

19th annual FORML Forth Modification Conference
November 21 - 23,1997

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California USA

THEME:

"Forth at the Millennium"

What are the challenges for Forth as we reach the Millennium? Will the year 2000 present problems for
existing programs? Many organizations are asking for certification that software will work perfectly as we
move to 2000 and beyond.

How will certification be accomplished? Encryption is required for more applications to keep transactions
private. Proposals for incorporating encryption techniques are needed for current and future applications.
Your ideas, expectations, and solutions for the coming Millennium are sought for this conference.

FORML is the perfect forum to present and discuss your Forth proposals and experiences with Forth profes-
sionals. As always, papers on any Forth-related topic are welcome.

Abstracts are due October 1,1996 Completed papers are due November 1,1997

Mail abstract(s) of approximately 100 words to:
FORML, Forth Interest Group 100 Dolores Street, Suite 183 Carmel, California 93923
or send them via e-mail to FORML@forth.org

The Asilomar Conference Center combines excellent meeting and comfortable living accommodations with
secluded forests on a Pacific Ocean beach. Registration includes use of conference facilities, deluxe rooms,
meals, and nightly wine and cheese parties. +.

Guy Kelly, Conference Chairman • Robert Reiling, Conference Director

A Platform-Independent Token System for Payment Terminals
by Peter Johannes, Stephen Pel, and Elizabeth Rather
The financial industry is scrambling to implement new instruments intended to revolutionize
personal finance. Smart cards, debit cards, electronic purses, and more are buzzwords that, in
certain audiences, electrify with their implications. Hardware constraints are a significant part of
the puzzle-how to pack transaction-supporting applications into the amount of RAM that can fit
onto a plastic card of the usual proportions-which also happens to contain a microprocessor and
110. Forth is a natural in constrained environments and, as it turns out, is playing a leading role in
the development of this new technology.

A Simple Implementation of the Kermit Protocol in Pygmy Forth
by Frank Sergeant
Frank Sergeant, whose Pygmy Forth has a following among those who appreciate Forth in its lean-
and-mean aspect, presented a description of his Kermit implementation in the preceding issue.
Herewith: the code.

Yet Another Forth Objects Package
by An ton Ertl
Programmers often must treat several data structures similarly in some respects, but differently in
others. A big CASE structure would not be very elegant, and would require maintenance. In a
nutshell, this is the problem object-oriented systems solve. After criticizing the Neon model in the
last issue, the author presents a model he finds better, and its implementation.

4 EDITORIAL 20
Errata; FORML; Corporate Members; Thanks.. .

5 OFFICE NEWS - 22
Rochester Conference news, and an invitation.

6 ISOllEC FORTH
International standard released.

19 FREEWARE & SHAREWARE 31
Updates to Win32Forth and Pygmy

STRETCHING STANDARD FORTH
Linked Lists

THE VIEW FROM GOAT HILL
The Search Paradigm

TOOL BELT
Simple Macros

FORTHWARE
Adaptive Digital Filters

MPE's coding style standard continues ...

Forth Dimensions XlW2 3

Forth Dimensions
Volume XIX, Number 2

July 1997 August

Published by the
Forth lnterest Group

Editor
Marlin Ouverson

Circulation/Order Desk
Trace Carter

Errata
With much fanfare in our preceding issue, we welcomed a new advertiser whose services

will be of interest to many of our readers. Unfortunately, during a last-minute production
frenzy as we shuffled the pagination, the ad was accidentally dropped. We offer our apolo-
gies to Kevin Martin-whose ad does appear in this issue-and to any readers who may have
been inconvenienced.

FORML
Once again, we remind everyone that the annual FORML Conference is not being held

on the U.S. holiday of Thanksgiving this year. (See the ad on our inside front cover.) We
may seem to be belaboring the point but, for many years Forth folk from this country who
have family obligations found themselves unable to attend (at least, not without some
guilt). The fact of FORML during holidays became engrained in our collective conscious-
ness, a background irritant for those who couldn't be there for that reason. Many people
requested a change and, this time, the organizers were able to accommodate those requests.

We hope you will vote with your feet this year (or with your frequent flyer mileage), and
show your support of the new dates with your attendance at this remarkable gathering. So
much goes on at FORML that it is difficult to report in writing about it. Suffice it to say, for
now, that the marvellous location is surpassed only by the conference itself.

Of course, we enjoy cross-pollination with everyone who is doing interesting new work
in Forth so, if you happen to be attending EuroForth (see the ad on our back cover), we'd
welcome more news about European activities! (And a hearty thank you to the European
authors who have been writing lately-your contribution and influence is welcome.)

Corporate membership program
One of the relatively new ways to benefit from membership in the Forth Interest Group

is via a corporate membership. Some companies have taken advantage of the added benefits
of this level of membership, and some who previously were individual members have con-
verted to the new program. We will be listing our corporate members in the next issue; if
you are unfamiliar with the program, please contact the FIG office, who will be more than
happy to explain the program to you.

Thanks for the articles, now write more...
The response to our recent request for articles has been gratifying. Thanks to those who

responded, we have good material on hand for the next issue, and promises of more. Mate-
rial is pledged which will interest Forth experts and relative beginners.

To my dismay, when I entered the editorial arena (toqmany years ago to discuss), I
found that, just as we produced a fine issue and were ready to celebrate, another issue's
deadlines were looming and advance plans had to be made for the one after that. Only with
a consistent and reliable source of material can we produce the kind of publication that will
serve our readers and the public, and that will represent the exciting Forth work that is
being done out there.

So even while we prepare to publish the material in the next issue, and to thank you
again for the contributions, we must reiterate that your articles and code are more than
welcome-they are needed! And don't forget that, even in this time of on-line communica-
tions, substantive letters to the editor are also meaningful ways to contribute.

Besides, we like to get mail. Can we look forward to hearing from you?

Marlin Ouverson
editor@forth.org r

Forth Dimensions welcomes editorial ma-
terial,letters to theeditor,and comments
from its readers. No responsibility is as-
sumed for accuracy of submissions.

Subscription to Forth Dimensions is in-
cluded with membership in theForth In-
terestGroupat $45 peryear(553 Canada1
Mexico, $60 overseas air). For member-
ship, change of address, and to submit
items for publication,the address is:

Forth lnterest Group
100 Dolores Street,suite 183
Carmel, California 93923
Administrative offices:
408-37-FORTH Fax: 408-373-2845

Copyright 0 1997 by Forth lnterest
Group,lnc.The material contained in this
periodical (but not the code) is copy-
righted by the individual authors of the
articlesand by Forth InterestGroup,Inc.,
respectively.Any reproduction or use of
this periodical as it is compiled or the
articles, except reproductions for non-
commercial purposes,without the writ-
ten permission of Forth lnterest Group,
Inc.is a violation of the Copyright Laws.
Any code bearing a copyright notice,
however,can be used only with permis-
sion of the copyright holder.

The Forth lnterest Group
The Forth lnterest Group is the associa-
tion of programmers, managers, and
engineers who create practical, Forth-
based solutions to real-world needs.
FIG provides a climate of intellectual
exchange and benefits intended to as-
sist each of its members. Publications,
conferences, seminars, telecomrnuni-
cationsand area chapter meetings are
among its activities.

FORTH DIMENSIONS (ISSN 0884-0822)
is published bimonthly for 545153160
per year by Forth lnterest Group at
1340 Munras Avenue, Suite 314,
Monterey CA 93940. Periodicals post-
age rates paid at Monterey CA and at
additional mailing offices.

POSTMASTER: Send address changes to
FORTH DIMENSIONS, 100 Dolores Street,
Suite 183,Carmel CA 93923-8665.

Forth Dimensions XIW2

June issue of Forth Dimensions than the JulyIAugust issue was visiting one of the numerous winery tasting rooms? If you
ready to go! We're all working hard to get everything back on like good wine, this region of California, like Napa, has vine-
schedule after the move. Soon, perhaps we'll~be thinking of
Carmel as the home of the Forth Interest Group, rather than
its "moved to" location. I'm thinking this will happen by the
time of FORML! After all, the conference is the last "first" for
us here at the office. After spending the first part of this year
processing your memberships and orders, I hope I get to meet
a good number of you at FORML.

I was able to do just that at this year's 17th annual Roch-
ester Forth Conference, sponsored by the Institute for Ap-
plied Forth Research, Inc. This was the first year I attended,
so I didn't know what to expect. It was great fun! To have the
opportunity to meet and talk to the people behind the ar-
ticles in Forth Dimensions, and to put faces to the names we've
been hearing in the main offices, added a touch of humanity
to the workload.

A heartfelt thank you goes to both Larry and Brenda
Forsley-they are excellent hosts who go out of their way to
make the Rochester Forth Conference comfortable for all who
attend. If you haven't previously attended, you'll definitely
want to make it a date for next year. What a wonderful op-
portunity it is for everyone in the Forth community to have
two conferences available for you to attend.

FORML, the West Coast conference, is coming up! It's not
too early to get your abstract, or even the title of your talk, to
Guy Kelly, this year's Conference Chair. The e-mail site
FORML@forth.org has been set up for that purpose, as well as
for pre-registration and other inquiries you might have. We
look forward to hearing from you!

As you no doubt know by now, the date has been changed
to the week before the U.S. Thanksgiving-to November 21
through 23. The reason for doing this was to make it more
convenient for people to attend. If you haven't been to the
Monterey Peninsula during this time of year.. . let me tell you,
it's beautiful. The weather consists mostly of bright blue skies,
temperatures in the 60's ... warm enough during the day that
a favorite sweater or jacket is appropriate while walking
around town or on the beach, yet cool enough in the evening
that a fire in the fireplaces of the meeting rooms adds just
the right touch to the atmosphere.

If you are wondering whether you should come as a family,
please do; there are many things for families on the Peninsula.
The Monterey Bay Aquarium is one of the finest in the world,
and it has just finished construction of a new wing. There is a
Natural History Museum in Pacific Grove that's for everyone,
and it has the added benefit of being free. A new Children's
Science Museum, which as of this date we haven't been to (but
that will change in the next month) has just opened. The
Monterey Museum of Modern Art has lovely exhibits. There
are also a dozen or so great parks and playgrounds.

And, of course, there's Carmel. You can wander the quaint,
winding streets and visit the Barnyard shopping center. The
Peninsula also sports many brand-name outlet stores. So, if
you are looking for a special gift for someone, you'll prob-

- .
producing world-class wines.

Guaranteed, if you bring the family, they won't be bored!
We've lived here for eight years and, even though our hearts
are still rooted in New England (and, with it, the desire to
move back someday), the Monterey Peninsula is a great place
to visit.

More office business: new chapters are coming on board,
and at the moment work is focused on revising and updating
our FIG Chapter Kit. Those of you who have expressed inter-
est: we will be getting back to you this next month. If you
haven't contacted the office and you're interested in starting
a chapter, now is a great time to begin. We now have Corpo-
rate Memberships, too. Our Corporate Members should have
their listings of services and products in the next issue of
Forth Dimensions.

The one thing you can count on these days is that things
are constantly changing at the home office. And now is a
great time to be part of that change!

Cheers 'ti1 next time,
Trace Carter

Support for older systems
Hands-on hardware and software

Computing on the Small Scale
Since 1983

Subscriptions
1 year $24 - 2 years $44

All Back Issues available.

r c J
The Computer Journal

P.O. Box 3900
Citrus Heights, CA 95611 -3900
800-424-8825 1 91 6-722-4970

Trdke Carter Monterey,Cdlifornia ' Fax: 91 6-722-7480
office@forth;org BBS: 91 6-722-5799

f

Forth Dimensions XlW2

The final accolade:

ISOIIEC Forth
On 15th April 1997, ISOIIEC 15145 "Information tech-

nology-Programming Languages-Forth" was published.
Such an event is a coming of age for Forth. Surely the world
has got to take it seriously now.

In large part, IS015145 adopts the ANS Forth document.
The initial proposal was that ISOIIEC should adopt the ANS
For.th standard on-block in a Fast Track procedure. The SC 22
Secretariat forwarded the final text to ITTF for publication
on November 27,1996. In the disposition of comments docu-
ment (SC 22 N 2343), the Secretariat states, "The editorial
comments from the Netherlands and the IS0 Central Secre-
tariat have been incor~orated in the revised DIS.

The ISO/IEC document's introduction provides a brief his-
tory of Forth and its progress towards international
standardisation. This, in effect, replaces the very brief Pur-
pose paragraph in the ANS document.

This shifts the remaining parts of section 1 up, although
the content of each of these sections remain unchanged. The
references have moved in the IS0 document to section 1, but
also remain unchanged apart from reordering of the listed
standards. Section 2 remains unchanged, apart from the loss
of the references section and the numbering of individual
term definitions in section 2.1. In all other respects ISOIIEC
15145:1997(E) is the same as ANS X3.215-1994.

With the publication of the ISOIIEC Forth standard, Forth
can be said to have become a truly international program-
ming environment. What more could we want, other than
that the same might happen with the Open Firmware stan-
dard, as well.

"The comments frdm the United Kingdom concerning in-
ternationalization issues and requirements for
tems programmed in Forth will be addressed when the TC
reconvenes in 1998. At that time, we will consider these and
other needs that have arisen in this evolving technology."

So what has changed between the two documents? on-member price, members

On opening the ISOIIEC version and ANS versions side by
side, there is an obvious difference in style for the first few
sections. The contents list reflects the major differences, which
all seem, at first look, to be confined to sections 1 and 2.

ms x3.215-1994 ISO/IEC 15145:1997(E)
Introduction

1. Introduction 1. General
1.1 Purpose 1.1 Scope
1.2 Scope 1.1.1 Inclusions

1.2.1 Inclusions 1.1.2 Exclusions
1.2.2 Exclusions 1.2 Document organization

1.3 Document organization 1.2.1 Word sets
1.3.1 Word sets 1.2.2 Annexes
1.3.2 Annexes 1.3 Future Directions

1.4 Future directions 1.3.1 New technology
1.4.1 New technology 1.3.2 Obsolescent features
1.4.2 Obsolescent features 1.4 Normative references

2. Terms, notation and refences 2. Terms, notation and refences
2.1 Definitions of terms 2.1 Definitions of terms
2.2 Notation 2.2 Notation

2.2.1 Numeric notation 2.2.1 Numeric notation
2.2.2 Stack notation 2.2.2 Stack notation
2.2.3 Parsed-text notation 2,2.3 Parsed-text notation
2.2.4 Glossary notation 2.2.4 Glossary notation

2.3 References

6 Forth Dimensions XlW2

AAPlatform-Independent Token System
'fol.;Payment Terminals h '.. .: I _ C

.,
I 1. Version 2.2. lanuarv 29. 1997. Available from Euro~av Documentation I execution Of ivDiCal Uavment funCtibnS on a wide VariitV of I

Europay, the major European credit card organization
(Eurocard, Mastercard in Europe, and other financial prod-
ucts) is developing technology to support smart cards-Inte-
grated Circuit Cards, or ICCs-as the credit cards of the future.
This will require new software in all credit card terminals, which
range from 8051-based POS terminals to high-end ATMs. To
facilitate this transition, they have designed a token-based sys-
tem--conceptually similar to Open Firmware or Java-which
is based on Forth. Using this Open Terminal Architecture (OTA),
it will be possible for credit card issuers and acquirers to write
application programs that will be completely platform inde-
pendent and which will run on all OTA-compliant kernels.

The project has been under way for two years. FORTH,
Inc. and MPE, Ltd. have been principal members of the de-
sign and development team, along with Europay. Prototype
terminals were exhibited at a major Europay banking confer-
ence in June 1996, and production systems have been oper-
ating in the field in Prague, Czech Republic, since May 1997.

Background
Modern payment applications are moving to ICC tech-

nology. ICCs can significantly improve security of payment
transactions by being able to manage encrypted account data
offline, by participating actively in the transaction-validation
process, and by being intrinsically extremely difficult to vio-
late or reproduce. They can also contain code to enhance the
transaction processing, thereby providing new opportunities
for payment products and services.

Use of this new technology, however, will necessitate al-
tering the firmware in several million terminals that will use
the ICCs. To facilitate this transition, Europay is designing a
standardized software system that will be compact, efficient,
and easy to maintain and enhance for future payment sys-
tem needs. This is the Open Terminal Architecture system.

OTA defines a software virtual machine standardized across
all terminal types, described in detail in Europay Open Termi-
nu1 Architecture Specification Volume 1: Virtual Machine Specifi-
cation.' This virtual machine provides drivers for the terminal's
I/O and all low-level CPU-specific logical and arithmetic func-
tions. An extensive repertoire of commands specific to the
needs of ICC terminals is also provided, with functions such
as commands for managing databases, different languages, "
security algorithms, and the special data formats used by the
cards. High-level libraries, terminal programs, and payment
applications using standard kernel functions may be devel-
oped and compiled into token modules. These must be certi-
fied once; thereafter, they will run on any conforming termi-
rial of the appropriate VPe (for example, ATM or POS) with-

1 Out change, regardless of the terminal's CPU type or other

Forth Dimensions XlW2 7

architectural issues. Therefore, a significant consequence of
OTA is a simplified and uniform set of test and certification
procedures for all terminal functions.

To provide a common means of distributing programs in a
compact, standard, machine-readable form, OTA uses a token
system that is, in some respects, similar to Java byte-codes. An
OTA token compiler converts source code to a string of tokens
that is extremely compact (and therefore easy to transmit over
phone lines or to read from an ICC), and is also easy for even
simple processors to interpret with minimal overhead.

To summarize, OTA provides the following major benefits:
A virtual machine with generalized ICC support functions,
to be installed in each terminal only once. The kernel life-
time is expected to match that of the terminal (7-10 years).
Terminal kernel certification independent of applications,
so certification only needs to be done once for each termi-
nal type. A terminal type is defined as a specific configura-
tion of terminal CPU and I/O functions.
Application certification procedures that are independent
of the terminal on which the application will run, since all
terminals provide the same virtual machine interface. Only
one certification and validation is needed for tokenized
software libraries, terminal programs, and payment appli-
cations, providing they run on certified OTA terminals.
Standard downloading procedure for all terminal types, us-
ing compact token modules for minimum transmission time.
Support for tokenized code on an ICC, to make maximum
use of its storage capabilities and to minimize communica-
tions time between card and terminal.

OTA is based on Forth, extended with commands to facili-
tate development of payment applications. Forth was chosen
by Europay because, of all standardinterpretive-typelanguages,
it provides the most compact and efficient means of represent-
ing both terminal programs and the code that may reside on
the ICC itself. Compactness in terminal programs translates di-
rectly into reduced transmission time and cost for terminal up-
dates, and compactness in ICC code results in increased capa-
bility and reduced transfer time between card and terminal.

For security reasons, OTA allows only run-time behavior
in a terminal, so the virtual machine includes only a run-
time subset of ANS Forth.

Both Forth and C compilers have been developed to sup-
port OTA tokens. VM implementations, applications, and li-
braries have been developed in both Forth and C.

Open Terminal Architecture Features
The specific characteristics of the architecture were de-

signed and outimized for both comDact and reasonablv fast

CPUs. Many design decisions were heavily influenced by the
extreme need for program security in payment terminals.

Virtual Machine CPU
The OTA virtual machine is based on a multi-stack archi-

tecture, as seen in Figure One. This architecture, derived from
Forth, has been further modified for portability, code den-
sity, ease of compilation, and for use with other program-
ming languages. For example, it contains frame memory for
local variables used in C. Thus, OTA token compilers can be
written not only for Forth, but also for C and other languages.

The VM is a byte-addressed, 32-bit machine, with 32-bit
registers and stack elements. Despite some initial trepidation
about implementing a 32-bit VM on processors such as the
8051, we have found ways to do so with remarkably good
run-time performance.

Memory
OTA defines a single address space for programs. This ad-

dress space is accessible for data storage only. Programs may not
assume that executable code is in this address space. Depending
on the actual processor, and on the mechanism used to convert
the token image into executable tokens, the executable code
may be in a different address space (shown as code space in
Figure One), or may be under the control of a memory manage-
ment unit. In any case, programs are not permitted to access
their own program memory directly, and any attempt to do so
will be flagged during the program certification procedure.

Addressable memory is further divided into sections:
Initialized data space may be preset at compile time to val-
ues that will be instantiated in the target at run time.
Uninitialized data space will be preset to binary zeroes in
the target at run time.
Extensible memory is temporarily allocated using a rub-

Figure 0ne.The OTAVirtual Machine

Stack Stack Stack

ber-band memory allocation algorithm.
Frame memory is used by C stack frames and Forth local
variables.

In addition to directly addressable memory, the VM also
manages extended memory, which is not directly available
to token programs. This is used for two purposes: databases
and module storage. Databases are managed by the VM as a
server to client token programs. Clients may select a named
database and records within that database. At any time, the
client has access to a current record in a current database via
named fields of various types. The module storage is not ac-
cessible by token programs directly, although modules may
call functions in external modules in ways managed inter-
nally by the token interpreter in the VM. Certain tokens also
support high-level management of the module storage by al-
lowing terminal programs to add and delete modules, with
appropriate security.

Programs and Tokens
The OTA token set provides program portability across mul-

tiple CPU types by passing source code programs of various
types through a compiler whose output is a string of OTA to-
kens, which may be thought of as machine instructions for
the OTA virtual machine. The tokens are organized into a
module, which consists of a header, a section representing the
module's data items, lists of imported and exported functions
(providing links to other modules), and the tokens themselves.
Target terminals then process this code by instantiating the
data space associated with the module, linking the module's
imports to functions exported by other modules, and finally
interpreting the tokens. Figure Two illustrates this process.

The OTA token set covers three main areas. The first is the
instruction set of a theoretical processor (the virtual machine),
which provides the instructions necessary for the efficient
execution of programs. The second supports 110 and com-
munications functions. The third group consists of OTA-spe-
cific functions such as databases, a message database (poten-
tially in several European languages), and support for Tag-
Length-Value data formats (IS0 8825) used for communicat-
ing with the ICCs and for other data communications.

The OTA token set has been optimized
for use on small terminals, with ease of com-
pilation, ease of interpretation, and good
code density. The most common functions,
including most Forth primitives, are ex-
pressed in one-byte, or primary, tokens. Less
frequently used functions are two-byte, or
secondary, tokens. Some tokens also have
associated values, for such things as literal
values and branch offsets.

System Components
The purpose of OTA is to provide soft-

ware to run in terminals used in payment
applications. Conceptually, there are two
hardware environments, and several classes
of software. The hardware environments
include the development system, which is
based on a simple PC; and a target, which is
some form of payment terminal. The entire

I I

8 Forth Dimensions XIW2

general in nature and as complete as possible, in order to
support a wide range of present and future terminal pro-
grams and applications.

Terminal manufacturers are responsible for providing a
VM implementation on their terminals. This VM is devel- I

- ~p -- --

suite of software includes:
development software, which runs on the PC and is avail-
able in two packages, for VM and application development,
respectively;
virtual machine implementations, which include all plat-
form-specific software in a terminal and other mandatory
standard functions;
libraries, which provide general functions to support ter-
minal programs and payment applications;
applications, which are the functions specific to a particu-
lar payment product;
terminal Programst which perform general non-PaYment
terminal functions and include high-level mechanisms for
selecting and executing transactions and associated appli-
cations; and

* test suites and platforms, for both VM implementations
and token programs.

Terminal Target Environments
The target system is any one of a large variety of payment

terminals. Actual products range from small, hand-held de-
vices with simple, eight-bit microprocessors (such as the 80311
51 family), to 32-bit computers running operating systems
such as Windows NT. In order to simplify the production,
certification, and maintenance of software on such a wide
variety of targets, OTA terminal code is based on a single vir-
tual machine. The VM consists of a standardized set of func-
tions whose CPU-specific implementation is optimized for
that specific platform. Implementations currently operating
in the field on eight different devices show that this approach
provides good run-time performance, even On gos1 CPUs.

Virtual Machine
The OTA VM has standard characteristics that define ad-

dressing modes, stack usage, register usage, address space, etc.
The virtual machine concept makes a high degree of standard-
ization possible across widely varying CPU types, and simpli-
fies program portability, testing, and certification issues.

The VM instruction set includes a selected subset of ANS
Forth commands, plus a number of specialized OTA func-
tions, such as terminal 110 support and token loaderlinter-
preter support. Since it cannot itself be tokenized, and may
reside in PROM, the VM is intended to be installed once,
and not changed thereafter during the lifetime of the termi-
nal. Therefore, its functions are carefully designed to be very

oped and certified according to the OTA Virtual Machine
Specification. Standard kernel functions not appropriate to a
particular terminal type (e.g., the cash dispenser function on
a POS terminal) are coded as null functions for that terminal,
so every kernel has an identical set of functions and the test-
ing and certification process is simplified. These null func-
tions add very little to system overhead and complexity, and
their advantage far outweighs their cost.

The terminal's VM supports standard libraries and termi-
nal programs and applications, which are written in high-
level code for the virtual machine and are delivered as token
modules, which will run on any standard VM.

Libraries
OTA libraries contain higher-level functions that support

common features of terminal programs, such as language se-
lection, and common features of applications, such as PIN
verification. A terminal may contain several libraries, some
accessible to all applications, and some restricted to particu-
lar applications or payment systems. Libraries are written and
tokenized for the virtual machine, using functions provided
in the kernel, and therefore can be run on any terminal.

Terminal Program
A terminal program consists of the high-level personality

characteristic of this terminal type (POS, ATM, etc.). This in-
cludes the functions common to all transactions (e.g., card
initialization and language selection), as well as the user in-
terface required to select an application and process a trans-
action. The terminal program, at the highest level, is typi-
cally triggered by a card insertion. A terminal program is writ-
ten for the virtual machine and is supplied in token form. It
can, therefore, be run on any terminal of the appropriate type,
and is easily changed by downloading over a network at any
time. However, it frequently does incorporate platform-spe-
cific features, such as customized greeting messages, knowl-
edge of particular screen-management capabilities, etc. These
features are not included in the VM, as they may change on
a time-scale shorter than the design lifetime of the VM. For
example, a particular make of terminal may be used by a num-
ber of different merchants, each of which may request cus-
tomized user menus.

FigureTwo.Tokens may be generated from a variety of
source formats, downloaded to a terminal, and then
converted into executable code for that terminal by any of
several different methods.

Executable Code

I I I

Forth Dimensions XlW2 9

Applications
A terminal transaction will select an application as part of

its processing flow. Applications fall into three general areas:
stored value system (such as Europay's CLIP system, VISA
CASH, or Mondex), debit cards, and credit cards; applications
generally will vary in their method of processing a given trans-
action. Versions of these applications may be provided by
different payment systems and may be further customized
by individual issuers, acquirers, or even individual merchants
(such as large chains or department stores). Applications are
supplied in token form via the communications path and, if
security considerations permit, may be enhanced by token
programs on an ICC.

The Token Compiler and Token LoaderAnterpreter
Libraries, applications, and terminal programs are written

in high-level code for the virtual machine. The OTA develop-
ment system includes a special compiler for this virtual ma-
chine, whose output consists of tokens. Tokens may be
thought of as machine language instructions for the virtual
machine. Tokens are either one or two bytes in length, and
therefore represent the program in a form that is both CPU-
independent and extremely compact (far more so, for ex-
ample, than compressed source text).

Each OTA virtual machine contains a token interpreter
(TLI), which processes a stream of tokens into an executable
form. Once the kernel is installed in a terminal, the libraries,
applications, and terminal programs can be downloaded into
the terminal in a variety of ways (direct connection to an
OTA development host, acquirer network, modem and dial-
up telephone line, ICC, etc.). Program modifications and en-
tire new applications may be downloaded in the same man-
ner whenever needed. The VM implementation is designed
to be so general purpose in nature that a wide range of present
and future terminal programs and applications can be accom-
modated without modifications to the VM.

ICC Functions
One function of ICCs is to improve transaction security

by incorporating and managing encrypted
data and participating actively in the trans-

tactically valid. The terminal decides to allow or disallow the
card's proposed actions only as controlled by the terminal
access security functions.

Development Environments
An OTA development system is used to develop terminal

software, either low-level VM implementations or high-level
library or application software. Kernel development requires
a target terminal to be connected, as the kernel is cross-corn-
piled on the PC host and downloaded to the terminal across
the Interactive Development Link. OTA libraries, terminal pro-
grams, and applications are also developed on the PC host.
Because they are high-level code, they may also be executed
on the host for preliminary testing, using a PC version of the
standard kernel.

Since the requirements for developing and testing the VM
implementation and high-level token modules differ signifi-
cantly, two different tool chains have been developed: the
Kernel Development Kit (KDK) for terminal VM
implementors, and the Application Development Kit (ADK)
for token program developers.

VM implementation tools
The KDK consists of a Windows-based cross-compiler and

Interactive Development Environment (IDE), a test terminal
consisting of a CPU, keypad, LCD display, serial ports, and
memory sufficient to run a typical ICC application supplied
in token form as a demo, and a VM implementation for that
test terminal hardware (see Figure Three). Development soft-
ware on the PC is based on ProForth for Windows, a product
of MicroProcessor Engineering Ltd.

The VM implementation for the test terminal is supplied
in source form, with documentation intended to support a
developer porting this to a specific terminal of the same CPU
type. As many terminal vendors have previously developed
BIOS or OS functions (typically in C or assembler), a protocol
is included that facilitates the use of this software to provide
a defined set of functions (e.g., 110 functions) required by
the VM. The kit also includes a terminal test suite and demo

action-validation process. It is a natural fea-
ture of OTA t~ go beyond these functions FigureThree. A typical OTA development environment for a termina1.A small
and to ~rovide for I C C ~ that also contain program to support the terminal end of the Cross-Target Link (XTL) protocol is
program code to enhance a terminal's trans- included in the target during development. 1
action processing, thereby providing new
opportunities for payment products and
services. To facilitate this, a few sockets have
been provided that can be plugged by is-
suer-specific functions such as loyalty pro-
grams, which may be invoked at appropri-
ate points in the transaction processing.
Europay does not currently propose that
ICCs contain entire applications, but only
plug behaviors that enhance existing ter-
minal applications.

As far as security is concerned, the pre-
sumption is that if an ICC passes the
decryption and data authentication tests
performed by the terminal program, what-
ever functions and vlua behaviors are on

Can be
tokenuzed

Cannot be
token~zed

Terminal Target PC Host . L s

the card have been certified and are syn- I
10 Forth Dimensions XlW2

application for testing the VM as it develops. I Formal validation tools are still in development. I
Token module development tools

There are two major components to the Application De-
velopment Kit. These are the token compiler itself, and the
Token Interactive Debugging Environment (TIDE). The latter
is a standard VM implementation on a Windows platform,
with configuration options that enable it to simulate a wide
variety of potential target terminals. A developer may use this
platform to test token modules, regardless of the language in
which they were written. Token compilers are available for
Forth and C. The ADK also includes an optimizer, which per-
forms a variety of post-processing functions on token mod-
ules, that can reduce a module's size by on the order of 50%.
The result is a module that runs with no performance pen-
alty; indeed, it is usually significantly faster, since there are
fewer tokens to process.

Testing and validation tools
VM test suite development has progressed in parallel with

VM development, and test suites are presently delivered with
all KDKs. The VM test suite consists of a set of modules that
exercise individual tokens, checking each token's behavior
against expected results and producing a report summarizing
tests passed and failed (if any). The main test platform for
token modules is TIDE, although tools are also in develop-
ment to provide additional test facilities.

Project Status
The Open Terminal Architecture (OTA) is a complete sys-

tem for supporting ICC-based payment terminals of the fu-
ture. Its design incorporates features that will facilitate de-
velopment and certification of a new, standardized kernel for
all payment terminals; will support development and certifi-
cation of platform-independent libraries and terminal pro-
grams; and will enable code on the ICCs themselves to pro-
vide enhanced payment products for issuers.

Extensive effort has been directed toward seeing that both
code and procedures are included to ensure program security
and integrity. A complete set of development tools is avail-
able through Europay to support not only Forth, the language
upon which OTA is based, but also C. Reference kernels, li-
braries, and applications are also available.

Elizabeth D.Rather was the world's second Forth programmer.
She is President of FORTH, Inc.,and a member of the Board of
Directors of the Forth Interest Group.

Stephen Pelc's company, Microprocessor Engineering Ltd., has
been selling Forth-based hardware and software since the
early 1980s.

Peter Johannes has been the project manager for the Open
Terminal Architecture since its inception in 1994.

Backaround:

Payment Systems in Europe conflicts. In addition, payment systems also typically pro-
vide network and security services.

Forth Dimensions XlXl2 11

Banking-based payment systems in Europe are organized
nationally for domestic banking products, and internationally
to facilitate international consumer payments. Looking at a
typical payment transaction, the parties involved are the mer-

An IC card (or ICC) is an active device that stores data in
such a way that it can prove their authenticity. It is also ca-
pable of generating authenticity certificates for transactions.

chant, the acquiring bank, the pay- This means that a point-of-sale
ment system, and the issuer. Each terminal now has to deal with an
of these is a distinct role, although International clearing for active device that performs com-

billing and payment
it need not be played by a different plex operations. The terminal
physical or corporate entity. software must behave correctly,

Issuers provide consumers with whichever ICC is used.
banking products, in this context Current ICCs carry about 200
as debit, credit, or stored-value times the amount of information
cards. These cards can still be that can be present on the
embossed only (for paper-based magstripe cards. This amount is
transactions), with magnetic expected to increase as ICCs get
stripe (today's state-of-the-art) or Bills loaded with more services. The
with an IC. IC cards are currently pays merchant drawback is that terminal programs
used widely only in France, al- become more complex and bigger.
though pilot projects are under Cardholder Merchant Terminals typically download their
way in several other countries. software from a server via a 1200-
Acquirers hold the commercial relationship with the mer-
chant. They acquire the transactions, meaning they pay
the merchant for the goods and route the transactions to
wherever the consumer's account is.
Merchants accept cards, and provide goods to the
cardholder. Merchants are more and more convinced of the
necessity to migrate toward electronic payment services
(e.g., magstripe or ICC).
Payment systems such as Europay have two primary roles:
to provide specifications (and associated certification) for
international payment products, and to arbitrate member

baud communication link. The cost of this management and
download is becoming prohibitive, especially in Europe.

Many existing ICC-based payment systems are "closed"
(proprietary) systems. This means it is very hard to introduce
new applications without getting the consent of all the par-
ties involved. Even then, extensive changes to the software
on every terminal are required, and the terminals must be re-
certified. With OTA, Europay is attempting to provide an open
system, capable of handling multiple ICC products, card types,
and systems on a single terminal with minimal changes.

-P. Johannes, Europay International

I A Simple implementation of the Kermit Protocol in Pygmy Forth

Kermit in Pygmy
scr # 13000

KERMIT.SCR
Contains a simple implementation of the Kermit
file transfer protocol.

copyright 1997 Frank Sergeant pygmy@pobox.com
809 W. San Antonio St.
San Marcos, TX 78666

This source code is not Public Domain or Shareware.
You may use it freely for any private or commercial purpose
provided you do so at your own risk.

scr # 13001
(load screen Kermit file transfer protocol)

For the algorithm, see pp 98-113 of

- C Programmer's Guide to Serial Communications-
by Joe Campbell, Howard W. S'ims & Company, 1987,
ISBN 0-672-22584-0.

Note, there are some errors in Campbell's examples.

scr # 13002
(KERMIT)

GET-Y/N Wait for the user to press a y, n, Y, or N key
Return true if y or Y. Return false if n or N

TRY-AGAIN?
Display a message and ask whether the user wants
to try again. E.g.
" Drive not ready" TRY-AGAIN? IF . . . THEN

.MSG clears the top 2 lines of the screen and displays a
message, leaving the cursor positioned just past the
message. E.g. " Starting the transfer . . ." .MSG

scr # 13003
(KERMIT)
MYMAXL maximum "len" we are willing to handle.

The transmitted LEN field includes SEQ, TYPE, DATA, CKSUM
fields. 94 maximum allowed under basic Kermit. Our
buffers must be 1 byte longer to hold the LEN field also.

OUT-BUF & IN-BUF buffers for building outgoing or receiving

Frank Sergeant
pygmy@pobox.com

file KERMIT. SCR
scr # 12000
KERMIT.SCR
Contains a simple implementation of the Kermit
file transfer protocol.

copyright 1997 Frank Sergeant pygmy@pobox.com
809 W. San Antonio St.
San Marcos, TX 78666

This source code is not Public Domain or Shareware.
You may use it freely for any private or commercial purpose
provided you do so at your own risk.

scr # 12001
(load screen Kermit file transfer protocol)

" * * * Simple Kermit file transfer protocol Copyright (c) 1997
Frank Sergeant (pygmy@pobox. com) * * * " DROP

12002 12024 THRU

scr # 12002
(KERMIT - user interface)

: GET-Y/N (- f)
BEGIN KEY DUP 'Y = OVER 'y = OR IF DROP -1 EXIT THEN

DUP 'N = SWAP 'n = OR IF 0 EXIT THEN BEEP
AGAIN ;

: TRY-AGAIN? (a - f)
CR COUNT TYPE CR ." Try again? (Y/N) "
GET-Y/N (f) ;

: .MSG (a -) 0 0 AT 160 SPACES 0 0 AT COUNT TYPE ;

scr # 12003
(KERMIT)
1 CONSTANT SOH
VARIABLE SEQ SEQ OFF
: BUMPSEQ (-1 SEQ @ 1+ 63 AND SEQ ! ;

94 (3 5) CONSTANT MYMAXL (fields SEQ TYPE DATA & CKSUM)

incoming frames. We store LEN, SEQ, TYPE, DATA, CKSUM
fields, but not the SOH nor the ending CR.

OUTLEN & INLEN count bytes currently in the buffers
MAXL holds agreed-upon maximum "len" value, which is

the MIN of receiver's and sender's preferences.

a "character-ized" number is produced by adding a "space." The
result must be <= $7E, thus the original number must be
<= $5E (ie 94 decimal).

scr # 13004
(KERMIT)

MAXL, QCTL, etc are the agreed-upon protocol parameters for
the session. INIT-LIMITS initializes these to the values
we would prefer to use. The sender and receiver exchange
an S-frame and an ACK-frame listing their preferences. We
then compromise by taking the MIN between them.

scr # 13005
(KERMIT)

We make >LEN, >TYPE, etc relative to the start of the buffer
so we can use the same definitions for both the receiving and
sending buffers. >CKSUM assumes the LEN byte has been
initialized.

scr # 13006
(KERMIT - compromise on the parameters)

COMPROMISE assumes we have an S frame in one buffer and its
ACK frame in the other buffer. We don't care whether we are
the sender or receiver. The compromise takes the more
conservative setting from each buffer as the actual protocol
parameter to use.

For now, we will ignore all the settings except for MAXL and
TIMEOUT, taking the MIN of MAXL and the MAX of TIMEOUT.

CREATE OUT-BUF MYMAXL (1+) 2 + ALLOT VARIABLE OUTLEN
CREATE IN-BUF MYMAXL (1+) 2 + ALLOT VARIABLE INLEN

: ?NUM-OK (n -) $5E > ABORT" too big" ;

: CHAR (n - c) DUP ?NUM-OK (n) $20 + ;

: UNCHAR (c - n) $20 - (n) DUP ?NUM-OK ;

scr 1 12004
(KERMIT - protocol parameters)
VARIABLE MAXL
VARIABLE QCTL
VARIABLE NPAD
VARIABLE PADC
VARIABLE EOLC
VARIABLE TIMEOUT

: INIT-LIMITS (- 1
MYMAXL MAXL ! (maximum " len" value)

' # QCTL ! (control code escape character)
0 NPAD ! (number of pad characters)
0 PADC ! (pad character)

$OD EOLC ! (end of line character)
4 TIMEOUT ! (timeout in seconds) ; INIT-LIMITS

scr # 12005
(KERMIT - address of fields in buffers)
: FIELD: (offset -) (buff - a) CREATE C, DOES> C@ + ;

0 FIELD: >LEN
1 FIELD: >SEQ
2 FIELD: >TYPE
3 FIELD: >DATA
: >CKSUM (buff - a) >LEN DUP C@ UNCHAR + ;

3 FIELD: >MAXL
4 FIELD: >TIME
5 FIELD: >NPAD
6 FIELD: >PADC
7 FIELD: >EOLC
8 FIELD: >QCTL

scr # 12006
(KERMIT - compromise on the parameters)

: COMPROMISE (-)

OUT-BUF IN-BUF (a a)
OVER >MAXL C@ UNCHAR OVER >MAXL C@ UNCHAR

MIN MAXL ! (a a)
OVER >TIME C@ UNCHAR OVER >TIME C@ UNCHAR

MAX TIMEOUT ! (a a) 2DROP ;

scr # 13007
MYMENU c h e a p e r r o r h a n d l i n g i n t h e c a s e where t h e u s e r

c h o o s e s t o a b o r t t h e f i l e t r a n s f e r p r o c e s s . S e t up
y o u r own menu (' MYREALMENU I S MYMENU) o r a l l o w t h e
d e f a u l t ' no v e c t o r ' e r r o r t o o c c u r .

KSER-IN g e t s a s e r i a l c h a r a c t e r a n d t e s t s w h e t h e r it i s SOH,
a l l t h e w h i l e c h e c k i n g f o r a t i m e - o u t . R e t u r n s
c h a r a c t e r and SOH-flag (t r u e i f c h a r a c t e r i s SOH).
I n c a s e o f t i m e o u t , r e t u r n up a n e x t r a l e v e l ,
p u t t i n g a 'V on t h e s t a c k a s t h e dummy f rame t y p e
i n d i c a t i n g a t i m e o u t f o l l o w e d b y a t r u e f l a g
i n d i c a t i n g a ' g o o d ' c h e c k sum.
Note , KSER-IN i s o n l y c a l l e d by GETFRAME and s o i s
a lways c a l l e d w i t h t h e c o r r e c t s t a c k d e p t h . To t e s t
i t s t a n d a l o n e , n e s t i t o n c e i n a t e s t word, a s shown
i n TEST-IN.

scr # 13008
(KERMIT)

We " c o n t r o l i f y " a c o n t r o l code (0 -$ IF , $7F) b y f l i p p i n g b i t 6
and p r e c e d i n g it w i t h t h e QCTL c h a r a c t e r (u s u a l l y ' #) . The
QCTL c h a r a c t e r i t s e l f i s e s c a p e d . W e c o u n t QCTL a s a c o n t r o l
c h a r a c t e r i n CTRL? s o we can e s c a p e it, b u t we o n l y f l i p b i t
6 f o r a c t u a l c o n t r o l c h a r a c t e r s . A l s o , c o n s i d e r $7E (-) t o
b e a c o n t r o l c h a r a c t e r , a s i t i s u s e d f o r r e p e a t c o u n t s

I

(KEMIT p u t s a c h a r a c t e r i n t o OUT-BUF and i n c r e m e n t s t h e c o u n t
KEMIT w r i t e s a c h a r a c t e r i n t o OUT-BUF, e s c a p i n g i t i f n e c e s s a r y .
ROOM? s a y s w h e t h e r t h e r e i s room i n t h e b u f f e r f o r a n o t h e r

c h a r a c t e r . We r e q u i r e 2 b y t e s a v a i l a b l e i n c a s e t h e
n e x t c h a r a c t e r needs t o b e e s c a p e d . I f we a l l o w e d
h i g h - b i t e s c p a p i n g we would r e q u i r e 3 b y t e s i n s t e a d .

scr # 13009
(KERMIT)
CK%% c o n v e r t s t h e raw checksum o f a l l t h e b y t e s

a f t e r SOH i n t o a checksum c h a r a c t e r by wrapp ing
a n d c h a r a c t e r - i z i n g i t a c c o r d i n g t o t h e KERMIT a l g o r i t h m .

CKSUM c a l c u l a t e s a checksum on a b u f f e r by a d d i n g t h e b y t e s
i n t h e LEN SEQ TYPE & DATA f i e l d s a n d a p p l y i n g CK%%.
The LEN f i e l d must i n c l u d e t h e cksum b y t e .

CKSUM? C a l c u l a t e t h e checksum c h a r a c t e r f o r t h e i n p u t f r ame
and compare it t o t h e t r a n s m i t t e d checksum c h a r a c t e r
R e t u r n t r u e i f t h e checksum i s good .

scr # 13010

MODEM! s e n d s a c h a r a c t e r t o t h e modem. W e d e f e r i t t o make
t e s t i n g e a s y .

DATA! b u i l d s an e n t i r e d a t a f i e l d , s t o p p i n g e i t h e r when o u t
o f s o u r c e c h a r a c t e r s o r o u t o f room i n OUT-BUF.

scr # 12007
DEFER MYMENU
: KSER-IN (- c f)

TIMEOUT @ 1000 * (m s)
BEGIN KEY? I F KEY DROP CR

." A b o r t f i l e t r a n s f e r (Y/N)? " GET-Y/N CR
I F ." T r a n s f e r a b o r t e d -- p r e s s "

." a n y key t o r e t u r n t o menu"
KEY DROP MYMENU

ELSE ." T r a n s f e r c o n t i n u i n g "
THEN THEN

SER-IN? I F (m s) DROP SER-IN DUP SOH = (c f) EXIT THEN
(m s) 1- DUP O= I F POP 2DROP 'V -1 EXIT THEN 1 MS

AGAIN ;

: TEST-IN (- c f) KSER-IN ;

scr # 12008
(KERMIT)

: CTRL (c - c ')
DUP QCTL @ = OVER ' - = OR I F EXIT THEN $40 XOR ;

: CTRL? (c - f)
DUP $20 < OVER QCTL @ = OR OVER $7E = OR SWAP $7F = OR ;

: (KEMIT (c -) OUT-BUF OUTLEN @ + C! () 1 OUTLEN +! ;

: KEMIT (C -) PAUSE (j u s t i n c a s e)
(C) DUP CTRL? I F QCTL @ (KEMIT CTRL (C) THEN (KEMIT ;

: ROOM? (- u) MAXL @ 1- OUTLEN @ > ;

scr # 12009
(KERMIT)

: CK%% (u - c)
DUP $CO AND 2 / 2 / 2 / 2 / 2 / 2 1 + $3F AND CHAR ;

: CKSUM (b u f f e r - c) >LEN DUP C@ UNCHAR (a #) 0 ROT ROT
FOR (sum a) C @ + +UNDER NEXT DROP CK%% (c) ;

: CKSUM? (- f)
IN-BUF CKSUM (C) IN-BUF >CKSUM C@ (c c) = ;

scr # 12010

DEFER MODEM!
(' EMIT) ' SER-OUT I S MODEM!

: DATA! (a # - a ' # ') SWAP (# a)
BEGIN (# a) OVER O= ROOM? O= OR (i e o u t o f s o u r c e o r room)

(a #) ;
BUILD-FRAME Given the address and length of data to be

transferred and the type of the frame, put as much of
the data as will fit into a frame and return the address
and length of the remaining (i.e. unsent) data.

scr # 13011
(KERMIT - debugging aids)

.FRAME .INB .OUTB are used for testing to dump the contents
U. R

of the buffers to the screen.

TEST1 TEST2 provide some test data

.FRAME THEN ;

' scr # 13012
(KERMIT)

SENDFRAME sends an entire header, from SOH through 1-byte
UNCHAR 1+

checksum and ending carriage return, to the "modem."
It sends SOH, sends LEN+1 characters in the OUT-BUF,
and then sends a carriage return.

scr # 13013
(KERMIT)

LIMITS provides data for use in building either an S-frame
or its ACK frame for purposes of negotiating
the protocol as to maximum frame length, etc.

work)
Note that PADC is controlified, but seems not to
be "escaped" -- after all, we haven't agreed upon
the escape character at the time of sending the
S-frame. We build this frame directly into OUT-BUF
to prevent DATA! from escaping any characters.
We say we'll use (- 1 as the repeat character, but we
will -not- use repeat counts when we transmit, but we

- will- handle them when we receive. If the sender does
not escape actual tildes, then we will have a problem.

NOT WHILE (# a) C@+ KEMIT -1 +UNDER REPEAT SWAP

: BUILD-FRAME (a # type - a' # ') OUTLEN OFF
0 (ie dummy len) CHAR (KEMIT SEQ @ CHAR (KEMIT
(KEMIT (a #) DATA! (a' # ')

OUTLEN @ CHAR OUT-BUF >LEN C! (a #)

OUT-BUF CKSUM OUT-BUF >CKSUM C! (a #)

scr # 12011
(KERMIT - debugging aids)

: .FRAME (buf -) ." len = " C@+ UNCHAR DUP PUSH 2

." seq = " C@+ UNCHAR 2 U.R SPACE SPACE

." myseq = " SEQ @ 2 U.R SPACE SPACE
POP1-TYPE CR ;

: .INB (type -) .S 3 SPACES
' V = IF ." V-frame " CR ELSE ." IN: " IN-BUF

: .OUTB (-) .S 3 SPACES ." OUT: " OUT-BUF .FRAME ;

" WHAT DOES THE SYMBOL # STAND FOR?" CONSTANT TEST1

" as much labor for the study of its" CONSTANT TEST2

scr # 12012
(KERMIT)

: SENDFRAME (-) SOH MODEM! OUT-BUF >LEN DUP C@

FOR (a) C@+ MODEM! NEXT DROP () $OD MODEM! ;

scr # 12013
(KERMIT)
: LIMITS (type -)

SEQ OFF PUSH
I (the repeat char)

'1 (1-byte chksum, either '1 or 1 CHAR seems to

'N (no hi-bit prefix)
QCTL @ EOLC @ CHAR PADC @ CTRL
NPAD @ CHAR TIMEOUT @ CHAR MAXL @ CHAR POP
SEQ @ CHAR 12 (len) CHAR
OUT-BUF 12 FOR DUP PUSH C! POP 1+ NEXT DROP ()

OUT-BUF CKSUM OUT-BUF >CKSUM C! ;

(KERMIT) I scr # 13017

GOOD-SEQ? true if the input frame's sequence number is the
expected sequence number.

-

0

3
s.
0
3 V)

x

scr # 13018
(KERMIT)

GET-GOOD-FRAME continues to try to get a frame until one
arrives with a good checksum. It will try
forever unless the user aborts the transfer.
(See KSER-IN for test for user abort.)

IN-SEQ sequence number of the frame in the input buffer

(GETACK keeps getting frames until one comes in with a good
checksum. V-frames are ok.

GETACK keeps getting ack frames, handling or ignoring each, as
appropriate. It re-sends the data frame in case of a
V-frame (timeout) or a NAK with the correct sequence
number. It is used only by the sender. Later, it
could bail out if too many NAKs or timeouts occur in a
row, etc.

READ load up the buffer from the file in preparation for
transmitting it via the serial port

scr # 13019
(KERMIT)

GET-FIRST-NAK ignores timeouts and sequence numbers and waits
for a NAK from the receiver.

SEND wait for the prompting NAK frame from receiver
send S-frame (ie KINIT)
reset serial in to throw away any extra prompting NAKs
get S-frame ACK for SEQ 0
send the entire file, one D-frame at a time
close the file
send end of file and end of transmission

scr # 13020
(KERMIT)

scr # 12017
(KERMIT)

: GET-GOOD-FRAME (- type)
BEGIN GETFRAME (type cksumflag) NOT WHILE

." bad cksum " DROP REPEAT ;

d

u

: IN-SEQ (- U) IN-BUF >SEQ C@ UNCHAR ;

: GOOD-SEQ? (- f) IN-SEQ SEQ @ = ;

IN-DATA is a buffer for holding the UNCTRL'd data field. Make
it big in case lots of repeat counts are present.

C!+ stores a character and bumps the address (similar to C@+)

scr # 12018
(KERMIT)
: (GETACK (- type)
BEGIN GETFRAME (type f) NOT WHILE DROP REPEAT (type) ;

: GETACK (-)

BEGIN (GETACK (type)
'Y OF GOOD-SEQ? (f) DUP IF BUMPSEQ THEN (f) ELSE
'N OF GOOD-SEQ? IF SENDFRAME THEN 0 ELSE
'V OF SENDFRAME 0 ELSE
(default) DROP 0 [3 I THENS (f)

UNTIL ;

: READ (h - a #) PUSH 32767 BUFFER (ie dummy buffer)
DUP 1024 POP FILE-READ #BYTES-READ @ ;

scr # 12019
(KERMIT)

: GET-FIRST-NAK (-) BEGIN (GETACK 'N = UNTIL ;

: SEND (name -) CLS " Waiting to send " .MSG INIT-LIMITS
DUP FOPEN IF CR ." cannot open input file" CR EXIT THEN
(name h) 1000 MS (name h) GET-FIRST-NAK
(n h) KINIT RESET-SER-IN GETACK
COMPROMISE SWAP COUNT (h a #) FILEHEADER (h) GETACK
BEGIN (h) DUP READ DUP WHILE (h a #)

BEGIN 'D BUILD-FRAME SENDFRAME GETACK ' . EMIT
DUP O= UNTIL 2DROP

REPEAT 2DROP (h) FCLOSE () EMPTY-BUFFERS (just in case)
EOF GETACK EOT GETACK ;

scr # 12020
(KERMIT)

CREATE IN-DATA MYMAXL 3 / 94 * 2 + ALLOT

: C!+ (c a - a+) DUP PUSH C! POP 1+ ;

: C@+- (fr # - fr # C) 1- PUSH C@+ POP SWAP ;

W -. U
A

W n.
c-7 V)
n
Z W
A 14 m >
X h - H
s z

3

- - g
W .

a, W
C . + X

A
- w z

a
W U X
X 7
A a u
E % 2

0 .
W
X e .
4 m z a a ,
h 0 4
x .4

+J W - 0
I c m

W C C
- X m . 4
W g U 2
z h - a,
A O L U
Z d & a ,
3 H O U
u 3 m
a m 4 :

14
3
n

X
4 01 - Z W

W LO
II w I

a, Z
a 3 O H
h - W
U V) -

- 1 4 0
a , - 3 - a
a o m s ,
x w a u
U 2 ~ 2 -
(& a

h h - W Z
m - H + J r o w
N W L i l x
0 - h w - H W H
N H X
d H W Z h

X Z H H
* a H w

W W W
& x u a

3 ii
o n . $4
U m i l - & .4 H

rl g - a

m d ;
Ti U * (U
U . X W
m a , a, - W
U u C a 7
. A C m a
aa ,a ,u
C 7 s m C
.4 W U a, 0

a, a .a
. w c m ~ - m u m
1 0 s c

- m o a , . 4
a, a 0

m a a m
a m c o a l
4 u m o - a
.4
c l u u m o

U C 7 U
m u 7 4 C
c u o m +
U m U >

u)-I
m m a , m m
m s s x o
3 U U U U

m
ucp m a u
a, m c m
u . 4 C
U 0 U W U
m a,
u m c 1 o a
m u ~ a ,
~ m m c1
u u - m

w m a a,
U 0 s m a
c u a m
m t n m u
U C U U
m . 4 x m c l
u c m m m

C C C
U .4 W U
m m m . 2
o m s a
E a u c

0 1 m
m m c l a
C C m u X
€ 4 u w o m

a

m .4

5 0 "
u m m
W C
I u U
a a,

W a ,
C W U
m 7 m

a a,
0 u
U W U

X
U A C
m z m
C h C
O X U
a
m a , .
a ,C m
L l U C

.4
c c u
.4 4 U

(0

0 a,

5 . : .

a,
a
U
m
a , .

U
4 Ti

h
U m
o a
a, u
C m
U a,

C
m 3

0 . . a , a h
m u a m
C c 1 3
Ti m u m
U 3 m

a 3
m u x o
a m m u
X R G
m E m u

m 2 " .
LI U

U
a , + J c m
a.-I m a ,

u
o m a u
Q m C

u m u
m o o
4 0 W

II.
.4 m m
'+l C L O

a .4 0
w c u a
o m 0

m 0
m a u

5 5 ; m
c u u c

W c .d
m 7 m
U h o m
u o m
m u a
u 7 m
~a u
x c m o

N m . 4 m u
N
0 W
m - X
d H a:

Z *z k
& W t]
0 % H

ln - 3
m

.A 5
W o c 1

U U
m m
c 1 .
m w u
a u .4

m m
m c 1 c - U U
h m

a,
a m
0 c
L- .4

a
a c
c m .
m a u

X a,
a a) W
a, W
a a 9
m c a
u m
m C
m m o

C -4
m .4 0
c a m
c l m c

U
h m U
a o m
o c m
u 7 a

-
3 7

m e .
m s a , 5 " 0 ' '

a, c
u . s 10.4
W m U c1

c1 Ti a, C
U m 3 s 0
X . 4 U U
m u x
C ~ U U O

o m - u
m u c
c a w w u
u a h a a,

m m 3 - 0
c 1 3 C

m m m - i c l a ,
2 w m A . 4 m

I I

18 Forth Dimensions XIXI2

X
U 01

x W
a 4 (I)
m z !2

& D
o m .: 0 Lr:

w a
w - r n z
V) W W H
c-l x 4 4
W H H W

x D,
5 W

Lr:

-
0

tnrn w
C H l
Ti u B
U Z W
4 H w
m 4
5 1

H rn
: H Z

E 0
rn 0
4 0
U ri - Z
I H Z

1 4
- 6 2

W
w r n o
Z A Z
W W H
u r n w
W W W
L r : a m

'44 U 3
. 4 c c

a, 7 X - C m
U U 0 - 4
a - a

x tEI u r n .
X 7 4 m o
W m m u

X . O U O
u u L) a

. @ a , c
t5-2 g'" ",
a 7 c ..A

5 : C a 2 2
C L) a , d - 4 U]

o l a
f f m c o a,
a, W C O C
m ' 4 4 7 m u u

. 4 ff
a m a , c r m
c u u m E . 4 c
0 0 m - 4
u a u c u
a , - 0 ' 4 4 a , - 4
a U U I U >
X Z l U P U L !
a , o a , . r i a ,

a, a m u m
W E X 3
C - d a , a , n
U U d a , U

u a >.rl
a, a, 3 - 4 m 3 >.z 0 m a

m a,
C a o a l u

a I c l a 3 a)
U 6 .d '44
o m 3 m u u
c . 4 a , a ,

'4455 U U
0 l 4 * W c
a s z ~ m . 4

Win32Forth 3.5 has been released to the community, and is avail-
able on the Forth Interest Group compilers page at:
ftp://ftp.taygeta.com/pub/Forth/Win32For/w32for35.exe

The Forth Interest Group's home page is located at:
http://www.forth.org/fig.html

The primary changes to Win32Forth include enhancements to the
WinView editor that allow editing multiple files at the same time,
and a more intelligent screen-refresh algorithm. The class library has
been generalized, and now supports more control classes.

Be sure to get the latest update file numbered like 32UPDTxx.EXEI
where xx is a number 01,02, etc. Intermediate update files will not be
needed, each successive update will include all the previous updates.

3.5 will be the last public-domain release of Win32Forth, making
this the basis for future user work. Bug fixes and minor revisions will
be released periodically, in the form of an update to the base system.

I would like to give special thanks to all the industrious Forthers
who have contributed bug reports, fixes, and examples to this project.

-Tom Zimrner

Pygmy 1.5 is now on my web site for your downloading convenience.
Get the file pygmylS.zip on my Forth page at:
http://www.eskimo.com/-pygmy

Version 1.5 has minor typo and documentation clean-ups, plus
multitasking and the ability to be embedded in a C wrapper in order to
access C library routines, give C access to Forth routines, an imple-
mentation of the Kermit file-transfer protocol, etc.

I have updated the bonus disk, too, available only via uuencoded e-
mail. Previous bonus disk customers, please e-mail me your preferred
e-mail address, and I'll send the updated bonus disk free. (Potential bo-
nus disk customers, see details in the pygmyl5.zip file.) The bonus
disk now includes the updated 68HC11 (cross) assembler and updated
serial port routines, both interrupt-driven and multitasked polling.

If anyone does not have web access to get pygmyl5.zipI e-mail
me and I will be glad to send it as uuencoded e-mail.

My 3-instruction Forth" for the 68HC11 is now on my Forth
web page). It includes the original article from the 1991 FORML
Conference Proceedings, with variants of the code customized for
several different versions of the 68HCll (i.e., 'El, 'Al, 'DO).

The article describes how to use a single-board computer with Forth
on a host computer. Examples include code for Pygmy on the PC
and a minimal "3-instruction Forth" monitor downloaded to the
68HCl11s RAM. For development, this gives nearly the full conve-
nience of a full Forth on the target, but using somewhere between 32
bytes (the smallest I have used) to 66 bytes of RAM on the 68HCll.

This may be of use even to those who do not use Forth to develop
for the ' h ~ 1 1 , as it provides a convenient wrapper for writing, run-
ning, and testing assembly language routines on the 'HC11. The pack-
age is freely distributable and usable, under the condition that I bear
no responsibility for any damages due to its use or misuse.

The Bare Bones EPROM Programmer materials are also on my
web site. This includes the executable file, the schematic and printed
circuit board artwork (as .bmp files), and instructions for building
and using the programmer. It doesn't include source. The program-
mer uses the MC68HCllDOP and the 4049 or 74HC4049, and is con-
trolled from a PC serial link. The programmer only programs 2kx8,
8kx8, 16kx8, and 32kx8 EPROMs (and probably EEPROMs). I am
making this old project available for "historical" interest.

-Frank Sergeant pygmy@pobox.com

Forth Dimensions XiW2

A linked list is a list (i.e., sequence) of cells, called nodes,
such that each node somehow contains the address of the
next node. The address of the first node of the list is con-
tained in a cell, the head of the list. The last node contains a
programmer-chosen value to indicate the end of the list. This
value is usually zero, and that's what we'll use here.

When the list is empty, the head contains the zero.
The nodes themselves don't contain any information.

Information is associated by a programmer-chosen conven-

[See Figure Three.]
STRING is from Starting Forth. [See Figure Four.]
To remove information from a list, remove its node.
Sometimes we'll want to remove a whole bunch of infor-

mation that was recently added. We do this by removing all
nodes within a range of addresses. Use DUP CELL+ as the range
to remove a single node.

Space is not recovered by this. That must be done some
other way. [See Figure Five.] Continued on page 27

tion to be physically near its node.
The information could be anything: a number, an

execution token, a string, a node or head of another -.
list, or whatever. More than one item of information
may be associated with a node.

In the applications that interest us now, the pri-
mary information will be kept just after the node, and
will be a counted string. Use CELL+ to go from a node

use node@. To set the contents of a node, use node ! .
These can be defined:

: node@ @ ;

~i~~~~ one
: link-node (node list --)

OVER O=
ABORT" link-node: Mustn't link NIL node. "
2DUP node@ SWAP node! node!

-
to its information.

To get the address of the next node from a node,

I

FigureTwo

: append-node (node list --)
BEGIN DUP node@ WHILE node@ REPEAT node!

: node! ! ; I
We use node@ and node ! so we can change the

definition if we want.
To create a new list, we define its head.

: LIST: ("<spaces>name" --)

CREATE 0 , ;
(name Execution: -- node)

;

To create a new node, which will be put in a list:
: New-Node (-- node)

ALIGN HERE 0 , ;

Information should go into dataspace just after the
new node.

To put a node, new or old, into a list [see Figure
One]. This puts the node at the beginning of the list.
To put a node at the end of the list [see Figure Two].

Any node in a list can be considered to be the head
of a list. So to put a node after a node in a list, also use
link-node.

All nodes in a list should be unique. We'll ensure
this by only putting newly created nodes in a list, or
moving a node from one list to another.

Information doesn't have to be unique, but gen-
erally will be.

Figure Three

(Create a list)

LIST: A-List

(A-List --> 0)

(Put "Larry" on the list.)

New-Node A-List link-node ," Larry"
(A-List --> Larry --> 0)

New-Node A-List link-node ," Curly"

(A-List --> Curly --> Larry --> 0)

A-List node@ New-Node SWAP link-node ," Moe"
i

(A-List --> Curly --> Moe --> Larry --> 0)

Figure Four

: PLACE (caddr len addr --)

2DUP 2>R CHAR+ SWAP CHARS MOVE 2R> C! ;

: STRING (char "ccc<char>" --)

WORD COUNT HERE OVER 1+ ALLOT PLACE ;

: ," [CHAR] " STRING ;

20 Forth Dimensions XlW2

(c u l l - n o d e s Remove n o d e s t h a t a r e w i t h i n a r a n g e .)

: cull-nodes 3 needed (l o w e r u p p e r l i s t --)

ROT ROT 2>R (n o d e) (R: l o w e r u p p e r)

BEGIN (n o d e)
DUP node@ ? DUP

WHILE
DUP 2R@ WITHIN IF

node@ OVER node!
ELSE

NIP
THEN

RE PEAT DROP
2 D 2DROP

I

Figure Six

: .text (caddr len --) TYPE SPACE ;
: ?text (addr --) ?DUP IF COUNT .text THEN ;
: BEGINS-WITH (a1 ul a2 u2 -- a1 ul flag) DUP >R 20VER R> MIN
COMPARE O= ;

I Figure Seven

I : items (list --) ITEM, (item) ?text () ITERATE ;

Figure Eight

I : #items (list -- n) 0 SWAP ITEM> DROP 1+ ITERATE ;

Figure Nine

: : Some-List ITEM>
COUNT S" ANS" BEGINS-WITH IF .text ELSE 2DROP THEN

ITERATE ; ;

Figure Ten

(i t e m - s e a r c h)

: ?node? (f l a g n o d e -- n o d e 0 I n o d e < n o d e ' I 0 0)

SWAP IF
FALSE (n o d e 0)

ELSE
node@ DUP (n o d e ' n o d e ' I 0 0)

THEN
r

MACRO ITEM> 'I >R FALSE BEGIN D ?node? WHILE DUP >R CELL+ "

MACRO ITERATE " FALSE REPEAT DROP "

Forth Dimensions XlW2 21

Standard Forth provides a basic pattern for the general
problem of searching. [Figure One]

When components are empty, O= WHILE REPEAT can be
replaced by UNTIL, and ELSE THEN by THEN.

Bywriting test-for-more and test-for-match appro-
priately, the Search Paradigm can be written. [Figure Two]

This can be made strictly structured. [Figure Three]
Now make a simple definition and macro. [Figure Four]

See "Tool Belt #2" in this issue for MACRO.
This special instance of the Search Paradigm can now be

written:
SPECIAL-SEARCH test-for-match? REPEAT
IF what-to-do-if-found.
ELSE what-to-do-if-not-found.
THEN

If you don't do anything special for found/notfound, you
can write:
SPECIAL-SEARCH test-for-match? REPEAT DROP

If tes t-for-match is not really a test but an action, you
want to do on every element:
SPECIAL-SEARCH do-it. FALSE REPEAT DROP

This is so common, another macro is appropriate.
MACRO ITERATE " FALSE REPEAT DROP "
SPECIAL-SEARCH do-it. ITERATE

Example. Searching a file. [Figure Five]
Now we can write:
: LISTING (--) LINES> TYPE CR ITERATE ;

Or use nonce words:
(List the file.)

: : LINES> TYPE CR ITERATE ;;

(Count lines.)

0 : : LINES> 2DROP 1t ITERATE ;; U.

(List comments.)

: BEGINS-WITH (a1 kl a2 n2 -- a1 kl flag).

DUP >R 20VER FD MIN S=
r

: : LINES>
S" (" BEGINS-WITH IF

TYPE CR
ELSE 2DROP THEN

ITERATE ; ;

(Helpful definitions.)
: .LINE TYPE CR ;

MACRO ? ? " IF \ THEN "

(Simple FGREP)
:: LINES>

St' pattern" SEARCH ? DUP AND ? DUP ?? .LINE
ITERATE ; ;

(That just prints the rest of the line. For the whole line:)
: : LINES> 2DUP S" pattern" SEARCH NIP NIP

? DUP AND ? DUP ? ? .LINE ITERATE ; ;

Let's capture that in another definition.
: ? MATCH (a1 ul a2 u2 --)

2>R 2DUP 2FD SEARCH NIP NIP
? DUP AND ? DUP ? ? .LINE

: : LINES> St' pattern" ?MATCH ITERATE ;;

In a long printout, you may want to pause, or terminate pre-
maturely.
MACRO FAILURE I' FALSE EXIT "
MACRO SUCCESS " TRUE EXIT "

: QUIT? (-- flag)

(If you haven't hit a key,)

(return FALSE immediately.)
KEY? O= ? ? FAILURE

(If you hit a key other than)

(the space bar, return TRUE.)

KEY BL = NOT ? ? SUCCESS
(Otherwise, pause and return)

(FALSE when you hit any key.)

KEY DROP
FA1 LURE

r

It's used in ? ITERATE, an alternative to ITERATE:
MACRO ? ITERATE " QUIT? REPEAT DROP I'

('LISTING' redefined.)

: LISTING LINES) .line ?ITERATE ;

22 Forth Dimensions XlW2

FORTH INTEREST GROUP
MAIL ORDER FORM
HOW T 8 ORDER: Complete form on back page and send with payment to the Forth Interest Group. All items
have one price. Enter price on order form and calculate shipping & handling based on location and total.

Avolume consists of the six issues from the volume year (May-April).

Volume 1 Fortlt Dimensions (1979-80) 101 - $35

Introduction to FIG, threaded code, TO variables, fig-Forth.

Volume 6 Forth Dimensions (1984-85) 106 - $35

Interactive editors, anonymous variables, list handling, integer
solutions, control structures, debugging techniques, recursion,
semaphores, simple VO words, Quicksort, high-level packet
communications, China FORML.

Volume 7 Forth Dimensions (1985-86) 107 - $35

Generic sort, Forth spreadsheet, control structures, pseudo-
interrupts, number ed~ting, Atari Forth, pretty printing, code
modules, universal stack word, polynomial evaluation, F83
strings.

Volume 8 Forth Dimensions (1986-87) 108 - $35

Interrupt-driven serial input, data-base functions, TI 99/4A,
XMODEM, on-line documentation, dual CFAs, random
numbers, arrays, file query, Batcher's sort, screenless Forth,
classes in Forth, Bresenham line-drawing algorithm, unsigned
division. DOS file VO.

Volume 9 Forth Dimensions (1987-88) 109 - $35

Fractal landscapes, stackerror checking, perpetual dateroutines,
headless compiler, execution security, ANS-Forth meeting,
computer-aided instruction, local variables, transcendental func-
tions, education, relocatable Forth for 68000.

Volume 10 Forth Dimensions (1988-89) 110-$35

dBase file access, string handling, local variables, datastructures.
object-oriented Forth, linear automata, stand-alone applications,
8250 drivers, serial data compression.

Volume 11 Forth Dimensions (1989-90) 111 -$35

Local variables, graphic filling algorithms, 80286 extended
memory, expert systems, quaternion rotation calculation,
multiprocessor Forth, double-entry bookkeeping, binary table
search, phase-angle differential analyzer, sort contest.

Volume 12 Forth Dimensions (199Cb91) 112 - $35

Floored division, stack variables, embedded control, Atari Forth,
optimizing compiler, dynamic memory allocation, smart RAM,
extended-precision math, interrupt handling, neural nets, Soviet
Forth, arrays, metacompilation.

Volume 13 Forth Dimensions (1991-92) 113 - $35

Volume 14 Forth Dimensions (1992-93) 114-$35

Volume 15 Forth Dimensions (1993-94) 115 - $35

Volume 16 Forth Dimensions (1994-95) 116 - $35

Volume 17 Forth Dimensions (1995-96) 117-$35

FORML (Forth Modification Laboratory) is an educational forum for
sharing and discussing new or unproven proposals intended to
benefit Forth, and is an educational forum for discussion of the
technical aspects of applications in Forth. Proceedings are a
com ilation of the papers and abstracts presented at the annual
con%rence. FORML is part of the Forth Interest Group.

1981 FORML PROCEEDINGS 311-$45
CODE-less Forth machine, quadruple-precision arithmetic,
overlays, executable vocabulary stack, data typing in Forth,
vectored data structures, using Forth in a classroom, pyramid
files, BASIC,LOGO, automaticcueinglanguage for multimedia,
NEXOS-a ROM-based multitasking operating system. 655pp.

1982 FORML PROCEEDINGS 312 - $30
Rockwell Forth processor, virtual execution, 32-bit Forth, ONLY
for vocabularies, non-IMMEDIATE looping words, number-
input wordset, 110 vectoring, recursive data structures, prog-
rammable-logic compiler. 295 pp.

1983 FORML PROCEEDINGS 313 - $30
Non-Von Neuman machines, Forth instruction set, Chinese
Forth, F83, compiler & interpreterco-routines, log &exponential
function, rational arithmetic, transcendental functions invariable-
precision Forth, portable tile-system interface, Forth coding
conventions, expert systems. 352 pp.

1984 FORML PROCEEDINGS 314 - $30
Forth expert systems, consequent-reasoning inference engine,
Zen floating point, portable graphics wordset, 32-bit Forth,
HP71B Forth, NEON-object-oriented programming, decom-
piler design, arrays and stack variables. 378 pp.

1986 FORML PROCEEDINGS 316 - $30
Threading techniques, Prolog, VLSI Forth microprocessor,
natural-language interface, expert system shell, inference engine,
multiple-inheritance system, automatic programming environ-
ment. 323 pp.

1988 FORML PROCEEDINGS 318 - $40
Includes 1988 Australian FORML, Human interfaces, simple
robotics kernel, MODUL Forth, parallel processing,
rgrammable controllers, Prolog, simulations, language topics,

ardware, Wil'sworkings & Ting'sphilosophy, Forth hardware
applications, ANS Forth session, future of Forth in A1
applications. 310 pp.

1989 FORML PROCEEDINGS 319 - $40
Includes papers from '89 euroFORML. Pascal to Forth,
extensible optimizer for compiling, 3D measurement withobject-
orientedForth, CRC polynomials, F-PC, Hanis C cross-compiler,
modular approach to robotic control, RTX recompiler for on-
line maintenance, modules, trainable neural nets. 433 pp.

1992 FORML PROCEEDINGS 322 - $40
Object oriented Forth bases on classes rather than prototypes,
color vision sizing processor, virtual file systems, transparent
target development, Signal processing pattern classification,
optimization in low level Forth, local variables, embedded
Forth, auto display of digital images, graphics package for F-
PC, B-tree in Forth 200 pp.

1993 FORML PROCEEDINGS 323 - $45
Includes papers from '92 euroForth and '93 euroForth
Conferences. Forth in 32-Bit protected mode, HDTV format
converter, graphing functions, MIPS eForth, umbilical
compilation, portable Forth engine, formal specifications of
Forth, writing betterForth, Holon -A new way of Forth,FOSM,
aForth string matcher, Logo inForth, prograrnmingproductivity.
509 pp.

1994-1995 FORML PROCEEDINGS (in one volume!) 325 - $50 T

: A:@ - i F-PC USERS MANUAL (2nd ed., V3.5)

/ ALL ABOUT FORTH, 3rd ed.. June 1990. Glen B. Haydon 201 - $90

Annotated glossary of most Forth words in common usage,
including Forth-79, Forth-83, F-PC, MVP-Forth. Implementa-
tion examples in high-level Forth andlor 8086188 assembler.
Useful commentary given for each entry. 504 pp.

eFORTH IMPLEMENTATION GUIDE, C.H. Ting 215 - $25

eForth is the name of a Forth model designed to be portable to
a large number of the newer, more powerful processors availab-
le now and becoming available in the near future. 54 pp. (wl
disk)

I Embedded Controller FORTH, 8051. William H. Payne 216 - $76

Describes the implementation of an 8051 version of Forth. More
than half of this book contains source listings (wldisks C050)
511 pp.

F83 SOURCE, Henry Laxen & Michael Perry 217 - $20

A complete listing of F83, including source and shadow screens.
Includes introduction on getting started. 208pp.

THE FIRST COURSE, C.H. Ting 223 - $25

This tutorial's goal is to expose you to the very minimum set of
Forth instructions you need to use Forth to solve practical
problems in the shortest possible time. "... This tutorial was
developed to complement The Forth Course which skims too
fast on the elementary Forth instructions and dives too quickly
in the advanced topics in a upper level college microcomputer
laboratory ..." A running F-PC Forth system would be very
useful. 44 pp.

THE FORTH COURSE, Richard E. Haskell 225 - $25

This set of 11 lessons, called The Forth Course, is designed to
make it easy for you to learn Forth. The material was developed
over several years of teaching Forth as part of a seniorlgraduate
course in design of embedded software computer systems at
Oakland University in Rochester, Michigan. 156pp. (wldisk)

FORTH NOTEBOOK, Dr. C.H. Ting 232 - $25

Good examples and applications. Great learning aid. poly-
FORTH is the dialect used. Some conversion advice is included.
Code is well documented. 286 pp.

FORTH NOTEBOOK 11, Dr. C.H. Ting 232a - $25

Collection of research papers on various topics, such as image
processing, parallel processing, and miscellaneous applications.
237pp.

I
- - --

FIG has reserved 100 complete sets o f I
FD Volume XI

Available on a first-come, first-served basis while supplies last.

For a little less than a year's memberhsip, you can have all this
Forth knowledge on your bookshelf, for immediate reference or
leisurely study. Your member discount applies, naturally. The
total member price of just $39.50includesshipping and handling
(non-members pay $42.50; California residents add the amount
of sales tax for your area before the shipping and handling-see
the mail-order form).

I Forth Interest Grow
100 Dolores Street, Suite 183 carmil, California 93923

voice: 408-373-6784 fax: 408-373-2845
e-mail: office@forth.org

Users manual to the public-domain Forth system optimized for
IBM PCIXTIAT computers. A fat, fast system with many tools.
143 pp.

F-PC TECHNICAL REFERENCE MANUAL 351 - $30

A must if you need to know the inner workings of F-PC. 269pp.

INSIDE F-83, Dr. C.H. Ting 235 - $25

Invaluable for those using F - 8 3 . 2 2 6 ~ ~ .

OBJECT-ORIENTED FORTH, Dick Pountain

Implementation of data structures. First book to make object-
oriented programming available to users of even very small
home computers. 1 18 pp.

STARTING FORTH (2nd ed.), Leo Brodie 245 - $37

In this edition of Starting Forth-the most popularand complete
introduction toForth--syntax has been expanded to include the
Forth-83 Standard. 346pp.

THINKING FORTH, Leo Brodie 255 - $35

BACK BY POPULAR DEMAND! The bestselling author of
Starting Forth IS back again with the first guide to using Forth
to program applications. This book captures the philosophy of
the language to show users how to write more readable, better
mainta~nable applications. Both beginning and experienced
pro rammers will gain a better understanding and mastery of
suck topics: Forth style and conventions, decomposition,
factoring, handlin data, simplifying control structures. And, to
give you an idea ofhow these concepts can be applied, Thinking
Forth contains revealing interviews and with
Forth's creator Charles H. Moore. To program intelligently, you
must first think intelligently, and that's where Thinking Forth
comes in. Reprint of original, 272pp.

WRITE YOUR OWN PROGRAMMING LANGUAGE
USING C++, Norman Smith 270 - $16

This book is about an application language. More specifically,
it is about how to write your own custom application language.
The book contains the tools necessary to begin the rocess and
a complete sample language implementation. (8uess what
language!) Includes disk with complete source. 108pp.

WRITING FCODE PROGRAMS 252 - $52

This manual is written for designers of SBus interface cards and
other devices that use the FCode interface laneuaee. It assumes
familiarity with SBus card desi n requireken& and Forth
programming. hema ate rial coverefdiscusses SBus development
for both OpenBoot 1.0 and 2.0 systems. 414 pp.

Forth Dimensions Article Reference 151 - $4
An index of Porth articles, by keyword, from Forth Dimensions 1 Volumes 1-15 (1978-94).

FORML Article Reference 152 - $4
~n ' index ofForth articles by keyword, author, and date from the
FORML Conference Proceedings (1980-92).

The "Contributionsfrom the Forth Community" disklibrary contains
author-submitted donations, generally including source, for a
variety of computers & disk formats. Each file is determined by the
author as oublic domain. shareware. or use with some restrictions.
 his librari does not contain o or ~ a i e " applications. To submit your
own contributions, send them to the FIG Publications Committee.

FLOAT4th.BLK V1.4 Robert L. Smith COO1 - $8
Software floating-point for fig-, poly-, 79-Std., 83-Std.
Forths. IEEE short 32-bit, four standard functions, square
root and log. *** IBM, 190Kb, F83

Games in Forth
Misc. games, Go, TETRA, Life ... Source. * IBM, 760Kb

A Forth Sureadsheet. Craig Lindlev COO3 - $6 -
This model spreadsheet first appearcd in 1;orth Dimen.sionr
V1111,2. Those issues contain docs & source. * IBM, 100Kb

Automatic Structure Charts, Kim Hams COO4 - $8
Tools for analysis of large Forth programs, first presented
at FORML conference. Full source; docs incl. in 1985
FORML Proceedings. ** IBM, 114Kb

A Simple Inference Engine, Martin Tracy COO5 - $8
Based on inf. engine in Winston &Horn's book on LISP,
takes you from pattern variables to complete unification
algorithm, with running commentary on Forth philosophy
&-style. Incl. source. - ** IBM, 162 K b

The Math Box, Nathaniel Grossman COO6 - $10
Routines by foremost math author in Forth. Extended
double-precision arithmetic, complete 32-bit fixed-point
math, & auto-ranging text. Incl. graphics. Utilities for
rapid polynomial evaluation, continued fractions & Monte
Carlo factorization. Incl. source & docs. ** IBM, 1 1 8 K b

AstroForth & AstroOKO Demos, I.R. Agumirsian COO7 - $6
AstroForth is the 83-Std. Russian version of Forth. Incl.
window interface, full-screen editor, dynamic assembler
& a great demo. AstroOKO, an astronavigation system in
AstroForth, calculates sky position of several objects from
different earth positions. Demos only. * IBM,700Kb

Forth Lit Handler, Martin Tracy COO8 - $8
List primitives extend Forth to provide a flexible, high-
speed environment for AI. Incl. ELISA and Winston &
Horn's micro-LISP as examples. Incl. source & docs. ** IBM, 170 K b

8051 Embedded Forth, William Payne C050 - $20
8051 ROMmable Forth operating system. 8086-to-8051
target compiler. Incl. source. Docs are in the bookEmbedded
Controller Forth for the 8051 Family. Included with item
#216 ;** IBM HD, 4.3 M b

68HCl l Collection C060 - $16
Collection of Forths, tools and floating-point routines for
the 68HC11 controller. *** IBM HD, 2.5 M b

F83 V2.01, Mike Perry & Henry Laxen ClOO - $20
The newest version, ported to a variety of machines.
Editor, assembler, decompiler, metacompiler. Source and
shadow screens. Manual available separately (items 217 &
235). Base for other F83 applications. * IBM, 83,490 K b

F-PC V3.6 & TCOM 2.5, Tom Zimmer C200 - $30
A full Forth system with pull-down menus, sequential files,
editor, forward assembler, metacompiler, floating point.
Complete source and help files. Manual for V3.5 available
separately (items 350 & 351). Base for otherF-PC applications. * IBM HD, 83,3.5Mb

F-PC TEACH V3.5, Lessons 0-7 Jack Brown C201- $8
Forth classroom on disk. First seven lessons on learning Forth,
from Jack Brown of B.C. Institute of Technology. * IBM HD, F-PC, 790 Kb

VP-Planner Float for F-PC, V1.O1 Jack Brown C202 - $8
Software floating-point engine behind the VP-Planner
spreadsheet. 80-bit (temporary-real) routines with transcen-
dental functions, number 110 support, vectors to support numeric
co-processor overlay & user NAN checking. ** IBM, F-PC, 350 K b

F-PC Graphics V4.6, Mark Smiley C203 - $10
The latest versions of new graphics routines, including CGA,
EGA, and VGA support, with numerous improvements over
earlier versions created or supported by Mark Smiley. ** IBM HD, F-PC, 605 Kb

PocketForth V6.4, Chris Heilman C300 - $12
SmallestcompleteForthfortheMac. Accessto allMac functions,
events, files, graphics, floating point. macros, create standalone
applications and DAs. Based on fig & Starring Forth. Incl.
source and manual. * MAC, 640 Kb, System 7.01 Compatible.

Kevo V0.9b6, Antero Taivalsaari C360 - $10
CompleteFocth-likeobject Forth forthe Mac. Object-Prototype
access to all Mac functions, files, graphics, floating point,
macros, create standalone applications. Kernel source included,
extensive demo files, manual. *** MAC, 650 Kb, System 7.01 Compatible.

Yerkes Forth V3.67 C350 - $20
complete object-oriented Forth forthe Mac. Object access to all
Mac functions, files, graphics, floating point, macros, create
standalone applications. Incl. source, tutorial, assembler &
manual. ** MAC, 2.4Mb, System 7.1 Compatible.

Pygmy V 1.4, Frank Sergeant C500 - $20
A lean, fast Forth with full source code. Incl. full-screen editor,
assembler and metacompiler. Up to I5 files open at a time. ** IBM, 320 K b

KForth, Guy Kelly C600 - $20
A full Forth system with windows, mouse, drawing and modem
packages. Incl. source & docs. ** IBM, 83,2.5 M b

Mops V2.6, Michael Hore C710 - $20
Close cousin to Yerkes and Neon. Very fast, compiles subroutine-
threaded & native code. Object oriented. Uses F-P co-processor
if present. Full access to Mac toolbox & system. Supports
System7 (e.g., AppleEvents). Incl. assembler, manual &source. ** MAC, 3 Mb, System 7.1 Compatible

BBL & Abundance, Roedy Green C800 - $30
BBL public-domain, 32-bit Forth with extensive support of
DOS, meticulously optimized for execution speed. Abundance
is a public-domain database language written in BBL. Incl.
source & docs. *** IBM HD, 13.8 Mb, hard disk required

Return the old version with the FIG labels
and get a new version replacement for 112

the current version price. I
1 * - Starling ** - Intermediate *** - Advanced

Volume 10 (January 1989) 810-$15
RTX re rints from 1988 Rochester Forth conference, object-
orientecfcm~orth, lesser Forth engines. 87pp.

Volume 11 (July 1989) 811 - $15
RTX supplement to Footsteps in an Empry Valley, SC32.32-bit
Forth engine, RTX interrupts utility. 93 pp.

Volume 12 (A~r i l 1990) 812 - $15
ShBoom %hip architecture and instructions, neural corn uting
module NCM3232. pigForth. binary radix sort on 80286,&010,
and RTX2000.87pp.

Volume 13 (October 1990) 813 - $15
PALS of the RTX2000 Mini-BEE, EBForth, AZForth, RTX-
2101,8086 eForth, 8051 eForth. 107pp.

Volume 14 814-$15
RTX Pocket-Scope, eForth for muP20, ShBoom, eForth for
CP/M & Z80, XMODEM for eForth. 116pp.

Volume 15 815 - $15
Moore: new CAD system for chip design, a portrait of the P20;
Rible: QSl Forth processor, QS2, RISCing it all; P20 eForth
software simulatorldebugger. 94 pp.

Volume 16 816 - $15
OK-CAD System, MuP20, eForth system words, 386 eFoCh,
80386 protected mode operation, FRP 1600 - 16-Bit real tlme
processor. 104 pp.

Volume 17 817 - $15
P21 chip and specifications; Pic17C42; eForth for 68HCl1,
805 1, Transputer 128 pp.

MuP21- programming, demos, eForth 1 I4 pp.

Volume 19 819 - $20
More MuP21 - programming, demos, eForth 135 pp.

Volume 20 820 - $20
More MuP21 - programming, demos, F95, Forth Specific
Language Microprocessor Patent 5,070,451 126pp.

Volume 21
MuP21 Kit; My Troubles with This Darn 82C51; CTIOO Lab
Board; Born to BeFree; Laws of Computing; Traffic Controller
and Zen of State Machines; ShBoom Microprocessor;
Programmable Fieldbus Controller 1x1; Logic Design of a 16-
Bit Microprocessor P16 98pp.

T-shirt, "May the Forth Be With You" 601 - $18
(Specify size: Small, Medium, Large, X-Large on order form)
white design on a dark blue shirt or green design on tan shirt.

BIBLIOGRAPHY O F FORTH REFERENCES 340- $18
(3rd ed., January 1987)
Over 1900 references to Forth articles throughout computer
literature. 104 pp.

I

Annual Forth issues, including code for various Forth applications.

September 1982, September 1983, Sepember 1984 (3 issues) 425 - $10 I
I

For cred~t card orders or custmer servtce

d Phone Orders 408.37.FORTH
weekdays 408,373,6784 I

9.00 - 1.30 PST 408.373.2845 (fax) i

Company special instructions. I - . . . - 1 surface u

CHECK ENCLOSED (payable to: Forth Interest Group)
VISAIMasterCard:

Card Number exp. da(e

Signature

arreer volce
City fax

magazine Forth Dimensions. FIG also offers 11s members an on-line data base, a large selection of Forth lhterature and other services. Cost is $45 per year for U.S.A. & Canada surface; $53 Canada
alr mall; all other countries $60 per year. This fee includes $39 for Forth Dimensions. No sales tax. handling fee, or discount on membership.

When you joln, your first issue will arrive In four to six weeks; subsequent Issues will be mailed to you every other month as they are published-SIX issues In all. Your membership entitles you to a 10%
discount on publications and functions of FIG. Dues are not deductible as a chantable contribution for U.S. federal income tax purposes, but may be deduct~ble as a buslness expense. I

u s B lnternat~onal

PAYMENT MUST ACCOMPANY ALL ORDERS
PRICES: All orders must be prepaid. Prices are SHIPPING & HANDLING:
subject to change w~thout notice. Credit card orders All orders calculate shipping
will be sent and b~lled at current prices. Checks must & handl~ng based on order
be In U.S. dollars, drawn0naU.S. bank.A$lOcharge dollar value. Specialhandling
will be added for returned checks. available on request.

Zip

SHIPPING TIME:
Books In stock are shlpped within
seven days of recelpt of the order.
SURFACE DELIVERY:
U.S.: 10 days
other: 30-60 days

StateIProv.

$40 01 to $80 00
$80 01 to $1 50 00

'CALIFORNIA SALES TAX BY COUNTY:
7.75%: Del Norte, Fresno. Imperial. Inyo. Madera. Orange.
R~verside. Sacramento. Santa Clara. Santa Barbara. San Ber-
nardino. San Diego, and San Joaquin; 8.25%: Alameda. Contra
Costa, Los Angeles San Mateo. San Francisco. San Benito, and
Santa Cruz; 7.25%: other counties.

XIX-2

$10 00
$15 00

email - lnternationalAir 40% of Total
Above $1 50 00 10% of Total

Figure One

BEGIN test-for-more? \ More?
WHILE test-for-match? \ Found?
O= WHILE advance-to-next-element. \ Next.
REPEAT what-to-do-when-found. \ Found.
ELSE what-to-do-when-not-found. \ Not found.
THEN

Figure Two

BEGIN test-for-more? \ More?
WHILE test-for-match? \ Found?
UNTIL what-to-do-when-found. \ Found.
ELSE what-to-do-when-not-found. \ Not found
THEN

Figure Three

FALSE BEGIN
?DUP IF FALSE
ELSE test-for-more? DUP
THEN

WHILE test-for-match?
REPEAT
IF what-to-do-when-found.
ELSE what-to-do-when-not-found
THEN

Figure Four

: ?test-for-more?
?DUP IF FALSE ELSE

test-for-more? DUP
THEN

MACRO SPECIAL-SEARCH " FALSE BEGIN ? test-for-more? WHILE "

1 Figure Five

: ? lines>? (flag -- caddr len true I flag false)

?DUP IF FALSE ELSE
Line-Buffer DUP MAXLINE THE-FILE '.

READ-LINE checked ?DUP O= IF
2DROP FALSE DUP THE-FILE REWIND

THEN
THEN

I

MACRO LINES> " FALSE BEGIN ?lines>? WHILE I'

Forth Dimensions XIXI2 23

In "Tool Belt #I," a couple of definitions have the form:
: name S" blahdy-blahdy-blah " EVALUATE ;
IMMEDIATE

For portability, stick to one line.
Some examples of macro definitions are given in Figure One.
Comment out definitions that don't interest you.

ANEW can be defined:
This is a way to provide simple macros for : ANEW
Forth. Typing or writing name is the same > I N @ BL WORD F I N D
as typing or writing blahdy-blahdy-blah. I F EXECUTE E L S E DROP THEN

There are many places where simple > I N ! MARKER ;
macros would be useful. So let's abstract I
the defining process.

Using STRING from Starting Forth, MACRO can be defined:
: MACRO CREATE IMMEDIATE CHAR STRING
DOES> COUNT EVALUATE ;

On systems where WORD'S buffer happens to be at HERE,
S T R I N G can be defined:
: STRING (char --) WORD C @ 1+ ALLOT ;

In Forth, Inc.'s Power MacForth, MACRO can be defined:
: MACRO

CREATE IMMEDIATE CHAR ?PARSE CS,
DOES> COUNT EVALUATE ;

Here is a definition using PLACE from F83.
: PLACE

2DUP > R > R
CHAR+ SWAP CHARS MOVE
R> R> C ! ;

: STRING
WORD COUNT HERE OVER 1+
CHARS ALLOT PLACE ;

The stack effects are:
PLACE caddr u addr --
STRING c h a r " ~ ~ ~ < c h a r > " --
MACRO " n a m e < s p a c e s > < c h a r > ~ ~ ~ < c h a r > --

k

The definition can be written using required words only-
no Core Extension words or other optional word sets-and
will work in any Standard Forth. No transient area, other than
that used serially by WORD, and no temporary storage are used.

Because the text for macros is acquired by WORD, macro
definitions must be on one source line. You can have more
than one macro definition on a line, though. The need for
long macros can be satisfied by using macros within macros.

How about a parameter?
Much can be done with macros without parameters. But

it would be nice to have a parameter when you need one. So
here is a redefinition of MACRO that allows parameters occur-
ring once in the macro. It also gives you a hook to compile
long macros-up to 255 characters.

A parameter must be a single word, and it follows the use
of the macro. \, which is otherwise useless in a macro, is
used in the macro as the placeholder for a parameter. In a
macro, the parameter cannot be quoted or be the name of a
word being defined, because of parsing restrictions in
 EVALUATE^ strings. Placeholders are replaced by parameters,
in the order in which they occur.

Think of a macro with parameters as a stencil with slots
to be filled.

You can use \ as a parameter to leave a slot empty. [Figure
Two]

If you don't already have /STRING from the String-Han-
dling word set, it can be defined:
: /STRING (a n k -- a + k n - k)

2 > R R@ CHARS + 2R> - ;

Some examples of simple macros using parameters are
shown in Figure Three.

When should I use a macro?
1. Re-writing the examples without using EVALUATE will

show you one reason.
For instance, define ? ? without EVALUATE. Be sure you

can do everything the macro will do.
Even something as simple as MACRO AGAIN " 0 UNTIL

" is an advanced topic without MACRO.
Many definitions are much easier using macros, rather than

considering how to use LITERAL and POSTPONE on each word.
2. A second reason is when you want to eliminate the

overhead of subroutine nesting. You want to trade space
for time.
Be selective. BOUNDS defined as MACRO BOUNDS " OVER

+ SWAP " in general won't do noticeably better than :

24 Forth Dimensions XIXI2

MACRO : : " ANEW NONCE : NONCE-DEE "
MACRO ; ; " ; NONCE-DEE NONCE "
MACRO S= " COMPARE O= "
MACRO TH I' CELLS + "

MACRO ANDIF " DUP I F DROP " MACRO O R I F " ? DUP O= I F "

MACRO = I F " OVER = I F DROP "

MACRO S = I F I' 20VER S = I F 2DROP "
MACRO SUCCESS " TRUE E X I T " MACRO FAILURE " FALSE E X I T "
MACRO NOT 11 o= ~l

MACRO 2 > R " SWAP > R > R "

MACRO 2 D " R> R> SWAP "

MACRO 2 R @ " R> R@ SWAP DUP > R I'

MACRO E N D I F " THEN "

MACRO UNLESS " O = I F "
MACRO AGAIN I' 0 UNTIL "

MACRO FOR " BEGIN ?DUP WHILE 1- > R " MACRO NEXT " D REPEAT "

MACRO #DO " 0 ? D O "
MACRO ?REPEAT " [0 CS-PICK] UNTIL "

MACRO L I N E S > " FALSE BEGIN ? l i n e s > ? WHILE "
MACRO ITEM> I' > R FALSE BEGIN W ? n o d e ? WHILE DUP > R CELL+ "
MACRO ITERATE " FALSE REPEAT DROP "

- -

Figure Two

: s p l i t - a t - c h a r (a n c h a r -- a + k n-k a k)

> R 2DUP (a n a + k n - k) (R: c h a r)
BEGIN DUP WHILE OVER C@ R@ =

O = WHILE 1 /STRING REPEAT THEN
R> DROP (R :)
DUP > R 2SWAP R> - (a + k n-k a k)

I

: DOESMACRO DOES>
COUNT BEGIN (cadd r u)

[CHAR] \ s p l i t - a t - c h a r 2SWAP 2 > R (caddr u)
EVALUATE (

R@ WHILE
BL WORD COUNT EVALUATE
2R> 1 /STRING (caddr u)

REPEAT (

2 W 2DROP

: MACRO CREATE IMMEDIATE CHAR STRING DOES>MACRO ;

Figure Three

MACRO ? ? " I F \ THEN "

MACRO ?LEAVE I' ? ? LEAVE "

MACRO H : I' < h e x > \ < / h e x > "
MACRO ' T H " CELLS \ + I'

MACRO TIMES " #DO \ LOOP "
MACRO TIME :: N 0 C O U N T E R > R DO \ \ ,OOP D TIMER CR ;; "

MACRO THE I' [ALSO \] \ [PREVIOUS] "

MACRO CLEAR " DEPTH TIMES DROP "

Forth Dimensions XIX/2 25

BOUNDS OVER + SWAP ; . That's because it appears outside a
loop, not inside.

Sometimes the system you're working with has a different
word that does the same thing as the word you'd like to use.
For example, <ROT instead of -ROT, or UPCASE instead of what
you like for conversion to uppercase, or something that does
the same as a standard word. So define MACRO -ROT " <ROT
", etc. The run-time overhead of your definition is eliminated.
3. Use a macro for short definitions when the compiler

might give better results for in-line code.
1 0 2 4 CONSTANT 1 K
MACRO K " 1 K * "

I expect 4 0 1 K to be a literal, and most other ways of
using K to become an in-line shift.
4. In a target compiler, macros that work just for source

code can be used to provide the convenience of a
definition without having the overhead in the target.

Thus, if the target doesn't have N I P , define MACRO N I P ''
SWAP DROP " .
Never define : -ROT ROT ROT ; . A high-level definition

of -ROT destroys any advantage -ROT might have-it adds
the overhead of nesting to the two ROTS. If YOU want to use -
ROT, define it a s MACRO -ROT " ROT ROT ". A friendly
compiler should do the right thing for ROT ROT, even when
it doesn't have -ROT.

Appendix
MACRO : : " ANEW NONCE : NONCE-DEF "

Start compiling a nonce word. Used extensively for data ini-
tialization and testing. Use ; ; to complete the definition,
execute it, and forget it.

Nonce words let you execute loops from the keyboard. They
also allow you to initialize data structures programmatically.

Nonce words wouldn't be needed with self-compiling IF,
BEGIN, DO, ? W.

From The Random House Dictionary of the English Language:
nonce word, a word coined and used only for the particular
occasion.

MACRO ; ; " ; NONCE-DEF NONCE "

Finish compiling a nonce word, execute it, and forget it. If a
syntax error occurs in compilation, just start over. If other
corrections are needed, type NONCE to recover, make the cor-
rections, and start over.

i

MACRO ? ? " I F \ THEN "

For the frequent situation of I F being used with a single word.
? ? a - w o r d becomes I F a - w o r d THEN.
Examples: ? ? LEAVE, ? ? NEGATE, DEPTH O= ? ? 0, /MOD

SWAP ? ? I+, @ ? DUP ? ? EXECUTE.
The single word may be a macro, which will expand.

MACRO 2 > R " SWAP > R > R "
MACRO 2R> " R> R> S W A P "
MACRO 2 R @ " R> R@ SWAP DUP > R "
MACRO R t ! " R> + > R "
MACRO R ! " R> DROP > R "

Words manipulating the return stack are easier to define with
macros. Such definitions would only be used if they were not
already defined directly.

MACRO E N D I F " THEN "
MACRO AGAIN " 0 U N T I L "
MACRO UNLESS " O= I F "
MACRO #DO " 0 ? DO "

Words involving the control-flow words are easier to write
and understand with macros.

MACRO FOR " BEGIN ?DUP WHILE 1- > R "
MACRO NEXT " R> REPEAT "

That implements the FOR ... NEXT loop used in some Forth
systems.

MACRO ANDIF " DUP I F DROP "
MACRO O R I F " ?DUP O= I F "

Short circuit conditionals.
tes t -a ANDIF t e s t -b THEN: if t e s t -a is false, don't bother
executing tes t-b.
t e s t -a O R I F tes t -b THEN: if t e s t - a is true, don't bother
executing tes t -b .

MACRO = I F " OVER = I F DROP "

A common sequence. Like a CASE statement.

MACRO S = I F " 20VER S = I F 2DROP "

A CASE statement for strings.

MACRONOT " o= ,,
MACRO TH " CELLS + "

MACRO S = " COMPARE O= "

The above definitions were made with macros to make it
easier for the compiler to optimize, and to avoid the over-
head of nesting functions.

MACRO TIMES " #DO \ LOOP "

Execute the next word n times. For very short DO loops. Note
the use of macro #DO.

[See Figure Four] A rare, simple macro with two param-
eters. COUNTER and TIMER are the words used for timing in
the system I'm using. You should do what works with your
system. The second parameter is there to clean up or com-
plete the work done by the first parameter.

For example, TIME RANDOM DROP.
You will have to define N before using TIME. I generally

define it as a value word, so I can experiment with the num-
ber of iterations.

To time an empty loop: TIME \ \

MACRO THE " [ALSO \] \ [PREVIOUS 1 "

26 Forth Dimensions XlW2

Another simple macro with two parameters. For the
Search-Order Extension word set.

THE is used like THE EDITOR I Or THE FORTH I , where
the first parameter is a vocabulary, and the second is a word
in that vocabulary.

I
a p , C 5 : 11 /hc::' \ < /hzx'

Figure Four

I MACRO TIME " : : N 0 COUNTER >R DO \ \

Used to change the BASE to hex at run time for the next word
only. It needs supporting definitions like the ones in Figure
Five, which will be explained in later articles.

LOOP FP TIMER CR ;; "

Figure Five

VARIABLE Temp
: <hex> (--) BASE @ Temp ! HEX ;
: </hex> (--) Temp @ BASE ! ;

MACRO LINES> FALSE BEGIN ?lines>? WHILE I'
MACRO ITEM> >R FALSE BEGIN FP ?node@? WHILE DUP >R CELL+ I'
MACRO ITERATE " FALSE REPEAT DROP "

1 Cotinued from page 20 I
To understand the next set of defini-

tions, here are some examples of its use. Figure Eleven

First some useful preliAinary defini-
tions. [See Figure Six.]

? t e x t i s to . t e x t as? i s to ..
Given a list, we will want to "list" its

items. So we go through the list, display-
ing every item. [Figure Seven]

Count the number of items in a list.
[Figure Eight]

List items in some-~ i s t that begin with
"ANS" using a nonce word. [Figure Nine]

The definitions of ITEM> "item-search"
and ITERATE are given in Figure Ten.

ITEM> and ITERATE are macros and
expand to the code shown in Figure Eleven.

This gives us a wrapper for doing things
with the items of a list. {Figure Twelve]

To search a list, see Figure Thirteen.
The . . . represents what you do with

an item, leaving a flag on the stack-true
to quit or false to continue.

After REPEAT therewill bezero on the
stack, if you went all the way through the
list. If you quit before the end of the list,
the address of the node where you quit will
be on the stack.

(list)
>R FALSE (flag) (R: node)
BEGIN R> (flag node)

? node@? (node 0 I node' node' I 0 0)
WHILE (node ')

DUP >R CELL+ (item) (R: node)

FALSE REPEAT DROP

Figure Twelve

(a-list) ITEM> (item) "do-something" ITERATE ()

FigureT,,irteen

(a-list) ITEM> (item) . . . (done?) REPEAT (0 Jnode)

Figure Fourteen

: item? (caddr u list -- 0 1 node)

ITEM> COUNT 20VER COMPARE O= REPEAT NIP NIP
. '

The simplest use is to see whether a
string is an item in a list [Figure Fourteen].

(Next article: "Ordered Lists.")
For nonce word and macro see Tool Belt #1 and #2.

Forth Dimensions XIXI2 27

[Continued from the preceding issue. Portions of this document, including the design within the code will lead to increasing
includingparts ofsome of the examples, were edited lightly by FD for use of tools that can process source files to produce a format-
publication in this format. -Ed.] ted output of the design and code using different fonts and

layout rules.
End of definition

At the end of the definition,
the final word, the semi-colon,
or end-code will not be in-
dented, and will be at the left-
hand end of the line. This en-
sures that the ends of definitions
can be found. It also helps when
code is added to the end of a

MPE house rule
Comment as you write.
Definitions should be com-

mented as well as possible. In a
text file, there is no excuse for
not having enough room to
write comments, so comments
should be used liberally. In a

word, by avoiding the possibility of having several semi-co- definition, there should be comments down the right-hand
lons at or near the end of the word. side of the page, in parallel with the code. These comments
: WORD1 \ n l n2 - n 3 ; f u n c t i o n t o . . . should start in a uniform column, which should as far as
. . . possible be consistent throughout the file. This column should

. . . be further to the right than the starting column for the stack
comment and short description, usually about half way across

I the page.
: WORD1 \ n l n2 - n3 ; f u n c t i o n t o . . .

CODE WORD2 \ n l n2 - n3 ; f u n c t i o n t o \ g e t t h e p o i n t e r

. . .
END-CODE

. . . \ modi fy t h e a d d r e s s

Immediate Declaration
If a is to be made IMMEDIATE, the word to make it so

should appear just after the semi-colon or END-CODE:
: WORD1 \ n l n2 - n 3 ; f u n c t i o n t o . . .

28 Forth Dimensions XlW2

Note that comments in a word body should be vertically
aligned. Assuming that the paper is 80 columns wide, com-
ments can often start at column 41, a convenient tab stop.

Line comments are best started with the \ word-com-
ment to end of line. This is in preference to the (word, which

. . .

. . .
; IMMEDIATE

~f the word were to be placed on the line following the
end of the definition, though legal, there would be a possi-
bility of another word being inserted between the two, and
the first word then losing its immediate or public status.

Comments
The function of a comment is to explain why, not whab

Comments are written for people, not just the original pro-
grammer. Sometimes it hurts to come back to code you wrote
a few years ago. From observation, code that was commented
when it was written is more reliable than code that was com-
mented afterwards.

The comments can even be written first using a PDL (pro-
gram description language). Algol was first designed as a lan-
guage for writing algorithms before it was implemented as a
computer language. The move to literate programming and

must be terminated with a). This last is easily forgotten.
These comments should not be on the stack-detail level,
though this may be appropriate in certain cases. They should,
however, give descriptive information on the state of the sys-
tem at that point-describing the overall action of the line of
code, of the phrase- Needless to say, Comments should also
be correct.

On a point of style, it is better if the editor inserts tabs
between the code and the comment than a series of spaces.
This leaves less tidying-up to do after small changes to a line
of code. It also makes the source file more compact on disc
and faster load.

Defining Words
Defining words present a special case of definition. This is

because, as the word breaks down into two parts, more care
should be given to the indentation:
: WORDN \ n l - ; - n3 ; f u n c t i o n c l a s s t o ...
CREATE \ d e f i n i n g p o r t i o n
. . . \ l a y down d a t a

The CREATE and DOES> words should be indented to be-
low the name of the word. The code in the CREATE and mEs>
portions should then be indented by further spaces. The lay-
out of DOES> and ; also applies to ; CODE and END-CODE. It is
also often found useful to document the stack action of the
relevant portion of the word on the line with the CREATE
and DOES> words:
: WORDN \ nl - ; - n3 ; function class to ...
CREATE \ nl - ; defining portion
. . . \ lay down data
DOES>> \ - n3 ; execution portion

I . . . I . . - \ get the data
I

Control Structure Layout
Control structures should be laid out for ease of under-

standing, and to easily spot overlapping or incomplete struc-
tures. To this end, indenting and the use of many lines makes
the layout easy. Again, there is no lack of space on a page,
and this should be used to advantage.

Flags and Limits
As Forth uses a postfix notation,

\ phrase comment as question?
I F

\ yes:
\ and indent the comment too . . .

ELSE \ no:
\ and indent too . . .

E N D I F \ - x y ; good place to show result

BEGIN \ x y - ; show stack
. . . \ question?

WHILE \ indentation shows structure
. . .

RE PEAT

CASE \ description needed
. xx O F ENDOF \ case 1

yy O F . . . E N W F \ case 2
zz O F . . . \ big case 3
. . . \ consider factoring

ENDOF
\ default I ENDCASE

the flag used to conirol program flow At the end of a control structure,
is specified before the structure or test the structure termination word will
which uses it. The flag should be iden- be without indentation and back be-
tified on the line immediately preced- low the start of the structure, ensur-
ing the test which will use it, as should ing that starts and ends of structures
loop limits: are vertically aligned, so that it is easy

. . .
ENDIF

VAR @ \ get flag
IF \ if set . . .
...

ENDIF

VAR @ 0 \ make loop limits
DO \ for each . . .
. . .
LOOP

VARl @ VAR2 @ AND \ we need these because ...
\ or this because . . .

Indenting 4

For ease of reading, the start and end of a control struc-
ture should be placed on lines by themselves. This makes them
easy to spot-for presence or absence. Modern editors with
automatic colouring such as Ed4Windows, WinEdit, and
CodeWright can do this automatically for Forth. The code
within the structure should then be indented by a uniform
amount, normally two spaces:

to see an unbalanced structure or piece of code. See above for
examples.

The multiple exit control structures introduced by ANS
Forth are deprecated at MPE because their intention is to al-
low the user to associate several exit conditions with exit
actions. However, the ANS format separates these visually,
leaving a horrible job for program maintenance. A simple

... extension to CASE ENDCASE provides the visual match.
CASE \ description needed

xx O F ENDOF \ case 1
. . . yy O F ENDOF \ case 2
. . . \ default

NEXTCASE \ branches back to just after CASE

. . .
LOOP

Short Control Structures
If the code within a control structure is very short, then it

is good practice to leave the start and end of the structure on
one line, with the body of the structure. However, what con-
stitutes a short structure is very subjective.

Note that there is more than one space between the m
and the I . and again to the LOOP. This helps the code to
retain phrasing.

The contrary view is that most bugs in code appear at struc-
ture and procedure boundaries. These boundaries need to be
made more visible, even if costs a few more lines on the screen.

I I I

Forth Dimensions XlW2 29

-

Layout of Code Definitions
The layout of code definitions will be slightly different

from the layout of high-level definitions. For a start, the lay-
out will be more vertical than the corresponding high-level
code. If a word is being defined, the top line of the definition
will reflect that of any other word-i.e., it will have a stack
comment and a brief description. If a label is being defined,
then there may not be a stack effect, but there will still be a
brief description of the function of the procedure or sub-rou-

Variables
Variables should be defined at the left-hand end of the line,

and should be followed by an appropriate comment. A gen-
eral stack comment may precede the whole block of variables:
\ - addr ; variables
VARIABLE BILL \ contains ...
VARIABLE BEN \ defines the
. . .

Data Structure Layout
Data structures should be laid out in a consistent fashion,

not unlike the layout of definitions. However, there will be
certain differences.

Where several similar items are being defined in one go,
only one stack comment is required for the block. This should
be at the start of the line above the items:
\ - addr ; the variables for input data
VARIABLE BILL \ contains . . .
VARIABLE BEN \ defines the . . .

tine. The code that then follows may be very vertical, or may
be phrased more:
CODE WORD1 \ nl - n2 ; word to . . .
MOV AX, BX
ADD BX, # 03
XCHG BPI SP BP INC XCHG BPI SP
. . .

END-CODE

Of course, there will still be plenty of in-line ~0r.nments.
Where code is being converted from a conventional assem-
bler, it may be useful to retain the common tabbed layout of
many assembler programmers. This also makes it easier for
assembler programmers to read the Forth assembler. In most
cases, ease of reading or writing code leads to reliability.
CODE WORD1 \ nl - n2 ; word to ...

MOV AX, BX \ BX=TOS, so get nl
ADD BX, # 03 \ this is the increment to...
XCHG BPI SP \ swap stacks in order to
PUSH AX \ hold this out of the way
XCHG BP, SP \ for later

. . .
END-CODE

Constants
Constants require a value as part of their definition. This

value should appear at the left-hand end of the line. If see-
era1 constants are being defined at one time, the words CON-
STANT should line up vertically.
\ - n ; constants for destinations
3 CONSTANT BILL \ constant for . . .

23 CONSTANT BEN \ constant for . . .

If the variables are to be pre-initialised to anything other
than zero, the initialisation value should follow the defini-
tion of the variable:
DECIMAL
VARIABLE BILL 25 BILL ! \ contains ...
VARIABLE BEN \ contains ...
34 BEN ! \ default to 34 because ...

The use of program initialisation procedures has much to
recommend it. It is surprising how often an application works
after first being compiled, but not when a second time.
This situation is usually caused by the program not defining
its required state within the initialisation code.

Buffers
A buffer may be defined and require more than one or

two bytes of dictionary space. This space may be pre-
initialised, or it may be a scratch area, or otherwise filled by
the application. The buffer should be defined and any pre-
initialisation should immediately follow its definition:
CREATE BILL \ the . . .
10 ALLOT \ for a PC Forth
"" this" BILL $MOVE \ preset to 'this'

It is good practice to define all constants in one place in
the file, or in one file in the set. See the earlier section on the
layout of a file.

VARIABLE BILL
10 ALLOT-RAM \ for a ROM/RAM target

Tables
A table may be predefined-such as a look-up table. This

will usually be created in the dictionary, and will include its
data. The important point is consistency and ease of reading:
CREATE TABLE \ - addr ; bit-pattern table
1 C, 2 C, 4 C, 8 C, \ bO. .b3
16 C, 32 C, 64 C, 128 C, \ b4..b7

Note that the numbers and the commas line up. This makes
reading easy.

To be continued in the next issue ... 1
30 Forth Dimensions XIXI2

Forth Dimensions XlW2 3 1

Introduction
This month, we turn to the topic of adaptive digital filters.

Just as we improved our ability to apply controls to external
processes by introducing a closed loop, we will improve our
filtering by closing the loop and using the filter output to
modify the filter in real-time.

Adaptive filters can either be IIR (Infinite Impulse Re-
sponse) or FIR (Finite Impulse Response). There are also non-
linear filter types, but we will not consider them here. Gener-
ally, the form of the filter remains fixed as it runs, but a spe-
cial output channel of the filter (usually called the error out-
put) is fed into a process which recalculates the filter coeffi-
cients in order to produce an output that is closer to the de-
sired form (see Figure One). If it is properly designed, the
result of such a filter is an output that enhances the desired
component over a wide range of conditions.

As with ordinary digital filters, a vast amount of written
material is available on the topic of adaptive filters. We will
only give a limited introduction to the topic here. You should
also be aware that a proper treatment of adaptive filters re-
quires a good deal of calculus and linear algebra; I will mostly
spare you all the math, in order to provide an introduction
to the types of adaptive filters and their applications.

What Can Go Wrong
When you think about it, adaptive filters are a little scary.

They process a signal and then decide to adjust themselves in
order to alter the signal's characteristics. How can you be sure
the filter makes the right decision and doesn't make things
worse? Mathematically, what we are concerned with here is
the stability of the filter. The question of the filter's stability
arises because of two related properties of adaptive filters. First,
the feedback of an error term makes the filter behave as a
differential equation. It is perfectly valid for a differential
equation to have an unstable solution. If we have happened
to design an adaptive filter whose underlying differential equa-
tion has an unstable solution, we are in trouble. Second, since
we are implementing our filter in the discrete time domain,
the filter implementation becomes a finite difference approxi-
mation to the differential equation. Finite difference equa-
tions have their own stability constraints, such that it is pos-
sible to have numerically unstable solutions even when the"
analytic solution is stable.

Analyzing the stability of an adaptive filter tends to be a
deep exercise in mathematics (involving such things as
Laplace transforms and numerical analysis). Having a math-
ematical software package such as Mathematica or Macsyma
helps a great deal, but often, in the real world, such filters are

' just empirically tested. Hopefully, a proper analysis is used
for filters that will be installed into safety-critical systems.

General Principles
Unlike nonadaptive filters, which just pass their input data

through the filtering mechanism, adaptive filters also apply
a system model. The estimate of the system is compared
against the filter output to create an error signal; this error
signal is then used in a cost function of some kind, which in-
dicates how well (or badly) we are doing with the current
parameters of the filter.

The Kalman Filter
The simplest error signal we can generate is just the differ-

ence between what we are getting out of the filter, ?,, and
what we expect to see, x,,
e, = x, -2, (1)

For many problems, an overshoot is just as bad as an un-
dershoot, so we can use the mean square error as a cost func-
tion. There are lots of other cost functions we could use, but
this one is particularly convenient mathematically. The ear-
liest adaptive filter derived from this error and cost function
is the Wiener filter. Unfortunately, it is in FIR form and has
coefficients that extend infinitely back in time. Except for
certain periodic systems, this filter is not very practical. The
filter can be re-derived in IIR form-this is known as the
Kalman filter. The discrete time, linear, form of this equation
looks like,
2, = b,?,, + K,z, (2)

b, is a model of how the system goes from one time interval
to the next. It is our best understanding of how the ideal
system goes from a value at time t - 1 to a value at time t.

Kt is the Kalman gain. It is not controlled by the measure-
ments directly, but instead is determined by how good you
think the model b is, compared to the quality of the observa-
tions.

z, is called the innovation. It is an estimate of what you
think the error will be at time t, given a measurement at time
t, y, and a prediction of x at time t based upon the best esti-
mate of x at t- 1 extrapolated to time t by applying our model
function, b. The simplest example of how to calculate the
innovation is,
z, = y, - Hb,,2,, (3)

where H is a function that may be necessary to convert the
components of x to the components of y. (An example is the
meteorological case of estimating the humidity-the x-based
upon wet-bulb and dry-bulb temperature measurements-the
y. The H function would have one component that converts
humidity to wet-bulb temperature, and one for the conver-
sion to dry-bulb). In an application, the innovation is a known

function, like above, and the function b is known. What is
not known is the gain, K; this must be calculated in parallel
with the model estimation. The time varying gain is where
the adaptive nature of the Kalman filter expresses itself.

In order to determine the equation that gives us the gain
function, we have to spend some time with optimal estima-
tion theory. I will not spend the time on this here, but just
show the result. In the scalar case, the gain function is:

Two of the new quantities, 0; and o:, are the noise or error
variances for the model, b, and the measurements, respectively.
The first is a statement about how good you believe the model
of the system is. The second quantifies how good you think
your measurements are. Both of these quantities are presumed
to be known. The third quantity, p,,, is the error covariance of
the filter; it gives effectively the error bars of the current model
o ~ t ' ~ u t . ~ h & can be calculated given the gain,

To use the filter, each time a new observation (y,) becomes
available, we calculate (3) and (4)) and then use that infor-
mation in (2) and (5).

The Kalman filter is frequently applied to systems where x
and y are multi-channel or vector systems. In this case, the equa-
tions (2) through (5) are rewritten as matrix equations.

The LMS Adaptive Filter
An important general form for adaptive filters is the Least

Mean Squares (LMS) filter. This type of adaptive filter is easy
to implement and is widely used because of this. The filter
uses a gradient search technique in order to determine how
to improve the filter coefficients. This gradient search is also
the reason for the basic weakness of the filter: it has a rela-
tively slow convergence rate.

Suppose we consider the Nth-order FIR filter,
Yl, = h(l) + h(2) X,t-z + ..- + h(n)x,,, (6)

the filter error is,
ell = XI1 - Y"

With the LMS filter, we adjust the values of the coeffi-
cients, h, proportional to the error, el
h,(n) = hi&) + (8)

where p is a "learning factor" which controls how strongly
the error is weighted. This equation is the consequence of
the requirement to minimize the mean square value of el
hence the name of the filter.

The RLS Filter
The Recursive Least Squares (RLS) filter is, in theory, a bet-

ter filter than the LMS filter, but it is not used as often as it
could be because it requires more computational resources. (The
LMS filter requires 2N+1 operations per filter update, whereas
the RLS filter requires 2.5N2+4N). It has been successfully used

in system identification problems and in time series analysis,
where its real-time performance is not an issue.

There are several forms of the RLS filter, but all of them are
similar to the Kalman filter, in that a covariance is calculated
along with the regular filter output. This covariance is then
used to calculate a new filter gain.

Listing One shows a Forth implementation of the square-
root form of the filter. This form of the filter calculates the
square root of the covariance, instead of the covariance di-
rectly, in order to improve the numerical stability of the filter.
The filter has two tunable parameters: sigma is the square root
of the variance of the input data, and lambda is a weighting
coefficient that controls how strongly to perturb the coeffi-
cients for a given filter error. These two coefficients need to be
carefully considered in order to ensure that the resulting filter
is stable. Note that, in this example, the filter error is just the
straight difference between the input sample and the convo-
lution of the filter weights and the previous inputs; this could
be made to be different for different types of problems.

Application Example-Echo Cancellation
As example of how to apply an adaptive filter to a real-

world problem, let's consider the problem of echo cancella-
tion. In this problem, there is a signal we want to recover, x,
that we measure-but it is contaminated with multiple cop-
ies of itself. These extra copies overlap with unknown delay
times and amplitudes. Mathematically, the measurements
consist of the series, y, which is the convolution of the clean
signal x and the unknown reflection coefficient series h,
y = h * x (9)

The goal of the filter is to estimate the unknown reflec-
tion coefficients h.

This type of problem is sometimes solved by direct math-
ematical inversion of the known quantities x and y. In the en-
gineering literature, this is sometimes called the system identi-
fication problem; in geophysics, it's known as deconvolution. An
adaptive filter can be used to solve this problem in real-time,
but it takes some amount of time for it to converge (particu-
larly if the signal power is low). The adaptive filter approach
will also work when h is slowly varylng with time; this is some-
thing standard deconvolution does not work well with.

We can use any adaptive filter for this; if we use an LMS
filter, the coefficients will get adapted by the application of
equation (8). If we do this for the echo cancellation problem,
we have to replace en in that equation with the difference
between the convolution of the reference signal, x with the
coefficients h and the actual filter input data s:
e,! + s - Y (10)

Conclusion
Take a look at where we have been in this series: we have

considered how to generate signals that can be used to ma-
nipulate the outside world, how to measure how the out-
side world is responding to our signals, and how to create a
closed-loop controller to make the external system behave in
the particular manner we desire. In recent columns, we have
looked at how to handle signals that are time varying and how
to modify those signals with filters. This time, we enhanced
our filtering ability to be able to adaptively modify a signal.

32 Forth Dimensions XlW2

Next time, I am going to shift gears a bit and spend some
time considering the software development process itself.

Please don't hesitate to contact me through Forth Dimen-
sions or via e-mail if you have any comments or suggestions
about this or any other Forthware column.

References
Cowan, C.F.N. and P.M. Grant, (eds.) 1985. Adaptive Filters.
Prentice-Hall, Englewood Cliffs, NJ, 308 p a g e s . - ~ ~ ~ ~ 0-13-
004037-1.

du Plessis, R.M., 1967. "Poor man's explanation of Kalman
Filters, or How I stopped worrying and learned to love matrix
inversion." Reprinted 199 7 by Taygeta Scientific Inc.,
Monterey, CA.

Listing One.

\ rls.fth An implementation of the square root form of an RLS adaptive filter
\ This is an ANS Forth program requiring:
\ 1. The Floating point word set
\ 2. The Forth Scientific Library Array words
\
\ There is an environmental dependency in that it is assumed
\ that the float stack is separate from the parameter stack

\ This code is released to the public domain September 1996 Taygeta Scientific Inc.
\ $Author: skip $
\ $Workfile: rls.fth $
\ $Revision: 1.1 $
\ $Date: 16 Jul 1997 23:19:58 $

\ the Array words from the Forth Scientific Library
S" /usr/local/lib/forth/fsl-util.fthU INCLUDED
\ ...

FVARIABLE sigma \ square root of the initial data variance
FVARIABLE lambda \ weighting coefficient

' (8 CONSTANT N \ the filter order

FVARIABLE Err \ filter error output
FVARIABLE Gain \ filter gain

I

N Float Array K{ \ filter gain components
N Float Array Phi{ \ filter data
N Float Array H{ \ filter coefficients

\ internal filter coefficient data
FVARIABLE y old
N Float ~ r r a ~ F{ 4.

N Float Array V{
N Float Array Alpha{

\ U{ and D{ are actually diagonal matricies such that the
\ filter covariance is U * D * Transpose(U)
N Float Array U{
N Float Array D{

: F+! (addr -- , F: x --) \ increment a Float variable
DUP F@ F+ F!

I

: initialize (-- , F: sigma lambda --) \ one time initialization

Forth Dimensions XIW2 33

lambda F !
N 0 DO

0 . OEO Phi{ I } F!
O.OEO H{ I } F!

1.OEO U{ I 1 F!
FDUP D{ I } F!

LOOP
sigma F!

: } shuffle (x{ --) \ slide all the data values down by one
1 N I- DO

DUP I 1- } F@ DUP I } F!
-1 +LOOP
DROP

I

: do-filter (-- , F: yn --) \ apply the RLS filter on the current data
0 . OEO
N 0 DO

Phi{ 1 } F@ H{ N 1- I - } F@ F* Ft
LOOP
FNEGATE FOVER F+ \ err
Err F!
y old F! -

I

: preset (--) \ initial filter setup for each step
N 0 DO

U{ I } F@ Phi{ I } F@ F*
F{ I } F!
D{ I } F@F{ I } F@F* V{ I } F!

LOOP
V{ 0) F@K{ O } F!
V 0 1 F@ F{ 0 } F@ F* lambda F@ F+ (-- , F: alpha)

DI 0 } F@ FOVER F1 D{ 0) F! \ dt 0) = d{ 0) /alpha
Alphat 0) F!

: adjust-gain (--) \ apply RLS adaptive scheme to adjust the gain
preset
N 1 DO

\ d{ i} = d{ i} * alpha/lambda
D{ I } F@ Alpha{ I 1- } F@ F* lambda F@ F/ D(I } F!

\ calculate new alpha
V{ I 1 F@ FI I 1 F@ F* Alpha{ I 1- 1 F@ F+

FDUP Alpha{ I } F!

\ finish update of Dl d{ i} = d{ i) .1 new alpha
D{ I } F@ FSWAP F/ D{ I } F!

\ update U keeping a copy of the old value
F{ I } F@ Alpha{ I 1- } F@ F/ FNEGATE
K{ I 1- 1 F@ F* U{ I) F@

FSWAP FOVER F+ U{ I } F! (-- , F: uold)

\ update the gain
V{ I } F@ F* K{ 1 1 - 1 F@ Ft

Kt I } F!
LOOP

\ compete the Gain update

Forth Dimensions XlW2

N 0 DO
K{ I } F@ Alpha{ I 1 F@ F/ K{ I } F!

LOOP
I

: adjust coefficients (--)
Err F@
N 0 DO

FDUP K{ I } F@ F*
H{ I } F+!

LOOP
FDRO P
Phi{ } shuffle
y-old F@ Phi{ 0 } F!

I ;

: rls filter (-- I F: y -- yf) \ do RLS filter for one data point
do filter
ad7ustMgain
adjust-coefficients
Err F@

I

\ ...

0.65EO 0.5EO initialize
\ ...

\ 1ms.fth An implementation an LMS adaptive filter
\ This is an ANS Forth program requiring:
\ 1. The Floating point word set
\ 2. The Forth Scientific Library Array words
\

i

\ There is an environmental dependency in that it is assumed
\ that the float stack is separate from the parameter stack

Listing Two

\ This code is released to the public domain September 1996 Taygeta Scientific Inc.
\ $Author: skip $
\ $Workfile: 1ms.fth $
\ $Revision: 1.0 $
\ $Date: 17 Jul 1997 02:57:08 $
\
\ ...

1 \ the Array words from the Forth Scientific Library
S" /usr/local/lib/forth/fsl-util.fth" INCLUDED

I \ ...

FVARIABLE beta \ weighting coefficient

M N MAX CONSTANT Ny

I

M Float Array Err{ \ filter error output
Ny Float Array Y{ \ filtered data
N Float Array A{ \ filter coefficients
N Float Array X{ \ input data

8 CONSTANT N \ the filter order
8 CONSTANT M \ the running mean blosk size

: Ft! (addr -- , F: x --) \ increment a Float variable
DUP F@ F+ F!

I

Forth Dimensions XlW2 35

: initialize (-- , F: beta --) \ one time initialization
2. OEO F* beta F!
M 0 DO

0 .OEO Err{ I } F !
LOOP
N 0 DO

O.OEO A{ I } F!
O.OEO X{ I } F!

LOOP
Ny 0 DO

O.OEO Y{ I } F !
LOOP

: } shuffle (n x{ --) \ slide all the data values down by one
1 ROT 1- DO

DUP I 1- } F@ DUP I } F!
-1 +LOOP
DRO P

I

: do - filter (-- , F : x --) \ apply the LMS filter on the current data
N X(} shuffle
FDUP X{ 0 } F!
0. OEO
N 0 DO
A{ N 1- I - } F@ X{ I } F@ F* F+

LOOP

Ny Y{ } shuffle
FDUP Y{ 0 } F !
FNEGATE F+ \ err
N Err{ 1 shuffle
Err{ 0 1 F!

: get-adjustment (k -- , F: -- x) \ calculate adjustement
NEGATE
0. OEO
M 0 DO

Err{ OVER I + } F@ X{ OVER I + } F@ F* F+
LOOP
DRO P
Beta F@ F* M S>D D>F F/

: lms-adapt (--) \ apply LMS adaptive scheme
N 0 DO

I get adjustment
A{ I: 1 F + !

LOOP
I

: lms filter (-- , F : y -- yf) \ do LMS filter for one data point
do filter
lms adapt
Y{ 5 } F@ Err{ 0 } F@ F-

I

\ ...

0.85EO initialize
\ ...

36 Forth Dimensions XIXI2

1

Yet another Forth objects package
: ;

After criticizing the Neon model in the last issue, here I object to be drawn. This would be not be very elegant, and,
present (and expose to criticism) a model that I find better, moreover, we would have to change draw every time we add
and its implementation. Its properties (most are advantages, a new kind of graphical object (say, a spaceship).
in my opinion) are: What we would rather do is: When defining spaceships,

It is straightforward to pass objects on the stack. Passing we would tell the system: "Here's how you draw a spaceship;
selectors on the stack is a little less convenient, but you figure out the rest."
possible. This is the problem all systems solve that (rightfully) call
Objects are just data structures in memory, and are themselves object-oriented, and the object-oriented package I
referenced by their address. You can create words for present here also solves this problem (and not much else).
objects with normal defining words like constant.
Likewise, there is no difference between instance variables Terminology
that contain objects and those that contain other data. This section is mainly for reference, so you don't have to
Late binding is efficient and easy to use. understand all of it right away. I (mostly) use the same
It avoids parsing, and thus avoids problems with state- Smalltalk-inspired terminology as [mckewan97]. In short:
smartness and reduced extensibility; for convenience,
there are a few parsing words, but they have non-parsing class
counterparts. There are also a few defining words that A data structure definition with some extras.
parse. This is hard to avoid, because all standard defining
words parse (except : noname); however, such words are object
not as bad as many other parsing words, because they are An instance of the data structure described by the class defi-
not state-smart. nition.
It does not try to incorporate everything. It does a few
things and does them well (in my opinion). In particular, instance variables
I did not intend to support information hiding with this Fields of the data structure.
model (although it has features that may help); you can
use a separate package for achieving this. selector (or method selector)
It is layered; you don't have to learn and use all features A word (e.g., draw) for performing an operation on a variety
to use this model. In particular, the features discussed of data structures (classes). A selector describes what operation
after the section "Programming Style" are optional and to perform. In C++ terminology: a (pure) virtual function.
independent of each other.
An implementation in ANS Forth is available. method

The concrete definition that performs the operation described
I have used the technique on which this model is based to by the selector for a specific class. A method specifies how the

implement Gray [ert189] [ert197]; we have also used this tech- operation is performed for a specific class.
nique in Gforth.

This paper assumes (in some places) that you have read selector invocation
the paper on structures. [Editor's note: due to space constraints, A call of a selector. One argument of the call (the top-of-stack)
the Structures paper will appear in the subsequent issue.] is used for determining which method is used. In Smalltalk

terminology: a message (consisting of the selector and the
Why Object-Oriented Programming? other arguments) is sent to the object.

Often we have to deal with several data structures (objects),
that have to be treated similarly in some respects, but differ ". receiving object

in others. Graphical objects are the textbookexample: circles, The object used for determining the method executed by a
triangles, dinosaurs, icons, and others, and we may want to selector invocation. In our model, it is the object that is on
add more during program development. We want to apply the TOS when the selector is invoked. (Receiving comes from
some operations to any graphical object, e.g., draw for dis- Smalltalk's message terminology.)
playing it on the screen. However, draw has to do something
different for every kind of object. child class

We could implement draw as a big CASE control structure A class that has (inherits) all properties (instance variables,
that executes the appropriate code depending on the kind of selectors, methods) from a parent class. In Smalltalk termi-

Forth Dimensions XIW2 37

nology: The subclass inherits from the superclass. In C++ ter-
minology: The derived class inherits from the base class.

(If you wonder about the message-sending terminology, it
comes from a time when each object had its own task, and
objects communicated via message passing; eventually, the
Smalltalk developers realized they can do most things through
simple-indirect-calls. They kept the terminology.)

Basic Usage
You can define a class for graphical objects like this:

object class
\ "object" is the parent class

selector draw (x y graphical --)

end-class graphical

This code defines a class graphica l with an operation
draw. We can perform the operation draw on any graphi-
c a l object, e.g.:
100 100 t-rex draw

where t-rex is a word (say, a constant) that produces a graphi-
cal object.

How do we create a graphical obiect? With the present - A

definitions, we cannot create a useful graphical object. The
class graphica l describes graphical objects in general, but
not any concrete graphical object type (C++ users would call
it an abstract class); e.g., there is no method for the selector
draw in the class graphica l .

For concrete graphical objects, we define child classes of
the class graphical , e.g.:
graphical class
\ "graphical" is the parent class

cell% field circle-radius

:noname (x y circle --)

circle-radius @ draw-circle ;
overrides draw

:noname (n-radius circle --)

circle-radius ! ;
overrides construct

end-class circle

Here we define a class c i r c l e as a child of graphical,
with a field c i r c l e - r a d i u s (which behaves just like a field
in the structure package); it defines new methods for the se-
lectors draw and cons t ruc t (const ruct is defined in ob-
jec t , the parent class of graphical) .

Now we can create a circle on the heap (i.e., a l loca ted
memory) with
50 circle heap-new constant my-circle

heap-new invokes cons t ruc t , thus initializing the field
c i r c l e - r a d i u s with 50. We can draw this new circle at
(100,100) with
100 100 my-circle draw

Note: You can invoke a selector only if the object on the
TOS (the receiving object) belongs to the class where the selec-
tor was defined or to one of its descendents; e.g., you can in-
voke draw only for objects belonging to graphica l or its de-
scendents (e.g., c i rc le) . Immediately before end-clas s, the
search order has to be the same as immediately after c l a s s .

The Ob j ec t Class
When you define a class, you have to specify a parent

class. So how do you start defining classes? There is one class
available from the start: ob j ec t . You can use it as the ances-
tor for all classes. It is the only class that has no parent. It has
two selectors: cons t ruct and p r i n t .

Creating Objects
You can create and initialize an object of a class on the

heap with heap-new (... class -- object) and in the dictio-
nary (allocation with a l l o t) with dict-new (... class -- ob-
ject). Both words invoke const ruct , which consumes the
stack items indicated by ". . ." above.

If you want to allocate memory for an object yourself,
you can get its alignment and size with c l a s s - i n s t - s i z e
2 @ (class -- align size). Once you have memory for an object,
you can initialize it with i n i t - o b j e c t (... class object --);
const ruct does only a part of the necessary work.

Programming Style
This section is not exhaustive.
In general, it is a good idea to ensure that all methods for

the same selector have the same stack effect: when you in-
voke a selector, you often have no idea which method will be
invoked, so, unless all methods have the same stack effect,
you will not know the stack effect of the selector invocation.

One exception to this rule is methods for the selector con-
s t r u c t . We know which method is invoked, because we
specify the class to be constructed at the same place. Actu-
ally, I defined const ruct as a selector only to give the users
a convenient way to specify initialization. The way it is used,
a mechanism different from selector invocation would be
more natural (but probably would take more code and more
space to explain).

Class Binding
Normal selector invocations determine the method at

run time, depending on the class of the receiving object (late
binding).

Sometimes we want to invoke a different method. E.g.,
assume you want to use the simple method for pr in t ing
objects, instead of the possibly long-winded p r i n t method
of the receiver class. You can achieve this by replacing the
invocation of p r i n t with
[bind] object print

in compiled code, or
bind object print

in interpreted code. Alternatively, you can define the method
with a name (e.g., print-ob j ect), and then invoke it through
the name. Class binding is just a (often more convenient) way
to achieve the same effect; it avoids name clutter and allows
you to invoke methods directly without naming them first.

38 Forth Dimensions XIW2

A frequent use of class binding is this: When we define a
method for a selector, we often want the method to do what
the selector does in the parent class, and a little more. There
is a special word for this purpose: [parent] . [parent] se-
lec tor is equivalent to [bind] parent se l ec to r , where
parent is the parent class of the current class. E.g., a method
definition might look like:
: noname
dup [parent] foo .

\ do parent's foo on the receiving object
. . . \ do some more

; overrides foo

[mckewan97] presents class binding as an optimization
technique. I recommend not using it for this purpose unless
you are in an emergency. Late binding is pretty fast with this
model anyway, so the benefit of using class binding is small;
the cost of using class binding where it is not appropriate is
reduced maintainability.

While we are at programming style questions: You should
bind selectors only to ancestor classes of the receiving ob-
ject. E.g., say, you know the receiving object is of class f oo
or its descendents; then you should bind only to f oo and
its ancestors.

Method Conveniences
In a method, you usually access the receiving object pretty

often. If you define the method as a plain colon definition (e.g.,
with : noname), you may have to do a lot of stack gymnastics.
To avoid this, you can define the method with m: . . . ; m. E.g.,
you could define the method for drawing a c i r c l e with:
m: (x y circle --)

(x y) this circle-radius @ draw-circle
; m

When this method is executed, the receiver object is re-
moved from the stack; you can access it with t h i s (admit-
tedly, in this example the use of m: . .. ; m offers no advan-
tage). Note that I specify the stack effect for the whole method
(i.e., including the receiver object), not just for the code be-
tween m : and ; m. You cannot use e x i t in m : . . . ; m-instead,
use exitm.'

You will frequently use sequences of the form t h i s f i e l d
(in the example above: t h i s c i r c l e - rad ius) . If you use
the field only in this way, you can define it with ins t -var
and eliminate the t h i s before the field name. E.g., the c i r c l e
class above could also be defined with:
graphical class
cell% inst-var radius

m: (x y circle --)

radius @ draw-circle ;m
overrides draw

m: (n-radius circle --)

radius ! ;m
overrides construct

1. Moreover, for any word that calls catch and was defined before
I loading objects. f s, you have to redefine it like I redefined catch:
, : catch this > r catch r> to-this ;

Forth Dimensions XlW2

end-class circle

radius can only be used in c i r c l e and its descendent classes,
and inside m : . . . ; m.

You can also define fields with ins t -value , which is to
inst-var as value is to var iable . You can change the value
of such a field with [t o - ins t] . E.g., we could also define
the class c i r c l e like this:
graphical class

inst-value radius

m: (x y circle --)

radius draw-circle ;m
overrides draw

m: (n-radius circle --)

[to-inst] radius ;m
overrides construct

end-class circle

Names and Scoping
Inheritance is frequent, unlike structure extension. This

exacerbates the problem with the field name convention: One
always has to remember in which class the field was origi-
nally defined; changing a part of the class structure would
require changes for renaming in otherwise unaffected code.

To solve this problem, I added a scoping mechanism
(which was not in my original charter): A field defined with
ins t -va r is visible only in the class where it is defined and
in the descendent classes of this class. Using such fields only
makes sense in m :-defined methods in these classes, anyway.

This scoping mechanism allows us to use the unadorned
field name. because name clashes with unrelated words be-
come much less likely.

Once we have this mechanism, we can also use it for con-
trolling the visibility of other words: All words defined after
protec ted are visible only in the current class and its de-
scendents. pub l i c restores the compilation (i.e., current)
wordlist that was in effect before. If you have several
protecteds without an intervening pub l i c or se t -cur-
rent , pub l i c will restore the compilation wordlist in effect
before the first of these protecteds.

Interfaces
In this model, you can only call selectors defined in the

class of the receiving objects or in one of its ancestors. If you
call a selector with a receiving object that is not in one of
these classes, the result is undefined; if you are lucky, the
program crashes immediately.

Now consider the case when you want to have a selector
(or several) available in two classes: You would have to add
the selector to a common ancestor class, in the worst case to
objec t . You may not want to do this, e.g., because someone
else is responsible for this ancestor class.

The solution for this problem is interfaces. An interface is
a collection of selectors. If a class implements an interface,
the selectors become available to the class and its descen-
dents. A class can implement an unlimited number of inter-
faces. For the problem discussed above, we would define an

Figure One

(object selector-body)

2dup selector-interface @ (object selector-body object interface-offset)

swap object-map @ + @ (object selector-body map)

swap selector-offset @ + @ execute

interface for the selector(s), and both classes would imple-
ment the interface.

As an example, consider an interface s torage for writing
objects to disk and getting them back, and a class f oo that
implements it. The code for this would look like:
interface
selector write (file object --)

selector readl (file object --)

end-interface storage

bar class
storage implementation

... overrides write

. . . overrides read

end-class £00

parent, and a copy of the parent's method map. Defining new
fields extends the size and alignment; likewise, defining new
selectors extends the method map. overr ides just stores a
new XT in the method map at the offset given by the selector.

Class binding just gets the XT at the offset given by the
selector from the class' method map and compile, s it (in
the case of [bind]).

I implemented t h i s as a value. In an m: ... ; m method,
the old t h i s is stored to the return stack at the start and is
restored at the end; and the object on the TOS is stored TO
t h i s . This technique has one disadvantage: If the user does
not leave the method via ;m, but via throw or e x i t , t h i s is
not restored (and e x i t may crash). To deal with the throw
problem, I have redefined ca tch to save and restore th i s ; the
same should be done with any word that can catch an excep-
tion. As for e x i t , I simply forbid it (as a replacement, there is
exitm).

inst-var is just the same as f i e l d , with a different does>

40 Forth Dimensions XlW2

(I would add a word read (file -- object) that uses readl
internally, but that's beyond the point illustrated here.)

Note that you cannot use protec ted in an interface; and,
of course, you cannot define fields.

In the Neon model, all selectors are available for all classes;
therefore, it does not need interfaces. The price you pay in
this model is slower late binding and, therefore, added corn-
plexity to avoid late binding.

Implementation
An object is a piece of memory, like one of the data struc-

tures described with s t r u c t ... end-struct. It has a field ob-
j ect-map that points to the method map for the object's class.

The method map2 is an array that contains the execution
tokens (XTs) of the methods for the object's class. Each selec-
tor contains an offset into the method maps.

se l ec to r is a defining word that uses crea te and does>.
The body of the selector contains the offset; the does> ac-
tion for a class selector is, basically:
(object addr)

@ over object-map @ + @ execute

since ob ect-map is the first field of the object, it does
not generate any code. As you can see, calling a selector has a
small, constant cost.

A class is basically a s t r u c t combined with a method map.
During the class definition, the alignment and size of the
c l a s s a r e p a s s e d o n t h e s t a c k , j u s t a s w i t h ~ t ~ ~ c t s , s o f i e ~ d
can also be used for defining class fields. However, passing
more items on the stack would be inconvenient, so c l a s s
builds a data structure in memory, which is accessed through
thevariable current - in ter face . After its definition is com-
plete, the class is represented on the stack by a pointer (e.g.,
as parameter for a child class definition).

At the start, a new class has the alignment and size of its
2. This is Self [chambers&ungar89] terminology; in C++ terminol-
ogy: virtual function table.

action:
@ this +
Similar for i n s t-value.

Each class also has a wordlist that contains the words de-
fined with inst-var and inst-value~ and its protected

It has a pointer its parent. pushes the
wordlists of the class and all its ancestors on the search order,
and end-class drops them.

An interface is like a class without fields, parent, and pro-
tected words; i.e., it just has a method map. If a class imple-
ments an interface, its method map contains a pointer to the
method map of the interface. The positive offsets in the map
are reserved for class methods; therefore, interface map point-
ers have negative offsets. Interfaces have offsets that are
unique throughout the system, unlike class selectors, whose
offsets are only unique for the classes where the selector is
available (invocable).

This structure means that interface selectors have to per-
form one indirection more than class selectors to find their
method. Their body contains the interface map pointer off-
set in the class method map, and the method offset in the
interface method map. The does> action for an interface se-
lector ias in Figure One] where Obj ect-map and
s e l e c t o r - o f f s e t are first fields and generate no code.

As a concrete example, consider the following code:
interface
selector iflsell
selector i fl sel2

end-interf ace if 1

object class
if1 implementation
selector cllsell
cell% inst-var cl 1 ivl

' ml overrides construct

m2 o v e r r i d e s i f l s e l l
m3 o v e r r i d e s i f l s e l 2
m 4 o v e r r i d e s c l l s e l 2

end-c las s c l l

c r e a t e o b j l o b j e c t d i c t -new d r o p
c r e a t e o b j 2 c l l d i c t -new d r o p

SIGPLAN '89 Conference on Programming Language Design and
Implementation, pages 146-160, 1989.

[ert189] M. Anton Ertl. http://www.complang.tuwien.ac.at/pa-
pers/ertl89.ps.Z "GRAY - ein Generator fiir rekursiv absteigende
Ybersetzer." Praktikum, Institut fiir Computersprachen,
Technische Universitat Wien, 1989. In German.

I - -. suming a cell size of four. "

The data structure created by this code (including the data
structure for ob jec t) is shown in the figure [o ~ ~ o s i t e l ~ as-

-

Related Work

[ertl97] M. Anton Ertl. http://www.complang.tuwien.ac.at/pa-
pers/ertl97.ps.gz "GRAY - ein Generator fiir rekursiv absteigende
Ybersetzer." In Forth-Tamny, Ludwirrshafen. 1997. In German.

For a comparison with the Neon model, you just have to
compare the properties of the Neon model presented in the
last issue with the properties presented here.

Another well-known publication is [pountain87]. How-
ever, it is not really about object-oriented programming, be-
cause it hardly deals with late binding. Instead, it focuses on
features like information hiding and overloading that are
characteristic of modular languages like Ada (83).

There are also many other papers on object-oriented Forth
1 extensions; E.g., [rodriguez&poehlman96] lists 17 and

[mckewan97] lists six. In the rest of this section, I will discuss
two systems that have the implementation using method
maps in common with the package discussed here.

The model of [zs6tCr96] makes heavy use of an active ob-
ject (like t h i s in my model): The active object is not only
used for accessing all fields, but also specifies the receiving
object of every selector invocation; you have to change the
active object explicitly with I ...) , whereas in my model it
changes more or less implicitly at m : . . . ; m. Such a change at
the method entry point is unnecessary with the [zs6ter96]
model, because the receiving object is the active object al-
ready; on the other hand, the explicit change is absolutely
necessary in that model because, otherwise, no one could ever
change the active object.

The model of [paysan94] combines information hiding
and overloading resolution (by keeping names in various
wordlists) with object-oriented programming. It sets the ac-
tive object implicitly on method entry, but also allows ex-
plicit changing (with >o ... o> or with with ... endwith). It
uses parsing and state-smart objects and classes for resolving
overloading and for early binding: the object or class parses
the selector and determines the method from this. If the se-
lector is not parsed by an object or class, it performs a call to
the selector for the active object (late binding), like [zs6ter96].
Fields are always accessed through the active object. The big
disadvantage of this model is the parsing and the state-smart-
ness, which reduces extensibility and increases the opportu-
nities for subtle bugs; essentially, you are only safe if you never
tick or postpone an object or class.

Acknowledgments
Marcel Hendrix provided helpful comments on the paper.

Andrds Zs6ter and Bernd Paysan helped me with the related
works section.

I

References
[chambers&ungar89] Craig Chambers and David Ungar.
"Customization: Optimizing compiler technology for Self, a
dynamically-typed object-oriented programming language. In

[mckewan97] Andrew McKewan. "Object-oriented program-
ming in ANS Forth." Forth Dimensions, March 1997.

[paysang41 Bernd Paysan. "Object oriented bigFORTH." Vierte
Dimension, 10 no. 2, 1994. An implementation in ANS Forth
is available at http://www.informatik.tu-muenchen.de/
paysan/oof.zip.

[pountain87] Dick Pountain. Object-Oriented Forth. Academic
Press, London, 1987.

[zs6tCr96] Andrds Zs6ter. "Does late binding have to be slow?"
Forth Dimensions, 18 no. 1 pp. 31-35, 1 1996. An implemen-
tation in ANS Forth is available at http://www.forth.org/fig/
oopf .html.

I

1 NOW fr01-11 FORTH, I

[rodriguez&poehlman96] Bradford J. Rodriguez and W. F. S.
Poehlman. "A survey of object-oriented Forths." SIGPLAN No-
tices, pages 39-42, April 1996.

Inc

...g ive you the easiest-
to-use programming
software for the
easiest-to-use PCs!

Power MacForth for fast, optimized native Power PC code
Full Mac Toolbox support, including System 7 PPC
interface
Powerful multitasking support
Integrated source editor, trace & debugging tools
High-level graphics and floating point libraries
Wealth of demo programs, source code & examples
Extensive documentation, including online Glossary
Turnkey capability for royalty-free distribution of
programs

FORTH, Inc.
11 1 N. Sepulveda Blvd, #300
Manhattan Beach, CA 90266

1 800-55-FORTH 31 0-372-8493
FAX 310-31 8-71 30 forthsalesQforth.com

Forth Dimensions XlW2

ob'ect
interface-map

class-parent

header interface-map if1 sell
object-map if1 se12

if1 sell if1 se12 / header El header El
selector-offset selector-offset

selector-interface selector-interface

interface-map
class-oarent -

class in;<& billxj / I7Z-I print

Glossary
bind (. . . "class" " selector" -- . .)
Execute the method for selector in class.

obi1 cll sell

<bind> (class selector-xt -- xt)

xt is the method for the selector selector-xt in class.

header
object-map

bind' ("class" "selector" -- xt)

xt is the method for selector in class.

[bind] (compile-time: "class" "selector" --)

(run-time: . . . - - . . .)

Compile the method for selector in class.

ell ivl selector-interface header H class

...
-

class (parent-class -- align offset)

Start a new class definition as a child of parent-class. align
offset are for use by field, etc.

selector-off set

class->map (class -- map)

map is the pointer to class's method map; it points to the
place in the map to which the selector offsets refer (i.e., where
ob j ect-maps point).

class-inst-size (class -- addr)

Usedasclass-inst-size 2 @ (class -- align size) ,

gives the size specification for an instance (i.e., an object) of
class.

class-override! (xt sel-xt class-map --)

xt is the new method for the selector sel-xt in class-map.

construct (. . . object --)

Initializes the data fields of ob j ect. The method for the class
object just does nothing (object --) .

sell
se12

current' ("selector" -- xt)

xt is the method for selector in the current class.

[current] (compile-time: "selector" --)

(run-time: . . . -- . . .)

Compile the method for selector in the current class.

current-interface (-- addr)

This variable contains the class or interface currently being
defined.

dict-new (. .. class -- object)

allot and initialize an object of class class in the dictionary.

drop-order (class --)

Drops class's wordlists from the search order. No check is made
whether class's wordlists are actually on the search order.

end-class (align offset "name" --)

name execution: -- class
Ends a class definition. The resulting class is class.

end-class-noname (align offset -- class)

Ends a class definition. The resulting class is class.

end-interface ("name" --)

name execution: -- interface
Ends an interface definition. The resulting interface is
interf ace.

end-interface-noname (-- interface)

Ends an interface definition. The resulting interface is
interface.

42 Forth Dimensions XlW2

- -- - -. . -. .- . -

exitm (--)
e x i t from a method; restore old t h i s .

heap-new (. . . c l a s s -- o b j e c t)

a l loca t e and initialize an object of class c l a s s .

implementation (i n t e r f a c e --)

The current class implements i n t e r f ace . 1.e.' you can use all
selectors of the interface in the current class and its descendents.

i n i t -ob jec t (. . . c l a s s o b j e c t --)

Initializes a chunk of memory (object) to an object of class
class; then performs cons t ruc t .

inst-value
(a l i g n l o f f s e t l "name" -- a l ign2 o f f s e t 2)

name execution: -- w
w is the value of the field name in t h i s object.

inst-var
(a l i g n l o f f s e t l a l i g n s i z e "name" --

a l ign2 o f f s e t 2)

name execution: -- addr
addr is the address of the field name in t h i s object.

i n t e r f ace (--)

Starts an interface definition.

; m (colon-sys --) (run-time: --)

End a method definition; restore old t h i s .

m: (-- x t colon-sys) (run-time: ob jec t --)

Start a method definition; o b j e c t becomes new t h i s .

method (x t "name" --)

name execution: . . . ob j e c t -- . . .
Creates selector name and makes x t its method in the cur-
rent class.

objec t (-- c l a s s)

The ancestor of all classes.

over r ides (x t " s e l e c t o r " --)

Replace default method for s e l e c t o r in the current class

with x t . ove r r ides must not be used during an interface
definition.

[parent] (compile-time: " s e l e c t o r " --)

(run-time: . . . o b j e c t -- . . .)

Compile the method for s e l e c t o r in the parent of the cur-
rent class.

p r i n t (o b j e c t --)

Prints the object. The method for the class ob j e c t prints the
address of the object and the address of its class.

p ro t ec t ed (--)

Set the compilation wordlist to the current class's wordlist

p u b l i c (--)

Restore the compilation wordlist that was in effect before the
last protected that actually changed the compilation wordlist.

push-order (c l a s s --)
Add class 's wordlists to the search-order (in front).

s e l e c t o r ("name" --)

name execution: . . . o b j e c t -- . . .
Creates selector name for the current class and its descen-
dents; you can set a method for the selector in the current
class with ove r r ides .

t h i s (-- o b j e c t)

The receiving object of the current method (a.k.a. active object).

< t o - i n s t > (w x t --)

Store w into the field x t in t h i s object.

[t o - in s t] (compile-time: "name" --)

(run-time: w --)

Store w into field name in t h i s object.

t o - t h i s (ob jec t --)

Sets t h i s (used internally, but useful when debugging).

xt-new (. . . c l a s s x t -- o b j e c t)

Makesanewobje~t~us ingxt (a l i g n s i z e -- addr) to
get memory.

Finally, an Executive Recruiter Who Represents You
the Way You Would Represent Yourself!

Contact:
Kevin Martin
Application Development Desk Specialist Former programmer/consu~t now works for you.
Management Recruiters of Los Angeles
100 Corporate Pointe, Suite 380

I focus on finding opportunities rather than jobs.
Culver City, California 90230 Strong conceptual skills.
office: 800-245-2129 (8 a.m. - 5 p.m. PST only) I have the contacts, now I need you.
office: 31 0-670-3040, ext. 21 9 (anytime)
fax: 31 0-670-2981 NO cost to YOU.
e-mail: byl989COpacificnet.net
CIS: 72020.461

Forth Dimensions XIXI2 43

EuroForth, the annual European Forth Conference

will focus this year on the increasing use of

communications within applications,

ranging from embedded controllers connected to

the outside world through modems,

to Internet payment engines delivering

secure cash transfers from domestic PCs,

and includina the ~rocess-control -
environment which connects peripherals

a s diverse a s door-access controllers,

mass spectrometers, commercial laundry

controllers, a n d walking robots to

management systems.

Conference proceedings will be published, and will
be available immediately after the conference from
the Conference Organiser. They will also be published
by the Forth Interest Group. There is a refereed
section of the proceedings, for those who desire peer
review of their work.

Delegates from all parts of Europe and North America
are expected. EuroForth is a friendly conference at
which time is made available for meeting people, for
informal discussions, and for contacts. Enjoy the
casual pleasure of punting on the River Cherwell on
Friday evening and the formal elegant dinner at
St. Edmund Hall on Saturday.

EuroForth '97 is being held in the lovely setting of
St. Anne's College, Oxford. St. Anne's was founded in
1879, and was the first Oxford institution to offer
University education to women. In 1979, it opened
its doors to men, as well. This college is within easy
walking distance to the city centre, yet is free from
the crowds of central Oxford.

These and many more are the domain of modern
Forth systems, and papers are sought about the
following topics:

Embedded networking-
including Fieldbusses a n d e m b e d d e d TCPIIP
Portable software tools
New development environments
Formal methods
Virtual machines
Any Forth-related topic

