

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 2000tm l&bit Forth Chip SC32tm 32-bit Forth Microprocessor
-8 or 10 MHz operation and 15 MIPS speed. *8 or 10 MHz operation and 15 MIPS speed.
1-cycle 16 x 16 = 32-bi multiply. 1 -clock cycle instruction execution.
1 -cycle 1 Cprioritiied interrupts. *Contiguous 16 GB data and 2 GB code space.

*two 2Sword stack memories. *Stack depths limited only by available memory.
*&channel I/O bus 81 3 timer/counters. -Bus request/bus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. -32-bi SC32 industrial grade Forth PGA CPU.
-System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
032 KB to 1 MB 0-wait-state static RAM. -32 KB to 512 KB 0-wait-state static RAM.
Full-length PC/XT/AT plug-in (6-layer) board. elOOmm x 160mm Eurocard size (4-layer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (Parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. 032-bi SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
-Up to 640 KB 0-wait-state static RAM. 064 KB to 1 MB @wait-state static RAM.
*233mm x 160mm 6U size (Slayer) board. *FulClength PC/XT/AT plug-in (Slayer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
RTX 2000 PLCC or 2001 A PLCC chip. =RTX 2000 industrial grade PGA CPU.

*System speed options: 8, 10, or 12 MHz. *System speed options: 8, 10, or 12 MHz.
-32 KB to 256 KB 0-wait-state SRAM. 032 KB to 512 KB &wait-state static RAM.
-1 00mm x 1 OOmm size (+layer) board. -1OOmm x 160mm Eurocard size (Clayer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 655 W. Evelyn Ave. f l , Mountain View, CA 94041 (415) 961-8778

Features

6 GU1 Application Development Gary Ellis, Roy Goddard
Forth can provide GUI-friendliness without losing the interactivity we take for granted. This
paper demonstrates that careful design and algorithm choices are essential to support the tools
required. If these choices are made well, the tools produced can interact transparently with each
other, the system, and the user to allow cost-effective commercial application development.

1 1 Object-Oriented Forth in Assembly Andras Zsoter
When choosing a system to use in laboratory automation and robotics, the author searched for a
system which would give him freedom and interactivity while generating standalone applications.
Naturally, the solution was Forth. He had used an object-oriented language and, as an obsessed
assembly programmer, decided to implement an 00 version of Forth in 32-bit protected mode.

20 Simulating NASA Shuttle Robot Arm Edward K. Conklin
NASA's space shuttle carries a robot arm for satellite operations, and for tasks such as the recent
repair and upgrade of the Hubble Space Telescope. Its complex motions are directed by
rotational and translational joysticks, and software does the complex calculations. There are two
ground-based versions, and last year Forth, Inc. provided the control program for one of them.

22 Vehicular Rollover Reconstruction J. \c/: Noble
A motor vehicle sliding sideways on a pavement can roll over as a result of collision with a
barrier such as a curb. The behavior of a car under these conditions can be quite complex.
This paper present a numerical simulation of vehicular rollover accidents on both wet and dry
pavements, with graphical display of "flying" cars.

36 Po werMacForth Opt irnizer Xan Gregg
This article presents an optimizing direct-code Forth compiler for the PowerPC, an ANS version
of Creative Solutions, Inc.'s system for the PowerMacintosh. The architecture makes some stack
operations painful, but the PowerPC's pre-increment addressing mode makes possible a one-
instruction push, and the fixed-length instructions are a boon to optimizers and decompilers.

4f MuP21-a MISC Processor C.H. Ting, Charles H. Moore
Whether you are hungry for Forth hardware or are just interested in the design and production
of custom microprocessors, follow along as these authors provide details of the design
constraints and philosophy behind their latest project. Once again, we see that the Forth
paradigm can be as rewarding in hardware as it is in software.

Departments I
...... 4 Editorial Leadership, wizardry, and 27 Stretching Forth LZ77 Data

building bridges. Compression.
40 Advertisers Index

5 Letters Forth's northern exposure;
On the learning curve. 45 Product Watch

18 Scientific Library Progress report on a 46 Fast Forth ward Can a Forth kernel
valuable project. use objects?; cor-

rection to ANS
26 dot-quote Forth strategems. Forth Quick Ref.

Forth Dimensions 3 March 1995 April

The FIG office recently received a letter from someone who does not intend to renew
his membership/subscription. He states, "After reading the last several months [ofl Forth
Internet usenet banter, it seems that the principal players have positioned themselves
as erudite adversaries. This does not bode well for Forth's popular growth and probably
indicates its demise."

(Here I should point out that comp.lang.forth is an unmoderated USENET newsgroup.
Like other unmoderated newsgroups, it has a public life and character of its own that
is dictated by those who post to it, but which is perceptible by all its on-line "lurkers.")

I agree that some of the more politicized of the on-line threads have been distastefully
polemical and personal, to say nothing of unprofessional. I do not believe these represent
Forth's principal players, though. I don't blame anyone for wanting to avoid such scenes,
but they don't serve as indicators of Forth's demise.

The real leaders in the Forth community are running Forth businesses, creating Forth
systems and products, and providing services. They are honing their expertise, positioning
Forth in the marketplace, and adopting contemporary programming practices in creative,
Forth-like ways.

I hope the new leaders of the Forth Interest Group-the incoming Board of Directors
and FIG chapter leaders-will come from the ranks of Forth's real "key players."

If you are interested in affecting the Future of the Forth Interest Group, there is no time
like the present. If you or another likely candidate is not among those listed in the
forthcoming announcement of Board nominees, you can have your name placed on the
list of candidates-for details of the procedure provided in FIG'S by-laws, see the full text
of the announcement in our last issue; if you have questions after reading it, contact current
FIG Board members for clarification and to declare your interest in a Board position.

People regularly ask how to learn Forth. In this issue, Richard Fothergill's letter prompted
me to remember how some Forth experts opine that techniques can be shared, but
realizations can only be hinted at. This contributes to the frustration of outside obse~e r s ,
causing some to say Forth is too mystical to be practical. (E.g., a Forth programmer's
productivity cannot be measured by the number of lines of code produced per day.)

This also challenges the writers of Forth tutorials, the instructors of Forth courses, and
the marketing expertise of Forth vendors. It is not enough to teach the use of stack
operators and wordlists and defining words, the student must be prepared and led
methodically through successive stages of understanding.

One hopes the coming, new generation of Forth tutorials and texts will achieve this.
To do less is to ask readers to jump through seemingly insignificant hoops ("hello, world")
for no obvious purpose, or to suffer through slick prestidigitation that dazzles without
illuminating. We must generate Forth expertise-by defining the entry points from which
newcomers approach Forth and suucturing our educational efforts accordingly, and by
better understanding and teaching the nuances that comprise "Forth thinking."

Speaking of Forth wizardry, I am pleased to welcome Wil Baden as FLYs newest
columnist. Wil is well known at FORML conferences as both astute and entertaining, a very
enjoyable speaker and accomplished Forthwright. (And when preparing to join the FORML
lecture tour of China some years ago, he learned to speak Chinese well enough to deliver
his talks without a translator.) Wil's list of proposed topics for "Stretching Forth" is
impressive-we look forward to his contributions, which begin in this issue.

-Marlin Ouverson
FDedito@aol. corn

Forth Dimensions
Volume XVI, Number 6

March 1995 April

I Published by the
Forth Interest Croup I

Editor
Marlin Ouverson

Circulation/Order Desk
Frank Hall

Forih Dimemions welcomes
editorial material, letters to the
editor, and comments from its read-
ers. No responsibility is assumed
for accuracy of submissions.

Subscription to Forth Dimen-
sions is included with membership
in the Forth Interest Group at $40
per year ($52 overseas air). For
membership, change of address,
and to submit items for pu blication,
the address is: Forth Interest Group,
P.O. Box 2154, Oakland, California
94621. Administrative offices:
51G89-FORTH. Fax: 510.535-1295.
Advertising sales: 805-946-2272,

Copyright Q 1995 by Forth In-
terest Group, Inc. The material con-
tained in this periodical (but not the
code) is copyrighted by the indi-
vidual authors of the articles and by
Forth Interest Group, Inc., respec-
tively. Any reproduction or use of
this periodical as it is compiled or
the articles, except reproductions
for non-commercial purposes, with-
out the written permission of Forth
Interest Group, Inc. is a violation of
thecopyright Laws. Any code bear-
ing a copyright notice, however,
can be used only wih permission
of the copyright holder.

The Forth Interest Group
The Forth Interest Group is the
association of programmers,
managers, and engineers whocreate
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that
will advance the general state of the
art. FIG provides a climate of
intellectual exchange and benefits
intended to assist each of its
members. Publications, conferences,
seminars, telecommunications, and
area chapter meetings are among
its activities.

"Forth 5imensiom(ISSN 08&1-0822)
is published bimonthly for $40/46/
52 per year by the Forth Interest
Group, 4800 Allendale Ave.,
Oakland, CA 94619. Second-class
postage paid at Oakland, CA.
POSTMASTER: Send address
changes to Forth Dimensions, P.O.
Box 21 54, Oakland, CA 94621-0054."

March 1995 April ' 6% Forth Dimensions

Dimemions costs $52 to overseas subscribers. Is this correct?
Thirdly, since it is a long row to the States from Wales,

d o you have an advice column that is contactable via the
Internet?

And lastly, do you have a back issue or two available that
I could look at so that I could see the level andstyle of articles?

I'd be very grateful for any help you can give me on the
above.

Yours sincerely,
Richard Fothergill
Mid Glamorgan, Wales
United Kingdom

Forth Dimensions 5 March 1995 April

Forth's Northern Exposure
Hello,

I was a member of FIG earlier, but $52 for a poor
student was too much.

Now I work at an electronics company which I try to
convince to use Forth. It's tough, with all the C program-
mers, but I have convinced our C master. So now we are
constructing a development system that will be interac-
tively programmed in Forth.

I see Forth as a perfect language for embedded
systems, and believe that most other people will think so,
too, after using this sytem. But maybe it would help if there
were a smoother transition from C to Forth. I have used a
Forth system from Triangle Digital Services, who I heard
of through an advertisement in Forth Dimensions. In the
latest news from TDS, they write about C-to-Forth articles
in FD, so now I am joining FIG again.

Best regards,
Anders Eriksson
Mijlndal, Sweden

Andes, we are pleased to welcome you back as one of our
waden, and we also thank you for supporting both Forth
and its commercial vendors. Let us know howyourproject
progresses!

-Ed.

On the Learning Curve
Dear Marlin Ouverson,

I am a newcomer to the Forth programming language
who has recently acquired a copy of Tom Zimmer's F-PC v.
3.55. I have discovered that your journal, Forth Dimensions,
deals with matters relating to Forth, and I am writing to ask
for more specific information about your publication.

Firstly, I would like to know if Forth Dimensions would
be suitable for a beginning Forth programmer who is a
hobbyist, rather than a professional. Although I have read
Leo Brodie's book, Starting Forth, and understand some
of the basics of Forth such as the stack operations, creating
new words, etc., I haven't yet got to grips with the more
arcane topics, such as creating separate vocabularies,
vectored execution, etc.

Secondly, the latest information I have is that Forth

Thank you-your questions are important to anyone new
to Forth, so I'll make space here for some answers.

As other writers have noted, Forth's unique paradigm can
makethelearningprocessabitofachallenge.Manyoftoday's
e.xprts describe their inh-oductwn to Forth as a pro~ess of
gathering bitsandpiecesofinformationandtechniquesunti1
an elusive understanding suddenly dawned on them, mow
like a realization than a lineareducation. 7his may indicate
a need for better tutorials-and Forth Dimensions always
welcomes such material--but it also points out that Forth
encourages a different way of thinking about computer-
basedpmblem and solutim. And, as Andrhs 236tdrpoints
out in this ksue, the understanding gained via Forth offen
benefits one's work in other languages.

To answeryourfitst question more directly, newcomers to
Forth are sometimes intimidated by the content of Forth
Dimensions. Those who persevere do find it rewarding,
and we will do our best to include material helpfil to you
and other beginners. Try to augment your reading of
Starting Forth with thesame author'sThinking Forth and,
perhaps, material like Hasketl's The Forth Course and
Ting 'sThe First Course (speci/icallygeared toward users of
F-PC). Such tutorials will prepare the foundations, while
material from FD and other sources will stretch your
understanding andserue to demonstrate whatliesjust ouer
the horizon of your current knowledge.

(And yes, overseas memberships/subscriptions are $52. In
addition to receiving this journal, FIG members enjoy a
discount on books and other item.)

Many Forth experts are available via the Internet. Irecom-
mendsuscribing to the comp.langl/orth newsgroup, where
seasoned Forth users enjoy assisting newcomers, discuss-
ing technical matters, andoccasionally engaging inpoliti-
cal diatribes. Forth is also an emerging presence on the
World Wide Web.

For copies of past Forth Dimensions, membership, and
mail order i tem, see the mail-order form in this issue. We
welcome your interest and your questions; please let us
know how we can be of further assistance. -Ed.

Tool Interactivity for

Rapid GUI Application
Development
Gary Nlis, Roy Goddard

Southampton, England

In a high-pressure, commercial environment, rapid
development of GUI applications is vital. This paper
demonstrates that careful design decisions and algorithm
choices are essential to support the tools required. If these
choices are made well, the tools produced can interact
transparently with each other and the user to allow cost-
effective commercial application development.

Introduction
This paper focuses on the MPE ProForth GUIDE tool.

It shows how careful design decisions and algorithm
choice can allow a Forth utility to provide GUI-friendliness
and yet lose nothing of the interactivity we take for granted
in Forth. It shows how the interactivity extends from the
user/system interaction to the tool/user/application inter-
actions which are vital for fast application development in
a high-pressure commercial environment.

the specification is tighter, in that the code generated must
be very human readable without learning new or private
libraries and classes, and requires no additional DLIs, etc.,
for the code to compile and run in an application.

Feature Overview
Before describing the design and algorithm choices

associated with a tool as complex as ProForth GUIDE, it
is useful to look at the features of the tool, to see where
the design decisions and algorithm choices fit in-why
they are important.

The specification for GUIDE requires that the user is able
to describe and define a window and or a menu without
typing lines of code. It requires &latihe be
to define a dialog without writing any lines of code. The
code generated by must human-readab1e1 and
conform to ProFonhlanguage in the 'Ystem
manuals. It must also be able to be read back into GUIDE
for the user continue graphical work On Between
sessions using the user must be use a
standard text editor to work on the output source files with
minimal coding restrictions to re-use GUIDE on the same

creates the frame-
window procedures and code lor
and messages lo be processed Or

generated by the control, dialog, menu, or window.
This specification defines a product which compares

favorably with other GUI builders, such as Microsoft
Ct+, Blue Sky Visual etc. However,

March 1995 April

User InterfaceDesign Principles
The major design principle for the user interface is the

use of the mouse for every possible action. The example
included in this paper describes a wilh a four-item
menu. The only text typed in for the entire description is
the text to appear in the menu. A11 other specifications and
requiremenrs of the window were performed
with just the mouse. Further, as only a live demonstration
can adequately show, most actions are centered around
the sample window. This is changed by using the mouse
and the left button where Microsoft has a convention (such
as dragging), and the right button for other things. The use
of the right button to open a dialog of objeu propenies is
fast becoming a standard under Windows.

Although the code for GUIDE iself may take longer to
develop, the usability advantages are enormous, It is this
usability which gives the Fonh/GUIDE user the develop-
ment edge, and more opportunity to exploit his or her own
application market.

A design decision for the user interface is the
to define dimensions and locations, etc., in two

6 Forth Dimensions

ways. Taking the example of moving a window about on
the screen, the first reaction of the user is simply to drag
the window to the required location. However, the mouse
movement may not be accurate enough, especially on a
notebook computer. Therefore, the user is also able to
type exact coordinates into the relevant dialog. Thus, there
is a symmetry in the development process--either view
GUIDE as a graphical editor, or as a property browser
through standard source code.

Data Structures--Design for Flexibility
GUIDE is heavily data oriented. Every object which the

user can define has at least five of its own, specific
properties-such as x- and y-coordinate, width, height,
text caption, etc. If the object is a window, it also has
attributes of style, extended style, name, messages to
process, etc. Thus, if GUIDE is to allow the user to define
more than one dialog or one window/menu at a time, the
data structures have to be very versatile.

The data structures within GUIDE can be viewed as a
tree of linked lists. The best example of this is the menu. A
menu contains one object per entry, and there is a list of
entries. However, if an entry has a child menu associated
with it, this child menu is the head of a new linked list of
entries in the child menu. Dialogs, similarly, rely on this
kind of structure, as the outer window has child controls,
and each control has a list of messages and events to
respond to. As many objects have similar properties,
coordinates for example, these are in the same place in each
structure, so that a certain degree of object orientation is
achieved. This makes the structures in GUIDE rigorous, and
the tool itself relatively easy to develop.

Code Write-out-Human-readable Code
Most equivalent tools on the market today require

libraries and classes such as the Microsoft Foundation
Class. Therefore, the code generated refers to these code
sources and the user must learn yet another tool in order
to understand or modify the code generated by the GUI
tool. A vital design decision for GUIDE was to ensure that
the machine-generated code used only calls to words and
data structures defined and documented in the ProForth
manuals and glossary. Therefore, the tool is simply
machine-generating code, and not "cheating" by hiding
functionality in a private library.

This is very important, as it is possible for the user to
understand the code generated and to use GUIDE not only
as a productivity tool but also as a learning aid to writing
well-structured Forth code. It is also more efficient for the
user to debug the resulting code, as he has full access to
the functions in use. He can use his standard debugging
techniques with the machine-generated code. The alter-
nate tools rely on a debug version of the DLL, which might,
of course, differ from the run-time version.

Code Read-back-Xnteractivity is Vital
Forth is an interactive language. Applications are

developed bottom-up and interactively. A tool such as
GUIDE generates a complete, proven, application frame-

Forth Dimensions

work, which therefore needs less bottom-up testing.
However, the useful application code must be tested and
attached to the relevant messages and events. The user
will, therefore, be using an editor such as WinTed or
another standard text editor to make these modifications
and additions. It is vitally important that the code written
by the user does not interfere with the machine-generated
code, and vice versa. It is also important that the user
knows what he may change and what he may not. The
tools used must not interfere with each other, and a
change made by GUIDE to a source file must not 'break'
code written by the user. Therefore, accurate and thor-
ough code read-back is an important aspect of the design
of GUIDE. This section discusses the decisions made in
this respect.

Traditional Forth Parser
The traditional parser technique in Forth is to use a

vocabulary-based parser, with each word in the target
language to be matched by a word in a "parsern vocabulary
which might set flags, set data, etc.

This kind of parser requires a very specific hard-coded
language definition, and may not be appropriate if there
is much forward-scanning of syntax. It is also difficult to
implement further language structures, as the parser
structure is very tightly coupled with the data output or
code generation. Terminators also present a problem, as
the standard Forth parse requires a white-space character
to terminate a word, line, or page. However, the language
may need to parse text out of the name of a word and not
just use the entire name of the word. This traditional parser
is used in MPE's XREF3 product, where there is no implicit
structure in the objects being parsed. This is not the case,
however, with GUIDE.

BNF Parser
The traditional parser was looked at and turned down

for GUIDE. Instead, a BNF parser was implemented. This
was based on an equivalent system developed by Brad
Rodriguez [I]. Beside exceeding the limitations of the
vocabulary-based parser, the BNF parser offers a formal
language grammar. This reduces the number of special
cases in the parser, and therefore increases the reliability
of the system. It is also, therefore, possible to easily extend
the parser or change it as the underlying target language
changes. It is also possible to define grammars and syntax
for more than one input language with no reliance on
word order, etc.

The use of a versatile parser such as the BNF one allows
GUIDE to accurately parse the user's source code. This,
therefore, allows the user to make modifications to the
machine-generated code and not render GUIDE useless
from that point on.

Page-oriented Chunking
There are two kinds of user-editable code in the GUIDE

machine-generated source file. The first of these is code
definitions where the user simply edits the body of a
definition but GUIDE defines the name of the word. Such

7 March 1995 April

words are typically the actions upon receipt of a specific
message by the winproc.

The second type is code totally and freely defined by
the user, perhaps only called by the body of a word which
is the action of a message or event.

There is also a third kind of code: code which may only
be edited by the user if obeying very strict rules.

Each of these kinds of code are produced by GUIDE on
different pages of the output file. For a discussion of pages
in a source files, see Pelc/Waters [21. Each page is identified
by an identification letter. This is parsed by the BNF parser
to tell whether to expect user-defined code in the coming
page. Thus, the system does not have to buffer text more
than necessary. Again, standard tools allow the GUIDE
system to interact with both the user and other tools.

Summary
Tools such as GUIDE are designed to allow the user to

develop an application interactively. This extends to
interaction between the tools themselves. Therefore, the
tools can be used for maximum productivity. However,
the design decisions and algorithm choices must be made
very carefully in order to allow maximum usability and
interaction.

References
[I1 "A BNF Parser in Forth," Bradford Rodriguez. ACM

SIGForth Newsletter, Vol. 2, No. 2, December, 1990.
121 "A Text File Syntax for Screen File Users," S. Pelc and

A. Waters. EuroFORML '88, Southampton U . K .

This paper was originally presented at the EumForth '94
conference, Winchester, England.

Gary Ellis (B.Sc., Hons., in Computer Science from the University of Kent at
Canterbury) is a Technical Support and Quality Assurance Engineer at
MicroProcessor Engineering Ltd., where he has worked for about lour years.
He regularly teaches Forth to beginners, and was the software engineer
responsible for aboul90% of the code for the GUIDE tool included in ProForth
for Windows. His current goal is to prove that software-engineering principles
can be applied to Forth as well as they can to anything else. Mr. Ellis can be
reached at gie@mpeltd.demon.co.uk via e-mail.

Roy Goddard (B.Sc. in Mechanical Engineering from the University of
Southampton) is a Senior Engineer at MicroProcessor Engineering Ltd.. for
whom he has worked for seven years, and was the lead programmer on
ProForth for Windows. He has used Forth for a wide variety of embedded
systems and PC applications over the years and, naturally, feels that Forth is
the best thing since sliced bread. Mr. Goddard is available at the
rgg@mpeltd.demon.co.uk e-mail address.

ProForthfor Windows,whichincludes GUIDE, is soldand supported in the U.S. and
Canada by Forth, Inc. (announced in the preceding issue of Forh Dimensions).

Example machine-generated code.

Following is code generated by GUIDE for the example window shown above.
NB. 1. This code modified for brevity. Please ask for full copy.

2. The sequence (p) is used here to denote a page-break (1 2 ~) character

(p) \ G U I D E Z -- NONE -- Mon 24 /10 /1994 12:17:54 pm

[f o r t h]

" b u t t o n " c o n s t a n t " p u s h b u t t o n " " b u t t o n " c o n s t a n t " r a d i o b u t t o n "
" b u t t o n " c o n s t a n t "checkbox" " b u t t o n " c o n s t a n t "groupbox"

" s c r o l l b a r " c o n s t a n t " h s c r o l l b a r " " s c r o l l b a r " c o n s t a n t " v s c r o l l b a r "

(P I \ GUIDE A -- Window#O -- Mon 24 /10 /1994 12 :17 :55 pm

Window (Window#O) \ d a t a s t r u c t f o r window

(p) \ G U I D E C -- Window#O -- Mon 24/10/1994 12 :17 :55 pm

2 C o n s t a n t ID#2 5 C o n s t a n t ID#5
3 C o n s t a n t ID#3 7 C o n s t a n t ID#7

(P I \ GUIDE D -- Window#O -- Mon 24 /10 /1994 12 :17 :55 pm

2 Ladde r Menu: Menu#l
Subs :
End-subs
MF-STRING ID#2 z" N e w " T e x t :

March 1995 April 8 Forth Dimensions

MF-STRING ID#5 z" Exit" Text:

3 Ladder Menu: Menu#2
Subs :
End-subs
MF-STRING ID#3 z" Help" Text:
Separator
MF-STRING ID#7 z" About" Text:

2 Bar Menu: Menu#O
Subs :
Menu# 1
Menu # 2
End-subs
z" File" Submenu: Menu#l
z" Help" Submenu: Menu#2

(p) \ Application code -- Window#O

(p)\ GUIDE K -- Window#O -- Mon 24/10/1994 12:17:55 pm

: Menu#l-ID#2 \ hwnd msg wparam lparam -- status ; stub for New
windefwindowproc \ replace this with your action

,

: Menu#l-ID#5 \ hwnd msg wparam lparam -- status ; stub for Exit
windefwindowproc \ replace this with your action

: Menu#2-ID#3 \ hwnd msg wparam lparam -- status ; stub for Help
windefwindowproc \ replace this with your action

: Menu#2-ID#7 \ hwnd msg wparam lparam -- status ; stub for About
windefwindowproc \ replace this with your action

,

(p)\ GUIDE L -- Window#O -- Mon 24/10/1994 12:17:55 pm

: Window#O-WM COMMAND \ hwnd msg wp lp -- status ; menu handler
over SFFFF and \ ID in low word of wparam
case

ID#2 of Menu#l-ID#2 endof
ID#5 of Menu#l-ID#5 endof
ID#3 of Menu#2-ID#3 endof
ID#7 of Menu#2-ID#7 endof
drop WinDefWindowProc

end-case
I

(p)\ GUIDE M -- Window#O -- Mon 24/10/1994 12:17:55 pm

: Window#O-FP - CREATE \ hwnd msg wp lp -- status ; stub to call
windefwindowproc \ replace this with your action

I

(Continues.. .)

Forth Dimensions 9 March 1995 April

: Window#O-WSCROLL \ hwnd msg wp l p -- s t a t u s ; s t u b t o c a l l
windefwindowproc \ r e p l a c e t h i s w i t h y o u r a c t i o n

,

: Window#O-WM-HSCROLL \ hwnd msg wp l p -- s t a t u s ; s t u b t o c a l l
windefwindowproc \ r e p l a c e t h i s w i t h y o u r a c t i o n

I

: Window#O-WM-CLOSE \ hwnd msg wp l p -- s t a t u s ; s t u b t o c a l l
windefwindowproc \ r e p l a c e t h i s w i t h y o u r a c t i o n

I

(p) \ G U I D E N -- Window#O -- Mon 24/10/1994 12:17:55 pm

: Window#O-winproc \ h msg wp l p -- s t a t u s ; message d i s p a t c h e r
2 P i c k \ message
C a s e

FP CREATE - o f Window#O-FP-CREATE endof
W O M M A N D o f Window#O-WM-COMMAND endof
-SCROLL o f Window#O-WM-VSCROLL endof
WM - HSCROLL o f Window#O-WM-HSCROLL endof
-LOSE o f Window#O-WM-CLOSE endof
Drop WinDefWindowProc

End-case
I

A s s i g n Window#O-winproc To-WinProc (Window#O)

(p) \ G U I D E 0 -- Window#O -- Mon 24 /10 /1994 12:17:56 pm

: Window#O \ -- , . word t o e x e c u t e window
WS-CAPTION WS-HSCROLL o r WS-MAXIMIZEBOX o r
WS-MINIMIZEBOX o r WS - POPUP o r WS-SYSMENU o r WS-THICKFRAME o r
WS-VSCROLL o r
Menu#O h a n d l e \ menu name
"" Sample Window" $ > a s c i i z \ c a p t i o n
#233 # I 6 4 #342 # I 9 7 \ x, y, w i d t h , h e i g h t
(Window#O) s ty led-menu-popup \ c r e a t e and show

,

(MuP21, continued fmm page 43.)

to improve on the RISC architecture. By insisting on the also allow greater addressable memory space for applica-
minimum set of instructions, microprocessors can be further tions dealing with massive amounts ofdata. This is another
simplified and their performance improved. We were amazed direction in which to evolve the MISC architecture.
that MuP21 can run at a peak speed of 100 MIPS using the With a simpler and more efficient architecture, MISC
currently outdated 1.2 micron CMOS process. With the more processors can be built with smaller silicon dies and, thus,
advanced03 micron process, MuP can be made to run at 200 the yield will be much higher than for the more complicated
MIPS rate. Moving on to 0.5 micron, the speed can be RISC and CISC processors. The MISC processors will also
increased further to 300 MIPS without much effort. consume much less power when running at equivalent

MuP21 is a 20-bit microprocessor, constrained by the speeds. MISC processors will be much cheaper than RISC
40-pin DIP package. Using packages with more pins, the and CISC processors, and can compete effectively against
design can be easily expanded to 32-bits and beyond. A them on the basis of a favorable price/performance ratio.
wider datdaddress bus will improve the throughput and
March 1995 April 10 Forth Dimensions

An Assembly Programmer3 Approach to

Object-Oriented Forth

Andras Zsoter
Hong Kong

Introduction
Some people use Forth as a computer language, while

other people-including myself-use it as a computer
program for controlling their machine and other pieces of
hardware. When I had to decide what to use in our project
(a kind of laboratory automation with robotics), I did not
search for a computer language (I feel enough at ease with
assembly and Pascal to do the job), but I searched for a
system which would give me the freedom to do whatever
I wanted. I also preferred an interactive program to a
compiler generating standalone applications. Naturally,
the solution was a Forth system.

O n the other hand, during my previous pieces of work
I used the object-oriented facilities of Turbo Pascal and felt
I would miss that if I had to use a language without it. As
an obsessed assembly programmer, I decided to imple-
ment a version of Forth for myself and I ended up with a
system which is very convenient to use if one wants to be
sure all the time what is going on in it.

Basically, I shaped my Forth system after the old-

"A programmer who is not
1 willing to use proper technique
cannot be forced to do so."

fashioned fig-Forth' with some modifications. Because the
program runs on a 486 machine, the most natural solution
was to use its 32-bit protected mode. This way, I do not
have to worry about running out of address space. Also,
protected mode really means some protection against
accidental mistakes and their consequen~es .~

Definition of Compile-Time Behaviours
Because I am very much concerned about the speed of

my program, I decided to generate native code. The

1. At the present stage, the program has an ANS-compatible mode
which supports most of the features of the new standard.

2. I needed full control, but I did not need too much operating system
connection. So I implemented a V86 monitor which takes care of
file I/O and other operating system connections by running DOS
in a virtual 8086 machine and provides facilities to execute a 486-
style (32-bit), protected-mode program.

technique I used for code generation is sometimes men-
tioned in the Forth literature as nano-compiling [I]. While
older Forth compilers used the CFA to store the address of
a machine code subroutine to be called when a word is
being executed, I used an additional one (CCFA, the
compile-time code field address) to store the address of
the subroutine to be called when a word is being com-
piled. The user of the program can explicitly define the
compile-time action of a non-immediate word by using
the words C : and ; C.3 For example, one might want to
implement SWAP ! in the following way:
: SWAP! (Addr Data --)

SWAP ! ;
C: POSTPONE SWAP POSTPONE ! ;C

Alternatively, more optimized machine code can be
generated if someone has a more-intimate knowledge
about the system. Immediate words have the same routine
for compile-time and run-time behaviour. This way, the
user has control over the code generation and can specify
explicitly which routines are to be in-lined or substituted
by more adequate machine instructions, and which are to
be left alone and treated as ordinary subroutines. One
might complain that the old-fashioned, state-smart words
can do the same, and the previous example might have
been coded as:
: SWAP! (Addr Data --)

STATE @ IF
POSTPONE SWAP POSTPONE !
ELSE SWAP ! THEN ; IMMEDIATE

This is true as long as words such as COMPILE, [COM-
PILE], COMPILE,, and POSTPONE do not mess up
everything.4 With the use of CCFA,5 the definitions of
compiling words became almost trivial.

POSTPONE Namegenerates a call to the CCFA routine
of Name. COMPILE, interprets tke top item on the stack
as a CFA ("execution tokenn) and, if the word is immediate

3. The default action is to generate a subroutine call to the body of
the word.

4 . For example, consider the effects of POSTPONE SWAP ! in the latter
case. Is this the semantics one might expect?

5. In ANS Forth terms, CCFA would be called a "compilation token."

Forth Dimensions 1 1 March 1995 April

(its CFA and CCFA
point to the same
address), COMPILE ,
generates a call to that
address. If the word
is not immediate,
COMPILE, simply
calls the rout ine
pointed to by CCFA
(i.e., compiles the run-time behaviour of the word into the
new definition). [COMPILE] and COMPILE can be de-
fined the following way:
: [COMPILE] (--)

COMPILE,
; IMMEDIATE

Figure One. Words that manipulate the pointer to the active object.

O! (Object --) Select object = Write the object pointer.
0@ (-- Object) Query object = Read the object pointer.
O>R (R: -- Object) Save object pointer to the return stack.
R>O (R: Object --) Retrieve saved object pointer from the stack.
I (Object1 --) (R: -- Object2) This word combines the

functionality of O>R and O!.

1 (R: Object --) The same as R>O.

: COMPILE (--)

LITERAL POSTPONE COMPILE,
; IMMEDIATE

One Word with Multiple Names
Forth programmers tend to "factor out' similar pieces

of code in their programs. As the Forth language grew
bigger and bigger, pieces of code appeared with the same
effect under different names. If one uses words imple-
mented by different programmers, it is good sometimes to
have all the usual names ready. The most common Forth
solution is the definition of the new name in the form:
: NewWord OldWord ;

The above solution is usually satisfactory; however, if
one wants Newword to behave exactly as OldWord, a
more sophisticated definition is needed:
: NewWord OldWord ;
C: POSTPONE OldWord ;C

If OldWord is immediate, the definition is different:
: NewWord

POSTPONE OldWord : IMMEDIATE

To avoid all this trouble, a new definition word Alias
(CFA --) is provided. So from now on, the above
definition would be:

OldWord Alias NewWord

This definition will work, regardless of the immediacy
of OldWord. At first sight, this facility does not seem to be
of much help but, because of the OOP facilities, it is
sometimes necessary to have a name ready in multiple
vocabularies. Also, Forth programmers name their words
on a pragmatic basis (what the word is used for) and not
on a semantic one (what is the effect of the word). If a
piece of code has multiple usages, the use of aliases can
greatly increase the readability of the program.

What is an Obiect?

that Forth, in itself, is an object-oriented language because
of the CREATE . . . DOES> capabilities. In my opinion, a
real OOP is more sophisticated than that, and polymor-
phism, inheritance, and virtual methods6 are necessary in
a system to qualify it as an OOP language. In my
interpretation, an object is an entity which consists of data
(residing at least partially in memory) and a set of methods
to manipulate the data. I always considered an object to
be quite independent from its environment. In order to
make the latter explicit, I introduced the idea of the active
object. Only one object can b e active at a time. The system
has a pointer to the active object,'which can be manipu-
lated via the words in Figure One.

As the term "active" already implies that an object is
considered to be an "animate" entity, this means individual
behaviour is attributed to each and every object instance,
a reason why OOP is called "programming in the active
voice" (21.

An object can access the application's memory in two
ways. The first way is the same as we normally address the
memory, and the second one is when all addresses are
relative to the object's base address. At first sight, this latter
way seems to make sense only for the fields of an object
(SO that they are represented as "offsetsn from the starting
address of the object), but it can be useful also for
addressing other entities outside the object.8 In order to
make the data stored in an object accessible for the
traditional Forth memory operations such as @ and !, a
new word is introduced. This new word is ? (RelAddr
-- AbsAddr) . As is clear from the stack-effect comment,
this word transforms an address relative to the base of the
active object to an absolute address. For completeness, I
added the reverse operation -? (AbsAddr --

6 . A virtual method, or in Smalltalk terminology a "message," is a
piece of code which is subject to late biding. As opposed to a
static method, which is unique and def ied only in one dass so it
can be identified at compile time, a virtual method means a series
of subroutines--one for each member of a family of classes-thus,
the actual routine can be chosen only at run time when the active
object is known.

7. Besides the theoretical considerations mentioned above, this
approach has an implementation advantage. The object pointer
can be very easily implemented by dedicating a CPU register for
it. (In my implementation, I used two registers: one for keeping the
address of the object and one for keeping the address of its Virtual
MethodTable-the VMT.) In this way, the cost of the field accesses
and method calls can be greatly reduced. - ,

8. Consider a large database which consists of a great many objects
interconnected via pointers. When the database image is saved to

problems with this utterance. Some people even argue I 'physical address of the database is. 1

One of the most powerful features of my Forth imple-
mentation is that it is object oriented. There are several

March 1995 April 12 Forth Dimensions

disk and it has to be reloaded to a different address, all the pointers
will become invalid and must be frxed. On the other hand, if the
~ointers are relative thev will remain valid no matter what the

Figure Two.

1 C l a s s C l a s s A C l a s s A D E F I N I T I O N S
M e t h o d M1 (? ? ? ?) (T h e s t a c k e f f ec t s h o u l d be recorded h e r e .)

A s M1 u se : <. . . .> ;M (S o m e a c t i o n .)

1 C l a s s C l a s s B C l a s s B D E F I N I T I O N S
M e t h o d M2 (? ? ? ?)

A s M1 u s e : <.. . . .> ;M
A s M2 use: C l a s s A M1 (C a l l t h e m e t h o d M1 of t h e C l a s s A .)

C l a s s B M1 (C a l l t h e M1 m e t h o d of t h e a c t i ve ob jec t .)

; M

R e l A d d r) (a better notation would be L, but the latter
arrow is not included in the common character sets). Using
the ? notation, the fields of an object can be represented
as offsets from the base address of the object. This is the
less-sophisticated way of accessing data in an object. In
order to find out more about the behaviour of the objects,
we must take a look at their classes. While an object
instance is an individual chunk of data with a set of
methods to manipulate it, a class is a set of objects which

1 share the same set of methods.

Vocabulary and Class Hierarchy
In order to implement OOP, I chose an old fashioned

fig-Forth-style vocabulary structure. I also kept the old
system variables CONTEXT and CURRENT to hold the
address of the search and definition vocabularies. I have
defined the rules of searching so that not only the
CONTEXT vocabulary is searched but, if a name cannot be
found in the CONTEXT vocabulary, the search goes on
with its ancestors.9

A class is a special vocabulary with late binding
support. This means a class has a VMT'O which contains the
addresses of the virtual methods belonging to the class.
There is one class called O b j e c t s which is the root of the
object hierarchy or, in other words, is the common
ancestor of all classes. A new child class can be defined by
using the word C l a s s (N e w M e t h o d s --) . For
example, the following line will define a new class, ClassA:
4 C l a s s C l a s s A

The header of ClassA will contain a VMT with four
more entries than the parent class of ClassA. The VMT of
the parent class will be copied to the child's VMT, thus the
virtual methods will be inherited by default.

Methods
New method names can be assigned to the new entries

in the VMT by using the definition word M e t h o d . The line
below will define a word N e w M e t h o d l in the CURRENT
class (remember that a class is just a special kind of
vocabulary):

9. The term "ancestor" seems rather intuitive to me but, for those who
like definitions, the following will do: Vocabulary A is the parent
of vocabulary B if B was created with A being the CURRENT
vocabulary. Vocabulary X is an ancestor of vocabulary Y if X is the

M e t hod
N e w M e t h o d l

The index of the
first undefinedentry in
the VMT of the CUR-
RENT class will be
assigned to the method.
Notice that the defini-
tion of the name of a
new method does not

specify the action performed by the method. The latter
must be defined later by using the word
u s e : (M e t h o d I n d e x --)

The index corresponding to a method's name can be
obtained by using the word
A s (-- M e t h o d I n d e x)

So the definition of a method's body will look like:
A s N e w M e t h o d l
u s e : < a c t i o n t o be t a k e n > ;M

This even looks like an English sentence, thus this notation
makes the source more readable. Any method name
visible from the CURRENT class can be used. In this way,
not only the new methods can be defined, but the old ones
defined in the ancestor classes can also be re-defined.

One further advantage of this approach is that the
compilation is entirely incremental. Method names and
method bodies can be defined in any order. When a
method name appears in a definition, the following rules
determine what code will be generated for it:

If the CONTEXT class is an ancestor of the CURRENT one,
a "static" call is generated, which means the binding is
done at compilation time. The effect of this behaviour is
similar to Turbo Pascal's AnAncestor.AMethod; type of
statement. If a method is mentioned, not only by having
its name specified but by having its type and name
specified together (this makes sense only in a method of
a successor type), then that method no longer identifies
a series of routines, but only one routine which is known
at compile time.
If CONTEXT and CURRENT are the same or belong to
different hierarchy, the emitted code uses late binding,
which means that a call is generated to a routine with a
certain index in the VMT of the currently active object.
Figure Two shows an example.

"Static methods" can also be defined. They are other-
wise-ordinary Forth words which operate on the active
object (or, in other words, they belong to a certain class
of 'objects which can use thei to perform certain tasks).
The concept of static methods does not add anything new
to the OOP support, but it arises as a side product of this
implementation of classes and objects. Nevertheless, static

I I parent of Y or X is an ancestor of the parent of Y. In other words, methods can be useful in factoring the virtual
B is a chiid of A and Y is a successor of X.

10. The term VMT, as most of my terminology, is borrowed from Turbo
Pascal 121.

Forth Dimensions 13 March 1995 April

Obtaining the Standard Size and the Address of
the Virtual Method Table of a Class

Every class has a standard size (stored in the header of
the class). Also, every class has a VMT table (as part of the
class header). The size of the CONTEXT class can be
accessed by using the words S i z e o f (-- A d d r) or
[S i z e] (-- A d d r) . The address supplied in both cases
is the address of the cell containing the standard size of the
class. I am talking about "standard size" here because, in
some cases, objects belonging to the same class can have
different sizes (e.g., arrays). It is the responsibility of the
programmer to keep the size information recorded in the
class header valid, but some tools to facilitate this are
provided in the program.

The address of the VMT table can be obtained by
V M T O ~ (-- VMT) or by [VMT] (-- VMT)."

The Memory Layout of an Object
The only link between an object instance and its class

is the address of the VMT table. This address is stored in
every object in the cell immediately before the base
address of the object. Yes, this means that the VMT
occupies a negative offset. I have found that using a
negative offset reduces the possibility of accidental errors
when testing objects interactively. It is always tempting,
especially during debugging, to access an object as if the
latterwas an ordinary variable. If the VMT address is stored
at a negative offset, objects really become similar to
variables and other data structures defined by CREATE . . .
DOES>. Thus, the first usable data field begins at the base
address of the object. One method, using the word ? for
accessing data inside the objects data area, has already
been mentioned. Another way of manipulating data inside
the object is to use fields. The definition word F i e l d
(O f f set -- O f f s e t + C E L L) can be used for creating
fields with meaningful names. The following line will
create a word Year and leave 12 (in my implementation)
on the stack.

8 F i e l d Y e a r

When the word Year is executed, it will leave the base
address of the active object plus 8 on the stack, which is
the absolute address of the field of the active object called
Year. In order to make the declaration of fields even easier,
two new words can be introduced:
: F i e l d s (-- 1 s t - u n u s e d - o f f s e t)

S i z e O f @ ;
: E n d - F i e l d s (1 s t - u n u s e d - o f f s e t --)

S i z e O f ! ;

By using these new words, the declaration of the new
fields of a class will look like the following:
F i e l d s
F i e l d F 1
F i e l d F 2
E n d - F i e l d s

11. The difference between [S ize] and SizeOf (also between [VMT I
and VMTo f) is the same as the difference between ['] and ' .

March 1995 April

In this way, the first new field of the class begins after the
last field of the parent class (the size information is copied
together with the VMT when a new class is declared), so
that the fields of the parent are inherited. Also, the size of
the class is taken care of because E n d - F i e l d s will store
the offset of the first unused byte, which is the same as the
size of object's data area in bytes.I2

Constructors
In order to create instances of a given class, one needs

definition words. If the objects are allocated on the heap,l5
the address of the VMT table still has to be assigned to it
and its fields need to be initialized. Because objects
belonging to one class can be located in different areas
(e.g., dictionary space and heap), I decided to implement
a word which initializes the data area of an existing object.
This word is called I n i t and it is implemented as a virtual
method.14 If the objects have individual names and are
located in the Forth dictionary, the simplest way to
produce them is via definition words. One such definition
word might be the following:
: O b j (<l i s t of i n i t i a l values, --)

VMTof CREATE , HERE S i z e O f @ ALLOT
{ I n i t 1 DOES> (-- O b j e c t) CELL+ ;

Notice that the effect is similar to that of VARIABLE in older
Forth systems where an initial value had to be supplied.

An Example
To demonstrate the capabilities of my Forth system, I

created the example in Listing One &I. 1 6 1 71. The base
class Numbers has some methods-ways of behaviour-
common to all numbers. This is an abstract class, so it
cannot be instantiated; that means an object belonging to
the class Numbers cannot be created.15 The two derived
classes Integers and Rationals implement meaningful
kinds of numbers. The latter two canbe instantiated. After
compiling the example, we can define different kinds of
numbers. The following line will create two rational
numbers, R1 and R2:
R a t i o n a l s 60 3 0 O b j R 1 8 1 3 O b j R 2

The world Rationalsdoes not do anything but change the
CONTEXT class. In other words, it specifies the type of the
new object (Ob j always uses CONTEXT to determine the
type of the object to be created). Afterwards, their values

12. In machines which are not capable of addressing individual bytes,
the indication of the object's size in bytes can be meaningless. In
my implementation, it is the easiest way to go because, on the 486
even in 32-bit mode, individual bytes are accessible.

13. My program does not yet have built-in ~ e m o r y - ~ l l o c a t i o n
wordset support but, for the time being, any standard definition of
this wordset will do. 1 have found Gordon Charlton's ANS HEAP to
be useful.

14. Although I n i t is quite different from the virtual methods: if a
virtual method with a certain name is defined in a dass with a given
stack effect, it is supposed to have the same stack effea in all the
successor classes. This is not true for I n i t and it is just an
implementation trick to define this word as a 'virtual method."

15. In reality, the definition word Ob j will create such an object, but
any attempt to call its methods will trigger an error message.

14 Forth Dimensions

can be examined easily:
R 1 . R2 . l / 2 1 / 2 7 O k

(R1 and R2 are already normalized). An addition is also
simple:
R 1 R2 + . 29 / 54 Ok

In the example, the value of R1 is changed and it equals
29/54. Objects belonging to the class Integers can be
treated the same way:
I n t e g e r s 20 0bj 11 50 Obj I 2 Ok
11 . I 2 . 2 0 50 Ok
1 1 1 2 + . 7 0 0 k

In fact, the same words (. , , , +, -, *, and /) can handle
them.16

The Accessibility of the Information
Information hiding is one of the usual features of an

OOP language. The pioneers of OO-Forth spent a lot of
effort on it [31. On the other hand, Forth is very often used
by hardware developers, hackers, andsimilar people who
definitely will ignore such an effort. So I decided not to
bother with it. One cannot really "physically seal" a piece
of memory from experts. Also, to let the user know what
is going on "behind the scenes" saves a lot of trouble
during debugging. This does not mean that I want to
encourage hacking around the internal parts of an ob-
ject-which would render my whole effort spent on
implementing this OOP support meaningless. I simply do
not believe that a programmer who is not willing to use
proper techniques can be forced to do so.

On the other hand, the encapsulation is rather good in
my model. In principle, nothing from the outside can
access the data area of an object; even the address of a field
cannot be calculated. Only the object itself can "make it
knownn to the rest of the application.

One advantage of Forth is that words are not split into
categories as in other languages. There are no such things
as "operators," "keywords," or "identifiers." This lack of
differentiation means the programmer has more freedom
to change the underlying implementation, provided that
the stack effect (thus, the interface to the rest of the

Conclusions
In this paper, a dialect of Forth featuring OOP support

and native code generation has been introduced. In this
dialect, the code generation-especially the definition of
compile-time behaviours-is controlled by the user. In
this way, one can decide which parts of the code are
important and to be in-lined or substituted by more
efficient pieces of machine code, and which are to be left
alone. The main feature of the OOP support in this Forth
is simplicity. It uses a vocabulary structure, with some
extras to implement classes with inheritance and late
binding (thus, polymorphism).

Although most of the OOP support words do elementary
manipulations (but what d o you expect from an assembly
programmer?), they can be used for building higher-level
interfaces tailored to individual taste and needs. The
necessity of a good OO-Forth is obvious these days, but the
Forth community still does not have a standard. Although
many object-oriented Forth implementations are available,
I found my dialect a very convenient one. The program size
is small (the kernel is about 32K-32-bit machine code, not
threaded code) and the functionality is easy to understand.
Because of the nano-compiler approach, a programmer can
easily keep in mind what is going on behind the scenes;
thus, he/she has better control over the system. The
independent and "animate" object instances provide better
encapsulation, thus facilitating an even more structured
programming style than the usual OO-Forth dialects or C++
and Turbo Pascal.

References
[I1 K.D. Veil and P.J. Walker. "Forth Nano-Compilers,"

Forth Dimensions, Vol. XVI No. 2, July-August 1994,
34-37.

121 Borland International, Inc., 1992. Borland Pascal
With Objects User's Guide.

131 Dick Pountain. Object-OrientedForth. Academic Press
Ltd., London, 1987.

Acknowledgments
I want to say thanks to the Hung Hing Ying Physical Sciences
Research Fund for providing a grant to pay for my 486.

application) remains the same.
Because of the laner of Forth, and because of

the good encapsulation, the pragramrner can hide the
implementation details from the user in my object-ori-
ented Forth dialect, even though the information would
not be "physically sealed." To prevent accidental usage of
words which are supposed to be "factors" or auxiliary
words, one might Create aliases of the usable methods in
other vocabularies, where the rest of the
routines reside.
16. At sight, this "sharing the might look to the

idea of C++'s operator overload, but the latter implies a typed
language. In our example, these "operators" can work on any
derived Of but On two Operands belonging
to the same a C++-st~le Operator be to
handle such cases as multiplication of a rational number by an
integer.

Code: Mr. Zs6t8rss OOF is availablevia ftp from taygeta.oc.nps.navy.mil in the
IpubF0rthReviewedsubdirectory.ThepackageconsistsofWofiles:(l)00F.ZIP
(about 170 Kb) includes the sources of the VMI protected mode monitor and
the OOF 32-bit, object-oriented Forth; all assembly (TASM format) sources and
the Forth source files; and the .EX€ programs. (2) 00FLST.ZIP contains only
the .LST files generated by the assembler (about 240 Kb).
The program runs on '486 and '386 machines. The package is under GNU
General Public License Version 2. The present version is labelled 0.8 to
indicate that changesareneeded (although it seems stable, it isnot'bug free').

Andras Zsbter first read about Forth ina magazine. Working in a hospital ('...we
had very old machines there-some were older than me"), he programmed the
then-new ZX-Spectrums in assembly to perform signal acquisition from EEGs.
At Jozsef Attila University in Szeged, Hungary (where he degreed in Chemistry
and General & Applied Linguistics), he started to learn Forth. He had learned
Pascal in an afternoon, but it took him a month to get a feel for Forth. He
discovered that practicing Forth improved his programming style in other
languages, so he kept experimenting with it.

Since January 1, 1993, he has been in a Ph.D. program in the Department of
Chemistry at Hong Kong University, where he synthesizes organic compounds
via robotics. When he needed a programming tool. Forth was the natural
solution, so he implemented one in the way described in this paper.

Forth Dimensions 15 March 1995 April

Listing One. Examples demonstrating the system's capabilities. 1
I

FORTH DEFINITIONS I
GCD (U 1 U2 -- Greates tCommonDivis ior)

BEGIN
2DUP <> WHILE (I f Ul=U2 e i t h e r w i l l d o .)

2DUP M I N >R MAX R - R> (S u b s t r a c t t h e s m a l l e r f rom t h e g r e a t e r)
REPEAT (Chech a g a i n i f Ul=U2.)
DROP ; (One o f them i s enough.)

O b j e c t s DEFINITIONS
5 C l a s s Numbers Numbers DEFINITIONS
Method Add (Number --)
Method Sub (Number --)
Method Mu1 (Number -- 1
Method Div (Number --)
Method P r i n t

0 C l a s s I n t e g e r s I n t e g e r s DEFINITIONS
F i e l d s
F i e l d N
End-F ie lds

A s I n i t u s e : (N --) N ! ; M

A s Sub u s e : (N @ } NEGATE N t ! ; M

AS ~ u l u s e : (N @ 1 N @ * N ! ; M

A s Div u s e : (N @) N @ SWAP / N ! ; M

A s P r i n t u s e : N @ . ;M

Numbers DEFINITIONS
2 C l a s s R a t i o n a l s R a t i o n a l s DEFINITIONS
F i e l d s
F i e l d NUM
F i e l d DEN
End-F ie lds
Method Normal i ze (--)
Method I n v e r t (-- 1 (l / x)
\ end{ v e r b a t i m)
\ p a g e b r e a k
\ b e g i n (v e r b a t i m)
As I n i t u s e : (DEN NUM --) NUM ! DEN ! Normal ize ; M

: (Add) (num den --) (A " f a c t o r " o f Add)
(T h i s i s n o t t h e b e s t way t o a d d two r a t i o n a l)
(numbers b u t a s an example it w i l l d o .)

DUP NUM @ * NUM ! (NUM*den)
DEN @ SWAP OVER * DEN ! (DEN*den => DEN 1
* NUM + ! (num*DEN+NUM*den => NUM)
Normal ize ;

A s Add u s e : { NUM @ DEN @] (ADD) ;M

I AS s u b u s e : (NUM @ NEGATE DEN D I (ADD) ; M I
A s Mu1 u s e :

March 1995 April 16 Forth Dimensions

{ NUM @ DEN @ 1 (Get the values of the other Rational.)
DEN @ * DEN ! (Multiply denominator by the other's denominator.)
NUM @ * NUM ! (Multiply numerator by the other's numerator.)
Normalize ;M

As Div use:
{ NUM @ DEN @ I (Get the values of the other Rational.)
NUM @ * SWAP (Multiply numerator by the other's denominator.)
DEN @ * NUM ! DEN ! (Multiply denominator by the other's numerator.)
Normalize ;M

As Print use: NUM @ . ." / " DEN @ . ;M

As Normalize use:
DEN @ NUM @ (Get denominator and numerator.)
2DUP XOR >R (A not quite ANSI way to determine the sign.)
ABS SWAP ABS (Calculate the absolute value of both.)
2DUP GCD (Calculate the GCD.)
DUP >R / DEN ! (Normalize the denominator.)

R> / (Normalize the numerator.)
R> O < IF NEGATE ENDIF (Adjust the sign.)
NUM ! ;M

As Invert use: NUM @ DEN @ NUM ! DEN ! Normalize ;M
\end{verbatiml
\pagebreak
\begin{verbatim)
Numbers DEFINITIONS

(An now some words that look useful to an ordinary Forth programmer.)

: . (Number --) { print } ;

: t (Numberl Number2 -- NumberltNumber2) SWAP { Add O@) ;

. . - (Number1 Number2 -- Numberl-Number2) SWAP (Sub O@ 1 ;

: * (Numberl Number2 -- NumberlXNumber2) SWAP { Mu1 O@ 1 ;

: / (Numberl Number2 -- ~umberl/Number2) SWAP { ~ i v O@) ;

Forth Dimensions 17 March 1995 April

Forth
Scientific
Library
Project
Everett "Skip " Carter
Monterey, California

(Following is a report on the status of the Forth Scientpc
Library Project as of Janua y 3, 1995. Regular updates
may be found on comp.langlfbrth or by contacting the
author directly (see information at end of article). -Ed./

Warren Bean
Richard Beldyk
Gary Bergstrom
Jim Brakefield
Gus Calabrese
Skip Carter
ChihYu Jesse Chao
Gordon Charlton
Munroe C. Clayton
Glen Haydon
Marcel Hendrix
Chris McCormack

Participants
Charles G.Montgomery

Leonard Morgenstern
Julian Noble

Fabrice Pardo
Michel W. Pelletier

Penio Penev
Elizabeth Rather

Tony Reid-Anderson
Richard Rothwell

Stephen Sjolander
John Svae

Andrejs Vanags

(Mail to scilib@taygeta.oc.nps.navy.mil will be automati-
cally distributed to all the participants listed above.)

Code Contributions
Contributed but not reviewed:
Quasi-Random number generation Skip Carter
Monte Carlo Row inverse (ACM 166) and

related algorithms Skip Carter
Telescope 1 (ACM 37) (reduction of degree

of polynomial approximations) Skip Carter
Telescope 2 (ACM 38) Skip Carter
Coefficient Determination (ratio of

polynomials) (ACM# 131) Skip Carter
Reversion of Series (ACM # 173) Skip Carter
Weibull PDF and Weibull Random variables Skip Carter
Linear and Circular (discrete) Convolution Skip Carter
Complex math operations (magnitude,

power, multiplication and division) Skip Carter
Polynomial transformer (ACM #27) Skip Carter
Jacobian elliptic functions Skip Carter
Nonlinear transformation of series (SHANKS)

(ACM #215) Skip Carter
Finite segment of Hilbert Matrices, their

inverses and determinants Skip Carter

LU Factorization of square matrices Skip Carter
Back-substitution solution for LU factored

linear systems Skip Carter
Solution of linear Fredholm equation of

the second kind Skip Carter
Solution of a set of Volterra equations of

the second kind Skip Carter
Inverse of an LU factored matrix Skip Carter
Determinant of an LU factored matrix Skip Carter
Square root of a square symmetric matrix Skip Carter
Adjustment of Matrix inverse when an

element is perturbed (ACM #51) Skip Carter
Eigenvalues and Eigenvectors of a real

symmetric matrix Skip Carter
Basic arithmetic and conversions for

rational numbers Gordon Charlton
Permutations and Combinations Gordon Charlton
16-bit Cyclic Redundancy Checksums Gordon Charlton
Gauss-Seidel iteration solution to

linear systems Skip Carter
Gauss probability function Skip Carter
Solution of banded linear systems Skip Carter
Tools to use polynomial interpolation with a large table

Marcel Hendrix
Basic statistics of a floating point array Skip Carter
4th order Runge-Kutta solver for systems

of ODES Skip Carter
FIND nth element of an unsorted array

(ACM #65) Skip Carter
Simulated Annealing using Cauchy cooling Skip Carter

Cuwently being reviewed:
Rootfinder (ACM #2) Skip Carter
Stochastic Differential Equation solver

(scalar version) Skip Carter
Box-Muller transformation (polar form) Skip Carter
Quadratic Equation solver Skip Carter
Fast Walsh Transform Skip Carter
Four methods for Direct Fourier Transforms Skip Carter
Radix-2 Fast Fourier Transform routines Skip Carter

(five versions one, two, and three
butterflies, tabular, non-tabular)

Complete Elliptic Integral of the first kind
(ACM #55) Skip Carter

Complete Elliptic Integral of the second
kind (ACM 6 6) Skip Carter

Complete Elliptic Integrals of 1st and
2nd kinds (ACM #165) Skip Carter

Tridiagonal solver, using the Thomas
algorithm Skip Carter

Gauss-Legendre Integration Skip Carter
First derivative of a function by Richardson extrapola-

tion Skip Carter
RAN4 Pseudo-random number

generator Gordon Charlton
Regular spherical Bessel functions

jn(x), n=0-7 Julian Noble

Reviewed:
(Reviewed code is available via anonymous lTP at
taygeta.oc.nps.navy.mil/pub/Forth/Scientific

March 1995 April 18 Forth Dimensions

or via 'WWW at
http://taygeta.oc.nps.navy .mil/scilib. html)

I. Real Exponential Integral (ACM #20) Skip Carter Total control
2. complete Elliptic Integral (ACM #I491 Skip Carter
3. Polynomial evaluation by the Horner

method Skip Carter
4. Logistic function and its first

derivative Skip Carter
5. Cube root of real number by Newton's

method Julian Noble
6. Solution of cubic equations with real

coefficients Julian Noble
7. Regula Falsi root finder Julian Noble
8. Fast Hartley (Bracewell) Transform Skip Carter

(with supplemental utilities and tests by
Marcel Hendrix)

9. Aitken Interpolation (ACM #70) Skip Carter
10.Hermite Interpolation (ACM #211) Skip Carter
1l.Lagrange Interpolation (ACM #210) Skip Carter
12.Forward and Backward divided

differences Skip Carter
13.Newton Interpolation with Divided

differences (ACM 168 & 169) Skip Carter
14.Factorial Skip Carter
15.Shell sort for floating point

arrays Charles Montgomery
16.Exponentiation of a series (ACM # 158) Skip Carter
17.Polynomial and Rational function

interpolation and extrapolation Marcel Hendrix
18.The Gamma, LogGamma and

reciprocal Gamma functions Skip Carter
19.Adaptive Integration using

Trapezoid rule Julian Noble
20.Parabolic Cylinder functions and related

Confluent Hypergeometric functions Skip Carter
21.Special Polynomial (Chebyshev, Hermite,

Laguerre, Generalized Laguerre, Legendre,
and Bessel) Evaluation Skip Carter

22.Conversion between calendar date and
Julian day (ACM 199) Skip Carter

23.R250 (also minimal standard)
Pseudo-random number generator Skip Carter

Walnut Creek has asked to include the FSL on their
Algorithms CD-ROM.

Participation by all those interested in using Forth for
scientific applications is welcomed. Contribute whatever
you feel comfortable working with. Contributors will get
a free copy of the Walnut Creek CD-ROM when it becomes
available.

You can join using a WWW form (follow the links from
my home page) or by sending me e-mail; a mail-server
service is in the works as well.

Dr. Everett 'Skip" Carter is an Assistant Professor of Oceanography at the
Naval Postgraduate School. He wrote the Forth system for, and helped design,
the RAFOS float which is being used internationally as part of the World Ocean
Circulation Experiment. He can be reached at the following:

with [MI FORTHTM
For Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers

For Development:
Interactive Forth-83 InterpreterICompilers
for MS-DOS, 80386 32-bit protected mode,
and Microsoft WindowsTM

Editor and assembler included
Uses standard operating system files
500 page manual written in plain English
Support for graphics, floating point, native code generation

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler . Compiles compact ROMable or disk-based applications . Excellent error handling
Produces headerless code, compiles from intermediate states,
and performs conditional compilat~on . Cross-compiles to 8080, 2-80, 64180, 680x0 family, 80x86 family,
80x96197 family, 8051131 family, 6303, 6809, 68HC11 . No license fee or royalty for compiled applications

Laboratory Microsystems Incorporated
Post Office Box 10430, Marina Del Rey, CA 90295

Phone Credit Card Orders to: (310) 306-7412
Fax: (310) 301-0761

Off ete Enterprises, Inc.
1306 South B Street

San Mateo, California 94402
Tel: (41 5) 574-8250 Fax: (41 5) 571 -5004

MuP21 Products
MuP21 Chip designed by Chuck Moore, $25

80 MIPS CPU with Video Coprocessor
MuP21 Evaluation Kit, $100

MuP21, ROM, PCB and software
Assembled MuP21 Evaluation Kit, $350

Above Kit assembled with 1Mx20 DRAM
MuP21 Programming Manua1,$15.00
MuP21 Advanced Assembler

by Robert Patten, $50
MuP21 eForth by Jeff Fox, $50
More on Forth Engines

Volume 18, June 1994 - $20.

U.S. bank draft, money order accepted
Add 10% (up to $10) for air shipping

Internet: skip@taygeta.oc.nps.navy.mil
UUCP: ... !uunet!taygeta!skip

http:lltaygeta.oc.nps.navy.mil/skips_home.htrnl

Californians please add 8.25% sales tax

Forth Dimensions 19 March 1995 April

A Simulator for NASA3
Shuttle Robot Arm
Edward K. Con klin
Manhattan Beach, California

NASA's space shuttle carries
a 50-foot long, six-joint arm for
use in satellite deployment and
retrieval operations, and to as-
sist astronauts in servicing tasks
such as the recent mission to
repair and upgrade the Hubble
Space Telescope. The arm, for-
mally called the Remote Ma-
nipulator System (RMS), has ten
different modes of operation,
ranging from simple direct
movement of the joints, one at
a time, to very complex multi-
joint motions directed by rota-
tional and translational joysticks.
Using the joysticks, an operator
can command motion about any
desired axis, and the RMS soft-
ware will make all the coordi-
nate transformations and com-
plex calculations necessary to
derive the needed command
rates for each of the six joints.
Arm control, status information,
and positional displays are pro-
vided both by a hard-wired
p a n e l c o n t a i n i n g c o n t r o l
switches, status lights, and digi-
tal displays, and by a series of
interactive status and control
screens o n the shuttle's General
Purpose Computer (GPC).

In order to plan for missions
involving the RMS, there are
also two ground-based versions
of it, one at the Johnson Space-

March 1995 April 20 Forth Dimensions

flight Center in Texas USC) and one at the Goddard
Spaceflight Center in Maryland (GSFC). Because of the
need to work in a gravity environment and other specific
design factors, the ground-based arms differ from the IlMS
and from each other. The GSFC arm, for example, is

designed to carry u p to a thousand-pound payload at its
tip. In order to d o this, it uses a high pressure (4000 psi)
hydraulic system rather than electric motors as o n the RMS.

In June 1994, Forth, Inc. was selected to provide the
overall control program for the GSFC arm, called the RMSS

(Remote Manipulator System Simulator), along with
Electrologic of America (ELA) who provided the control
electronics and drivers. Because of the completely differ-
ent nature of the joint controls, the original RMS software
was not usable except as a source of algorithms. The basic
requirements for the RMSS were that it must behave
identically to the RMS as far as operational modes, display
panels, and CRT screens were concerned, while interfac-
ing to a new and different type of hydraulic control
hardware. There were other constraints, such as the fact
that, although this is a rate control system, the RMSS
(unlike the shuttle RMS) has no tachometers and rate
information had to be derived from differencing angular
position data. Finally, the entire system was to be deliv-
ered in 60 days.

The RMSS proved to be an excellent application for
EXPRESS, Forth, Inc.'s Event Management and Control
System software package. The design methodology in
EXPRESS, involving the factoring of the application into
separate, largely autonomous modules called "processes,"
was an important factor in keeping the development
time-and particularly the debugging time-short. The
RMSS contains fourteen separate processes: one for each
joint, one for each joystick, one for the digital display
panel, a simulation process, a trending process, and
several supervisory processes. Each process was devel-
oped and tested as a stand-alone unit, and was later
integrated into the complete system.

EXPRESS contains, as a standard feature, full simulation
capabilities which allow application testing without any
I/O hardware present. During RMSS development, engi-
neers simulated operation of the arm in all modes,
including the joystick-commanded multi-joint motions

... when the software was
installed, not a single change
was made to the executive
control algorithms.

the system, it was not possible to achieve precise com-
manded velocities for the various joints without rate
feedback. A PID control loop was developed for each
joint, with rate feedback coming from an adjustable
second-order software filter on the joint angle. This
complexity was necessary because differencing angles to
get rates is inherently a noisy process. Although this was
a major change to each joint process in the RMSS, because
of the inherent process isolation in EXPRESS there were no
system-wide ramifications. In order to tune the filter
coefficients and PID constants for each joint, EXPRESS'
Process Monitor Display (PMD) was used extensively.
This utility allows examination and on-line modification of
all variables in a process. While the arm was running, it
was possible to change the characteristics ofeach joint and
observe the results without stopping to recompile and
reload the software. In a single operating session of a few
hours it was, therefore, possible to make a complete pass
at optimizing all six joints in the system.

The complete checkout, debugging, and optimization
of the RMSS on site took several weeks, including the
inevitable hardware component failures and software
modifications typical of first-time operation of a complex
system. At the end of this period, in a two-day demonstra-
tion the RMSS operation successfully duplicated the origi-
nal shuttle RMS. Astronauts from NASA's Johnson Space-
flight Center who had been trained on the RMS were able
to use the RMSS after only a few minutes of explanation
of the essential differences.

with their involved mathematics. The simulation process
in the kvSS was to convert commanded

was available on all the system displays. Simulation testing
was so thorough that when the arm software was installed
on site, not a single change was made to the executive
control algorithms.

When working with the real arm hydraulic system, it
became clear that major changes were needed in the low-
level joint control processes to ensure smooth and accu-
rate operation. First, because joint angle readouts are used
for both position and rate, precise calibrations were
necessary. EXPRESS' standard Historical Trending Display
(HTD) was used to capture joint angles as a function of
time; then later analysis of the graphs provided the
necessary position and rate information.

Because of the large and changeable gravity loads on

Theauthor, who generally goes by "Ned." was one of the founders of Forth, Inc.
In his former I~fe, he was a radio astronomer at the National Radio Astronomy

Graphic Solutions
Computer Graphics

24-Bit Color Scanning
Superimposing
Special Effects

Internet: druffers@ix.netcom.com
Voice: l(310) 372-0671 M-F 9am-5pm

Snail: P.O. Box 642
Hermosa Beach, CA 90254-0642

rates to simulated joint angles so that the full arm position Observatory and NAIC, Arecibo, Puerto Rico.

Forth Dimensions 2 1 March 1995 April

Vehicular Rollover in
Accident Reconstruction
J. K Noble
Charlottesville, Virginia

Abstract
This paper present a numerical simulation of vehicular

rollover accidents o n both wet and dry pavements, with
graphical display of flying cars. One of the more unusual
features is the use of complex arithmetic to describe rigid-
body motion in two dimensions.

We hope the information contained in this note proves
useful in planning your next demolition derby.

Introduction
My acquaintance with Forth began in response to a

need to accelerate calculations of vehicular accident
simulations and reconstructions, for use in litigation.'

Recently I have been studying vehicular rollover aris-
ing from sideward skidding into a curb or other obstacle.
A motor vehicle sliding sideways o n a pavement can roll
over as a result of collision with a barrier-such as a
curb--that "pins" the wheels. The behavior of a car-
idealized as a rigid body-under these conditions can be
quite complex.

The descriptions of such one-car accidents using
theoretical mechanics becomes fairly involved even when
we restrict the motions to two dimensions rather than
three. We cannot use the Lagrangian methods we study in
advanced mechanics courses because the constraints in
the problem are non-holonomic.2 Second, we must in-
clude friction, a non-conservative force. We therefore fall
back o n Newton's Second Law of Motion,

and its rotational analogue,
2

+ +
The total force F and torque N derive from the forces

of the tires against the pavement-these arise in turn from
friction and the compression of the tire by the vehicle's
weight. When the tires collide with the curb, the forces
increase drastically and must b e modelled carefully.

In the only previous study known to me,3 the author
simplified the problem in two ways:

He treated the forces as impulsive, that is, very large in
magnitude and of short duration, s o they could be
regarded as changes of momentum;
He confined the motion to the x-y plane, permitting only
rotations about the car's longitudinal axis (2-direction),
perpendicular to the plane of the center-of-mass motion.

The impulsive approximation to the tire-curb collision
works like this: taking the car's cm to be

h w ' from the ground, and T from either side of the car

(Figure One, below), and assuming both momentum and
angular momentum conservation during the (brief) time of
impact, the car acquires new linear and angular velocities
x f , Y/ , of, immediately following the collision. Following
the impact there are n o torques and only the force of
gravity acts on the car as it flies through the air.

Figure One. Car sliding into a barrier.

1. Accident Analysis Associates, Inc. reconstructs accidents, advises
attorneys, and provides expert testimony for vehicular and other
accidents.

2. See, e.g., H. Goldstein, Classical Mechanics, 2nd ed. (Addison-
Wesley Publishing Co., Reading, MA, 1980).

3. Ian S. Jones, The mechanics of rollouer as the result of curb impact,
SAE paper x750461 (1975).

March 1995 April 22 Forth Dimensions

The equations of momentum and angular conservation
are

We need to determine five unknowns, impossible with
only three equations. So we must apply some other
(approximate) condition. We see that the wheel that

1 collides with the curb does not have any velocity cornpo-

I
nent in the y direction (at first). So w e can say

However, what about the instantaneous x-component
of velocity acquired by the near wheel immediately after
the collision? Here there are two extreme cases: in the first,
the collision is elastic, s o the wheel has x-velocity -V; in
the second, the collision is completely inelastic, hence the
wheel has x-velocity 0. In general, then,

where c is the "coefficient of restitution."
Equations 3x,y and 4 are now easy to solve explicitly

using conditions 5 and 6. We get an equation in 8,- which
yields

where the distance rfrom the center of mass to the wheel is

If w e calculate the kinetic energy before and alter,
using the formula

w e find that, except in the elastic case, energy is not
conserved. With:

w e find that

Perhaps the most interesting prediction of the fully
elastic case is that the car will bounce backward from the
barrier, i.e., 3 is negative!

The major shortcoming of Jones' impulsive treatment
arises from his treatment of the friction between tire and
curb. There is some vertical motion while the tire rubs on
the curb, and consequently a frictional force that opposes
it. There is some uncertainty as to the direction and
magnitude of the frictional force, since the instantaneous
velocity of the point of contact between the tire and curb
is not well defined.

Motivation for a More-Detailed Model
To d o better ~ h a n the impulse approximation, w e must

model the actual behavior of the forces with time. That is,
w e must model how the tires respond to static and
dynamic loads, their instantaneous velocities at their
points of contact with pavement or curb, and the energy
absorbed in the collision with the curb.

Part of the motivation for proceeding this way is the
folklore that cars turn over more readily o n dry pavement
than o n wet. By modelling the forces in detail one may
hope to understand the accuracy of the assumptions made
in the impulse approximation, as well as to obtain more-
detailed comparison with experiment.

The unfortunate paucity of disposable cars, combined
with a regrettable absence of scientific curiosity-to the
point of downright pusillanimity-on the part of friends,
relatives, and colleagues of the author of the present
article, preclude the presentation of new experimental
findings at this time, however.

Details of the Calculation
'l'he calculations reported here were also based o n two-

dimensional motion in the x-y plane, with the z-axis
oriented out of the plane. The major improvement over
Jones' earlier work is the direct integration of the equa-
tions of motion. For this w e need detailed force laws. We

I assume that the tires are Hooke's Law compressionsprings
that provide a force proportional to the depth of compres-
sion and in the opposite direction. That is, the force law
of the pavement against the tire is

A similar law acts to the left when the near tire impinges
o n the curb. The force constant is adjusted so that when
the car is simply sitting o n the pavement, the deflection is
a

i.e., the force constant is given by

where g is the gravitational acceleration at the Earth's
surface, 9.8 m/sZ, and Mis the mass of the car. (That is, Mg
is the weight.)

We can deal with energy-absorbing collisions either by
including dashpots (shock absorbers) that are described
by Stokes' Law, with their resistance proportional to the
velocity and opposing it in direction; or by reducing the
spring constant k during the expansion subsequent to

Forth Dimensions 23 March 1995 April

compression. The new spring constant is related to the
coefficient of restitulion, C, by

In addition to the tire force (on the car) opposite to the
direction of compression, the tire exerts a frictional force
tangential to the surface it is sliding on. This force is
directed opposite to the (sliding) velocity of the point of
contact. The frictional force is conventionally modelled as
proportional to the normal force,

choosing the friction conditions (so far, WET or DRY);
choosing the coefficient of restitution (ELASTIC 3 c=l ,
INELASTIC d c=O); choosing the vehicle parameters
(VOLVO); the initial speed (in miles per hour, e.g., % 20)
and then invoking the program, saying ROLLOVER. Need-
less to say, despite the latter name, the vehicle does not
always flip.

The situation investigated here-a vehicle "stubbing its
toe" against a fairly high vertical curb-does not bear out
the lore that rollovers occur more easily in dry than in wet
conditions. We can see this in comparing the 15 and 20
mph (inelastic) collisions, in wet and dry conditions. For
either initial speed, the gyrations performed are far more
enthusiastic in the absence of friction. The chief reason for

1;there is any truth, then, to the old wives' tale, it must I
pertain to less-extreme situations where the curb is not
vertical, but is represented by a change of grade, as

Finally, the equations of motion are simply Newton's
laws:

.. 1 1
0 - I (zk * F k)

k (I4) 1 Cross-sectional view of change-of-grade curb:

this is that the force between tire and curb is very large.
Friction then leads to considerable energy dissipation at
this ~ o i n t of contact.

Note that in writing (13) and (14) we are using complex
n~tat ion. This is a big help because the vector product
r X F in two dimensions can be expressed as a complex

multiplication, as in Eq. (14). Moreover, the rotation matrix
applied to a vector can also be expressed as simple
complex multiplication (in two dimensions!):

~ o t (r ' , 8) = e i e z (1 5)

Results
The reader might like to see some actual results before

we discuss how to solve these equations using Forth. We
plot the center-of-mass position of the car, with its
orientation at each time "snapshot" drawn as a simple
rectangle-fancier graphics seemed like overkill.

The action takes place against a backdrop consisting of
the pavement, curb, and a grid of one-meter squares that
provides a scale. The actual pictures were captured using

ok
:ACKDROP ok

Mijaak directly from the VGA display and were converted
to GEM *.img format for printing with this article. 'l'he
command line makes the figures almost self-explanatory:
a run is initiated by saying BACKDROP; then choosing a
color for the car (in all these cases, WH ITE-bright white on
the screen); setting the output mode to plot via PLOT-ON;

o k

f i 6 f ~ R 0 P ~ ~ ~ ? - ~ ~ DRY I H E U S T I C U O W O 'x 15 ROLLOU

Ok
BACKDROP
:HIID PL%?-ON YFX IWLLOSTIC U I L V O X 15 R O U C

!n addition to the "wet" and "dry" inelastic collisions at
15 and 20 mph, we show below an example of a "wet"
elastic collision at 20 mph that exhibits the leftward recoil
from the barrier mentioned previously.

March 1995 April 24 Forth Dimensions

numeric output (time, position, orientation, and velocity)
or graphical output (outline of car and plot of its center-
of-mass position) to the CR'I'.

: tSTEP TIRE.FORCES TORQUE
\ update velocities

F" dtlMofln G o phidot >FS G + phidp FS>
F" Zdotp = Zdot + (FI + Fr + Fc + Mg) dt I M "

\ update positions
F" Z = Z + (Zdotp + Zdot) dt2 "
F' phi = phi + (phidp + phidot) dt2 "

\ update expIi phi] (rotation matrix)
F' Rrot = EXP(i phi) "

\ update old velocities
F" Zdot = Zdotp "
F" phidot = phidp '

\ update time
F' t = t + dt" ;

Elastic collision on a wet surface.

generic function library nor the ifstack (intelligent floating-
point stack) have been optimized in machine code, but
were left in high-level Forth (for portability). Nevertheless,
the program executes with more-than-adequate celerity
on an 80386SX-25 laptop (with numeric co-processor).
'The numerical integration of the six first-order differential
equations (several hundred time steps at intervals 6t= 0.01
sec.) and simultaneous graphical display of the results
takes place in real time (i.e., several seconds per case).

Summary
The detailed analysis of an interesting species of

automobile collision has given me a new respect for
applied mechanics, a discipline often given short shrift in
physics or engineering curricula. Programming in Forth
greatly reduced the debugging time of this rather complex
simulation.

Why Forth?
One might well ask what Forth has contributed to this

study; why would, say, FORTRAN not be as good for
solving this problem? The answer, as usual, lies not in the
language, perse, although it is true that Forth permitted a
better factoring than FORTRAN would have, as well as a
simpler user interface.

The real advantage of Forth lay in the ease of debug-
ging. As might have been expected, with so many compli-
cated formulae I got several wrong on the first try. 'The
frictional forces were in the wrong direction s o they added
energy to the system rather than subtracting it. I located
and corrected this error rapidly by single-stepping through
the problem and displaying results at each successive time
increment. To aid this process, I quickly added a calcula-
tion of total energy (kinetic and potential) at each step.
This let me see how it increased-and why! (Part of the
problem came from a subtle error in my FORmula
TRANslator, which this debugging procedure helped me
to correct.)

Neither FORTRAN nor any other language I know of
(other than Forth, o f course!) permits this ease of modifi-
cation "in flight." To continue the metaphor, even Forth's
crashes tend to b e soft.

A final remark about execution speed: neiiher the

- -

J.V. Noble is Professor 01 Physics at the University 01 Virginia. He received his
B.S. in Physics atcallech (1962), and earned hisM.A. (1963) and Ph.D. (1966)
in Physics at Princeton University. The author of Scientic Forth, he also has
published in the neighborhood of 100 scientific articles and is currently
President 01 the University 01 Virginia chapter of the Society of Sigma Xi. He can
be reached via e-mail at ivn@ferrni.clas.virginia.edu.

dot-quote
Forth has always benefited from its origins in ad-
vanced scientific milieus, and this has given it some
legitimacy-when we remember to quote and use
this fact. But to survive, we also have to look forward
and participate in the visions of powerful strategists
for the future.

Power being what it is,thesego beyondexcellenceand
success. At worst, such visions imply conformance with
technically faulty and inadequate standards, crippled
systems, etc. Everything that Forth lets you escape
from. But in the better cases, understanding which
strategies are likely to win provides new, legitimate
niches in a rapidlychangingworld, as in Mitch Bradley's
work. In such cases, Forth i s able to shine and survive
in new roles.

So I ask you to look again at Open Boot and think
about how it is morethan a successstory: it isalso well
positioned.

Because of Forth's extreme versatility and rapid ap-
proach to new hardware (and, I would argue, new
software interfaces that should be viewed like new
hardware), its strategic potential i s enormous.

So, where else can Forth be applied in crucial roles
that make use of its unique characteristics, in the
rr.ainstream of development?

-David Walker on comp. lang. forth
Adapted with permission

I I I

March 7995 April 26 Forth Dimensions

LZ77 Data Compvession
/ Wil Baden
Costa Mesa, California

Programmers are lousy lovers. They always try to get
the job done faster than before. And when they do, they
brag that they have better performance. Programmers are
the only men who boast how small theirs is.

Since 1784, there has been amazing progress in data
compression. Not so long ago, I got SALIENT SOFIWARE'S
AutoDoubler for the Macintosh. My 80-megabyte hard
drive had two megs available when I installed the pro-
gram. Since it was a Tuesday, I went out for lasagna, and
when I got back an hour later I had 17 megs available.

My 80-meg hard drive soon held 108 megs worlh of
data with room for 25 to 50 more megabytes.

Not only that, but many programs loaded faster and
read data faster. When a file takes only half as much disk
space, the data can be read twice as fast.

How they d o it is a trade secret, and Salient has applied
for a patent o n their technology. There are also many
variations possible concerning details.

However, I have a good idea about where to begin
looking.

Modern methods of data compression all go back to J .
Zrv and A. LEMPEL. In 1977 they published a paper in an
engineering journal o n a new approach to data compresson.

J. ZIV a n d A. LEMPEL, "A Universal Algorithm for Sequential
Data Compression," IEEE Transactions on Information
%eoty, 23:3, 337-343.

In 1978, they published a paper about a
related and more elaborate method. In 1984,
Unisys employee TERRY WELCH described and
had patented a version of the 1778 method
suitable for programming. This is called LZW
for Lempel, Ziv, and Welch.

LZW is the basis of ARC and PKARC o n the
PC, compress in Unix, and the original Stufflt
o n the Mac.

Around 1788, after losing a lawsuit, PHIL
KATZ (PKARC) came out with a better pro-
gram, PKZIP. This is derived from the 1777

"Standard Forth" is the language d e f i e d by ANSI
X3.215-1994.

Ziv-Lempel paper. It turns out that the simpler method has
better performance and is smaller. With additional pro-
cessing, phenomonal results have been obtained.

All popular archivers-arj, lha, zip, zoo, stac, AutoDou-
bler, current Stufflt-are variations o n the LZ77 theme.

The idea of LZ77 is very simple. It is explained in the
FAQ (frequently asked question) list for compression
technology [see next pagel. A copy of this FAQ is available
by ftp from rtfm.mit.edu in /pub/usenet/news.answers as
compression-faq/partIl-31.

The profane pseudocode given for LZ77 compression
can be Forthed as in Figure One.

The bottleneck is the finding the longest match quickly.
A nai've brute force method is hardly acceptable. "It's
hardly acceptable" is a gentilism for "it sucks". Hashing, or
binary search trees, or a combination, is recommended.

A simple implementation of LZSS using binary search
trees giving very good, but not best, performance was put
into the public domain in 1988 by H A R U H I K ~ OKUMURA. This
implementation has inspired the high-performance pro-
grams now in use.

Given here is a Standard Forth version of that program.
It shows its genealogy by the unusually long Forth defini-
tions. I believe that politically correct factoring would not
help understanding and would degrade performance. This
program is eight to ten times faster than the brute-force

Figure One. Profane pseudocode.

BEGIN

l o o k - a h e a d - b u f f e r - u s e d 0= n o t
WHILE

get-pointer(position,rnatch)-to-longest-match
l e n g t h m i n i m u m - m a t c h - l e n g t h > I F

o u t p u t - a - (p o s i t i o n , m a t c h) - p a i r
s h i f t - t h e - w i n d o w - l e n g t h - c h a r a c t e r s - a l o n g

ELSE
output-first-character-in-lookahead-buffer
s h i f t - t h e - w i n d o w - 1 - c h a r a c t e r - a l o n g

THEN

REPEAT

Forth Dimensions 27 March 1995 April

From the LZ77 FAQ.

1
C h e LZ77 family o f compressors>

LZ77-based schernes keep track o f the last n bytes o f data seen, and when a phrase is encountered that has already
been seen, they output a pair o f values corresponding to the position o f the phrase i n the previously seen buffer o f data,
and the length o f the phrase. I n effect the compressor moves a fixed-size "window" over the data (generally referred to
as a "sliding window" [or "ring buffer"], w i th the position part o f the (position, length) pair referring t o the position o f
the phrase w i th in the window. The most commonly used algorithms are derived from the LZSS scheme described by
JAMES STORER and THOMAS SZYMANSKI i n 1982. I n this the compressor maintains a w indow o f size N bytes and a "lookahead
buffer" the contents o f which it tries to f ~ n d a match for in the window:

w h i l e (1ookAheadBuffer n o t empty)

I
g e t p o i n t e r (p o s i t i o n , match) t o t h e l o n g e s t match i n t h e window

f o r t h e lookahead b u f f e r ;

i f (l e n g t h > MINIMUM - MATCH-LENGTH)

{
o u t p u t a (p o s i t i o n , l e n g t h) p a i r ;
s h i f t t h e window l e n g t h c h a r a c t e r s a l o n g ;

1
e l s e

I
o u t p u t t h e f i r s t c h a r a c t e r i n t h e lookahead b u f f e r ;
s h i f t t h e window 1 c h a r a c t e r a long ;

1
1

Decompression is simple and fast: Whenever a (position, length) pair is encountered, go t o that (position) in the
w indow and copy (length) bytes t o the output.

Sliding-window-based schernes can be simplif ied by numbering the input text characters m o d N, i n effect creating a
circular buffer. The sliding w indow approach automatically creates the I.RU effect which must be done explicit ly i n LZ78
schemes. Variants o f this method apply additional compression to the output o f the LZSS compressor, which include a
simple variable-length code (LZB), dynamic I-luffman coding (LZH), and Shannon-Fano coding (ZIP l.x), all o f wh ich
result in a certain degree o f improvement over the basic scheme, especially when the data are rather random and the
LZSS compressor has little effect.

Patent history.

Waterworthpatented(4,701,745)the algorithm n o w known and could be interpreted as applying to any LZ algorithm
as LZRW1, because Ross Will iams reinvented it later and using hashing (including all variants o f LZ78):
posted it o n comp.compression o n April 22, 1991, l 'he same
algorithm has later been patented b y Gibson & Graybill. Phil Katz, author o f pkzip, also has a patent o n LZ77
The patent office failed t o recognize thatthe same algorithm (5,051,745) but the claims on ly apply to sorted hash tables,
was patented twice, even though the word ing used i n the and when the hash table is substantially smaller than the
t w o patents is very similar. w indow size.

The Waterworth patent is n o w owned b y Stac Inc., which I B M patented (5,001,478) the idea o f combining a history
w o n a lawsuit against Microsoft, concerning the compres- buffer (the LZ77 technique) and a lexicon (as in LZ78).
sion feature o f MSDOS 6.0. Damages awarded were $120
mill ion. Stac Inc. patented (5,016,009 and 5,126,739) yet another

variation o f 1.277 w i th hashing. The '009 patent was used
Fiala and Greene obtained i n 1990 a patent (4,906,991) o n i n the lawsuit against Pvlicrosoft (see above). Stac also has
al l implementations o f LZ77 using a tree data structure. patentson LZ77 wi th parallel l ookup i n hardware (4,841,092

and 5,003,307).
Notenboom (from Microsoft) 4,955,066 uses three levels o f
compression, starting w i th run-length encoding. Chambers 5,155,484 is yet another variation o f LZ77 wi th

hashing. The hash function is just the juxtaposition o f t w o
The Gibson & Graybill patent 5,049,881 covers the LZRWI input bytes. This is the ' invention' being patented, The
algorithm previously patented by Waterworth and rein- hash table is named 'direct l ookup table.' [Chambers is the
vented b y Ross Williams. Claims 4 and 12 are very general author o f AutoDoubler and DiskDoubler.]

March 1995 April 28 Forth Dimensions

implementation I gave at the 1992 FORML Conference. It
can serve as material for studying data compression in
Forth, as the original program did in C and Pascal.

As an example, here is the beginning of Green Eggs and
Ham, copyright 1960, DR. SEUSS.

That Sam-I-am!
That Sam-I-am!
I do not like that Sam-I-am!

Do you like green eggs and ham?

I do not like them, Sam-I-am.
I do not like green eggs and ham.

Compressed with LZSS this becomes:
lThat Saml-I-am!
[I 1 I do not l like t [I l
Do you [I lgreen eg 1 gs and h lam?

1 []em, 1 [I. [I [I.

" I " represents a format byte. " [I " represents a two-byte
position and length.

The program uses words from the Core and Core
Extension wordsets. It also uses READ-FILE and WRITE-
FILE from the File Access word set. It presumes that R/
0, R/W, W/O, BIN, OPEN-FILE, CREATE-FILE, and TO
will b e used appropriately for file assignment.

The program also uses not, which can b e equivalent
to either O= or INVERT.

Standard Forth file access for character-by-character
input or output is hardly acceptable. read-char used here
can be painfully defined with READ-FILE. (See FigureTwo.)

Standard words are written without lower-case letters.
Non-standard words contain one or more lower-case letters
or are single-letter, upper-case words other than I or J. The
spelling of a word is consistent and no words are distin-
guished by a difference of case. It is immaterial whether
letter-case in your system is significant or insignificant.

Definitions of LZSS-Data-Compression and
reload have been commented out. They were used
during development.

: checked ABORT" File Access Error. " ; (ior --) I
CREATE single-char-i/o-buffer 0 C, ALIGN I
: read-char (file -- char)

single-char-i/o-buffer 1 ROT READ-FILE checked IF
single-char-i/o-buffer C@

ELSE
- 1

THEN

A better definition would be to buffer input of many characters at a time.

Note: The definition in ThisForth is a macro.

: read-char
please "stream get-char unstream "

; IMMEDIATE

In ThisForth, macro-defining definitions for array and carray improve
performance 25 percent.

: array
CREATE CELLS ALLOT IMMEDIATE
DOES> (.) please "CELLS - + "

,

: carray
CREATE CHARS ALLOT IMMEDIATE
DOES> (.) please "CHARS - + "

I

Forth, Dimensions 29

P.S. I n o longer g o out for lasa-
gna onTuesday, but if you come
to my house, I know where to
get some great Italian or Mexi-
can food.

Wil Baden is a professional programmer
with an interest in Forth. He can be con-
tacted at his wilbaden@netcom.com e-mail
address.

March 1995 April

Baden's LZSS Forth code.

I
LZSS -- A Data C o m p r e s s i o n Program) (
89-04-06 S t a n d a r d C b y H a r u h i k o Okumura) (
94-12-09 S t a n d a r d F o r t h b y N i l Baden) 3 (

5 (Use , d i s t r i b u t e , and m o d i f y t h i s program f r e e l y .)

7 \ MARKER LZSS-Data-Compression

9 \ : reload LZSS-Data-Compression S" 1 z s s . f o " INCLUDED ;

1 1 4 0 9 6 CONSTANT N (S i z e o f R i n g B u f f e r)
1 2 18 CONSTANT F (Upper L i m i t f o r m a t c h - l e n g t h)
1 3 2 CONSTANT Threshold (Encode s t r i n g i n t o p o s i t i o n 6 l e n g t h
1 4 (i f m a t c h - l e n g t h i s g r e a t e r .)
1 5 N CONSTANT Nil (I n d e x f o r B i n a r y S e a r c h T r e e R o o t)

1 7 VARIABLE textsize (T e x t S i z e C o u n t e r)
1 8 VARIABLE codesize (Code S i z e C o u n t e r)
1 9 \ VARIABLE printcount (C o u n t e r f o r R e p o r t i n g P r o g r e s s)

21 (T h e s e a r e set by I n s e r t N o d e p r o c e d u r e .)

2 3 VARIABLE match-position
2 4 VARIABLE match-length

2 6 : array CREATE CELLS ALLOT DOES> SWAP CELLS + ;

2 8 : carray CREATE CHARS ALLOT DOES> SWAP CHARS + ;

3 0 N F + 1 - c a r r a y text-buf (R i n g b u f f e r o f s i z e N , w i t h e x t r a
3 1 (F-1 b y t e s t o f a c i l i t a t e s t r i n g c o m p a r i s o n .)

3 3 (L e f t 6 R i g h t C h i l d r e n and P a r e n t s -- B i n a r y S e a r c h T r e e s)

3 5 N 1 + a r r a y lson
3 6 N 257 + a r r a y rson
3 7 N 1 + a r r a y dad

3 9 (I n p u t & O u t p u t F i l e s)

41 0 VALUE inf ile 0 VALUE outf ile

4 3 (F o r i = 0 t o N - 1 , r s o n [i] and l s o n [i] w i l l b e t h e r i g h t and
44 (l e f t c h i l d r e n o f n o d e i . T h e s e n o d e s n e e d n o t be i n i t i a l i z e d .
45 (A l s o , d a d [i] i s t h e p a r e n t o f n o d e i . T h e s e a r e i n i t i a l i z e d t o
4 6 (N i l = N , w h i c h s t a n d s f o r ' n o t u s e d . '
47 (F o r i = 0 t o 2 5 5 , r s o n [N + i + 11 i s t h e r o o t o f t h e tree
48 (f o r s t r i n g s t h a t b e g i n w i t h c h a r a c t e r i . T h e s e a r e i n i t i a l i z e d
49 (t o N i l . N o t e there a r e 2 5 6 t rees .)

5 1 (I n i t i a l i z e t rees .)

5 3 : InitTree (-- 1
5 4 f l 257 + N 1 + DO N i l I rson ! LOOP
5 5 N 0 DO N i l I - ! LOOP
5 6 :

5 8 (I n s e r t s t r i n g o f l e n g t h F , t e x t - b u f [r . .r+F-11, i n t o o n e o f t h e
5 9 (trees o f t e x t - b u f [r] ' t h t ree and r e t u r n t h e l o n g e s t - m a t c h p o s i t i o n
60 (and l e n g t h v i a t h e g l o b a l v a r i a b l e s m a t c h - p o s i t i o n and
61 (m a t c h - l e n g t h . I f m a t c h - l e n g t h = F , t h e n remove t h e o l d n o d e i n
62 (f a v o r o f the n e w o n e , b e c a u s e t h e o l d o n e w i l l be d e l e t e d s o o n e r .
6 3 (N o t e r p l a y s d o u b l e r o l e , a s t ree n o d e and p o s i t i o n i n b u f f e r .)

65 : InsertNode (r - - 1

67 N i l OVER a ! N i l OVER rson ! 0 m a t c h - l e n a t h !
68 DUP C e x t - b u f C@ N + 1 + (r P)

7 0 1
71 BEGIN

March 1995 April 30 Forth Dimensions

0< n o t I F (r P) I
DUP TSM @ N i l = n o t I F

L=s2n@
ELSE

2DUP rson !
SWAP m !
EXIT

THEN
ELSE

DUP @ N i l = n o t I F
lson@

ELSE

2DUP lson !
SWAP M !
EXIT

THEN
THEN

1 96
0 F DUP 1 DO (r p O F)

3 PICK I + t e x t - b u f C@ (r p O F c)
3 PICK I + t e x t - b u f C@ - (r p 0 F d i f f)
?DUP I F

NIP NIP I
LEAVE

THEN (r p O F)

LOOP (r p cmp i)

DUP m a t c h - l e n a t h @ > I F

2 PICK m a t c h - o o s i t i o n ?
DUP m a t c h - l e n a t h !
F n o t

ELSE
DROP FALSE

THEN
UNTIL
DROP

119 2DUP @ SWAP dad !
120 2DUP - @ SWAP - !
121 2DUP rson @ SWAP rson !

126 DUP dad @ rson @ OVER = I F I ::: TUCK u @ rson !
ELSE

TUCK @ lson !
THEN

dad N i l SWAP ! (Remove p)
133 ; I 132

(r P cmp f l a g)
(r P cmp)
(r p)

1 135 (D e l e t e n o d e p f r o m tree.)

137 : DeleteNode (P - - 1

139 DUP dad @ N i l = I F DROP EXIT THEN (Not i n t ree.)

141 (CASE)
142 DUP @ N i l = 1 143 I F

I

Forth Dimensions 3 1 March 1995

DUP LSM @
ELSE

DUP @ Nil =

IF
DUP w @

ELSE

DUP @

DUP rson @ Nil = n o t I F

BEGIN
Ls.a@
DUP rson @ Pi1 =

UNTIL

DUP @ OVER dad @ rson !
DUP && @ OVER @ && !

OVER a @ OVER u ! - --

OVER @ && OVER SWAP !
THEN

OVER @ OVER rson !
OVER @ rn OVER SWAP !

(0 ENDCASE) THEN THEN

OVER @ OVER && !

OVER DUP rn @ ~s.a @ = IF
OVER && @ T S ~ I ~ !

ELSE
OVER @ lson !

THEN

dad Nil SWAP !

17 c a r r a y code-buf

VARIABLE len
VARIABLE last-match-length
VARIABLE code-buf-pt r

1 8 9 VARIABLE mask

191 : Encode (-- 1

1 9 3 I n i t T r e e (I n i t i a l i z e t rees .)

1 9 5 (c o d e - b u f [1 . . l 6] h o l d s e i g h t u n i t s o f c o d e , and c o d e - b u f [O]
1 9 6 (w o r k s a s e i g h t f l a g s , " 1 " r e p r e s e n t i n g t h a t t h e u n i t i s a n
1 9 7 (unencoded l e t t e r i n 1 b y t e , " 0 " a p o s i t i o n - a n d - l e n g t h p a i r
1 9 8 (i n 2 b y t e s . T h u s , e i g h t u n i t s r e q u i r e a t m o s t 1 6 bytes
1 9 9 (o f c o d e .)

201 0 Q c o d e - b u f C!
2 0 2 1 mask C! 1 ode-buf-~tr !
2 0 3 0 NF-

2 0 5 (C l e a r t h e b u f f e r w i t h a c h a r a c t e r t h a t w i l l a p p e a r o f t e n .)

207 0 t e x t - b u f N F - BL FILL

209 (Read F b y t e s i n t o t h e l a s t F b y t e s o f t h e b u f f e r .)

211 DUP f e x t - b u f F i n f i l e READ-FILE c h e c k e d (s r c o u n t)
2 1 2 DUP Len ! DUP C e x t s i z e !
2 1 3 O= IF 2DROP EXIT THEN (S r)

I I

March 1995 April 32 Forth Dimensions

(Inser t t h e F s t r i n g s , each o f which begins with one or more
(' space ' characters. Note t h e order i n which these s t r i n g s
(are i n s e r t e d . This way, degenerate t r e e s w i l l be l e s s
(l i k e l y t o occur.)

F 1 + 1 D O
DUP I - InsertNode

LOOP

(Fina l l y , i n s e r t t h e whole s t r i n g just read. The global
(variables match-length and match-position are s e t .)

DUP InsertNode

BEGIN (s r)

(match-length may be spuriously long a t end o f t e x t .)
match-lenath @ Jen @ > I F Len match-lenath ! THEN

match-lenath @ Threshold > not I F

(Not long enough match. Send one b y t e .)
1 match-lenath !
(' send one b y t e ' f l a g)
mask C@ 0 code-buf C@ OR 0 code-buf C!
(Send uncoded.)

D U P t e x t - b u f C@ code-buf-wtr @ code-buf C!
1 sode-buf-wtr t!

E L S E
(Send posi t ion and length pair .)
(Note match-length > Threshold.)

match-wosition P code-buf-wtr @ code-buf C!
1 code-buf-wtr t!

match-wosition @ 8 R S H I F T 4 LSHIFT (. . j)
patch-lenath e Threshold - 1 - OR
code-buf-wtr P code-buf C! (. .)

1 code-buf-wtr + !

THEN

(S h i f t mask l e f t one b i t .) (. .)

mask C@ 2* mask C! mask C@

(Send a t most 8 u n i t s o f code together .)

0 code-buf code-buf-wtr @ (. . a k)
o u t f i l e W R I T E - F I L E checked (. .)

code-buf-wtr @ codesize t!
0 0 code-buf C! 1 code-buf -wtr ! 1 mask C !

THEN (s r)

match-lenath P last-match-lenath !

last-match-lenath @ DUP 0 DO (s r n)

i n f i l e read-char (s r n .c)
D U P O< I F 2DROP I LEAVE T H E N

(Delete old s t r i n g s and read new b y t e s .)

3 PICK DeleteNode
DUP 3 1 t P I C K t e x t - b u f C!

(I f t h e posi t ion i s near end o f b u f f e r , extend
(t h e b u f f e r t o make s t r i n g comparison e a s i e r .)

Forth Dimensions 33 March 1995 April

3 PICK F 1 - < I F (s r n c)
DUP 3 1 + PICK N t e x t - b u f C!

THEN
DROP (s r n)

(S i n c e t h i s i s a r i n g b u f f e r , i n c r e m e n t t h e
(p o s i t i o n modu lo N .)

>R >R (s)
1+ N 1 - AND

R> (s r)
1+ N 1 - AND

R> (s r n)

(R e g i s t e r t h e s t r i n g i n t e x t - b u f [r . . r t F - l] .)

OVER I n s e r t N o d e

LOOP
DUP t e x t s i z e t !

1 3 0 7 \ t e x t s i z e 63 p r i n t c o u n t @ > I F

\ (R e p o r t p r o g r e s s e a c h t i m e t h e t e x t s i z e e x c e e d s
\ (m u l t i p l e s o f 1 0 2 4 .)
\ t e x t s i z e P 1 2 .R
\ 1 0 2 4 p r i n t c o u n t + !

1 314
\ THEN

(A f t e r t h e end o f t e x t , n o n e e d t o r e a d , b u t
(b u f f e r m i g h t n o t be e m p t y .)

1 319
J a s t - m a t c h - l e n a t h @ SWAP ?DO (s r)

I 3 2 1 OVER D e l e t e N o d e

>R 1 N 1 - AND R>
1+ 1 - AND

-1 l e n t ! Len _@ I F
DUP I n s e r t N o d e

THEN
LOOP

331 JSLE o> not 1 3 3 2 UNTIL

1 334
(Send r e m a i n i n g c o d e .)

33 6 w t r @ 1 > I F
33 7 0 c o d e - b u f c o d e - b u f - ~ t r @ o u t f i l e WRITE-FILE c h e c k e d
338 c o d e - b u f - w t r @ c o d e s i z e + !
3 3 9 THEN
3 4 0 ;

3 4 2 : Statist ics (-- 1
3 4 3 ." In : " t e x t s i z e ? CR
3 4 4 ." O u t : " c o d e s i z e ? CR
3 4 5 t e x t s i z e @ I F
3 4 6 ." S a v e d : " t e x t s i z e P c o d e s i z e @ - 1 0 0 t e x t s i z e @ * /
3 4 7 2 .R ." % " CR
3 4 8 THEN

I

March 1995 April 34 Forth Dimensior

352 (J u s t t h e reverse o f E n c o d e .)

354 : Decode (--)

35 6 0 t ex t -buf N F - BL F I L L

0 NF- (f l a g s r)
BEGIN

>R (f l a g s)
1 RSHIFT DUP 2 5 6 AND O= I F DROP ()

i n f i l e r e a d - c h a r (C)
DUP O< I F R> 2DROP

EXIT (C)
THEN
r HEX 1 OFF00 I DECIMAL 1 OR (f l a g s)
(U s e s h i g h e r byte t o c o u n t e i g h t .)

THEN
R> (f l a g s r)

3 71 OVER 1 AND I F

i n f i l e read-char
DUP O< I F

EXIT
THEN

(. . c)
DROP 2DROP
(- r c)

OVER g e x t - b u f C! (. r)
DUP c e x t - b u f 1 o u t f i l e WRITE-FILE c h e c k e d

381 1+ N 1 - AND

383 ELSE

i n f i l e r e a d - c h a r
DUP O< I F

EXIT
THEN

i n f i l e r e a d - c h a r
DUP O< I F

EXIT
THEN

(. . 1)
DROP 2DROP
(. r i)

DUP >R 4 RSHIFT 8 LSHIFT OR R>
EL&m T h r e s h o l d + 1 +

408 THEN
409 AGAIN
410 ;

LOOP
DROP

DUP I + 1 - AND t e x t - b u f (. r i a)
DUP 1 o u t f i l e WRITE-FILE c h e c k e d
C@ 2 PICK c e x t - b u f C ! (. r i)
>R 1 + 1 - AND R>

(. r i)
(f l a g s r)

Forth Dimensions March 1995 April

ANS FORTH

Po werMac Forth
Optimizer
Xan Gregg
Durham, North Carolina

Several past Fortb Dimensions articles have extolled
the virtues of an optimizing direct-code Forth compiler, so
I'll try not to repeat those arguments. Instead, I will present
the implementation of such a compiler on the PowerPC.
This particular implementation is Creative Solutions, Inc.'s
Power MacForth, an ANS version of their venerable
MacForth product for the PowerMacintosh.

Forth on the PowerPC
The PowerPC 601 is a RISC microprocessor which

includes 32 32-bit, general-purpose registers, a load-store
architecture, and fixed-length instructions. The Mac OS
takes up only a few registers, leaving Forth plenty for TOS,
a handful of pointers, eight locals, and a few spares. The
load-store architecture does make some stack operations
more painful than on CISC machines, but at least the
PowerPC allows a pre-increment addressing mode, which
makes possible a one-instruction push (by using a nega-
tive increment amount). The fixed-length instruction are,

...it keeps the compiler
relatively simple and puts
the intelligence in
data structures.

the

of course, a boon to optimizers and decompilers.
Another useful feature of the PowerPC is the "branch-

folding" which occurs when the pre-fetch unit sees a
branch instruction in the instruction queue and can
resolve the branch before the instructions preceding it are
even executed. Subroutine calls are just unconditional
branches that stash the return address in the "link register"
before branching, and being unconditional, they are
predictable as soon as they enter the instruction queue.
The advantage for Forth is that subroutines are, overall,
very cheap instructions-in fact, they are free if preceded
by two or three non-branch instructions (like an in-lined
stack manipulation word).

PowerMacForth
PowerMacForth, also known as "MacForth 5.0 for the

Power Macintosh," is a 32-bit ANS Forth. It includes all or
most words in the following wordsets: Core, Core Ext,
Exception, Exception Ext, Search, Search Ext, and String.
Floating, Memory, and File are included in source code
form for optional use. Local variables are implemented
with LOCALS I , TO, and +TO, and are stored in up to eight
machine registers.

PowerMacForth has separate code and data areas. This
helps tools that examine code, since the code area
contains only 32-bit PowerPC instructions and no data. It
is also possible to make the code area a read-only segment
in the future for turnkeys. Execution tokens, usually
referred to as just "tokens," are 32-bit offsets within the
code area. Similarly, data locations are sometimes refer-
enced with "data offsets," which are offsets from the "data
base pointer," which is an address within the data area.
Vocabularies ("Wordlists" in ANS-speak) are also stored in
separate memory areas. They are relocatable and grow

, automatically as needed, and they are discarded for
turnkeys. MacForth has used hashed vocabularies since
version 4.0 for very fast searches.

Being a direct-code compiler, every Forth word con-
tains callable machine code in its code space. Colon
definitions begin with NEST code to push the return
address onto the return stack, and end with UNNEST code
to pop it off before returning. A VARIABLE word contains
code to push the address of its data onto the data stack. A
CONSTANT word contains code to push its value onto the
data stack. As a consequence, CONSTANTS have no data
and cannot be easily hot-patched.

A View From the Top
The PowerMacForth optimizing compiler was de-

signed to have a simple structure with as much of the
"smarts" as possible being contained in data structures that
could be jettisoned when building a turnkey application.
It was also built with flexibilty in mind, so that the user
could add more optimizations or less. This was accom-
plished by making many of the compiler words DEFER
words, which are easily patchable with IS.

March 1995 April 36 Forth Dimensions

INTERPRET is a DEFER word itself. Here is its default
action in PowerMacForth:

: DFLTINTERPRET
(-- I i n t e r p r e t o r compi le i n p u t t e x t)

BEGIN BLWORD C @
WHILE GET-ORDER POCKET #FIND

?TRACE ?DUP
I F INTERPRET-TOKEN
ELSE INTERPRET-UNKNOWN-WORD

THEN
INTERPRET-CHECKER

REPEAT ;

INTERPRET-TOKEN is also a DEFER word. Its default
behavior is to either execute the word or call CALLTOKEN,
on it. (The comma is part of the name and indicates that
the word will "comma" some code into the code area.)
CALLTOKEN, is (what else) a DEFER word as well. Its
default action will either inline the word or compile a call
to it and, in either case, possibly invoke a pattern reduction
on the new code.

DO-UNKNOWN-WORD is an interesting feature that has
nothing to do with the optimizer. It walks down an
extensible "chainn of words that try to interpret the
unknown text until it gets to a handler that can. If no
handler recognizes the text, an exception is generated.
The kernel includes a handler that interprets numbers. The
floating-point package adds another handler to the chain
to interpret floating-point numbers. It would be possible
to add handlers for such purposes as C-style hex numbers
(OxFF) or character constants ('A').

The Optimizations
The PowerMacForth compiler can do four types of

optimization. If a word to be called is small enough, it will
be inlined instead of called. The threshold is contained in
a variable and is initially 12 bytes (three instructions).
Words can be flagged as non-inlineable, however.

The compiler keeps a history of recently compiled
words. After each addition to the history, the history is
compared against a table of reduction patterns. If a match
is found, the pattern is substituted for new, more efficient
code.

If a colon definition doesn't call any other words
(because all of its words are inlined), the colon definition
is made into a code definition, meaning it is stripped of its
NEST and UNNEST code. Such a word is a "leaf' word, and
the optimization is call "leafing." It is important not only
for speed, but also because the NEST and UNNEST code
adds five instructions (20 bytes) to a definition.

The final optimization is called "chaining." It occurs
when a colon definition ends with a call to another colon
definition. In that case, the caller's UNNEST and the
callee's NEST can be skipped. The caller's UNNEST may
still need to be compiled if there was a pending branch to
the end of the word, but, in any case, the call instruction
can be compiled so that it jumps into the callee just past

Forth Dimensions

the NEST code and does not return to the caller. Chaining
allows infinite tail-recursion without overflowing the re-
turn stack.

Inlining and reducing are invoked during CALLTOKEN, ,
while leafing and chaining are invoked during ; . Each of
these may be turned off separately via a bit in the
OPTIMIZER variable, which is initially all ones.

CodeInfo Table
The CodeInfo table is a data structure used by the

compiler; it is not needed at run-time, so it can be thrown
away for turnkeys. The table contains a few items about
every word in the code area. The entries are in a sequential
list, sorted by token, which makes it possible for a token's
entry to be located quickly with a binary search. The fields
of each entry are as follows:

field size description
token 4 word's execution token
value 4 data offset for data words, value for

constants
type 1 one of several common type values, or

zero for "unknown"
flags 1 inlineable flag and possibly others
action 2 CodeInfo index of action word for DOES

words
offset 4 current data offset when this word was

created

The CodeInfo table is used in several ways by the
optimizer. Since entries are consecutive words, a word's
size may be determined by subtracting the next token from
the current token. The size is useful to know when
determining whether to inline or not, as is the inlineable
bit in the flags field. The value field allows the optimizer
to know the value of a constant or the offset of a variable
without having to look at the machine code for the word.

The type field is used during chaining to know that the
callee is a colon definition. And it is used when adding a
word to the compiler history, since constant words and
literals will look the same in the history, as will variables
and other words that return a data address. The action and
offset fields are primarily intended to be used by
decompilers and other tools that examine or move words
(or remove them, like FORGET).

Like the code size, the size of a word's data can be
determined by subtracting its data offset from the next
word's data offset. A word's data offset is determined by
subtracting the data base pointer from HERE at the time the
word is created. Note that even colon words can have data
if they use string literals.

Compiler History
Whenever a word is compiled, the compiler adds

information about the compiled word into its "history."
The history buffer is limited to five entries, and each entry
has the following four fields:

37 March 1995 April

Figure One. Example word counts lines in a text block.

: COUNT-LINES (s t a r t \ c o u n t -- # l i n e s)

OVER + LOCALS1 START END I \ S t a r t a l s o s e r v e s a s r u n n i n g p t r
0 \ t h e i n i t i a l c o u n t
BEGIN

START END < \ c h e c k f o r e n d o f t e x t
WHILE

START C@ 13 = I F 1+ THEN \ CR => bump l i n e c o u n t
1 +TO START \ g o t o n e x t c h a r a c t e r

REPEAT ;

-

& description
token 4 negative for special cases (literals, etc.)
addr 4 code address where compiled
value1 4 literal value, variable offset, etc.
value2 4 literal value, variable offset, etc.

Odd negative tokens are accompanied by something in
the value1 field, andeven negative tokens have data in both
value fields. The compiler will convert token for items like
constants, variables, and locals into the appropriate nega-
tive token and value. (It does that by using the type and
value fields from the CodeInfo table). The second value
field is useful when optimizing doubles, floats (also eight
bytes), or just combinations of two single-value entries.

The word ADD-INFOENTRY -TO-HI STORY does the
work of adding a word properly to the history. It is called
by the CALLTOKEN, action before each word that is
compiled into a colon definition, whether inlined or
called. The "InfoEntryn in the name refers to the fact that
CALLTOKEN, has already looked up the word in the
CodeInfo table (to see if it is inlineable), and is passing the
entry number within the table.

I t has to be fast, because a
search is made for almost
every word compiled ...

items to push, based on whether the token is non-negative
(no values), odd negative (one value), or even negative
(two values). So, in this example (because <LIT> is a
constant with an odd negative value), the two literals
would be on the stack when LITERAL+, is called.

The work is done by the word ?REDUCE-HISTORY
which is called by CALLTOKEN, after each word it corn-
piles. ? REDUCE -H I STORY looks up in the list of reduction
patterns all patterns in the history that end with the newest
entry, from longest to shortest. So, if the history was "A B C
D", ?REDUCE-HISTORY would first look up "AB C Dn, then
"B C D", and finally "C D" until it found a reduction pattern.
If a pattern is found, the code pointer is moved back to
where the pattern was compiled and the replacement is
either compiled or executed, based on whether any of the
history entries were negative pseudo-tokens.

The difficulty is how to store a list of variable-length
reduction patterns so they can be searched quickly, given
a list of tokens from the history. It has to be fast, because
a search is made for almost every word compiled (when-
ever there are at least two items in the history). The best
approach, initially, seemed to be a list of sorted, fixed-
length patterns. This involved a little wasted memory,
since most patterns are only two or three tokens long and
a little extra code for the insertion and searching.

However, CSI's Ward McFarland came up withthe great
suggestion of using a vocabulary to store the patterns. If the
list of tokens is treated as a string and the re~lacement token " I is treated as the value, the reduction batterns can be I

Reduction Patterns
A reduction pattern consists of a list of tokens (the

"patternn) plus a replacement token. The replacement
token is either itself compiled as a replacement for the
pattern, or it is executed to compile code to replace the
pattern. The former occurs when the tokens in the pattern
are all positive (no value fields used in the history entries).
An example of such a pattern is SWAP and DROP with the
replacement token of NIP.

When a token in the pattern is negative, the replace-
ment token is executed instead of compiled. An example
of that would be the pattern <LIT>, <LIT>, and + with
the replacement token of LITERAL+, (which is definied
as simply "+ LITERAL, "1. When the replacement token
executes, the values associated with all of the pattern
tokens are on the stack. The reducer knows how many

considered a list of strings with corresponding values. And
that happens to be the general structure for the hashed,
MacForth vocabularies, where normally the string is a Forth
name and the value is its token.

So how does a list of tokens get treated as a string?The
tokens are just stored one after another in memory
(actually on the return stack), and the list is preceded by
a length byte. Since each token is four bytes, the length
byte is 4 * nurnlokens, where numTokens is the number
of tokens in the list. Fortunately, the vocabulary mechanism
is general enough that it allows strings with characters that
are any byte value, including zero.

With reduction patterns made to look like vocabulary
entries, it was easy to use the vocabulary words for
insertion, look-up, and removal of patterns. And the
criterion for speed was well-satisfied, since the vocabular-
ies are organized with a hashing function.

March 1995 April 38 Forth Dimensions

Table One. History of compiler actions.

Word

OVER
+

LOCALS 1
0
BEGIN
START
END
<

WHILE

START
C@

THEN
1
+TO

REPEAT

Action Compiler History
compile code for NEST empty
inline code for OVER OVER

inline code for + OVER +
reduce "OVER +" OVER+
compile call to PUSHZLOCALS OVERtPUSH2LOCALS
compile code for literal OVER+PUSHZLOCALS <LIT>
no code, clear history empty
inline code for LOCAL1 <LOCAL>
inline code for LOCAL2 <LOCAL> <LOCAL>
inline code for < <LOCAL> <LOCAL><
reduce "<LOCAL> <LOCAL> <" <LOCALLOCAL-> O<
compile code for OBRANCH <LOCALLOCAL-> O<<OBRANCH>
reduce "<LOCALLOCAL-> O< <OBRANCH>" empty
inline code for LOCAL1 <LOCAL>
inline code for C@ <LOCAL> C@
reduce "<LOCAL> C@" empty
compile code for literal <LIT>
compile call for = < L I T > =

reduce "<LIT> =" <LIT+> O =
compile code for OBRANCH <LIT+> O= <OBRANCH>
reduce "<LIT+> O= <OBRANCH>" empty
compile code for literal <LIT>
inline code for + <LIT> +
reduce "<LIT> +" <LIT+>
resolve branch, clear history empty
compile code for literal <LIT>
compile L LOCAL^ <LIT><+>LOCAL>
reduce "<LIT> <+>LOCAL>" empty
resolve BEGIN & WHILE empty
check for Leafing or Chaining optimizations
compile code for UNNEST and return instruction

Example
Now that the data structures have been presented, let's

see how it all fits together with an example. Figure One
shows a word that counts the number of lines in a block
of text.

Table One shows the compiler history and the compiler's
action for each word interpreted. The words in angle
brackets, such as <LIT>, are constants for negative
tokens. When such entries occur in the compiler history,
they are accompanied by one or two values which are not
shown in the table. For instance, in step six, the history
entry for <LIT> also includes the value 0, and, in step
eight, the history entry for <LOCAL> also contains the
value 1 since START is local #1.

START and END are added to the history as locals
because their entries in the CodeInfo table indicates that
their types are both Local.

Line four shows a simple reduction where the code for
the pattern "OVER +" is replaced by the code for the single
word OVER+. That reduces five instructions down to three.
This is the classic kind of ideal reduction, because it
merges a producer, OVER, with a consumer, +, into one
piece of code that does not alter the stack depth.

The next reduction occurs on line eleven and is actually
more useful for its regrouping as much as for its code
optimization. Essentially, the sequence "START END <" is
converted to "START END - O<". The code is better and
avoids special handling of the comparison, whose result
will probably just be consumed by a OBRANCH, as it is
here. Note that the pseudo-token <LOCALLOCAL-> is an
even negative number, as it carries two values with it, one
for each of the locals.

When the OBRANCH does follow, it reduces the se-
quence to a simple register-to-register compare and a
branch. Later, in line 21, a similar reduction is made for a
literal comparison.

Note how 1+ is handled, starting o n line 21. 1+ is
actually an immediate word that is equivalent to "1 +"(two
words). That way, the optimizer sees it as a "<LIT> +"
sequence instead of some unary arithmetic function to be
special-cased. However, it does no good here, because
there is nothing before or after the 1+ that it can be
combined with for optimization.

Without further ado, the annotated code produced by
the compiler is shown in Figure Two.

It's actually one-third smaller than the unoptimized

Forth Dimensions 39 March 1995 April

Figure Two. Optimized code generated by the compiler.

... mfspr rll/~, LR code for NEST
... stwu rll/X, $-4 (r15/RSP) push LR to return stack

lwz rll/~, (rl4/DSP) code for OVER+
add rl3/~0S, rl3/~0S, r l l / ~ ...
bl PUSH2LOCALS call PUSH2LOCALS
stwu r13/TOSr $-4 (r14/DSP) make room for new TOS
addi rl3/TOS, 0, 0 literal to TOS

L1: cmp r30/Loca12, r3l/Locall START < END ?

bge L 3 exit loop if false
stwu r13/TOSr $-4 (r14/DSP) make room for new TOS
lbz rl3/TOS, (r30/Loca12) START C@ -> TOS
cmpi rl3/TOS, 13 = 13 ?

... lwz rl3/~OS, (r l 4 / ~ S ~) pop new TOS
... addi rl4/DSP, rl4/DSP, 4 gives time to resolve branch

bne L2 branch for IF
addi r13/TOSr rl3/~0S, 1 1 +

L2: addi r30/Loca12, r30/Loca12, 1 1 +TO START
b L 1 REPEAT

... L3: lwz r 1 X (rlS/RSP) UNNEST
mtspr LR, rll/X ...
addi rlS/RSP, rlS/RSP, 4 ...
blr

code, as well as 4.8 times faster. COUNT-LINES was
derived from code in MacForth's integrated editor. In the
token-threaded, 68K version of MacForth, this word and
similar ones had to be written in assembly for adequate
performance on large text files; but with the faster proces-
sor and optimizing compiler of PowerMacForth, it was fine
to use high-level Forth.

This example only scratches the surface of the number
of optimizations possible, of course. PowerMacForth ships
with 169 reduction patterns. 42 of those deal with OBRANCH,
57 deal with locals, and most of the others involve fetching
and storing. More optimizations are added by the floating-
point package.

Conclusion
The PowerMacForth optimizing compiler keeps with

Forth tradition by keeping the compiler relatively simple
and putting the intelligence in the data structures. Of
practical importance is that the compiler data structures
are in separate memory blocks which are not retained in
a turnkey. The compiler is extensible by changing the
action of compiler defer words, adding unknown word
handlers, or adding reduction patterns.

Readers can contact Xan Gregg at his xgregg@aol.com e-mail address. He IS

a freelance Macintosh programmer living in Durham. North Carolina, who
mainly writes printer drivers and medical-imaging software. Xan has been
programming with MacForth since 1984 and, in his free time, he plays ultimate
Frisbee.

March 1995 April 40

Forth Interest Group centerfold

Laboratory Microsystems, I nc. 1 9

Offete Enterprises 19

Miller Microcomputer
... Services 17

Ruffer Graphic Solutions 21

Silicon Composers 2

--

Forth Dimensions

High-Performance
MISC Processor
Chen-hanson Ting, Charles H. Moore
San Mateo, California

Forth Dimensions 41 March 1995 April

MISC vs. RISC vs. CISC
The controversy between RISC (Reduced Instruction

Set Computer) and CISC (Complicated Instruction Set
Computer) had pretty much settled, and RISC had won.
Most newer and more powerful processors developed
recently are all RISC processors, like SPARC, MIPS, Alpha
from DEC, PA from H-P, and PowerPC from IBM. How-
ever, CISC processors persist due to momentum, like the
Intel x86 family, and in the microcontroller area where raw
speed is not an important factor.

The basic principles behind the original RISC proces-
sors are valid, such as:
a. A simple instruction set is faster.
b. Complicated memory-accessing instructions are not

necessary.
c. A large register file facilitates software.
d. Complicated functions are best handled in compiler.
e. A simpler processor is easier to design and to build.

However, RISC is a good idea falling into the wrong
hands. The emphasis on simplicity is all but forgotten. The
RISC processors we see now are more complicated than
many of the CISC processors. The relentless push towards
higher speed left a bloody trail. Some of the problems in
the RISC architecture are quite evident:
a. RISC processors are inherently slow, because each

instruction still needs many machine cycles to execute.
An instruction pipeline is used to accelerate the execu-
tion; however, the pipeline must be flushed and refilled
when a branch instruction is encountered.

b. Increasing speed in the RISC processor creates a large
disparity between the processor and the slower memory.
To increase the memory-accessing speed, it is neces-
sary touse cache memory to buffer instruction and data
streams. The cache memory brings in a whole set of
problems, which complicates the system design and
renders the system more expensive.

c. RISC processors are very inefficient in handling subrou-
tine calls and returns. An efficient subroutine mechanism
is critical to the performance of a processor insupporting
high-level languages. Many RISC processors use a large
register file, which is windowed to facilitate subroutine

call and return. However, the register window must be
big enough to handle a large set of input, output, and
local parameters. The large register window wastes the
most precious resource in the RISC processor. A large
register file also slows down the system during a
context switch, which must save the register file and
later restore it.

Our opinion is that, in RISC, reducing the size of the
instruction set is effective in reducing the complexity of
the processor and improving its performance. However,
the principle of simplicity was not enforced well enough
to realize the full benefits of this principle. In the MISC
architecture, we like to explore the power of simplicity to
its limit, to see how far we can push the CMOS technology
in reducing the costs of building computer systems and
increasing their performance. We like to have answers to
the following questions:
a. What is the minimum set of instructions in a micropro-

cessor to make it useful in solving practical programming
problems?

b. What will be the performance of a microprocessor with
such a minimum set of instructions?

c. What facilities in a microprocessor are necessary to
reduce the complexity and the system costs of a
computer?

d. How to best utilize the current CMOS technology to
build such MISC processors?

The MISC Instruction Set
What is the minimum set of instructions in a practical

microprocessor? The CISC processors generally have 100
or more instructions. The RISC processors have about 50
instructions. In our investigations, it was obvious that 16
instructions are not sufficient to support all the necessary
functions required in a microprocessor. 50 instructions are
too many. The minimum number of instructions is some-
where between 16 and 32. A convenient choice is to limit
the number of instructions to 32 and implement a micro-
processor with five-bit instructions.

The instruction set implemented in MuP2 is shown in
Figure One.

Figure One.

MuP21 Instruct ion Set
Transfer Instructions: JUMP, CALL, RET, J Z , J C Z
Memory Z~tructions: LOAD, STORE, LOADP, STOREP, L I T
ALU Instructions: COM, XOR, AND, ADD, SHL, SHR, ADDNZ
RegisterInstructions: LOADA, STOREA, DUP, DROP, OVER, NOP

g. an Instruction Latch which holds
four five-bit instructions to be ex-
ecuted in sequence.

The memory and data buses are 20-
bits wide. The instructions are five-bits
wide. Therefore, four instructions can

So far, we have implemented only 24 instructions,
leaving some room for future expansion. This MISC
instruction set seems to be adequate in the applications we
have coded, including quite elaborate operating systems
and demonstration programs.

It is interesting thatwe have an ADD instruction but not
subtraction; that we have XOR but not OR; and that we
have OVER but not SWAP. Obviously, subtraction can be
synthesized by complement and addition. OR can be
synthesized by complement, AND, and x o R . OVER and
SWAP are very similar, in that they allow accessing the top
of the data stack. However, it is difficult to determine
which is more fundamental in a stack machine.

MuP21 Architecture
MuP21 is the first in a series of MISC microprocessors.

The primary constraints on the design of this microproces-
sor were that it had to be housed in a 40-pin DIP package,
and that the silicon die had to be less than 100 mils square.
We determined that a 20-bit microprocessor could be
implemented within these physical constraints. There
would not b e enough I/O pins to support a processor with
wider data and address buses.

MuP21 must use DRAM as its primary memory, as
DRAM offers the best bit density and the lowest cost per
bit. However, it has to boot from ROM or other eight-bit
memory devices, and it also has to address various I/O
devices. Therefore, we need a memory coprocessor to
handle the buses and to generate the proper control
signals to the memory and I/O devices.

A very unique feature of MuP21 is to generate NTSC
signals to drive a color TV monitor, because it will be
targeted to many applications which use the TV monitor
as the principal display device. A video coprocessor was
designed to run in parallel with the main processor to
display video frames stored in the main DRAM memory.

The main CPU in MuP21, thus, includes the following
components:
a. a Return Stack to nest subroutine return addresses
b. a Data Stack to store parameters passing between

subroutines
c. a T (Top) Register as the central holding register for

operands
d. an ALU which takes operands from T and the top of

Data Stack and returns the results of ALU operations to
the T Register

e. an A (Address) Register to hold a memory address for
fetching or storing data f r o d t o memory

f. a PC (Program Counter) Register to hold the address of
the next instruction, and

March 1995 April

be packed in each 20-bit word fetched
from memory. This is a natural instruc-

tion pipeline. After four instructions are executed, the
slower external memory is ready to supply the next set of
four instructions. The processor can be four times faster
than the memory. Fast cache memory and its associated
control circuitry are not needed.

The execution speed of MuP21 is very fast because of
the simple instruction set and the dual-stack architecture.
The ALU instructions can be executed very fast because
operands are taken from the T register and the top of the
data stack, and the results are returned to the T register.
There is no need to decode the source and destination
registers. Actually, the ALU operates continuously. Once
the data in the T register and the top of the data stack are
stable, ALU results from COM (complement of 13, SHL,
SHR, XOR, AND, ADD, and conditional ADD are gener-
ated spontaneously. The ALU instruction only selects the
proper results and gates them back into the T register. The
operations of the MuP21 processor can thus be summa-
rized in two steps:
a. Read a 20-bit word from memory and latch it into the

instruction latch.
b. Execute the five-bit instructions by latching proper

results into the T register.

MuP21 is, thus, much faster than RISC machines, because
the RISC processor must follow the following sequence to
execute one instruction:
a. Read an instruction from memory and latch it.
b. Decode the instruction and select the operand registers.
c. Execute the instruction.
d. Store results back into the selected destination register.

A stack-based processor is more advantageous than a
register-based processor because the source and destina-
tion registers are defined in hardware and no register
decoding is necessary.

MuP21 executes instructions at a speed of ten ns. per
instruction. The peak execution rate is, thus, 100 MIPS. It
achieves this remarkable performance using only the
now-outdated, 1.2 micron CMOS process, because of the
simplicity in its architecture and the MISC instruction set.
Accessing the slower DRAM memory degrades its perfor-
mance to about 80 MIPS.

Video Coprocessor
MuP21 has a video coprocessor which runs in parallel

with the main CPU. The video coprocessor reads 20-bit
words from the DRAM memory and interprets a 20-bit
word as four five-bit instructions, similar to the main CPU.
However, the video coprocessor instructions change the

42 Forth Dimensions

output voltage at the video output pin to generate an NTSC
color video signal suitable for display on a standard TV
monitor.

The video processor is synchronized to a 14.39 MHz
external clock to maintain precise timing of the video
output. Whenever it is ready to fetch a new word from the
DRAM memory, it gets a word via the memory coprocessor
without delay, because the video coprocessor has a higher
priority over the main CPU, and the memory coprocessor
will grant its memory request as soon as possible. After the
video coprocessor gets a word from DRAM, it will execute
four instructions before fetching the next word. During
this interval, the main CPU can request memory access
from the memory coprocessor. Hence, when the video
coprocessor is turned on, it consumes 25% of the memory
bandwidth of MuP21.

The instruction set of the video coprocessor is as follows:

Opcode Hex Name &t Cvcles
B 00 Black x 1
S 17 Sync x 1
R 1 F Refresh 2 1
K 13 Skip 0 1
C 15 Burst x 1
P Ox Pixel x 1
J 18 Jump 0 0

When the MSB in a five-bit video instruction is set, the
instruction causes special action in the video signal
generator. When the MSB in an instruction is reset, the
other four bits specify the color of one pixel to be
displayed on the monitor. The assignments of bits are:
O I G R B

where G, R, B stand for green, red, and blue, and I stands
for intensity.

A video frame is first constructed in DRAM memory
from the video instructions. When the video coprocessor
is turned o n (by setting the LSB in the Configuration
Register), the video coprocessor fetches the instructions in
sequence and executes them. The result is a continuous
stream of analog signals at the video output pin. When this
pin is connected to the input of a video monitor, color
pictures will be shown on the monitor. The main proces-
sor can change the pixel instructions in the video frame to
cause the picture to change dynamically.

Since the video frame is completely constructed in the
DRAM memory, it is easy to produce video signals in either
NTSC or PAL format. This feature makes MuP21 a very
powerful and versatile device to produce TV images. It will,
thus, find many applications where video output is needed.

Memory Coprocessor
1 The memory coprocessor in MuP21 is mostly hidden from
I the user. It performs the following tasks in the background:

a. It arbitrates DRAM access requests from the video
coprocessor and the main CPU. The memory request
from the video coprocessor has priority over that from
the main CPU.

Forth Dimensions

b. It generates the proper control signals to DRAM and
SRAM memories, and also the I/O enable signal to I/O
devices. A DRAM RAS cycle is 50 ns. SRAM and I/O
have two accessing speeds: a slow cycle of 250 ns., and
a fast cycle of 15 ns. The memory coprocessor allows
MuP21 to use a variety of memory and I/O devices
without additional interface circuitry.

c. It controls the address and data buses to the memory
and I/O devices. When accessing DRAM memory, the
20-bit addresses are multiplexed over pins AO-A9, and
the data bus consists of D&D9 andADlGAD19. When
accessing SRAM memory during booting, the address
bus consists of AO-A9 and ADIO-AD19, while the
eight-bit data bus is on DO-D7. When accessing I/O
devices, the addresses are on AO-A9, and data are on
D&D9 and ADl0-AD19.

Memory and I/O accesses are controlled by address
lines and two bits in the Configuration Register. The
memory maps of different memory and I/O devices are:

Address Device
0-FFFFF 20-bit DRAM memory
12000-1 203FF slow 20-bit I/O devices
14000 Configuration Register
16000-1603FF fast 20-bit I/O devices
18000-1BFFFF fast eight-bit SRAM memory
1C000-IFFFFF slow eight-bit SRAM memory

Internally, MuP21 maintains a 21-bit data/address bus.
The MSB bit 20 is the carry bit in ALU operations. It also
selects DRAM memory when low, and SRAM or I/O when
high. According to the memory map, MuP21 addresses
directly only 256 Kb of SRAM memory. However, bits 18-
19 in the Configuration Register are forced on the address
bus when reading or writing SRAM. This paging mechanism
allows MuP21 to access 1 Mb of external SRAM memory.

Applications
MuP21 is a very powerful microprocessor because it is

fast, and it has a fairly large addressing space. It also uses
very little power. I t is, therefore, suitable for a wide variety
of applications in which high speed, low power consump-
tion, and large addressing space are important factors in the
design. Here is a list of potential applications for MuP21:

advanced video games
TV signage
video test-pattern generators
CAD design system
telephone switching system
handheld computers
high-speed communications systems
intelligent hard-disk controllers
robotics controllers

Conclusion
MuP21 is the first member of a family of microprocessors

based on the MISC principles. It proves that there is still room
(Text concludes on page 10.)

43 March 1995 April

(Fast Forthward, cotz:inued from page 46.)

THRU shall execute, while other words shall not. The
remaining words shall be output to a file or other output
stream s o that a post-processor could process that text
further.

A way to distinguish between those words that need to
be executed and those words that can be appended to an
output stream is required. A new word flag could be set
for all Forth words that redirect the input stream. Suppose
that it is named INPUT SOURCE-SPECIFIER.

Typically, the inputredirection words require input
parameters such as (filename) strings or (block) numbers.
To make sure those parameters will be available, a special
class of cons tan ts might b e necessary. The
INPUT-SOURCE-SPECIFIER flag could be set for each
of them to ensure that they will execute when encoun-
tered in the input stream.

Likewise, the preprocessing pass could strip any com-
ments from the input stream. That requires the comment-
introducing words to execute whenever they are encoun-
tered in the input stream. Therefore, we need to distin-
guish a new class of words using a different word flag,
such as COMMENT HERALD.

(As each of these new word flags is considered, do you
see a well-classified Forth system taking shape, as I
sometimes think I see?)

If the INPUT SOURCE-SPECIFIER (and
COMMENT HERALD)^^^^ flag is checked by ?FIND, the
DO-DEFINED vector can remain unchanged. That's be-
cause the only "found" words passed to the standard
DO-DEFINED routine would be those we need to execute.

A new DO UNDEFINED routine would have to be
referenced ~ ~ ~ N T E R P R E T . It would merely write the
input word to a selected output stream (or file).

Objects might be considered
a different point of departure
or a different means of travel.
Objects alone do not dictate
a destination.

More Stately Interpretation
To be able to leave the new interpreter state, another

word needs to be able to be executed reliably. Suppose we
give this word the name PREPROCES S-OFF, indicating that
it switches away from the new preprocessor state back to
a normal Forth state. To accommodate it, another word flag
may be needed, such as PREPROCESS-STATE-SPECIFIER.

In keeping with the effort to make INTEPRET more
flexible, the parameters required by ?FIND can be gener-
ated by execution vectors. The vectors could be placed in
a lookup table, with enough slots for several more states.

The state could determine which vectors would be
fetched from the lookup table to generate the word-
sanctioning and word-rejecting parameters that ?FIND

requires. To d o so, consider using the following code to
replace the snippet of code I offered in the last essay:

. . .
STATE @ TH-STATEVECTORS 2TOKEN@ EXECUTE
SWAP EXECUTE
(s t r - a d d r s a n c t i o n - £ l a g s i gno re -£ l a g s --)

?FIND

Wrap-up
Measures such as those Mitch and I have taken with

respect to INTERPRET might be effective first steps along
the path to implementing the visible and invisible portions
of a module system, or the visible and invisible methods
of an object system.

I just wish I knew what the next tune-up should be. I
know it should involve objects or modules and that it must
be compelling-probably by its ability to impart substan-
tial kernel flexibility. Help, anybody?

An object-oriented Forth kernel might help the
language's implementors exclusively. Objects might be
considered a different point of departure or a different
means of travel. Objects alone do not dictate a destination.

Implementors using objects are going to be as free as
they ever were to produce a vanilla Forth.

(In that case, the implementation burden might have
been eased, but the language taken u p by the end user
would still be plain old Forth. Accordingly, an object-
based Forth kernel is not necessarily going to expose its
object mechanisms to the end user. I would expect,
however, that at least metacompilation will become much
simpler, or disappear altogether.)

I still have my doubts about Forth's naturally occurring
classes, however. Although perhaps not for the purposes
of having true object classes or modules, Forth's words d o
seem to belong in clearly separated categories.

A large number of kernel Forth words can be nicely
partitioned by various new word flags. The ANS Forth
Quick Reference card categorizes a sizable set of words,
so that Forth appears more approachable. For example, as
long as you are not creating compiler extensions, you can
ignore about 40 words. Through such categorizations, the
attention of the novice can be narrowed to a much smaller,
and much more relevant, set of words.

Classes or other categories of Forth words can be
critical aids to learning Forth. This fact gives impetus to the
effort to go ahead and build object orientation into Forth,
as I am sure we will witness someday.

Note that it is one thing to admit the existence of
categories. But it is an entirely different thing to argue that
the words in those categories ought to be treated in an
object-disciplined fashion. Perhaps word flags will prolif-
erate where objects might have come forth.

March 1995 April 44 Forth Dimensions

NOVEMBER 1994
Laboratory Microsystems, Inc. announced a shareware

version of WinForthTM that runs under Windows. The
shareware package is the real thing, corresponding to
LMI's WinForth Explorer retail package. You can use the
product for evaluation purposes for u p to 90 days. After
that, you can purchase either the Explorer or Professional
version of WinForth-or erase it. The only constraints on
the shareware version are that the SAVE, TURNKEY, and
MAKEDLL commands are disabled.

According toRay Duncan, you can download the shareware
version of WinForth from the LMI BBS at 310-306-3530. The
BBS supports 2400,9600,14400, and 28800 baud; set your
telecommunications parameters for eight bits, no parity,
one stop bit. The file to download is WFSHRlO1.EXE; this
is a self-extracting archive. Create a new directory named
WINFORTH, copy WFSHR1Ol.EXE into that directory, and
run it. After the archive unpacks itself, see the READ.ME
file for further instructions.

WinForthTM is not being placed in the public domain like
Tom Zimmer's WIN32FORTH, which has a very similar
name. E-mail any questions to Ray Duncan at 1miQcerf.net.

WinForth is a 16-bit segmented, direct-threaded-code
(DTC) implementation that caches the top stack position.
Among its features are a 286/287/387 assembler, a multi-
window text file editor, trace and breakpoint utilities, a
round-robin multi-tasker, and many programming ex-
amples. Windows API functions and DLLs can be called
directly from WinForth.

DECEMBER 1994
The Saelig Company announced that a version of the

TDS2020 Data Logger PC is now available with a resident
ANS Forth kernel in I ~ K , leaving 45K for application and
data. Extended memory can include u p to 512K of battery-
backed RAM. A 40 Mb hard disk is another option.

Although only 4" x 3" inches, the compact single-board
controller includes features such as on-board, eight-

channel, ten-bit A D ; and three-channel, eight-bit D/A
converters; as well as bus and RS-232 interfaces. Library
support is offered for stepper-motor control, interrupt
handling, real-time multi-tasking, data logging, serial I/O,
keyboard, and LCD.

JANUARY 1995
Forth, Inc. announced a database class library for its

polyFORTH development system for PCs. The database
library was previously available with the EXPRESS
industrial control software package.

The database library is integrated with polyFORTH1s
GUI toolkit to facilitate development of OSF/Motif-like
user interface screens, such as those for data entry.

Operators such as fetch, store, and display are
overloaded for field classes such as byte strings and
single- or double-precision numbers. A report generator
is part of the new polyFORTH offering as well.

Files may reside in RAM for speed or on disk for
permanence. Cached files offer the combined advantages
of both types of files. Disk files are fully DOS-compatible.

COMPANIES MENTIONED
Laboratory Microsystems, Inc.
P.O. Box 10430
Marina del Rey, California 90295
Voice: 310-306-741 2 Fax: 310-301-0761

FORTH, Inc.
11 1 N. Sepulveda Blvd.
Manhattan Beach, California 90266
Voice: 800-55-FORTH or 310-372-8493
Fax: 310-318-7130

The Saelig Company
1193 Moseley Road
Victor, New York 14564
Voice: 716-425-3753 Fax: 716-425-3835

Forth Wins in the Cellar
At the conclusion of its sixth annual design contest, sensor technology, ionic current on the facial skin

Circuit Cellarlnk magazine reported last December that surface could be sensed, amplified, filtered, offset, and
first place honors went to Eric Wilson and Gregg Norris. finally processed through a PIC1671.
They are the developers of the Eye Mouse, a hardware and Whenever the eye is moved, corresponding X and Y
software project that used Forth. For this project, a mix of components of movement are detected. When the user's
Forth and 68HCll assembler was used. eyes have looked in one direction for half a second, the

The breakthrough for this project came when the two cursor moves in the corresponding direction until it is
realized that, by detecting and processing microvolt- stopped by a double blink of the eyes. This interface to
signals corresponding to the nerve signals that trigger eye a computer could be a great benefit for people who must
orbit, eye motion could be used as the source for mouse otherwise rely upon a second party to interpret yes and
input data. Taking advantage of existing ECG and EEG no eye blinks to express their needs and wishes.

Forth Dimensions 45 March 1995 April

A Forum for Exploring Forth Issues
and Promoting Forth

Can A Forth Kernel
Use Objects?
Mike Elola
San Jose, California

In my last "Fast Forthward" essay, I suggested word
flags to distinguish groups of kernel words, including
inner interpreters and inline data handlers. The effective-
ness of that approach was evidence that Forth has natu-
rally occurring classes.

Such thinking tends to raise my expectations of devel-
oping a Forth kernel that is object oriented from the
ground up. I long to know how much more refined Forth
might become if it were tuned-up through modules or
objects.

I showed you h o w word attributes such as
EXECUTE - IFF-AT CF and HERALDS - INLINE DATA

can be applied usefully to inner interpreters andinline
data handlers, allowing programmer errors to be pre-
vented.

If these two groups of words are good candidates for
object classes, what are some of the possibly associated

... metacompilation will
become much simpler, or

it will disappear altogether.

methods? Certainly methods such as "self-identify" or
"skip-yourself" could be put to use. For example, a
decompiler can be created that is able to print accurate
information about any compiler-written memory loca-
tions.

I have already implemented such a Forth compiler and
decompiler. But I did so without using an object system.
I relied upon lookup tables instead. Those tables were
entirely adequate for implementing polymorphic methods
without all the bother of real classes.

The mantle of objects should produce more immediate
benefits. Objects should produce a substantially better
programming environment, perhaps by eliminating
metacompilation through enhanced kernel flexibility.

other languages, such as C++.
To gain the advantages of objects or modules, we

perhaps need to b e programming at less-primitive kernel
levels. For example, we may need to be programming at
a context where dynamic memory management or other
broadly applicable services are needed.

Some applications just don't need these flourishes,
however. Others may need sophisticated versions of
features such as memory management. Perhaps modules
or objects could help manage scalable solutions for such
features, so that the need for metacompilation can be
eliminated.

To explore how a more flexible kernel might be
created, let's consider the Forth text interpreter. Different
classes of objects could assume responsibility for the
different roles of the text interpreter.

One object could be responsible for managing the input
stream and detecting its exhaustion. It could communicate
with other objects that initialize the interpreter, finalize its
operation for a given input run, and change its internal state.

Although what follows is not an object treatment of the
text interpreter, it offers flexibility that is in the same spirit
as that in a system of objects. (Vectors can be considered
roughly analogous to the methods of object implementa-
tions.)

,

A Three-Vector INTERPRET
A few years ago, Mitch Bradley (long-time proponent

of Open Firmware) reported to those of us at the Silicon
Valley FIG Chapter meeting about his use of a text
interpreter framework. Mitch gleefully described how the
incorporation of three execution vectors in INTERPRET
gave him a very flexible system of text interpretation.

His execution vectors were named DO-UNDEFINED,
DO - DEFINED, and DO LITERAL. These vectors permit
the expansion of the text interpreter in specific behavioral
areas: a changeable "word not found" error-handling
behavior, a changeable literal-handling behavior, and a
changeable compiling or interpreting behavior. By refer-
encing differently behaved routines for each of these
vectors, he found many usefbl combinations of routines.

Misplaced M o d e l .
Perhaps the problem is that objects are best used to

model the behavior of things that have a separate exist-
ence in reality. At the kernel level, we don't have real
objects to be modeled. Furthermore, we want the Forth
runtime to remain streamlined.

Nevertheless, library functions such as I/O functions
are presumably benefiting from object orientation within

A Forth Preprocessor
To use Forth's text interpreter as a preprocessor, we

could add a new interpreter state. In that state, the text
interpreter would traverse the input stream, following any
twists and turns brought about by words like LOAD and
THRU (and equivalent file operations).

Within the new interpreter state, words like LOAD and

(Continues on page 44.)

March 1995 April 46 Forth Dimensions

Correction to the ANSI Standard Quick Reference

Corrections for WITHIN and >R
The description of W I T H I N that appears in the ANSI

Standard Forth Quick Reference card that FD readers
received from FIG is erroneous.

Although L. Greg Lisle informed me about an error way
back in September, I have neglected mentioning it until
now. Ostensibly, the extra time was needed to come up
with a clearer explanation of the ANSI Forth version of
WITHIN. After missing the point several times in ensuing
discussions with colleagues, I will try my hand once again.

Without a doubt, the ANSI Forth version of this word
is more difficult to comprehend than previous versions.
John Rible, X3J14 committee member and scribe, ex-
plained to me that the standard avoids reference to the
two's complement number system, even though its men-
tion could help readers to understand the behavior of
WITHIN. In any case, John put me on the right track with
the notion of circular systems of number representation.

Spatially, the notion of "betweenness" is an analog of
the ANSI Forth WITHIN. Let's consider the subject of
world-wide travel to help us understand WITHIN.

If the world were flat, Hawaii would always be
between between Japan and California-regardless of the
direction of travel you choose. But considering that the
world is round, you could take the long way around the
globe and really mess up an otherwise simple concept of
what "in-betweenn means. (Travel advisory: slippery dis-
cussion thread ahead.)

Suppose only a westerly travel direction is permitted.
Then, Hawaii is not encountered first if Japan is the point
of departure. So, according to this travel restriction and the
departure (Japan) and arrival (California) locales, Hawaii
is not between Japan and California.

However, you could say that Japan is between Hawaii
and California, because you would encounter Japan first
if you left Hawaii heading west.

Unless we restrict ourselves to either a westerly or an
easterly direction of travel, everything can be said to be
between everything else on a spherical surface.

To understand the operation of WITHIN, it is essential
to know the direction of the sense of comparisons. Only
one sense of direction is permissible in order for W I T H I N

to be helpful. The analogy of unidirectional travel around
the globe is, therefore, an appropriate one.

The input portion of the stack diagram for W I T H I N is
given (in reference-card style) by:
n l n2 n 3 --

where n l is the number whose centrality is in question, n2
is the lower limit, and n 3 is the upper limit. To account for
the circularity of certain computer numbering systems, the
ANSI standard offers these expressions to describe when
WITHIN returns true:
(n2<n3 a n d (n2<=n l a n d n l < n 3)) o r

Forth Dimensions

Because n2 is described as the lower limit and n 3 is
described as the upper limit, the second expression
seems strangely contradictory. This was one of the
stumbling blocks that fouled my process of learning and
acceptance. (Perhaps the madness lies in the labeling of
parameters as lower and upper limits. Perhaps bound-
ary-start and boundary-end are better label choices.)

Based on his acquaintance with Pygmy Forth, L. Greg
Lisle recognized that these three different expressions
also describe when W I T H I N returns true:
(1) n2 > n 3 > n l
(2) n l >= n2 > n 3
(3) n2 <= n l < n 3

I'll even hazard (very unwisely) to say a bit more.
Expressions (1) and (2) both deal with two halves of the
same path that is being established by the backwards
relationship of n2 Oower limit) and n 3 (upper limit).
Further, the solution set (or path) they define (due to the
direction they establish) is likely to be deceptively large. In
integers, the solution sets for expressions (1) and (2) are:
(1) n3-1, n3-2, n3-3, ... -w

(2) n2 , n2+1, n2+2, . . . +w

Back to the globe analogy, n2 > n 3 selects the
equivalent of the circuitous, or long-way-to-home path--
despite the possible proximity of the departure and
arrival points.

It's as if such a path can't be described in one
equation because of an irregularity at some point on the
globe (such as the international date line). That irregu-
larity introduces a phantom boundary that cannot be
crossed as part of one continuous path. The barrier
corresponds to the point where the largest positive
integer segues into the smallest negative integer--due
to the setting of the sign bit and the clearing of lower-
order bits--when it is incremented by one on most Forth
systems (an overflow condition for signed numbers).

Rhetoric aside, here is what you should d o to correct
your ANSI Forth reference card: Strike out the current
description of WITHIN on the card. It's in the "Compari-
son Operations" section. Replace it with either the
standard's two elaborate expressions, or L. Greg Lisle's
simpler trio of expressions.

(I know! You could each vote for the version you prefer
to see on the card. I tend to like the simple trio as opposed
to the elaborate duo--but that's just my two cents.)

Please continue to use this forum to offer clarifica-
tions, or even corrections to my corrections. (Send your
e-mail to elolam@aol.com.) I thank L. Greg Lisle and
John Rible for their patience and their help.

But before we leave the subject of corrections, L. Greg
Lisle also pointed out long ago that the word >R is missing
from the quick reference card. Please add it to your card
in the section entitled "Manipulating Stack Items."

47 March 1995 April

First in a new series of books by-
f he Forth Interest Group

Thinking FORTH
Business, industry, and software project through

education are discovering that the analysis and implemen-
FORTH is an especially effec- tation process, showing
tive language for producing how to simplify your pro-
compact, efficient applications gram and still keep it flexible
for realtime, real-world tasks. throughout. Both beginning
And now there's Thinking and experienced program-
Forth-an instructive guide mers will gain a better
that illustrates the elegant understanding and mastery
logic behind the language and of such topics as
shows how to apply specific
problem-solving tools to soft- * FORTH style and conven-

ware, regardless of your tions
programming environment. decomposition

factoring
handling data

It combines the philosophy simplifying control struc-
behind Forth with traditional, tures
disciplined approaches to soft- * and more.
ware development- to give
you a basis for writing more And, to give you an idea
readable, easier-to-write, and of how these concepts can
easier-to-maintain software be applied, Thinking Forth
applications in any language. contains revealing inter-

views with real-life users
Written in the same lucid, and with Forth's creator,

humorous style as the author's Charles H. Moore.
Starting Forthand packed with
detailed coding samples aand To program intelligently,
illustrations, Thinking Forth Available Now you must first think intelli-
reviews fundamental Forth gently, and that's where
concepts and takes you from

$18
Thinking Forth comes in.

the initial specification of your

Includes Member Discount

TO PROGRAM lNTELLIGENTLY,
YOU MUST FIRST THINK INTELLIGENTLY

