

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 2000"" 16-bit Forth Chip ~ ~ 3 2 " " 32-bit Forth Microprocessor
98 or 10 MHz operation and 15 MIPS speed. 08 or 10 MHz operation and 15 MIPS speed.
1-cycle 16 x 16 = 32-bit multiply. lk lock cycle instruction execution.

01-cycle 14-prioritized interrupts. *Contiguous 16 GB data and 2 GB code space.
*two 25Sword stack memories. *Stack depths limited only by available memory.
*&channel I/O bus & 3 timer/counters. *Bus requestlbus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. 032-bit SC32 industrial grade Forth PGA CPU.
*System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
032 KB to 1 MB 0-wait-state static RAM. 032 KB to 512 KB 0-wait-state static RAM.
*Full-length PC/XT/AT plug-in (Slayer) board. *100mm x 160mm Eurocard size (4-layer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (Parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. 032-bit SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
*Up to 640 KB 0-wait-state static RAM. 064 KB to 1 MB 0-wait-state static RAM.
-233mm x 160mm 6U size (6-layer) board. *Full-length PC/XT/AT plug-in (6-layer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
*RTX 2000 PLCC or 2001A PLCC chip. *RTX 2000 industrial grade PGA CPU.
-System speed options: 8, 10, or 12 MHz. *System speed options: 8, 10, or 12 MHz.
-32 KB to 256 KB 0-wait-state SRAM. -32 KB to 512 KB 0-wait-state static RAM.
*100mm x 100mm size (4-layer) board. 100mm x 160mm Eurocard size (4-layer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 655 W. Evelyn Ave. #7, Mountain View, CA 94041 (415) 961-8778

b

Features

Safety Critical Systems, PART TWO Paul E. Bennett 9 The author argues that Forth is eminently suited to tasks which require formal certification as
reliable and safe. He elucidates the requirements of such "safety critical systems," discusses
various models and environmental influences, and shows how he uses Forth to minimize risk
and liability.

More Than a Simple State Machine Devin Wilson
Could a fifteen-year-old program a traffic-intersection controller? He could if he were a
homeschooler learning Forth! John Rible's state machine engine and C.H. Ting's hardware
provide an environment in which to learn more about Forth and real-world mechanisms and
how subtle design decisions influence our lives.

18 A CGI Shell for the Apple Macintosh Ronald 7: Kneusel
The World Wide Web is more than passive, interlinked documents: it is interaction between
server and client. CGI applications can amplify the degree of interactivity, providing increased
value to the users and earning prestige for the Web site. This Mac shell might inspire you to
stretch both your imagination and the Web.. . (CGI experts: how about an on-line ANS Forth
tutorial with self-checking programming exercises?)

e ** PC Floppies for non-DOS Hardware Dwight Elvey
Custom embedded systems ofien can benefit from a floppy disk drive during development
and for data logging during operation. You can easily avoid the labor and expense of a custom
interface by using hardware generally available for PCs. The author steps you through the
formats, port addresses, and other considerations that will arise with a project like this one.

30 hForth: a Small, Portable ANS Forth Wonyong Koh
hForth is a minimalistic, public-domain ANS Forth based on eForth and intended for embedded
systems. The basic ROM and RAM models are designed for portability, but can be optimized for
specific CPUs, as demonstrated by the 8086 EXE model. The author incorporated ideas and
techniques contributed by the Forth community, including an elegant new multitasker.

Departments I
4 Editorial Input and outreach.

4 dot-quote Unix could use Forth.. .

5 Letters Mousetrap myth; Java learns from Forth, Forth may benefit.

5 Product Watch

6 Stretching Forth Circular string buffer.

21 Advertisers lndex

34 Forthware Controlling DC motors.

Forth Dimensions 3 July 1996 August

Forth Dimensions
Volume XVIII, Number 2

July 1996 August

Input and Outreach
In our continuing search for articles on a variety of topics, we were pleased to receive

Ron Kneusel's contribution about Forth CGI scripts for Web pages. The Forth Interest
Group's collection of pages already incorporates form handlers written in Forth, and it
was good to find additional work being done in this contemporary field. See the article
in this issue to learn how CGI expands the capabilities of Web publishers and users.

A key to the World Wide Web's dynamic nature is the hyperlink. (Mouse users click
on links to follow pathways of information from computer to computer.) What gives a
Web page value-its content-doesn't mean it can be found easily by net denizens. To
get readers, one can publish the Internet-style address (e.g., FIG'S http://www.forth.org/
fig.htm1) and convince designers of other, related Web pages to include a hyperlink to
your site. In the first case, people already need to be reading information you publish
in order to find your Web site; in the second case, your contact information is included
on sites where potentially thousands of new people can find you.

Now that Forth has a distinct presence on the net, it's important to let others know
about it. During your Internet explorations and research, keep in mind that you can ask
a relevant site's administrator to include a link to the non-profit Forth Interest Group's
site. Once there, browsers will encounter a plethora of info about Forth and FIG, a good
deal of software, and links to other Forth pages. Asking someone to install a link to the
FIG Home Page will make it-and Forth-accessible to many more people.

As one letter writer notes in this issue, people only learn about Forth if we educate
them. And a larger community will preserve our ability to continue and expand all our
activities, both on-line and off.

-Marlin Ouverson, Editor
edito@fortb.org

dot-quote I
1

... Forth in itself is an application. In my opinion, Forth would be an excellent shell
in a Un*x environment it probably will not replace C in such systems, but it can
find its place in a toolbox among sh, awk, and perl.

-Andrds Zsdter (h929024663hkuxa. hku. hk)

After reading The UNlX Philosophy by Mike Gancarz, I reached similar conclu-
sions. Forth fits in, as I view it now, as a scripting language that really hits its stride
in hardware-oriented or constrained applications, or where operations on files are
largely irrelevant. When Forth programmers complain that the code they wrote with
such painstaking attention to readability was rewritten several years later in C, they
are complaining that it has the typical life cycle of scripting languages. An SL quickly
proves that a problem can be solved, and does so with minimal development
resources. Later, when other priorities (like availability of non-specialist program-
mers to maintain it and fine-tune performance) become higher, they re-code it in C
and assembly. Sometimes the SL fits the problem so well that this final stage i s
unnecessary or is a step backwards in performance.

... Forth, to some extent, developed the notions behind Un*x alias and MS-DOS
doskey but earlier and more comprehensively and efficiently, building a whole
language around short, modular macros. The language the Forth programmer has
available for writing macros and compiler directives, unlike C, is a complete
language with sequential, iterative, and logical alternative flow control available, as
well as the full set of normal operators. Hence, the language can transmute itself as
needed without having to write a special preprocessor file operation, and simulates
the ability of the human mind to alter its beliefs, viewpoints, and knowledge as
experience dictates. I believe this last point is part of the fascination of Forth.

-Dallas E. Legan (dlegan@heart.engr.csulb.edul
Adapted from comp. lang. forth with permission.

July 1996 August 4

Published by the
Forth Interest Group

Editor
Marlin Ouverson

Circulation/Order Desk
Frank Hall

Forth Dimensions welcomes edi-
torial material, letters to the editor,
and comments from its readers.
No responsibility is assumed for
accuracy of submissions.

Subscription to Forth Dimemions
is included with membership in
the Forth Interest Group at $45
per year ($53 Canada/Mexico, $60
overseas air). For membership,
change of address, and to submit
items for publication, the address
is: Forth Interest Group, P.O. Box
2154, Oakland, California 94621.
Administrative offices:
510-@-FORTH Fax: 510-535-1295

Copyright Q 19% by Forth Interest
Group, Inc. The material contained
in this periodical (but not the code)
is copyrighted by the individual
authors of the articles and by Forth
Interest Group, Inc., respectively.
Any reproduction or use of this
periodical as it is compiled or the
articles, except reproductions for
non-commercial purposes, with-
out the written permission of Forth
Interest Group, Inc. is a violation
of the Copyright Laws. Any code
bearing a copyright notice, how-
ever, can be used only with per-
mission of the copyright holder.

The Forth Interest Group
The Forth Interest Group is the
association of programmers, man-
agers, and engineers who create
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that
will advance the general state of
the an. FIG provides a climate of
intellectual exchange and benefas
intended to assist each of its mem-
bers. Publications, conferences,
seminars, telecommunications, and
area chapter meetings are among
its activities.

"Fo&Dimensions(ISSN 0884-0822)
is published bimonthly for $45/
53/60 per year by the Forth Interest
Group, 4800 Allendale Ave.,
Oakland, CA 94619. Second-class
postage paid at Oakland, CA.
POSIMASTER: Send address changes
to Forth Dimensions, P.O. Box
2154, Oakland, CA 94621-0054."

6% Forth Dimensions

Sendyourfeedback, questions, criticisms, andotherresponses
to editor@forth.org or to the editor in care of the Forth Interest
Group, P.O. 60x2154, Oakland, California 94621. Lettersmay
be edited for clarity and length.

Mousetrap Myth
Dear Editor,

I enjoyed reading Phil Monson's letter in the May/June
issue. His is an interesting and sadly typical Forth story.

My question to Phil is, who knew about his great
success? Where did he publish the papers, in what
magazines did the articles appear? If he was counting on
his colleagues and superiors to spread the word, I am not
surprised he was disappointed that the word didn'tspread!

We are all too ready to believe the myth that excellence
is its own reward, "if you build a better mousetrap the
world will beat a path to your door." The problem is that,
somehow, the world needs to know about this mousetrap.

The answer to Phil's basic question, which is an impor-
tant one, is that Forth "has not come into wider acceptancen
because successes such as Phil's are not communicated to
the world at large. Any one of us who knows such stories,
and cares about the world knowing, should assume respon-
sibility for telling the world. There are many ways to do this,

specific processors, briefly mentions Sun's previous in-
volvement with Forth-and then backpedals, arguing that
these points were of little help, since Java is an "object
language." (I'm always a bit shocked at people's inability
to realize what a truly extensible language is capable of.)
There was no mention in Electmnic Products that this
language-specific processor development has been going
on for roughly ten years in the Forth world.

One of the main themes of the Business Week article
was Sun's carefully calculated assault on the Wintel
computer model, and I think this may be good news for
the future of other language-specific chips. There already
has been a fair amount of posting on comp.lang.forth for
Forth-to-Java byte-code compilers and vice-versa. I don't
really know what finding another language generating
byte code for its machines (virtual or actual) would do to
Java's security measures, or whether this capability would
suddenly open a lot of new opportunities for Forth. I think
it would have big implications for both. Remote procedure
calls would seem to be fairly trivial compared to sending
an entire program over a network, and being able to send
Forth object code through a Java byte-code verifier to
check safety might be useful for some Forth applications.
I remember someone, at a Los Angeles FIG meeting years
ago, saying that Forth, as an extension of the debug
monitor when you first turn the processor on, will always
be at the cutting edge of hardware development.

-Dallas E. Legan (dlegan@heart.engr.csulb.edu)

from articles submitted to academic publications and the
trade press, to letters to the editor, to Internet newsgroups
(and not just comp.lang.forth!).

Every Rochester conference, and many issues of FD,
features such success stories. Unfortunately, in these
forumsweareonly ~reachingtoourselves.TelleverYone
else! If you need specific suggestions as to how, please let
me know. I'd love to help!

-Elizabeth Rather (erathen@forth.com)

Java Learns from Forth,
Forth May Benefit, Too

Reading the feature Story On Sun executive Scott
McNealy in Business Week (22 Jan. 's), one comment
stuck in my mind. The Son of an American Motor C0rp0-
ration executive stated, "If you're going to make automo-
biles, you have to make your own engine."

~t the time, I thought this dealt with Sun's attempts to
buy out Apple. What he really meant was clarified by a
One-page article in the April 1336 issue of Electmnic
Products, "Hardware Processors poise to widen Java
appealn by Rodney M~rvaagnes, announcing Sun's alter-
native to their own Java Virtual Machine. A careful re-
reading of the Business Week article showed that this
possibility was very briefly mentioned. The gradually
accelerating hype, including the "Net Computer" and the
sudden bombardment of books by SunSoft Press, then
snapped into focus for me.

The Electmnic Products article spent about a para-
graph discussing the precedent set by Forth for language-

Forth Dimensions

l?~@d@~ff w ~ m ~ h
May I, 199&Forth, Inc. signed an agreement with
Creative Solutions, Inc. (CSI) to acquire CSI's Forth
systems for Macintosh computers. include ~ ~ ~ ~ ~ r t h
Plus (first introduced in 1984) and Power MacForth
(194) for Power Macintoshes. Both are fully integrated
with the Mac environment, with simple access to Mac
~ ~ ~ l b ~ ~ functions.

The original MacForth was the first resident software
development product for Macintoshes, and has been used
in large-volume spreadsheets, rendering and design,
CAD/CAM, games, medical diagnostics, image enhance-
ment, accounting, desktop planetariums, and process
control. Power MacForth is a native Power Macintosh
system that f e a ~ r e s high-speed execution, internal multi-
tasking, and a RISC assembler providing direct access to
the native cPU architecture for maximum performance.

Forth, Inc.'s product lines include polyForth for PCs,
&ipForth cross-development systems for micro-
controllers, Express for industrial control applications,
and ProForth for Windows-based applications. The
company also provides application design, program-
ming courses, and custom software development.

Forthl Inc.
1 1 1 N. Se~ulveda Blvd. #300
Manhattan Beach, California 90266
800-55-Forth Or 310-372-8493
http://home.earthlink.net/-forth

5 July 1996 August

I

Circular String Buffer
Wil Baden
Costa Mesa, California

This month's article features a classic gem of Forth
code-a circular string buffer. It or an equivalent imple-
mentation is built into several veteran systems and is well
known to most Forth masters. However, it is valuable to
realize it in Standard Forth. To me it is necessary for the
kind of work I do with Forth: massaging text files and
macro processing. I want to make sure that it is available
for me in future articles.

I use it to make a replacement for the function of PAD
without the shortcomings of PAD.

It is used to move strings from the input source or other
transient area to a safe place.

An immediate use of >PAD is to implement interpreta-
tion semantics for S" as in the File Access wordset. The
circular string buffer provides buffers as needed, so S " can
be safely used several times interpretatively without fear
of overwriting.

As long as we're in the neighborhood, we tweak S" to
let us quote quotes. S is like S" except that it takes as its
delimiter the next character in the parse area. PARSE-CHAR
is a Standard Forth kludge to get the next character from the

I Listing One. Circular string buffer. I I parse area. Eventually we'll want something better.

1 (C i r c u l a r S t r i n g B u f f e r) I
1 1000 CONSTANT /CSB I
1 CREATE CSB 0 , /CSB CHARS ALLOT I

7 : GET-BUF (n -- c-addr)
8 DUP CSB @ > I F /CSB CSB ! THEN
9 NEGATE CSB t! ()

10 CSB CELL+ CSB @ CHARS + (c-a ddr)
11

13 : >PAD
1 4 DUP GET-BUF SWAP
15 2DUP >R >R
1 6 CHARS MOVE
1 7 R> R>
18 ;

/CSB is the size of the buffer. The value used here has
been more than adequate for everything I've done, and
could probably be much less.

GET-BUF takes a number and returns a character
address within the circular string buffer. The number is
how many characters can be moved there. Error checking
is left as an exercise to the reader.

GET-BUF is an implementation factor of >PAD and S+
(catenation). GET-BUF has CSB and /CSB as implemen-
tation factors.

>PAD finds room for a string in the circular string
buffer, copies it there, and returns the address and length.

For instance,
S (D o n ' t say " H e l l o W . l TYPE

displays
D o n ' t say "He l lo" .

as desired.
The delimiter for S can be a blank, as in S f i l e -name

INCLUDED for example. Note that there are exactly two
spaces after S but only one space is needed before
INCLUDED.

S "ccc" is the same as S" ccc".

Forth Dimensions 6 July 1996 August

Listing Two. String literals. I
2 0 : S" ("ccc<quote>" -- I c-addr u)

2 1 [CHAR] " PARSE (somewhere-in-input-buffer u)
2 2 STATE @ IF
2 3 POSTPONE SLITERAL ()
2 4 ELSE
2 5 >PAD (c-addr u)
2 6 THEN
2 7 ; IMMEDIATE

2 9 : PARSE-CHAR (-- char)

3 0 (Beware: Undefined at end of parse area.)

3 1 SOURCE DROP >IN @ CHARS + C@ (char)
3 2 1 >IN + !
3 3 ,

3 5 : S ("<char>ccc<char>" -- I c-addr u)

3 6 PARSE-CHAR PARSE (somewhere-in-input-buffer U)
3 7 STATE @ IF
3 8 POSTPONE SLITERAL ()

3 9 ELSE
4 0 >PAD (c - addr u)
4 1 THEN
42 ; IMMEDIATE

The circular string buffer is used for string catenation.
For instance, to put quotes around a string:

S ' " ' 2SWAP S+ S ' " ' S+

To replace the last three characters of a string with
"4thn, shorten the string and catenate "4th":

3 - S" 4th" S+

S+ finds room in the circular string buffer for the catenated
string and moves it in.

Listing Three. String catenation. I
44 : S+ (sl ul s2 u2 -- s3 u3)

45 2 PICK OVER + (= ul+u2) >R (R: ul+u2)
4 6 R@ GET-BUF >R (R: ul+u2 buf)
4 7 2 PICK (= ul) CHARS R@ + (. . s2 u2 bu£+ul)
4 8 SWAP CHARS MOVE (sl ul)
4 9 R@ SWAP (sl buf ul) CHARS MOVE ()

5 0 R> R> (s3 u3) (R:)

51 ;

Forth Dimensions 7 July 1996 August

You may want to replace PAD with a definition based
on CSB. This PAD returns the same address as the last
>PAD or GET-BUF. (Continued.)

Wil Baden is a professional programmer with an interest in Forth.
wi~baden@netcom~com

Listing Four. Example.

: PAD CSB CELL+ CSB @ CHARS + ; (-- buf)

128 CONSTANT line-length
: checked ABORT" (File Access Error) " ;
0 VALUE IN (File-id)

: numbered-list (-- 1
0 BEGIN (Inurn)

line-length 2 + GET-BUF (lnum buf)
line-length IN READ-LINE checked

WHILE (lnum len)
1 UNDER+
DUP IF

OVER 4 .R SPACE
THEN
PAD SWAP (. buf len) TYPE

REPEAT
2DROP
IN REWIND

,

S csb.4th R/O OPEN-FILE checked TO IN
numbered-list

(lnum)
(lnum len)
()

Appendix

: UNDER+ ROT + SWAP ; (a b c - - a + c b)
: REWIND ?DUP IF 0 0 ROT REPOSITION-FILE ABORT" Can't rewind. " THEN ;

...g ive you the easiest-
to-use programming
software for the
easiest-to-use PCs!

Power MacForth for fast, o
Full Mac Toolbox support,

Powerful multitasking support
Integrated source editor, trace & debugging tools
High-level graphics and floating point libraries
Wealth of demo programs, source code & examples
Extensive documentation, including online Glossary
Turnkey capability for royalty-free distribution of

Support for older systems
Hands-on hardware and software

Computing on the Small Scale
Since 1983

Subscriptions
1 year $24 - 2 years $44

All Back Issues available.

TCJ
The Computer Journal

P.O. Box 3900
Citrus Heights, CA 9561 1-3900

800-424-8825 1 91 6-722-4970
Fax: 91 6-722-7480
BBS: 91 6-722-5799

July 1996 August 8 Forth Dimensions

Safety Critical Systems

Paul E. Bennett
Bristol, United Kingdom

- ~p

Forth Dimensions

[Mr. Bennett's article in the preceding issue should have
been accompanied by an illustration depicting an engi-
neering organizatiortsee Figure Three of this install-
ment. We regret its previous omission and any confusion
this may have caused./

System Architecture and Organisation
Systems, societies, and manufacturing companies are

all organised in some fashion. There are many models of
implementing the management structure. Likewise, a
control system, like a management system, can be based

9 July 1996 August

Hierarchical Process Control System
For many process control situations, there is a distinc-

tive hierarchy tothe plant (see FigureTwo). This hierarchy
should also be reflected in the control system organisation.
The top of the pyramid will be the Control Room and
Management Information Systems. At the bottom layer
will be the measuring instrumentation, control actuators,
and the protection systems. In between may be group
control systems, which organise the gathering and group-
ing of collected data and the overseeing that limits are not
exceeded by the underlying controllers (by calling upon

on many models. Two main models seem to predominate
in both management and control systems. These are the
Flat Model and the Hierarchical Model.

Flat Model Control Systems
A few types of control system requirements are simple

enough for a flat control model (see Figure One) to be
adopted. A flat model incorporates the user interface,
process interface, and controller all in the same package
(probably with the same microprocessor at its heart).
Examples of such a control system may be the oven timer
for a cooker unit or the controls of a washing machine.
This is not necessarily the case, but it may be.

protective measures to be taken).
In the diagrams for both the above models, I have

shown a Safety Interlocking Network. This can be likened
to the outside influences on a company, such as the
manufacturing company of Figure Three, by imposition of
standards and legislation through the normal legal pro-
cesses. It is where a lot of analysis and design effort needs
to be concentrated to establish a truly protective system.
For many installed systems, it can be difficult to identify
these protective measures because they seem to be part of
the control system itself.

Hardware and Software Selection
Choice of hardware and software for a Safety Critical

System should be made as a combination. No software can
Figure One. Flat-model-architecture control system.] run without supporting

Central Control Processor

I , I InputIOutput Ports

1.________,_________IIIIII.IIIIIIIIIIIIIII..------L---...---,--...----A-----.---j
End Effector Nodes Hardwire Interlock Net

hardware, and program-
mable hardware does not
do anything without a
programme. Little thought
should be given in the
early stages of a design as
to whether functions will
be performed by hard-
ware or software. Look-
ing on the design exer-
cise as the generation of
a specification that will
enable the construction
of a system to perform
the required functions,

Figure Two. Hierarchical-model control system. I
Central
Control
Room

1

July 1996 August 10 Forth Dimensions

Figure Three. Engineering organisation model.

Environmental Interactions
Government Competitor Interest Shareholders The City
& Legislation Activity Rates

1 J.

Group
Control
Modules

Group
Control
Modules

Plant Item Plant Item Plant Item Plant Item Plant Item Plant Item Plant ltem
Contrd Control Contrd Control Control Control Contrd

1 1 1 1 M & e 1 1 1 M e 1

1 MJ

1

Mc L J e

M&le 1

I I I I I I I

Hardwire Interlock Net

-

-

Group
Control

Product
Design

3 t 't

Manufacturing
Systems

DesignIRedesign

Mod

Market

I

I .

~ l e s

C

1 I
‘.- Analysis

- -

Suppliers

Product
R&D

-

Materials Flow
Management

Marketing

Assembly

Needs

Promotion

c
Competitor

Manufacturing

I

I -

Sales Process &
Sales Channels u w

T T T T
Support Operations Processes

Supplier Finance & lit^ ~ ~ d i t Personnel Development
Development Administration & Administration -

the whole task can be considered software (or, better still,
logics) until definite decisions can be made about what to
migrate to hardware and what to keep in software.

It is important that the system hierarchy, once de-
signed, should be carried through the system design. This
also enables the partitioning of the design personnel into
separate design teams (with a multiplicity of disciplines).
A whole systems philosophy will emerge for the system

Test

because of the hierarchy.
It is important to review the direction of each team on

a very regular basis and to keep control over what docu-
ments they are generating, what level they are working at,
and whether or not the section they are doing fits with the
rest of the design by other teams. Often a choice will need
to be made on a selection of options. Good information is
required about the options on offer, and rapid prototyping

Distribution Despatch

can provide some data about the problem. Do not use the
rapid prototype in production designs, but use the data it
generates to produce a better design.

Design Stages
Whatever the model chosen, the design stages should

follow a lifecycle model for the design, implementation,
and modification or decommissioning. The lifecycle model
considers all stages from concept through analysis, design,
implementation, verification and validation testing, com-
missioning operation, maintenance, and decommission-
ing. Some tasks will be performed throughout the whole
lifecycle, although at varying levels.

These continuous tasks are hazard identification, risk
analysis and evaluation, risk monitoring, and incident
reporting. HAZOPs, fault trees analysis, event tree analy-
sis, and failure modes and effects criticality analysis are all
means by which the disparate information about hazards
and potential hazards can be evaluated, compared, and
mitigating measures evaluated for effectiveness. This not
only covers hardware, but software and maintenance
procedures as well.

Software Issues
(and Where Forth Fits)

At present, the best figures that can be achieved for a
single channel programmable electronic control system is
a 10E-2 probability of failure. It does not matter how well
designed the software is, or even whether it is mathemati-
cally proven.

This is a limitation of the underlying hardware. This is
probably because programmable electronic control sys-
tems do not perform any internal checks of correct
processor operition. Of the only attempt that the author
is aware, problems were encountered with proof of
correctness by anyone other than the designers of the
device. That was the Viper chip.

However, poorly designed and implemented software
can make the Safety Integrity Level of the system far worse
than the calculated figures may suggest. It is the author's
contention that Forth is one of the few programming
environments which, if applied from the design phase
with sufficient rigour, can produce a system that is
significantly more resilient than the hardware on which it
will most likely run. It does require an element of
defensive programming and a high degree of rigour
applied to the design, coding, and testing of the software.

Those who are Internet connected may have been
following the comp.lang.forth newsgroup, and will have
seen a discussion on the readability of Forth. To enable a
high degree of confidence in the software we generate, we
must document our code to a level that will enable
certification to be supported.

An adequate level of documentation in my company is
based on the following set of rules.
1. Write the glossary entry for each word that is required

and conceptually prove it is complete as a description
before writing the code (this takes a lot of dialogue with
the client).

2. Write out the required stack effects for the word to
work properly and denote limiting factors. Test the
adequacy of parameters passed (by rigorous inspec-
tion).

3. Provide a description of method (attached to the front
certification form) if the word is high level and requires
further factoring.

4. Write code commencing with the lowest level within
your application design. Ensure that this level is a good
fit to the underlying machine/operating system struc-
tures that already exist.

5. Test the resultant word for compliance with its descrip-
tion, and expected stack effects for correct function.
Ensure that all logical paths are checked thoroughly.

6. Test the resultant word with a special emphasis on limit
conditions. Again, check this for all logical paths.

7. If it passes all testing, issue the word and its associated
documentation for release according to work proce-
dures. Until the word is certified, it must not be made
available for general reference by other teams.

Forth is eminently certifiable if it is produced according
to rigourously applied design rules, is complete on a
word-by-word basis, and enables support of a fully
documented audit trail. The author uses the form of Figure
Four to record the design intent, input and output stack
effects expected, the source code of the word, and the
checking and test signatures. This form provides evidence
required for a full safety audit trail, and is similar to the
issue of Certificates of Conformity for integrated circuits.

embedded Safety Critical
Systems market sewn up,
with fully certifiable hardware
and soft ware.

1

Forth and The Future of Safety Critical Systems
With a resilient and rigourously designed Forth kernel,

additional wordsets, and the application code, new and
more resilient hardware will be the next stage. It is the
author's opinion that the stack computer is probably the
best basis for such a platform. This requires the incorpo-
ration of integrity checking to the processor core. Using
the stack computer would provide a sufficiently simple
model on which to construct easily verified integrity
checking logic. Forth will then have the embedded Safety
Critical Systems market sewn u p very thoroughly, with
fully certifiable hardware and software.

Forth will then have the

Protect Yourself
I keep coming back to the importance of the audit trail.

As designers or programmers, we have a responsibility to
produce the best we can achieve, given the constraints of
current technology and methods. We need to stay up to
date with appropriate new methods and technology as it

Forth Dimensions 11 July 1996 Augusl

Figure Four. Forth software certification form. I

I 1 & Verification iDate ,
Issue

Original Design

4th

i Sht of

Paul E. Bennett

ode ~ e s c r i ~ t i o n b

Word/Module Requirements Description (concise)

(peb@transcontech.co.uk) is the 1
Systems Engineering ~ i r& to r of
Transport Control Technology Ltd.,
his own company, and has been
involved in the design implementa-
tion, verification and validation, and
commissioning of Safety Critical
and Safety Related Systems since
1969. He has worked on Factory
Automation Systems; Petroleum
Production Well SCADA Systems;
Nuclear Power Plant Irradiated Fuel
Disposal Equipment; Specialist
Robotic Cranes for Plutonium
Handling; and Railway Control,
Signalling, and Monitoring Systems.

Trained in electrical and electronic
hardware design and construction,
he picked up software through
necessity of testing programmable
systems that were beginning to
appear in industry during the late
sixties and early seventies. Paul
has used Forth ever since he
discovered its existence in 1982. In
1992, Paul became a member of
the Safety Critical Systems Club
and has been proactive in many of
its events, and has also written for
the Safety Systems Newsletter. He
has published several papers
which were given at EuroFORML
and Software Quality Workshops,
concentrating on
Design for Safety Issues.

I I

Test Comments

Code Check

emerges. We need to update ourselves as new standards
and legislation emerges.

We need to continuously train to improve ourselves,
and we need to keep our own written log of what we did
to achieve a safe system. Your log is valuable in that you
have a record of useful techniques that may be re-used and
you have the evidence of your correct actions if anything
does go wrong and you are called to account.

Personal Risk Assessment
The risk assessment techniques mentioned in this article

can also be used very successfully to assess the risks an
individual engineer is exposed to. It is good practice for all
engineering personnel to be acquainted with the methods.

The techniques can also be used on a business risk basis
for the company as a whole. Currently, most businesses
only look at the risk they expose themselves to in terms of
the financial implications, but companies are also systems.

Function Test

July 1996 August 12 Forth Dimensions

Limits Test

More Than a
Simple State Machine
Devin Wilson
Santa Cruz, California

In this project, we have created a clocked state machine
designed to control a "traffic intersection." The traffic
intersection is a circuit that Dr. Ting designed and built for
the Forth Day programming contest organized by John
Rible (see Figure One). It is plugged into the printer port
of a computer (see Figure Two). It has four sets of four
lights (red; yellow; green; and turn, also green) facing
North, South, East, and West (relative to the board), and
a switch for each set of lights, used to tell whether a car
is coming from that direction.

We started the project last December, when John gave
me the paper that said a little bit about the circuit and
explained the rules. The first step was to go over the rules
and make a state machine to show how the intersection
would run. Although the concept of a state machine was
new to me at the time, this step was relatively easy. Once
we started the state machine, we found that we didn't need
to treat heavy and light traffic differently, it would operate
correctly either way. The end result was the state machine
transition diagram shown in Figure Three. "EWn refers to

... this was a fun, interesting-and
yes, educational-experience.

cars going East and West, and "NS" refers to cars going
North and South. Treating each pair of opposing directions
as one simplifies the state machine amazingly and still
allows for a relatively (if not completely) realistic and
efficient intersection.

There is, however, one flaw in my state machine that
remains uncorrected. When entering into the "EW Heavyn
state, if there are still cars that want to turn, they will wait
at the green light, causing the machine to move on to the
"Turn 1" state. After ten seconds, the state will be "EW,"
and from there (if there is a car waiting at the North or
South light) it will go immediately to "EW Caution." Notice
that the cars wanting to go straight East or West only get
about two seconds to go! The same thing can also happen
when entering the "NS" state.

Next came the hard part-writing a Forth program that
would control the circuit and run the state machine. In

order to do this, I had to learn at least a little Forth. John
gave me a book titled Starting Forth, which turned out to
be interesting and understandable, and a small Forth
system. After a few weeks, I had enough understanding of
Forth to move on, but I found it very interesting and intend
to go back and learn more in the near future.

The Forth program was done in two parts. John wrote
the state machine "engine" (described in the last issue of
FD), and together we wrote the state machine itself. I'm
going to explain a bit about the state machine program,
TRAFFIC.4TH (see Listing One). John wrote the Forth word
LIGHTS : to define the words that turn the traffic lights on
and off. Each bit of the binary number it uses turns one light
on or off. With LIGHTS : , we could easily make words for
only the combinations of lights we wanted. Similarly,
SWITCH: is used to define words that sense the four
switches that tell whether a car is waiting. The function of
DO-COUNTS is a little less obvious-it is executed on each
clock tick to keep track of how long each switch has been
pressed. The counters are used in states "Turn 1" and "Turn
3," where we need to know whether a car wants to make
a left turn. This particular part of the program took some
thinking: we tried and discarded several ideas before we
found one that worked. WAIT&EXIT? is the word used to
clock the state machine. The variable PERIOD holds the
number of milliseconds between clock ticks. The word
DONE? does exactly what the name implies: press a key to
pause, then press a different key to exit (or press the first
key again to resume). Once, before DONE? was perfected,
we went into the state machine, couldn't get back out
again, and had to re-boot the computer!

The remainder of the program is the actual machine.
When I first started to program the states, I named and
defined the first five states, and ran headlong into a
problem! The "EW," "Turn 1," and "Turn 2" states form a

, loop, so when defining their next-state logic equations, all
of them need to use the name of the previous state. No
matter what order they were put in, the first one the
computer looks at will need a word that hasn't been
defined yet. John solved this by changing MACHINE.4TH
(the state machine engine he described in the last issue)
so we could name the states without first needing to define

Forth Dimensions 13 July 1996 August

- -

Figure One. Contest directions. I
1335 Northern California Forth Day

Programming Challenge
adapted from Dr. Ting's "The Second Course"

A Simple T d c Controller
The printer port has 12 output bits and 5 input bits. It is not quite enough to control the traffic lights at a busy city intersection,

but about right for a rural intersection between two-lane roads. Let us use 4 input bits to sense cars entering the intersection and
8 output bits to control the traffic lights. To simplify matters, we assume that the lights towards opposing directions on the same
road will be lit the same way, so that 4 bits are enough to control the green, yellow, red, and left-turn lamps in both directions.

The printer's data output port (usually 378, 278, or 3BC) The printer's status input port (usually 379, 279, or 3BD)
drives the traffic lights: reads the car sensor switches:

Bit Function - - Bit Function - - Bit Function Bit Function
0 Green, E-W proceed 4 Green, N-S proceed 0 -- 4 North lane sensor
1 Yellow, E-W caution 5 Yellow, N-S caution 1 -- 5 South lane sensor
2 Red, E-W stop 6 Red, N-S stop 2 -- 6 West lane sensor
3 Green, E-W left turn 7 Green, N-S left turn 3 -- 7 East lane sensor (inverted)

A rough schematic of the board is shown in Figure Two. The N-S-E-W directions are marked on the board. The traffic controller
program is to turn the lights on and off according to the following rules:
1. Turn on all stop lights upon power-up.
2. When there is no traffic, turn on E-W proceed lights and N-S stop lights.
3. When there is heavy traffic, repeat the following steps:

a. Turn on E-W proceed and N-S stop for 10 seconds.
b. Turn on E-W caution and N-S stop for 5 seconds.
c. Turn on E-W stop and N-S left-turn for 5 seconds.
d. Turn on E-W stop and N-S proceed for 10 seconds.
e. Turn on E-W stop and N-S caution for 5 seconds.
f. Turn on E-W left-turn and N-S stop for 5 seconds.

4. When there is light traffic, maintain the pro-
ceed light for the lane the last car drove through.
5. When a car is sensed at a stop light, do the
following:

a. Turn on caution light to the proceeding
lanes for 5 seconds.

b. Turn on stop light to the proceeding lanes
and left-turn light to this lane for 5 seconds.

c. Turn on stop light to the proceeding lanes
and proceed light to this lane for 10 seconds.
6. When a car remains on a sensor for more than
2 seconds while the proceed light is on in that
direction, do the following:

a. Turn on caution light to the proceeding
lanes for 5 seconds.

b. Turn on stop light and left-turn light to the
proceeding lanes for 5 seconds.

Heavytraffic means that all four sensing switches
are triggering "frequently." Light traffic means that
only switches in two opposing lanes are triggering
and the switches in the other lanes are quiet.

This description does not describe all possible
sequences. Make sure your program does not
allow traffic conflicts (both directions green, for
example). Other decisions not specified above
should be documented (what happens when a car
leaves a sensor while the light is red?).

Because of the limited number of systems,
working in teams is encouraged. The decision of
the judges will be based on the completeness and
clarity (whatever those are) of all working pro-
grams (as defined by the judges). Bribes will not
be a consideration! Most of all, have Fun.

Figure Tworn Contest circuit diagram.

Parallel Port 6 V 5 V

Switches

Traffk Controller

July 1996 August 14 Forth Dimensions

them. After he fwed that, the rest went smoothly. The first
time the lights responded to a switch, we shouted. Writing
the next-state logic, state outputs, and state assignments
for the remaining states was definitely the most exciting
part, because it was like I gave the state machine life: as
I coded each part, I ran it, and watched it work!

On the whole, this was a h n , interesting (and yes,
educational) experience. I will continue working in Forth
and learning about the insides of a computer.

~-
Devin Wilson is a fifteen-year-old homeschooler. He has been working with
John Rible for over a year and a half, learning about the inner workings of a
computer. Devin and John both can be contacted via e-mail at the - .

jrible@quicksand.com address.

Figure Three. The state diagram.

LEGEND:

I

Forth Dimensions 15 July 1996 August

Listing. TRAFFIC.4TH using Dr. Ting's "traffic intersection.'']

\ This is an ANS Forth Program with Environmental Dependencies on:
\ \ from the Core extensions wordset
\ KEY? from the Facilities wordset
\ MS from the Facilities extension wordset
\ all the words included in the file MACHINE.4TH shown last issue
\ PC@ and PC! for byte access to IBM-PC compatible 1/0 space
\ A Standard System exists after this program is loaded.
\ Any operator's terminal facilities provided by the system are adequate.

\ IBM-PC compatible parallel port
HEX 378 CONSTANT PARALLEL-PORT \ for LPT1; yours may be different
: PRN@ (- char) PARALLEL-PORT 1+ PC@ ;

I : PRN! (char -) PARALLEL-PORT PC! ;

\ Traffic light 1/0 I
: LIGHTS: (pattern "name" -)

CREATE ,
DOES> (dfa -) \ set specified light pattern

@ PRN!

: SWITCH: (mask "name" -)
CREATE ,

DOES> (dfa - on?)

@ PRN@ 70 XOR AND O= 0=

2 BASE ! \ Traffic Light Pattern Outputs & Switch Inputs in binary

LIGHTS :
LIGHTS :
LIGHTS :
LIGHTS :

SWITCH:
SWITCH:
SWITCH:
SWITCH:

NS-L
NS-R
NS-Y
NS-G

NC?
SC ?
WC ?
EC?

01001100 LIGHTS: EW-L
01000100 LIGHTS: EW-R
01000010 LIGHTS: EW-Y
01000001 LIGHTS: EW-G
\ These are only for debugging
: NC. (-) NC? . ;
: SC. (-) SC? . ;
: WC. (-) WC? . ;
: EC. (-) EC? . ;

\ Define switch counters I 1 VARIABLE N# VARIABLE S# VARIABLE E# VARIABLE W# I
: DO-COUNTS (-) \ increment if switch is down, otherwise set to zero

NC? IF 1 N# +! ELSE 0 N# ! THEN
SC? IF 1 S# +! ELSE 0 S# ! THEN
EC? IF 1 E# t! ELSE 0 EX ! THEN
WC? IF 1 W# t! ELSE 0 W# ! THEN

: CLEAR-COUNTS (-) 0 N# ! 0 S# ! 0 EX ! 0 W# ! ;

\ Define machine and state names I
MACHINE: TRAFFIC-LIGHT

STATE: START- STATE: EW-HEAVY- STATE: EW-LIGHT- STATE: TURNl=
STATE: TURN2= STATE: EW-CAUTION- STATE: NS-TURN= STATE: NS-HEAVY=
STATE: NS-LIGHT= STATE: TURNS= STATE: TURN4= STATE: NS-CAUTION=
STATE: EW-TURN-

MACHINE;

I I

July 1996 August 16 Forth Dimensions

\ Define next-state logic equations, all with stack (- is-next?) I
: >START RESET= ;
: >EW-HEAVY EW-TURN=
: >EW-LIGHT EW-HEAVY=
: >TURN1 EW-HEAVY=
: >TURN2 TURNl=
: >EW-CAUTION EW-LIGHT=
: >NS-TURN EW-CAUTION-
: >NS-HEAVY NS-TURN=
: >NS-LIGHT NS-HEAVY=
: >TURN3 NS-HEAVY-
: >TURN4 TURN3=
: >NS-CAUTION NS-LIGHT=
: >EW-TURN NS-CAUTION=

TICK# 10 = AND START= TICK# 4 = AND OR ;
TICK# 20 = AND TURN2= TICK# 10 = AND OR ;
EW-LIGHT= OR E# @ W# @ MAX 4 >= AND ;
TICK# 10 = AND ;
NC? SC? OR AND ;
TICK# 10 = AND ;
TICK# 10 = AND ;
TICK# 20 = AND TURN4= TICK# 10 = AND OR ;
NS-LIGHT= OR N# @ SI @ MAX 4 >= AND ;
TICK# 10 = AND ;
EC? WC? OR AND ;
TICK# 10 = AND ;

\ State outputs, all with stack (-) ; change counts only on entering state

: ?CLEAR-COUNTS (-) TICK# O= IF CLEAR-COUNTS THEN ;

: START.
: EW-HEAVY.
: EW-LIGHT.
: TURN1.
: TURN2.
: EW-CAUTION.
: NS-TURN.
: NS-HEAVY.
: NS-LIGHT.
: TURN3.
: TURN4.
: NS-CAUTION.
: EW-TURN.

EW-R ;
EW-G ?CLEAR-COUNTS ;
EW-G ?CLEAR-COUNTS ;
EW-Y ;
EW-L ;
EW-Y ;
NS-L ;
NS-G ?CLEAR-COUNTS ;
NS-G ?CLEAR-COUNTS ;
NS-Y ;
NS-L ;
NS-Y ;
EW-L ;

\ Define the clock-tick word

: DONE? (- stop?) KEY? DUP IF DROP KEY KEY XOR THEN
; \ Tap a key to pause; tap same key again to resume, different key to stop.

I VARIABLE PERIOD 500 PERIOD ! \ clocked twice per second

: WAIT&EXIT? (#ticks - exit-machine?)
DROP PERIOD @ MS DO-COUNTS DONE?

I \ Make machine and state assignments
\ clock-tick <zero> machine

' WAIT&EXIT? 0 ' TRAFFIC-LIGHT ASSIGN

\ to-state output state
' >START ' START. ' START= ASSIGN
' >EW-HEAVY ' EW-HEAVY. ' EW-HEAVY= ASSIGN
' >EW-LIGHT ' EW-LIGHT. ' EW-LIGHT= ASSIGN
' >TURN1 ' TURN1. ' TURNl= ASSIGN
' >TURN2 ' TURN2. ' TURN2= ASSIGN
' >EW-CAUTION ' EW-CAUTION. ' EW-CAUTION= ASSIGN
' >NS-TURN ' NS-TURN. ' NS-TURN= ASSIGN
' >NS-HEAVY ' NS-HEAVY. ' NS-HEAVY= ASSIGN
' >NS-LIGHT ' NS-LIGHT. ' NS-LIGHT= ASSIGN
' >TURN3 ' TURN3. ' TURN3= ASSIGN
' >TURN4 ' TURN4. ' TURN 4 = ASSIGN
' >NS-CAUTION ' NS-CAUTION. ' NS-CAUTION= ASSIGN
' >EW-TURN ' EW-TURN. ' EW-TURN= ASSIGN

\ Now RUN the state machine
I I

Forth Dimensions 17 July 1996 August

Forth on the Web

A CGI Shell for the
Apple Macintosh
Ronald l. Kneusel
Milwaukee, Wisconsin

The World Wide Web 0 is a network of hypertext
documents that exists as a layer on top of the Internet.
Unlike static text, the text in a web document is active and
when selected will move you from that document to
another which may be on the same computer, or on a
computer half-way across the globe. World Wide Web
servers feed HTML (HyperText Mark-up Language) docu-
ments to web browsers (clients) which interpret the docu-
ments for display on the user's computer. The browser also
goes the other way, interpreting the user's actions and
sending the appropriate data to the server. Besides text, the
WWW includes pictures, some of which are active like the
text, as well as sound and movies. It should be noted that
the WWW was started by physicists for exchanging techni-
cal data and has quickly evolved into the favorite time
waster of technophile college students. That aside, the
WWW has taken the Internet to the next level and is playing
an increasingly important role in the evolution of cyberspace.
"So?" you ask, "What's this got to do with Forth?" In a word,
plenty. What follows is just a small example.

One of the best features of the WWW are CGI applica-
tions. A CGI (Common Gateway Interface) allows the
computer to be linked into the web document. Basically,
a CGI is a program that returns some sort ofweb document
to the server which then passes it along to the client. The
CGI allows for customization of the web. Most CGI
applications receive their data from forms the user fills in
and submits. Forms are displayed on the client's machine
in a way that is familiar to users of GUI operating systems
and include such standards as text fields, pop-up menus,
radio buttons, and check boxes. That's the flashy side of
the CGI; the interesting side is the program that accom-
plishes whatever it is you want done.

The CGI application can be written in any program-
ming language that lets you communicate with the web
server. The most common language for CGIs is the Unix
shell itself. Big surprise, as the majority of web servers are
running on Unix machines. Other popular languages
include Perl, C, Tcl, and I've even seen Lisp and Fortran
CGIs. There is a difficulty, though. A recent survey
indicates that upwards of 20% of web servers in the world
are running on Macintosh computers. This is interesting in
its own right, as that figure is twice Apple's total market
share, but makes it difficult for people running Mac-based

servers. Why? Because on a Unix machine all the CGI
needs to d o is write its output to stdoutand the server will
get it. Macs are not so simple.

There are a handful of web servers for the Macintosh,
with WebSTAR (or MacHTIP, its shareware cousin) being
the most popular. WebSTAR uses Apple Events to commu-
nicate with its CGI applications. Apple Events are what Mac
programs use to talk to each other. So, to write a CGI for the
Mac requires a program that can receive and respond to the
Apple Event sent out by WebSTAR. This is generally more
difficult than the Unix method and has led to the creation
of CGI "shellsn which handle the ugly portions, leaving the
programmer free to concentrate on more important things.
Mac-based CGI shells can be found in C, Perl, Fortran,
BASIC, Prograph, Frontier (a powerful scripting language),
even HyperCard, but none in Forth--until now.

Ever heard of "Pocket Forth"? Probably not, though the
Forth Interest Group sells a disk containing it. Pocket Forth,
the freeware brain child of Chris Heilman, is a small (~ 1 7 K)
Forth for the Mac. It offers full control of the Macintosh
Toolbox but often requires a bit of machine code program-
ming to achieve it. It is limited to a 25K dictionary. It has no
built-in file access, no integrated development tools, and
has a limited name space (three characters plus length).
However, besides its obvious lure as a minimalist's dream,
it has two big pluses: Pocket Forth knows how to receive
and respond to Apple Events and Pocket Forth knows how
to use floating-point numbers. For this reason, it makes a
good choice as a CGI platform and I've used it to develop
a CGI shell for use with WebSTAR or MacH'ITP.

The Apple Event sent by WebSTAR contains numerous
fields providing the CGI with everything from the address
of the client, to the type of browser they are using, to the
forms data entered. The CGI shell receives the Apple
Event, picks off several of the fields, and makes them
available to the programmer. A typical exchange appears
as in Figure One. The server delivers a document that
contains a form of some kind to the client. The client fills
in the form and submits it (step one). The server gathers the
form data, plus some other data offered by the client, and
constructs an Apple Event which activates the CGI applica-
tion (step two). The application decodes the Apple Event
with the shell code and uses the data to construct a reply
string. This string is sent to the server (step three), which

July 1996 August 18 Forth Dimensions

Figure One. Typical server-client interaction.

Server

Pick off data

Build reply string

CGI Application

-- -

Client

dutifully passes it down
to the client (step four).
The CGI shell comes into
play between steps three
and four above.

The CGI shell
The interesting thing

about CGI programs in
Pocket Forth is that they
have no main word or
startup word. When acti-
vated by the web server,
the application opens as
normal: the interpreter
starts, prints the "okn
prompt, and waits for
keypresses. What gets
things going is the fact that while the interpreter is waiting
for keypresses it is also listening for many different kinds of
system events, including Apple Events. When the applica-
tion receives the specific Apple Event sent out by the web
server, it perks up and executes the handler associated with
that event. It is precisely this handler that is defined when
the CGI application is created.

One of the first tasks of any CGI application using the
shell code is to evaluate the form data entered by the user.
Each part of the received Apple Event consists of a string.
In the case of the client's IP address or browser type, no
further parsing is needed-the string can be used as is.
Forms, on the other hand, do need parsing.

The data from the form is packed together as one string.
Each field in the form (either a text field, radio button, or
pop-up menu, etc.) is coded as the field name, an equal
sign, and the value of the field. Fields are separated by
ampersands. For example, if there are two fields, "onen
and with values of "d2" and chocolate cake,m then
they are passed along as:
one=42&two=chocolate+cake

Notice the "+"? Spaces are coded as "+" signs. Letters
and numbers are as expected, but all other characters are
coded as "%nnn where "nnn is the hexadecimal ASCII code
for that character.

The CGI shell deals with this and will dutifully return
the converted string for any field if given the name.

So CGI applications deal with forms data, field by field,
and return a suing containing the HTML code to be sent to
the client. However, the real world deals with things like
integers and floating-point numbers, not just strings. Does
this mean the programmer is doomed to spending a lot of
time converting items from numbers to strings and strings
to numbers? Nope. The CGI shell introduces two useful and
powerful concepts that make CGI programming signifi-
cantly easier: objects and templates. No, these are not really
objects in the sense of "object-oriented programming," they
are more like smart record structures. Templates are just
that, a template of HTML code containing tags indicating
where to place the value of particular objects.

The shell uses two types of objects: generic objects and
fields. Afield is associated with a field in the HTML form that
calls the CGI. Other than that, the two object types are

Forth Dimensions

identical. When the CGI starts, it automatically loads the
data from the fields into the field objects. Generic objects are
used when creating the reply string. They are associated
with tags in the template file, as are field objects. Objects
come in three flavors: integer, float, or string. The same
group of access words are used with all three types. These
words also handle converting values to and from strings.

An object is defined like this:
FP 2 5 " a_£ l o a t " # o b j e c t 1 s t
I N T 1 0 " an- intw #ob ject 2nd
STR 80 " a-s t r ing" # o b j e c t 3 r d

The word # o b j e c t expects the type (FP, I N T , or
STR), size of the character (bytes), and a
name identical to the name of the tag in the template file
or the field name in the HTML form. Field objects are
defined in the same way but use the word ltf ield in
place of the name the
object is entered in an array for use when processing the
template file. If the object is a field object, it is also entered
in a separate array of fields to be initialized upon startup.

Within the CGI program, objects are used like other
variables. The words @ v a l and ! v a l , analogous to @ and
! , are used to fetch and store values of the proper type.
In the case of floats and ints, the number is returned
(Pocket Forth puts floats on the stack as a five-byte beast).
If the object is a string, the address of the string is returned,
or the string whose address is on the stack is copied into
the object. Contrary to normal Forth convention, the CGI
shell uses null-terminated strings.

An Example
A complete example is in order. Following the grand

tradition ofsimplistic first examples, we will construct a CGI
to calculate the diameter, area, and circumference of a circle
given its radius. Note that the code in the listings is Pocket
Forth code and does not follow the ANS standard.

Many of the CGIs created with the shell consist of three
files: a normal UTML file with the form where the user
supplies the data (Listing One), a second file which is the CGI
application (Listing Two), and a third file, the template file,
with the HTML code to return plus the tags (Listing Three).

Listing One shows the HTML code for the page first
brought up on the user's web browser. The form on this

19 July 1996 August

page has one field named r a d i u s . The user enters a
number for the radius and clicks the Calculate button to
submit the form. This causes the web server to look for the
specified action (circle. cg i) . The web server then
sends the Apple Event containing the radius. At this point,
the CGI application takes over.

Listing Two is the source code for the circle CGI. There
is not much to it. First load the shell source code, then
define the objects. After that comes the code for the
particular task, which in this case is to calculate some stats
for a circle of a given radius. Note the use of the words
! va 1 and @ v a 1 . The Apple Event handler is the last thing
defined. This is the code called when the Apple Event is
received. Load the field data into the field object
(< g e t ~ i e l d s >) and calculate the desired values
(f i n d s t a t s). Then load the template file and send the
reply string back to the web server.

Listing Three is the template file used by the CGI
application. It is an ordinary text file and contains, for the
most part, HTML code. Of interest here are the tags set off
by backquotes ('). These are the names of objects as
defined in Listing Two. When the template file is read (out
fname NEW t e m p l a t e) , these tags are replaced with the
string representing the current value of that object.

Other Access Words
The CGI shell comes as three source files. All the files are

merged into the shell.4th file used above. However, not
every CGI needs the power of objects and templates.
Therefore, it is possible to use the low-level words found in
the file server.4th. This file contains all the code
necessary to interact with the web server and
to access parts of the Apple Event. Of particular
use are the words @Direct, @ A d d r , and
@Browser. These load a string with the direct
argument (appended to the CGI name in the
HTML form), the user's IP address, and the
name of the user's web browser. Also available
is the word @ F i e l d which loads a string with
the data from a field. It does not convert strings
to numbers. @Browser makes it possible to
write CGIs that are "browser aware," so users
can be sent to web pages designed to work
best with their particular browser. (Useful, as
not all browsers were created equal.)

change to the appearance of a page does not require
rebuilding the CGI application. All of this works together
to allow the programmer to create fast CGI applications
with a minimum of time and effort.

To date, I've used the CGI shell in a number of places:
as a conversion calculator for physical constants, to
calculate least squares fits to linear data, as an on-line
clinical calculator for physicians, and as a simple database
search engine. A CGI capable of redirecting users to a
randomly chosen URL is in use in Germany as part of an
on-line psychology experiment in human learning. A
similar CGI is used at East Carolina University by a physics
professor to return randomly selected homework pages to
his students. The possibilities are endless.

The example outlined above, the CGI shell source code,
and other applications are available from my web site:
http://kreeft.intmed.mcw.edu

/circle.html (Circle example)
/physics.html (Conversions)
/cgishell.html (CGI shell code)

http://www.intmed.mcw.edu/clincalc.html (Clinical cal-
culator)

Source code for the CGIs is available by sending some
e-mail (rkneusel@post.its.mcw.edu) and asking for it.

Ron Kneusel works as a systems specialist for the Division of General Internal
Medicine at the Medical College of Wisconsin (Milwaukee), where he also
spends about 50% of his time doing data manipulation and analysis for a
research group. Hecan be contacted by e-mail at rkneusel@post.its.mcw.edu.

Listing One. HTML code for the form. I
< t i t l e > C i r c l e S t a t s < / t i t l e >
< h l > C i r c l e S t a t s < / h l > < h r > < p >
<form me thod=pos t a c t i o n = " c i r c l e . c g i " >
E n t e r t h e r a d i u s : < i n p u t t y p e = t e x t name="radius"
s i z e = l O >
<P>
< i n p u t t y p e = s u b m i t v a l u e = " C a l c u l a t e " >
</ form>

Putting It All Together
The entire process, from entering data into

a form to reading a template file and sending
a reply, is separated by the shell into three
independent sections. The first is the HTML
file that initiates the CGI. The second is the
program code that performs the desired func-
tion. The last is the template file which
contains the reply. The program does not
need to know that it is a CGI and that the
values it is working with are destined for the
Internet. As far as Forth is concerned, the
values are normal floats, ints, or strings. Also,
the HTML code is separated from the Forth
code. There is no HTML code buried in the
Forth application; therefore, making a simple
July 1996August 20

Listing Three. Template file.

< t i t l e > C i r c l e S t a t s < / t i t l e >
< h l > C i r c l e S t a t s < / h l > < h r >
P r e v i o u s :
< d l >
<dd> R a d i u s = < b > ' r a d i u s ' < / b >
<dd> D i a m e t e r = < b > ' d i a m e t e r ' < / b >
<dd> Area = 'a rea '< /b>
<dd> C i r c u m f e r e n c e = < b > ' c i r c ' < / b >
</d l><p>
<fo rm method-pos t a c t i o n = " c i r c l e . c g i " >
E n t e r t h e r a d i u s : < i n p u t t y p e = t e x t name="radiusW
v a l u e = " ' r a d i u s ' " s i z e = l O >
<P>
< i n p u t t y p e = s u b m i t v a l u e = " C a l c u l a t e " >
</ form>

Forth Dimensions

I Listing Two. ~ x a r n ~ l ; I
\ Circle Stats - a simple example
\
--> shell.4th (load the shell source)

I $ [fname circle-txt] \ name of the template file, Icircle.txt1

11024 String>> out \ put the reply string here

\ Define the objects. One field object for the radius, three for the
\ values calculated.

FP 25 " radius" #field rad \ field object, radius entered by user
FP 25 " diameter" #object diam \ diameter, used in by template file
FP 25 " area" #object area \ area
FP 25 " circ" #object circ \ circumference

\ Do the calculations
3.141592 £constant pi

: diam-calc (radius -- diameter) 2.0 f* ;

: area-calc (radius -- area) fdup f* pi f* ;
: circ-calc (radius -- circ) pi f* 2.0 f* ;

: find stats (--) -
rad @val diam-calc diam !val \ find diameter
rad @val area-calc area !val \ find area
rad @val circ-calc circ !val \ find circumference

\ Setup Apple Event handler
, s sdoc , s WWWR ae: \ AE: starts a handler for the type specified

3 #digits !
<getFields>
find-stats

\ set three decimal places
\ get radius into the field object
\ do the calculations

out fname NEW template \ put the HTML code in the template into the
\ string 'out' (NEW clears 'out1 first).

out REPLY \ send the reply back to the web server
bye \ close the application

; ae \ end Apple Event handler

The Computer Journal 8

FORML Conference 40

FORTH, Inc. 8

Forth Interest Group
........................ centerfold

Miller Microcomputer
Services 21

Silicon Composers 2

Forth Dimensions 21 July 1996 August

A PC Floppy Interface
for non-DOS Hardwarn

Dwight Nvey
Santa Cruz, California

Many times you need a floppy drive on an embedded
system that doesn't have an 80x86-type processor. This
article is the second part in a two-panseries to allow reading
and writing of 360K DOS disks by non-DOS hardware. Most
commercial systems have some provision for disk drives but
a custom system will normally require a custom disk
interface. This need for a custom interface can be avoided
if one is willing to take advantage of the commercially
available disk drive interface cards used in PCs. These
interface cards all use the same standard for software,
meaning that one is not restricted to one manufacturer.
These PC cards often come with serial, printer, IDE, and
floppy interfaces for less than $20. One couldn't buy the
parts needed for these other functions and assemble them
for anywhere near this price. This makes leveraging the
mass market of the PC a powerful advantage.

In this article, I describe how I connected an XT floppy
controller card to an NC4000 Forth computer. Much of the
information is generic to any microprocessor one wishes
to use. Many XT controllers came as only a floppy
controller on one card; this was acceptable for my home
project. The AT-type controller is only slightly different,
and all the information here is relevant to it-I will
describe the differences.

The floppy disk is divided into physical spaces that
contain the data written by the controller. The first is the
side, or head, used. Next is the cylinder-this is the radial
distance in from the outside of the disk. The cylinder is also
often called the track. Last is the sector. A sector is a piece
of a track that holds a block of data. PCs use a sector size
of 512 bytes. Heads are numbered 0 and 1. Tracks are
numbered 0 through N. Sectors are numbered 1 through
N. This makes calculating the head, track, and sector
information a little tricky because one has to treat the
sector number as zero-based until you need to read or
write a command.

PCs use what is called a "soft-sectored" disk. This
means the beginning of sectors is indicated by information
written on the disk. In hard-sectored disks, sectors are
marked by additional index holes. In the soft-sectored
disks, the coding of sector starts is done by using data/
clock sequences that are not legal for normal data but

aren't so far off that the controller can't follow them.
The main types of coding for soft-sectored disks are

FM, MFM, and M2FM. The controller used by the PC is only
able to read FM and MFM disks. PCs use the coding
scheme called MFM. MFM is able to record twice as much
data as FM, but it also requires a better disk drive.

Each sector has additional information recorded be-
sides the actual data. Various sync, check, and location
information is also recorded, along with the data. The
location information contains track, head, sector, and size
information. This is compared with the information used
in the various controller commands to locate the correct
sectors. The check information is used to indicate that the
data is correct. The controller used in PCs uses the CCITT
16-bit CRC for data checking. The controller only uses the
CRC to verifjr correctness of the data. One could also use
the CRC to correct a burst of bad bits in the data. CRCs like
the CCITT can be used to fix corrupted data if there aren't
too many bits wrong in a row. I don't recall the exact
number, but it seems like u p to seven bits can reliably be
corrected with a 16-bit CRC like the CCITT, and can be
less-reliably stretched a few bits more. CRC correction is
based upon running the algorithm forwards until a num-
ber of zeros show u p in the MSBs. When this happens, the
LSBs are the error mask.

Before using the PC card, one has to have a basic
understanding of the PC's bus. The PC uses a 62-pin
connection of 31 pins on each side of the card. These
connections are for the standard eight-bit cards. (The AT
has an additional connector to make a 16-bit bus.) Most
controller cards are still only eight bit. This makes connect-
ing one of these cards easy, even on a 16-bit system, as in
my case. One should find a good reference on the PC bus
and a data sheet for the controller, as I won't go into great
detail on much of the needed information. The Indispem-
able PCHardware Book mentioned in the previous article
is a great help.

Many of the available pins are not used by the floppy
controller. These can usually be left open, since they have
no function. Sometimes a quick look will determine if a
signal has a circuit trace going to it. The floppy controller,
unlike most other I/O devices, was intended to be used

July 1996 August 22 Forth Dimensions

$3FO Not used.
$3F1 R Used by PS/2 systems for status.
$3F2 R/W Digital Output Register (DOR) used for

motor control, DMA select, reset, and
drive select.

$3F3 Not used.
$3F4 R Main Status Register.

This port contains DIO and MRQ bits.

with DMA. If you have a processor system that requires
other interrupts to always be available, you should consider
using DMA to transfer sector information. This is because
most floppy controllers have no buffers for data, unlike
most hard disk interfaces. For the 3 a K disk, one has to
maintain an average rate of one byte every 32 p, and must
provide the byte data within 27 p of the request. This strict
timing requires careful consideration. If you intend to do a
polled system, like I have done, you'll probably need to turn
the interrupts off for at least 200+ milliseconds for a sector
read or write. This is because it is hard to predict what sector
is under the head when a read or write operation is started.
If these restrictions aren't a problem, the polled system I've
described here will work for you.

Connections to your non-PC system may require a little
creativity. The main ports for the floppy were intended to
be at VO address $ 3 W 3 F 7 or, in case the card has secondary
addressing, $370-$377. One may still use the board, even
though one intends to use it as memory-mapped I/O or
not even use the specified addresses. In my system, I wired
A&A2 to the system's A2-A4. I wired the board's A3-A8
to resistor pull-ups (i.e., using a resistor to cause a constant
logical one on an input). I used A9 as a board select from
an address comparator to determine the memory usage in
my system. A9 has to be a select true, but otherwise can
be treated just like a device select. The board's IOR (I/O
Read) and IOW (I/O Write) lines were connected to my
system's memory read and write strobes. Connecting DO-
D7 to the system's data bus and providing +5 volts
completed the system connections.

Most controller cards don't use the I/O CH RDY signal.
Other signals may need to be provided for use by other
parts of modern combination controller cards, such as f 12
volts for the serial port. The floppy drives themselves
require +5 and +12 volt power. Also, more addressing may
need to be decoded for other functions. A PAL between
the system's addresses and the card's addresses would be
the simplest way to translate to a different address space.

Addresses used by the controller have the following map:

mk Soeed
360K 250 Kbps
360K 300 Kbps (when in 1.2 Mb drive)
1.2 Mb 500 Kbps
720K 250 Kbps
1.44 Mb 500 Kbps
2.88 Mb 1 Mbps (may not work on all controllers/

drives)

As can be seen, the AT has only extended the register
set but not really altered the basic controller interface
compared to the XT system. You need to be careful to
remember that, when changing the CCR on an AT board,
one also needs to change the various timing values
selected by the Fix Drive command.

The values used by the Fix Drive command are
determined by dividing the controller's clock frequency.
The CCR changes the clock frequency of the controller for
the different data speed requirements of different drive
types. In order to maintain the same timing for things like
step rates and delay times, you need to change the divider
values used in the Fix Drive command when making
changes to the CCR.

The CCR will have the following effects on the values
in the Fix Drive command's data fields:

Speed Step Head Head
selected unload &md
250 Kbps 2 ms/count 32 ms/count 4 ms/count
300 Kbps 1.67 ms/count 26.7 ms/count 3.3 ms/count
500 Kbps 1 ms/count 16 ms/count 2 ms/count
1 Mbps 0.5 ms/count 8 ms/count 1 ms/count

nefiel& for the F& Drive command wed in the
FspECrFY word are:

First parameter byte: s s s suuuu
Second parameter byte: l l l l l l l d

sss s = Step count (2's complement)
uuuu = Head unload count
1111111 = Head load count
d = Not DMA

Values used in CCR:
blt bkQ

0 0 500 Kbps
0 1 300 Kbps
1 0 250 Kbps
1 1 1 Mbps

BPS sPeeh for CCR

$3F5 R/W Data Register.
All commands and data are transferred
through this port.

$3F6 Not used.
$3F7 R DIR used by AT to indicate disk change

status.
$3F7 W Configuration Control Register (CCR).

Used by AT to select clock reference.
This controls data rates and timed func-
tions such as step rate.

One can use a standard PC cable to connect the drive(s)
to the controller board. Look at the ribbon cable used and,
if the cable doesn't have some of the signal lines twisted
between the first and second drive, you'll have to set the
jumpers on the drive for different selects.

I used a small mini-tower PC-type power supply for my
system. This came with the Molex connectors needed for
the floppy drive's power. Many supplies that have both +5
and +12 can be used, but one must make sure that the 12
volts has enough current. Most floppies require about one
ampere of 12 volts to run, and up to about three amperes

Forth Dimensions 23 July 1996 August

of surge to start.
The floppy controller does much of the work of reading

and writing the floppy for you, but it still helps to
understand its.interface to the bus. All data transfers must
happen when the controller is ready. The controller
synchronizes all transfers with two bits in the Main Status
Register. One bit is MRQ (Master ReQuest). Data can only
be transferred though the data port when this bit is true.
The other bit is the DIO (Data Input/Output). This bit
determines whether the controller wishes the system to
read (bit true) or write (bit false).

The controller recognizes commands transferred to it as
a sequence of bytes. Most major operations require eight
bytes to be written in sequence, but some commands
require less. Of course, sector writes will also require sector
data. Many commands have an additional result phase that
requires reading various status bytes. Almost all commands
have a fixed number of bytes transferred-except the
check-interrupt-status command. That command will re-
turn one or two bytes, depending on the values of the status
in the first byte. Even though I'm not using interrupts in my
setup, it is still necessary to use this command to determine
when a recalibration or seek operation has been completed.
Looking at the bytes used in the command, it seems that
some information is redundant: the head selected is re-
quired twice. This is because the first bit is used to tell the
drive which head to use and the second is used for
comparison of the data read from the disk.

When reading a 360K disk on a 1.2 Mb drive, the tracks
are spaced two steps apart. The Seek command is given
the number of the cylinder that is twice the cylinder
desired. When a command that will read or write the disk
is given, the cylinder number must match the one re-
corded on the disk. It is not recommended that one use a
1.2 Mb drive to write to a 360K disk, as the width of the
data written will not completely cover the data written
with a 360K drive. If one only uses a 1.2 Mb drive to read/
write the disk, this isn't a problem.

Here is a list of the commands the floppy controller
recognizes:
Read Sector
Read Deleted Sector
Write Sector
Write Deleted Sector
Read Track
Format Track
Read Identification
Calibrate Drive
Check Interrupt Status
Fix Drive Data
Check Drive Status
Seek
Verify
Determine Controller Version
Seek Relative

Of these commands, I use only Read Sector, Write
Sector, Calibrate Drive, Check Interrupt Status, Fix Drive
Data, and Seek. These are the minimum needed to do
July 1996 August

floppy transfers. Since I'll be using the controller to read
and write DOS disks, I'll leave disk formatting to my PC.

The Fix Drive Data command is done by the FSPECIFY
word in my code. Part of this word is the step rate.
Determining the best step rate is quite easy. You need to
experiment with rates: as one steps faster, the drive will
seem to quiet down and not make the clicking sound as it
steps. This is usually the best step rate for your drive. One
can then experiment with seeks and data reads to make sure
the step rate truly works correctly. The maximum step rate
for a drive changes very little over the drive's lifetime, and
is dominated by the stepper motor's ability to move the
fixed mass of the armature and head assembly.

Main operation in code:
1. FRECAL

Power-up initializations or after error. This word will
need the speed-crystal-select added if used with an AT
controller.

2. FSEEK
Locate track.

3. FSEC@
Read a sector.

4. FSEC!
Write a sector.

5. SELDRV
Selects one of two floppy drives.

So, in conclusion, one can take advantage of the large
volume of PC sales to provide a resource of I/O interface
systems at a cost that couldn't be duplicated in a small
embedded system. Using one of the combination cards
would be a sound design decision to add resources to such
a system.

Code Commentary
All standard PC floppy interfaces use the uPD765 as the

base type controller. All of the standard uPD765 com-
mands are usually supported. For this reason, one should
get a spec sheet for this or a compatible controller (Intel's
8272 is one). Some of the newer chips, such as the 82077A,
include a 16-byte FIFO and are more lax on timing
requirements. Most standard controllers only have one
level of buffering and, therefore, require that the data be
handled quickly. For a 360K floppy that transfers one byte
every 32 p, you need to respond with each byte no later
than 27 ~LS after the controller makes its request. This is
why most people use the DMA feature of the controller.
I am using a pP that doesn't have any interrupts and can
be dedicated to controlling the floppy while doing trans-
fers. Since the NC4000 is running at 4 MIPS, transferring
data with this time constraint isn't a problem.

cmForth is different from many standard Forths, so one
might want to look over the following "funnyn NC4000
words:

24 Forth Dimensions

@+ (A d d r I n c r - V a l u e Addr+Inc r)
Machine-coded fetch and increment.

! + (V a l u e A d d r I n c r - Addr+Inc r)

Machine-coded store and increment.

FOR (n -)
The FOR NEXT loop is like DO LOOP except the
loop counter NEXT is a down counter. The loop
will execute n+l times. When the value on the
return stack = 0, NEXT will cause the loop to
stop. You'll see places in my code where I do
R> DROP 0 >R which is the same as LEAVE in
some Forths.

Read Status register 3F4
D7 = MRQ Main request
D6 = DIO Data in/out
D5 = NDMA non-DMA
D4 = BUSY
D3 = ACTD
D2 = ACTC
D l = ACTB
DO = ACTA

R e a m r i t e Data register: 3F5

Read Digital Input register (AT only): 3F7
D7 = Change Disk

D7 = MOTD
D6 = MOTC
D5 = MOTB
D4 = MOTA
D3 = DMAEN
D2 = REST\
Dl = DR1
DO = DRO

Forth Dimensions

BSWAP (HL - LH)

Not actually a cmForth word. I added special
hardware to speed up byte swapping in 16-bit
values.

I (- V a l u e)

I in cmForth is like R@. It simply copies the top
of the return stack. The return stack is also used
for the FOR NEXT counter, so it makes more
sense to call it I.

DRO (- 1
Selects the offset for drive 0.

DRO = 360K Floppy A
DR1 = 3 6 0 ~ Floppy B
DR2 = 5 Mb HD

TIMES (n - 1 Word)

Executes the following word n+ l or n+2 times.
This is a confusing one because it works
differently if the word is a code word than if the
word is a nested word. Code words are ex-
ecuted n+2 times.

2 1 ~ 0 ~ (n - r q)

DOES (- 1
Similar to DOES> in regular Forth but doesn't
return the address of the parameter field. To get
the parameter field, it must be popped with R>.
Since the carry bit may have been pushed into
the high bit, it also needs 7FFF AND.
Essentially: DOES> equals DOES R> 7FFF AND

Normal Floppy PC addresses:
Write DOR Digital output register 3F2

the &t to report getting an 8080 fig-Forth listing to work (which he purchased
at the West Coast Computer Faire). He was also the winner of the Forth
Dimensions Sort Contest. Dwight works as a test engineer for Hal Computer
Systems and, over the years, has used Forth for many embedded systems and
test setups. He can be e-mailed at elvey@hal.com. Current side interests are
in digital signal processing, model slope gliders, and sailing.

Write Configuration control register (AT only): 3F7
D2 = RAT1
D l = RAT0
DO = HDRAT

RAT1 ,RAT0 00=500K01=300K 10=2MK ll=1000K
HDRAT 0 = lOOOK OR 500K

1 = 250K OR 300K
250K 360 5 1/4 360 DRIVE

720 3 1/2
300K 360 5 1/4 1.2M DRIVE
500K 1.2M51/4

1.4M 3 1/2

I have re-mapped the addresses for the controller. One
should consider that the addresses used by the PC don't
have to be the same as the addresses used in your system.
One can simply put A9 through A4 to the correct level and
use A3 of the controller as CS* or any other strange
addressing. For this reason, I have used memory-mapped
I/O (instead of Port I/O mapped) and changed the
addressing. In my system, I've used DCOO as the base
address, with controller A2 wire-mapped to A4, A1 wire-
mapped to A3, and A0 wire-mapped to A2. This allowed
more flexibility for my system, since hardware decoding
was already there.

The bus in my system was more heavily loaded on
DO-D7, so I have the controller's bytes DO-D7 mapped to
my bus at D8-D15. Normally, one would map DGD7 to
DO-D7; this would be the fastest and simplest method.
Accompanying this article is minimum code to talk to a
3 6 0 ~ drive with an XT floppy controller card. I have not
included any error control; for reliability, this should be
added. I don't do any disk formatting, because I use my
PC to do the original formatting. This allows this basic
code to be used to read and write DOS sectors.

Code begins on next page.

25 July 1996 August

Listing. ELVEY2.fth (ELVEYl .fth appeared in the preceding issue.)

(F l o p p y c o n t r o l l e r i s m e m o r y m a p p e d) I HEX I DC14 CONSTANT FDATA \ F l o p p y da ta p o r t

D C 0 8 CONSTANT FREG \ Floppy DOR
0 0 0 0 CONSTANT FSELO \ F l o p p y 0 select m a s k
0 1 0 0 CONSTANT F S E L l \ F l o p p y 1 select m a s k
0 4 0 0 CONSTANT FRST- \ C o n t r o l l e r reset no t
1 0 0 0 CONSTANT FMOTO \ M o t o r 0 enable
2 0 0 0 CONSTANT FMOTl \ M o t o r 1 enable
FOOO CONSTANT FMOT \ M o t o r m a s k

DClO CONSTANT FSTAT \ F l o p p y s t a t u s p o r t
4 0 0 0 CONSTANT F D I R \ T=RD F=WR
8 0 0 0 CONSTANT FREQ \ F l o p p y REQUEST b i t
1 0 0 0 CONSTANT FBUSY \ F l o p p y busy b i t
COO0 CONSTANT BUSYMSK \ busy and request
F D I R FREQ OR CONSTANT FREQRD \ R e q u e s t read

: BSWAP (N - N ') \ special h a r d w a r e t o s w a p by tes .
-1 0 ! + @ ; \ T h i s on ly cos t 4 cycles on m y m a c h i n e .

\ I b u t t h e byte s w a p a t address S F F F F f o r s i m p l i c i t y .

: WFRQ (- F S t a t) \ W a i t f o r F R e q u e s t .
BEGIN

FSTAT @ \ C h e c k S t a t u s
DUP FREQ AND 0 = \ f o r request.

WHILE
DROP

REPEAT ;

: FSTAT& (M a s k - R e s u l t) \ M a s k i n g f o r s t a t u s
FSTAT @ AND ;

: FRDAT (- DATA) \ R e a d F l o p p y D a t a p o r t .
WFRQ \ Wait f o r r e q u e s t .
F D I R AND \ S h o u l d be a read r e q u e s t .
I F

FDATA @ \ R e a d f loppy data
BSWAP OFF AND \ M a k e b y t e

ELSE
ABORT" RD? " \ Was e x p e c t i n g t o read?

THEN ;

: FWDAT (D a t a -)
BSWAP \ M o v e byte t o D8-D15 .
WFRQ \ W a i t f o r request.
F D I R AND \ C h e c k f o r w r i t e ?
I F

ABORT" WR? l1 \ Was expecting t o w r i t e ?
ELSE

FDATA ! \ W r i t e f loppy da t a .
THEN ;

: F S P E C I F Y (-) \ S p e c i f y c o m m a n d
\ T h e s e va lues a r e d i f fe rent f o r AT c o n t r o l l e r s a t d i f f e r e n t speeds.

-

July 1996 August 26 Forth Dimensions

\ I am not using DMA in my simple system -- I am using polled
\ 1/0 instead. This means that I have to dedicate the NC4000
\ to disk-only during transfers. If one wanted to, one could
\ use a DMA controller and use DMA. For 360K drives, one needs
\ to be able to supply a byte every 32 ps, and 16 ps for a 1.2 Mb.
\ This is no problem for a 4 MHz NC4000, but one should analyze
\ time used to do reads and writes.

3 FWDAT \ Command Byte Specify
[24 (STEP) 2 / NEGATE 16 * 192 (HUT) 32 / +]
LITERAL FWDAT \ 24 ms step and 192 ms head unload

[40 (HLT) 4 / 2 * 1 (NonDMA) OR 1
LITERAL FWDAT ; \ 40 ms head load time with no DMA

\ Most commands are built with 9 bytes
\ Command 1st byte.

VARIABLE FSEL \ Selects, 2nd byte of a command.
VARIABLE FCYL \ Cylinder, 3rd byte of a command.
VARIABLE FHD \ Head, 4th byte of a command.
VARIABLE FSEC \ Sector, 5th byte of a command.

\ Sector size, 6th byte of a command.
\ Max Sectors, 7th byte of a command.

1B CONSTANT GPL \ Gap Length, 8th byte of a command.
\ Data Length, Always OFF for non-zero Sector size above

\ Result returns 7 bytes, first 3 are status.
VARIABLE FSTO
VARIABLE FSTl
VARIABLE FST2
\ last 4 are cyl,head,sect#,sect size.

: CTSH (DskAddr -) \ Break a logical address into Cyl,HD,SEC.
18 /MOD \ 18 sectors per track.
DUP 39 > \ 40 track per disk.
IF ABORT" <TRK>" THEN \ too many tracks?
FCYL ! \ track = cylinder.
9 /MOD FLAG FHD ! \ determine head.
1 + FSEC ! ; \ Sector numbers start at 1, not zero.

: WNBSY (-)

BEGIN
lFOO FSTAT& O= \ wait for no activity of disk.

UNTIL ;

: FWHD/SEL (-) \ Writes standard second command byte.
FHD @ 4 AND \ Head bit.
FSEL @ OR FWDAT ; \ With drive bits.

: FCMD (Command -) \ Write a standard 9-byte command sequence.
WNBSY \ Wait not busy
40 OR FWDAT \ Mask in MFM bit to command.
FWHD/ SEL \ Head drive select.
FCYL @ FWDAT \ Cylinder number.
FHD @ 1 AND FWDAT \ Head number.
FSEC @ DUP FWDAT \ Sector # .
2 FWDAT \ 2 = 512 Sector size. (Code continues.. .)

Forth Dimensions 27 July 1996 August

FWDAT \ s e c t o r # o r s e c t o r s p e r t r a c k .
GPL FWDAT \ Gap l e n g t h .
-1 FWDAT ; \ Always OFF.

: FRSLT (-) \ Read R e s u l t Phase d a t a .
FRDAT FSTO ! \
FRDAT FSTl ! \
FRDAT FST2 ! \ Read 3 s t a t u s b y t e s .
3 FOR

FRDAT DROP \ d i s c a r d o t h e r 4 b y t e s .
NEXT
100 CYCLES ; \ a l i t t l e d e l a y f o r abou t 25 ps.

: FCLR (-) \ C l e a r any a c t i v i t y .
BEGIN

8 FWDAT \ S t a t u s command.
FRDAT 80 - \ No o t h e r s t a t u s .

WHILE
FRDAT DROP \ d i s c a r d c y l i n d e r .

REPEAT ;

: WTEND (-) \ Wait f o r end o f o p e r a t i o n .
0
BEGIN

DROP
8 FWDAT \ S t a t u s .
FRDAT DUP 80 - \ no a c t i v i t y .

UNTIL
FSTO ! \ s a v e s t a t u s .
FRDAT FCYL ! ; \ a n d c u r r e n t c y l i n d e r .

: SELDRV (DRV# -)

DUP
I F

FSELl FMOTl \ c o n t r o l l e r mask and motor f o r d r i v e l .
ELSE

FSELO FMOTO \ c o n t r o l l e r mask and motor f o r d r i v e 2 .
THEN
OR FRST- OR \ c l e a r reset and s t a r t motor .
FREG !
FSEL ! ; \ and d r i v e select f o r c o n t r o l l e r .

: ?FSEL (DRV# -) \ Make s u r e d r i v e i s s e l e c t e d and r u n n i n g
FSEL @ OVER - \ check s e l e c t e d
I F

SELDRV \ i f n o t t h e n s e l e c t d r i v e .
ELSE

DROP \ e l s e d o n o t h i n g .
THEN ;

: FRECAL (Drv# -) \ R e c a l d r i v e .
DUP SELDRV \ S t a r t d r i v e .
FSPECIFY \ Load s t e p , h l t and h u t
FCLR \ f o r c e a c l e a r o f computers
7 FWDAT \ r e c a l command
FWDAT \ w r i t e d r i v e number
WTEND ; \ w a i t f o r t h e e n d

: FOFF (-) \ motor o f f
\ T h i s s h o u l d b e c a l l e d when it i s d e s i r e d t o t u r n motor o f f .

July 1996 August Forth Dimensions

\ This may be connec ted wi th some t i m e r i n t e r r u p t . I u se
\ t h e KEY wai t loop wi th a t i m e r .

FRST- FREG ! \ t u r n motors o f f
-1 FSEL ! ; \ i n v a l i d d r i v e f o r ?FSEL

: FSEEK (-) \ Seek c y l i n d e r .
WNBSY \ wai t no t busy.
FCLR \ c l e a r c o n t r o l l e r .
OF FWDAT \ seek c y l i n d e r command.
FWHD/ SEL \ second command b y t e
FCYL @ FWDAT \ c y l i n d e r .
WTEND ; \ wai t u n t i l done.

\ Addressing i s 16 -b i t words
: FSEC! (Addr -) \ Write a s e c t o r from addres s .

5 FCMD \ W r i t e s e c t o r .
IFF FOR

1 @+ \ f e t c h 512 b y t e s .
SWAP FWDAT \ w r i t e t o f loppy .

NEXT
DROP
FRSLT ; \ read r e s u l t .

: FSEC@ (Addr -) \ Read a s e c t o r t o add re s s .
6 FCMD \ Read a s e c t o r command.
IFF FOR
FRDAT \ g e t 512 b y t e s .
SWAP 1 ! + \ pu t them i n t o b u f f e r .

NEXT
DROP
FRSLT ; \ r e a d r e s u l t .

DECIMAL

: WRBUF (Addr Blk# -) \ W r i t e a 1 K b u f f e r t o d i s k b lock number.
360 /MOD ?FSEL \ s t a r t d r i v e .
2 * \ d i s k p h y s i c a l a d d r e s s (512/SEC) .
DUP CTSH \ c a l c c y l i n d e r , s e c t o r and head.
FSEEK \ move t h e r e .
OVER FSEC! \ w r i t e f i r s t h a l f .
1 + \ next l o g i c a l s e c t o r .
CTSH FSEEK \ move t h e r e .
512 + FSEC! ; \ w r i t e nex t b y t e s .

: RDBUF (Addr Blk# -) \ Read a 1 K b u f f e r from d i s k b lock number.
360 /MOD ?FSEL \ s t a r t d r i v e .
2 * \ d i s k p h y s i c a l a d d r e s s (512/SEC) .

DUP CTSH \ c a l c c y l i n d e r , s e c t o r and head.
FSEEK \ move t h e r e .
OVER FSEC@ \ Read f i r s t s e c t o r .
1 + \ next l o g i c a l s e c t o r .
CTSH FSEEK \ move t h e r e .
DUP 512 + FSEC@ \ Read second s e c t o r .
1023 FOR \ Mask $4000 i n t o each b y t e f o r cmForth.
DUP @
16384 OR
SWAP 1 !+

NEXT DROP ;

Forth Dimensions 29 July 1996 August

ANS FORTH

hForth: A Small
Portable ANS Fbth
Wonyong Koh, Ph. D.
Taejon, Korea

Background History
I started a personal project two and a half years ago

which has been in my mind for quite a long time:
Widespread Forth in Korea. Posffi is natural to Korean
people since a verb comes after an object in the Korean
language. Also, Forth does not restrict a programmer to only
alphanumeric characters; a Korean Forth programmer can
easily express his idea in comfortable Korean words rather
than be forced to think in English. As one might expect,
there was an effort for Korean Forth. Dr. Chong-Hong Pyun
and Mr. Jin-Mook Park built a Korean version of fig-Forth
for the Apple I1 computer in the mideighties. Long-time FD
readers may remember Dr. Pyun's letter in FDW6. Unfor-
tunately, the Korean computer communityswiftly moved to
the IBM PC while Dr. Pyun wrote articles about their work
in popular programming and science magazines. It became
somewhat obsolete before being known widely. Despite
this and other efforts, Forth has been virtually unknown to
most Koreans. Two and a half years ago, I decided to restart
the effort and looked for a vehicle for this purpose. I found

direct-threaded code
easy upgrade path to optimize for specific CPUs

Most of these are adapted from eForth. I emphasize
extensive error handling, since some well-known Forth
systems cannot manage as simple a situation as divide-by-
zero. In hForth almost all ambiguous conditions specified
in the ANS Forth document issue THROW and are captured
by CATCH, either by a user-defined word or by the hForth
system.

The hForth ROM model is especially designed as a
minimal development system for embedded applications
which use non-volatile RAM or ROM emulators in place of
ROM. The content of the ROM address space can be
changed during development and is copied later to real
ROM for the production system. The hForth ROM model
checks whether or not the ROM address space is alterable
when it starts. New definitions go into the ROM address
space if it is alterable. Otherwise, they go into the RAM
address space.

that there was no small ANS Forth system fo; the IBM PC.

ROM Model Came First
eForth, which was written by Mr. Bill Muench and Dr.

C.H. Ting in 1990, seemed to be a good place to start. I
studied eForth source and Dr. Ting's article in FDXIII/l and
set the following goals:

small machine-dependent kernel and portable high-
level code
strict compliance to ANS Forth
extensive error handling through CATCH/THROW
separated code and name space
use of wordlists
explicit consideration for separated RAM/ROM
address space
simple vectored input/output

I decided to build one. In the course of ANSifying eForth,
I have replaced every line of eForth source and felt that it
deserved its own name. I knew there were Forth systems
named bForth, cForth, eForth, gForth, iForth, Jforth, and
KForth. I picked "h" since it apparently was not yet used by
anyone; also, Han means Korean in the Korean language.

I data space I data space / code space
of new definitions

Alterable ROM
address space

RAM address space

name space
of new definitions

Unalterable ROM
address space

name space
of new definitions

RAM address space

name space
of old definitions

I ROM address space I ROM address space

name space
of old definitions

data space / code space I of new definitions I data space

I I
July 1996 August 30 Forth Dimensic

code space
of old definitions

code space
of old definitions

I

I

Data space can be allocated either in ROM address
space for tables of constants or in RAM address space for
arrays of variables. ROM and RAM, recommended in the
Appendix of the ANS Forth document, are used to switch
between the RAM and ROM address spaces. Name space
may be excluded in the final system if an application does
not require the Forth text interpreter. The 8086 hForth
ROM model occupies little more than 6 Kb of code space
for all of the Core word set and requires at least 1 Kb of
RAM address space for stacks and system variables.

The assembly source is arranged so that more imple-
mentation-dependent words come earlier. System-depen-
dent words come first, CPU-dependent words come after,
then come all the other high-level words. Colon definitions
of all high-level words are given as comments in the
assembly source. One needs to redefine only the system-
dependent words to port the Worth ROM model to an 8086
single-board computer from the current one for MS-DOS
machines, without changing any CPU-dependent words.
Standard words come after essential non-Standard words in
each system-dependent, CPU-dependent, and portable
part. All Standard Core word set words are included to make
Worth an ANS Forth-compliant system. High-level Standard
words in the last part of the assembly source are not used
for the implementation of hForth and can be omitted to
make a minimal system. The current 8086 hForth ROM
model for MS-DOS has 59 kernel words: 13 system-
dependentwords, 21 CPU-dependent non-Standardwords,
and 25 CPU-dependent Standardwords. System-dependent
words include input/output words and other words for file
input through keyboard redirection of MS-DOS. For five of
the kernel words, including (s e a r c h - w o r d l i s t) and
ALIGNED, CPU-dependent definitions are used instead of
high-level definitions for faster execution.

System initialization and input/output operations are
performed through the following execution vectors: ' b o o t ,
' i n i t - i / o , ' ekey? , ' ekey , ' e m i t ? , ' e m i t , and
'prompt. Appropriate actions can be taken by redirecting
these executionvectors. ' i n i t - i / o is executed in THROW
and when the system starts, while ' b o o t is executed only
once when the system starts. One has a better chance not to
lose control by restoring VO vectors through ' i n i t - i / o
whenever an exception condition occurs. For example,
serial communication links may not be broken by an
accidental change of communication parameters. ' b o o t
may be redirected to an appropriate application word
instead of the default word in a finished application. The
traditional "ok<end-of -line>" prompt (which is actu-
ally not) may be replaced by redirecting 'prompt.

Control-structure matching is rigorously checked for
different control-flow stack items. Four Cbit fields are used
to check balancing of o r i g , dest, do-s y s , and o f - s y s .
A Zbit field overlapped on a 4-bit field for o f - s y s is used
for c a s e - s y s . Each field increases when an item is put
on the control flow stack and decreases when it is
consumed. All of these fields should be zero before the
definition is added to the current wordlist. Otherwise the
hForth compiler issues:
-22 THROW (c o n t r o l s t r u c t u r e misma tch)

Forth Dimensions

The number of words grows substantially as a Forth
system is extended. Dictionary searches can be time
consuming unless hashing or other means are employed.
Currently hForth uses no special search mechanism,
however, it maintains a reasonable compilation speed by
keeping a shallow search depth in addition to using an
optimized (s e a r c h - w o r d l i s t) . Initially two wordlists
are in the search-order stack: FORTH-WORDLIST and
NONSTANDARD-WORDLIST. FORTH-WORDLIST contains
all the Standard words and NONSTANDARD-WORDL I ST
contains all the other words. Upon extending hForth,
optional Standard words will go in FORTH-WORDLIST
and lower-level non-Standard words to implement them
will be kept in separate wordlists which are usually not in
the search-order stack. Only a small number of non-
Standard words to be used by a user will be added in
NONSTANDARD-WORDLIST.

RAM and EXE Models Came Later
The hForth package consists of three models: ROM,

RAM, and EXE. The hForth RAM model is for RAM-only
systems where name, code, and data spaces are combined.
The hForth EXE model is for a system in which code space
is completely separate from data space, and an execution
token (xt) may not be a valid address in data space. The
8086 hForth EXE model uses two 64 Kb full-memory
segments: one for code space and the other for name and
data spaces. The EXE model might be extended for an
embedded system where name space resides in the host
computer and code and data space are in the target
computer. A few kernel words are added to the ROM model
to derive RAM and EXE models, and only several high-level
words such as HERE and CREATE are redefined.

The ROM and RAM models are probably too slow for
many practical applications. However, the 8086 hForth EXE
model is more competitive. The high-level colon definitions
of all frequently used words are replaced with 8086
assembly code definitions in the hForth EXE model. Com-
parison with other 8086 Forth systems can be found in Mr.
Borasky's article "Forth in the HP100LX" (FDXVII/4).

The hForth models are highly extensible. Optional
word sets, as well as an assembler, can be added on top
of the basic hForth system. Complete Tools, Search Order,
Search Order Ext word set words and other optional
Standard words are defined in 0PTIONAL.F included in
the 8086 hForth package. An 8086 Forth assembler is
provided in ASM8086.F. Much of the Core Ext word set is
provided in OPTIONAL.F, and all the other Core Ext words
except obsolescent ones and [COMPILE I (for which
POSTPONE should be used) are provided in COREEXTE
The complete Double and Double Ext word sets are
provided in D0UBLE.F. The high-level definitions in these
files should work in hForth for other CPUs. These files are
loaded into 8086 hForth for MS-DOS machines through the
keyboard-redirection function of MS-DOS. Complete Block,
Block Ext, File, and File Ext word set words are provided
in MSD0S.F using the MS-DOS file-handle functions.
Other utilities are also included in 8086 hForth package.
LOG.Fis to capture screen output to an MS-DOS text file

3 1 July 1996 August

which is edited to make Forth text source. D0SEXEC.F is
to call MS-DOS executables from within the hForth system.
A user can call a familiar text editor, edit Forth text source,
exit the editor, load the source, and debug without leaving
hForth. This process can be repeated without saturating
address spaces if a MARKER word is defined in the
beginning of the Forth text source and called before
reloading the source.

Multitasker
I had a chance to look at Mr. Muench's eForth 2.4.2

which has not yet been released by him. The multitasker
is the most elegant one among those I have seen. It does
task switching through two high-level words. I immedi-
ately adapted it to hForth. (Mr. Muench's multitasker is
now included in P21Forth for the MuP21 processor.)

In the Forth multitasker, each task has its own
context: parameter stack, return stack, and its own vari-
ables (uaditionally called user variables). The contexts
must be stored and restored properly when tasks are
suspended and resumed. In Mr. Muench's multitasker,
PAUSE saves the current task's context and wake restores
the next task's context. PAUSE saves the return stack
pointer on the parameter stack and the parameter stack
pointer into a user variable s t ackTop , then jumps to the
next task's status, which is held in the current task's user
variable f o l l o w e r . It is defined as:

: PAUSE
r p @ s p @ s t a c k T o p !
f o l l o w e r @ >R ; COMPILE-ONLY

Advanced Forth users already know that >R E X I T
causes a high-level jump for the traditional Forth virtual
machine. Each task's user variable s t a t u s holds wake and
is immediately followed by the user variable f o l l o w e r .
Initially, hForth has only one task, S y s temTas k. Its user
variables s t a t u s and f o l l o w e r hold:

switched) and restores the return stack pointer saved on
top of the parameter stack (now the return stack is
switched). wake is defined as:

: wake
R> u s e r P !
s t a c k T o p @ s p ! r p !
; COMP ILE-ONLY

What is clever here is that one item on return stack, left
by PAUSE and consumed by wake, is used to transfer
control as well as information for context switching. This
multitasker is highly portable. Not a line of multitasker
code was touched when the hForth 8086 RAM model was
moved to the 280 processor. I believe that it should be
possible to port this multitasker to subroutine-threaded or
native-code Forth by redefining them in machine codes.

I used this multitasker to update a graphics screen and
to make the cursor blink in HZOMUL77.F. Console output
is redirected to the graphics screen to display Korean and
English characters for VGA and Hercules Graphics Adapt-
ers. EMIT fills characters into a buffer and a background
task displays them on the graphics screen when hForth is
waiting for user input. Scrolling text on a graphics screen
is as fast as on a text screen. I also used the multitasker for
serial communication in SZ0.F. The main routine fetches
characters from the input buffer and stores characters in
the output buffer while the background task does the
actual hardware control.

Jump Table Interpreter
I applied all the best ideas and tricks I know to hForth.

Most of them came from other people, while I added a few
of my own. I believe that some of them are worth
mentioning.

The hForth text interpreter uses a vector table to
determine what to d o with a parsed string after searching
for it in the Forth dictionary. The dictionary search results

SystemTask's s t a t u s f o l l o w e r
wake absolute address of S y s temTa s k's status

If FooTask is added, s t a t u s and f o l l o w e r of the two tasks hold:

SystemTask's s t a t u s f o l l o w e r
wake absolute address of FooTask's status

FooTas k's s t a t u s f o l l o w e r
wake absolute address of S y s temTas k's status

Effectively, the current task's PAUSE jumps to the next
task's wake. At this point, user variables and stacks are not
switched yet. wake assigns the return stack item (the next
address of s t a t u s , i.e., the address of f o l l o w e r) into
the global variable u s e r p which is used to calculate the
absolute address of user variables. All user variables cluster
in front of f o l l o w e r . Now user variables are switched.
Then wake restores the parameter stack pointer stored in
the user variable s t a c k T o p (now the parameter stack is

in the string and 0 (for an unknown word), xt and -1 (for
non-immediate words), or xt and 1 (for immediate words)
on the parameter stack. The hForth text interpreter chooses
the next action with the following code:

1+ 2 * STATE @
1+ + CELLS 'doword + @
EXECUTE

July 1996 August 32 Forth Dimensions

I The doword table consists of six vectors.

The behavior of the Worth text interpreter can be
interactively changed by replacing these vectors. For
example, one can make the hForth interpreter accept only
single-cell numbers by replacing doubleAlso, and
doubleAlso with, respectively, singleonly, and
singleonly. optiCOMPILE, does the same thing as
the Standard word COMPILE , except that it removes one
level of EXIT if possible. optiCOMPILE, does not
compile null definition CHARS into the current definition.
Also, it compiles 2 * instead of CELLS if CELLS is defined
as : CELLS 2* ;.

Special Compilation Action for
Default Compilation Semantics

Compiling words created by CONSTANT, VARIABLE,
and CREATE as literal values can increase execution
speed, especially for native-code Forth compilers. A
solution is implemented in the hForth EXE model to
provide special compilation action for default compilation
semantics. Words created by CONSTANT, VARIABLE, and
CREATE have a special mark and xt for special compila-
tion action. The hForth compiler executes the xt if it sees
the mark. (POSTPONE must find this special compilation
action also and compile it.) A new data structure with
special compilation action can be built by CREATE and only
two non-Standard words: implementation-dependent
doCompiles> and implementation-independent com-
piles>. doCompiles> verifies whether the last defini-
tion is ready for the special compilation action, and takes
an xt on the parameter stack and assigns it as the special
compilation action of the last definition. compiles> is
defined as:

L

compilation state

non-immediate word
(top-of-stack = -1)

unknown word
(topof-stack = 0)

immediate word
(top-of-stack = 1)

: compiles> (xt --) I POSTPONE LITERAL

: 2CONSTANT
CREATE SWAP , , compiles>
DOES> DUP @ SWAP CELL+ @ ;

interpretation state
(STATE returns -1) (STATE returns 0)

It is the user's responsibility to match the special
compilation action with the default compilation seman-
tics. I believe that this solution is general enough to be
applied to other Forth systems.

optiCOMPILE,

doubleAlso,

EXECUTE

Turtle Graphics
I implemented LOGO's Turtle Graphics in hForth. The

turtle moves on the VGA or Hercules graphics screen and
follows the postfix Forth command 1 0 0 FORWARD instead
of the prefix LOGO command FORWARD 10 0. No floating-
point math is used at all. Integers are used to represent
angles in degrees rather than in radians, and a look-up
table is used to evaluate trigonometric functions. Only a
few words are defined in machine code for line drawing
and function evaluation. The turtle moves swiftly on a '286
machine. The English Forth source and MS-DOS execut-
able, ETUR7E.Fand ETUR7E.EXE, are in the 8086 hForth
package as well as in Korean ones, wherein the turtle
understands Korean commands.

EXECUTE

doubleAlso

EXECUTE

Summary
hForth is a small ANS Forth system based on eForth. It

is especially designed for small embedded systems. The
basic ROM and RAM models are designed for portability;
however, they can be easily optimized for a specific CPU to
build a competitive system as shown in the 8086 EXE model.
hForth has been ported to the H8 processor by Mr. Bernie
Mentink. I hope hForth will be useful to many people.

: NONAME
EXECUTE POSTPONE 2LITERAL ;

Dr. Wonyong Koh (wykoh@pado.krict.re.kr) is a professional chemist and a
sophisticated amateur programmer. He taught himself electronics and com-
puter programming during his college years. He met Starting Forth in a
bookstore ten years ago and has been fascinated with it ever since. He
currently works on electronic thin films in the Korean Research Institute of
Chemical Technology.

Forth Dimensions 33 July 1996 August

Using Forth to manipulate the real world I

Contmlling DC Motors
Skip Carter
Monterey, California

Introduction
Last month's codeless column described the circuitry

required to control electrical power. This time we will look
at how we can use software to manipulate those circuits
in order to control a DC motor.

DC Motors
Motors that are driven by direct current come in a vast

assortment of physical sizes, with or without integral
reduction gears, and with or without shaft-position encod-
ers. Electrically, these motors come in three basic forms:

The series motor, Figure One-a. These motors have the
field windings in series with the armature. They have a
high starting torque. When lightly loaded, they have a
tendency to increase in speed with time to the point that
they can actually be damaged, so they should not be run
without a load or a speed control mechanism.
The shunt motor, Figure One-b. These motors have the
field windings in parallel with the armature. Shunt
motors have less starting torque than a comparable
series motor, but they are usually very good. These
motors have the property that, once spun up, they
approach a set speed and maintain a nearly constant
speed over a wide range of loads.
The compoundmotor, Figure One-c. A compound motor-
has both series and parallel field windings. They have the
high starting torque characteristics of series motors and
the constant speed characteristics of shunt motors.

From the perspective of controllingthe motor, all three
of these motors are identical.

Controlling the Motor Speed
We can drive a DC motor with our transistor circuit for

controlling DC power to inductive loads. Using a single
digital output bit to control the transistor will turn the
motor on (full speed) when the transistor is on, and will
turn it off when the transistor is off. What about running
the motor at different speeds? The speed at which a DC
motor runs (for a given load) is proportional to the
magnetic field strength in the coils. This field is propor-
tional to the applied current, so it would appear that we

need to control the current. (It is the way the equations for
the coil current work out for series motors that make them
tend to "run awayn at no loads.) But focusing on the
primary requirement of controlling the magnetic field
strength suggest an approach that is much more conve-
nient from a digital control perspective. Recall that those
coils store current (causing us to be preoccupied with "fly-
backn or "shunt" circuits in order to handle this current
when it's released). Now we can use that current-storage
property to our advantage. When we turn on the control-
ling transistor, we charge u p the coil. If we then turn the
transistor off, the voltage across the coil drops and the field
collapses, but thtk takes time. So if we turn the transistor
back on again before the field fully collapses, it starts to
climb back u p before it ever gets to zero. The shorter we
make the off time, the higher the average field strength-
u p to the point where the on-time is continuous and we
get a fully on motor coil. So, by controlling our transistor
on and off rates properly, we can vary the field strength
from full on to full off.

The typical way to d o this is with a puke-width
modulated signal (PWM). With this type of signal, the
cycle time is fixed (at, say, one kilohertz) and the duty
cycle (the proportion of the cycle time during which the
signal is on) is varied. Listing One, pwm.fth, provides a
simple implementation of this type of control.

Changing Motor Direction-The H-Bridge
For stepper motors, we could change the direction of

rotation by just reversing the order that we presented the
coil patterns; for DC motors, we have to reverse the
direction of the current through the coil. Conceptually, we
need to have two transistor switches in order to do this.
One provides a current path in one direction through the
motor, the other switch controls current in the opposite
direction. Probably the simplest way to achieve this is to
use a relay driven by transistor switches. But if we are
going to be using PWM speed control, relays are not a very
attractive choice because the PWM will be cycling them
too fast and they would quickly wear out even if they
could switch at 1 KHz. We can build a transistor switch if
we combine a high-side and low-side switch into a single

Forth Dimensions 34 July 1996 August

Figure One. The three basic types of DC motors. I 4- +T +T
armature

(a) series DC motor (b) shunt DC motor (c) compound DC motor

circuit, like in Figure Two. With this
circuit we apply a PWM signal on one
transistor and turn the other off to get
one direction of rotation, and turn the
first one off and apply a PWM signal
to the second to get the opposite
direction of rotation. The two transis-
tors should not be simultaneously
switched on.

This simple switch has the disad-
vantage of requiring a dual polarity
power supply. It would be much
more convenient to have a circuit that
gave us the ability to switch current
directions without a dual-rail power
supply. Such a circuit is known as an
H-bridge. Unfortunately, the imple-
mentation of such a bi-directional
current switch requires a combination
of both low-side switching a n d high-
side switching, as before. In addition,
it turns out to be more flexible ifwe do
this by using n-type devices for the
low-side switches, andptype devices
for high-side switches. Now we have
done two things that, last time, we
concluded we wanted to avoid: i) the
use of high-side switching, and ii) the
use of ptype transistors.

The ultimate result is the relatively
complicated circuit in Figure Three. (I
am showing a bipolar transistor imple-
mentation which requires a voltage
level shift on the control signals be-
cause of the above listed compromises;
this is what the LM-324 op-amps are
for. H-bridges are also frequently

Figure Two. Switching the direction of a DC motor with two
power transistors, for a dual polarity voltage supply.

+v

Forward

Motor

Reverse

v
-v

implemented using MOSFET transis-
tors.) If we implemented the H-bridge with only n-type
transistors, the control lines would connect the bases of 1
and 4 together and 2 and 3 together, instead of the way we
implement it here. The strictly n-type H-bridge requires
that the motor voltage be significantly higher than the
control voltage (say 12 volts), whereas the kind with both
types of transistors can work down to just slightly higher
than the control voltage (like six volts). In any case, this
circuit is messy enough that we have crossed a threshold
of practicality: Unless you have a very exotic requirement,
or are doing this for pedagogical reasons, it's simpler to
use an integrated circuit implementation of an H-bridge
(such as the Motorola MPC1710A or the SGS Thompson
L293D). If you decide to use an IC H-bridge, just make sure
it can handle the current loads you anticipate will be
required-typical chips can drive the motor with currents
in the range of .5 to three or four amps.

Listing Two, hbridge.fth, shows a typical H-bridge control
program. Notice that we can do the typical Forth thing and
build upon the PWM code we already have. To rotate in one
direction, transistors 1 and 4 are on, running current through

the motor one way. The other rotational direction is accom-
plished by switching on only transistors 2 and 3.

Note that IC H-bridges are usually controlled by a clock
and direction pin, but the discrete component one shown
here uses two clock lines, one for each direction (for a given
direction of rotation, one side gets clocked and the other
side is held low). So the driving code for an IC H-bridge will
look somewhat different from the code shown here.

The use of the H-bridge also gives us the useful
capability of activebraking of the motor. Up until now, we
stopped by turning off the controlling transistors and then
coasting to a halt. But, for some implementations of the H-
bridge, one can actually draw energy outof the coils when
the motor is spinning, making the motor work against itself
and thus achieving dynamic braking by switching on both
transistors 1 and 2 simultaneously.

Bipolar Stepper Motors
In our first column [FD XVII/SI, I mentioned the four-

wire bipolar stepper motors. These motors require proper
sequencing of the direction of the current through two sets

Forth Dimensions 35 July 1996 August

of coils. [See Table One.] We can d o this if we have two
H-bridges, one for each coil. Now we are using lots of
transistors, eight of them, to control a single motor.
Fortunately, many H-bridge ICs (such as the L293D) are
dual H-bridge chips.

Figure Three. An H-Bridge using NPN (e.g., TIP-121) and PNP (e.g., TIP-126) power Darlington transistors.
The two unmarked NPN transistors are general-purpose signal transistors (e.g., 2N3904).

A +Vmotor

+Vmotor

Q 1 Q2

LM-324

So step one is the condition where coil 1 has a negative
voltage on wire 1 and a positive voltage on wire 2, coil 2
has a negative voltage on wire 1 and a positive voltage on
wire 2. Step two reverses the current in the second coil,
leaving the first alone.

Listing Three, bipolar.fth, shows the code to drive a
bipolar stepper motor through the above sequence.

- Q4 rJ\

Table One. The bipolar sequence. I

Conclusion
With this installment, we have pushed very hard

against the limits of what is reasonable to do with discrete
components and high-level code. It might not look like the
code presented here is particularly special, but it was

+Vmotor

step

1
2
3
4

for you MS-DOSAWindows users: Take a look on an
oscilloscope at the pulse timings when running the PWM
code in a Windows shell and when running in native MS-
DOS mode. If you do this experiment, you will never have
to ask whether it is reasonable to run a true real-time
application from W i n d o w s y o u will know the answer.

In a typical microcontroller that might be used in an
embedded application that needs to control a DC motor,
you are likely to have an on-board timer or I/O coprocessor
that can be used to generate the motor control signals. This
type of feature should certainly be taken advantage of-
if it is available, it potentially can help you to avoid the
need to use a more powerful (and more expensive)
processor for a given application. But if you follow what
we did here, you will understand the principle of DC
motor control regardless of the implementation details
your application will dictate.

Now that we can turn things off and on and move things
around, we need to focus our attention on measuring how
the real-world is responding to our manipulations. Without
input, we can't really control systems. Next time, we will
begin looking at getting input from the environment.

Please send your comments, suggestions and criticisms
to me through Forth Dimensions or via e-mail at
skip@taygeta.com.

Cll c12 C2l c 2 2

-v +v -v +v
-v +v +v -v
+v -v +v -v
+v -v -v +v

UGDIWLCU LU VG 43 UGLGIIIIIIIIDLIL 43 ~ U J ~ I U I C 1u1 ~1113 1t;al-
time application. In this way, the motor's speed is as

Skip Carter is a scientific and software consultant. He is the leader of the Forth
Scientific Library project, and maintains the system taygeta on the Internet. He

uniform as possible. By the way, here is a little experiment is also President of the Forth Interest ~ r o u p .

July 1996 August 36 Forth Dimensions

[~ i r h n ~ One. pwm.fth I
I

\ pwm.fth Simple PWW of a parallel port pin for controlling a DC motor.
\ $Author: s k i p $
\ $Workfile: pwm.fth $
\ $ R e v i s i o n : 1.1 $
\ $Date: 28 May 1996 02:38:24 $
\ This code i s r e l e a s e d t o t h e p u b l i c domain. Eve re t t C a r t e r , May 1996

\ code t o set up t h e p a r a l l e l p o r t
S" /usr/local/lib/forth/fcontrol.fth" INCLUDED

\ ...

\ We w i l l j u s t assume t h a t b i t 0 i s t h e motor,
\ but by p l a y i n g games wi th t h e fo l lowing masks we could
\ c o n t r o l m u l t i p l e motors

0 VALUE off-mask
1 VALUE on-mask

\ ===-=-==E======: Timing Control
VARIABLE h i t i m e \ O..cycle-time, t h e motor w i l l s t a l l

\ f o r very small va lues (l i k e 4 o r 5) ,
\ depending upon t h e motor

VARIABLE cyc l e - t i m e \ t r y something l i k e 100, depends upon
\ t h e motor and t h e CPU

\ The ANS M S i s t o o coa r se , we want t h e WHOLE CYCLE TIME t o be
\ on t h e o r d e r of 1 ms, s o we a r e f a l l i n g back t o t h e o l d s tandby
\ i d l e loop. The va lues used h e r e may need tun ing f o r d i f f e r e n t
\ motors and CPUs

100 VALUE delay-t ime \ c y c l e t ime g r a n u l a r i t y I I : de lay delay-t ime 0 DO LOOP ;

\
: v e r i f y (--) \ make s u r e we have u s e f u l s e t t i n g s

h i t ime @ 0 < ABORT" i l l e g a l h i t ime (< 0) "
cycle- t ime @ 1 < ABORT" i l l e g a l cycle- t ime (< 1)"

h i t ime @ cycle- t ime @ > ABORT" h i t ime > cycle-time"

: i n i t (--)
v e r i f y
i n i t - p o r t TO #PORT

: run-motor (--) \ run motor u n t i l keys t roke r ece ived
BEGIN

h i t i m e @ 0 > I F on-mask #PORT pc! THEN

cycle- t ime @ 0 DO
I h i t ime @ = IF off-mask #PORT pc! ELSE

KEY? IF KEY DROP UNLOOP EXIT THEN
THEN

de lay
LOOP

AGAIN

\ ..

: run (--) \ i n i t i a l i z e , run, and clean-up
i n i t
run-motor
off-mask #PORT pc!
#PORT CLOSE-FILE DROP

Forth Dimensions 37 July 1996 August

Listing Two. hbridge.fth I
\ hbridge.fth Driving a DC motor with an H-bridge

\ $Author: skip $
\ $Workfile: hbridge.fth $
\ $Revision: 1.1 $
\ $Date: 28 May 1996 02:40:22 $

\ This code is released to the public domain. Everett Carter, May 1996

\ code to set up the parallel port
S" pwm. fth" INCLUDED

\ =;--

\ We will just assume that bits 0 and 1 drive the motor,
\ but by playing games with the following masks we could
\ control multiple motors

: forward
1 TO on-mask

: reverse
2 TO on-mask

\ usage: forward (or reverse) run

Listing Three. bipolar.fth 1
\ bipolar. fth Driving a Bipolar stepper motor with a dual H-bridge

\ note: much of this code closely duplicates the code from the
\ Jan/Feb 1996 listing: steppers.seq. The primary differences
\ are the values of the sequence array and that it is assumed
\ that the pins drive a dual H-bridge like Figure 3.

\ $Author: skip $
\ $Work£ ile: bipolar. fth $
\$Revision: 1.1 $
\ $Date: 28 May 1996 02:42:46 $

\ This code is released to the public domain. Everett Carter, May 1996

\ code to set up the parallel port
S" /usr/local/lib/forth/fcontrol.fth" INCLUDED
S" /usr/local/lib/forth/fsl-util.fthW INCLUDED
S" /usr/local/lib/forth/structs.fth" INCLUDED

\ .. -
\ We will just assume that bits 0 and 1 drive the motor coil 1,
\ and bits 2 and 3 drive motor coil 2

structure : sequence
integer: .n
integer: . index
4 integer array: .s(

; structure

sequence bipolar

(Listing Three continues.. .)

July 1996 August 38 Forth Dimensions

: i n i t - s e q (--)

4 b i p o l a r .n !
0 b i p o l a r . index !
2 b i p o l a r .s{ 0) !
4 b i p o l a r .s{ 1) !
1 b i p o l a r . s{ 2) !
8 b i p o l a r . s{ 3) !

-1 VALUE d i r e c t i o n ?

1 2 VALUE w t i m e

: idx++ (seq-hdl -- i dx) \ increment t h e index, r e t u r n o l d va lue
2DUP .n @ >R

. index DUP @
DUP 1 + R> MOD
ROT !

: idx-- (seq-hdl -- i dx) \ decrement t h e index, r e t u r n o l d va lue
2DUP .n @ >R

I . index DUP @
DUP 1- R> OVER
0 < I F 1- SWAP THEN DROP 1 ROT !

: f s t e p s (s e c h d l n --)

0 DO wtime MS
2DUP idx++ >R
2DUP . s{ R> 1 @ #PORT pc!

LOOP

2 DROP

: r s t e p s (s e c h d l n --)

0 DO w t i m e MS
2DUP idx-- >R
2DUP . s { R> } @ #PORT pc!

LOOP

2 DROP

: r eve r se (--) \ t o g g l e s r o t a t i o n d i r e c t i o n
d i r e c t i o n ? IF 0 ELSE -1 THEN

TO d i r e c t i o n ?

: s t e p s (n seq-hdl --)
ROT
d i r e c t i o n ? IF f s t e p s ELSE r s t e p s THEN

I

\ ..
i n i t - s e q

I \ t y p i c a l usage: 1 2 b i p o l a r s t e p s

Forth Dimensions 39 July 1996 August

L

Call for Papers
FORML CONFERENCE

The original technical conference for professional Forth programmers and users.

18th annual FORML Forth Modification Laboratory Conference
Following Thanksgiving November 29 - December 1,1996

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California, USA

Theme: Experimenting with the ANS Forth Standard
The ANS Forth standard has been out for two years, and the review process will start in another two years. During the
development of the standard, the lack of "common practice" led to many last-minute experiments. FORML, with its charter
as Forth's "Modification Laboratory," is the appropriate place to let others know what your experiences have been as a
developer or user while there's time for your ideas to spread.

Papers are sought that report on your experience writing ANS Forth programs and systems. That is, on your experiments. What
worked, what didn't? How easy or difficult was it to.. .? Are ANS programs really portable? Where were the "gotchas" in
writing the half-dozen or so public-domain ANS systems? How are you checking that your program or system really does
comply? What has it been like to convert your customer base to ANS? Or is it worth doing at all?

Has documentation improved because of the ANS examples? Is it easier to read another's code? Have you seen any change
in Forth's acceptance? What is needed for there to be a truly international standard?

By calling attention to the successes and the problems now, before the review process begins, we hope others will repeat your
experiments, confirming or refuting your hypotheses. Can an alternative to DOE s > really resolve syntactic problems and make
meta-compilation easier? Can a tethered system be compliant and efficient? Would it make sense to have various common
groups of environmental restrictions labeled "Forth models"?

Please, whether your ANS experiment was one line or a thousand, whether it succeeded or failed, or can be described in one
page or ten, bring it to this year's FORML Conference to share with the world. As always, papers on any Forth-related topic
are welcome.

Mail absuact(s) of approximately 100 words by October 1,1996 to FORML, P.O. Box 2154, Oakland, California94621 USA,
or e-mail to FORML@ami.vip.best.com. Completed papers are due November 1, 1996.

The Asilomar Conference Center combines excellent meeting and comfortable living accommodations with secluded forests on
aPacific Ocean beach. Registration includes use of conference facilities, deluxe rooms, meals, andnightly wine and cheeseparties.

John Rible, Conference Chairman Robert Reiling, Conference Director

Registration and membership information available by calling, fax, or writing to:
Forth Interest Group, P.O. Box 2154, Oakland, CA 94621

510-893-6784, fax 510-535-1295

Conference sponsored by the Forth Modification Laboratory, a Forth Interest Group activity.

