (screen 64) opens a screen file from the com-
mand-line name, with two blank screens. Example:
" C : \ FORTH\NEWFILE. PYG" 3 NEW-FILE < E n t e r >
opens a new file as unit #3 with pathname in the quotes.

Editor (screens 99-1 11)
In general, the original editor functions have not been

changed. A FLOAT (screen 111) word was added to comple-
ment the SETTLE function by moving non-blank screens to
higher locations. In addition, the ALTERNATE function (screen
108) was modified to allow additional, unrestricted "flipping"
between screens from any open file.

One minor addition, which has saved me some headaches
when 1 have been a little too wild on the keyboard, was a
keypress (Ctrl-X) to exit a screen without saving the changes.

The keypress menulhelp (screens 99 and 100) was moved
to the right side of the screen display. A not-so-obvious ad-
vantage was to provide more usable display. Since the screen
contents are still visible after exiting the editor, the lines be-
low the screen can be used as work space to test words, with
reference to the screen still in view.

DO ... LOOP (screens 136-1 37)
Although Pygmy includes a FOR-NEXT function, at times I

prefer the DO ... LOOP function (primarily because the index
can be used as a pointer, thereby simplifying the stack). These
DO . .. LOOP constructs include both signed (+LOOP) and un-
signed (/LOOP) increments. Unlike some Forth dialects, these

A Forth user for 13 years, Mr.Fergus is heavily involved in a personal,
severe weather warning project (http:Nwww.theramp.net/sferics).He
appreciates Forthls"interactive control and limited restrictions."

--

Forth Dimensions XIX.3

definitions are consistent and do not include the limit value
in the either the positive or negative incrementing loop.

String variables (screen 138)
String variables are defined with VARS. It is used in the

following manner: VAR$ <name> < s t r i n g > "
When defining, the first space after the name delimits the

name, while any and all following spaces will be included in
the string. In addition, a null character is added at the end of
the string but is not included in the character count. Calling
name will return the conventional TYPE format of address
and count.

$+ and $++ are used to combine strings. In general, the
$ + word will build a single string in the PAD area from the
two strings (address count) on the stack. The $++ is a little
faster when adding more than two strings, although the $+
will also work.

Double-significance math (screens 139-1 45)
The double-significance words in these screens were ex-

tracted from Frank Sergeant's Bonus Disk.

MAKE-DOER (screen 145)
One of my favorite constructs is the MAKE-DOER construct

described by Brodie in Thinking Forth. This is similar to the
DEFER (and IS) word used to make a dictionary entry for a
word which cannot be defined at the time.

MAKE-DOER allows the same non-defined dictionary en-
try (DOER) to be created, and redefined later with MAKE. Sev-
eral words to be described later will demonstrate the use of
this construct. The major difference from DEFER is that the
MAKE code is not a word definition by itself, but code con-
tained within a definition.

Memory access (screens 146-1 49)
Several words have been assembled to access memory. The

words follow the Forth tradition with regard to c@, @, 2 @ ,
etc., in which a prefix character is added to indicate the ad-
dress format: E for segment-offset, or L for long (20-bit) ad-
dressing. In addition, words are available to switch between
segment-offset and long addressing.

Extended memory (screens 150-1 5 1)
If space has been reserved with the INT=xxxx switch of

HIMEM.SYS in the CONFIG.SYS file, extended memory can
be accessed for transfers via XMOVE. One word of caution: when
DOS is loaded high, it is loaded in the first 64K of extended
memory. The INT=xxxx reserves memory beginning at the
same address; therefore, the first 64K of extended memory
cannot be used.

Memory allocation (screens 152-1 53)
The memory allocation words allocate and free memory

as required. The allocate words return the segment address
of the beginning byte. If the allocation is improper, a flag
and error code is returned, which can be used with ABORT"
to describe the failure and abort the program. Additional de-
scription will be included when the initialization screens (230-
233) are discussed.

Time-Date-Clock (screens 154-1 56)
The system time and date can be accessed as individual

parameters or as a string variable, or can be displayed directly.
In addition, each parameter can be reset, which also resets
the CMOS clock.

The MS word provides a delay function, which is indepen-
dent of the machine clock. It uses the CMOS clock interrupt
to provide delays in nearly 1 millisecond (977 microseconds)
increments.

CLK@ returns a double number representing the clock ticks
(about 18.2 per second) since midnight. I find this a fast way
to calculate differential time throughout the day.

TAGS and C . TAGS return string variables which include
the current year, month, day, and an incrementing number.
C .TAG$ differs from TAGS by substituting an input character
for the tens year digit. My purpose for these words is to gen-
erate unique filenames, generally for data, which also include
the date information.

Disk-file access (screens 157-1 59)
The disk-file access words were originally included to pro-

vide compatibility with Uniforth, and are used primarily for
data transfers. Although there is some redundancy with the
Pygmy functions, the CHANx file accesses are independent
functions, with a separate disk buffer. This buffer can be lo-
cated anywhere in low memory and, therefore, can be used
to move data directly to or from the disk without an interme-
diate transfer step (via the normal disk buffer).

Files can be opened from within a word definition. Example:
VAR$ PAT .PAT"
defines a file-extension string.
: T E S T CHANB TAG$ DAT $+ $CREATE ;

Executing TEST will open or create a file named with the cur-
rent time and date plus .DAT extension as unit 14. At a later
time, executing CHANB will enable REOPEN, CLOSE, BUF-READ,
BUF-WRITE, WRBYTE, RDBYTE, EOF@, and BOF@ to access the
file via unit 14 (CHANB). Concurrently, files could be opened
for CHANA and CHANC for similar accesses.

Display control (screens 160-1 67)
Display control includes video mode (text, graphics, etc.),

character and background color, character attribute, scroll-
ing, cursor, and display pages (up to eight).

MODE ! and MODE@ set and recall the video mode. Gener-
ally, a machine will support many video modes (hardware-
dependent) and MODE (screen 229) can be used to test a mode
value. I use three "generic" modes for various effects: C L R 8 0
(text), MEDGPH (320 x 200 graphics), and H I G P H (640 x 480
graphics). These words are defined during the program load
process to use the optimal mode for each machine.

When in text mode, the entire screen can be scrolled in
either direction with SCROLL or, with a little manipulation, a
portion of the screen can be scrolled with UL ! , LR! , and (SCRL) .

Attributes can be built by selecting a color and following
with the attribute word or words. Example:
R E P BLINK BOLD
will set the character color with a bold (high intensity) blink-
ing attribute.
BLUE MAT
will add the background color attribute to the character attribute.

Forth Dimensions XIX.3

Forth Dimensions XIX.3 39

Combining the above:
RED BLINK BOLD BLUE MAT DISPLAY
will set the display for blinking bold red characters on a blue
background.

u p to eight separate text display pages may be selected
with DsP. PAGE. Each page may be manipulated separately,
including the page attributes.

The ATTRS is useful to highlight a character block for at-
tention or prompting. It changes the attributes, but not the
characters.

DOS shell (screens 171-1 72)
DOS commands can be executed at the ok prompt or from

within a word. To execute a DOS command from a keyboard
entry, type DOS [command] <Enter>. Example:
DOS D I R C: \ <Enter>
will show the C drive directory and return to the Pygmy ok
prompt. Typing:
DOS <Enter>
will call the command interpreter and provide the standard
DOS command-line functions. To return to Pygmy, type E X I T
<Enter>.

To execute a DOS command from within a definition, build
the appropriate string variable for the DOS$ word to execute.
Example:
VAR$ DIRECTORY D I R C : \ " : C : D I R (---)

DIRECTORY DOSS ;
The C drive directory will be displayed when c : DIR is

called.
To allow for different machine configurations, the

COMMAND.COM path is defined on' the load screen as a
string variable (COMD).

Mouse (screens 1 73-1 83)
A number of BIOS calls related to mouse control have been

coded, but only a few are used routinely. The mouse driver
reset, cursor onloff, and position control are contained on
screen 178. Another useful call is M ! GCB (screen 180), which
sets the graphic cursor shape. Cursor shapes are defined with
a 32-byte array, as detailed on screens 174-1 77. By switching
the number base to 2, the two masks can be drawn directly
with Is and Os, which represent each mask pixel.

Text windows (screens 184-203)
The window function overlays a portion of the display

screen with a window screen. The overlayed text is saved, to
be restored when the window is closed. Allocated memory (out-
side the program segment) is used for storage; therefore, a rela-
tively unlimited number of windows may be open at one time.

The window is selected by defining the upper-left corner
position, the horizontal and vertical width, and the border
and text attributes (OPEN. WIN, screen 196). OPEN. NORM is simi-
lar, except default white attributes are used. A border (double-
lines graphic characters with separate attributes) outlines the
opened window.

Various "emit" words have been defined for functions to
stay within the selected window. Generally, these words are
the conventional Forth word with a W prefix; e.g., WEMIT for
EMIT, WCR for CR, and WTYPE for TYPE, etc.

Several special windows are available to provide complete
functions. W I N . WORDS draws a window at position x,y with n

horizontal spaces (only one line), and includes a prompt de-
fined with the PROMPT Doer. The prompt may be a default
word(s). Before executing the window, the window contents
may be changed via the keyboard. Pressing Enter will execute
the words in the window and close the window. Example:
: F . D I R (---) MAKE PROMPT .'I D I R
C: \FORTH " ;AND 10 10 20 WIN.WORDS ;
If not typed over, the C:\Forth directory will be displayed
when F . DIR is called.

A file can be opened via the CHANx scheme with WIN. FILE,
similar to the above. Example:
: DATA (---) MAKE PROMPT .'I TEST.DATf '
; AND CHANA 10 10 2 0 W I N . FILE ;
DATA Will draw a window showing DAT and open a file
named TEST.DAT, unless changed, as CHANA (unit 13).

A keyboard number entry window can be drawn with
W I N . KB# at a selected position and width. Either single- or
double-significance entry format may be used. With window
closure, a single or double number is left on the stack. Al-
though somewhat awkward, the significance may be deter-
mined with the variable DPL.

Serial port (screens 204-21 9)
Full serial port capability is provided by direct access to

the machine hardware. The receive function is interrupt-
driven, with a large buffer outside the program memory seg-
ment, thereby reducing timing problems during high-speed
transmissions.

COM .ON resets the buffer pointers, installs the interrupt
vector, and initializes the serial port hardware. COM.OFF dis-
ables the serial port and restores the prior interrupt vector.

Any serial port address, interrupt number, baud rate, and
character setup can be used. Words are included for Coml
and Com2, 9600-1200 baud, and "8N1" characters. Example:
COMl 9 6 0 0 B COM .ON
enables serial port 1 for 9600 baud, and it can be disabled
with cOM .O FF. To re-enable, only COM .ON is necessary.

Several definitions are provided for terminal emulation
and host-slave functions. These words were written to coor-
dinate the development of small Forth-based microprocessor
systems. In general, these systems are connected via a serial
cable, and the PC becomes both terminal and disk resources
for the system[3].

Terminal emulation is provided with TT, which includes a
disk logging and printer function. The emulation is entered
with TT <Enter>, and is exited with the F10 key.

While in emulation mode, a disk logging function is
toggled onloff with the F1 key. When toggled on, a prompt
for a filename will be displayed. After entering the filename,
all subsequent terminal display will be written to the file until
F1 is pressed. The disk logging is especially useful to transfer
a slave program to a disk file for burning EPROMs. Similarly,
the F2 key toggles the printer onloff.

A function (HH) is included to pass file blocks to and from
the slave via the serial cable, in addition to terminal emula-
tion. Obviously, the slave must have the appropriate code to
send and receive the blocks.

Simulated input strings can be sent to the slave with $LOAD,
which passes a string variable to the slave, followed by a car-
riage return. For slaves with a 1024-character input buffer,

Continued on page 27

19th annual FORML Forth Modification Conference
November 21 - 23,1997

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California USA

THEME:

"Forth at the Millennium"
What are the challenges for Forth as we reach the Millennium? Will the year 2000 present problems for
existing programs? Many organizations are asking for certification that software will work perfectly as we
move to 2000 and beyond.

How will certification be accomplished? Encryption is required for more applications to keep transactions
private. Proposals for incorporating encryption techniques are needed for current and future applications.
Your ideas, expectations, and solutions for the coming Millennium are sought for this conference.

FORML is the perfect forum to present and discuss your Forth proposals and experiences with Forth profes-
sionals. As always, papers on any Forth-related topic are welcome.

Abstracts are due October 1,1997 Completed papers are due November 1,1997

Mail abstract(s) of approximately 100 words to:
FORML, Forth Interest Group 100 Dolores Street, Suite 183 Carmel, California 93923
or send them via e-mail to FORML@forth.org

The Asilomar Conference Center combines excellent meeting and comfortable living accommodations with
secluded forests on a Pacific Ocean beach. Registration includes use of conference facilities, deluxe rooms,
meals, and nightly wine and cheese parties.

Guy Kelly, Conference Chairman Robert Reiling, Conference Director

