

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 2000tm l&bit Forth Chip SC32tm 32-bit Forth Microprocessor
-8 or 10 MHz operation and 15 MIPS speed. *8 or 10 MHz operation and 15 MIPS speed.
1-cycle 16 x 16 = 32-bi multiply. 1 -clock cycle instruction execution.
1 -cycle 1 Cprioritiied interrupts. *Contiguous 16 GB data and 2 GB code space.

*two 2Sword stack memories. *Stack depths limited only by available memory.
*&channel I/O bus 81 3 timer/counters. -Bus request/bus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. -32-bi SC32 industrial grade Forth PGA CPU.
-System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
032 KB to 1 MB 0-wait-state static RAM. -32 KB to 512 KB 0-wait-state static RAM.
Full-length PC/XT/AT plug-in (6-layer) board. elOOmm x 160mm Eurocard size (4-layer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (Parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. 032-bi SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
-Up to 640 KB 0-wait-state static RAM. 064 KB to 1 MB @wait-state static RAM.
*233mm x 160mm 6U size (Slayer) board. *FulClength PC/XT/AT plug-in (Slayer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
RTX 2000 PLCC or 2001 A PLCC chip. =RTX 2000 industrial grade PGA CPU.

*System speed options: 8, 10, or 12 MHz. *System speed options: 8, 10, or 12 MHz.
-32 KB to 256 KB 0-wait-state SRAM. 032 KB to 512 KB &wait-state static RAM.
-1 00mm x 1 OOmm size (+layer) board. -1OOmm x 160mm Eurocard size (Clayer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 655 W. Evelyn Ave. f l , Mountain View, CA 94041 (415) 961-8778

Features

Forth in 32-bit Protected Mode Richard Astle
The author demonstrates his straightforward technique for getting Forth into 32-bit protected
mode-without an assembler, linker, or a protected-mode program loader. In the bargain,
because this method results in a system that actually consists of both 16- and 32-bit Forths, its
user can switch between modes and keep using his familiar tools without porting them to the
new environment.

2f A Forth-Oriented Compiler Compiler and its
Applications Mati Tombak, Viljo Soo, Jaanus Poial
Stack-oriented languages (Forth, Postscript, etc.) are often used as intermediate or target
languages in software systems because of their portability, flexibility, compactness, and
simplicity. In the field of compiler compilers, the concept of a "virtual stack machine" is often
used to describe the source language semantics and program interpretation. Unfortunately,
every author uses hidher own stack machine. The main idea of the approach given here is
to use a real, widely known, and standard language in the role of intermediate code in the
compilers. Forth is the system's implementation language and the target language of the
compilers it generates.

ForthZLaTeX-a Pretty-Printer Ronald T. Kneusel 23 Forth's beauty should shine-even through a printout-so the author wrote this program to
bring out the beauty of Forth code by transforming it into LaTeX, a variation of Donald Knuth's
famous TeX typesetting system. Forth2LaTeX is for anyone who would like to create eye-
catching source-code listings. It permits straightforward text within Forth source code, and a
programmer can write code that runs and generates its own formal report when finished.

Using Zeller's Congruence Walter J. Rottenkolber 28 This classic demonstrates how to use Forth to calculate the day of the week when given a date.
What day of the week were you born on? When is the next Friday the 13th?

30 Reports from
euroForth '94 Gordon Charlton and Tim Hendtlass
An international audience attended last year's euroForth conference to hear presentations by
a diverse group of Forth programmers, vendors, and academicians. As befits Europe's most
distinguished Forth gathering, both the papers and the organizing effort scored high marks.

Departments I
4 Editorial Challenge and opportunity.

5 Letters Beginner's perspective, Structured comment, Backhanded
critique, Communication without BIOS, Branch without doubt.

.................. 7 dot-quote Elizabeth Rather rebuts the "death" of Forth.

34 Nominations for FIG Board of Directors Commence

37 Advertisers Index

38 Fast Forthward.. Fine-tuning Forth.

Forth Dimensions 3 January 1995 February

Forth Dimensions
Volume XVI, Number 5
January 1995 February

Challenge and
Opportunity

I Published by the
Forth Interest Group 1

I Editor
Marlin Ouverson I

I Circulation/Order Desk
Frank Hall I

1 Forth Dimensions welcomes
I editorial material, letters to the I

editor, and comments from its read-
ers. No responsibility is assumed
for accuracy of submissions.

Please note that this issue contains an announcement of elections for the Forth Interest

time. Secretary Mike Elola, in addition to his column in this magazine, has devoted many

hours to projects like the ANS Forth Quick Reference Card and press release, and to being

Subscription to Forth Dimen-
sions is included with membership
in the ~ o r t h Interest Group at $40

Group's Board of Directors (page 34). The job of being a Board member can be easy-

or not. President John Hall oversees day-to-day operations, a not-inconsiderable job that

entails telephones ringing at all hours, stacks of paperwork, and donating lots of personal

program chairman of the last FORML conference.

~~~~~~~'"~f ' 
andtosubmit iternsfor publication, 
the address is: Forth Interest Group, 
p,o. Box 2154, Oakland, California 

In most organizations, it is demoralizing and disruptive when Board members take part 

in the operations. However, in our own case, there is no executive staff to whom Board 

members can delegate responsibilities and who can be held accountable for their jobs. 

Board members may assign certain tasks to responsible, tactful, persevering volunteers 

who are aligned with the group's goals and provenance, and who are willing to act in 

the spirit of teamwork; but even volunteers must be accountable to the organization's 

overall goals and spirit. The Board cannot just "wind up" various components and let 

them go their own way untended. The organization is like a sailboat, whose lines and 

sails must constantly be  trimmed and tended to work efficiently. 

There are many areas in which FIG could be more active, but relatively few staff hours 

are available. Specific objectives can be identified rather easily in the following areas: 

FIG Chapters, Forth-vendor relations, collaboration with other Forth organizations, 

public relations and marketing, membership services, international affairs, on-line 

resources, academic matters, and entry-level Forth training. 

This is a time of both challenge and opportunity for the Forth community, and I would 

like each incoming Board member to have the opportunity to contribute tangibly and 

meaningfully. The fact that FIG has held its own during a time when many small 

94621. Administrative offices: 
510-89-FORTH. Fax: 510-535-1295. 
Advertising sales: 805-946-2272. 

Copyright 8 1995 by Forth In- 
terest Group, Inc. Thematerial con- 
tained in this periodical (but not the 
code) is copyrighted by the indi- 
vidual authors of the articles and by 
Forth Interest Group, Inc., respec- 
tively. Any reproduction or use of 
this periodical as it is compiled or 
the articles, except reproductions 
for non-cornmercial purposes, with- 
out the written permission of Forth 
Interest Group, Inc. is a violation of 
the Copyright Laws. Any code bear- 
ing a copyright notice, however, 
can be used only with permission 
of the copyright holder. 

The Forth Interest Group 
The Forth Interest Group is the 
association of programmers, 
managers, and engineers who create 
practical, Forth-based solutions to 
real-world needs. Many research 
hardware and software designs that 
will advance the general state of the 
art. FIG provides a climate of 
intellectual exchange and benefits 
intended to assist each of its 
members. Publications, conferences, 
seminars, telecommunications, and 
area chapter meetings are among 
its activities. 

publications and volunteer-based groups have fallen by the wayside is a credit to the 

organization and its members. Now I have asked the current Board's nominating 

I postage' paid at Oakland, CA. 1 

"FotzhDimwns(1SSN 0884-0822) 
is pub,.ished bimonrhly for $40/46, 

committee to focus on  unearthing candidates whose skills, temperament, and commit- 

ment qualify them to bring a renewed vitality to the Forth Interest Group. 

-Marlin Ouverson 
ouuersonm@aol.com 

52 per year by the Forth Interest 
Group, 4800 Allendale Ave., 
Oakland. CA 94619. second-class 

POSTMASTER: Send address 
changes to Forth Dimemiom, P.O. 
Box 2154, Oakland, CA 94621-0054." 

January 1995 February 4 Forth Dimensions 



Beginner's Perspective 
Dear- Mr. Ouverson, 

I just rejoined FIG after a two-year absence. I never 
learned Forth the first time around for various reasons 
(work, learning C and Pascal, etc.), but I always liked what 
it seemed to promise, and now I'm ready to try it. I've 
noticed in volume 16 of Forth Dimensions a lot of talk 
about finding ways to increase the popularity of Forth, and 
I would like to add some input from a beginner's (my) 
perspective. 

First is cost/support. I can get a first class C++ system 
that runsunder Windows for about $80 (1 can even choose 
from two vendors) that includes extensive printed docu- 
mentation, toll-free factory phone support, and all the 
point-and-click ease of use that comes from running under 
Windows. I have seen Forth systems for around $50, but 
they are either shareware or were designed to run on 640K 
'286 systems. Nothing wrong with that, I guess, but it 
would be nice to have a language that made use of my 
system's resources ('486, etc.). The Forth systems with all 
the bells and whistles seem to start at $300 or more, and 
go up from there. 

this need to berate other languages? I know FIG doesn't 
control what authors write, but perhaps it could encour- 
age them to concentrate on Forth's strength instead of 
pointing out "weaknesses" in other languages. 

Finally, something I would really like to see in Forth 
Dimensions is a relatively inexpensive hardware/software 
project. I think a good candidate for this would be 
interfacing the new MuP21 system to a PC. Also, I'd really 
appreciate it if you could put me in touch with anyone 
running Forth on the RCA 1802. Thanks! 

Ken Deboy 
glockr@delphi.com 

Forth vendors havepointed out that thepricdperformance 
ofcommercialsysterns is related to the volume of theirsales 
(and perhaps other factors). If every public-domain or 
shareware Forth used in a payingpmject were, instead, a 
commercial Forth (with good documentation and techni- 
cal support), the vendors would be healthier, prices would 
be lower, and there would be more monqy for Forth 
marketing, for research and development, and for system 
enhancemen&. 

I know you are on comp.langlforth so, presumably, p u  
willfind eqert  assistance with F-PCthere. nose  folks are 
usually quite helpful with system-specipc questions and 
anything else "beginners" need to know. 

Your comment on the attitude toward other languages is 
well taken. m e  best approach I've heard lately is not "what 
is the best language," but rather, "which tool is right forthe 
job." More rationale, less chauvinism, please. 

FD has [ong wanted to publish relatively simple "how-to" 
articles that teach hardwardsoftwareprinciples by example 
in Forth. Such things aren't the easiest to design and write, 
but would make an  excellent contribution. Any takers? 

- A 

Second is ease of use. I'm currently working with two 
versions of Forth that I downloaded from Delphi, F-PC and 
UpperDeck Forth. They are okay, but it was difficult in 
both cases to find information in the included docs on  
compiling a file from disk. It would be nice if allversions 
of ~ o r t h  had a common (and widely publicized) word for 
compiling a file from disk. By the way, the version of F- 
PC working with will run a program fine when 
entered in direct mode, but crashes when the same 
program is compiled from disk. I plan on ordering the 
latest version (and user's manual) from FIG very soon; 
hopefully, it will fix this problem. 

Third is the attitude toward other languages, espe- 
cially C, that seems to be displayed on a regular basis in 
FO&J Dimensions. Think about it., . if you were a c 
programmer, and the first reason you heard from someone 
to convert to a new language is that yourlanguage was 
stupid (not said, but implied), would that give you 
feelings" for the new language? If Forth can stand on its 
own merits (and I think it can), why do  some people feel 

Forth Dimensions 

-Ed. 

Structured Comment 
1. In FD XVI/5, the article "HDTV Format Converter" by 

Philip Crosby shows the continuing power of Forth in 
the development ~0Imnunity. I realized that this and 
other efforts, such as Elizabeth Rather's [of ~ o r t h ,  1nc.1 
work in delivering the Saudi airport control system in 
nine months, need to be publicized. A good approach 

be for You to contact the Wall StreetJournal to 
do  a feature article on "The Unsung Force in Real-Time 
Project Developments." 

2. The Journalhas on the feature page specialized articles 
of innovation and interest. For example, they had a 
recent article On PGP, the encryption program and its 

the precedent is set. 
3. could direct the to people like Chuck 

Moore, Elizabeth Rather, Larry Forsley, and, of course, 
Philip Crosby, and Doug Ross at NASA. There are SO 

many successful applications of Forth, and the Canmu- 
nity has enough quirkiness that it would be a natural. 

5 January 1995 February 



4. Poial's article ["Algebraic Specification of Stack Ef- 
fects," FD XVI/41 is deeply appreciated by those 
Forthers who work in logic. Please try to have more. 

John C. Kotelly 
Arlington, Massachusetts 

Thanks, John. 
1. You're right. (Maybe the Denver aitport should have 

tried Forth, Inc., too.) I f  you-or anyone e k e c o n -  
vince the Journal to assign an inhpendent reporter, 
we'll help them work out the angles and to make 
contacts in the Forth realm. 

3. Qutrkiness? You must have us confused with someone 
eke.. . 

4. Done-Jaanus Pdial has co-authored another article 
which ispublished in this issue. Enjoy! 

-Ed. 

Backhanded Critique 
Dear Forth community: 

Recently I came across an article entitled, "The Night- 
mare of C++" in the November 1994 issue of Aduanced 
Systems magazine. Having just finished a two-year project 
using C++, and also being a fan of Forth, my curiosity was 
piqued. 

The article is an excerpt of a new book, The UNLX- 
Hater's Handbook, which is based on messages sent to an 
e-mailing list of people frustrated with UNIX and its 
associated tools. As many of the critiques in the article 
address issues important to the Forth community, I wanted 
to highlight some of them. 

The first point is that object-oriented features were 
added to C because object orientation is supposed to 
simplify things for designers and programmers. However, 
as the article states, "Instead of simplifying things, C++ sets 
a new world record for complexity.. . It's just one big mess 
of afterthoughts." 

The article describes the features of a high-level 
language: 

Elegance: there is a simple, easily understood relation- 
ship between the notation used by a high-level language 
and the concepts expressed. 
Abstraction: each expression in a high-level language 
describes one and only one concept. Concepts may be 
described independently and combined freely. 
Power: with a high-level language, any precise and 
complete description of the desired behavior of a 
program may be expressed straightforwardly in that 
language. 

It seems to me that Forth addresses each of these points 
well. Forth's minimal syntax guarantees that there is an 
easily understood relationship between program notation 
and the concepts expressed. Each well-factored Forth 
word is a self-contained abstraction that can be combined 
freely with other words. And, of course, the extensibility 
of Forth means that an application-oriented vocabulary 
can be developed that allows precise behaviors to be 
January 1995 February 

expressed in a straightforward manner. 
C++ fails to meet these requirements in a few important 

ways. In the area of dynamic memory management, the 
article points out that the C++ programmer is forced to do 
all of the garbage collection manually for objects after they 
are no longer needed. The program then has many lines 
of code devoted to the lower-level details of the memory 
management system. Maintaining references between 
objects (via pointers) becomes an inelegant chore. Other 
high-level languages spare the programmer these head- 
aches by providing automatic garbage collection, which 
has many benefits in code size, readability, and correct- 
ness. However, many Forth systems simply avoid the issue 
by using the parameter stack to hold small "objects," the 
dictionary for larger ones, and block-I/O-based "virtual 
memory" (as Chuck Moore used to call it) for "persistent" 
or really large objects. 

In the area of syntax and abstraction, there are many 
problems with C++ and so many rules that it is very 
difficult to learn them all, or even to implement them 
correctly in a compiler. For example, the C++ source line 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

is interpreted as different kinds of comments by different 
compilers. Some compilers will even crash when con- 
fronted with indeterminate syntax. Forth avoids the prob- 
lems of complex syntax by using an extremely simple one. 

The article makes a backhanded critique of Forth when 
it states, "The real power of C++'s operator overloading is 
that it lets you turn relatively straightforward code into a 
mess that can rival the worst of APL, Ada, or Forth code 
you might run across. Every C++ programmer can create 
their own dialect, which can be a complete obscurity to 
every other C++ programmer." This is really a critique of 
extensible languages, and the author does not seem to 
value extensibility, even as it provides abstraction and 
power. In Forth, operators are not overloaded, but are 
made more numerous (+, Dt, etc.), which avoids some of 
the confusion, at the expense of having more words to 
learn about. It is true that bad Forth code is completely 
obscure, but good Forth code is a joy to read. 

The article points out some problems with the header 
file/source file, used for most large programs, that discour- 
age programmers from changing header files (forcing an 
entire system recompile), so they start doing funny things 
in the source code to compensate. In a Forth system, the 
user can quickly FORGET portions of a system and modify 
them. Reloading an entire system in Forth is fairly fast 
compared to recompiling and relinking an entire applica- 
tion in C++. The namespace system of C++ is a small 
improvement over C, but can still cause problems be- 
cause, "There's no way to be sure you haven't taken a 
name used somewhere else in your program, with possi- 
bly catastrophic consequences." Forth provides vocabu- 
laries, so name collisions are avoided. 

Finally, the article presents an anonymous and humor- 
ous piece entitled, "The Evolution of the Programmer." 

My fear is that these shortcomings of C++ will be 
addressed by using even more complex tools and creating 

6 Forth Dimensions 



a new heir to C++ with even more problems. Instead, 
people could be using a proven tool based on the comrnon- 
sense principles of simplicity which we know as Forth. 

Sincerely, 
Michael A. Losh 

1 Auburn Hills, Michigan 

Communication Without BIOS 
Dear Editor: 

Mr. Wilson's problems with the COM ports on the PC 
(FD XVI/ 1) are easily explained. The device that is used 
in the PC for communications is one of the few that cannot 
be configured to recognize the CTS signal in hardware. 
Most communication chips will handle this; that is, when 
the CTS signal goes false, the transmitter is stopped. On the 
PC, this is not the case. So what happens is that the 
software checks that CTS is active, then stuffs one or more 
characters (depending on the model) into the transmit 
buffer. These characters are sent regardless of subsequent 
changes to the state of CTS. 

The BIOS on the PC cannot be used if CTS handshaking 
is desired. However, since Mr. Wilson has already gone to 
the trouble of finding the I/O address of the chip, a 
solution is readily available. Check the Tx Shift Register 
Empty, and the Tx Holding Register Empty bits, as well as 
the CTS line. These are normally bits five and six of the 
Line Status Register (x3FD). If these bits are zero and CTS 
is zero, you can safely send one character. There is a slight 
possibility that the character will start out just as the CTS 
line goes inactive, but this has not proven to be a problem 
for me. 

This is just one of the many reasons why few programs 
use the standard BIOS routines for serial I/O on the PC. 

Sincere1 y, 
Gene LeFave 
Libertyville, Illinois 

Branch Without Doubt 
Dear Marlin, 

I enjoyed Tom Napier's letter (FDXVI/l) because, after 
complaining of Forth code and comments in lower case, 
he advocated that the Forth branch statement should be: 
I F {  d o - t h i s  }ELSE{ d o - t h a t  ) I F  

Lower case, curly brackets? The C disease is epidemic. 
I, too, was a bit confused by the Forth branch syntax 

at first, and even tried the END I F  route. Then I came across 
a great explanation of the Forth branch statement that 
solved the problem. 

<exp> I F  < t r u e ,  d o - t h i s >  
ELSE < f a l s e ,  d o - t h a t >  
THEN < c o n t i n u e >  

all branch code is between the I F  and THEN, there's also 
no doubt as to where the statement limits are. 

Yours truly, 
Walter J. Rottenkolber 
Mariposa, California 

dot-quote 

T h e  reports of Forth's death are premature, to para- 
phrase Twain. 

A language can hardly be dead that lives on the 
motherboards of all SPARC workstations and has just 
been adopted as the implementation technology of the 
"plug and play" facility on the new generation of Power 
PCs in the form of lEEEl275 Open Firmware. Nor one 
in use by groups in most of the Fortune 500 firms. 

There are a number of systems with full-functioned, 
object-oriented extensions, ranging from MOPS to our 
EXPRESS high-level process control product. And the 
latter is an example of application-oriented products 
finding their way on the market. Systems are available 
for the hot new platforms, from Win-NT to Power PC. 
Hot companies-from Federal Express to McCaw 
Cellular to Saturn, etc.-are using it. We just installed 
a Forth/EXPRESS control system on NASA's latest 
ground-based version of the big shuttle robot arm. 
There have been more than 30 space applications in 
the last five years. And the Forth-based Open Firm- 
ware is in more than one million SPARC workstations 
and will be in all Power PCs. Does this sound dead to 
you? 

>...the world hungered for code that was easy to 
>writelreadlchange and that could solve almost any 
>problem large or small acceptably. 

... which is exactly what Forth was designed to be, and 
can be. This is, in fact, why Forth has survived. It hasn't 
thrived because C came with the authority of AT&T and 
academia behind it, and programmers and their man- 
agers often prefer to do what "everybody else" is doing 
rather than hold out for the best technology available. 

h r t h ' s  limited penetration isn't a technical problem. 
it's a marketing problem. 

The idea of THEN < c o n t i n u e >  actually makes the 
Forth statement scan better than that of BASIC or C. Sine 

-Elizabeth Rather on comp.lang.forth 
Adapted with permission 

Forth Dimensions 7 January 1995 February 



Forth in 32-bit 
Protected Mode 
Richard Astle 
La Jolla, California 

Perhaps since the beginning of the Intel 80x86 archi- 
tecture, segment registers have been maligned, I think 
unfairly, but with the advent of the 80386 they have come 
into their own as a protected mode memory protection 
mechanism in an otherwise flat 32-bit memory space. The 
fact remains, however, that, in real mode, they make 
programs larger than 256K difficult to write, and (with the 
exception of F-PC's creative misuse) make all attempts at 
32-bit Forths inefficient. Access to 32-bit protected mode, 
on the other hand, has been made difficult by the 
existence of DOS, and the overgrown 32-bit operating 
systems here and on the horizon, while promising great 
riches, do  so at the cost of large learning curves and 
dependence on other people's (committees of other 
people) ideas of what constitutes the truth and the good 
of programming tools. There is nothing minimalist about 
them, and minimalism is one of the things Forth has 
always seemed to me to be about. So I thought that now, 
before DOS and the Intel architecture slip over the 
horizon, while real programming is still possible, it would 

I thought it would be interesting 
to create tools for integrating 
the 16-bit and 32-bit Forths, 
so that each could 
execute code in the other. 

be worthwhile to explore the possibility of creating a 
simple 32-bit protected mode Forth that runs on DOS on 
any 386SX or higher PC. This may be an idea whose time 
has passed, but it .is also one that to my knowledge hasn't 
been sufficiently explored. And besides, I thought it would 
be fun. 

One way to go is to code Forth in assembler and use 
a DOS Extender. Dr. Ting's 32-bit eForth takes this 
approach. A straightforward translation of 16-bit eForth, it 
runs on DOS with the aid of a DOS extender called PROT, 
written by A1 Williams and included in source form in his 
DOS 5: A Developer's Guide. PROT provides a layer of 
software that arbitrates between the 32-bit protected mode 

eForth code and 16-bit real mode DOS. The details of this 
arbitration are interesting, of course, but using PROT, or 
any other DOS extender, adds another level of depen- 
dence, with mysterious black-box features and varying 
license fees and restrictions. PROT is fairly open, since 
source code is provided for the cost of the book, but rights 
are granted only for non-commercial use, which one 
would like to think could be a problem. 

I wanted to try a different tack, partly to try a different 
tack, but also to see how simply (elegance, not develop- 
ment time) I could get from DOS to a protected mode 32- 
bit Forth that I could be comfortable with. Using an 
assembler (or C or Pascal or BASIC compiler) does not 
seem to me to be simpler (though it may be easier) than 
the meta- or target compiler approach that stays within 
Forth. On the other hand, I'm in favor of taking what the 
operating system (whatever it happens or has to be) offers, 
making DOS calls to open files rather than programming 
the hardware to read disk blocks directly, for example. 

The DOS Protected Mode Interface seems to me to 
provide the right level of simplicity and ease for access to 
protected mode. Programming with DPMI is a lot like 
programming with DOS: just as DOS provides functions to 
read and write files, to allocate (real mode) memory, etc., 
DPMI provides functions, mainly interrupt based, to 
switch to protected mode and to allocate and characterize 
(as 16- or 32-bit, code or data, etc.) protected mode 
memory. One can d o  these things oneself, and some 
prefer to, but, given the availability of DPMI, one doesn't 
have to. 

A few years ago, the only readily available DPMI host 
(they call it a "host," not a "server") was in Microsoft 
Windows 3.0. This is not a very cheerful place to work, 
particularly if one is interested in simplicity, but it appar- 
ently was the basis of Ray Duncan's explorations in 
chapter nine of Extending DOS. Fortunately, memory 
managers such as QEMM, 386Max, and Novel1 DOS 7's 
EMM386.SYS now provide DPMI host services. (I mention 
only the DPMI environments I've actually used. There are 
also some DPMI services in Microsoft Windows 3.1, but I 
have been unable to launch a 32-bit Forth from a DOS box: 
perhaps the Windows DPMI will only host 16-bit clients.) 

January 1995 February 8 Forth Dimensions 



There are currently two versions of the DPMI specifica- 
tion. Version 0.9 is the most common, but 1.0 is available 
at least in 386Max. 386 machines with DOS need some 
kind of memory management anyway, and with these 
products we can get DPMI without getting GUI. 

I should add at this point that, though Ray Duncan's 
mini-DOS extender in Extending DOS (perhaps that was 
the only interesting thing to d o  with DPMI in a Windows 
3.0 DOS box) is enlightening, and a successful implemen- 
tation of a protected mode INT 21h handler would no  
doubt improve performance, it is not necessary, not for the 
present project. I refrain from the story of my discovery of 
this fact. 

Thumbnail Protected Mode 
The switch to protected mode involves some initializa- 

tion: mainly setting u p  descriptor tables and loading some 
special registers to point to these tables. Next, setting a bit 
in a control register, CRO, puts the processor in protected 
mode, at which point a FAR jump instruction is used to 
replace the segment value in the CS register (which points 
to a real mode paragraph address) with a selector. The 
other segment registers also need to be loaded with 
selectors before they can be used. A1 Williams's hand- 
rolled DOS extender PROT spends a lot of code on this 
process, but it can all be handled with one DPMI call. 

Selectors are indexes into tables of eight-byte memory 
descriptors. For now, we  do  not need to know that it is 
actually the top thirteen bits of a selector that form the 
index into a table of descriptors, the bottom two bits 
correspond to the privilege level (with three being the 
lowest, where normal programs live), and the remaining 
bit, bit two, indicates whether the selector references the 
global descriptor table or the current local descriptor table. 

There are actually three kinds of descriptor tables: 
interrupt, global, and local. Each task has, or can have, its 
own LDT and IDT (details differ between DPMI versions), 
but there is only one GDT. DPMI provides functions to 
manipulate entries in the LDT and IDT, and keeps the 
system-wide GDT to itself. 

A descriptor describes a 

cannot be loaded into CS, and, similarly, a selector for a 
code segment cannot be loaded into DS. Fortunately, the 
same memory can be referenced by multiple selectors, so 
the same physical memory can, through this "aliasing," be 
both written and read. The other distinction, between 16- 
bit and 32-bit descriptors, is more interesting. A single bit 
in a code descriptor determines whether instructions in 
that memory block are interpreted as 16- or 32-bit instruc- 
tions-for example, whether B8h is interpreted by the 
processor to load AX with a two-byte literal or EAX with 
four bytes, whether PUSH puts two or four bytes on the 
stack, and whether relative jumps have 16- or 32-bit 
offsets. 

The DPMI API 
Programming the DPMI API is a lot like programming 

DOS functions: for the most part, you put a function 
number in AX, set various other registers, and call an 
interrupt, 2Fh or 31h. For the most part, the success of a 
call is indicated by clearing the carry flag, which I translate 
to a zero on the stack, the inverse of a Forth flag. 

My code accesses a dozen DPMI functions, calling 
them in assembler and wrapping the results in high-level 
words with simple error handling. The functions I call and 
the words that wrap them are listed below. (FREE-PROT- 
MEM is included for completeness. It is not called, though 
it should be.) All of these functions are in DPMI versions 
0.9 and 1.0. 

In addition to these interrupt calls, three of these 
functions return addresses to jump to or call during mode 
switches. GET-DPMI -ENTRY returns an address to call to 
enter protected mode and how many paragraphs the 
DPMI host needs for its private data. (Other information is 
available: I get and display the DPMI version number 

, also.) The DOS call in MALLOC allocates the requested 
memory and the entry point gets shoved into a variable 
referenced by >PROTECTED-MODE. The three words are 
compiled together into (ACTIVATE-DPMI) . Surround- ' 
ing (ACTIVATE-DPMI) in ACTIVATE-DPMI is some 
other activity which I'll get tg later. 

memory block. It contains the 
base physical address and size 
of the segment and a variety of 
flags. For us the most important 
mark the distinction between 
code and data descriptors and, 
for code descriptors, the dis- 
tinction between 16-bit and 32- 
bit code. 

Part of the protection scheme 
in protected mode is that 
memory referenced by data se- 
lectors cannot be executed, and 
that referenced by code selec- 
tors cannot be written. In prac- 
tice, this means that a selector 
pointing to a descriptor marked 
as describing a data segment 

Forth Dimensions 

Astle9s function calls. 1 
ZNT 2Fh: 
function 1686h - Get CPU Mode MODE? 
function 1687h - Get DPMI Entry Point GET-DPMI -ENTRY 

INT3lh:  
function OOOOh - Allocate LDT Descriptor ALLOC-DESCRIPTOR 
function 0007h - Set Segment Base Address SET-SEG-BASE 
function 0008h - Set Segment Limit SET-SEG-LIMIT 
function OOOAh - Alias LDT Descriptor ALIAS-DESCRIPTOR 
function OOOBh - Get LDT Descriptor GET-DESCRIPTOR 
function OOOCh - Set LDT Descriptor SET-DESCRIPTOR 
function 0305h - Get State Save/Restore Addresses GET -SS -ADDRS 
function 0306h - Get Raw Mode Switch Addresses GET-RAW-MODES 
function 0501h - Allocate Protected Memory ALLOC-PROT-MEM 
function 0502h - Free Protected Memory FREE-PROT-MEM 

9 January 1995 February 



Before the mode switch, the seg- 
ments contain familiar real-mode para- 
graph addresses, all the same because 
this is a single-segment Forth; after- 
wards, they contain selectors which ref- 
erence the same physical memory but 
only indirectly, through entries in a de- 
scriptor table kept somewhere in 
memory. The values of CS and DS are 
guaranteed to be different from each 
other; ES would contain a selector refer- 
encing the program's PSP if I didn't 
reload it with the selector from DS, and 
SS is either the same as or different than 
DS depending on the particular imple- 
mentation of DPMI. 

The fact that the selector in DS refer- 
ences the same physical memory as that 
in CS (the former an "aliasn of the latter) 
means that we can still compile Forth 
relative to DS and execute it relative to 
CS and proceed pretty much as we're 
used to. The code executed is the same, 
in the same place in physical memory, 
nothing gets moved. Some things, how- 
ever, innocuous or clever in real mode, 
won't work: using CS to reload DS after 
a long CMOVE, for example. The words 
I had to redefine in the Forth I began 
with (Guy Kelly's Forth-83) all have an 
"L" in them: C@L, C ! L, @L,  ! L, CMOVEL, 
and DUMPL. Segment arithmetic-add- 
ing a value to a segment register to get to 
another physical add res swon ' t  work 
either, so forget about using F-PC in 
protected mode. 

Switching Back And Forth 
In the case of the Forth I used to build 

this project, the editor does not work in 
protected mode. One way to overcome 
this would be to rewrite the editor and 
metacompile, or to write a new one, but 
that is an old exercise, and one I've never 
indulged in. For me, the more interest- 
ing, if slightly more clumsy, approach is 
to switch back to real mode to use the 
editor I'm familiar with. 

Buried in ACTIVATE-DPMI, (AC- 
TIVATE-DPMI ) handles the activation 
of DPMI and the switch to protected 
mode. The rest of the baggage in ACT I- 
VATE-DPMI is involved with setting u p  
words to switch between real and pro- 
tected mode after DPMI is activated. 
(The long call address obtained from 
GET-DPMI-ENTRY is only good for the 
initial leap into protected mode, since 

Screen 0 
DPMTOOLS.SCR - DPMI FUNCTIONS FOR PROTECTED MODE FORTH 
R i c h a r d  A s t l e  
P O B o x  8 0 2 3  
L a  J o l l a ,  CA 9 2 0 3 8  
6 1 9  4 5 6 - 2 2 5 3  

I n  s t a c k  d i a g r a m s  i n  t h e  f o l l o w i n g  s c r e e n s  I f o l l o w  t h e  u s a g e  
o f  t h e  " F o r t h - 8 3  H a n d y  R e f e r e n c e ,  " adding 

i d  f o r  I n t e l  d o u b l e  n u m b e r  ( r e v e r s e  w o r d  o r d e r )  
- f l a g  f o r  a f l a g  w h e r e  0 i n d i c a t e s  s u c c e s s  

I t e n d  t o  u s e  u d u d  i d  e t c  a s  p r e f i x e s .  
O t h e r w i s e  u n d e s i g n a t e d  s t a c k  i t e m s  ( s e g  o f f  e t c . )  are 1 6 - b i t s .  

Screen 1 
\ USEFUL WORDS RA 0 4 S E P 9 3  
: O! OFF ; : KD KEY DROP ; : ? @ . ;  
: 4DUP 2OVER 20VER ; : 4DROP 2DROP 2DROP ; : 4 +  2 +  2 t  ; 
: I t !  ( a d d r  --- ) 1 SWAP t !  ; 
: PLUCK ( n l  n 2  n 3  --- n l  n 2  n 3  n l  ) 2 P I C K  ; 
: H.R BASE @ >R HEX . R  R >  BASE ! ; 
HEX CODE DS!  1 F  C ,  NEXT, END-CODE 

CODE E S !  0 1  C ,  NEXT, END-CODE DECIMAL 
: FLAG ( n --- f l a g  ) 0 =  0 =  ; \ n o r m a l i z e s  f l a g ,  t h a n k s  b g  

\ spec ia l  f o r  3 2 - b i t  d i s t i n c t i o n s  
\ : S > D  DUP O< ; \ s i g n  e x t e n s i o n  o f  w o r d  t o  d w o r d ,  n o t  u s e d  
: US>D ( u --- u d )  0 ;  \ n o  s i g n  e x t e n s i o n ,  F o r t h  d o u b l e  
: U S > 3 2  ( u --- i d  ) US>D SWAP ; \ a s  a b o v e ,  b u t  I n t e l  d o u b l e  
: D! -ROT SWAP ROT 2 !  ; \ 2 !  f o r  I n t e l  d o u b l e  
--> 

Screen 2 
\ DATA ITEMS FOR THE FOLLOWING 

CREATE (FREGS)  8 ALLOT \ FORTH R E G I S T E R S  SAVE BUFFER 
CREATE DESCRIPTOR 8 ALLOT \ DESCRIPTOR BUFFER 

VARIABLE m o d e s w  \ c a l l  address f o r  d p m i  m o d e  s w i t c h  

\ s t o r a g e  f o r  s e g m e n t s / s e l e c t o r s  f o r  
\ 1 6 b i t  F o r t h  i n  r ea l  a n d  p r o t e c t e d  m o d e  
\ w e  o n l y  n e e d  o n e  s e g m e n t  i n  real m o d e  
VARIABLE REAL-SEG 
\ w e  n e e d  t o  s a v e  a l l  f o u r  i n  p r o t e c t e d  m o d e  
VARIABLE PROT-CS VARIABLE PROT-DS 
VARIABLE PROT-ES VARIABLE PROT-SS 
- -> 

Screen 3 
\ DATA ITEMS FOR THE FOLLOWING 

2VARIABLE F-MEM-HAND \ m e m o r y  h a n d l e  f o r  3 2 - b i t  mem b l o c k  
0 CONSTANT CODE-SEL \ 3 2 b i t  s e l e c t o r s  
0 CONSTANT DATA-SEL \ t o  be set l a t e r  

HEX 
EOOO CONSTANT SPO-32 \ s p O  f o r  3 2 - b i t  F o r t h  - c h a n g e ?  
OAOO CONSTANT LMSTART \ w h e r e  c o d e  w i l l  s t a r t  i n  3 2 - b i t  seg 
DECIMAL \ a b o v e  2 b l o c k  b u f f e r s  a n d  T I B  
--> 

Screen 4 
\ SHOW-SEGS SHOW-ALL-SEGS .STACK-INFO RA 1 9 J U N 9 4  
\ t h e s e  w o r d s  a r e  u s e f u l  f o r  d i s p l a y i n g  s t a t e  i n f o r m a t i o n  
\ so w e  k n o w  w h e r e  w e  a r e ,  o b s e s s i v e l y  
: SHOW-SEGS CR 

." C S @  = C S @  H.  ." DS@ = " DS@ H. 

." E S @  = " E S @  H. ." S S @  = " S S @  H. ; 

: SHOW-ALL-SEGS 
SHOW-SEGS 
CR ." CODE-SEL= " CODE-SEL H. ." DATA-SEL= " DATA-SEL H. ; 

January 1995 February 10 Forth Dimensions 





called, but this is an inevitable chicken- 
and-egg thing that the DPMI host has to 
know how to handle if the raw mode 
switches are to work at all. 

32-Bits 
Since at this point I have the same 

Forth in the same place in physical 
memory, and some things that used to 
work don't anymore, I seem not to have 
gained much (the normal Forth address 
space hasn't even gotten bigger), but 
what I do have now is the ability to 
create a 32-bit memory segment and 
target compile a Forth into it. The word 
GRAB- 3 2 B I T  -MEMORY, which calls for 
most of its work GET-32SEG, coordi- 
nates the setting up of the 32-bit address 
space where we can target compile a 32- 
bit Forth. To do so, it makes a series of 
DPMI calls to seven different DPMI func- 
tions in the words ALLOC-PROT-MEM, 
ALLOC-DESCRIPTOR,SET-SEG-BASE, 
SET-SEG-LIMIT,SET-SEG-32,SET- 
SEG-CODE, and ALIAS-DESCRIPTOR. 
For the most part, these words are simple 
DPMI calls, and their naming and se- 
quence make their function fairly clear: 
First we allocate some memory and a 
selector/descriptor to reference it, and 
set the base and limit of the descriptor to 
the base address and size of the segment 
we've allocated. The words SET-SEG- 
32 and SET-SEG-CODE are a little dif- 
ferent: they call GET-DESCRIPTOR to 
get the descriptor associated with the 
selector into an eight-byte buffer we can 
modify (and display), set a bit, and call 
SET-DESCRIPTOR to put it back. (As 
with most things there's another way to 
do this, without the buffer, through func- 
tion OOWh, "Set Descriptor Access Rights. " 
But that method requires setting all ac- 
cess-right bits at once, while the method 
I use requires no assumptions about or 
even knowlege of the other 14 bits.) 
After these calls, we have a 32-bit code 
segment referenced through the allo- 
cated selector. The final call in this 
sequence, ALIAS-DESCRIPTOR, cre- 
ates a data descriptor with the same 
physical base address and limit as the 
code descriptor it aliases. Between these 
two selectors, placing the first in CS and 
the second in DS, I can write and run 
code in the 32-bit memory space. 

The Target 
I base my 32-bit target compilation on 

January 1995 February 

Screen 9 
\ SAVE AND RESTORE FORTH R E G I S T E R S  1 9 J U N 9 4  RA 0 3 J A N 9 3  
HEX 
HERE 

8 9  C ,  2 E  C ,  (FREGS)  2 +  , \ SAVE BP = FORTH RP 
8 9  C ,  1 E  C ,  ( F R E G S )  4 + , \ SAVE BX = FORTH W 
8 9  C ,  3 6  C ,  ( F R E G S )  6 + , \ SAVE S I  = FORTH I P  
RET,  
CONSTANT (SAVE-FREGS) 

HERE 
8 B  C ,  2 E  C ,  (FREGS)  2 +  , \ RESTORE B P  
8 B  C ,  1 E  C ,  (FREGS)  4 + , \ RESTORE BX 
8 B  C ,  3 6  C ,  (FREGS)  6 + , \ RESTORE S I  
RET,  
CONSTANT (RESTORE-FREGS) 

: SAVE-FREGS, CALL, (SAVE-FREGS) REL-TARG, ; 
: REST-FREGS, CALL, (RESTORE-FREGS) REL-TARG, ; --> 

Screen 10  
\ MORE M I N I  ASSEMBLER MACROS 1 2 S E P 9 3  RA 0 4 S E P 9 3  
HEX 
: i f c ,  ( --- addr ) 7 2  C, HERE 0 C, ; 
: t h e n ,  ( a d d r  --- 1 

HERE OVER 1 +  - \ adr l e n  
DUP F F  > I F  CR ." 8 - B I T  FWD JUMP TOO LONG " KEY Q U I T  THEN 
SWAP C !  ; 

: b e g i n ,  HERE ; 
: z u n t i l ,  7 5  C ,  CREL-TARG, ; 
: FLAG-NEXT, 

\ e x t e n d e d  NEXT, w h i c h  c o n v e r t s  CF t o  a F o r t h  f l a g  o n  t h e  
\ s t a c k ,  a n d  r e s t o r e s  s a v e d  v a l u e s  of  F o r t h  registers  
B 8  C ,  F F F F  , \ MOV A X , - 1  
i f c ,  BE C ,  0 0 0 0  , t h e n ,  \ MOV AX, 0 
5 0  C ,  REST-FREGS, NEXT, ; \ PUSH AX NEXT 

DECIMAL --> 

Screen 11 
\ DOS CALL: MALLOC MEMORY ALLOCATION RA 0 7 S E P 9 3  
HEX 
CODE MALLOC? ( # p a r s  --- # p a r s  a l l o c - s e g / c o d e  - f l a g  ) 

SAVE-FREGS, 
5 B  C ,  \ POP BX \ F I X  1 2 / 6 / 9 3  
B 4  C ,  4 8  C ,  I N T 2 1 ,  \ MOV A H , 4 8  I N T  2 1  
5 3  C ,  \ PUSH BX = MAXPARS 
5 0  C ,  FLAG-NEXT, \ PUSH AX = 8 I F  I N S U F F  

END-CODE 
DECIMAL 

: MALLOC 
MALLOC? \ # p a r s  seg/code f l a g  
I F  CR ." MALLOC FAILURE " H. Q U I T  THEN ; 

--> 

Screen 12 
\ DPMI FUNCTIONS: MODE? 
HEX 
CODE MODE? ( --- m o d e - i n d i c a t o r  ) 

SAVE-FREGS, 
B 8  C ,  1 6 8 6  , I N T Z F ,  5 0  C ,  
\ MOV AX, 1 6 8 6  I N T  2 F  PUSH AX 
REST-FREGS, 
NEXT, 

END-CODE 
DECIMAL 
- -> 
m o d e - i n d i c a t o r  = 0 w h e n  p r o c e s s o r  i n  p r o t e c t e d  m o d e  

Screen 13 
FUNCTIONS: GET ENTRY P O I N T  E T C .  RA 0 7 S E P 9 3  
HEX 
CODE GET-DPMI-ENTRY? ( --- # p a r s  v e r s i o n  d A d d r  - f l a g  ) 

SAVE-FREGS, 
BE C ,  1 6 8 7  , I N T Z F ,  \ MOV A X , 1 6 8 7  I N T  2 F  

12 Forth Dimensions 



5 6  C ,  \ PUSH S I  = p a r a g r a p h s  n e e d e d  
5 2  C ,  \ PUSH DX = DPMI VERSION 
5 7  C ,  0 6  C ,  \ PUSH D I  PUSH E S  = ENTRY P O I N T  
5 0  C ,  \ PUSH AX = 0 i f  s u c c e s s f u l  
REST-FREGS,  
NEXT, 

END-CODE 
DECIMAL 
: GET-DPMI-ENTRY 

GET-DPEII-ENTRY? 
I F  CR ." GET-DPMI-ENTRY FAILURE " H. QUIT THEN ; --> 

Screen 1 4  
\ DPMI FUNCTIONS: CALL DPMI ENTRY P O I N T  RA 0 7 S E P 9 3  

HEX CODE >PROTECTED-MODE? ( d a t a - s e g  --- - f l a g  ) 
SAVE-FREGS, 
0 7  C ,  \ POP E S  
B 8  C ,  0 0 0 0  , \ MOV AX, 0 0 0 0  
F F  C ,  1 E  C ,  m o d e s w  , \ t o  p r o t e c t e d  m o d e  
1 E  C ,  0 7  C ,  \ PUSH DS POP E S  
FLAG-NEXT, 

END-CODE DECIMAL 

: >PROTECTED-MODE 
>PROTECTED-MODE? 
I F  CR ." f a i l u r e  t o  ge t  i n t o  p r o t e c t e d  m o d e  " QUIT THEN ; 

--> 

Screen 15 
\ DPMI FUNCTIONS: GET- SET-DESCRIPTOR RA 0 7 S E P 9 3  
HEX CODE (GET/SET-DESC?)  ( s e l e c t o r  f n  --- c o d e  - f l a g  ) 

SAVE-FREGS, 
5 8  C ,  \ POP AX=FUNC 
5 B  C ,  \ POP BX 
BE C ,  DESCRIPTOR , \ MOV D I ,  DESCRIPTOR 
I N T 3 1 ,  \ I N T  3 1  
5 0  C ,  \ PUSH AX=CODE 

FLAG-NEXT, END-CODE 
: GET-DESCRIPTOR? ( se l  --- c o d e  - f l a g  1 OOOB ( G E T I S E T - D E S C ? )  ; 
: SET-DESCRIPTOR? ( sel  --- c o d e  - f l a g  ) OOOC (GET/SET-DESC?)  ; 
DECIMAL --> 

Screen 1 6  
\ DPMI FUNCTIONS:  ALLOC- FREE-PROT-MEM RA 1 4 S E P 9 3  
HEX CODE ALLOC-PROT-MEM? ( d B y t e s  --- d A d d r  d H a n d  c o d e  - f l a g  ) 

SAVE-FREGS, 
5 B  C ,  5 9  C ,  \ POP BX POP CX ( BX;CX ) 
B 8  C ,  0 5 0 1  , I N T 3 1 ,  \ MOV A X , 0 5 0 1  I N T  3 1  
5 1  C ,  53 C ,  \ PUSH CX PUSH BX ( BX:CX ) 
5 7  C ,  5 6  C ,  \ PUSH D I  PUSH S I  ( S 1 : D I  ) 
5 0  C ,  

FLAG-NEXT, END-CODE 
HEX CODE FREE-PROT-MEM? ( d H a n d  --- c o d e  - f l a g  ) 

SAVE-FREGS, 
5 E  C ,  5F C ,  \ POP S I  POP D I  ( S I ; D I  ) 
B 8  C ,  0 5 0 2  , I N T 3 1 ,  \ MOV AX, 0 5 0 2  I N T  3 1  
5 0  C ,  

FLAG-NEXT, END-CODE DECIMAL --> 

Screen 1 7  
\ DPMI FUNCTIONS:  ALLOC- ALIAS-DESCRIPTOR RA 1 4 S E P 9 3  

HEX CODE ALLOC-DESCRIPTOR? ( --- s e l e c t o r  - f l a g  ) 
SAVE-FREGS, 
B 9  C ,  0 0 0 1  , \ MOV CX, 1 
B 8  C ,  0 0 0 0  , I N T 3 1 ,  \ MOV AX, 0 0 0 0  I N T  31 
5 0  C ,  \ PUSH SELECTOR 

FLAG-NEXT, END-CODE 

HEX CODE ALIAS-DESCRIPTOR? ( s e l e c t o r  --- se lec tor '  - f l a g  ) 
SAVE-FREGS, 
5 B  C ,  \ POP BX ( SELECTOR ) 

Forth Dimensions 13 

Robert Illyes' riFORTH, an elegant, spare, 
subroutine-threaded Forth that has the 
particular virtue of tininess. Not only is 
there relatively little source to convert, 
but I was able, without too many pangs, 
to dump the memory image and trace 
the machine code by hand, more than 
once. Guy Kelly used riFORTH as the 
basis for an exploration of Forth timings 
in his paper "Various Forths," which 
appears in the 1991 FORML Conference 
Proceedings and in Forth Dimensions 
[x111/61. Mr. Kelly kept the riFORTH 
wordset and changed its underpinnings 
to explore different kinds of nestings 
and headings;  I keep the subroutine- 
threaded model, but change word names, 
definitions, and other features at will, so 
much so that I should probably call it 
raFORTH, to indicate, by name, both the 
closeness and distance of my implemen- 
tation. 

All Forths have at least two memory 
spaces, since the stack is always logi- 
cally, if not physically, separate from 
code and data. On the other hand, de- 
spite schemes which separate code, data, 
lists, and headers, for the most part Forth 
is interactive, we execute what we write, 
and these distinctions are only conve- 
niences in a segmented world. 16-bit 
riFORTH, like most Forths, sets all seg- 
ment registers the same. For my 32-bit 
version, I set DS and CS to point to the 
same memory space, using the selectors 
returned by GET-32SEG, and I give ES 
the same selector as DS, but I leave SS 
alone, so  it points to the same memory 
space as the 16-bit Forth stack. Leaving 
the stack segment alone made switching 
code segments easier, and allows pass- 
ing data between the 16- and 32-bit 
Forths. The separate stack space en- 
forces a certain discipline and the rewrit- 
ing of a few code words (R>, >R, R@, 
OVER) that depended on indexing into 
the stack relative to DS, but it does not 
cause the obvious problem: though the 
stack in the 32-bit Forth is 32-bits wide, 
the size of PUSH and POP is determined 
by the characteristics of the code selec- 
tor/descriptor, not the stack descriptor. 
The only issue is alignment, since a 32- 
bit PUSH or POP is more efficient when 
SP is on  a double-word boundary. 

The target compilation is straightfor- 
ward. Perhaps the hardest part was fig- 
uring out how to code some of the 32-bit 
instructions: bit patterns twist one's brain. 

January 1995 February 



For the most part, I keep Illyes' mini- 
assembler, extending register names to 
their 32-bit forms and adding a few 
instructions I found I needed. The as- 
sembler is not complete, but it's rela- 
tively easy to extend. I like Illyes' use of 
the character I for CODE. Illyes' assem- 
bler syntax is <source> <destination> 
<opcode>, so that "ebx eax mov" stores 
the contents of ebx in eax, not the other 
way around, as in many assemblers, 
Forth or not. 

The target assembler C-commas code 
into the 32-bit segment, and M I  , instead 
of merely setting MSTATE, actually per- 
forms the target compilation, combining 
target words to make other target words. 
Since IMMEDIATE words in the target 
cannot be executed, their functionality is 
included in words beginning (for the 
most part) with "M" and included in a 
VOCABULARY called META in the host 
Forth. M I  is a factor of M : ,  and runs as 
long as MSTATE is ON, parsing the input 
stream a word at a time, searching first in 
the target dictionary and then in the 
META vocabulary in the 16-bit host be- 
fore giving up and trying number con- 
version. M [ in META, and a factor of M :, 
turns MSTATE OFF and  s tops  
metacompilation until the next M [ , M : , 
MCONSTANT, or MVARIABLE. Perhaps 
because riFORTH is so  small, I was able 
to avoid forward references almost en- 
tirely. COLD, as in 16-bit metacompiled 
riFORTH, is referenced by a jump at the 
beginning of the code image, but this is 
to make it easier to find the entry point. 
Only QUIT needs to be used in a defini- 
tion before it can be defined. 

Among changes I made in riFORTH 
are the following: I made BLOCK zero- 
based, rather than one-based, meaning 
that the first block in a file is block zero, 
as in most Forths. I prefer to keep the first 
screen (block zero) for a documentation 
and title screen. I moved the two block 
buffers from the top of the memory map 
to the bottom, where they won't get in 
the way of seemingly infinite code ex- 
pansion; I put T I B  down there too. I 
changed the L I N K  field in the header to 
be a 16-bit relative offset to the previous 
link rather than an absolute (segment 
relative) address. This saves space, but a 
32-bit relative offset might be better in 
some situations. I renamed Illyes' word 
\ to POSTPONE, its ANS equivalent. I 
prefer to use the backslash as a comment 
January 1995 February 

B8 C, OOOA , INT31, \ MOV AX,OOOA INT 31 
50 C, \ PUSH AX =- NEW SELECTOR 

FLAG-NEXT, END-CODE DECIMAL --> 

Screen 18 
\ DPMI FUNCTIONS: SET-SEG-BASE -LIMIT RA 14SEP93 
HEX CODE (SET-SEG-SIZE?) ( d  s fn --- code -flag ) 

SAVE-FREGS, 
58 C, \ POP AX=FUNC 
5B C, \ POP BX=SELECTOR 
59 C, 5A C, \ POP CX POP DX ( CX:DX ) 
INT31, \ INT 31 
50 C, \ PUSH AX=CODE 

FLAG-NEXT, END-CODE 
: SET-SEG-BASE? ( dBase sel --- code -flag ) 

0007 (SET-SEG-SIZE?) ; 
: SET-SEG-LIMIT? ( dLimit sel --- code -flag ) 

0008 (SET-SEG-SIZE?) ; 
DECIMAL --> 

Screen 19 
\ GET-RAW-MODES 27MAY94 RA 12NOV93 
\ NOTE: these functions never fail, according to DPMI spec 
HEX CODE (GET-ADDRS) ( fn --- r>p.off r>p.seg p>r.off p>r.seg ) 

SAVE-FREGS, 
58 C, \ POP AX=FUNC 
INT3 1, 
51 C, 53 C, \ PUSH CX PUSH BX \ BX:CX = REAL->PROT 
57 C, 56 C, \ PUSH DI PUSH SI \ S1:DI = PROT->REAL 
50 C, \ PUSH AX 
REST-FREGS, NEXT, END-CODE 

: GET-RAW-MODES ( --- r>p.off r>p.seg p>r.off p>r.seg ) 

0306 (GET-ADDRS) DROP ; 
: GET-SS-ADDRS ( --- r>p.off r>p.seg p>r.off p>r.seg bufsz ) 

0305 (GET-ADDRS) ; 
DECIMAL --> 

Screen 20 
\ DPMI CALLS: ERROR WRAPPED VERSIONS 030CT93 RA 18SEP93 

: GET-DESCRIPTOR ( selector --- ) \ puts descriptor in buffer 
GET-DESCRIPTOR? 
IF CR ." GET DESCRIPTOR FAILURE " H. QUIT THEN DROP ; 

: SET-DESCRIPTOR ( selector --- ) \ puts buffer in descriptor 
SET-DESCRIPTOR? 
IF CR ." SET DESCRIPTOR FAILURE " H. QUIT THEN DROP ; 

: SET-SEG-LIMIT ( dLimit selector --- ) 
SET-SEG-LIMIT? 
IF CR ." SEG-SEG-LIMIT FAILURE " H. QUIT THEN DROP ; 

: SET-SEG-BASE ( dBase selector --- ) 

SET-SEG-BASE? 
IF CR ." SET-SEG-BASE FAILURE " H. QUIT THEN DROP ; 

--> 

Screen 21 
\ DPMI CALLS: ERROR WRAPPED VERSIONS 030CT93 RA 18SEP93 

: ALLOC-PROT-MEM ( dBytes --- dAddress dHandle ) 
ALLOC-PROT-MEM? 
IF CR ." ALLOT-PROT-MEM FAILURE " H. QUIT THEN DROP ; 

: FREE-PROT-MEM ( dHandle --- ) 

FREE-PROT-MEM? 
IF CR ." FREE PROT MEM FAILURE " H. QUIT THEN DROP ; 

: ALLOC-DESCRIPTOR ( --- selector ) 

ALLOC-DESCRIPTOR? 
IF CR . It  ALLOC DESCRIPTOR FAILURE " H. QUIT THEN ; 

: ALIAS-DESCRIPTOR ( selector --- selector' ) 
ALIAS-DESCRIPTOR? 
IF CR ." ALIAS DESCRIPTOR FAILURE " H. QUIT THEN ; --> 

I 1 

14 Forth Dimensions 



Screen 22 
\ DIAGNOSTIC:  .DESC .DESCRIPTORS 0 4 D E C 9 3  RA 0 6 0 C T 9 3  
: < # # >  0 <# # # # >  TYPE ; 
: .DESC ( s e l e c t o r  --- ) 

BASE @ HEX SWAP DUP CR < # # >  ." : " 
GET-DESCRIPTOR 
8 0 DO DESCRIPTOR I + C@ < # # >  SPACE LOOP 
CR ." BASE = " DESCRIPTOR 2 +  @ \ l o w  w o r d  
DESCRIPTOR 4 +  C @  DESCRIPTOR 7 + C@ F L I P  + UD . 
." L I M I T  = " DESCRIPTOR @ DESCRIPTOR 6 + C@ 1 5  AND UD. 
BINARY 
CR ." ACCESS R I G H T S  " DESCRIPTOR 5 + C@ 8 U.R 
." GDOAVL = " DESCRIPTOR 6 + C@ 1 6  / 1 5  AND 4 U.R 
BASE ! ; 

: .DESCRIPTORS 
CR ." C S  DESC " C S @  .DESC CR ." DS DESC " DS@ .DESC 
CR ." E S  DESC " E S @  .DESC CR ." S S  DESC " S S @  .DESC ; --> 

Screen 23 
\ SET SELECTOR TYPE AND S I Z E  RA 1 8 S E P 9 3  
HEX : (SET-SELECTOR-TYPE) ( m a s k  s e l e c t o r  --- ) 

TUCK GET-DESCRIPTOR \ se l  p r i v  
DESCRIPTOR 5 + DUP C@ \ sel  p r i v  adr b 
F 1  AND ROT 2 *  OR \ se l  a d r  b m a s k  
SWAP C !  SET-DESCRIPTOR ; 

: SET-SEG-DATA ( s e l e c t o r  --- ) 1 SWAP (SET-SELECTOR-TYPE) ; 
: SET-SEG-CODE ( selector  --- ) 5 SWAP (SET-SELECTOR-TYPE) ; 
: (SET-SELECTOR-SIZE)  ( m a s k  s e l e c t o r  --- ) 

TUCK GET-DESCRIPTOR \ se l  m a s k  
DESCRIPTOR 6 + DUP C @  \ se l  m a s k  adr b 
B F  AND ROT OR 
SWAP C !  SET-DESCRIPTOR ; 

: SET-SEG-32 ( s e l e c t o r  --- ) 4 0  SWAP ( S E T - S E L E C T O R - S I Z E )  ; 
: SET-SEG-16 ( s e l e c t o r  --- ) 0 SWAP (SET-SELECTOR-SIZE)  ; 
DECIMAL --> 

Screen  2 4  
\ GET-MEM-INFO RA l l S E P 9 4  
HEX CODE GET-MEM-INFO ( b u f f e r  --- ) \ a l w a y s  s u c c e e d s  

SAVE-FREGS , 
5 F  C ,  B 8  C, 0 5 0 0  , I N T 3 1 ,  
\ POP D I  MOV AX, 0 5 0 0  
REST-FREGS, NEXT, 

END-CODE DECIMAL 
--> 

Screen  25 
\ GET-MEM-INFO RA l l S E P 9 4  
: ? .VAL 

2 @  SWAP 2DUP AND -1 = I F  ." u n a v a i l a b l e  " E X I T  THEN D. ; 
: .MEM-INFO CR ." MEMORY I N F O  v i a  FUNC 0 5 0 0 :  " 

HERE GET-MEM-INFO \ HERE 4 8  DUMP 
CR ." MAX MEM BLOCK: " HERE 2 @  SWAP D. 
CR . I' MAX UNLOCKED PAGES: " HERE 4 + ?.VAL 
CR ." MAX LOCKED PAGES:  " HERE 8 + ?.VAL 
CR ." LINEAR ADDR PAGES:  " HERE 1 2  + ? . VAL 
CR ." TOTAL UNLOCKED PAGES:  " HERE 1 6  + ?.VAL 
CR ." TOTAL FREE PAGES:  " HERE 2 0  + ?.VAL 
CR ." TOTAL P H Y S I C A L  PAGES: " HERE 2 4  + ?.VAL 
CR ." FREE LINEAR PAGES:  " HERE 2 8  + ?.VAL 
CR ." PAGING F I L E / P A R T I I T I O N  PAGES:" HERE 3 2  + ?.VAL ; --> 

Screen  26 
\ GET-32SEG RA 1 4 N O V 9 3  
: GET-32SEG ( d S i z e  --- c o d e . s e 1  d a t a . s e 1  d M e m h a n d  ) 

2DUP ALLOC-PROT-MEM \ d S i z e  d B a s e  d M e m h a n d  
>R >R ALLOC-DESCRIPTOR \ d S i z e  d B a s e  se l  ; R :  d H a n d  
DUP >R SET-SEG-BASE \ d S i z e  ; R:  d H a n d  sel 
R @  S E T - S E G - L I M I T  \ R :  d H a n d  se l  
R >  DUP S E T - S E G - 3 2  \ sel  
DUP SET-SEG-CODE \ c o d e - s e l  
DUP ALIAS-DESCRIPTOR R> R> \ c o d e - s e l  d a t a - s e l  d H a n d  

; --> 

Forth Dimensions 15 

character, and POSTPONE is easier to see 
when you're scanning the code. I also 
added a control structure I've become 
used to in my other Forth life, ( ( . . . ) ) , 
which is functionally equivalent to 0 DO 
... LOOP. 

Ways In 
Once the target is compiled, the next 

step is to go there and run things. The 32- 
bit Forth is a real Forth, extensible from 
the keyboard, and, although it has no 
editor, it can LOAD source from block 
files edited elsewhere. It would be easy 
for those who enjoy such things to add 
an editor. Illyes' word SAVE creates a 
DOS file and saves the 32-bit Forth 
image in it. The syntax is SAVE 
<filename>, but the file created is not 
directly executable. Under DOS, every 
32-bit program needs a 16-bit loader, 
and here that loader is in the 16-bit Forth, 
in the  command L O A D - I M A G E  
<filename>. LOAD- IMAGE first makes 
sure that DPMI has been activated and 
the processor is in protected mode, then 
opens the file and copies its contents 
into the 32-bit segment. Some of the 
words that d o  this are peculiar to this 
particular 16-bit Forth, but any Forth that 
can load files into memory can do this. 
To be more like a "real" 32-bit program, 
the 16-bit Forth could be configured to 
switch to protected mode and load and 
jump to the 32-bit Forth at startup, with- 
out pausing at or announcing its stages. 

Multi-Modalism 
Most 32-bit programs running on DOS 

want to get to 32-bit protected mode as 
quickly as possible and stay there until 
the program terminates. But these pro- 
grams aren't built by Forth programmers 
or, if they are, they have less Forth in 
them than they could. Rather than dis- 
guise its 16-bit origins, I thought it would 
be interesting to create tools for integrat- 
ing the 16-bit and 32-bit Forths, so that 
each could execute code in the other, 
and perhaps so  that I could feel better 
about not writing a 32-bit editor. This 
way, a potential hybrid application could 
be written in a combination of 16-bit and 
32-bit Forths, with each portion per- 
forming the parts it is best suited for, 
whatever they are. 

The first step in this cooperativeness 
is to be able to switch among modes. I've 
already discussed words to switch be- 

January 1995 February 



tween 16-bit protected and real modes. 
The switch between 16-bit to 32-bit 
protected modes is accomplished by 
self-modifying code on both sides of the 
line, in the words (CALL-F32 ) on the 
16-bit side and PRE-COLD and BACK on 
the 32-bit side. The heart of this process 
is the code word (CALL-F32) , which 
initializes the 32-bit Forth's RP, DS, and 
ES, then makes the long call that loads CS 
and the processor's IP (also Forth's IP, 
since it is a subroutine-threaded Forth 
we're going to). The definition of (CALL- 

32) uses the same trick as the mode- 
switching word definitions, assigning 
constants to the addresses of spots within 
the definition that can be filled with the 
values of the selectors returned by ( AC- 
TIVATE-DPMI) ,which is done by (GO- 
32 ) ,  the word that encloses (CALL- 
32 ) . (GO-32 ) also puts the value of 
SPO (extended to 32-bits in Intel order by 
~ S > 3 2 )  on the stack so the 32-bit Forth 
can reference it. 

On the 32-bit side, the entry point is 
redirected to PRE-COLD, which handles 
some initialization even before COLD 
gets hold of things. (In fact, COLD itself 
is bypassed in this version and replaced 
by D ISPATCHER, which 1'11 discuss later.) 
Since the 32-bit Forth has the top stack 
element in a register, the first thing PRE- 
COLD does is execute DROP (a 32-bit 
DROP, of course) to fill that register 
(EBX) with the value the 16-bit Forth left 
for it. The next thing PRE-COLD does is 
to take the 16-bit return address and 
selector left on the stack by the long call 
and store them in variables so they can 
be used to return to the 16-bit side. In 
other languages this return would be 
accomplished by some version of the 
RET instruction, but in Forth that would 
require unreasonably perfect stack man- 
agement. (Sometimes variables are just 
better.) 

The word to return to the 16-bit Forth 
is called BACK. It begins (after the diag- 
nostic . STACKS) with a DUP to get the 
top-of-stack back on the stack, and then 
makes a long jump to the address and 
selector stored by PRE-COLD. The sim- 
plicity of the code, as it stands, hides a lot 
of experimentation to figure out which 
stack (in riFORTH, ESP references both 
stacks, with the other pointer stored in SI 
and swapped appropriately) to look at, 
just where on the stack, and what to do 
with the stack pointer before the return. 

January 1995 February 

given a segment size, this word allocates memory and 
creates 2 selectors (code and data) pointing to it 
--the selectors and a memory segment handle are returned 
--the handle is required for freeing the segment later 

Screen 27 
\ MODE SWITCHING: 16PROT->REAL 
HEX CODE 16PROT->REAL SAVE-FREGS, 

A1 C, REAL-SEG , \ rds \ 
8B C, C8 C, \ 
8B C, DO C, \ 
8B C, FO C, \ 
8B C, DC C, \ 
BF C, HERE 0 , \ rds rip \ 
E A C ,  HERE 0 , 0 , \ rds rip &sw \ 
SWAP HERE SWAP ! \ rds &sw 
REST-FREGS, 

NEXT, END-CODE 
CONSTANT P->R-SWITCH 
--> 

MOV AX, [REAL-SEG] 
MOV CX,AX (REAL ES) 
MOV DX,AX (REAL SS) 
MOV S1,AX (REAL CS) 
MOV BX, SP (RCPROT SP) 
MOV DI,0000 (REAL IP) 
JMP MODESW 

Screen 28 
\ MODE SWITCHING: REAL 
HEX CODE REAL->16PROT 

A1 C, PROT-CS , 8B 
A1 C, PROT-ES , 8B 
A1 C, PROT-SS , 8B 
A1 C, PROT-DS , 
8 B C ,  D C C ,  
BE C, HERE 0 , 
E A C ,  HERE 0 ,  0 ,  
SWAP HERE SWAP ! 
REST-FREGS, 

NEXT, END-CODE 
CONSTANT R->P-SWITCH 
--> 

->16PROT 
SAVE-FREGS, 

C, FO C, \ MOV 
C, C8 C, \ MOV 
C, DO C, \ MOV 

\ MOV 
\ MOV 

\ ... iP 
\ ... ip Lsw 
\ ... LSW 

AX, [PROT-CS] MOV S1,AX 
AX, [PROT-ES] MOV CX, AX 
AX, [PROT-SS] MOV DX,AX 
AX, [PROT-DS] 
BX, SP (RLPROT SP) 
\ MOV DI,0000 (PROT IP) 
\ JMP MODESW 

Screen 29 
\ MODE SWITCHING: STATE SAVE FUNCTIONS 28MAY84 RA 27MAY94 
HEX CODE (REAL-SAVE/RESTORE) ~ 58 C ,  \ POP AX (0 or 1) 

BF C ,  HERE 0 , \ MOV D1,bufadr -- ES = DS already 
9A C, HERE 0 , 0 , \ FAR CALL 

NEXT, END-CODE 
CONSTANT REAL-SAVE-ADDR CONSTANT REAL-SAVE-BUFF-ADDR 
CODE (PROT-SAVE/RESTORE) 

58 C, BF C, HERE 0 , 
9A C, HERE 0 , 0 , NEXT, END-CODE \ as above 

CONSTANT PROT-SAVE-ADDR CONSTANT PROT-SAVE-BUFF-ADDR 
: SAVE-REAL-STATE 0 (REAL-SAVE/RESTORE) ; 
: SAVE-PROT-STATE o (PROT-SAVE/RESTORE) ; 
: RESTORE-REAL-STATE 1 (REAL-SAVE/RESTORE) ; 
: RESTORE-PROT-STATE 1 (PROT-SAVE/RESTORE) ; 
DECIMAL - -> 

Screen 30 
\ SETUP-STATE-SAVING 28MAY94 RA 13NOV93 
: SETUP-STATE-SAVING 

\ get and save state save addresses: 
\ the DPMI server with Novell DOS 7 needs this 
\ though QEMM and 386Max don't 
GET-SS-ADDRS 
HERE REAL-SAVE-BUFF-ADDR ! DUP ALLOT 
HERE PROT-SAVE-BUFF-ADDR ! ALLOT 
PROT-SAVE-ADDR D! 
REAL-SAVE-ADDR D! 

--> 
also getting state save/restore addresses which Novell's DPMI 
server (in Novell DOS 7) needs but QEMM's and 386-Max's don't 

I 

16 Forth Dimensions 



Screen 31 
\ MODE SWITCHING: >PROT >REAL RA 13NOV93 
: >PROT 

SHOW-SEGS MODE? 
IF SAVE-REAL-STATE REAL->16PROT RESTORE-PROT-STATE 
ELSE CR ." ALREADY IN PROTECTED MODE " 

THEN SHOW-SEGS ; 
: >REAL 

SHOW-SEGS MODE? 
IF CR ." NOT IN PROTECTED MODE " 

ELSE SAVE-PROT-STATE 16PROT->REAL RESTORE-REAL-STATE 
THEN SHOW-SEGS ; 

--> 
t h e s e  words s w i t c h  between r e a l  and p r o t e c t e d  mode a f t e r  
DPMI i s  i n s t a l l e d  

Screen 32 
\ ACTIVATE-DPMI 
: .DPMI.VERSION ( DPMIversion --- 1 

CR ." DPMI VERSION " DUP FLIP "FF AND U. ." ." "FF AND U. ; 
( FLIP swaps b y t e s  i n  a  word, 12ABh -> AB12h e . g . )  

: (ACTIVATE-DPMI) 
SHOW-SEGS 
\ g e t  and s a v e  t h e  e n t r y  p o i n t  
GET-DPMI-ENTRY modesw D! \ # p a r s  v e r s i o n  
\ announce DPMI v e r s i o n  
.DPMI.VERSION \ # p a r s  
\ a l l o c a t e  memory r e q u e s t e d  by DPMI s e r v e r  
MALLOC NIP \ s e g  
\ and make t h e  s w i t c h  
CR ." s w i t c h i n g  t o  p r o t e c t e d  mode " modesw 2@ H. H. 
>PROTECTED-MODE 
SHOW-SEGS ; --> 

Screen 33 
\ ACTIVATE-DPMI 

: ACTIVATE-DPMI 
\ save  r e a l  mode segment f o r  >REAL 
DS@ REAL-SEG ! 
\ a c t i v a t e  DPMI 
(ACTIVATE-DPMI) 
\ save  p r o t e c t e d  mode segments f o r  >PROT 
CS@ PROT-CS ! DS@ PROT-DS ! 
SS@ PROT-SS ! ES@ PROT-ES ! 
\ g e t  and save  raw mode s w i t c h  a d d r e s s e s  
GET-RAW-MODES P->R-SWITCH D! R->P-SWITCH D! 
\ g e t  and save  s t a t e  save  a d d r e s s e s  
SETUP-STATE-SAVING 

Screen 34 
\ SETUP WORD FOR PROTECTED 32-BIT SEGMENT RA 030CT93 
HEX 
: GRAB-32BIT-MEMORY 

\ g e t  a  chunk of 32-b i t  memory ( r e q u e s t e d  i n  b y t e s )  
0000.F000 GET-32SEG \ -- code-se l  d a t a - s e l  dHand 
\ save  handle  t o  t h e  a l l o c a t e d  memory f o r  r e l e a s e  l a t e r  
F-MEM-HAND 2 ! 
\ save  d a t a  s e l e c t o r  f o r  memory block 
IS DATA-SEL 
\ and t h e  code s e l e c t o r  
IS CODE-SEL 
\ and announce them 
CR ." CODE SELECTOR: " CODE-SEL .DESC 
CR ." DATA SELECTOR: " DATA-SEL .DESC 

DECIMAL --> 

Forth Dimensions 

One of the interesting features of this 
project is that the two Forths I used were 
so different from each other: on the one 
hand, a fairly traditional indirect-threaded 
16-bit Forth-83 with the top-of-stack on 
the stack; on the other a quirky, com- 
pan, self-optimizing subroutine-threaded 
Forth with top-of-stack in a register. 
Interfacing these two created some inter- 
esting problems. I should add that the 
Forth I am most familiar with, the one I 
get paid to rewrite and use, is a four- 
segment (code, lists, data, headers) di- 
rect-threaded 16-bit model distantly based 
on M W  Forth, a hybrid of Forth-79 and 
Forth-83, where P ICK and ROLL are 
zero-based, but where TRUE is 1 and 
LEAVE doesn't immediately. 

One interfacing problem involves the 
differing stack widths for parameter pass- 
ing between the two Forths. This prob- 
lem cannot be ignored, but it mostly 
requires attention to the distinction be- 
tween Intel and Forth word order in 32- 
bit values: when the 32-bit Forth places 
a 32-bit value on the stack, it appears in 
the 16-bit Forth with the low word on 
top, the reverse of Forth order; and when 
the 16-bit Forth passes a 32-bit value to 
the 32-bit Forth, it has to perform the 
equivalent of a 0 SWAP (for unsigned 
values) or S >D SWAP (for signed values). 
This is one of those "endiann things. 

The interfacing is implemented by 
launching the 32-bit Forth with a value (a 
token) on the stack and having the start- 
up word, instead of just executing COLD, 
execute a case statement (called DIS - 
PATCHER and coded for now as nested 
IFS) to branch based on the token it 
receives. The tokens are coded as named 
constants in both Forths, to minimize 
confusion. 

The simplest case, GO-32, is coded 
to pass a token signifying "do-nothing" 
to the DISPATCHER, which then just 
prints a sign-on message and executes 
( Q U I T  ) : in other words, this case is just 
the normal launch of the 32-bit Forth, 
with the ability to call BACK to get back 
to the 16-bit side. 

FIND-32 parses the input stream 
and passes the token for "get-cfa" on top 
of the string address (selector and offset) 
of the word it parses. Note that both the 
selector and the offset are extended to 
32-bit values, even though the selector is 
"reallyn only 16 bits, so that each one 
occupies a separate stack word from the 

January 1995 February 



perspective of the 32-bit Forth. DIS- 
PATCHER passes this string address to 
WORDFINDER, which moves the string 
from the 16-bit segment to the 32-bit 
segment and searches for it in the 32-bit 
dictionary. After WORDFINDER, DIS - 
PATCHER executes BACK to return to the 
16-bit Forth with cfa on the stack. Thus, 
FIND-32 WORDS will return the cfa of 
the word that prints the dictionary in the 
32-bit segment. 

GO- 32 does FIND-32 one better. It 
not only finds the cfa, but also executes 
it, so that GO-32 WORDS will print the 32- 
bit Forth dictionary. 

GO-32 is actually composed of two 
words: FIND-32 and EXECUTE- 32. For 
words you want to call more than once 
from the 16-bit side, you can call FIND- 
3 2  once, save the cfa, and later call 
EXECUTE-32 with that cfa on the stack. 
EXECUTE- 32 passes the 32-bit cfa to the 
32-bit segment, where DISPATCHER 
executes it and returns. 

For passing data between the seg- 
ments, DATA-PAD passes an address in 
the 16-bit segment that the 32-bit seg- 
ment stores. (I used to have other names 
for these words-RABBIT, FERRET, FOX, 
COYOTE, C A M E L ~ U ~  here I've opted 
for clarity over color.) 

The final word in this suite of inter- 
face words is SET-CALLBACK, which, 
whatever its usefulness, was the most 
interesting to code. SET-CALLBACK 
passes two addresses in the 16-bit seg- 
ment to the 32-bit Forth. One of these 
addresses is the cfa of a word in the 16- 
bit Forth and the other is the address of 
a "callback handler." DISPATCHER passes 
these addresses to REG-CALLBACK, 
which stores them. DO-CALLBACK is 
very much like BACK, in that it makes a 
long jump to an address in the 16-bit 
Forth segment, but the address it jumps 
to is the address of the callback handler, 
and it jumps there with the callback cfa 
on the stack. 

Since the 16-bit Forth is indirect 
threaded, handling the callback on the 
16-bit side is not straightforward. We 
have to execute the cfa, which is prob- 
ably a colon definition, and then jump 
back to the 32-bit segment. With respect 
to normal Forth execution, the situation 
is inside-out: we have to start in code, 
execute a colon word, and return to 
code. The other order is normal: all 
colon definitions eventually get down to 
January 1995 February 

- - -  

Screen 35 
\ SETUP WORD FOR PROTECTED 3 2 - B I T  SEGMENT RA 0 3 0 C T 9 3  

: SET-PROT 
\ d o  t h e  b a s i c  DPMI s w i t c h  
ACTIVATE-DPMI 
. MEM-INFO 
\ g r a b  m e m o r y  b l o c k  f o r  o u r  s p e c i f i c  n e e d s  
GRAB-32BIT-MEMORY 

- -> 

Screen 3 6  
\ CALL 3 2 - B I T  FORTH SEGMENT 1 9 J U N 9 4  RA 2 9 0 C T 9 3  
HEX HERE \ r o u t i n e  t o  r e s t o r e  1 6 b i t  p r o t  seg registers  

2 E  C ,  8 E  C ,  1E C ,  PROT-DS , \ restore 1 6 b i t  p r o t  DS s e l e c t o r  
8 C  C ,  D8 C ,  8 E  C ,  CO C ,  \ MOV AX,DS MOV E S , A X  - r e s t o r e  E S  
REST-FREGS, C 3  C ,  \ S S  s a m e  f o r  1 6  & 3 2  b i t  s ides 

CONSTANT RESTORE-PROT-REGS 
: RESTORE-PROT-REGS, CALL, RESTORE-PROT-REGS REL-TARG, ; 
CODE ( C A L L - F 3 2 )  SAVE-FREGS, 

BE C ,  S P O - 3 2  , \ MOV S I , E 0 0 0  
B 8  C ,  HERE 0 , \ MOV AX,D-SEL \ -- dse l  
8 E  C ,  CO C ,  8 E  C ,  D8 C ,  \ MOV E S , A X  MOV DS,AX 
9A C ,  \ CALL LONG \ -- d s e l  
HERE 0 , 0 , \ CALL ADDRESS \ -- dse l  c a l l  
RESTORE-PROT-REGS, 

NEXT, END-CODE DECIMAL 
CONSTANT F32-CALL-ADDR CONSTANT DATA-SEL-ADDR - -> 

Screen 37  
\ TARGET SYSTEM LOCATION AND ACCESS 0 8 J U N 9 4  RA 0 3 0 C T 9 3  
DECIMAL 

: (GO-32)  \ h o w  t o  get t h e r e  ( . . . a c t - c o d e  --- . . . ) 
U S > 3 2  
hMSTART CODE-SEL F32-CALL-ADDR D! 
DATA-SEL DATA-SEL-ADDR ! 
CR ." GOING TO r a F O R T H :  " CR .STACK-INFO 
SPO @ 0 SWAP \ o n  s t a c k  f o r  3 2 - b i t  f o r t h  t o  u s e  6 / 5 / 9 4  
( C A L L - F 3 2 )  
CR ." BACK FROM r a F O R T H :  " CR .STACK-INFO ; 

DECIMAL --> 

Screen 38 
\ MENAGERIE OF ACTION WORDS 

0 CONSTANT d o - n o t h i n g  
1 CONSTANT g e t - c f a  
2 CONSTANT e x e c u t e  
3 CONSTANT da ta  
4 CONSTANT c a l l b a c k  

: GO-32 \ j u s t  g o  there  
d o - n o t h i n g  (GO-32)  ; 

: F I N D - 3 2  \ get 3 2 - b i t  c f a  ( --- i d C F A  T 1 
DS@ U S > 3 2  BL WORD U S > 3 2  g e t - c f a  ( G O - 3 2 )  OR FLAG 

: EXECUTE-32 \ e x e c u t e  3 2 - b i t  c f a  ( i d C F A  --- ) 
e x e c u t e  ( G O - 3 2 )  ; 

: DO-32 \ b o t h  o f  t h e  a b o v e  
F I N D - 3 2  I F  EXECUTE-32 E L S E  CR ." F I N D - 3 2  F A I L U R E  " 

: DATA-PAD \ p a s s  d a t a  b u f f e r  a d d r  ( a d d r e s s  --- ) 
DS@ U S > 3 2  ROT U S > 3 2  da ta  (GO-32)  ; --> 

THEN : 

Screen 3 9  
\ FAKE FORTH WORD FOR CALLBACK USE 

: GO-BACK-UP 
R >  DROP R> DROP R> DROP \ " n o r m a l i z e "  r e t u r n  s t a c k  
GO-32 ; 

1 HERE ' NOOP , ' GO-BACK-UP , CONSTANT WORM 
--> 

18 Forth Dimensions 



I lists that include code words. The solu- 

I S c r e e n  4 0  
\ CALLBACK RA 1 5 J U N 9 4  I tion I found was to create a two-word 

1 HEX ( i d l 6 b i t - c f a  --- ) I sequence consisting of NOOP and a word 
\ c o m i n g  f r o m  a 3 2 - b i t  t o  a 1 6 - b i t  v i e w  o f  t h e  s t a c k ,  t h e  l o w  
\ w o r d  o f  t h e  3 2 - b i t  d o u b l e  i s  o n  t o p  
HERE \ a d d r e s s  o f  c a l l b a c k  h a n d l e r  

RESTORE-PROT-REGS, 
5 8  C ,  \ POP A X = c f a  c a l l b a c k  ( l o w e r  1 6  b i t s )  
A 3  C ,  WORM , \ MOV [ m o c k - p f a l  ,AX ( m o c k  F o r t h  w o r d )  
5 8  C ,  \ POP AX=O ( h i g h  1 6  b i t s  o f  c a l l b a c k )  
BE C ,  WORM , \ MOV S 1 , m o c k - p f a  ( F o r t h  I P )  
NEXT, 

DECIMAL CONSTANT (CALLBACK) 

: SET-CALLBACK ( cfa  --- ) 
U S > 3 2  (CALLBACK) U S > 3 2  c a l l b a c k  ( G O - 3 2 )  ; --> 

--> 

called GO-BACK-UP, which pops some 
things off the return stack and returns to 
the 32-bit segment. The callback han- 
dler, then, takes the 16-bit cfa it finds on 
the stack, shoves it into memory in place 
of the NOOP, points the Forth IP at it, 
and executes NEXT. The Forth indirect- 
threaded virtual machine then just ex- 
ecutes the list fragment, which is now 
the callback word, and the word to 
return to the 32-bit Forth-and that's it. 

As written, SET-CALLBACK provides 

\ i f  m o d e s w  h a s  b e e n  set DPMI h a s  b e e n  c a l l e d  
m o d e s w  @ FLAG 
\ s o  w e  j u s t  m a k e  s u r e  w e ' r e  i n  p r o t e c t e d  m o d e  
I F  >PROT 
\ o t h e r w i s e  w e  a c t i v a t e  DPMI w h i c h  p u t s  u s  i n  p r o t e c t e d  m o d e  
E L S E  SET-PROT 
THEN ; 

RE- : BYE 
\ i f  DPMI h a s  b e e n  a c t i v a t e d  w e  h a v e  t o  e x e c u t e  BYE 
\ i n  protected m o d e  f o r  p r o p e r  c l e a n u p ,  AND 
\ BYE m u s t  e x e c u t e  I N T  2 1 h  f u n c t i o n  4 C h  
m o d e s w  @ I F  >PROT THEN BYE ; --> 

S c r e e n  4 1  
\ ASSURE-PROT REDEFINED BYE 15MAR94 RA 1 6 N O V 9 3  
ONLY FORTH ALSO DOS ALSO FORTH D E F I N I T I O N S  DECIMAL 
: ASSURE-PROT 

S c r e e n  4 2  
\ LOAD-IMAGE 15MAR94 RA 1 6 N O V 9 3  
ONLY FORTH ALSO DOS ALSO FORTH D E F I N I T I O N S  DECIMAL 
: (LOAD-IMAGE) ( f b u f  b u f f e r  o f f s e t  --- ) 

>R \ f b u f  b u f  
BEGIN 

2DUP 1 0 2 4  READ? \ f b u f  b u f  f l a g  
DS@ PLUCK DATA-SEL R @  \ f b u f  b u f  f l a g  ds b u f  d s e l  o f f  
1 0 2 4  CMOVEL \ f b u f  b u f  f l a g  
R> 1 0 2 4  + >R 

O= UNTIL 
R >  DROP 2DROP ; 

: LOAD-IMAGE 
ASSURE-PROT 
FLUSH OFBUF [COMPILE]  FILENAME OFBUF FREOPEN 0 .  OFBUF SEEK? 
OFBUF 0 BUFFER 0 (LOAD-IMAGE) OFBUF FCLOSE ; 

for registering only one callback address 
at a time, but it would be easy to extend 
this to multiple callbacks through an 

S c r e e n  60  
\ DISPATCHER: WORDFINDER DISPATCH RA 0 9 J U N 9 4  
d o - n o t h i n g  US>D MCONSTANT d o - n o t h i n g  
get-cfa US>D MCONSTANT get-cfa 
e x e c u t e  US>D MCONSTANT e x e c u t e  
d a t a  US>D MCONSTANT d a t a  \ da ta  b l a c k b o a r d  
c a l l b a c k  US>D MCONSTANT c a l l b a c k  

M: WORDFINDER ( seg o f f  --- c f a  f l a g  I x 0 ) 

2DUP C @ L  1 +  DS@ HERE ROT 
HEX 
M." ABOUT TO CMOVEL " \ . S  
CMOVEL HERE F I N D  M; 

M: DISPATCH ( c f a  --- ) 
M." ABOUT TO DISPATCH I' HEX .DEPTH KEY DROP EXECUTE M; 

--> 

Forth Dimensions 19 

array on the 32-bit side or even by 
passing names and creating actual Forth 
words in the 32-bit side that call 16-bit 
code. 

... i t  allows the use 
of familiar tools 
without having to 
rewrite or port them 
to the 32-bit level. 

Finally 
What I have, then, at this stage, is a 

16-bit Forth (Guy Kelly's), some words 
to enter protected mode via DPMI and to 
call a number of DPMI functions, and a 
target compiler which creates a 32-bit, 
subroutine-threaded Forth (based on 
Robert Illyes' riFORTH): something like 
off-the-shelf components. The 32-bit 
Forth, while still primitive, is capable of 
compiling from source files as well as the 
command line, and of saving its execut- 
able image to disk. If this seems a bit 
ornate, it's really not: every 32-bit pro- 
gram that runs on DOS has to have a 16- 
bit component to get it started; in this 
case, the 16-bit component happens also 
to be a Forth which runs in both pro- 
tected and real modes. The ability to 
switch among these three modes, diffi- 
cult to imagine in other languages but 
almost unavoidable in Forth, is one of 
the most interesting features of all this, 
particularly since it allows the use of 
familiar tools without having to rewrite 
or port them to the 32-bit level. 

What I hope I've been able to demon- 

January 1995 February 



strate, however, is not the creation/ 
porting of a particular Forth in/to 32-bit 
protected mode, but a straightforward 
technique for getting there. Since all of it 
is written in one Forth or another, you 
don't have to use an assembler or a 
linker or a protected mode program 
loader to do  it. All you need, though this 
is not nothing, is a 386 or higher DOS 
machine and a memory manager that 
supports DPMI. 

Bibliography 
Ray Duncan, editor. Extending DOS A 

Programmers Guide to Pmtected- 
Mode DOS. 

Robert L.  Hummel. PC Magazine 
Programmer's Technical Reference: 
The Processor and Coprocessor. 

A1 Williams. DOS5: A Developer's Guide. 
(A later edition, following MS-DOS 
major revision numbers, is current, 
but this is the edition I own.) 

A1 Williams. DOS and Windows Pro- 
tectedMode: Programming with DOS 
Extenders in C 

DOS Protected Mode Intevace (DPMI) 
Specification This is available for 
versions 0.9 and 1.0 from Intel, order 
numbers 240763-001 and 240977-001, 
respectively. Windows 3.1 partially 
implements version 0.9, QEMM cur- 
rently implements version 0.9, and 
386MAX currently implements ver- 
sion 1.0. I use functions from version 
0.9 that are also available in 1.0. 

This may be an 
idea whose time 
has passed, 
but it is one that 
to my knowledge 
hasn't been 
sufficiently explored. 

Screen 61  
\ DISPATCHER: REG-CALLBACK 

MVARIABLE CALLBACK-HANDLER 
MVARIABLE CALLBACK-CFA \ l a t e r  t h e y  w i l l  g e t  names &C 

M: REG-CALLBACK ( c f a  c a l l b a c k - h a n d l e r  --- ) 
CALLBACK-HANDLER ! 
CALLBACK-CFA ! 
CR M." CALLBACK HANDLER AT " CALLBACK-HANDLER @ H. 
CR M. " CALLBACK CFA = " CALLBACK-CFA @ H. 

M; 
--> 

Screen 62 
\ F I N A L  WORDS: BACK DO-CALLBACK 15JUN94 RA 0 2 0 C T 9 3  
HEX I BACK. \ long  jump back t o  c a l l i n g  1 6 - b i t  segment 

E A M C ,  MHERE 0 0 . 0 0  MD, MHEREOO MW, r e t  
S>D MCONSTANT RETSEG S>D MCONSTANT RETOFF 

M: BACK .STACKS DUP BACK. M; \ push TOS t o  hardware s t a c k  
HEX I CALLBACK. \ long  jump back t o  c a l l i n g  1 6 - b i t  segment 

EA MC, MHERE 0 0 . 0 0  MD, MHERE 0 0  MW, r e t  
S > D  MCONSTANT CBSEG S > D  MCONSTANT CBOFF 

M: SETUP-CALLBACK-ADDRESSES 
CALLBACK-HANDLER @ CBOFF ! RETSEG @ CBSEG ! M; 

M: DO-CALLBACK 
SETUP-CALLBACK-ADDRESSES 
CALLBACK-HANDLER @ CBOFF ! RETSEG @ CBSEG ! 
CALLBACK-CFA @ 0 CALLBACK. M; - -> 

Screen 63 
\ DISPATCHER: I N  PLACE OF COLD ON ENTRY 3 0 0 C T 9 3  RA 0 2 0 C T 9 3  
M: DISPATCHER 

CR DECIMAL EMPTY-BUFFERS \ ZERO removed 6 / 7 / 9 4  
CR M. " ENTRY CODE I S :  " DUP . .STACKS SHOW-SEGS 
DUP do-nothing = 

M I F  DROP CR M." 3 2 - B I T  FORTH DISPATCHER " CR ( Q U I T )  MELSE 
DUP get-cfa  = 
M I F  DROP CR M." WORDFINDER " WORDFINDER BACK MELSE 
DUP e x e c u t e  = 
M I F  DROP CR M." DISPATCHER " DISPATCH BACK MELSE 
DUP d a t a  = 
M I F  DROP CR M . '  DATA PAD " H. BACK MELSE \ not  done y e t  
DUP c a l l b a c k  = 
M I F  DROP CR M." CALLBACK REG " REG-CALLBACK ( Q U I T )  MELSE 

CR M ." UNKNOWN CODE " BACK 
MTHEN MTHEN MTHEN MTHEN MTHEN M; --> 

Screen 6 4  
\ F I N A L  WORDS: PRE-COLD 0 7 J U N 9 4  RA 0 2 0 C T 9 3  
HEX 

I PRE-COLD MI \ c a r e f u l  t o  m a i n t a i n  same param s t a c k  a s  1 6 b i t  
DROP \ g e t  t o p  s t a c k  element  i n t o  TOS r e g i s t e r  
DUP RETOFF W! HIWORD RETSEG W! \ s t o r e  r e t u r n  addr  i n  BACK 

4 t SPO ! \ v a l u e  passed  on s t a c k  from 1 6 - b i t  s i d e  
R P @  RPO ! \ S P @  SPO ! 
.STACKS CR . R E G I S T E R S  CR 
NORM-SP 
.STACKS \ .DEPTH 
\ e i t h e r  DISPATCHER o r  COLD c a l l e d  h e r e  
DISPATCHER M; 

\ COLD M; 
DECIMAL --> 

Richard Astle has a Ph.D. in English Literature and nine 
years of database programming in Forth. He can be 
reached via e-mail at rastIe@aol.com and 
76450.16@compuse~e.com and will be glad to mail 
the complete source code to anyone who sends a disk 
and a self-addressed, stamped mailer to him at P.O. 
Box 8023,  La Jolla, California 92038-8023. 

January 1995 February Forth Dimensions 



A Forth-Oriented 
Compiler Compiler and 
its Applications 
Mati Tombak, Viljo Soo, Jaanus Poial 
Tartu Universit~ Estonia 

The stack-oriented languages (Forth, Postscript, etc.) 
are often used as intermediate or target languages in 
software systems because of their portability, flexibility, 
compactness, and simplicity. In the field of compiler 
compilers, the concept of a "virtual stack machine" is often 
used to describe the source language semantics and 
program interpretation. Unfortunately, every author uses 
hisher own stack machine. The main idea of our ap- 
proach is to use the real, widely known, and standard 
language (Forth-83) in the role of intermediate code in the 
compilers. The extensibility of Forth allows one to build 
a virtual machine with a problem-oriented instruction set 
as the source language. 

The compiler compiler TARTU is fully Forth oriented 
I (i.e., Forth is the implementation language of the system 

and the target language of the compilers written in 
TARTU). This choice determines formalism for the de- 
scription of the source language seman- 
tics. In the TARTU system, the syntax of 
the source language must be described 
conventionally by means of context-free 
grammar. The (1,l)-DMSP parsing method 
is used (a generalization of mixed strategy 
of precedence). In principle, we may use 
any bottom-up method. 

The description of the semantics con- 
sists of: 
1. Translation from the source language 

into Forth, which must be described by 
a special kind of syntax-directed trans- 
lation scheme. 

2. Semantical analysis (context checking) 
and "threaded coden generation, which 
must be described in Forth, using the 
fact that Forth is a one-pass 
macroprocessor for itself (IMMED IATE 
words). 

3. Proper semantics (run-time semantics), 
which must be described as an exten- 
sion of Forth. 

The following example demonstrates 

Forth Dimensions 

the metalanguage of the TARTU system for writing the 
translation scheme. We use the "standard" lexical analyzer 
of ALGOL-like languages with predefined classes of 
tokens. 

[I1 - class of tokens "identifier," 
[Cl - class of tokens "unsigned integer," 
l<delimiter>S<delimiter>l- class of tokens "string," e.g., 

[ { S l l .  

Instances of these classes are translated one to one 
(textually). Other Forth words are generated using the so- 
called translation components which are connected with 
the grammar rules (non-terminal nodes of the syntax tree). 
[See Figure OneJ 

This translation scheme generates the Forth text in the 
following way: 

Figure One. 

#REG xxx# regime of translation xxx (starts the text generation 
from the subtree of the syntax tree), 

#PERM k l  ... kn # permutation of subtrees, 
#POST ... # postfuc component of the text generation, 
#PRE ... # prefix component of the text generation. 

=DEF= p r o g  
=COMMENT= [ { S ) 1 

p r o g  ==> s t m s  #REG TRANS# ; 
s t m s  ==> s t m  / 

s t m s  s t m  ; 
s t m  ==> 'VAR' [I] #PRE VARIABLE# / 

' PRINT'  exp  #POST . # / 
id . .=I  exp  #PERM 2 1 # #POST ! #  ; 

id = = > [ I ] ;  
exp ==> mon / 

e x p  '+' mon #POST +# ; 

mon ==> t e r m  / 
mon I*'  t e r m  #POST *# ; 

t e r m  ==> [Cl / 
exp  ' ) I  / 

id #POST @ #  ; 
=END= 

21 January 1995 February 





a Pretty-Printer 
Ronald 7: Kneusel 
Milwaukee, Wisconsin 

Forth code is beautiful. A listing of Forth reads like a 
poem, according to Chris Heilman, author of Pocket Forth. 
Sadly, Forth's appearance is drab. It resembles a newspa- 
per editorial, a Final Demand notice, or COBOL code. I 
decided that Forth deserved better. Its beauty should shine 
through even a printout, I thought. So I wrote Forth2LaTeX. 
It wasn't all altruism: I needed to dress up  another project 
of mine. But it was a fine by,product. 

Forth2LaTeX brings oudthe beauty of Forth code by 
transforming it into ~ a ~ e x  a variation of Donald Knuth's 
famous TeX typesetti& system. I've seen other pretty- 
print programs, but ngne for Forth, and I haven't searched 
for one. My hobby ,?s re-inventing the wheel. 

Forth2LaTeX is meant for anyone who would like to 
create eye-catching source-code listings, though profes- 
sionals and academics will be its major users. The program: 

sets code and comments in different fonts, 
numbers lines, 
highlights programmer-defined words, 
generates an alphabetical index of word definitions and 
associated line numbers, 
makes lise of LaTeX's sectioning abilities, to create either 
an arlicle (for shorter programs) or a report with chapter 
headings, 
outbuts a table of contents, and 
lets the programmer plant LaTeX code within the Forth 
code. 

Additionally, Forth2LaTeX permits straightforward text 
within the Forth source code. A programmer can write 
source code that runs and generates its own formal report 
when finished. 

The Forth2LaTeX prototype is a Modula-2 application 
for the Apple Macintosh. Why not Forth? Modula-2 was 
faster to start with, and friendlier with the Macintosh GUI 
interface. However, for maximum portability, final ver- 
sions will be in C. 

A nice feature of Forth2LaTeX is that it knows nothing 
of Forth other than what a comment is, and how words and 
other structures are created via the words : (colon), 
VARIABLE, CONSTANT, and CREATE. This makes it 
virtually universal, untied to any particular Forth dialect. 

Run the program, and it makes two passes through the 
source code. One gathers Forth2LaTeX settings from 

comment statements, the other does the actual translation. 
Choose your settings with command-line switches, or 
menu selections on the Mac. Settings within the source 
code as Forth comments are also supported. 

Most lines in the source code are simply copied to the 
output file, character by character, after passing through a 
mapping that converts lowercase to uppercase (if en- 
abled), and converts special LaTeX characters to their 
equivalents. For example, the $ character is used by LaTeX 
to begin inline mathematics mode. So each occurrence of 
$ in the input code must be replaced by \ $ to make LaTeX 
generate the correct character. LaTeX removes extra 
spaces unless they are preceded by a \ character. 
Forth2LaTeX clutters the output code with unpoetic \ 
characters, but they preserve the indentations set by the 
programmer. Code itself is set in LaTeX's monospaced 
typewriter font, to ensure correct formatting. 

Lines of source text that mark specific commands or 
sections are treated differently from lines of pure Forth 
code. The first pass through the code finds all parameter 
settings. These lines are either copied as-is, or are removed 
from the output. For example, to credit the original 
programmer, you write a comment line of the form: 
\ A u t h o r :  J o e  S c h l a b o t n i k  

This provides information for the title page and is echoed 
in the output. However, a line to mark a section of code, 
such as 
\ S e c t i o n :  C a l c u l a t e  t h e  E i g e n v a l u e s  

won't appear in the output. 
If the line contains a definition of some kind, it's placed 

into a binary tree, along with the line number for later 
output in the index. If boldface is enabled, the name is 
copied to the output within a { \bf 1 .  

Like LaTeX, Forth2LaTeX can chop a document into 
chapters (reports only), sections, subsections, and sub- 
subsections. It is this sectioning ability, plus the capacity 
to make comments of the form \ . [ t e x t  1 typeset as 
normal, that inspired Forth2LaTeX. 

Figure One is a Forth program which estimates the 
square root of an integer. The code contains the 
Forth2LaTeX settings within comments. The only com- 
ment that Forth2LaTeX itself notices is the \ variety, 

Forth Dimensions 23 January 1995 February 



Figure One. Forth code with Forth2LaTeX settings. 

\ Program: Square Root (a) 
\ Author: Ronald T.  Kneusel 
\ S t a r t e d :  10/24/94 
\ Modified: 10/29/94 
\ Modify By: RTK 
\ Summary: Es t imates  t h e  square  roo t  of an i n t e g e r  u s ing  i n t e g e r  a r i t h m e t i c  
\ Comments: FORTH (b) 
\ ( t h i s  i s  t h e  d e f a u l t ,  t h e  o t h e r  op t ion  i s  LATEX) 
\ S t y l e :  REPORT 
\ ( swi tch  from ARTICLE t o  REPORT s o  we can use  chap te r s )  
\ Index: ON 
\ ( c r e a t e  an index of programmer de f ined  words) 
\ Bold: ON 
\ (bold  word names when de f ined )  
\ Lef t  Margin: -0.5in 
\ ( d e f a u l t  i s  l i n  margin, t h i s  adds a  nega t ive  o f f s e t  t o  g e t  0 .5 in  margins) 
\ Chapter:  Es t imate  t h e  Square Root of an I n t e g e r  (c) 
\ .  
\ . This  t e x t  w i l l  be t y p e s e t  a s  normal and w i l l  make it appear  t h a t  t h e  
\ . source-code i s  pas t ed  i n t o  t h e  t e x t  t h a t  makes up t h e  a r t i c l e  o r  r e p o r t .  
\ . This  program w i l l  e s t i m a t e  t h e  square  r o o t  of an i n t e g e r ,  u s u a l l y  t o  
\ . wi th in  5  pe rcen t  of t h e  a c t u a l  va lue .  
\ .  
\ Sect ion:  The SQRT func t ion  
0  v a r i a b l e  n  
: s q r t  ( n -- f r a c  s q r t  ) 

\ Subsec t ion:  I n i t i a l i z e  count 
dup n  ! 1 \ i n i t i a l  count  
\ Subsec t ion:  Sub t r ac t  odd i n t e g e r s  whi le  p o s i t i v e  
32750 1 do 

swap i - dup 1 < i f  
i +;10000 n  @ * /  swap \ e s t i m a t e  decimal 
dug dup * n @ = i f  
Awap drop  0  swap \ no e s t i m a t e  i f  exac t  

/ e l s e  ' 1- \ c o r r e c t  i nexac t  r e s u l t  
t hen  
32750 \ done 

e l s e  
swap 1+ 2  \ i n c r e a s e  count 

t hen  
+loop ; 

\ Sect ion:  The M A I N  func t ion  
: main ( -- ) \ t a b l e  of square  r o o t s  from 500 t o  1000 

. "  X Square roo t  X" c r  
1001 500 do 

i dup . space  s q r t  . 46 emlt . c r  
25 +loop : 

reserving ( ... ) delimited comments for stack effects. 
The comments in part (a) of Figure One give 

Forth2LaTeX information that will be printed on the 
listing's title page. Since the program makes two passes, 
it does not matter where these or any other settings are 
placed. Put them at the end, if you wish, or omit them. 

Part (b) shows how settings are placed within the file 
to control Forth2LaTeX. The Comments setting deter- 
mines how Forth2LaTeX treats comments within the code. 
If set to LATEX there will be no mapping of characters 
within comments, allowing the programmer to place 
actual LaTeX commands in the code. The L e f t  Margin 
setting may seem odd, but LaTeX defaults to one inch 

down and one inch to the right, so changes to these 
settings must be made as offsets. Thus, to set the left 
margin at 0.5 inch, add an offset of -0.5 inch. 

Part (c) marks the beginning of a new chapter. Because 
we switched Style to REPORT, chapters are permitted; they 
are ignored in ARTICLE format. The lines below this are 
comments of the form \ . [ t e x t  1, typeset as normal, 
with no mapping of characters: you can write in pure 
LaTeX. Also, enclose part of a comment in backquotes (' ) 
and no mapping will occur. 

Part (d) is the actual code for the square root program 
with sectioning added as an illustration. 

Figure Two is the LaTeX code generated from Figure 

January 1995 February 24 Forth Dimensions 



I Figure Two. LaTeX code generated from Figure One. I 
\documentstyle [l2pt] {report) (a) 
... page setup statements skipped ... 
\begin{document) 
\pagestyle(plain) 
\pagenumbering(roman) 
\title{{\bf Square Root)) (b) 
\author{{\small Ronald T. Kneusel)) 
\date{(\small \today)) 
\maketit le 
\vspace(4in) \hfil \break {\large{\bf Program Information:)) \hfil \break 
\hfil \break 
(\bf Summary:)\ \ Estimates the square root of an integer using integer arithmetic\hfil \break 
(\bf Author:)\ \ Ronald T. Kneusel\hfil \break (c) 
{\bf Modified:)\ \ 10/29/94\hfil \break 
{\bf Modify by:)\ \ RTK\hfil \break 
{\bf Lines:)\ \ 46\hfil \break \clearpage 
\tableofcontents \clearpage 
\pagestyle(plain) 
\pagenumbering(arabic) 
\setcounter{page){l) 
\makeatletter 
\def\@evenfoot { ) 
\def\@evenhead{\hfil\thepage\hfil) 
\def\@oddhead(\@evenhead) 
\def\@oddfoot(\@evenfoot) 
\makeatother 
\small (dl 
\leftline{{\tt0000\ -\  ){\itS\backslashS\ Program:\ Square\ Root)) 
\leftline{(\tt0001\ -\  ){\itS\backslashS\ Author:\ Ronald\ T.\ Kneusel)) 
\leftline{(\tt0002\ - \  ){\itS\backslashS\ Started:\ 10/24/94)) 
\leftline{ (\tt0003\ - \  ) {\itS\backslash$\ Modified:\ 10/29/94) ) 
\leftline{{\tt0004\ - \  ){\itS\backslash$\ Modify\ By:\ RTK)) 
\leftline{{\tt0005\ - \  ){\itS\backslash$\ Summary:\ Estimates\ the\ square\ root\ of\ an\ integer\ 
using\ integer\ arithmetic)) 
\leftline({\tt0006\ -\  ){\itS\backslashS\ Comments:\ FORTH)) 
\leftline{{\tt0007\ -\ ){\itS\backslashS\ (this\ is\ the\ default,\ the\ other\ option\ is\ LATEX))) 
\le tline{{\tt0008\ -\  ){\itS\backslashS\ Style:\ REPORT)) 
eftline{{\tt0009\ -\  ){\it$\backslashS\ (switch\ from\ ARTICLE\ to\ REPORT\ so\ we\ can\ use\ Ll/i 

'chapters) ) ) 
\leftline((\tt0010\ - \  ){\itS\backslash$\ Index:\ ON)) 
\leftline{(\ttOOll\ - \  ){\itS\backslashS\ (create\ an\ index\ of\ programmer\ defined\ words))) 
\leftline({\tt0012\ -\ ){\it$\backslashS\ Bold:\ ON)) 
\leftline({\tt0013\ - \  )(\itS\backslashS\ (bold\ word\ names\ when\ defined))) 
\leftlineI{\tt0014\ - \  ){\itS\backslashS\ Left\ Margin:\ -0.5in)) 
\leftline{{\tt0015\ -\  ){\itS\backslashS\ (default\ is\ lin\ margin,\ this\ adds\ a\ negative\ offset\ 
to\ get\ 0.5in\ margins))} 
\chapter{ Estimate the Square Root of an Integer) (4 

This text will be typeset as normal and will make it appear that the 
source-code is pasted into the text that makes up the article or report. 
This program will estimate the square root of an integer, usually to 
within 5 percent of the actual value. 

(Figure Two continues on next page.) 

One after it's been through Forth2LaTeX. The t a b l e  of 
c o n t e n t s  and f o r c e  u p p e r c a s e  options were set via 
the application, not the code example. It's cluttered, but 
the final product is elegant (see Figure Three) and may be 
made more elegant by adding LaTeX code in strategic 
places. I've marked some key areas that are created by 
Forth2LaTeX and labeled them (a) through (f). 

For example, Part (a) of Figure Two defines the 
document type, sets up the page, and starts the document. 
Part (b) contains the information that is used in the title 
page and part (c) has the program information. Part (d) 
begins the source code for the program. It continues after 
the text in pan (el. LaTeX's natural unit is the paragraph, 

but it's not wanted here. To make LaTeX treat the code on 
a line-by-line basis the \ l e f t l i n e  command is used. 
Initially, I used an \hf il \ b r e a k  combination, but this 
caused TeX's memory to be exceeded for all but the 
smallest programs. All code between the braces is set on 
a single line. For example, 
\ l e f t l i n e { { \ t t 0 0 2 7 \  -\ \ \ \ \ \ SWAP\ 
I\ -\ DUP\ l\ <\ IF\ \ 1 ) 

This line contains only Forth code and is set in typewriter 
font \ tt  with the line number indicated first. Note the 
many \ characters to force spaces to appear. This line: 
\ l e f t  l i n e  { { \ tt 0 02  5\ -\ \ DUP\ N\ ! \ 1\ \ 
} ( \ i t $ \ b a c k s l a s h $ \  i n i t i a l \  c o u n t } )  

Forth Dimensions 25 January 1995 February 



(Figure Two, continued.) 

\section{ The SQRT function) 
\leftline{{\tt0023\ - \  O\ VARIABLE\ N)) 
\leftline{{\tt0024\ - \  : \  {\bf SQRT)\ \ ( \  N\ - - \  FRAC\ SQRT\ ) ) I  
\subsect ion { Initialize count ) 
\leftline{{\tt0025\ - \  \ \ \ DUP\ N\ ! \  1\ \ ){\it$\backslash$\ initial\ count)} 
\subsection{ Subtract odd integers while positive) 
\leftline{{\tt0026\ - \  \ \ \ 32750\ 1\ DO)) 
\leftline({\tt0027\ -\  \ \ \ \ \ SWAP\ I\ -\ DUP\ 1\ <\  IF\ \ } )  

\leftline{{\tt0028\ - \  \ \ \ \ \ \ \ I\ + \  10000\ N\ @ \  * / \  SWAP\ ){\it$\backslash$\ estimate\ 
decimal\ 1 )  
\leftline{{\tt0029\ - \  \ \ \ \ \ \ \ DUP\ DUP\ * \  N\ @ \  =\ IF)) 
\leftline((\tt0030\ -\ \ \ \ \ \ \ \ \ \ SWAP\ DROP\ O\ SWAP\ \ }{\it$\backslash$\ no\ estimate\ 
if\ exact) } 
\leftline{{\tt0031\ - \  \ \ \ \ \ \ \ ELSE)) 
\leftline{(\tt0032\ - \  \ \ \ \ \ \ \ \ \ 1-\ \ \ )(\it$\backslash$\ correct\ inexact\ result)) 
\leftline{{\tt0033\ - \  \ \ \ \ \ \ \ THEN)) 
\leftline({\tt0034\ -\  \ \ \ \ \ \ \ 32750\ \ )(\it$\backslash$\ done\ ) )  

\leftline{{\tt0035\ -\  \ \ \ \ \ ELSE)) 
\leftline((\tt0036\ - \  \ \ \ \ \ \ \ SWAP\ l+\ \ 2\ \ )(\it$\backslash$\ increase\ count)) 
\leftline{{\tt0037\ - \  \ \ \ \ \ THEN)) 
\leftline{{\tt0038\ - \  \ \ \ +LOOP\ ; } }  
\section{ The MAIN function) 
\leftline({\tt0039\ - \  :\ (\bf MAIN}\ \ ( \  - - \  ) \  \ ){\it$\backslash$\ table\ of\ square\ roots\ 
from\ 500\ to\ 1000)) 
\leftline({\tt0040\ - \  \ \ \ ."\ \ X\ \ \ \ Square\ root\ X u \  CR)} 
\leftline{{\tt0041\ - \  \ \ \ 1001\ 500\ DO)) 
\leftline{{\tt0042\ - \  \ \ \ \ \ I\ DUP\ . \  SPACE\ SQRT\ .\ 46\ EMIT\ .\ CR)) 
\leftline{{\tt0043\ - \  \ \ \ 25\ +LOOP\ ; ) )  

\leftline{ {\tt0044\ -\  ) )  
\appendix (f) 
\chapter{Index of User-Defined Names) 
\begin{tabular) (11111) 
{\rm MAIN)\ {\tt (0039)) & {\rm SQRT)\ {\tt (0024)) & \ \  
\end{tabular} 
\end{document ) 

contains a comment. Comments are set in italics \ i t  so 
you must use the awkward $ \ b a c k s l a s h $  string of 
characters to create the \ character: the $ starts LaTeX's 
math mode and makes the \ b a c k s l a s h  command 
available to print a \ character, and the last $ turns off the 
math mode. Spaces are escaped, since the comments 
setting is FORTH and not LATEX. 

Part (el shows what happens to \ . comments in the 
Forth source code. The text on these lines will be set as a 
paragraph in normal Roman font, which looks pleasing 
when printed. Part (0 sets the index of defined words as 
an appendix. The table is created in alphabetical order by 
the Forth2LaTeX program and uses the standard LaTeX 
tabular environment. \ e n d  I document 1 completes the 
translation. 

Forth2LaTeX has no error-handling routine because it's 
not necessary. Most pretty-printers require syntactic cor- 
rectness, but Forth2LaTeX just scans for special characters 
or predetermined strings. There is an upper limit on the 
size of the input and output string, but most programmers 
write code that fits in 80- to 132-character lines anyway. 

Though the prototype of Forth2LaTeX is for ~ a c i n t o s h  
in Modula-2, I will port it to C for Unix, VAXDMS, and MS- 
DOS to make it as universal as possible. There are many 
features that could, and likely will, be added, including 
alternate fonts for code and comments, highlighting of 
programmer-defined words, and the ability to include 
other source-code files. The most recent version of the 
program is available from me via e-mail. 

Forth2LaTeX acts like a compiler for LaTeX, itself a 
language for typesetting documents. I've had a 
Forth2Postscript translator suggested to me, but the 
Forth2LaTeX translator is already the "front end" of a 
Forth2Postscript translator with LaTeX as the intermediate 
language, and LaTeX itself as the "back end." 

The ability to include LaTeX in the code creates some 
interesting possibilities. For example, inclusion of figures 
and graphics through the \ s p e c i a l  command, available 
on some LaTeX implementations like OzTeX for the 
Macintosh, or the automatic generation of footnotes, or a 
bibliography. It might even be possible to reverse Forth 
expressions in p o s t f i x  and output them in LaTeX's math 
mode in i n £  i x  notation for easier reading. The addition 

, of structured code "filters" to impose a form of structured 
coding style on the output is another possibility.. . 

As someone once might have said, "Of the writing of 
Fonh code, and Fonh tools, there will be no end..  ." 

Ronald T. Kneusel usually works in Pocket Forth for the Macintosh, but is in the 
midstof acornputeralgebraproject in Forth using Yerk. He is trying to keep the 
code fairly portable, and promises to put it on the Internet when completed. He 
has used Forth to write a small IFS fractal generator and a microcomputer 
simulator. Both are available via FTP from mac.archive.umich.edu as lrnacl 
graphicslfractallfractallabkit and lrnacldeveloprnentllanguagesl 
mdp8Gvl.3.sit.hqx. Kneusel is just starting a Ph.D. program in mathematics 
and computer science in at Marquette University. To obtain information about 
how to acquire the latest version of ForthZLaTeX, he can be contacted by mail 
at 8725 West Burdick Avenue, Milwaukee, Wisconsin 53227 U.S.A., and by 
e-mail at kneusel6studsys.mscs.mu.edu. 

January 1995 February 26 Forth Dimensions 



Figure Three. Final LaTeX output. 
- 

00000 - \ Program: Square Root 
00001 - \ Author: Ronald T. Kneusel 
00002 - \ Started: 10/24/94 
00003 - \ Modified: 10/29/94 
00004 - \ Modify By: RTK 
00005 - \ Summary: Estimates the square root of an integer using integer arithmetic 
00006 - \ Comments: FORTH 
00007 - \ (this is the default, the other option is LATEX) 
00008 - \ Style: REPORT 
00009 - \ (switch from ARTICLE to REPORT so we can use chapters) 
00010 - \ Index: ON 
00011 - \ (create an index of programmer defined words) 
00012 - \ Bold: ON 
00013 - \ (bold word names when defined) 
00014 - \ Left Margin: -0.5in 
00015 - \ (default is l i n  margin, this adds a negative oflset to get 0.5in margins) 
00016 - \ Chapter: Estimate the Square Root of an Integer 
This text will be typeset as normal and will make it appear that the source code is pasted into the 
text that makes up the article or report. 
This program will estimate the square root of an integer, usually to  within 5 percent of the actual 
value. 

1 The SQRT function 
00024 - 0 VARIABLE N 
00025 - : SQRT ( N -- FRAC SQRT ) 

1.1 Initialize count 

00026 - DUP N ! 1 \ initial count 

1.2 Subtract odd integers while positive 
00027 - 32750 1 DO 
00028 - SWAP I - DUP 1 < IF 
00029 - I + 10000 N Q */ SWAP \ estimate decimal 
00030 - DUP DUP * N Q = IF 
00031 - SWAP DROP 0 SWAP \ no estimate if exact 
00032 - ELSE 
00033 - 1- \ correct inexact result 
00034 - THEN 
00035 - 32750 \ done 
00036 - ELSE 
00037 - SWAP 1+ 2 \ increase count 
00038 - THEN 
00039 - +LOOP ; 

2 The MAIN function 
00040 - : MAIN ( -- ) \ table of square roots from 500 to 1000 

Forth Dimensions 27 January 1995 February 



Using Zeller3 
Congruence 
to Calculate the Weekday from a Date 

Walter J. Rottenkolber 
Mariposa, California 

If you are like me, you might remember the date of an 
important event, but do  you know what day of the week 
it was? If you need help, calculate the day of the week with 
Zeller's Congruence. 

The formula is: 
DW=(12 .6*m#-0 .21  + d + h +  lh/4I + 

I c/4 I - 2'~) MOD 7 

where 
DW = day of week (Sunday = O...Saturday = 7) 
m# = month number (March = l...Febmary = 12) 

d = day of month 
c = century 
h = hundreds in year 

Note: I x l = truncated integer 

The month number begins with March as 1, and ends 
with February as 12. The word M# does the conversion. For 
the calculation, January and February are included with 
the previous year to simplify dealing with leap years. The 
first line of CALCDW does this automatically. 

This calculation is for the Gregorian calendar only. It 
will be invalid for other calendars, such as the Julian. The 
problem is compounded because, although officially the 
Julian calendar ended on Thursday, October 4, 1582, and 
the Gregorian calendar began on the next day, ~ r i d a ~ ,  as 
October 15, 1582, it did so only in the Catholic countries. 
The non-Catholic countries converted it gradually, at 
irregular intervals. In England and the colonies, it did not 
occur until 1752. 

Dw takes the date and prints the day of the week. The 
date must be entered as: month day year. The year must 
be the full four numbers, e.g., 1994, not an abbreviation. 

Example: 
4  1 9  1 9 9 4  DW <cr> = T u e s d a y  ok 

DD prints a list of days for a range of dates in a month 
and year set by SETMY. 

Example: 
3  1 0  DD --> list. 

F 1 3  prints those months in a given year containing a 
Friday the 13th. 

I did spot checks for accuracy and the formula seems 
to work, but a lot of days have passed through the 
centuries, so I can't guarantee the results. Even so, when 
I found discrepancies, it was the reference dates that were 
in error. 

Walter J. Rottenkolber bought his first computer in 1983. Early on, he experi- 
mented with fig-Forth and other languages, but gravitated toassembier until re- 
introduced to Forth in 1988. He notes that Forth provides the same close-to-the- 
silicon feeling as assembler, but without the pain. Interests include small 
embedded systems, programming, and computer history, about which he 
enjoys writing. 

Example: for 4 1 9  1 9 9 4  DW <cr> 

DW = ( ( 2 . 6 * 2 - 0 . 2 )  + 1 9  + 1 9  + 9 4 / 4  + 1 9 / 4  - 2 * 1 9 )  MOD 7 

( 5 + 1 9  + 94 + 2 3  + 4  - 3 8  ) MOD 7 
1 0 7  M O D 7  

DW = 2  
DW = T u e s d a y  

January 1995 February Forth Dimensions 



i 

0 \ Day of Week 
1 : .DM$ ( n) \ n= Sun=0.. .Sa t4  
2 " Sun Man Tues WednesThurs Fri Satur " 
3 DROP SWRP 6 * t 6 -TRRILING TYPE ." day" ; 
4 \S 
5 Day of Week uses Zeller's Congruence 
6 - 

7 DW = (12.6*d - 0.21 + d t h t lh/41 + Id41 - 2c) MOD 7 
B 
9 whew 

18 DU = Day af Week (Sun*. .Sat=6) 
11 wll = month nu~ber (Mar=l..Feb=l2) 
12 d = day of month 
13 c = century 
14 !I = hundreds in year 
15 Note: I x l  = truncated integer 

2 
0 \ Day of Yeek 
1 : M ( ri - n) 2- DUP 1 ( IF 12 + THEN ; 
2 : R C D N  ( m d y - n) 
3 2 PICK M 10 ) IF 1- THEN 
4 100 /#OD 1 y = h c )  
5 DL!' 2* ) R  ( 2 c )  
6 4 /  ) R  ( ~ 1 4 )  
7 DUP4/ ) R  ( h / 4 )  
B ) R  ( h )  
3 )4 ( d )  

10 B# 26 * 2 - 10 / 
11 R) + R) + R) + R) + R) - 7 MOD ; 
1 2 :  DW ( m d y) CALCDiJ ." = "  .DW$CR; 
!3 \S Greporian Calendar: m= month, d= day, y= year 14 numbers) 
14 
!5 

3 
\ Month's With Friday the 13th in Year. 
VARIRBLE MU 1 ! 
VRRIRBLE Y R  1809 YR ! , 
: SETNY l aw yr) YR ! MD ! ; 
: .N?E ( ma da yr) W R O T .  . . ; 
: .lW$ ( n) \ n= Jan=B..Dec=ll 

DUP 11 U) RBORT" knth number error." 
" January February March April k y  June " 
" July August. Septe~berOctober November Dmxiber " 
DROP NIP ROT DUP 6 ( IF NIP 
ELSE 6 - ROT D!lW THEN 9 * + 9 -TRRILI% TYPE ; 

\S 

4 
\ Day of Week 
: D D  ( d l d 2 )  

C R M O @ . r n . " ,  " Y R @ .  
CR it SURP DO 
w e  I Y R ~  I ~ . R D W L W ;  

\ DD generates a Date = Day l i s t  from dl t o  d2. 
\ Use SETMY to set the aonth and year. 

: F13 ( yr) 
Y R  ! CR ." Mcinths with Friday the 13th in " YR @ . 
13 1 W3 
I 13 Y R  @ NLCM 5 = IF 
CRBSPRCESI l - . ~ T E N L O O P C R ;  

Total control 
with 1MI FORTHTM 
For Programming Professionals: 
an expanding family of compatible, high- 
performance, compilers for microcomputers 

For Development: 
Interactive Forth-83 Interpreter/Compilers 
for MS-DOS, 80386 32-bit protected mode, 
and Microsoft WindowsTM 

Editor and assembler included - Uses standard operating system files 
500 page manual written in plain English 
Support for graphics, floating point, native code generation 

For Applications: Forth-83 Metacompiler 
Unique table-driven multi-pass Forth compiler . Compiles compact ROMable or disk-based applications 
Excellent error handling 
Produces headerless code, compiles from intermed~ate states, 
and performs conditional compilation 
Cross-compiles to 8080, 2-80, 641 80, 680x0 family, 80x86 family, 
80x96197 family, 8051131 family, 6303, 6809, 68HC11 
No license fee or royalty for compiled applications 

Laboratory Microsystems Incorporated 
Post Office Box 10430, Marina Del Rey, CA 90295 

Phone Credit Card Orders to: (310) 306-74 12 
Fax: (310) 301-0761 

FORTH and Classic 
Computer Support 

For that second view on FORTH applica- 
tions, check out The Computer Journal. Ifyou run 
an obsolete computer (non-clone or PCJXT clone) 
and are interested in finding support, then look no 
fbrther than TCJ. We have hardware and sofiware 
projects, plus support for Kaypros, S 100, CP/M, 
6809's, PCIXT's, and embedded systems. 

Eight bit systems have been our mainstay 
for TEN years and FORTH is spoken here. We 
provide printed listings and projects that can run on 
any system We provide old fashioned support for 
older systems. AU this for just $24 a year! Get a 
FREE sample issue by calling: 

(800) 424-8825 

TC J Z"B:,"F Jour& 
Lincoln, CA 95648 

Forth Dimensions 29 January 1995 February 



Gordon Charlton 
Hayes, Middlesex, England 

The euroForth '94 conference kicked off with an "in at 
the deep e n d  session. Anton Ertl, the first speaker and my 
traveling partner, continues to make a comprehensive 
evaluation of stack caching techniques for virtual stack 
machine interpreters, looking at both dynamic and static 
stack caching. Static stack caching is the technique of 
optimising away stack operators at compile time. Dynamic 
caching is the idea that a map of the top few elements of 
the stack could be kept at run time, each change in the 
map represented by a transition from one inner interpreter 
to another, each optimised for that particular mapping. 
Anton's research is ongoing. He hopes to set up a system 
to get some empirical results to back up his theoretical 
findings. 

Michael Gassanenko, from the St. Petersburg Institute 
for Information and Automatics, followed with a descrip- 
tion of a novel and ingenious way of resolving the 
addressing problems that 8086 paged memory gives, 
which allows 32-bit addressing to be used and arithmetic 

Winchester, the ancient 
capital of England. 
A medieval city of old 
picturesque buildings 
and narrow streets... 

applied to addresses at a cost of only six additional clock 
cycles in the overwhelming majority of cases. Very neat. 

Chris Bailey, a canny Newcastle lad from the University 
of Teeside, finished the session by summarising his work 
studying the effects of local variable optimisation on a C- 
based, stack-processor environment. The question he asks 
is, how should the architecture of a stack machine be 
arranged to best allow compiled C programs to run on it, 
given the assumption that the compiler will attempt to 
optimise local variables by treating them as stack entities? 
A valid question, if stack processors are to gain significant 
market penetration. Currently, he has devised some neat 

optimisation strategies to investigate, and initial results 
suggest that a larger stack cache is indicated than for 
applications written in Forth. 

After coffee and Diwali sweetmeats (it being that time 
of year), Graeme Dunbar from the Robert Gordon Univer- 
sity in Scotland described his investigations into using 
Register Transfer Language (RTL) for coding a Forth 
kernel. He summarised previous efforts to give an unam- 
biguous and simple description of a Forth kernel. Current 
work is on a FIG kernel, but in the Forth tradition of 
throwing out the first attempt and doing over, he is giving 
serious consideration of starting again using ANS Forth as 
a basis. 

Anton Ertl returned with a well-argued case for releas- 
ing some of the restrictions ANS places on local variables, 
such as not declaring them within control structures, in his 
paper "Automatic Scoping of Local Variables." 

The morning sessions were rounded off by Michael 
Gassanenko, whose second paper, "BacForth: an Ap- 
proach to New Control Structures" demonstrated not only 
how simply Forth could be extended to include backtrack- 
ing, but how the technique could simplify a large class of 
programming problems very neatly. He also suggested a 
stack notation for a backtracking Forth that impressed me 
particularly, as I had been unable to find a neat solution 
when I investigated backtracking in the area of pattern 
matching a few years ago. Michael's two papers, taken 
together, were one of the prize winners for "best paper" 
this year. 

Lunch was a welcome respite (for this reporter) from 
the mental workout, but we were soon back into the 
highbrow stuff with the Formal Methods session, and 
Jaanus Poial (associate professor at the University of Tartu 
in Estonia) telling us that stack comments are a good idea! 
Actually he said rather more than that; it went along the 
lines of "Stack comments can be shown to be a valid 
algebra and are mathematically rigorous, so  may form the 
basis for a formal description of Forth." I do not claim to 
understand the demonstration, but can see the signifi- 

I cance of the outcome. 
This was taken a little further by Bill Stoddart, from the 

University of Teeside in Middlesbrough (coincidentally 

January 1995 February 30 Forth Dimensions 



my home town), who has been working in similar areas 
to Jaanus but with a different notation, who gave a work- 
in-progress paper explaining the whys, and some of the 
hows, of producing a formal equivalent of the ANS 
standard. The whys are simple; given that English is both 
vague and ambiguous, it is rather difficult to determine if 
a standard written in English is consistent, which is a virtue 
one may reasonably demand of a standard. The how is 
using "Abstract Machine Notation," a relatively unpublicised 
development from Jean Raymond Abrial, who Bill assures 
us is a genius at that sort of thing. AMN is related to B, 
which is a successor to Z. 

After dinner (more standard English hotel fare; edible 
and really not bad, but embarrassing to those of us who 
take pride in English cuisine), Roy Goddard from MPE (our 
hosts), honorary clown prince of proceedings, took to the 
stage, ably assisted by his assistant, The Lovely Gary (as 
one wag from the audience dubbed him), to present the 
traditional "silly competition." As Roy has a style of 
humour that does not bear repeating (Roy: I mean it's 
inimitable, not unrepeatable), I won't attempt to. The silly 
competition was to devise a Forth program that hinted at 
a film, play, or book, very much as one may in the game 
of charades. The example Roy gave (the one I remember) 
was: 
: BOOK 22 THROW ; 

And for the illiterate amongst us, the tome in question was 
Catch-22! 

I am sorry to report that Saturday morning was a little 
blurred for this reporter, one of the few lacking the sense 
to grab an early night, yet still, inexplicably, being the first 
to rise. As Vivian Stanshall says in the role of Sir Henry at 
Rawlinson End, "I always sleep tight." 

Nonetheless, Ben Campbell gave a bouncingly enthu- 
siastic report of how to use Forth to gain dominance in 
niche markets without, as he candidly notes in his abstract, 
understanding CREATE DOES>. The basic premise was, 
find a market small enough to generate personal relation- 
ships with all your customers, let them tell you what they 
want, and demonstrate that you can produce results. And 
pick an area that you find interesting, otherwise you won't 
have the enthusiasm required. Don't waste time on poor 
leads, culture good ones. Sort of "CREATE o p p o r t u n i t y  
DOES> $ $ $  @ ;". 

Stephen Pelc of MPE was pleased to report that, at a 
recent meeting with IBM, Seimens, and ARM, amongst 
others, the general consensus was that traditional in- 
circuit emulation was ceasing to be feasible, basically 
because of the raw speed of modern processors, so 
interactive debugging environments would become im- 
perative. We all know what language is the perfect choice. 

Next, Howard Oakford from Inventio Software pro- 
posed a method for quality control in Forth development. 
By then, I was drifting off, so do  not recall too much, apart 
from a very humorous diatribe in which Howard claimed 
to like C very much, as it allowed him to blame everything 

1 on the compiler writer without fear of comeback. 
i Larry Forsley (Dash, Find Associates, and The Forth 
Forth Dimensions 

Institute) spoke lucidly about the philosophical aspects of 
the Forth paradigm in "Rhyme, Reason and the Tao of 
Forth." Whether you agree with his vision of Forth or not, 
he is a speaker worth hearing. 

Session five was Embedded Applications, an area well 
outside of my field, so I will not try to do  justice to the 
speakers here. 

Briefly, Malcom Bulgar described his frustrating expe- 
riences with Echelon-a basically neat idea for a product 
crippled by the compromises made in the implementation. 
Naturally Forth comes to the rescue! 

Tim Hendtlass (from Australia-whoever said that 
euroForth was parochial!) was a delight with his vivid 
imagery of elderly folk encountering technology, and how 
Forth could be used to maximise the usefulness of 
technology in providing a safer home environment whilst 
minimising intrusiveness, if only the State cared enough to 
fund it. Some problems are universal. This was another 
prize-winning talk. 

Sergei Baranoff (also from the St. Petersburg Institute 
for Information and Automatics) delivered a paper en- 
titled, "A Model of a Real-time Executive on Forth," but 
your foolish reporter forgot to take any notes, and his 
paper did not arrive in time to make it into the proceed- 
ings. Sorry. 

Session six was MPE's and Forth Inc.'s opportunity to 
showcase their new products in the GUI and Professional 
Products part of the conference. I was pleased to discover 
that, in person, Elizabeth Rather showed the same clarity 
and sureness that she displays in her postings to 
comp.lang.forth; and EXPRESS, Forth Inc.'s GUI Process 
Control Software, is impressive. 

Not to be outdone by Elizabeth's walk-through of a 
demo running under EXPRESS, Roy and the lovely Gary 
from MPE elected to demonstrate proForth for Windows 
by using GUIDE (stands for GUI DEsigner, or something 
like that) to create a window, complete with menus, sub- 
menus, and a button that printed a "hello worldn message 
graphically before our very eyes, and then modify the 
automatically generated source code a little by hand, and 
then leap back into the graphic designer to change the 
hand-modified window a little more, and then run the 
resulting code. All without crashing or making a single 
error. Again, most impressive, if not a little foolhardy! 

After dinner, we all dressed in warm clothes to join 
Winchester's torch-lit procession to the fireworks display. 
There were thousands thronging the streets, and it was a 
genuinely moving experience. The bonfire was the largest 
I have seen, being about the size of a house. The 
discussion on the way centred around what was actually 
being celebrated, Guy Fawkes' attempt to blow up  parlia- 
ment, or his being prevented from doing so. I believe we 
celebrate his failure. In typical British fashion. Not that this 
is unique; Liz Rather conceded that the Alamo was 
celebrated for similar reasons, and suggested that the 
confederacy was a larger example of the same. 

After the display, we retired to one of the quieter pubs 
(quieter in the sense that the bouncer was still admitting 
customers, not in the sense that it was either quiet or not 

31 January 1995 February 



euroForth: 
the View From Down Under 
Tim Hendtlass 
Hawthorne, Victoria, Australia 

Winchester, the ancient capital of England. A medi- 
eval city of old picturesque buildings and narrow streets 
with history pressing in from every side. The Royal 
Hotel, warm and cozy, almost 500 years old and with no 
piece of level floor anywhere. The Darials Room, 
upstairs with a low, beamed ceiling and, from the 4th to 
the 6th of November, earnest Forthers from all over the 
globe. People from Austria, Estonia, Germany, Russia, 
Sweden, Switzerland, United Kingdom, United States. 
Oh yes, and one Australian, me. Taken together, 
euroForth '94. 

It would be unreasonable to single any one presen- 
tation out (and space does not allow all to be discussed), 
but the scope of the discussion and the range of topics 
was most impressive. Two sessions were devoted to 
compilation techniques, one to formal methods, one to 
competition and exploration of commercial Forth. A 
further session to embedded applications, one to GUI 
and professional products, and the final session to Forth 
techniques. From the very practical to the theoretical 
and philosophical. Everyone who attended will no 
doubt have different special memories, but for me the 
overwhelming impression I got was that people are 
solving real problems using Forth and, while this is so, 
Forth is well. Seeing Forth GUIs and other big machine 
packages alongside embedded systems, hearing people 

available, contact MicroProcessor Engineering Ltd., 133 
Hill Lane, Southampton, UK SO15 5AF, so  that you can at 
least read the full papers. But if there is a chance you can 
contribute or go to euroForth '95 don't hesitate-do it. 

The papers in order of presentation: 
Stack caching for interpreters. M. Anton Ertl 

Combined addressing model for 8086 processor. 
M.L. Gassanenko 

The effect of local variable optimization in a C-based 
processor environment. C. Bailey 

Forth and register transfer language. G. Dunbar 

Automatic scoping of local variables. M. Anton Ertl 

BacFORTH: an approach to new control structures. 
M.L. Gassanenko 

Forth and formal language theory. J. Poial 

Towards a formal specification of the Forth ANSI 
standard. W. Stoddart 

How to turn Forth into a competitive advantage, the 
experiences of EDSL. B. Campbell 

Embedded systems debugging: the return of software. 
S. Pelc 

Validating Forthsource text-a design concept. H. Oakford 
sharing experiences of using different approaches to Rhyme, reason and the Tao of Forth. L. Forsley 
similar problems reminded me how flexible and versa- 

Going Forth with Echelon. M. Bugler tile Forth is, how many different forms it can assume, 
and how diverse the Forth community is. A distributed data acquisition and decision-making 

The organization and time keeping was excellent. All system. T. Hendtlass 

sessions started promptly, and an excellent way of A model of a minimal real-time executive on Forth. 
keeping speakers to their allotted time that was new to S. Baranoff 
me was used, apparently attributed to Lawrence Forsley. 
The speaker was given five minutes, two minutes, and 
one-minute-to-go warnings as is usual at conferences, 
but if they were then still talking the session chair 
shuffled across to the speaker, put their arm round them 
and, still shuffling, gently but firmly removed them from 
the stage. Very effective-I know I was very conscious 
of time when my turn came! 

The single strongest impression is how friendly Forth 
users are and how they share an interest that spans 
language. It is people who make Forth live and people 
who make conferences work. To Stephen and Linda 
Pelc and all their helpers, a very big thank you for your 

A GUI toolkit for polyFORTH. E. Rather 

EXPRESS: A Forth-based process control software 
product. E. Rather 

Commercial exploitation of the interactive advantage. 
R. Goddard 

Tool interactively for rapid GUI application develop- 
ment. G. Ellis 

An ANS heap. G. Charlton 

Interactive remote target compilation and the 
PICI~CXX. A. Robertson 

Handling source code and images in natOOF. M. Dahm 
efforts. To those who couldn't be there, bad luck, you A library versus a kernel. A, ~~b~~~~~~ 
missed a rich experience. The titles of the talks pre- 

A taste of direct programming. W. Wijgaard 
sented are listed below, but they only give a dry idea of 
what went on and none of the scope of the discussion. Breakthrough in knowledge management. Murray 2000- 
I believe the conference proceedings are to be made the desktopsupercomputer. L. Forsley and B. Gruenwald 

January 1995 February 32 Forth Dimensions 



crowded) and sampled the ale. 
Sunday brought the last session, which I kicked off with 

a brief advert for my implementation of the Memory 
Allocation Word Set. I have the ignominious honour of 
being the only speaker to run out of talk before running 
out of time. 

Alan Robertson described working with the PICl6XX 
family of processors, which have 2K of code space, an 
eight-deep return stack, and a massive 35 bytes of RAM. 
Yes, 35 bytes! Astonishingly, he has developed techniques 
to work interactively on these devices by transferring 
virtually all of the functionality required in development 
to a host Forth. This was a prize-winning talk. 

Markus Dahm from Aachen University brought us up 
to date with developments in natOOF, particularly in 
handing source file management over to the computer, 
which now logs what is loaded and defined during 
development, and creates a loadable source file from its 
logs when required. 

Larry Forsley assisted Bjorn Gruenwald in describing 
the Murry 2000, a concept for a desktop supercomputer 
based on Bjorn's unique style of programming, where the 
fundamental object is not the word but the process, or 

Stephen Pelc and Elizabeth Rather stood together to 
announce a new era of cooperation between Forth 
vendors, pointing out that the real competition was with 
the W !  of the world that does not use Forth. From now 
on, Forth Inc. will carry and use MPE's proForth for 
Windows in the States. (I also understand that some 
changes will be made to the internal structure of MPE 
products to satisfy the expectations of polyFORTH users- 
specifically the inclusion of a locate field). Steve and Liz 
did not actually hold hands, but it would not have been 
inappropriate. The applause was loud and long. 

The survivors party was highlighted by a lesson from 
the American contingent in Shakespeare and political 
correctness, Bjorn Gruenwald's skilled but all-too-brief 
piano playing, and Larry Forsley's pizzas. Again, too short 
lived. We especially enjoyed the one topped with a 
sausage provided by Jaanus Poial. His English did not 
extend to naming it, but his mime indicated a horned 
beast, and a question-and-answer session established it 
was probably venison. 

It was with regret that I left before the party finished. 

task. Typically, ~ j o r n  writes applications that-have hun- 
dreds or thousands of tasks working cooperatively. He 
likens it to the techniques used by living creatures to store 
and process information. The Murry 2000 uses cellular 
automata linked in a tree structure to facilitate this. Code 
is generated to drive this from an ordinary procedural 
language by an automatic algorithm that he describes as 
a stochastic compiler. If the Murry 2000 lives up  to its 
promise, it will herald a sea change in computing. 

Wolf Wejgaard brought us u p  to date with Holon, his 
unique vision of the future of Forth which, as virtually all 
who have seen it agree, is an incredible system. He has 
given up  with files and blocks, and works with a database, 
structured like a Smalltalk browser. Holon only does target 
compilation, but completely seamlessly. It uses recursive- 
descent compilation, so all compiled code is of minimum 
size. Both high level and code definitions are single- 
steppable, and now it is written in Holon. Wolf claims that 
the process of rewriting Holon in Holon has allowed him 
to improve all the rough edges, because it is an ideal 
development tool. I see no reason to doubt him. 

The conference was rounded off over lunch by the 
presentation of the prizes for best talk, as indicated above, 
and also for the silly competition. There were three prizes 
awarded for this also, of which I forget one. Again, sorry. 
The other two went to Liz Rather, for; 
: QUEEN 0 ' >HEAD ! ; 

Offete  Enterprises,  Inc. 
1306 South B Street 

San Mateo, California 94402 
Tel: (41 5) 574-8250 Fax: (41 5) 571 -5004 

1. 

2. 

3. 

4, 
5. 

6. 
7. 

M e 2 1  Products 
MuP21 Ch ip  designed by Chuck Moore, $25 

80 MIPS CPU with Video Coprocessor 
M e 2 1  Evaluation Kit, $100 

MuP21, ROM, PCB and software 
Assembled MuP21 Evaluation Kit, $350 

Above Kit assembled with 1Mx20 DRAM 
MuP21 P rog ramming  Manual,$15.00 
MuP21 Advanced Assembler 

by Robert Patten, $50 
MuP21 eFor th  by Jeff Fox, $50 
More  on For th  Engines 

Volume 18, June 1994 - $20. 

and myself, for 
: PLAY MILK WOOD SWAP ; 

(Respectively, Alice in Wonderland, from the Queen's cry 
of "off with his head!" and Dylan Thomas' Under Milk 
woo4. 

Then came the surprise of the year! 

U.S. bank draft, money order accepted 
Add 10% (up to $10) for air shipping 

Californians please add 8.25% sales tax 

Forth Dimensions 33 January 7 995 February 



Nominations for FIG Directors Commence 

The nominating process for the selection of new directors for 
the FIG Board of Directors is under way. Elected directors serve 
on a volunteer basis (no monetary remuneration). 

The current Directors are John D. Hall, Director, President; 
Jack Woehr, Director, Vice-president; Dennis Ruffer, Director, 
Treasurer; Mike Elola, Director, Secretary; C.H. Ting, Director; 
Nicholas Solntseff, Director; and David Petty, Director. 

At the last Board of Directors meeting, held at FORML in 
November of last year, Jack Woehr and Mike Elola were ap- 
pointed as a Nominating Committee to solicit candidates. 

In accordance with FIG bylaws, it is the duty of the 
Nominating Committee to nominate at least one individual for 
each vacancy on  the Board. Currently, there are seven vacancies 
to be filled, each for terms of three years, with the possibility of 
reelection thereafter. 

Nominations for vacancies may be made by petition, signed 
by 25 members of the Forth Interest Group. Petitions should be 
submitted with a brief note from the nominee stating qualifica- 
tions, background, and position on issues. 

The nomination and subsequent election processes take 
place as prescribed by our bylaws. As the following extract from 
Article VIII, Section 1 of the bylaws indicates, open elections are 
made possible by the timely completion of steps stretching over 
at least a five-month time period. The first step has now been 
taken. 

From the Bylaws ... 
(a) Nominating Committee. The Board of Directors shall appoint 

a Nominating Committee composed of at least two Directors 
to select qualified candidates for election to vacancies on the 
Board of Directors at least 120 days before the election is to 
take place. The Nominating Committee shall make its report 
at least 90 days before the date of the election, and the 
Secretary shall provide to each voting member .. . a list of 
candidates nominated [at least 60 days before the close of 
elections]. 

(b) Nominations by members. Any 25 members may nominate 
candidates for directorships at any time before the 90th day 
preceding such an election. On timely receipt of a petition 
signed by the required number of members, the Secretary 
shall cause the names of the candidates named on it to be 
placed on the ballot along with those candidates named by 
the Nominating Committee. 

(c) If the Corporation publishes, 
owns, or controls a maga- 
zine, newsletter, or  other 
publication, and publishes 
material in the publication 
solicitingvotes for any nomi- 
nee for director, it shall make 
available to other nominees, 
in the same issue of the 
publ ica t ion ,  a n  equa l  
amount of space, to be used 
by the nominee for a pur- 
pose reasonably related to 
the election. 

(d)Should a petition be received, a ballot process will be 
provided to the voting membership. Otherwise, the Secre- 
tary shall cast a unanimous ballot for the candidates as 
proposed by the Nominating Committee. 

Obtaining a Nomination 
The Nominating Committee selects candidates for the ballot. 

FIG members who wish to become candidates this way should 
submit a letter requesting consideration by the Nominating Com- 
mittee ( d o  FIG office) before the deadline. 

Alternately, 25 FIG members can nominate you as a candidate 
by petition. Send this petition to the FIG Secretary ( d o  FIG office) 
before the following deadline. 

The deadline for submitting either nominating petitions or 
letters requesting consideration by the Nominating Committee is 
February 1, 1995. Send these items to the FIG office at P.O. Box 
2154, Oakland, California 94621. The Nominating Committee's 
selection will be reviewed by the Board and printed in the 
March/April 1995 issue of Forth Dimensions along with the 
candidates' statements. 

After notice of the selected Board candidates, members 
wishing to be, but not selected by the Nominating Committee 
can submit a petition signed by 25 FIG members. Send this 
petition to the FIG Secretary (c/o FIG office) before the deadline. 
The names of the qualifying candidates will be placed directly 
on the voting ballot. 

The deadline for submitting these nominating petitions is 
April 1,1995 Send these items to the FIG office at P.O. Box 2154, 
Oakland, California 94621. The Nominating Committee's se- 
lected candidates' and petition candidates' statements will be 
printed in the May/June 1995 issue of Forth Dimensions. 

Elections 
Elections will not be conducted by mail ballot when there is 

only one nominee for each Board position. 
If a mail ballot is required, the final deadline for candidates' 

statements will be April 1,1995. Those statements received at the 
FIG office by that time will be included in the May/June 1995 
issue of Forth Dimensions. The statement can be 500 words or 
less. 

The voting ballots must be returned to the FIG office by July 
31, 1995. The newly elected directors assume their duties at the 
next meeting of the Board of Directors. 

Member Name Member Member 
(Please Print) Signature Number 

enamel> enamel> <numberl> 
<name2> <name2> <number2> 
<name9  ename3> enumber3> 

<name25> <name25> enumber25> 

Nominating Petitions should also include a candidate statement. 

January 1995 February 34 Forth Dimensions 



(Fast Forthward, from page 39.) 

Design after Design 
The core layer of functionality provided by my multi- 

purpose FIND routine could serve as a framework, or 
template, for other Forth refinements. Any usage context 
that involved a dictionary search represented an opportu- 
nity. I had a means to fix a number of quirky problems 
throughout Forth, and I was determined to look in all the 
right places. 

A Forth system typically has a group of routines that 
help implement the runtime. The data-handling words 
that precede inlined data are good examples of such 
routines. It's an error to execute those words in interpre- 
tation contexts-and in compilation contexts, as well. 

(The compiling system is removed from the runtime 
system where such routines serve their intended roles. In 
reality, compiling has much in common with interpreting. 
Our preoccupation upon two Forth states predisposes us 
to think contrary to these facts.) 

The appropriate execution of such routines belongs 
with the function dispatch inside the inner (colon-routine) 
interpreter. So I embellished INTERPRET to call ?FIND 
along with a word-rejecting parameter that causes it to 
ignore inline data-handling words. 

Even though the text interpreter has been changed to 
overlook such words, they remain executable when and 
where they achieve productive results. 

Well, okay. There is context in which we want such 
handlers to be treated legitimately. POSTPONE should be 
able to start a dictionary search that finds them. So this is 
how visibility comes to these words: they must be pre- 
ceded in the input stream by POSTPONE. (POSTPONE is 
ANSI Forth's single replacement for both COMPILE and 
[COMPILE I ). 

However, such code is rarely specified. It is only 
required when you are creating a compiler-extending 
routine that handles new kinds of inline data. In all other 
contexts, the visibility of the dictionary entries for these 
handlers is counter-productive. 

Because this usage context is so  rare, and because it is 
always moderated by POSTPONE, the search that POST- 
PONE launches can be made special somehow. Can you 
guess how? 

The visibility of inline data handlers needs to be 
enabled or disabled depending on the search context: 
POSTPONE will always find them. INTERPRET will al- 
ways ignore them. There is no need to conditionally find 
or ignore these words within either context. 

Observe how Forth's factoring conspires significantly 
in the implementation of a safer Forth. 

Compiler extensions sometimes usurp parsing and 
dictionary-searching responsibilities from INTERPRET, as 
exemplifiedby POSTPONE. Suchcompilerextensions can 
be considered standalone compilers. They consume one 
word from the input stream, the same way that INTER- 
PRET would in one iteration of its outermost loop. 

It's easy to imagine that the same embellishment for 
, another language would have required very thoughtful 
Forth Dimensions 

conditional logic that would be nested several conditions 
deep. For a monolithic interpretive language, such a 
change would probably be beyond my reach. 

Thanks to Forth's brilliant design, I was done with the 
change in a matter of minutes. What a relief. 

As it turns out, I did not fine-tune POSTPONE because 
it had never been refitted with my more flexible FIND 
routine in the first place. It could continue to find any word 
in the dictionary. 

The real effort involved adding a new word flag 
(HERALDS INLINE-DATA), adding a new routine 
(ONLY-POSTPONE-FINDS) to set it, and calling that 
routine for each inline data handler. Besides those addi- 
tions, a tiny change to the text interpreter was required. 

Even when these changes are taken as a whole, this 
Forth tune-up is pleasing in terms of its minimalism. 

Because a similar change regimen has already occurred 
on the morning of my imagined work day, this round of 
changes would naturally proceed much faster. In its 
aftermath, I should have plenty of time left in my day to 
scout for other tune-up opportunities. 

For many systems, a number of inner interpreter 
routines can be compiled by associated word-defining 
words. If these inner interpreter routines are given dictio- 
nary entries, they will probably appear to be executable 
routines with the same status as other executable routines. 
However, a system crash is the likely result if these 
routines are executed by name reference within the text 
input stream. 

Dictionary searches launched from the text interpreter 
should not find such routines, regardless of a compiling or 
interpreting system state. They should not even be found 
as part of a dictionary search launched by POSTPONE. To 
safeguard Forth, a new word attribute can render these 
words invisible in all dictionary searches. The name I 
chose for this new attribute was EXECUTE-IFF-AT-CF. 

(POSTPONE is used to help compile bodies of routines, 
not code field values. Which brings up.. .) 

We should arrange for a very special kind of dictionary 
search to exclusively find such inner interpreters so that 
they are less subject to accidental execution. The tick 
routine can be considered a safe moderator for such 
searches. Words such as CREATE might rely on the tick 
word-interpreter to obtain an execution token corre- 
sponding to an inner interpreter. (More likely, word- 
defining words will be hard-coded to "know" the correct 
values to compile, eliminating the need for special han- 
dling of inner interpreters.) 

By way of the tick operation, the normal text interpreter 
can be put to good use managing substitute inner inter- 
preters. Inner interpreters must be native-code routines. 
When such a routine has been defined, it can be safely 
used to patch the code fields of compiled words. This 
offers a way to change the behavior of compiled words 
without recompiling them. As an example, the Forth 
system I am developing defines a tracing version of the 
colon-word (inner) interpreter. I occasionally use tick to 
obtain its associated value, which I use to patch any colon 
routines that I want to trace. If the patched word is not the 

35 January 1995 February 



source of some problem, I patch it again to reference the 
normal colon-word interpreter, and continue the investi- 
gation elsewhere. 

To implement protection against ad-hoc execution of 
words such as TRACING-DOCOL, I set the flag that I 
dedicated for their use on each of them. Then I altered the 
text interpreter so that the word-rejection parameter for 
each ?FIND has the EXECUTE - IFF - AT CF bit set. This 
prevents Forth from interpreting or compiling them when 
they are referenced by name in the text input stream. 

An unconstrained dictionary search within the tick 
routine remained permissible, so it did not receive any 
changes. Besides the text interpreter, POSTPONE required 
changes to further quarantine the inner interpreter rou- 
tines (which also should not appear in the "body" portion 
of a colon word). 

Let's say that I still have time in the balance of my 
imagined afternoon to stretch my legs and contemplate 
other Forth refinements. What would I come u p  with next? 

Without any new word attributes, a tune-up is possible 
that still involves the dictionary, but not a dictionary search 
specifically. Is it productive for you to see words such as 
OBRANCH, <LIT>, and DODOES listed by the Forth WORDS 
routine? As has been discussed, these are not names you 
normally want to place in the input stream (ignoring the 
rare compiler extension). Other words take care of their 
compilation for you. Their names are of dubious value 
inside the input stream. So why not hide these question- 
able words, at least as far as the word-listing utility is 
concerned? 

Removing such words from the dictionary is unwise. 
The names of these routines are needed for decompiling 
and tracing purposes. They can also be useful as text 
parameters to be parsed by the tick or POSTPONE rou- 
tines. 

To appear to rid the dictionary of words that are 
counterproductive most of the time, Forth's WORDS rou- 
tine can be embellished to check each word for attributes 
like E X E C U T A B L E  I F F  A T  CF and  
ONLY POSTPONE FINDS. When finds one of these 
attributes set, WORDS can skip over the associated word 
and move immediately to the next entry in the dictionary. 

Polymorphism for Minimalists 
You might have seen this one coming. We already 

started to look beyond dictionary-searching contexts as 
candidates for change. That way, we can extend our 
growing safety net to encompass other areas of Forth. 

Although the EXECUTE routine fails to consult the 
dictionary normally, that situation could change. We 
would duplicate the execution token on the stack and use 
the copy to query the attributes of the associated word. We 
could arrange for EXECUTE to check some of the already 
suggested word flags to determine if the current context 
is an appropriate one for the token atop the stack. If it is 
not an appropriate context, EXECUTE could report an 
error rather than run a routine that has the potential to 
crash the system. 

Word attributes that EXECUTE might inspect include 
January 1995 February 

FIND IFF COMPILING and EXECUTE IFF AT CF. 
~ e s t i n g  of the former attribute will requireche&ingthe 
accompanying system state too. 

The extra overhead primarily affects the speed of the 
text interpreter which relies on EXECUTE. Almost all 
compiled code would bypass these safety checks. These 
checks would be performed for each word in the input 
stream "seen" by INTERPRET. 

Such alterations to EXECUTE can supplant the equiva- 
lent upstream actions within the text interpreter. However, 
this is not a wise thing to do. When usage errors are 
detected upstream within the text interpreter, the ?FIND 
routine can continue to search for another word of the 
same name deeper in the dictionary that meets all the 
prevailing search criteria. 

Placing such error checking in EXECUTE while trying 
to arrive at a similar solution would be much more 
awkward: EXECUTE would have to raise an exception to 
be handled by the text interpreter. The text interpreter 
would have to take control by resuming the original search 
at the word beyond the one that led to the exception, then 
pass control back to EXECUTE if a new word is found that 
at least has the correct name. 

Given the complexity of this alternative, it is simpler to 
perform the error-checking twice, once at dictionary- 
search time, and again within EXECUTE itself. By creating 
an INTERPRET-only version of EXECUTE that skips such 
error-checking, the text interpreter's duplicate checks 
would be eliminated. 

Notably, either implementation permits the (polymor- 
phic) overloading of names such as dot-quote, so that the 
novice (and expert) can enjoy a more consistent and 
easier-to-learn user interface. 

Such name overloading permits Forth to approximate 
the polymorphism exhibited by object-oriented program- 
ming languages. 

As I have taken care to report, simple implementations 
are available for all of these Forth tune-ups. Therefore, 
Forth's minimal look-and-feel is not in the least endan- 
gered. 

Making Forth Easier to Grasp 
As I have tried to show, a number of Forth tune-ups can 

be implemented within an eight-hour stretch of time. But 
why should you spend eight hours this way? 

In such a short time and with so  little effort, you can 
fine-tune Forth's operation. That way you will provide 
better guidance to the Forth novice. As exemplified by 
reduced error susceptibility, the system you create will not 
tie the hands of the Forth expert-who can still access any 
Forth functionality that isn't counter-productive to begin 
with. 

Who loses, if your changes preserve Forth's usual 
flexibility and minimalism? It's unreasonable for you to 
leave the next generation of Forth programmers prey to so 
many easily avoidederrors. Your protestations that Forth's 
error susceptibility upholds a long-standing tradition will 
only make you look mean-spirited, not smug or clever. 

(I am not claiming to have found ways to tune out all 
36 Forth Dimensions 



the possible error pitfalls. However, the measures I have 
described make significant progress towards that goal.) 

Through a system designed to help the novice, you will 
also help the expert. 

When applied to your varied Forth kernel routines, a 
handful of descriptive word flags will help to correctly 
categorize many of them. This aids user understanding 
and provides your kernel with a form of self-documenta- 
tion. Even if they could not produce a safer Forth, there 
might be  an organizational need for such categorizations. 

Cleaning House 
The adoption of new word attributes helps clarify the 

role played by the varied routines that constitute a Forth 
kernel. Perhaps, with these aids to understanding, more 
Forth users will gain the knowledge to become system 
implementors, too. 

Taken together, these tune-ups are a form of house 
cleaning for Forth. In a way, I am saying that Forth 

benefits were always within Forth's close reach. I am 
proud to be the one to reveal them. My appreciation of 
Forth continues to deepen as I see how well it endures as 
a fountain of creativity. 

Studying Forth is a tonic for your thought processes. If 
you let it, it will lead you to highly refined designs and 
implementations. 

- 
implementations have typically been eyesores, with bits 
and pieces of the kernel strewn all over the place. By 
tidying Forth, many of the difficult aspects of Forth's 

doesn't have to appear haphazard and be hazardous to 
....... prove its power and minimalism. / Forth Interest Group centerfold, 34 1 

- 

operation can be made clearer-and aspects that are 
susceptible to errors are effectively quarantined. Forth 

Furthermore, these tune-ups lay the foundation for a 
slimmer Forth namespace. One way to unclutter the 
namespace is to withdraw support for certain words that 

...................... The Computer Journal 29 

were introduced long ago to make Forth more error 
resistant and more "correct." 

For one, the (fig-Forth-introduced) routine ?COMP can 
be retired and all the words where it appeared can be 
streamlined. 

Dot-paren may be supplanted as well. At least its 
namesake can be retired, because two state-oriented dot- 
quote routines can be discriminated by the enhanced text 
interpreter. Likewise, other names that we ought to be able 
to retire are [CHAR] and [ ' I . 

Summary 
Treating word flags beyond "imme- 

diacy" as first-class citizens of a Forth 
system has proven worthwhile. I have 
shown how to use them to improve 
Forth's namespace management and to 
add substantial error detection capa- 
bilities to Forth. 

The result is a Forth with a sensible 
user interface, as well as with sensible 
groupings of Forth kernel routines. The 
Forth command interface can become 
more consistent and Forth's operation 
can become more friendly. 

Best of all, these enhancements can 
be implemented very simply. Because 
no Forth virtues were compromised, no 
hardships should befall anybody. 

As the term "tune-up" implies, these 

Laboratory Microsystems, Inc. ......... 29 

Miller Microcomputer Services ......... 37 

Offete Enterprises ............................ .33 

............................. Silicon Composers .2  

Forth Dimensions 37 January 1995 February 



A Forum for Exploring Forth Issues and Promoting Forth 

Fine-7bning Forth 

Mike Nola I 
San Jose, California 

Coding and designing are good tasks to alternate 
between as part of an unhurried development process. On 
a really good day, you might return to design work once 
or twice before leaving the day's coding efforts behind. 

Co-mingling the design and coding tasks is more likely 
to occur when the final design evolves gracefully out of 
earlier designs. 

A rapidly evolving design seems to take on a life of its 
own, guiding us as we go. This can lead to the sublime 
experience of programming as an interactive experience, 
despite its solo performance. I'll try to convey a sense of 
this as I describe a dream of a work day. Of course, the 
work day I am about to describe is purely fictional. 

In an earlier installment, I lingered on some of the 
problems with the vocabulary mechanism (see Forth 
Dimensions XVI/l). I was concerned about the lost 
productivity that could ensue. 

While I haven't found any answers for Forth's vocabu- 
lary quirks, I have discovered various tune-ups related to 
Forth's namespace management. Error avoidance is the 

Forth doesn't have to appear 
haphazard and be hazardous to 
prove its power and minimalism. 

primary benefit. The tuning also helps organize a raft of 
Forth kernel functions. By clarifying and helping to 
crashproof Forth, a more enjoyable programming envi- 
ronment emerged. 

Error Avoidance 
Without Sacrificing Minimalism 

The FIND routine walks the dictionary's linked list as 
part of the search process. In the last installment, I 
described how I created a variation of the FIND routine 
that is able to search the dictionary in accordance with 
various flags. 

This version of F IND was called ?FIND. It accepts two 
new input parameters, one of which is a word-sanctioning 
parameter. The other is a word-rejecting parameter. 

A dictionary search is normally performed once for 

each input word. We can build upon Forth's states by 
establishing different search behaviors for different search 
contexts, or system states. Through state-attuned search 
behaviors, we can cure many of the ill-mannered aspects 
of Forth's operation. 

The system state can actually be checked twice by the 
text interpreter, once to obtain a suitably tuned dictionary 
search-and once more to trigger compiling or interpre- 
tation of a word. While compiling and interpreting actions 
still follow a successful search, the new logic will enable 
Forth to be more selective about the words available to be 
compiled or interpreted. 

As shown following, the parameters for ?FIND help 
fine-tune INTERPRET to account for different word states 
within different system states: 

: INTERPRET 
B E G I N  

. . . 
STATE @ I F  ( c o m p i l i n g - s t a t e  s e a r c h  ) 

< s a n c t i o n i n g - a t t r i b u t e >  
{ OR < s a n c t i o n i n g - a t t r i b u t e >  I . . .  
< r e j e c t i n g - a t t r i b u t e >  
{ OR < r e j e c t i n g  a t t r i b u t e >  I . . .  
?FIND 

ELSE ( i n t e r p r e t i n g - s t a t e  s e a r c h  ) 

< s a n c t i o n i n g - a t t r i b u t e >  
{ OR < s a n c t i o n i n g - a t t r i b u t e >  I . . .  
< r e j e c t i n g - a t t r i b u t e >  
{ OR < r e j e c t i n g - a t t r i b u t e >  I . . .  
?FIND 

THEN 

Compiler-extending routines have compile-time be- 
haviors that must be acted out at the appropriate place and 
time. The immediacy bit helps ensure that those compiling 
behaviors are exhibited at compilation time. However, no 
corresponding effort is taken to suppress those behaviors 
at other times. (Individual routines supply their own error 
checks in well-mannered Forth systems.) 

The elimination of this error susceptibility was an 

January 1995 February 38 Forth Dimensions 



implied pursuit of the last two installments of Fast Forthward 
(through a new module for compiler words in the earlier 
installment, and through a new version of F I N D  in the 
most recent installment). 

A very direct approach would be to just pass a 
parameter to the embellished INTERPRET routine telling 
it to neglect immediate words while interpreting. How- 
ever, so direct an approach turns out to be an over- 
simplification. 

A few immediate words can be used safely in interpre- 
tation mode, including "paren." Few other immediate 
words are likewise state-neutral. Still, they require a new 
word attribute independent of the immediate flag. The 
name I chose for this flag is FIND-IFF-COMPILING. 

The new flag will identify words that have unpredict- 
able and nonstandard consequences (possibly fatal) if 
executed in interpretation mode. Such a flag can be set 
independently of the immediacy flag. That way, non- 
immediate words such as >R and R> can also receive the 
new attribute without changing their treatment during 
compilation. 

Such a provision may be difficult to justify when every 
Forth programmer is well trained. But if the overhead is 
extremely low, what does it hurt to make it a part of the 
system? As few as 250 bits are needed for a Forth system 
of that many words. Assuming we set aside two bytes per 
word to leave room for 13 other new word attributes, this 
feature adds only .5K of memory to such a system. 

Because Forth's compiling system is tiny to begin with, 
no one should care. A turnkey-application compiler 
eliminates the compiling system from the final application, 
rendering this a non-issue anyway. (Forth applications 
usually d o  not need to be delivered with the compiling 
system left intact.) 

To evaluate overhead costs more equitably, consider 
how many compiler words incorporate phrases such as 
?COMP, which is defined something like: 
STATE @ ABORT" C o m p i l a t i o n  O n l y w  ; 

January 1995 February 

Words containing such code can be streamlined by 
setting the new attribute instead. So those who agitate for 
minimal Forth systems should feel like they are also being 
heard. 

Whereas some "system" source code can be sup- 
planted, some new system code has to be added to be able 
to specify the new attribute. Because the vast majority of 
words that are immediate are intended for use only in 
compilation mode, the word IMMEDIATE can be changed 
to se t  b o t h  the  immediate flag and  the  
FIND-IFF-COMP I L I N G  flag. INTERPRET F I N D S  can 
be the routine for clearing the new attribute for those rare 
immediate words that can be executed safely during 
interpretation. INTERPRET M I S S E S  can be the routine 
for setting the new attribute for non-immediate words that 
are also unsafe to interpret, such as >R. 

To accomplish these changes, let's say that I will set 
aside all morning. That should be a liberal amount of time 
to change and then regenerate the kernel. 

1 (Continues on page 35.) 
Forth Dimensions 

OCTOBER 1994 
Creative Solutions announced a Power Mac version 

of MacForth that takes as its name PowerMacForth. It is 
a native-code Macintosh development environment that 
allows the creation of high-speed applications on a RISC 
platform. Additionally, access to the Mac Toolbox has 
been made easier. A special-offer price of $129 is 
extended to current MacForth owners. 

Kudos to CSI for the distinction of 
creating a line of ANS Forth products 

Power MacForth is an ANSI standard Forth dialect. 
Creative Solutions also expects to be shipping an ANSI 
upgrade for its 680x0-based MacForth around press time. 

NOVEMBER 1994 
From MicroProcessor Engineering, Ltd. comes ProFortb 

for Windows, which is being sold in the USA and Canada 
by Forth, Inc. "Exceptional interactivity and ease of devel- 
opment" are offeered besides technical support according 
to Elizabeth Rather, president of Forth, Inc. Rather and 
Stephen Pelc, the managing director of MPE, made the 
announcement of the agreement between the two compa- 
nies at the annual EuroForth conference in England. 

The 32-bit Forth system for Windows and Windows- 
NT includes ProForth GUIDETM, a code-generating tool 
that allows Windows-compliant user interfaces to be 
designed and modified in a purely graphical manner. 
Integration with the host operating environment is 
complete, including support for DDE and linking to 
third-party DLLs. 

Forth, Inc. sells its own line of Forth products, 
including the EXPRESSTM software package. It sports a 
graphical user interface, too, but is outfitted for embed- 
ded systems development through its real-time capabil- 
ity and multitasking support. 

COMPANIES MENTIONED 

Creative Solutions, Inc. 
4701 Randolph Road, Suite 12 
Rockville, Maryland 20852 
Phone: 301-984-0262 Fax: 301-770-1675 

Forth, Inc. 
11 1 N. Sepulveda Blvd. 
Manhattan Beach, California 90266 
Phone: 800-55-FORTH Fax: 310-318-7130 

MicroProcessor Engineering Ltd. 
133 Hill Lane 
Southampton SO15 5AF 
United Kingdom 
Phone: 0703 631441 Fax: 0303 339691 
Telex: 474695 FORMAN G 

39 



F O R M L  

twrolrsrtl~ '42 C c l r ~ k r v r r ~ ~  

Ptritars tferon itmtpfit.lrl, %r Ur)rnsy, Nn~np\hixc 

Forth Modification Laboratory 
FORML and EuroForth '92 and '93 

Conference Proceedings 

Conference papers from the fifteenth annual FORML Conference 
held November 1993 at the Asilomar Conference Center, Pacific 
Grove, California, U.S.A. and conference papers fro the EuroForth 
'92 Conference held October 1992 at Potters Heron Hotel, Ampfield. 
Nr Romsey, Hampshire, U.K. and the EuroForth '93 Conference in 
Marianske Lazne (Marienbad) , Chexh Republic 509 pages. 

Order from the  Forth Interest Group. 
FIG member discounts available. $45.00 
See order form inside 

Porting Forth through C on Workstations 
Increasing R1X-2001 Return Stack Depth 
Quick, Make a Weighing Machine! 

1993 FORML Conference 

A Novel Approach to Forth Development Environments for 
Embedded Real-Time Control 

ExecDoc Scripting Tool 
F21 and F'F 
Forth and the rest of the (DOS) World 
Forth in 32-Bit Protected Mode 
Forths in the Design, Text and Extension of an HDTV Format 

Converter 
Graphing Functions in Forth 
Implementing Forth as a C/C++ Library 
MIPS eForth 
Multiple Entry Points 
Object Oriented Programming in One Definition 
Optimization and Macros in This Forth 
Plumbing Forth - Filters and Pipes 
Postscript File Filter and Hypertext Indexed ANS Forth Standard 
Simple Mouse and Button Words for DOS-Based Systems 
To Boldly Go Forth Where No One Has Gone Before: Talking 

Forth to Forth 
The Lion's Choice of Names 
The Simplest File Loader 
Umbilical Compilation 
Why HLLD Forth? 
Wild Bean and Blind Awe 

euroForth '93 Conference 
Error-0 undefined versus "C1000 Unknown Fatal Error ...Ir 
A Forthable ATE - Implementing Inexpensive Automatic Test 

System using Forth 
The Common Sense Pattern Classifier - Application Studies 
A graphical user interface in natOOF based on the Model-View- 

Controller concept 
A Portable Forth Engine 
Context-Oriented Programming: Evolution of Vocabularies 
Multi-CFA>: Implementation via Self-Modifying Code 
Static Stack Effect Analysis 
A Look at Forth's Academic Standing 
Towards a Formal Forth 

Some ideas on Formal Specifications of Forth Programs 
Interface X: The First Forth Single Chip Controller 
The Halting Problem in Forth 
Self Reference and Type Interference in Forth 
Interactive Cross Platform Development 

euroForth '92 Conference 
Session One - Communication - Good, Plus Good, double Plus Good 

WRITING Better Forth 
Unity and Communication for Exploration 
Holon - A New Way of Forth 

Session Two - Exploration - Object Lessons in Hard Truths 
Toward Programming in Natural Language Style in the Object- 

Oriented Forth natOOF 
The Specification Language ETF-I 
Rule-Based Expert Shell for Real-Time Control 
Marketing Forth and Forth Products in Bulgaria: problems and 

perspective 
A DMA-based PC-AT Communication Architecture for DSP 

Applications using FIFO RAMS 
A 448 Byte Forth Multitasking Kernel 
FRP 1600 - 16-Bit real time processor 

Session Three - Unity - Methods and Skills in Harmony 
The Hysteretic Heap 
A New Approach to Forth Native Code Generation 
Cellular Automata on a Personal Computer 
Multi-Target Program Product Stripping in Beta-Forth 
Implementation of the Forth Type Checker 
The (almost) Complete Theory of Forth Type Inference 
PROCIC - Process Computer for Computationally Intensive Control 

Session Four - Communication - Application: The Employment 
Connection 

FOSM, A Forth String Matcher, continued 
Application of the RTX processor as a high performance multi- 

channel data converter 
SMAN - From Greatness to Excellence 
Forth at the International Convention Centre, Birmingham, England 
The DBMS - Forth realization problems and solutions 
A Portable Implementation of Logo in Forth 
Using Forth to improve programming productivity on  

Programmable Controllers 


