

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 2000tm l&bit Forth Chip SC32tm 32-bit Forth Microprocessor
-8 or 10 MHz operation and 15 MIPS speed. *8 or 10 MHz operation and 15 MIPS speed.
1-cycle 16 x 16 = 32-bi multiply. 1 -clock cycle instruction execution.
1 -cycle 1 Cprioritiied interrupts. *Contiguous 16 GB data and 2 GB code space.

*two 2Sword stack memories. *Stack depths limited only by available memory.
*&channel I/O bus & 3 timer/counters. -Bus request/bus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. -32-bi SC32 industrial grade Forth PGA CPU.
-System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
032 KB to 1 MB 0-wait-state static RAM. -32 KB to 512 KB 0-wait-state static RAM.
Full-length PC/XT/AT plug-in (6-layer) board. elOOmm x 160mm Eurocard size (4-layer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (Parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. 032-bi SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
-Up to 640 KB 0-wait-state static RAM. 064 KB to 1 MB @wait-state static RAM.
*233mm x 160mm 6U size (Slayer) board. *FulClength PC/XT/AT plug-in (Slayer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
RTX 2000 PLCC or 2001 A PLCC chip. =RTX 2000 industrial grade PGA CPU.

*System speed options: 8, 10, or 12 MHz. *System speed options: 8, 10, or 12 MHz.
-32 KB to 256 KB 0-wait-state SRAM. 032 KB to 512 KB &wait-state static RAM.
-1 00mm x 1 OOmm size (+layer) board. -1OOmm x 160mm Eurocard size (Clayer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 655 W. Evelyn Ave. f l , Mountain View, CA 94041 (415) 961-8778

I Features

Q 7 WLOAD for WRI Files Hank Wilkinson
Contrary to general "knowledge," Forth may be documented so well people compliment you!
Windows' word processors can serve as editors, easing the documentation task. Understand-
ing Write's file structure allows Forth to load its files without using the "Save &.. ." option.

1 1 MuP21: Evolution of a Forth Chip C. H. Ting
Charles Moore, father of Forth, continues exploring the design and manufacture of Forth
hardware. Moore has been demonstrating his newest Forth chip, enticing those who dream
of executing Forth code on a Forth processor and those intrigued by do-it-yourself chip design.

f 13 Jump & Execute Tables Walter J. Rottenkolber
Modifiable and economical, jump and execution tables are often overlooked as alternate
"selectorn words by new Forthwrights. Selecting options is common in programs; we can use
tables as selectors because, in Forth, the distinction between data and functions is not sharp.

f 7 A sit of ist tory Jaanus Poial
Forth has been found in many places around the world. Here the author tells the story of Forth
in his native Estonia, where it has occupied a distinct niche for over a dozen years.

I 'f 8 Algebraic Specification of Stack Effects Jaanus Poial
How to validate a complex program's correctness is the subject of intense investigation and
research. This article attacks the problem with a formalism which allows one to check the stack
effects according to the program text.

21 HDTV Format Convertor Philip S. Crosby
Forth was used extensively to build a High-Density Television (HDTV) Format Convertor for
the Advanced Television Test Center, generating and evaluating video in the proposed U.S.
HDTV standards. Engineers relied on several Forth dialects, about 300 ICs, and an A/D and
D/A conversion process suitable for producing high-quality video.

Departments I
4 Editorial Maximum advantage; A call for authors; Bottom line.

5 Letters Fractional math; The essence of Forth; Spaghetti in any language;

Switch suggestions; Making FIRE.

27 Stuck on Stacks A guide for stacrobats and stacrophobes.

3 0 FIG Chapter report.. . Maryland hears from Bliss Carkhuff and Julian V. Noble.

34 Guest Essay Object code vs. metacode: a market for Forth expertise.

35 Advertisers Index
3 8 Fast Forthward.. A reconciliation with ANS Forth and an exercise in interface

design; corrections to ANS Forth Quick Reference Card.

Forth Dimensions 3 November 1994 December

Maximum advantage: A comment on comp.1ang.forth challenged whether the Forth
community is really a community at all. Without consulting the dictionary, I'd define
community as people who share mutual interests and mutual responsibilities. Our
common interest here is obvious, but responsibilities? I've been considering the social
contract we each are born into (and this jars my "inner anarchistn), the reciprocity that
permits us to enjoy the benefits of a society. Yes, we must tolerate or even encourage
diversity, but Forth proponents are still too few to survive much fragmentation. To
prosper, we must call upon our ability to function as a community.

The impending (at press time) publication of the official ANS Forth document presents
us with a new and potent opportunity. If-and only if-we pull together collectively and
also d o individually whatever we can, maximum leverage can be achieved.

* * *
A call for autbots: We have received many kind comments this year regarding Fortb

Dimemiom. One of my editorial tasks is to keep an interesting mix of ideas, techniques,
application examples, and Forth stories to satisfy a diverse, international readership.

I must ask for your assistance. Help us to keep improving the quality of Fortb
Dimemiom content (and help it to better represent your own viewpoints and expertise)
by writing an article or letter to the editor. Remember that not all our readers are experts;
your personal story of trial-and-error might be the perfect lesson and encouragement for
someone else. And some Forth experts working on very exciting projects feel, by virtue
of their hectic schedules, too preoccupied to write. So if you, perhaps too humbly, feel
that your own Forth musings might not shed much light, consider interviewing one of
the notables and writing about their work.

Bottom line: The Forth Interest Group has, for more than a decade-and-a-half, served
as the primary focal point of Forth advocacy. Whether other sources of information about
the language have been non-existent, strong, or erratic over this time, FIG has steadily
provided access to expertise, vendor contacts, software archives, and printed literature.
One can find things subject to constructive criticism, but enough cannot be said of the
value that FIG's constant presence has brought to the whole Forth community.

Thanks to the support of its members, FIG has withstood the ebb and flow of
programming fashions and the onslaught of worldwide recessions. Membership-related
revenue is its financial lifeblood. The quantity and quality of services provided to
members, and the number of projects that can be undertaken to promote Forth, are quite
directly related to the number of members in this non-profit organization. (If you know
a way to develop substantial income from other sources, please contact FIG and get
involved!)

Base-line participation in the Forth Interest Group is simply by having an active
membership. And the most direct way to ensure FIG's continued ability to serve is by
encouraging co-workers, customers, students, fellow chapter attendees, and even your
employer to join FIG and to receive Forth Dimensions. If it is appropriate, buy someone
a gift membership. Don't underestimate this simple form of participation--our organi-
zation needs financial support, just as we need written contributions to these pages. And
FIG needs new members every year, just as Forth needs new users and markets.

Consider the mutual interests and responsibilities of our community; and think of the
influence a strong community can have in Forth's penetration into existing markets and
creating new ones.

-Marlin Ouuerson
ouversonm@aol.com

Forth Dimensions
Volume XVI, Number 4

November 1994 December

Published by the
Forth Interest Group

Editor
Marlin Ouverson

Circulation/Order Desk
Frank Hall

Forth Dimensions welcomes
editorial material, letters to the
editor, and cornmenu from its read-
ers. No responsibility is assumed
for accuracy of submissions.

Subscription to Forth Dimen-
sions is included with membership
in the Forth Interest Group at $40
per year ($52 overseas air). For
membership, change of address,
and to submit items for publication,
the address is: Forth Interest Group,
P.O. Box 2154, Oakland, California
94621. Administrative offices:
510-89-FORTH. Fax: 510-535-1295.
Advertising sales: 805-946-2272.

Copyright 8 1994 by Forth In-
terest Group, Inc. The material con-
tained in this periodical (but not the
code) is copyrighted by the indi-
vidual authors of the articles and by
Forth Interest Group, Inc., respec-
tively. Any reproduction or use of
this periodical as it is compiled or
the articles, except reproductions
for non-commercial purposes, with-
out the written permission of Forth
Interest Group, Inc. is a violation of
the Copyright Laws. Any code bear-
ing a copyright notice, however,
can be used only with permission
of the copyright holder.

The Forth Interest Group
The Forth Interest Group is the
association of programmers,
managers, andengineers whocreate
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that
will advance the general state of the
art. FIG provides a climate of
intellectual exchange and benefits
intended to assist each of its
members. Publications, conferences,
seminars, telecommunications, and
area chapter meetings are among
its activities.

"ForthDimenrions(1SSN 0884-0822)
is published bimonthly for $40/46/
52 per year by the Forth Interest
Group, 4800 Allendale Ave.,
Oakland, CA 94619. Second-dass
postage paid at Oakland, CA.
POSTMASTER: Send address
changes to Forth Dimensions, P.O.
Box 2154, Oakland, CA 94621-0054."

November 1994 December Forth Dimensions

Forth Dimensions 5 November 1994 December

Letters to the Editor-and to your fellow readers-are always we/-
come. Respond to articles, describe yourlatestprojects, ask forinput,
advise the Forth community, or simply share a recent insight. Code is
also welcome, but is optional. Letters may be edited for clarity and
length. We want to hear from you!

Fractional Math
Dear Marlin,

I've been noting with interest the increasing number of
articles that deal with fractional mathematics, such as two
articles in Forth Dimemiom XVI/2. This has gotten me
thinking about the possibility of synthesizing some of the
individual pieces into a comprehensive fractional-math
package, preferably one that would be portable across a
large number of platforms. I've also thought of possibly
using cordic functions to help generate transcendental
functions for small values, then using various identity
formulas to scale them up to larger values. I'm thinking of
presenting the results, including code, for an article in FD
within the next year.

I would like to make some additional comments, geared
specifically toward the article, "Convert Real Numbers to
Fractions," by Walter J. Rottenkolber. The continued-
fraction technique that he discusses is presented in most
college-level courses on number theory. One point that
must be brought up when genenting

is that the can never be more
Ziccurate &an the ongrnal used to approximale the
desired value. The predicted accuracy of each fractional
approximation A/B to some value X, where A/B is gener-
ated by the continued-fraction algorithm, is always I X-(A/
B) I < 1/(BA2). If the approximation's theoretical accuracy
exceeds the accuracy of the figure you give it vs. the desired
value (as in using 3.1416 for pi), you should always consider
the returned fraction(s) to be suspect from that point on.

A second point is that the continued-fraction algorithm
also gives a fast way for reducing any fraction to its lowest
terms. If a fraction P/Q is given to the algorithm, and it is
run until the residual value is zero, then the final fraction A/
B generated is P/Q reduced to lowest terms. For example,
if you start with the fraction 68/255, you will get back 4/15.

Finally, it might be interesting to look at the possibili-
ties raised by "quadratic" integers and fractions, which are
also discussed in number theory. In particular, numbers of
the form (A+(B'sqrt(W))/C may be useful in solving
certain types of geometrical problems, especially since the
sines and cosines of certain angles, such as 30,45, and 60
degrees, can be expressed as "quadratic" fractions.

Along similar lines, I'd be interested in seeing if there is
any interest out there for a comprehensive package that

would handle arbitrarily large integers and fractions; such a
package might be useful for mathematics research, for
example. The number values themselves would be repre-
sented as strings of cells; a heap manager would be
necessary. While such a package could be put together such
that it would have a high degree of both system and dialect
independence, it would be too involved for an article; rather,
it would become a small book! (It would possibly have a disk
for MS-DOS included.) Interested readers can contact me via
e-mail at the address listed at the end of this letter.

My last major remark is along completely different
lines, and is directed at the article, "Forth Nano-Compil-
ers," by Veil and Walker. It appears that they are approach-
ing problems similar to the ones that I discussed in my own
article, "Optimizing '386 Assembly Coden (XV/6), but from
a somewhat different perspective. It is interesting to
compare notes on the parallel techniques being used to
solve similar types of problems.

And finally, last but not least, One minor note: could
You start regulad~ publishing a contact point, such as an
e-mail or "snail-mail" address, where each author could be
reached? Such contact Points ~ o u l d give interested read-
ers the ability to follow UP direct& on each article.

Yours,
David M. Sanders
PsiqFour@aol.com

Thank you for your remarks, David. As to publishing
addresses: recently, pHmaHlyfor ofpH-

vacy, we have not published addresses unless
are a business location or a Post oBce &. We

encourage authors to include e-mail addresses, although
it is their decision. We like it when an article or letter
inspirer dialog--jmt d m 1 leave and other yeadm
out. Please send copies of interesting arnplifiiations, coy-
ectiom, and even disagreema& (see the following l e W

that we all can the drscusrion - E ~ ,

The Essence of Forth?
In 'The Essence of Forth," Randy Leberknight and

Dennis Ruffer describe a cumbersome procedure for
locating a particular Forth definition within a hierarchy of
files on a Unix system, contrasting this procedure with the
simplicity of the "LOCATE <wordname>" command in the
Forth, Inc. editor.

In fact, the two most common Unix editors (vi and GNU
EMACS) each have built-in commands, even more stream-
lined than LOCATE, for automating the process.

For example, using the vi editor, you can either:
a) Type "vi -t <wordname>" to start the editor with the

cursor positioned on the definition of that word within
the correct file, or

b) Position the cursor anywhere within an occurrence of
the word you wish to locate and type *A}" (control-right
brace), to switch the current edition session to the
correct file and position, or

c) Type ":ta <wordname>" to do the same thing as (b), if
the cursor doesn't happen to be anywhere near an

occurrence of that word. I

In ThisForth, s w i t c h - e x a m p l e can be written:
: s w i t c h - e x a m p l e

CASE 1 OF one (C : o r i g)
BEGIN b u t three (C : dest o r i g)
E L S E 2 OF b u t THEN t w o
E L S E 3 OF three (C: dest o r ig o r i g)

Switch Suggestions I
Having moved around through ,5evera1 such "tags," you
can backtrack t~ any level ("pop the tag suck") by typing
"A]" as many times as necessary.

GNU M C S has even more powerful cz~abilities-for
example, it can do directed search-and-replace, spanning
exactly the files comprising a project. In fact, GNU EMACS
has all the features that the article attributes to Forth, Inc.'s
editor, and many more besides.

At a more fundamental level, I question the oven11
premise of the atride in question. The ahcle, entitled ' n e
Essence of Forthn and beginning with the rhetorical q u a -
tion about the key to Forth's productivity, is a
description of Forth, Inc.'s editor. If Forth, Inc.'s editor is
indeed the essence of Forth and the key to Forth's produc-
tivity, what have the rest of us Forth enthusiasts-who don't
have access to said editor-been doing all this time?

Certainly Forth, Inc. has a powerful and
but is that editor the "essence of Forthn? I don't think so.

Mitch Bradley
President, Firmworks
480 San Antonio Rd., Suite 230
Mountain View, California 94040
wmb@firmworks.com

Spaghetti in Any Language
Walter J. Rottenkolber's satire "Switch in Forthn was

very amusing. ~ u t it is not necessary to mimic c for
spaghetti code: Standard Forth will d o as well on its own.
[See Figure 0ne.J

Wil Baden
wilbaden@netcom.com

Figure One. Baden's s w i t c h - e x a m p l e .

I've been able to implement it as

Dear Marlin,
I was intrigued by Walter J, Rottenkolber's implemen-

tation ofa C-like "switchn in FDXVI/3. I've thought about
this particular construction from time to time, but was
reluctant to implement it because I couldn't think of a
situation in which it would be Nevertheless,
Rottenkolberls attempt moves me to offer some sugges-
tionsI think improvements--in synux, orthography,
and implementation.

Implementing .breakm as EXIT could hardly be sim-
pler, though it makes C-like nested uswithesn impossible,
but wih BREAK as an alias of EXIT, it seems appropriate
to make SWITCH: a defining word, so I indude [COM-
PILE : in SWITCH : and define a ; SWITCH
includes [COMPILE ;. This makes each a
named word, and avoids the error Rottenkolber
warns about in his ante-penultimate paragraph. And a
nested can be defined as a word and included as
a factor in the it nests in.

The word <DEFAULT in Rottenkolber's implementa-
tion seems awkward to me. I was able to dispense with it,
and also with DEFLG. In their place, I use two compile-
time variables which allow me to avoid the run-time
penalties of variable checking and of the I F in SWITCH :
that always jumps to the first "casen (CASE ' or DEFAULT,
whichever is first).

Rottenkolber uses three words for each case: CASE ' ,
some variation of =; ;, and ; ; to end it. I use two, which
I spell CASE (and 1 s (other versions of the second word,
corresponding to < ; ; , >; ; , RANGE ; ; , etc., are trivial to
add), and am able to dispense with the ; ; . Rottenkolber's
version makes a common C idiom awkward. The fragment

0..

case 1:
case 2 :

...
C A S E (1) I S
C A S E (2) I S
C A S E (3) I S
CASE (4) I S DOG BREAK

: b u t 1 CS-ROLL ; IMMEDIATE

: s w i t c h - e x a m p l e
DUP 1 = IF DROP one (C : o r i g)
BEGIN b u t three (C : dest o r i g)
E L S E DUP 2 = I F DROP b u t THEN t w o
E L S E DUP 3 = I F DROP three (C : dest o r i g o r i g)
E L S E DUP 4 = I F DROP b u t THEN f o u r
E L S E [2 CS-ROLL] DROP AGAIN (C : o r i g o r i g)
THEN THEN (c :)

E L S E [2 CS-ROLL 1
ESAC (c:

I ELSE 4 OF b u t THEN f o u r I ...

case 3:
case 4 : dog () ; b r e a k ;
...

would have to be coded as
...
CASE' =;; ; ;

CASE' 2 =;; ;;

CASE' 3 =;; ;;

CASE' 4 =;; DOG BREAK;

DROP AGAIN
I

(C: o r ig o r i g) which I think is cleaner and closer to the

1
November 1994 December 6

(Continues on page 32.) 1
Forth Dimensions

WLOAD For WRI Files

Hank Wilkinson
Greensboro, North Carolina

Microsoft Windows comes with two word processors:
the simple Notepad generating straight ASCII files, and the
more complex Write creating pleasing documents. Either
serve as a Forth source code editor. Notepad's ASCII files
pose no difficulty, and the "Save &. . ." option in Write can
saves files as straight ASCII, too. Write's attributes easily
allow good documentation of Forth code, and a little
understanding of the Write file's structure allows Forth to
load WRI files without using the "Save As.. ." option.

Write tries to give the ".wrin extensions to file names,
and these WRI files hold pictures and text. WRI documents
allow easy formatting and editing, and print easily too. The
command WLOAD, described in this article, eases creation
of clear documentation by loading WRI files. Glen Haydon's
article, "Formatting Source Coden (Forth Dimensions W6)
provided guidance for the code presented here.

Glen's programming switches (: and 1 allow easy docu-
mentation in a novel way. Reversing the relation between
code and comment, Forth expects comments until explicitly
told code follows. Notice this is backwards from the normally

I Some things are simple until I I you try them out. I

program which, by virtue of its execution, communicates
fine to the machine! Documentation deserves all the
facilities our word processors offer, including pictures
when helpful. There are times you may need to use
WLOAD, or something like it.

The complexity of a Write file made this job difficult to
figure out, but Inside Window File Formats by Tom Swan
(Sarns Publishing, 1993) helped. Tom's book, nicely written
for C programmers, explains various formats. One chapter
exclusively discusses the Write file, which we condense.

A WRI file consists of a 128-byte header (containing a
pointer to the document's format tables), followed by text
and objects forming the contents of a document, and
finally the document's format tables.

Conversely, some things are
easier than you think.

terse state, encapsulating comments with parentheses inside
a line, or backslashing them to the end of the line.

Simple motivation prompts this article. The one time I
received a letter about a Forth program I wrote, the
program used Glen's switches. Finding my program on a
bulletin board, the reader praised me-in writing-for
such well-documented Forth. Contrary to widely held
general "knowledge," Forth may be documented so well
people compliment you!

Even if you do not like this method of coding,
documentation forges a fundamental link in program-
ming. Communicating to oneself and others often proves
more difficult than communicating to the machine. We
struggle to understand the source code of a working

WRI File

0 header

[pointer]

$80 text
and

objects
xxx format tables [EOF]

Text (including page headers and footers) and data
objects begin on byte $80 (i.e., the 129th byte) of the file,
right after the header. We make no tests on the header
because Write generates our files, but simply extract the
pointer to the format tables. Below, we rename our pointer
"text & object size in bytes" and show its location.

Windows 3.1 text consists of the extended Windows
character set, plus control characters like the carriage
return, page break, and so on. Objects, signified by their
first byte, allow different kinds of things besides text.
Currently, objects exist as either the $E3 or $E4 type.

We ignore the $E3 type of object here because I don't
use them. Object linking and embedding, or OLE, creates

Forth Dimensions 7 November 1994 December

I } text & object
1 1 size in bytes
12

WRI File Header

7F end of header

source code size limit suggested the "strip Forth code to
a dummy filen approach. This technique still has the 64K

OLE Header

i y 12 }object in bytes size

13

) object header size
1 F

the $E4 type. Copying and pasting from OLE-aware
applications into WRI documents generates $E4 objects.
Many applications are OLE-aware: Windows Paintbrush
(drawings), for example, and of course Write.

Hitting $E4 in a WRI file, our code reads pointers from
the object's header, telling our code the total object size.

Shown above, byte 16 (the 17th) of the object's header
starts a four-byte number containing the object's length in
bytes. Bytes 30 and 31 (the 31st and 32nd) tell how long
the header itself is. Adding the object size to the header
size determines the total size of the object to ignore.

Write documents may get very large, especially with
pictures. 1 periodically use some exceeding 250K, and the
test file used for this code is over 280K. HS/FORTH's 64K

segment limitation, but only on the final stripped Forth
source code size, not the initial WRI file's size. With Forth
code greater than 64K, simply use more than one file.

WLOAD works like this:

Open WRI file and dummy file
Aim pointers

Until end of text and object area
Look for { or $E4

If { found, copy text to dummy until 1 found
If $E4 found, ignore entire object

Close files
Pass dummy file to Forth and LOAD

Our buffer design reflects pathological fear of reading
past the end of a file, the end of a buffer, or simply losing
track of a single byte. Using the same buffer for reads and
writes avoids moving text around. Below shows the buffer
and pointer scheme.

Disk 110 Buffer

PAD: 0 1 2 3 . . . CNT

not used

BOB points to the current byte. Obviously, BOB 1+

reflects the next byte. EOB BOB - 1+ computes the number
of bytes left in the buffer. EOB BOB < yielding true means
an empty buffer. To compute the number of bytes
processed, first we save the current value of BOB, do our
work inside the buffer, thensubtract the new current value
of BOB from the old one.

The disk writing routines use the HS/Forth word WRI TEH

which needs a paragraph (provided by LISTS @) and offset
address, a count of bytes to write, and the file's handle.
Reading uses the unique HS/Forth command N@ H, needing
only a count and handle because N@H places the bytes at
PAD I+. I tested this definition of NBH, if you lack one.
: N @ H (count handle -- PAD 1+) -

>R >R L I S T S @ PAD I + R> R> READH DROP

PAD 1+ ;

November 7 994 December 8 Forth Dimensions

0 VAR FALSE
-1 VAR TRUE
CREATE RD$ 1 2 8 ALLOT \ r ead f i l e name ho lde r
0 VAR RD-H \ read handle
CREATE WR$ 1 2 8 ALLOT \ w r i t e f i l e name
0 VAR WR-H \ w r i t e handle

0 VAR CNT \ # of b y t e s r e a d i n t o b u f f e r
0 VAR BOB \ o f f s e t t o c u r r e n t b y t e i n b u f f e r
0 VAR EOB \ o f f s e t t o end of b u f f e r
0 S->D DVAR F S Z \ main f i l e read ing coun te r
1 2 8 VAR BSZ \ b u f f e r s i z e

\ f i l l s b u f f e r wi th BSZ o r less b y t e s . X r ead r e t u r n e d by CNT
\ F S Z shows remaining b y t e s , BOB & EOB set
: GETBUF (--)

\ t es t f o r EOF
F S Z DO= I F 0 I S CNT PAD 1+ I S BOB PAD CNT + I S EOB E X I T THEN
\ make s u r e t h e r e a r e BSZ b y t e s l e f t , a d j u s t i n g CNT
F S Z BSZ S->D
D> I F F S Z BSZ M- I S F S Z

B S Z I S CNT
E L S E F S Z DROP I S CNT

0 S->D I S F S Z THEN
\ r e a d t h e f i l e , aim p o i n t e r s
CNT RD-H N@H I S BOB PAD CNT + I S EOB ;

\ r eads one b y t e on to s t a c k , p o i n t i n g BOB t o next b y t e
\ o r f i l l i n g b u f f e r i f neces sa ry
: GETBYTE (-- b y t e)

EOB BOB < I F GETBUF THEN \ f i l l b u f f e r i f neces sa ry
CNT O= I F FALSE E X I T THEN \ e x i t with FALSE upon EOF
BOB C@ BOB 1+ I S BOB ; \ g e t b y t e and a d j u s t p o i n t e r

\ w r i t e s b y t e s t o f i l e
: PUTBUF (PAD-address count -- 1

>R >R L I S T S @ R> R> WR-H WRITEH DROP ;

\ i gno re a g iven # of b y t e s i n r ead f i l e
: IGNORE (n --)

EOB BOB - 1+ OVER U<
I F

EOB BOB - 1+ -
BEGIN

GETBUF CNT OVER U<
WHILE CNT - REPEAT

THEN
BOB + I S BOB ;

\ given an o b j e c t , f i n d s i z e and s t r i p it
: S T R I P - O B J (--)

1 6 IGNORE
GETBYTE GETBYTE 2 5 6 " + GETBYTE GETBYTE 2 5 6 " + \ double on
s t a c k
1 0 IGNORE
GETBYTE GETBYTE 256" + 3 2 - M+
\ conver t t o s i n g l e t o IGNORE
BEGIN DUP WHILE -1 IGNORE -1 0 D- REPEAT
DROP DUP I F IGNORE E L S E DROP THEN ;

Forth Dimensions 9

One advantage of Forth
s its ability to build work-
ng prototypes to test.
Some things are simple
~ntil you try them out.
Zonversely, some things
are easier than you think.
Forth allows building
many prototypes, learn-
ing the best approach from
experience. Though I have
written code like this be-
fore, this is my first time
for Windows and HS/

Forth. The code shown
with this article appears in
a different form from ear-
lier methods used.

I point you now to the
code. First come various
holders for data and val-
ues used throughout the
routines. G E T B U F ,

GETBYTE, and PUTBUF

access the files, keeping
all pointers aligned. IG-

NORE moves pointers past
a given single-number
count of bytes. Given the
$ E 4 byte from the input
stream, S T R I P - O B J com-
putes an object's size from
its header, handling
double numbers for IG-

NORE.

I S 1 ? performs the job
of looking inside a buffer
for 1 . (This punctuation
and spelling are messing
with my grammar
checker!)

I uses I S 1 ?, copying
a file until 1. LOOK de-
cides to call { or S T R I P -

OBJ. DO-WORK looks in-
side a file for the two char-
acters { and $ E 4 , calling
LOOK when encountered.

E X T R A C T - F O R T H ,

then, places only text

November 1994 December

\ looking for) inside buffer
: I S } ? (-- flag) \ TRUE, } found, BOB points to it
BEG I N

BOB C@
A S C I I } = I F TRUE E X I T THEN

BOB 1+ I S BOB
EOB BOB < U N T I L
FALSE ;

\ copy until }

: { (--)

CNT O= I F E X I T THEN \ do nothing if empty
BOB EOB = I F GETBUF

E L S E BOB 1 + I S BOB THEN
BEGIN

BOB I S } ? I F BOB OVER - PUTBUF E X I T
E L S E EOB OVER - 1+ PUTBUF THEN

GETBUF
CNT O= I F E X I T THEN

AGAIN ;

: LOOK (-- 1
BOB C@ A S C I I { = I F { ELSE S T R I P - O B J THEN ;

: DO-WORK (--)

GETBUF
BEGIN

CNT O= I F E X I T THEN \ EOF, so quit
BOB C@ A S C I I { = \ looking for {

BOB C@ 2 2 8 = \ looking for $ E 4
OR I F LOOK THEN \ if found, do something
\ next character
BOB EOB > I F GETBUF E L S E BOB 1+ I S BOB THEN

AGAIN ;

: EXTRACT-FORTH (-- 1
$" dl" WR$ $! \ dummy name to put Forth
RD$ OPEN-R I S RD-H WR$ MKFILE I S WR-H \ open files
1 4 RD-H N@H DROP \ get to end-of - data pointer
\ set F S Z to end of data
1 RD-H N@H C @ 1 RD-H N@H C@ 2 5 6 " +
1 RD-H N@H C@ 1 RD-H N@H C @ 2 5 6 " + I S F S Z

1 2 8 18 - RD-H N@H DROP \ ignore rest of header
F S Z 1 2 8 M- I S F S Z \ tell F S Z header was read
\ now extract Forth from text and objects
DO-WORK
\ and close files
WR-H CLOSEH
RD-H CLOSEH ;

\ Use: WLOAD filename.wri
\ (FLOADs Forth code i n filename.WR1)

: WLOAD
BL TEXT

PAD RD$ $!
EXTRACT-FORTH

$" D l " <MELOAD> ;

found between curly braces inside a
dummy file named D 1. The action of
EXTRACT -FORTH handles the files,
sets the data size F S Z from the WRI
header, and jumps past the rest of the
header. After the DO-WORK call, Ex-

TRACT-FORTH closes the files.
WLOAD reads a file's name from

the input stream, stores it in a string
variable, and begins the extraction.
The syntax
WLOAD path\filename.ext

requires no quotes on the filename.
The dummy file with the code passed
to HS/Fonh's <MFLOAD> receives a
check for file size before loading.

Three problems exist with WLOAD.

Mainly, the WRI file has to be closed
before you WLOAD it, or you get a
SHARE abort from MS-DOS. Having
to close the file reduces immediacy.
Also, the routines also lack any pars-
ing, like the BL WORD phrase, so
neither the left- nor right-brace may
be used in your code or document,
except as switches. Finally, you can't
WLoAD from within a WLOAD be-
cause you would overwrite D l (but
you may !?LOAD inside a WLOAD).

With those exceptions, these rou-
tines WLOAD Windows WRI files from

Forth.

November 1994 December 10 Forth Dimensions

C. H. Ting
San Mateo, California

In the beginning, Chuck Moore designed the NC4000
chip.

It was 1984, the chip worked, and it was marvelous to
behold. It was a 16-bit chip running at 5 MHz, it executed
one to five Forth instructions per clock cycle, and it
averaged about 12 MIPS. At the time, IBM was still
struggling along, limping from XT to AT.

The only trouble was that the NC4000 worked so well
the first time out of the foundry (Mostek in Colorado), that
Novix decided to market it as a real product even though
it was known that there were a few bugs: for instance, the
interrupt could disrupt a two-cycle memory access, and
you could not multiply one number with an odd multi-
plier. Novix tried to f~ the bugs without Chuck, and the
fixes were worse than the bugs. Finally, Novix, under
financial stress, sold the NC4000 patent to Harris.

Harris threw in resources only a big company could
muster to fix the bugs and added a number of enhance-
ments. It added the on-board data and return stack, one-
step multiplier, counter-times, and an interrupt controller,

was left with two ShBoom prototype chips. He experi-
mented with a new concept, designing the next genera-
tion of ShBoom on ShBoom itself.

After designing two chips--one with gate arrays at
Mostek, and one with custom ASIC at OKI--Chuck was
convinced there ought to be a better way to design chips.
The chip design software packages were cumbersome,
and, by insisting on useless rules and protocols, they
tended to prevent one from optimizing a design. It was
totally unreasonable to spend hours and hours, even on
the fastest and largest mainframe computers, to simulate
a single instruction. Chuck was dreaming about a CAD
system he could use to design a chip at home. He started
implementing the concept on the ShBoom and demon-
strated the CAD system at several Forth conferences.
People were generally impressed, but nobody had enough
faith in him to make it happen.

That brought us to 1990. At the time, Orbit Semicon-
ductor introduced the Foresight multi-project wafer pro-
cessing service. It could produce 12 prototype (TINY)
chips at a cost of $1500, with die size of 2.4 x 2.4 mm

and built the Real Time Express (RTX2000) chip. For two
years, Harris spared no efforts in promoting it, and the
RTX2000 began to penetrate into lots of new applications.
Just then, Harris decided to disband its digital division,
which hosted the RTX project. Even now, though, Harris
makes RTX chips for whoever needs them; but the
marketing thrust has gone.

In the meantime, a fellow named Russell Fish came to
the San Francisco area with a mission to revive Apollo, a
workstation manufacturer out east which was eventually
bought by H-P. Russell was introduced to Chuck, and they
conspired to build the successor to the NC4000. It was a
32-bit microprocessor, code named ShBoom. Chuck de-
signed and laid it out at the OK1 Design Center in the
Silicon Valley, and the prototype was built in the OK1 main
plant in Japan. The prototype worked well, but the
partnership between Chuck and Russell fell apart. Chuck

So we had a handshake
agreement to build the P20 chip.

Chuck looked at the information Orbit provided and
decided he could not fit a 32-bit microprocessor in that
TINY package-with 40 pins, the best he could do was a
20-bit microprocessor. A 20-bit microprocessor could be
a nice design because it would match very neatly with the
1Mx4 DRAM memory chips which started to appear on the
market. He was anxious to develop a new microprocessor
that would become a platform for the CAD system on
which he wanted to build future chips, in place of the two
ShBoom chips he had.

So we had a handshake agreement to build the P20
chip.

The chip was officially called MuP20, because it has
multiple processors integrated in a single package. Be-
sides the 20-bit microprocessor with two stacks, it also has
a memory coprocessor which allows the chip to talk
directly to DRAM and SRAM chips, and a video coprocessor
which generates live NTSC color TV signals from image

packaged in a 40-pin DIP case. I thought I could afford to
pay for this service if Chuck were to design a microproces-
sor on that d e .

Forth Dimensions 11 November 1994 December

data stored in DRAM.
As usual, it takes lots more than what you anticipate to

accomplish anything. P20 started out as a three-month
project, and it drags on for three years. The biggest
problem was that Chuck had to debug his design and his
tools at the same time. Time and again, we were at a loss,
wondering who was telling the truth: the silicon or the
simulator.

The first major change was that Chuck moved the CAD
system from ShBoom to a '386 PC. The ShBoom system
Chuck built had only one megabyte of memory and it was
too small for P20. Having the CAD system in a standard
'386 PC was very reassuring because we didn't have to
worry about anything happening to the ShBoom chips.
The CAD system could be backed up conveniently. Chuck
built the '386 O K system as the operating environment for
the CAD system, which he now called OKAD.

The '386 OK system took advantage of DOS capabili-
ties and the protected mode of the '386 microprocessor. It
is a graphical user interface to the CAD design system. The
user can lay out a chip, edit the design conveniently, and
simulate the chip functions, through a set of menus
controlled by seven keys on the regular PC keyboard. It
seemed to be a great waste to use a 101-key keyboard for
this purpose, but the conventional keyboard is more
rugged and much easier on the fingers than the many
versions of the seven-key keypad Chuck was experiment-
ing with. (One such keypad almost incapacitated Chuck's
right arm.)

The OKAD system uses a tiled structure to hold a chip
layout. Each tile was four microns on a side. It can be
programmed to represent a transistor, and electric connec-
tions within and between the diffusion, poly silicon, first
metal, and second metal layers. The tiled structure has
many advantages. It allows silicon logic and connections
to be specified without ambiguity, and it can be scaled

Chuck wondered what
Forth programmers will think
of a Forth machine without
SWAP and OVER.

conveniently as the CMOS technology moves rapidly from
microns to submicron geometry. Another advantage is that
the cell structure enforces many of the design rules
automatically. Hence, the layout will be correct by design,
ideally.

The second major change was that all the registers and
stack elements were enlarged from 20 bits to 21 bits. The
extra bit served two purposes. In ALU operations, it
becomes the carry bit to accommodate extended-preci-
sion math operations. For memory access, it distinguishes
DRAM from SRAM and I/O space.

thought the analog delay circuits were simpler, more
efficient, and more elegant. He changed the design, using
some weak transistors to charge big capacitors to generate
the desired timing signals for all the components in the
chip.

We went to Orbit Semiconductor many times. It was
not until the sixth try that we got functioning chips. Even
then, it was not easy to coerce the chip to talk. In that
prototype, the SRAM-accessing circuit ran too fast. It read
one instruction from SRAM and executed it. However,
before the SRAM could supply the next instruction, the
CPU read again and executed the same instruction a
second time. Hence, each instruction at an even address
was executed twice, while those at odd addresses were
ignored. After pondering this strange behavior for a week,
Chuck was able to write a boot routine-in which every
instruction was repeated twice-and got the chip to boot
into DRAM. Once the chip ran in DRAM, everything
seemed to work as expected.

In this prototype, only three registers on the data stack
could be accessed. All routines had to restrict stack usage
to three or less. It was a great handicap, but it did not
prevent Chuck from writing some impressive demonstra-
tion routines showing off the video coprocessor. It gener-
ated brilliant color graphics on TV monitor screens.
Without an ASCII character set, he programmed P21 to
dump its memory on screen in binary, using long sticks for
ones and short sticks for zeroes. If he arranged the short
sticks properly, the memory dump looked remarkably
similar to hexagrams from I Ching.

Another problem was that OVER did not work. In the
earlier designs, Chuck had already eliminated SWAP,
because to swap data between the top and the next
register on the data stack, one would need another
intermediate register. The extra register was deemed
unnecessary, and SWAP was eliminated from the instruc-
tion set. Now, for some reason, OVER did not work either.
We decided to eliminate OVER from the instruction set as
well. Chuck wondered what Forth programmers will think
of a Forth machine without SWAP and OVER. Nevertheless,
Chuck was able to code the entire OK system in P21
without these two instructions, and using only three
elements on the data stack. Maybe we don't need SWAP

and OVER after all.
The seventh prototype was delivered in early 1994. It

worked much better. The SRAM timing was fixed, so we
do not have to used the very elaborate boot routine. The
data-stack accessing problem was also fixed, and all five
registers are now available.

MuP21 is a reality, although we are still anxiously
waiting for it to be produced in volume.

A third major change &as in the timing circuitry. I I - -
Originally, chuck used a of counter registers to provide Dr. C.H. Ting, a long-time, noteworthy figure in the Forth community, may be ' I reachedviae-mail atChen~Ting@umacrnail.apldbio.com or by faxat415-571-
proper timing signals to the memory coprocessor. Then he 5 ~ 4 .

November 1994 December 12 Forth Dimensions

Jump and
Execute Tables

1 for Directing Program Control Flow
Walter J. Rottenkolber
Mariposa, California

Selecting one of many options is common in programs.
You could use multiple I F ELSE THEN branches but, after
a few levels, the branch code begins to obscure the select
logic. The CASE and switch statements simplify the syntax
so that the function of the code is more apparent. So
widespread are their use that many new Forthwrights may
be unaware that alternate selector words are available;
namely, jump and execution tables.

I use Laxen and Perry's F83, an indirect-threaded Forth
that follows the Forth-83 Standard. Since Forths vary in
implementation, not all the comments I make may apply
to your system. So test the code before committing
yourself to it.

We can use tables as selectors because, in Forth, the
distinction between data and functions is not as sharp as
in other languages. With ' (tick), we can get the code field
address (CFA) of a word. This is also known as the
compilation or execution address. It contains the address
of the code machinery that will process the contents of the
parameter field. If it is executed, the word is run.

Each takes no more than a
screen of code to implement,
and can be easily modified.

Try this experiment from the command line:
: t $ c r ." H e l l o F o r t h World" ;
' tS e x e c u t e

If all goes well, the string should print out.
In most of the following words, the CFA is in an array

and we start with the location address. So the CFA first has
to be fetched from the array before being executed. Since
this is a common practice, some Forths have the word
PERFORM that combines @ EXECUTE.

Jump Tables
Screens two, three, and four provide examples of jump

tables. These are single-dimension arrays (or vector or
matrix, take your pick) in which the data are the CFAs of
the words to be run.

In the first, separate words hold the data and the run
code. You can use CREATE outside a colon definition, but
you must then arrange to compile the data into the
parameter field. In this example, the words I and [turn
the compiler on and off. It's important that only regular
Forth words be compiled this way. Numeric data would be
compiled along with (L I T) by the interpreter, and so
would be in a form not accessed directly by the jump
routine.

The run code calculates the address of the desired word
from the index value and the array's base address. The
index value is doubled, to allow for the fact that word
addresses are two bytes long, and then is added to the base
address. This gives the array address we need to fetch the
word address. Since we can jump directly to the word
without scanning through the preceding words, this
method is called, naturally, a jump table.

An alternate method of compiling is to use ' (tick) to
get the code field (compilation) address, and then compile
it with , (comma), e.g., ' CHAR , and ' P - I N , and etc.
Screen two uses this method in the DO LOOP after CREATE.
The number of elements on the stack controls the compile
loop, and is also saved for the run-time index limit check.

CASE : (in screen four) is one of those tricky "can you
top thisn Forth words. CONSTANT is equivalent to CREATE
, . This generates a new header and also saves the number
of elements on the stack for MAP to use. H I D E prevents
recursion, and I turns the compiler on to compile the
words. MAP does error checking to ensure the index is in
range before calculating the pointer address. PERFORM
fetches the word's code address and EXECUTES it. ;
(semicolon), among other functions, REVEALS the word
and turns off the compiler.

The use of the CASE : name for a jump table is not far-
fetched. Some Pascal compilers detect if the index values
are contiguous and generate a form of jump table instead
of the usual nested I F THEN branches.

The jump tables in screens three and four use the first
cell in the array to hold the count of words listed to test for
an out-of-range index. I changed the original code to make
the comparison with an unsigned operator (u<). If a
signed comparison is used, a negative number would pass

Forth Dimensions 13 November 1994 December

the test, even though it is equivalent to an unsigned
number above 32767. After the address calculation, the
jump could be to anywhere. Since I planned to use these
tables with EXEC. TABLEI, I also ensured that they would
detect a -1 (65535) as an out-of-range value (some tables
don't).

Jump tables are useful, but take care. The selector
(index) values and word list must be contiguous. If the
word list has a gap, a default word such as NOOP must be
inserted to pad the list. Also, the Forth standard has
indexes start with zero and go to n-1. If there are five words
to select, the index ranges from zero to four.

Execution Tables
Execution tables can be implemented as two tables, or

as two-dimensional arrays. First, a list is scanned for a
match to the test value. Its position is then used to locate
the desired word.

A two-table execution table is described in screen five.
The first table is scanned for a match value, and its position
in the table is placed on the stack. A no-match is marked
by a true (-1) value, which is also 65655 and beyond the
index value needed by most programs. This value is then
passed on to a regular jump table (described above). The
only requirement is that the jump table recognize true as
an invalid index value.

SELTABLE needs to scan a number list and compile it
into its parameter field. F83 doesn't have a pre-defined
word for this, but you can design your own. The stack
holds the count of the number list for the DO LOOP. BL
WORD scans for the next numeric string in the data stream.
NUMBER converts it into a binary double integer (an error
aborts) and puts it on the stack. The DROP converts it into
a single integer and , (comma) compiles it. This is a handy
way to compile a numeric list without requiring a com-
mand after each number.

Unless one of the tables is needed for other purposes,
using two tables is clumsy.

In screen six, I show an example by Haskell and
McKewan that combines the two tables into a two-
dimensional array, and uses one word to handle the job.
This word scans a numeric list that is terminated by -1,
which also marks the default word. There must be a
default word, even if it is NOOP. The 1 + before the WHILE
prevents the loop from terminating on a zero, but exits it
when a -1 is incremented to zero. It keeps the count for
you and stores it at the head of the list.

When the defined table word is run, the selector count
indexes a loop to scan the selector column. If a match is
found, the pointer is adjusted to the word address. This is
then fetched and executed. Otherwise, the default word is
performed.

Screen seven shows EXEC. TABLE2, another execu-
tion table from Haskell and McKewan. It accomplishes the
same task as EXEC. T A B L E ~ , but in a novel way. The three
words-EXEC. TABLE, I , and DEFAULT :-are used to-
gether but work independently. It's a clever method to
solve a complex problem by breaking it up into parts, each

i

8 ! Test Str-ings

2 . . h i $ i r . " T5is is " .
3:orie t i S . " o n e . " ;
4 : two ti$." two." ;
5 : t h r e ~ t i $." three." ;
6 : four t i 8 ." four." ;
7
B
3

10
I!
12
13
!4
t = . w

2
B '\ Ji;;r::, Sable -- Simple type
i
2 CREGTE CC
2 I one t#o three four C
4
5 : J1 (n)
6 XL'P 0 3 BETUEEd !F 2* CC + A F D R A
7 ELSE D3OP F E N ;
R
9

1 Pi
1 1 .
, .5
IL

12
i 4
15

-
2

\ Juifi: Table -- FD ix!5 224 (xodif:ed!

: J92P.TRSE I n) i S table-na$?e?e)
CRERTE DCP , I! ?DO ' , LOW
DES? (n pfa)

2 3 ~ p .;d g(1' ?+ SWfiP 2, + RffF'fF
ELSE 23?OP ." !&ex 2ut cf Rang$' qBSRT T2EN ;

\ Sxa;,lp!? -- seiu;; l is t , I; gost tie :n sequence 9. .?-I
? kk,e :tic abser:ce cf : o ~ : d i i?: t te ta:!~ s e t q

4 ;urjp.taSle 22 one two :tree four

'\ 3 Jz ==) ds- b.L ?'?hi5 i s foCr, "

November 1994 December 14 Forth Dimensions

4
i WSE: Ju@? Table
t S~bscr;$s s t a ~ t from 8)

: OL': (# apf) 1, report out of range error 3 abort
CR ." index out of rar~ge on " C L BODY))NR!!E
.ID ." !?ax is " @ 1- U. ." -- tried " U. QUIT ;

: Y9P (# aaf - a) \ convert subscript # to address a
EDUP Ed LI(I F 2+ SWAP 2s + ELSE OUT XEN ;

: CAE: I el (S tablename) \ n= nornber of functiom in l i s t
CWSTF!NT X E 1 DUES) (#subscript) RAP PERFUR!! ;

4 case: :3 one t~ tt.?ree four ;
\ 3 JZ --' --I "This is fourn

C

\ 2 Table Exec. Table
: SEL.'FIBLE (n) (S taS!ename)

DUP COKSTRNT @ ?W
EL LJC1q2 NUKEER DEP , LGW
DOES) (n pfa - n! \ YI= tree= ra natc';

-Ei DP 2t SWFIP f2 @ D9
23iP @ = !c RE? D R P F, -R!X TEEPVE T H B

?+ L E P ax)!, ;

1. Use as
4 spL,TRBLE 9 4 1 3 2
4 case: J4 four or* three two ;
: E: I r!) S2 ' 4 ;
i n= ~ndex far JUIII; Tah!e.
\ Note: n= true (-;I if invalid selection. Jump ?able pust
\ detect true as an out of range index value.

6
@ \ Table Exec. Table
1
2 : EXEC.TRE?E! (S tablename
3 CRER'E ERE @ , @
4 BESIN EL LJORD hLlMBER DRDP DUP !+
5 WHILE , ' , !+
6 REFER' 3ROF1 ' , SWEP '
7 DOES) (r pfa)
8 D!JP ?+ SwFIP C 9 DO
9 2DZP $ = :' 2+ LUVE fi-fE?J

I 8 4 t LC@ I I P PEW%% ifi!;

11
!2 exec.tab!el P 2 three 2 twc; 4 '~ur 1 me -1 Seep
13 \ kite: the last kord in l i s t :s the Cefa;!t Uclrd, arrd must SE
14 \ present. I t is ~arked by a --I se!ecL. va:. Use NCCP if r.6

15 \ default zs wanted.

processed by a separate word. (I made a minor bug fix.)
EXEC. TABLE is a defining word. It first sets up the

table name, puts the address of the parameter field on the
stack, and then inserts a marker space to hold the count
of selector values in the list.

I uses the words , and ' to compile the selector values
and the word address. It then increments the selector
count. The result is a list in which the selector values
alternate with the word addresses. Because the code
stream between the previous word and I goes through the
interpreter, you can use an expression that generates the
number placed on the stack. You can write expressions
such as CONTROL M or ASC I I W instead of just the numeric
equivalent as required by EXEC . TABLE 1. For example:
CONTROL T I DELWORD

At the end, DEFAULT : drops the duplicated selector
count address, then compiles the word after DEFAULT : .
Only one word can be compiled. If there is no specific
default routine, use DEFAULT : NOOP.

These words define the execution table, but are not a
part of it when it's completed. So be careful not to use :
(colon) and ; (semicolon) when setting up the table.

You might wonder why a standard, two-dimensional
array A ARRAY) isn't considered, although it can be used.
Accessing each value in a 2ARRAY requires the same
calculations as for a jump table. This is fine for one item,
but is slow for scanning a list. In essence, these execution
tables are specially designed for running speed and
compiling convenience. Be eliminating EXECUTE or re-
placing PERFORM with @, you have a data-lookup table, I allowing the code to perform double duty.

Wrapping Up
I've described several forms of jump and execute

tables. Each takes no more than a screen of code to
implement, and can be easily modified to meet program
requirements. Examples ofuse are included in the screens.
Although only a single word can be chosen to execute,
these tables can simplify the design of large code branches
and should be considered as useful alternatives to the
ubiquitous CASE and switch statements.

References
Richard E. Haskell and Andrew McKewan, "Vectored
Execution and an F83 Full-Screen Editor, Forth Dimensions
W2.

Walter J. Rottenkolber bought his first computer in 1983. Early on, he experi-
mented with fig-Forth and other languages, but gravitated toassembler until re-
introduced toForth in 1988. He notes that Forth pr.ovides the same closeto-the-
silicon feeling as assembler. but without the pain. Interests include small

(Code continues on next page.) embedded systems, programming, and computer history, about which he
enjoys writing.

Forth Dimensions 15 November 1994 December

(/ CHEAP 16 BIT AID PC CARD (8CH 16B WINDOWS) KlWPC $399
(/ RS232 to RS4221RS485 CONVERTER - needs no power! K4221485 $69
(/ 12c Card for PC 12c bus monitor rnasterlslave/control ICA-90 $299

2 - 6V 12c version ICA93 $399
(/ RS232 DATA CONVERTER texVstring searchheplace etc. PPC $699

VERY LOW POWER compact controller and logger with high-level
FORTH on-board. Program with PC. No need for in-circuit emula-
tor. 20 MHz H81532 processor with 8 ch 10-bit AID runs at 3MIPS.
79 Fig-FORTH+ or new AN8-W plus lots of extra FORTH
words come with Starter Pack for easy datalogging, control FFTs,
ultra low power, hook-up to keyboard, Icd, 110, PCMCIA, 1% 2 x
RS-232 ports. Interrupts, multi-tasking, editor, assembler. Store data
on PCMCIA cards, NVRAM or up to 40MB HP Kl lNHAWK drive.

YOU NEED A TDS2020HD
FORTH CONTROLLER

6 - 1 6 v @ 3 0 m a 300uasl
3" x 4" CMOS stacking modules

STARTER PACK $499
I
P

call for details! 4

Saelig Company
Eumpuur Iidimb~y

(71 6) 425-3753 ; (71 6) 425-3835 fax

7
B \ Execiltlort Tabfe -- FD i x i 5 224
:
2 : EXEC.TRBLE2 (- a) (S tablenarw
3 CERTE HERE 0 ,
4 DOES) (n pfa)
5 DUP2+SWRP@@Do
6 2WP F = IF 2+ LEAVE THEN
7 4 + LOOP NIP PERFORW ;
8
9 : i (a n - a) , ' , !CVE?+!;
10
11 : DEFRULT: (a) DROP , ;
l2
13 \s I f no default function, use as DEFRULT:
14 Example newt screen
!5

5
@ \ Execution Table -- FD ixi5 p24
i
2 exec.table2 E3
3 1 l one 3 l three
4 ? ! t w o 4 1 f u u r
5 default: beep
ti
7 \ defauit : mop \ alternate if no default function.
b
9 \ use as 3 E3 --) "This is three."

le
I!
12
13
14
15

November 1994 December 16 Forth Dimensions

Forth in Estonia:

A Bit of History

I Jaanus Poial
Tartu University, Estonia

Forth Dimensions 17 November 1994 December

The following overview tries to give an introduction of
the place and the history of Forth in Estonia and Tartu.

In Tartu University, there are long traditions in the field
of compiler compilers. In the 1970s, professor Mati Tombak
started with the parser construction on the IBM/360
computers (theso-called WIRTH-system). Previously, such
a system had been implemented for a second-generation
Russian computer. This work provided good experience
in parsing, but the implementation of language semantics
remained primitive enough. Some Estonian scientists
began using the attribute method of D. Knuth. Others
began looking for an intermediate language for code
generatiodinterpretation.

In 1982, we got acquainted with fig-Forth for the Apple
I1 and discovered that it was just what we needed. There
were three of us at that time-Mati Tombak, Viljo Soo, and
Jaanus Poial (the author of this paper). Viljo and I were
Mati's students, and graduated from the university as
mathematicians in 1982. We started with a new compiler
compiler project called TARTU. Mati invented a method to
translate from the initial language into Forth (a special kind
of syntax-directed translation based on bottom-up parsing).
Viljo investigated Forth internals to understand its possibili-
ties for our needs (an excellent FIG model by W. Ragsdale
has been our guide for a long time). My research treated the
methods of implementing semantics and context checking
for compilers via Forth. We decided to write the TARTU
system in Forth, because we were tired of rewriting large
programs for new and upcoming machines (micros had just
become generally available in Estonia).

Our first computer was the Apple TI with its 64K. It took
about eight months to write the first version of the
compiler compiler, TARTU. The CONSTRUCTOR program
processed and transformed the context-free grammar of
an initial language (including the so-called translation
rules) and built tables for the PARSER program. (1 I 1)-MSP
method (a mixed strategy of precedence with simple
context) was used in this version. The PARSER program
translated an initial program text into Forth. Context
checking and semantics were written in Forth.

As an exercise, I implemented a language with very
unusual control structures-Triodic (N. Goller). It was a

challenging order for me from Tallinn Technical University,
where mainly the attribute method was used (ELMA sys-
tem). I included the block structure, dynamic arrays, etc., in
this language and finished after two or three months.

In 1984, we moved to a PDP-11. Reino Vainaste and
Aivar Juurik (students of economics at the time) wrote
their own fig-Forth implementation for this machine and
contributed to our group. Viljo started working with a new
method of parsing (original and more powerful). Then,
the most impressive experience was to feel that Forth is
really very portable. An interesting side-effect occurred.
When transferring our system, we found a lot of bugs in
the Forth kernel (including the model). We now use our
system as a test of Forth. Reino also wrote a nice tracer-
decompiler for Forth.

The next period of our activities was connected with
the Forth circles in the Soviet Union. Several meetings
were held (Tallinn, April 1984; Miass, February 1985;
Leningrad, October 1985; Tartu, May 1986). We received
an order for writing a Fortran-IV translator for quite a
strange and obsolete Russian computer with different
types of memory (32K + 32K + 64K) and different sets of
commands for each type of memory. The Forth system for
this machine was written in Leningrad. Unfortunately, it
did not meet any standards. It was our great mistake not
to start from our own Forth implementation (later, we had
to do it anyway). We learned much about separating
headers, code, and data. Viljo and Aivar had to master the
machine language and write different sets of "colon,"
"semicolon," "compile," "store," "fetch," etc. This experi-
ence was later used to solve the problems of cross-
compiling. Now we know that a Forth group must always
have a machine/system expert.

Another hard problem was the Fortran syntax (no
reserved keywords, spaces allowed anywhere). Viljo
(again) invented a parsing method with backtracking. Mati
wrote procedure calling, standard procedures, separate
compilation and linking for Fortran. Aivar and Reino
implemented an I/O and format interpreter, and I pro-
cessed the declarations of the program. The result was a
Fortran translator with about 7K of free space for user

(Continued on page 20.)

Algebraic Specifications
of Stack Effects
Jaanus Poial
Tartu University, Estonia

The most important quality of the Forth word is its stack
effect. Particularly strong discipline is required when a
large application (hundreds of screens) is written, or when
more than two programmers participate in a project. There
are some good tools to trace the program, but in a
complicated environment, it is an inconvenient task to
trace all the program's branches.

The main idea of this work is to introduce a formalism
which allows one to check the stack effects according to
the program text. The same formalism will be used in the
case of Forth programs being generated by some formal
mechanism (we will deal with the syntax-directed transla-
tion scheme). Our attention is concentrated only on the
aspect of parameter passing through the stack, excluding
memory handling, I/O, etc.

Each Forth word has an informal specification of its
stack effect, given in the form:
input parameter types --- output parameter types

The type lists are ordered, the end of the list corresponds
to the top of the stack. This specification does not say
anything about the essence of the operation.

Our further investigation is based on the theory of
semigroups. In [NP701, M. Nivat and J.F. Perrot introduced
a 0-bisimple inverse semigroup called polycyclic monoid.
We need some notations to express the main ideas:
A an alphabet (finite set of type names)
A* the set of strings over A (set of type lists)
A the empty string (A E A* for arbitrary A)
a b the concatenation of strings a and b
0 the nullspeciJication (specifies the error situation)

The set of speciJications over A is the union:
@(A) = (A* X A*) u { 0 1.

Let [sl --- s;! I denote a pair (sl, s2) E A* x A*.
Here sl is the list of input parameters and s2 is the list

of output parameters as above. If there is no need to
emphasize the alphabet, we use @ instead of @(A).

The pair (A,A) = [--- 1 is called the emptyspecij?catim
and is denoted 1.

We may define the product o f specflcations as follows:

[ml-- t21 , i f t l = a+,

= 1 [sl - bt2 I , if s2 = btl ,
0 , otherwise.

The set is isomorphic to the polycyclic monoid
(proof in iNP70D. Consequently:
l . V S , t E @ : s t € @,
2. V r, s, t E : (rs)t = dst),
3 . V S E @ : s l = l s = s ,
4 . v ~ ~ @ : d = O S = O .

Let A be a set of considered operations. A* is a set of
sequences from these operations (set of programs).

Specifications are given by the mapping s : A* + @ :
1. V 17 E A : SO E @ \ I 0 I is a given specification of the

operation II,
2. s(A) = 1 (the empty program),
3. v E A*, v n E A : s c ~ n > = s(w)s(rr>.

The program w E A* is said to be correct if s(o) # 0, and
closed if s(w) = 1.

We may define a set of correct programs as:
CORRECT(&, s) = I w E A* I s(w) # 0 1

and a set of closed programs as:
CLOSED(A, s) = I o E A* I s(o) = 1 I.

Obviously,

A 1 C CLOSED C CORRECT C A*

These sets are algorithmically solvable because we
may calculate the formal specification of a program
according to the specifications of existing words. The
control structures of Forth need special treatment when
writing a practical correctness-checker (an attempt is
made to include the correctness-checking into the editor
immediately).

Let s E @. The inverse element sl E 0 is defined by the

November 1994 December 18 Forth Dimensions

1 greatest lower bound, which may be expressed as

conditions:
1. if s = 0, then sl = 0,
2. if s = [q --- sz I, then sl = [sz --- sl I.

The partialorderrelation I is convenient in the theory
of semigroups ([CP67D: s I t, iff st-1 = ss l . Since Ot-1 = 00
= 0, we have 0 I t for all t E a .

Theorem One. The following assertions are equivalent:
1. [sl --- s2 I S [tl --- t2 I,
2. 3 a E A* : [sl --- sz I = [at1 --- at2 I,
3. [--- sl I [tl --- t2 I [s2---I = 1,
4. [--- sl I [tl --- t2 I = [-- s;! I,
5. [tl --- t2 I [s2 --- 1 = [s1 --- I.

Having a partial order relation, the problem of compa-
rable elements arises. At present, we know that the null
element is comparable with all elements of a.

Theorem Two. The following comparability conditions
are equivalent for the elements of a:
1. s + 0, t # 0 and s is comparable with t,
2. there exists an element Y # 0 so that r l s and Y l t,
3. there exists an element u E so that s 4 u, t l u, and

at least one of the conditions st-1 + 0, s-lt # 0 holds.

Further, we need a method to solve inequalities given
by such a partial order relation. These inequalities may
have a "recurrent" form like s l s t .

Theorem 7b-e. Inequality s 5 rst by s # 0 holds in a ,
iff there exist a, b, c E A* so that
a q = sl, ar2 = bsl, ctl = bs2, and ctz = s2.

We finish the study of algebraic properties of with
observing infimum and supremum of subsets of @.

An arbitrary twoelement subset { s, t 1 C @ has the

s, if s S t,
infI s, t l - t, if t s s,

0, if s and t are non-comparable.

induce two languages, named CORRECT(A, s) and
CLOSED(A, s) before. A program w E CLOSED(A, s) as a
whole has neither input nor output parameters. At the
same time, parameter types inside of w are compatible,
i.e., w is correct. All "user-oriented" programs must be
closed, because the stack is only an implementation-level
tool. This point of view evokes our special interest in the
closed programs.

We investigate the syntax-directed translation scheme
(IAU72D and try to answer the question if there exists an
algorithm for detecting whether or not a given scheme
generates only closed programs.

The syntac-directed translation scheme is a quintuple
T = (N, C, A, R, S), which consists of the following
components:
N a non-terminal alphabet,
S E N a fixed initial symbol (an axiom),
C an input alphabet,
A an output alphabet, and
R a finite set of translation rules of the form:

A0 + xgAlx1 ... xn-lAnxn , Z O B ~ Z ~ ... zn-lBnzn
(xi E C* , Zi E A* , Ai , Bi E N), by which the vector (B1,
..., BJ is some permutation of the vector (Al, ..., AJ.

If (Bl, ..., M = (A1, ..., AJ for all rules of R, then the
syntax-directed translation scheme is said to be simple.

The syntax-directed translation scheme defines a set of
pairs (o, o) E C* x A*, which may be derived from the pair
(S, S). The first components of these pairs constitute an
input language of the scheme; the second components
constitute the output language. The string o is said to be
the translation of the string o. The translation scheme may
also be treated as a pair of grammars T = (GI, Gz), defined
by R.

Let the input grammar GI be a reduced, context-free
grammar (IAU72D. For the output grammar, we use a
notation GZ = (N, A, P, S). The output language of T is a
set

I Let the output symbols ll E A have specifications s(rI),

element, wemay define sup I r, 0 I = r in the case of all
Y E a . Let s, t~ @ \ { 0 1. If there exist a, b, c, d, e e A* so
that s = [abd --- abe I, t = [cbd --- cbe I, and the length of
b is chosen maximal (possible), then there exists
sup{ s, t l = [bd--- be] .

This definition is obvious (see also Theorem Two). The
notion of supremum is more complicated. For the null

correct if L2 C CLOSED(A, s).

The system of inequalities I (T, s) is defined:
1. An unknown Z(A) E a is introduced for each A E N.
2. The rules of Gz are replaced by inequalities-the rule

of form A + XI ... Xk induces Z(A) I Y1 ... Yk, where

i.e., s(A) C @ \ { 0 I.
The syntax-directed translation scheme T is said to be

This choice of b guarantees the defined upper bound to
be the least (see also Theorem One). If it is impossible to
choose these five strings in any way, then no supremum
exists.

Forth Dimensions 19 November 1994 December

Yi = s(Xi), if Xi E A, and Yi = ZWJ, if Xi E N. If the right
part of the rule is empty, then we take Z(A) I 1.

3. The inequality 1 I Z(S) is added where S is the axiom
of the scheme T.

A set of stack operations A and the homomorphism
s : A * + @ The following auxiliary sets are introduced for each

nonterminal symbol A E N:

C(A) = ((u, v) E A* x A* I S ** uAv 1,
L(A) = { o E A* I A a+ o I.

Theorem Four. The following assertions are equiva-
lent:
1. the syntax-directed translation scheme T is correct,
2. the system of inequalities I (T, s) is solvable,
3. for each nonterminal symbol A E N there exists a

supremum
m(A) = sup I ls(vu)l-1 I (u, v) E C(A) I,

by which the following inequality holds
m(A) 5 inf (s(w) I w E L(A) 1.

This theorem allows one to check an initial translation
scheme for which Forth is the output language.

It may happen that it is hard to classify the parameters
of stack operations because there are many type-indepen-
dent operations like DUP, SWAP, and DROP, etc. in Forth.
In such cases, it is useful to introduce "wild cardn (or
"freen) symbols which are able to replace an arbitrary type
name (let us use asterisks to express "wild card" symbols).
The following examples of specifications are used to
illustrate this approach:
DUP [--- I Copies the top element on the

top of the stack.
SWAP [** --- ** I Interchanges the two top ele-

ments.
! [addr --- I Stores the element of arbitrary

type at addr (mixed specifica-
tion).

It is possible to generalize the operation of multiplica-
tion for "wild card" symbols with some restrictions (no
new "wild cardsn may appear on the right side of any
specification).

References
IAU721 Aho A.V., Ullman J.D. The Theoty of Parsing,

Translation and Compiling, Volume 1: Parsing.
Englewood Cliffs, NJ, 1972.

[CP671 Clifford A.H., Preston G.B. The Algebraic Theory
of Sernigmups, Volume 2. Rhode Island, 1967.

lNP701 Nivat M., Perrot J.F. Une Generalisation du
MonoYde Bicyclique. C.R. Acad. Sci. Paris, 271A,
1970, pp. 824-827.

Jaanus POial is an Associate Professor of theoretical computer science atTartu
University, where he also has served as head of the Department of Computer
Science. He may be reached at his jaanus@cs.ut.ee e-mail address.

(Bit of Histoy, continued.)

programs (Forth code) and 64K for data. It worked better
than BASIC for the same machine but, of course, could not
find a real application.

We had a fine team at that time which was able to solve
difficult problems at any moment. Viljo finished his
research with a (1,l)-DMSP parsing method. I wrote my
Ph.D. in 1986 on the topic of formal specifications of Forth
programs (I used algebraic methods to describe formally
the stack effects of Forth words). Mati started with the
cross-compiling problems. Unfortunately, Reino and Aivar
left their jobs at the university. Professor Ain Isotamm
joined us after a long period (about two years) of
"ripening." He was, and still is, a true programming ace,
whose relations to Forth and Forthers were [at the time1
friendly but indifferent. Now he is a real Forth enthusiast
who has understood that Forth is a philosophy of pro-
gramming, not [just] "one more language."

The last period in the history of our group began with
the IBM PC clones and the Forth-83 Standard. We trans-
lated all our programs from fig-Forth into Forth-83. Most
of this work was quite formal, but some algorithms with
the LEAVE operator had to be revisited. It became clear
that 32-bit computers were coming, and we started with a
new Forth project, the 32-bit Forth-83/32. There were
some difficulties in overcoming word-length problems.
We have virtual 32-bit addresses in Forth-83/32 (unsigned
arithmetic works on the addresses). Packing and unpack-
ing real addresses makes the system slow. Regardless of
this aspect, we found it to be useful to work "for the
future." The main authors of Forth-83/32 are Reino and
Aivar (we were able to engage them once more as
experienced Forthers). Viljo has now begun taking care of
the system. The true life of Forth-83/32 begins on a real 32-
bit architecture.

The first big project, which uses Forth-83/32 and
TARTU, is a Modula-2 translator and cross-compiler. The
Modula-2 translator is nearly finished. Ain is writing a
database system which rests on the data model (and
implementation) of Modula-2 (screen input/editing, table-
format output, etc.). We have always had some students
working with our group. Toomas Saarsen is one of the
most prominent young Forthers now. He wrote a compiler
which generates machine code from the Forth environ-
ment (not from the text, but from threaded code). It
quickened our parser by four to five times.

This is the story of our group. In Estonia, there are more
Forth groups, mainly in Tallinn (Estonia Radio, Tallinn
Technical University, Institute of Cybernetics). On the
whole, Forth is not very popular or well supported in
Estonia; however, we keep doing our work and moving
on. Unfortunately, we do not have any links with the
world-wide Forth community. We are interested in all
Forth-related events and projects (standardization pro-
cesses, Forth education projects, etc.). We cherish the
hope that this isolation will be broken.

November 1994 December 20 Forth Dimensions

Forths in the Design, Test & Extension of an

HDTV Format
Convertor
Philip S. Crosby
Beaverton, Oregon

In about 14 months (of 80-hour weeks) starting in
February 1990, three full-timeequivalent engineers (two
full-time, three part-time) built an HDTV Format Convertor
for the Advanced Television Test Center to be used for the
generation and evaluation of video in the four proposed
U.S. HDTV standards. Comprising a total of about 300 ICs,
and having AID and D/A conversion process quality
suitable for production of high-quality video to be viewed
by expert observers, most of our efforts were concentrated
on analog and digital hardware development.

Our use of Forth was extensive, from the early hard-
ware feasibility demonstrations and clock-accurate simu-
lations, to the generation of target code for the 8051
microcontroller, and the test and calibration routines used
in production. Many dialects were used, including F83, a83
(a 32-bit, public-domain Amiga F83 work-alike), and
Bryte-Forth (a fig-Forth-like dialect for the 8051). Finally,
we ported the code generator and simulator to F-PC to
simplify product support and future extensions. The bulk

... the accounting over a
f 6=67 mSec video field
involves almost 70 million
common time units.

of the Forth programming was done by the two full-time
HW engineers. The finished application compiled to
about 7.5 K, of which about 2.7 K was data for the HWstate
machines.

The Chicken and the Egg
A problem that is nearly inherent in the testing of new

television scanning standards is the inability to record
video sources and the results of video processing opera-
tions in the standard under evaluation. Video tape record-
ers, including digital recorders, are extremely standard-
specific and are terribly costly to design. Consequently,
when four different scanning standards were proposed to

the FCC, it was feared that the lack of a video recording
means would cast doubt on the outcome of any kind of
testing process.

Fortunately, a digital video tape recorder (DVTR) did
exist for one HDTV standard, the 1125-line standard
(1 9 2 0 ~ x 1035h) developed in Japan in the 1980s. The
Advanced Television Test Center (A m) , charged with
the responsibility of conducting the tests, approached
Tektronix about the possibility of building hardware that
could accept the analog signal from the proponent,
digitize it, and format the signal as a bitstream that would
"fool" the DVTR into believing that the signal was in the
digital 1125-line format. Upon playback, filler codes
would be removed and the original line and field formats
would be regenerated, resulting in an analog signal that
would be nearly indistinguishable from the original.

Of course, all of this had to be done in as little time as
possible and the performance of the device, dubbed a
Format Convertor (FC), had to be such that the signal
quality was equal to that of the $400,000 DVTR. But, if the
FC could be built, it would end the "chicken and eggn
problem, enabling various HDTV formats to be tested on
a level playing field.

The Design Fundamentals
In order to give us power and room to work in, and to

provide a rack-mountable mechanical package, we chose
the Tektronix VX1505 mainframe to house the FC mod-
ules. The VXI (Vme extensions for Instrumentation) D-
size module offers extensive slot-to-slot interconnect at a
50 ohm impedance level, ideal for handling the 16-bit
video (eight bits luminance and eight bits chrominance)
and the various timing and qualification signals needed.

However, we saw no need for the complexity of the
VME bus that was on the passive backplane. Instead, we
used 11 lines of the P2 VME bus for our 8051 microcontroller
running Bryte-Forth, a dialect of fig-Forth that had been
used in the lab and had worked out very nicely for prior
turnkey projects. The 8K kernel supports an auto-bauding
RS-232 interface. Although Bryte-Forth assumed that bubble
memory would be used for mass storage (remember bell-
bottoms, disco?), we had no need for mass storage.

Forth Dimensions 2 1 November 1994 December

The A/D Module
We start with an analog RGB signal and a sync signal,

either H and V drive or composite sync. The horizontal
sync component is used to phaselock the user sampling
clock at a programmed multiple of the line rate, around 75
MHz. The analog RBG signals are matrixed to luminance
and color difference components and are digitized, using
the top eight bits of three ten-bit M D converters. The
samples from the N D s are muxed with samples generated
by a proprietary Zone Plate Generator (ZPG) chip, used
for calibration and diagnostics. A reset pulse and the
frequency divided user clock are sent to the next module,
along with the active video samples and the associated
clock and write gate.

The FIFO Modules
The buffer memory between the user video and the

output from the FC to the DVTR uses 1:4 de-muxed IDT
FIFO chips for the Y and C channels. The FIFO organiza-
tion keeps things simple and expandable, and places no
requirements on the controller bus. (One engineer was
available for only a short time at the beginning of the
project-we had him d o the FIFO board to define the
signal interfaces before anything else was done.)

To ensure that all of the modules work properly when
mounted on 400 rnrn board extenders, the FIFO read
protocol is a bit complex. The FIFO module outputs two
different data signals in response to two different read gates,
a user read gate and a dummy read gate. When the dummy
read gate is asserted, the FIFO outputs a delayed clock, a
delayed read gate, and filler samples (byte constants that
describe "impossible" colors). Assertion of the user read
gate results in a stream of user samples read from the FIFO.
Since a continuous clock and the qualifying gate travel in
the direction of data flow, time delay due to a board
extender cannot skew the timing relationships. Identical
FIFO modules are employed for recording and playback.

The VO Module
The I/O module employs a PLL multiplier to generate

the DVTR sample clock from the frequency divided user
clock. It then reads the user data from the record FIFO,
formats it to look like a digital 1125-line signal to "fool" the
DVTR into accepting the signal.

On playback, timing information is extracted from the
signal from the DVTR, filler samples are detected and
removed (and those in the first active line of DVTR field
1 are counted to allow automatic detection of the playback
standard), and the user samples are written to the play-
back FIFO. The DVTR sample clock is divided and sent
through the playback FIFO to the D/A module.

The D/A Module
The user clock is generated from the divided DVTR clock

using a PLL multiplier again. User-specific sync and blank-
ing signals are generated. The signal is D/A converted using
proprietary D/A chips and matrixed back to RBG.

General Constraints
To reduce crosstalk, all signal interfaces and signal

clocks are at ECL levels. Clocks and gates are conveyed
between modules differentially. Variations in clock arrival
times are held to a few tens of picoseconds. (One least
significant bit of an eight-bit 30 MHz sinewave is traversed
in about 50 pSec!)

The FC was designed to be as "soft" as possible (but no
softer). The hardware was designed to allow ease of
programming. Although spreadsheet simulations had in-
dicated that 2K sample signal FIFOs would suffice, we
would need to do further simulation to determine just how
much buffer preload would be required.

How Forth Contributed to the Format Convertor
The First Behavioral Simulation

The user rate had to differ from that of the DVTR so that
an integer number of samples would be taken per user
line. The exact frequency ratio is 56 user samples per 55
DVTR samples, corresponding to sample frequencies of
about 75.52 MHz and 74.176 MHz, respectively.

Keeping track of the read and write buffer transactions
require accounting for the number of common time units
(CTUs), time slices that are the greatest common divisor of
the two sample periods. One CTU is about 240 pSec. Thus,
the accounting over a 16.67 mSec video field involves
almost 70 million CTUs.

Fortunately, one of my home machines is an Amiga.
A83, a 32-bit public-domain version of F83 enabled writing
the simulations in a couple of days. Furthermore, the
Amiga's multitasking capabilities let me run a new simu-
lation while editing the previous 50-page RAM file in
EMACS to pick out the interesting parts of the simulation.

The H and V State Machines
Signal timing events on the MD, I/O, and D/A modules

are generated by an inner (H) loop clocked at the signal
sampling rate and an outer (V) loop clocked by one bit
derived from the inner loop. The inner loop usually
subtends one line, while the outer loop subtends a frame.

The controller sees a control port and a data port for
each state machine. Writing a zero to the control port
resets the state machine memory, which is a FIFO chip.
The controller then writes interleaved data and counter
preload bytes to the FIFO.

The state machine only reads the FIFO. However, a PAL
asserts the FIFO chip's retransmit bit when its empty bit
goes true, creating a loop. In this way, the state machine
latches the data byte for the number of clocks determined
by the associated preload byte. The set of data-count pairs
determines the bit patterns generated by the state ma-
chine. Note that the state machine has no explicit loop
counter, simplifying its design. The downside of this
design for the H state machines is that there is a minimum
interval that can be specified, due to the limited speed of
the FIFO and the interleaving of data and count bytes. For
the state machines used in the FC, the overhead is 11
clocks, about 150 nSec. However, although we need to

November 1994 December 22 Forth Dimensions

program specific events to the nearest sample, we do not
expect to have to space events by less than a few hundred
nSec. One bit of the H state machine is used to clock the
V state machine, providing the programmer with control
over the H-to-V "phase" relationship. The V state machine
is clocked once per line in the AID and I/O modules, but,
due to the need to generate timing details for interlaced
standards, the V state machine in the D/A module is
clocked twice per line in most standards.

To ensure proper relative phasing of the state ma-
chines, an index signal and a clock at the greatest common
divisor of the user and DVTR sample frequencies is passed
along with the video samples. The index signal also serves
to initialize the record and playback FIFO modules. The
leading edge of the index signal forces the same retransmit
condition to occur in the state machines as normally
occurs when the state machine FIFOs are empty.

Figure One depicts a typical state machine output. The

When specifying the data bits and the times that they
become effective, it is convenient for the programmer to
specify the times relative to the format of the signal being
handled. The I/O state machine, for example, is defining
how the signal going to the DVIX is formatted. While it is
indexed at a time that precedes the start of active video by
about 2/3 line, all other events that the programmer is
concerned with relate to the signal for the DVTR. So, we
wrote a code generator to simplify the programming of the
state machines.

All timing is referenced to the nominal start of blanking
of the signal handled by the state machine. A VAR (same
as F-PC's VALUE) is assigned a value by the word INTO.
The code generator was written in F-83. Representative
input to the code generator appears in Figure Two.

The general parameters (counter overhead, offset to
index pulse, and loop duration) are loaded into VARS. The
structure is declared, and C y c l e . S t a r t sets up a >MARK

Figure One. AID H state machine bit patterns.

VCK

... . . .
NVS

HZP

NCL

NHR

HBL

NHS

0 500 1000 1500 2000 2500

Sample Number

sample clock is 75.52 MHz. The most important signals are
NHS, the square wave whose falling edge is locked to
incoming H sync, HBL which inhibits the writing of signal
samples to the record FIFO and NHR, which establishes
the sample number at which the following state machine
(in the I/O module) is to be reset. NHR is combined with
an NVR bit from the vertical state machine to specify the
exact point in the user frame(s) that indexes the I/O state
machine. The rise of VCK clocks the MD's V state
machine.

and puts 0 (item count) on the stack. I b and I d are
shorthand for base conversion. If the specified time (TOS
to ?,) is less than O f f set . C o u n t s , the data and time
values remain on the stack and the item count is
incremented, else the data and time are compiled.
C y c l e . E n d compiles any remaining data-time pairs and
resolves the >MARK with the item count.

f i f o . correct converts the time values into counter
preloads, taking O v e r h e a d into account (later revisions
replaced O v e r h e a d with T e r m . C o u n t , a more sensible

Forth Dimensions 23 November 1994 December

Figure Two. Sample input to the code generator.

\ H F i f o S e t u p f o r 525 l i n e I0 - 05 Apr 91 p s c
11 i n t o Overhead (V.NH1122) 1 0 5 1 i n t o 0 f f s e t . C o u n t s

(C.2BRRRR) 2200 i n t o C y c l e . C o u n t s
(K.DL2121) v a r i a b l e FIFO. S t r u c t
(I I I I I I I I C y c l e . S t a r t

(HBlank S t a r t) Ib 10111111 Id 0 ? r
(r e p e a t) Ib 10111111 Id 202 ? r

(HBlank En) Ib O O l O l O l O Id 2 7 5 ? r
(1 R 1 e n d) Ib 00101110 Id 280 42 + ? r
(2 dummies) Ib 00001110 Id 522 ? r
(2 dummies) Ib 00001110 Id 572 ? r
(2 dummies) Ib 00001110 Id 622 ? r
(2 dummies) Ib O O O O 1 1 1 O Id 772 ? r

(2 dummies) Ib 00001110 Id 1022 ? r
(i n d e x received) Ib 00101110 Id 0 f f s e t . C o u n t s ? r

(r e p e a t) Ib 00101110 Id 1272 ? r
(2R2 st) Ib O O l O l l O O Id 1340 4 - ? r
(2R1 e n d ,) Ib 00101101 Id 280 1100 + 42 + 10 + ? ,
(2 dummies) Ib 00001101 Id 1522 ? r
(2 dummies) Ib 00001101 Id 1772 ? r
(r e p e a t) Ib 00101101 Id 2022 ? r
(1R2 s t a r t) Ib 00100101 Id C y c l e . C o u n t s 40 - ? r

C y c l e . End

f i f o . s t r u c t dup f i f o . c o r r e c t fife$ s a v e a s 5 2 5 i o h
f o r g e t f i £ o . s t r u c t

descriptor). f i f o $ converts the parameter field of
Fife. S t r u c t into a pair of two-digit hex numbers and
a count, as shown below

2E 2E
2E CB
2C AB
2D B 1
OD 11
OD 11
2D 8 1
2 5 E3
BF 41
BF C2
2A DC
2E 43
O E D9
O E D9
OE 75
O E 11
OE EE
11

Eight such files are generated for each TV standard that
the FC operates on. These files are collected by a script file
that originally ran on Wordstar, resulting in the generation
of Bryte-Forth source code (See Figure Three).
November 1994 December

The . F I directive tells Wordstar to insert <fikname>
into the stream that f0rrn.S the Output file. The words { A/D

I 1/0 I D / A) ~ ~ ~ { H F I F O I VFIFO I H F I F O ~ I HFIF02
are combined by FLOAD ("Fifo LOAD") to form the port

address for the state machine memory. FLOAD is a
<BUILDS DOES> word whose run-time definition causes
the child word to load the proper state-machine memory.
A little manual bit diddling in the final colon definitions
takes care of the loose ends.

The Rest of the Bryte-Forth Code
The user interface is fairly simple; there are eight lights

and eight LEDs. Four of the buttons select the standard. A
fifth button selects the standard selection mode, record,
playback, or auto-detected playback. The sixth button,
operative only in record mode, selects the input sync
source. The seventh button permits bypassing of the
recorder for setup or diagnostic purposes. The eighth
button enables external RS-232 for external control and for
downloading calibration programs.

In addition to controlling the state machines and
handling the user interface, the resident code supports
operation of an important diagnostic tool, the ZPG. It
generates sine samples that are a function of the X, Y, and
T (frame number) pixel values, and can be selected to
provide the signal samples, rather than the N D converter
chips. Mike Cranford, the engineer responsible for most of

24 Forth Dimensions

the analog and firmware work, got his introduction to
Bryte-Forth in writing the interface to the ZPG. He got a
nicely decomposed interface running in about two days,
and wrote most of the rest of the Bryte-Forth code residing
in the FC.

Downloadable diagnostics and calibration code make
use of the ZPG and custom test signals from the Tektronix
TSGlOOl Test Signal generator greatly ease manufactur-
ing. Although a small number of FCs have been built to
date, we support our customers with next-day module

exchange. Most field problems have been identified in less
than an hour.

Follow-On Work
After initial manufacture, we ported all of the FC-

related code to F-PC, largely because of the file I/O and
extensive on-line help system. The file merging that had
been performed by WordStar is now done in F-PC. A
clock-accurate simulator running on the output of the
code generator is now in use and was needed to handle

Figure Three.

.PO 0

.PL 0

.PF OFF
(Start of Data Area for Control Stores - J u l y 2, 1992)
.FI 525ADTH
A/D HFIFO FLOAD 525A/DTH

.FI 525ADTV
A/D VFIFO FLOAD 525A/DTV

.FI 525ADDH
A/D HFIFO FLOAD ~ ~ ~ A / D D H

.FI 525ADDV
A/D VFIFO FLOAD 525A/DDV

.FI 525IOH
I0 HFIFO FLOAD 525IOH

.FI 525IOV
I0 VFIFO FLOAD 525IOV

.FI 525DAH
D/A HFIFOl FLOAD 525D/AH1

.FI 525DAH
D/A HFIF02 FLOAD 525D/AH2

.FI 525DAV
D/A VFIFO FLOAD 525D/AV

: 525REC 02 ADSTAT BSET 80 ADSTAT BCLR
ADSTAT C@ A/D WRTPORT
525IOH 525IOV COMP?
IF 525A/DTH 525A/DTV 01 ADSTAT BCLR
ELSE ~ ~ ~ A / D D H 525A/DDV 01 ADSTAT BSET
THEN ADSTAT C@ A/D WRTPORT ;

: 525PB 40 DASTAT C!
DASTAT C@ D/A WRTPORT
525D/AH2 525D/AV ;

BASE @ DECIMAL
56 CONSTANT 525P BASE !

Forth Dimensions 25 November 1994 December

a modification for the European HDTV systems. There,
because of the field rate difference, five user frames
subtend six DVTR frames, which means that the state
machine accounting must cover nearly 109 CTUs. The
simulator has become a necessity.

The FC could prove to be the foundation for worldwide
HDTV program exchange, since a de facto standard for a
multiformat digital interface has been produced as a result
of our efforts.

How Well Did Forth Work?
Very well, thank you. Had we followed the classic

project organization, with hardware and software people
on opposite sides of the fence, the project could have been
a disaster. We had enough problems with specification
changes, component problems, and the need to anticipate
last-minute format changes that we had been assured
"would never happen." It's nice that, contrary to the way

helped us some in the FC project, and would be very nice
in a subsequent application we have in mind.

Acknowledgments
Thanks to Paul Barton, whose technician work on the

FC and his advocacy of Bryte-Forth got us going in the
right direction; Mike Cranford, who did the bulk of the
target code; Jan Kuderna, for her technician work and,
later, her F-PC starter project, the file insertion code; and
Jim Geddes, for his work on the test and cal routines, and
for handling most of the update work.

Thanks also to the developer of Bryte-Forth, whoever
he/she may be. We have tried to contact the developer
with no success. But most of all, thanks to the Forth
Interest Group and the Forth community for their effort in
creating and extending a truly "enabling technology."

runs some sort of terminal
program (we used PCPlus)
and the Forth source is
uploaded to the target
machine. However (and
perhaps this is an old idea),
if the terminal program
were context sensitive, it
seems that it could as-
semble CODE definitions

things usually work, the software wasn't a problem.
The nudXf' of Forth dialects wasn't really a problem,

in the target machine us-
ing an assembler residing
in the host. If the target
processor is known and
the target kernel contains
HERE, >MARK, <MARK,
>RESOLVE, and < R E -
SOLVE, it should be pos-
sible for a smart terminal
program to remotely as-
semble code in the target
machine. It would have

Philip S. Crosby is a Principal Engineer for Tektronix, Inc. This paper was

Inventory:
Inventory at cost

Total Inventory:

Other Assets:
Second Class Postal Account 161.10 119.78 -41.32
Accounts Receivable 500.00 0.00 -500.00
Equipment 5,826.02 16,361.22 10,535.20

Total Other Assets: 6,487.12 16,481.00 9,993.88

either. The author's Forth experience began with a fig- originally presented at the 1993 FORML Conference.

TOTAL ASSETS: 56,363.21 58,706.45 2,343.24

Forth dialect for the
Osborne 1 and has in-
cluded seven other dia-
lects. The unifying factor,
however, is the Forth vir-
tual machine and the fact
that Forth, fundamentally,
makes sense.

Suggested Zmpmement
Our use of Bryte-Forth

parallels that of many other
efforts where RS-232 is the
interface between the host
and the target. The host

LIABILITIES:

Forth Interest Group
Statement of Change in Financial Position

April 30,1993 to April 30,1994

4/30/93 4/30/94 Change
ASSETS: + = Increase

- = Decrease
Current Assets:

Money Market 23,740.48 21,215.29 -2,525.19
Checking & Cash deposits 9,855.61 5,329.16 -4,526.45

Current Assets: 33,596.09 26,544.45 -7,051.64

Sales Tax 100.88 19.11 -81.77
FD Dues Alloc to future months 29,526.10 30,694.23 1,168.13

TOTAL LIABILITIES: 29,626.98 30,713.34 1,086.36

Financial Reserve: 26,736.23 27,993.1 1 1,256.88

November 1994 December 26 Forth Dimensions

Forth Dimensions 27 November 1994 December

Forth is different to other languages in having a thing
called a stack. Of course other languages have a stack, but
they are not like the Forth stack. Typically the stack means
the return stack, but in Forth it means the data stack. The

T
return stack is called the return stack to differentiate it from
the stack, and not to indicate that it may have return
addresses on it. Of course it may, but then it may not. You

U
can put things on the return stack, or take them off, as long
as they are not return addresses. The data stack, or stack,
is for data. It is not for
return addresses either.

C
There are lots of differ-

 ord don Charifon s TA CFS
ent sorts of data that can

Hayes, Middlesex, England OM
, the stack, but all A guide for stacrobats and stacropobes.
that Forth knows about
them is their size, and it only knows that most of the time.
Some data may go on the data stack, or then again it may
not. Floating-point data, for instance, may go on the data
stack, or it may go on the floating-point stack, which is
another stack that Forth may or may not have. Because it
may or may not have its own stack, Forth programmers
have to write programs as if it has its own stack, and as
if it does not.

A stack is a very simple data structure that only allows
two operations, which are called PUSH and POP. The
Forth standard defines fifteen words in the core and core
extensions that operate on the data stack alone, none of
which are either PUSH or POP. In addition, it defines six
words that operate on the return stack. None of those are
called PUSH or POP either. Neither is the one defined in
the double extensions. It also defines another six that may
act on the data stack, but you can't assume they do
because 1) they may act on the floating-point stack, and
2) even if they don't, we have no idea how wide a floating-
point number is anyway.

Of the stack words mentioned above, there are two
you are not supposed to use because they pretend the
stack is not a stack, but an array. This array is upside
down, in that the top of the stack is the bottom of the array.
Using the words PICK and ROLL causes the top of stack,
and hence the upside-down array, to move, so they are
not a good idea. The compilation stack (another stack that
may or may not exist during compilation, and may or may
not be the data stack, of which we do not know how wide
the datums on it are) has only two operators. They are
analogous to PICK and ROLL, and were chosen, presum-

I ably, because they are a good idea.
These are not the only stacks that may or may not exist.

1 The return stack may or may not play host to the loop-
index stack and the locals stack, which must both operate ' as if the other One was not in the same place- Of coune
the programmer must act as if they are on the return stack.
As the return stack is for just evewhing
for return addresses, two words are provided to allow

return addresses to be removed from the return stack
under programmer control. These are CATCH and THROW.
They work like this: after you have nested down into a
number of subroutines you can THROW u p through them
again, but remember that if you are going to THROW u p you
need to CATCH it. Ofcourse THROWingdoes not only affect
the return stack, it also affects the data stack and the
floating-point stack (if there is one). Once you have
THROWn, the data stack may or may not have items on it
that are undefined. So after a CATCH, you have to DROP
them.

Finally, we d o not know how any of these stacks are
implemented. Often they grow downwards in memory,
which of course means that the upside-down array is really
the right way up, but then again they may have been
implemented in a separate memory space. Indeed, the
floating-point stack might even be implemented on the
stack in the floating-point coprocessor, if you have one,
but it is unlikely, as it is unlikely that the floating-point
stack in the floating-point coprocessor is much like the
floating-point stack defined in the Forth standard. Indeed,
as far as the programmer knows, the hardware might very
well have a little man inside it writing numbers on plates
and pushing them onto the sort of spring-loaded plate
dispensers that no-one has ever actually seen in cafeterias,
but that abound in books that claim to make the stack
simple. Of course in this sort of implementation a hard-
ware crash is more literally true than in the average system,
and if you ever have one you could be picking fragments
of china off the bus and out of your chips for ages.

Well, if this has helped to clarify any of the confusion
about Forth stacks please let me know and I will attempt
to correct the situation.

Gordon Charlton was named after Charlton Heston He has been described as
'all, handsome, witty, intelligent, charming, and world famous. Gordon is also
quite tall. He wishes to thank readers of Forth Dimensions for not responding
to his request for a rigorous descriptionof the Ratcliffe-Obershelp algorithm, as
this prompted him to develop a rather better one himself He may be reached
via e-mail at gordon8charlton.demon.co.uk.

November 1994 December 28 Forth Dimensions

Statement of
Ownership, Management, and Circulation

1. Publication Title: Forth Dimensions
2. Publication No. 0002-191
3. Filing Date: Oct. 1, 1994
4. Issue Frequency: bi-monthly
5. No. of Issues Published Annually: 6
6. Annual Subscription Price: $40
7. Complete mailing address of known office of publica-

tion: 4800 Allendale Avenue, Oakland, California 94619
8. Complete mailing address of headquarters or general

business office of Publisher: same as above
9. Publisher: Forth Interest Group, 4800 Allendale Avenue,

Oakland, California 94619. Editor: Marlin Ouverson,
5364 East Avenue G, Lancaster, California 93535. Manag-
ing Editor: Forth Interest Group, 4800 Allendale Avenue,
Oakland, California 94619.

10. Owner: Forth Interest Group (non-profit), 4800
Allendale Avenue, Oakland, California 94619.

1 1. Known bondholders, mortgagees, and other security
holders owning or holding 1 percent or more of total
amount of bonds, mortgages, or other securities: none.

12. The purpose, function, and nonprofit status of this
organization and the exempt status for federal income
tax purposes: has not changed during preceding 12
months.

13. Publication Name: Forth Dimensions
14. Issue Date for Circulation Data Below: XVI/3

FORTH and C~assic
Computer Support

For that second view on FORTH applica-
tions, check out The Computer Journal. If you run
an obsolete computer (non-clone or PCIXT clone)
and are interested in finding support, then look no
firther than T u We have hardware and ~ofiware
projects, plus support for Kaypros, S100, CP/M,
6809's, PCtXT's, and embedded systems.

Eight bit systems have been our mainstay
for TEN years and FORTH is spoken here. We
provide printed listings and projects that can run On

any system We provide old fashioned support for
older systems, this for just $24 a year! Get a
FREE sample issue by calling:

(800) 424-8825

Tc J iRE'r Jourw
Lincoln, CA 95648

15. Extent and Nature of Circulation: Average No. Copies Actual No. Copies of
Each Issue During Single Issue Published
Preceding 12 Months Nearest to Filing Date

a. Total No. Copies (netpress run) 1300 1300
b. Paid and/or Requested Circulation

(1) Sales through Dealers and
Carriers, Street Vendors, and
Counter Sales (not mailed) 0 0
(2) Paid or Requested Mail
Subscriptions (Include Advertisers1
Proof Copieskxchange Copies) 1150 1066

c. Total Paid and/or Requested
Circulation 1150 1066

d. Free Distribution by Mail
(Samples, Complimentary, and
Other Free) 10 10

e. Free Distribution Outside the Mail
(Catviers or Other Means) 0 0

f. Total Free Distribution 10 10
g. Total Distribution 1160 1076
h. Copies Not Distributed

(1) Office Use, Leftovers, Spoiled 140 224
(2) Return from News Agents 0 0

i. Total 140 224
Percent Paid and/or Requested
Circulation 99% 99%
Signature and Title of Editor, Publisher, Business Manager, or Owner:

John D. Hall, President, October 1, 1994.

f 0th ANNUAL

SYMPOSIUM ON APPLIED COMPUTING
(SAC '95)

February 26-28, f 995
Opryland Hotel Nashville, Tennessee

'Business and Government Appfications"

Sponsoring ACM
Special Interest Groups include:

SIGFORTH
Irving Montanez
Brookhaven National Laboratory
montanez@bnl.gov

Spposium Chair
Jim Hightower
California State University-Fullerton
Mgrnt. Science/Information Systems Dept.
Fullerton, CA 92634-9480
hightowerQacm.org

Special tracks include:
Forth
Jack Woehr
jax@well.sf.ca.us

Program Chair
Ed Deaton, Hope College
Department of Computer Science
Holland, MI 49422-9000
deaton@acm.org

Direct general inquiries to the conference chair or the program chair. Detailed information on
special tracks, and mailing addresses of all track chairs and SIG representatives, are available
from the program chair or by anonymous ftp from acrn.org in the directory:
ANONYMOUS.SIG-FORUMS.SIGAPP

For information about the sponsoring ACM SIGs, contact:
Hal Berghel
University of Arkansas
Computer Science Department
Fayetteville, AR 72701
hlb@acm.org

SAC is the annual conference of the ACM Special Interest Group on
Applied Computing (SIGAPP). For the past nine years, SACS have
become a primary forum for applied computing practitioners and
researchers. SAC will bring together applied computer scientists from
related ACM Special Interest Groups (SIGs): SIGAPP, SIGAda, SIGBIO,
SIGCUE, SIGFORTH, and SIGICE.

SAC '95 will begin on Sunday, February 26,1995, with pre-conference
tutorials. Paper presentations, panels, and workshops will begin on
Monday, February 27.

This announcement was edited forpublication. For the complete call forpapers andparticipants, and for
more conference details, contact Irving Montanez or another of the individuals listed above.

Bliss Carkhuff's
Radia tion-Hardness Tests

The Maryland FIG Chapter had an interesting meeting
recently. Bliss Carkhuff of the Johns Hopkins Applied
Physics Lab brought, demonstrated, and explained his
SC32-based system for observing integrated circuits in
dynamic conditions under radiation bombardment.

Bliss has a delightful presentation style, and he brought
a bunch of way neat stuff. The meeting didn't even begin
to thin out for four boun!And at that point, it actually
broke into microSIGs.

Forth has allowed Bliss to
salvage expensive test time,.,

Bliss tests integrated circuits for radiation hardness. The
use of Forth and the SC32 Forth-engine-based computer
system he has devised have apparently been of great help
to him.

Bliss' interest in Forth was sparked when he showed a
large test board he was having a problem with to Marty
Fraeman. Marty asked what the board was supposed to do.
When told, Marty wrote a one-line Forth word with the
same desired semantics as the troublesome test board.

Bliss immediately "borrowed" an SC32 single-board com-
puter Marty had, and obtained a copy of Starting Forth.
Marty waited for a query from Bliss for some help with
~ o r t h . After several months without hearing from the new
convert, Marty called Bliss and asked how the Forth was
coming along. He was told that the SC32 SBC test rig would
be used at the Brookhaven test site in a matter of days.

Bliss' system is based on an SC32 single-board com-
puter, a backplane bus Bliss devised, several other half-
eurocard boards for analog and the like, a frame for the
DUT that mounts in the vacuum chamber (where the
devices get bombarded), a board that mounts in the frame
to hold the DUT, a suite of software tools from Silicon
Composers, Bliss' extensions to those tools, cabling and
power supplies, and a laptop clone.

Bliss' entire test rig fits in two flight cases. He can set it
up in about 20 minutes. Other people who do similar testing
at Brookhaven show up in station wagons, riding low. The
multiboard computer goes into the test chamber with the
DUT, greatly reducing what has to be run in and out of the
vacuum chamber. Left outside the chamber are two or three
small power supplies, the laptop, and a DVM. Dissipation
of heat is a big problem in a vacuum, and Forth's efficiency
seems to extend to the thermal variety. Forth has also
allowed Bliss to salvage some expensive test time: when a
DUT's behavior is wildly other than what was expected,
Forth allows Bliss to cobble u p new or modified tests while
the meter is ticking, rather than wait for another trip.

The system is very Forth-like. It's nothing more than it
needs to be, and lets Bliss concern himself with "draining
the swamp." This aspect of Forth has affected the Maryland
FIG Chapter meetings quite a bit. We often spend a lot of
time on intriguing physics or math or whatnot, and have
to consciously steer things back to Forth.

-Reported by Rick Hobensee
(bobenzay@tmn.com and rickb@cap.gwu.edu)

Julian V, Noble
Crunches Cars & Numbers

Julian Noble talked to the Maryland FIG Chapter about
scientific programming. He titled the talk "Forth isn't for
number crunching, is it?" Here's a rough outline:

Julian is a physicist. He took u p Forth when he was
stuck using Fortran on a limited machine. "I could listen
to my beard grow waiting for the compiler." He had prior
Forth experience on the Jupiter Ace, and had a PC Forth
with him that he was able to use to perform floating-point
operations (even though it did not come with floating
point). In essence, he used Forth as a way to control the
8087 coprocessor through a calculation.

Scientists and engineers need floating-point arithmetic,
both real and complex. Scaled arithmetic 4 la classic Forth
is not good enough because, for many problems, the

dynamic range can be 30 orders of magnitude. Floating
~ o i n t is at least as fast in hardware as scaled integer -
arithmetic on the CPU, so there is no reason not to use it.
It is cheaper to buy a chip than to develop software
floating-point code.

He bought a Forth package from Harvard Softworks; it
ran very fast. It was easy for him to add complex numbers
and sophisticated matrices, things which were not so
simple before. And, of course, he got more control of the
machine.

As he got better at Forth, he found out how to optimize
for speed. He already knew from Fortran to take things out
of inner loops and factor out repeated expressions; now
he started coding routines in assembly. He did it for the
sense of power, because he could d o it. He over-used the
assembler because it was so easy to do. Now, sometimes
he wants to port those early routines elsewhere and has
to reverse-engineer the assembly code.

Julian noticed that a lot of his time was spent evaluating

November 1994 December 30 Forth Dimensions

complicated algebraic expressions. He translated each
expression from infix notation into postfix by hand, and
it was easy to make mistakes. The factoring that aided the
programming didn't match up with the sort of factoring
that helped him understand the problem, so that factoring,
per se had limited value. More valuable tools were special
data structures and hnctional notation. Too much detail
in the form of "noise" words-@, ! , >R, R>, etc.--obscures
the main pattern, so he learned to hide some details. (He
pointed out that advances in physics often have come
from improved notation that unclutters central ideas, e.g.,
Maxwell's Equations.) He came up with array notation that
worked for him:
l a r r a y Y{ 2array M{{
Yt 1 1 Mt(1 J 1 1

Still, the debugging was tedious. Julian noticed that he
included the original infix expression regularly as a
comment. How much better if that comment could be his
code! He wrote a parser he called a FORmula TRANslator.
It was designed simply, to do the job he needed without
lots of extras to go wrong.

It's built around a software floating-point stack. Each
item takes 18 bytes; that can hold the largest item he needs
(double-precision complex) with two bytes left over to hold
the data type. Some audience members objected to the
wasted memory: some of his items, after all, would fit into
four bytes. Julian explained that he rarely needed more than
40 items on the stack, so the space used was insignificant.
He saved a lot of his execution time not having to worry
about stack widths. (He fust did a variable-width stack, and
the speedup was a factor of 5-10.)

Keeping the data types with the calculations, his code
could do mixed-mode arithmetic without needing his
attention at all. Variables give warning messages when
they don't have room for the items being stored. Two bytes
is a lot of space for data types when he only has four scalar
data types, but this is also unimportant.

Some audience members pointed out the inefficiency
of constantly removing items from the hardware stack in
the coprocessor to the software floating stack, only to
move them back.

Julian said. "Some systems have an unlimited d e ~ t h

programmers learn with their mother's milk. Then opti-
mizing compilers grind away looking for the inner loop
items that aren't there.

It seems that, in scientific computing, it's often more
important to get quick results than to get quick computa-
tion. A program might be used one to ten times before
being discarded or modified; it's much more important to
get it to run right than to get it to run fast. Forth's primary
competitor in this arena is not C but Fortran, and its most
formidable competitor may be Visual Basic--easy to use
and quick results, though without Forth's flexibility. Many
people try to use Mathematica or Maple, and find them
very slow.

Julian figured that if he did need to speed up his code,
he'd do better to write an inner loop in assembler than
complicate his parser. He gave an example from solving
large systems of linear equations. The inner loop (of three)
multiplies a row by a constant multiplier and subtracts it
from another row. This is just a few instructions' worth of
assembler, hence easy to write and debug. A program with
just this loop optimized is hardly longer than the un-
optimized Forth, yet for large problems runs at the intrinsic
speed of the silicon.

He presented an example, a set of six simultaneous
first-order differential equations. It modeled an automo-
bile sliding sideways on pavement toward a curb. When
the car hit the curb, it would flip over the curb and crunch
beyond it (if the collision was inelastic) or bounce up and
rotate about its center-of-mass (if the collision was elastic).
The parameters were adjustable, to simulate sliding on dry
pavement or ice, or to make the collision between tire and
curb elastic or inelastic.

The graphics were not fancy, but they showed very
well what was happening. When he showed us the code,
there were about a dozen pages of parameters with
comments, and toward the bottom were his six equations

His parser had almost
eliminated the complicated
coding and debugging process!

I floating-point.stack hateextends the coprocessor's eight- 1 on one Page. His Parser had almost eliminated the
deep stack into memory. I wrote one df those about six
years ago. But the coprocessor chips do not have any
automatic push/pop or other intrinsic 'hooks' to extend
their stack into RAM, hence there is a lot of bookkeeping
to do it this way. Eventually I came to realize that it was
better to keep the floating-point stack in RAM, with just the
TOS on the math chip (this works well for the Motorola
and Weitek series of chips also). This is analogous to some
Forths that keep the top of the data stack in the BX register,
as a one-deep cache. Studies show one can eliminate all
but a few pushes and pops this way."

He was asked what optimization his parser did. It didn't
do much optimization. The most important ways to
improve code are to remove things from inner loops and
to factor repeated expressions, and these are things that

complicated coding and debugging process! It's clear that
the main remaining limiting factor is handling those
parameters.

Julian had special code that tested energy buildup;
when the energy of his system increased rather than
dissipated, he could figure he had a term in the equation
with the wrong sign. (Obviously, it's more important to get
the signs right than to optimize for speed.) This kind of
debugging was very simple using his flexible interactive
system written in ~ o r t h .

Julian noted that developing and commenting the
Forth code for the car rollover simulation took about two
days. His experience with Fortran leads him to believe the
time would have been at least a week, even with a fast
workstation and a fancy debugging envimment. Graph-

Forth Dimensions 31 November 1994 December

ics would have taken longer, which is why accident-
reconstruction experts often use Fortran codes to produce
numerical results which are then fed to drawing programs
such as AutoCad for animation. The expense, complexity,
and opportunity for something to be wrong in such jury-
rigged systems is beyond imagining.

Julian Noble is doing several things intended to help
spread the use of Forth. His book ScientiJic Forth is still
available, and people bought copies at the meeting. He's
deeply involved in the thrust to build ANS Forth scientific
libraries. He's writing a Forth textbook with Brad Rodriguez,
intended primarily for E.E. departments. He doesn't know
which things will work to make Forth more popular, and
figures if we do enough different things we'll find out.
"When you shoot a shotgun you don't know which pellet
will bring down the bird."

-Reported by Jet Thomas
jethomtls@genie.geis.com

MuP21
Now Available!

Designed by Chuck Moore, Inventor of Forth
80 MIPS high performance microprocessor

Address 1Mx20 DRAM,1 Mx8 SRAM, 1 Kx20 I10

Low power consumption, 10 mA @ 5 volts
Integral memoryll0 coprocessor

Integral video coprocessor with color NTSC

Unit price $25, for active FIG members, $20
Kit with MuP21, a PCB, and a ROM, $99
Assembled kit with 1 Mx20 DRAM, $350

Development System, $500

Offete Enterprises
1306 South B Street

San Mateo, California 94402
Tel (41 5) 574-8250, Fax (41 5) 571-5004

PLetters, " continued frompage 6.)
original. The elimination of the ; ; also prevents the error
of putting code between the final ; ; and the ENDSWITCH.

Finally, I've managed to implement the whole thing
with, in terms of the '79 and '83 standards, only one non-
standard word, SWAP/C, which swaps elements on the
control stack. No doubt SWAP /C is just an alias for 2 SWAP
in most Forths and, in fact, Rottenkolber uses 2SWAP
directly, but this assumption cannot be depended on. In
one Forth I know, with no so-called "compiler security,"
SWAP /C would be simply SWAP; in Forths with a separate
control stack, neither of these solutions would work.
?<MARK and ?>RESOLVE, while possibly common, are
not standard and are not in any Forth I use. Presumably,
my switch would be ANSI standard (except for that one
implementation word) with the substitution of POSTPONE
for every COMP I LE and [COMP I LE 1 , but I don't have an
ANSI Forth to test it with.

Anyway, whether SWITCH is a valuable or frivolous
contribution to Forth, I am indebted to Rottenkolber for
showing it could be done, and for inspiring me to try to
do it better. [See Figure Two, ne3ctpage.l

Sincerely,
Richard Astle
P.O. Box 8023
La Jolla, California 92038

Making FIRE
Hello Forthers.

I have been informally proposing a project for whom-
ever is interested in developing a coherent Forth-based
consumer or hobbyist platform. I have been posting
periodic iterations of a general outline of the design, as I
see it, in comp.lang.forth (the Internet USENET newsgroup),
and Jet Thomas handed out some copies of it at Rochester
94. The project has acquired the name FIRE, as in:
: FIRE the Individual's Recursively Forth Environment ;

Interest in FIRE has been limited but persistent. The
crucial idea driving FIRE is that Forth clashes with how
software is usually sold, and thus Forth should be sold or
distributed as a unified system of hardware, docs, and
software, perhaps with a business mechanism to compen-
sate Forth authors on a word-by-word basis. FIRE also
proposes a modular enclosure and power supply, an ANS
Forth-based single-user, preemptive multitasking OS, a
three-stack Forth dialect called Bana as an optional vocabu-
lary, and lots of other stuff. If you find this interesting, please
contact me. FIRE also now has a mailserver. E-mail
fire-l@artopro.mlnet.com with a subject line of SUBSCRIBE
to participate in the FIRE discussion via e-mail.

Rick Hohensee
P.O. Box 11340
Washington, D.C. 20008
rickh@cap.gwu.edu

I

Forth Dimensions November 1994 December

Figure Two. Astle's cleaner switch. I
\ A CLEANER SWITCH RA 21SEP94
\LMI WinForth implementation but completely 83-standard
\ except for implementation-dependent SWAP/C
EXISTS? cases? .IF FORGET cases? .THEN
\ compilation flags
VARIABLE cases?
VARIABLE default?

\ control-stack operator
\ with compiler security two items are put on stack for each
\ control item
: SWAP/C 2SWAP ; \ with compiler security
\ : SWAP/C SWAP ; \ without compiler security

\ these non-standard operators should be coded directly
\ in terms of the non-standard factors MARK and RESOLVE
: LEAP COMPILE FALSE [COMPILE] IF ; IMMEDIATE
\ : AGAIN COMPILE FALSE [COMPILE] UNTIL ; IMMEDIATE

\ switch like C
\ compile-time stack diagrams: cases OFF I cases ON
\ except for ;SWITCH which shows: default OFF I default ON cases
\ if and leap addresses are treated the same thus begin/leap
: SWITCH:

cases? OFF default? OFF
[COMPILE] : ;

: CASE ((I if/leap --- I else)

cases? @ IF [COMPILE] ELSE THEN
COMPILE DUP ; IMMDIATE

:)IS (I else/leap --- if)

COMPILE = [COMPILE] IF COMPILE DROP
cases? @ IF SWAP/C [COMPILE] THEN THEN
cases? ON ; IMMEDIATE

: DEFAULT (if I --- begin if I begin leap)

cases? @ O= IF [COMPILE] LEAP THEN
[COMPILE BEGIN
SWAP/C
default? ON cases? ON ; IMMEDIATE

: ;SWITCH (if I begin if/leap --- 1
cases? @ O= IF CR ." NO CASES COMPILED " KEY DROP QUIT THEN
[COMPILE] ELSE COMPILE DROP
default? @ IF SWAP/C [COMPILE] AGAIN THEN
[COMPILE] THEN
[COMPILE] ; ; IMMEDIATE

: BREAK COMPILE EXIT ; IMMEDIATE

\ EXAMPLE
SWITCH: DOG

CASE(1)IS CR .I1 ONE I1

DEFAULT CR ." DEFAULT"
CASE(2)IS CR .I1 TWO 11

CASE(3)IS CR ." THREE " BREAK
CASE (4) IS CR . I' FOUR "

CASE(5)IS CR . " FIVE "

; SWITCH

CR . (SWITCH COMPILED)

Forth Dimensions 33 November 1994 December

Object Code vs.
Metacode
Andreas Goppold
Neubiberg, Germany

A couple of short definitions:

"Object code compilationn is the software paradigm
under which the formal instructions for solving a problem
(a computer program) are translated-using appropriate
tools like compilers-into the object code (or native
binary code) of a computer on which, then, the solution
of the task is to be worked out.

"Metacode programming" means that a (native object
code) control program is (permanently) resident in the
working memory of the computer, and this program
processes the formal instructions by direct interpretation.

The Forth community has a
great potential in the know-how
of metacode application.

Metacode programs are a mix of the Von Neumann
categories of program and data. This dual nature contra-
dicts the clean division that has developed for the purpose
of scientifically and methodically handling the task of
programming. The fact that metacode is instructions as
well as data, however, allows a completely different
approach to the subject of programming. In the computer
world today, we experience a clash of paradigms between
CISC and RISC.

Analogous to the RISC/CISC polarization, the history of
the computer industry has seen quite an interesting battle
between the advocates of object code and metacode. This
battle was interesting, alright, but quite one-sided. Since
up until now only the processing speed of the computer,

i.e., the optimum utilization of the machine, stood in the
foreground, the winners have always been the proponents
of object code. Thus, a few systems have been left behind,
others have been interesting academically and fruitless
commercially, and a few have enjoyed quite a busy life in
quite unknown niches: UCSD-Pascal with the P-Code
machine, Smalltalk with the Bytecode machine, the PICK
system, Forth and a few variants like Actor and Amber.
LISP can be added to the count, as well as APL and Mumps;
likewise, many BASIC systems that compile incrementally
to tokenized code. Today, the best known and most
widely used metacode system is Postscript.

Why have there, time and again, been such defenders
of a paradigm which did not have a chance in the view of
the processor economy? It is easy to see, when one knows
a few such languages, why programmers who have had
experience with such a system are reluctant to let it go (see
also Die Gaensekueken ["the baby ducklingsnl by Konrad
Lorenz). Metacode systems decisively lighten the lives of
programmers. They shift a major part of the complexity of
the programmers' work to where it belongs-the com-
puter. Amazingly, the beginnings are as old as computer
science itself, for instance APL or LISP. The good ideas are
very old, but today the time has finally come when they
may celebrate their resurrection. The reason is, again, to
find balance in the present shift of the technology.

Within approximately the last ten years, the balance
has decisively shifted to where the limiting factor is no
longer the machine, it is now the human factor. Certainly,
the larger part of the computer industry has been awak-
ened to this knowledge with the catchwords "software
crisisn and "downsizing." One might say that the Macintosh
computer was the torch to this development. When the
first version of this machine was made, W% of the
processor's efforts was concentrated on the user interface.
(At least with the first "toaster." The 68030 models do leave
a little spare power.) There was no programming inter-
face; for that, one had to use the Lisa.

Twenty years ago, that was unthinkable, and has
become possible today because something like it is

November 1994 December 34 Forth Dimensions

available at prices starting at $2000, since Apple has had
to follow the price plunges in the PC area. A further
representative of this philosophy is NeXT (from Steve
Jobs, the father of the Macintosh, of course). What is good
for the user is good for the programmer. NeXT is definitely
on the way to giving the programmers the same quantum
leap as the Mac has for the lay user. And NeXT uses for its
display paradigm the Postscript system (metacode), in
contrast to the industry's quasi-standard, X-Windows.

The Opportunity
I see something like a historic opportunity. The com-

puter industry is in a deep crisis (the rest of the world
apparently not less so). Solutions are urgently needed and
are paid for dearly. The Forth community has a great
potential in the know-how of metacode application. It
would be possible to organize a comeback of the Forth
idea if the Forth community were to turn to the present
problems of the computer industry in a coordinated and
constructive manner.

To that end, though, a few prerequisites are needed. In
order to conquer new territory, it is necessary to unload
some ballast. And such a decision can have difficult
consequences. Not everyone wants to make the move. In
order to find entry into the computer world, the chains to
the specific appearance of Forth would have to be broken.
The important things here are the structures that lie under
the surface of Forth. The token-list interpreter. The possi-
bility, for instance, via token threading to set up code of
minimal size. Postscript is proof that token-coded systems
have a future. Postscript itself is everything but efficient or
elegant, but it is the best solution to a certain class of

dot-quote
"[Forth] supports a modular,
bottom-up style of programming that
I personally find to be highly productive.
It is easy to port, it is self-contained,
it will run on minimal hardware
configurations.
It is not a philosophy of life
or a cure for cancer
or a way to transcend mundane reality
and merge with the Tao.
Appeals to mysticism do not help
the credibility of Forth."

-Ray Duncan on comp.lang. forth
Used with permission

problems.
If Vierte Dimension rcally wishes to be interesting to

readers outside the Forth community, the narrow adher-
ence to the conventional image of Forth must be given up.
The subject "metacode systemsn is hot and is in the market
with a future. A magazine that concentrates on this subject
will find a wide audience. When the Forthers learn that
they are experts of a certain kind of metacode systems,
they will suddenly realize that their knowledge is very
desirable.

I am convinced that my past analyses have always been
correct and that I have the ability to recognize things from
the historical perspective, while they still are behind the
horizon of consensus reality. Forth wasted its historical
chance fifteen years ago. According to all natural laws,
Forth would follow the road of all extinct branches of
evolution. Here is another possibility. It cannot proceed
under the name of Forth, but the substance can remain.

..................................... ACM SIG-Forth .29

........................... The Computer Journal 28

Forth Interest Group centerfold

FORML Conference back cover

Laboratory Microsystems 37

Miller Microcomputer
Services .. 1 6

................................. Offete Enterprises 32

.................................... 1 I Saelig Company 16

Andreas Goppold is a contributor to Vierte Dimension, where the original,
German version of this essay was published.

................................. Silicon Composers .2

Forth Dimensions 35 November 1994 December

(Fast Forthward, continued from page 39.)
which handles queries of the dictionary namespace, or
symbol table. By accepting a string as input and returning
an execution token, FIND lets other routines ignore the
dictionary structure. Unfortunately, FIND will need even
more flexibility to support modules.

The way FIND works is to test for a name match as part
of a loop that handles one dictionary entry with each
iteration. Obtaining flexible behavior from a loopcontain-
ing routine can be problematic. The loop is a form of
barrier or obstacle, like a two-lane merge at a freeway on-
and off-ramp. Leaving the loop early often requires special
(loop-finalization) processing, such as stack-value shuf-
fling. Name visibility is directly related to the continuation,
normal termination, and early termination of the search
loop.

If we want industrial-strength modules, we must dip
into the murky details of loop termination and loop
continuation conditions. Nevertheless, it is better to refine
one version of FIND rather than create multiple versions
to be used in tandem. (The fewer "delicaten loops we
create, the better off our systems and applications will be.)

Shortly, I will describe the approach I took to impart
more flexible namespace management to Forth.

By the way, vocabularies are a neat trick that helps make
namespace management more flexible without any impact
to the FIND routine. A little bit of vocabulary state goes a
long way toward modifying Forth's search behavior, yet the
search algorithm in FIND remains unchanged. The use of
a richer set of data structures in lieu of a more complex
algorithm is a programming technique worth remembering.
(In a similar vein, the next installment suggests several new
data attributes for each dictionary entry.)

Even when modules arenY the

design task to perform. The original design is flexible. You
are able to reuse code and, thereby, curb program growth.
Essentially, a frameworkis formed by the generic sort that
accommodates future expansion very efficiently.

To make such a technique work, we must be able to
specify the correct extensions for the routine at compile
time (which avoids control-flow logic to support run-time
decisions about which action to take).

We may be tempted to create new instances of iterative
routines rather than attempt to craft a single routine to
satisfy our various needs. Yielding to this temptation leads
to a number of similar-but-related routines. It also creates
fatter applications.

The generic sort is a good example of serving different
usage contexts with suitable functionality while using a
bare minimum of code resources.

Streamlining Through
Iteration-Control Parameters

The use of execution vectors as interface parameters lets
the calling context for a generic routine select suitable
processing. For a way to manage the iteration process based
on the contextual system state, a slightly different approach
is required. Parameters that help control loop continuation
and termination conditions can be passed, as will be
described in terms of a new version of Forth's FIND routine.

For module support within FIND, the contextual state
can help determine whether a routine is currently visible.
If we are trying to access a private routine of a module
from a context outside of the module, we should not be
able to find it.

Such access denial need not stop FIND'S iterative
search processing. In such cases, FIND can continue to
search for a routine of the same name in a place other than
the private portion of a module.

objective, there are plenty of
uses for a more flexible FIND.

Streamlining Through Vector Parameters
Setting aside the FIND routine for now, consider how

a generic sort routine uses well-chosen routine parameters
to permit the processing performed at each loop iteration
to be determined by its calling context.

A generic sort routine is passed a couple of parameters
that refer to routines that can be characterized as "sorting
extensions." Only two sorting extensions are required for
each run of the sort routine. Those extensions may be
selected differently at each new calling context.

One parameter for the generic sort is a pointer to a
comparison routine applicable to the type of data values
to be sorted. The other parameter is a pointer to an
element-exchange routine applicable to the array to be
sorted. Such parameters allow the sort problem to be
factored into a number of sorting extensions.

By leaving any unneeded extensions out of a program,
program compactness is achieved. Nevertheless, if new
types of sorts are eventually needed, there is no major
November 1994 December

supposL the calling context is changed. Suppose a
reference to a routine is specified in the same module as
the routine being defined. In that case, FIND should cease
iterating upon the first name match in the module and exit
after leaving the associated execution token on the stack.

Management of iteration behavior based on a usage
context state can be achieved through passed parameters.
A version of FIND can be defined to test new word-
specific (state) information against a passed parameter.

For module purposes, FIND can accept as a new input
the module location where a new routine is being dehed.
The location information for the dictionary entry currently
being examined can be compared to the passed parameter.

Even when modules are not the immediate objective,
there will be plenty of uses for a FIND that takes two new
input parameters for added flexibility. As an example of
other attributes that could be taken into account, consider
immediate words. Should immediate words be located in
non-compiling states? Locating and executing these words
at such a time permits needless errors, often without any
error indication. Not finding those words will help correct
the situation.

You could say that a better kind of error could be
permitted Pxxx not found"). That way, error recovery is

36 Forth Dimensions

equivalent to error detection. Otherwise, inappropriate
compiling actions may have to be undone.

Such a FIND routine can exit after returning the token
for a matched suing, but only when it locates a Forth word
with a particular attribute determined by context. Other-
wise, it must continue searching for another word with the
same name and the desired attributes.

The new FIND can also continue searching (iterating)
if it locates a Forth word with the correct name but with
an undesired attribute for that search context.

The first scenario involves exiting F I N D successfully
due to the presence of a context-defined word-admfssion
attribute. The second scenario involves continued itera-
tion (searching) based on the presence of a context-
defined word-ejectionattribute, possibly leading to a "no-
match" exit status. Put another way, search-loop iteration
would continue (and the currently matched word would
be rejected) if the admission attribute was missing or if the
rejection attribute was present.

The new FIND takes a word-admission parameter as
well as a word-rejection parameter. By passing zero as the
word-rejection parameter, the routine concerns itself with
the presence of a word-admission parameter only. By
passing zero as the word-admission parameter, the rou-
tine pays attention to the word-rejection parameter only.
With that design, the calling context could establish the
exact loop-termination conditions that ought to prevail.

As sought, a single routine should take the place of
separate routines that would otherwise be needed to
support new search criteria.

Function Wrapper Interfaces
An obvious flaw in this approach is that the new

FIND was no longer standards-compliant. My remedy
was to make another FIND routine that served as a
wrapper function calling my "more primitive" FIND,
which I renamed ?FIND.

The FIND wrapper requires the inputs of a conven-
tional FIND routine. It then supplies each of the
additional, nonstandard parameters required by ?FIND.
Outwardly, standards compliance is met. Inwardly, it
is a circuitous fulfillment of the standard-but one that
suited my own purposes well.

Through a careful selection of control parameters,
my solution pared down the number of routines con-
taining a similar search loop. Through function wrap-
pers, it also provided an efficient way to include some
nonstandard features in an otherwise standard system.

By factoring the standards-compliance code into a
separate wrapper routine, I preserved an optimal
solution for my needs. The wrapper function sup-
ported the expected programmer interface with a tad
more overhead.

The function-wrapper solution does not compro-

benefits from the nonstandard functionality that was
unobtrusively and efficiently included. (The next install-
ment will clarify this point.)

The benefits of the function-wrapper approach far
outweigh the slight performance penalty in routine-calling
overhead. As mentioned earlier, two different styles of
interface are able to efficiently coexist.

Forthward Ahoy
The use of function wrappers helps us move beyond

standards while remaining backward-compliant with them.
So an ANS Forth standard does not have to be the

endpoint of the evolution of Forth. A newly accepted
standard merely offers a new point of departure. You can
use the standard as a jumping-off point to help take you
where you want to g o - o r you can create a better starting
point and make the standard one of scenic stops that your
system visits along the way to your true destination.

Function wrappers are useful for interfacing standards-
compliance routines to application-specific routines. The
nonstandard routines are freed from standardization con-
straints-~~ they can incorporate added functionality to
suit special needs.

The words of another Forth Dimensions author are
appropriate to leave you with. Strive for "sophisticated
simplicity."

Tot a1 control
with 1MI FORTHTM
For Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers

For Development:
Interactive Forth-83 InterpreterICompilers
for MS-DOS, 80386 32-bit protected mode,
and Microsoft WindowsTM

Editor and assembler included
= Uses standard operating system files

500 page manual written in plain English
Support for graphics, floating point, native code generation

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applicat~ons
Excellent error handling
Produces headerless code, compiles from intermediate states,
and performs conditional compilation
Cross-compiles to 8080, Z-80, 64180, 680x0 family, 80x86 family,
80x96197 family, 8051131 family, 6303, 6809, 68HCll
No license fee or royalty for compiled applications

mise the high productivity of experienced Forth pro- I I

Laboratoty Microsystems Incorporated grammers. It also allows novices to trust generic
Post Office Box 10430, Marina Del Rey, CA 90295

documentation to describe the Forth system, at least in Phone Credit Card Orders to: (310) 306-74 12

terms of the basic (standard) Forth features that it Fax: (310) 30 1-0761

I supports. Meanwhile, both types of users can derive
Forth Dimensions 37 November 1994 December

A Forum for Exploring Forth Issues and Promoting Forth

A Reconciliation with A NS Forth
and an Exercise in Interface Design
Mike Elola
San Jose, California

In the May/June installment of this column (FDXVI/l,
"Rapid Development Demands Quality Interfaces"), I
began what was supposed to be a multi-part discussion
about the design of interfaces. I allowed that discussion to
be derailed by an intervening discussion about modules
and modularization tools.

In the original discussion, I claimed that Forth's repu-
tation as a productivity tool depends on the development
of well-interfaced code. I was responding to Byron
Nilsen's article about the sometimes-difficult F83 vocabu-
lary mechanism.

The intervening discussion thread was inspired by Leo
Brodie's comments in Z3inkingForth. While Brodie touted
components arrived at stylistically, I argued for the use of
formal modularization tools.

These distinct topics of discussion will eventually
converge: the added rigor of modules will require building
a canonical interface between modules. The module
interface must offer one protocol for binding routines that
cross module boundaries and another protocol for bind-

I f we want industrial-strength
modules, we must dip into
the murky details...

ing routines within the same module. The availability of
module routines must vary according to their designation
as part of a module's interface. That way, the interface
routines for a module can properly encapsulate (hide) any
private code and data.

For module support, Forth's dictionary search protocol
must be expanded. Before implementing real modules,
certain evolutionary steps can be taken that stop short of
that goal. These intermediate steps involve simple but
valuable refinements to Forth. (Stay tuned to the next
installment for the majority of the details.)

An exploration of these shorter-term goals will be
carried out in this and the next installment of Fast
Forthward. At the same time, this installment continues the
discussion of interface design from the point where I left
off several issues back.

Benefits of Routine Flexibility
We should not overlook how a few flexible routines

can accomplish the work of several, less-flexible routines.
A few well-crafted routines can offer more robust opera-
tion, greater reuse, and more code compactness. Benefits
like this already make Forth a high-productivity program-
ming tool.

Code flexibility and streamlining go hand-in-hand. I
think of them as the ability to obtain many different useful
behaviors from a bare minimum of code resources. Such
goals are often elusive. Therefore, we should try to codify
design guidelines to help us achieve those goals.

The code-streamlining techniques I will be describing
suggest ways to impart flexibility to routines that incorpo-
rate loops. The applications we create should be as
streamlined as possible. The danger of ignoring such
design issues is that an application can easily balloon in
size and complexity.

Curbed program growth is the chief benefit of flexible,
easily reused code. While programmer productivity is the
official chant of the promoters of code reuse (the cham-
pions of OOLs), the apparent increase in productivity is
probably due to less code being written. (Of course, there
are those who refute the productivity claims made for
object-oriented languages.)

In any case, less program code reduces development
costs throughout the lifecycle of an application due to
decreased program complexity and increased program
maintainability.

November 1994 December

Flexibility at the Point of Interface
When it comes to the interface, flexibility is practically

a requirement. The flexibility of an interface profoundly
affects routine reusability. Inflexible interfaces may cause
a proliferation of basically redundant routines. For this
reason, the interface should be crafted with care.

To gauge all of the possible usage contexts for a
routine, an overview of all the routines to be included in
an application is needed. Accordingly, a distinct design
phase is required before coding shifts into high gear. (I am
incredulous when I hear it said that Forth programmers
can skip directly to the coding step without first develop-
ing a design.)

38 Forth Dimensions

ATTEND
for the sixteenth annual and the 1994

FORML CONFERENCE
The original technical conference for professional Forth programmers, managers, vendors, and users

Following Thanksgiving, November 25 - November 27,1994
Asilomar Conference Center, Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California U.S.A.
Conference Theme:

cclnterface Building"

belong together. What are
some possible treatments of Forth code that can establish
more formal interfaces at the library-routine level or the
module level?

Can interfaces be fashioned between Forth routines and
the libraries, run-time systems, or data structures of other
languages?

New programming languages keep appearing to tame
various interfacing problems. Examples include Postscript,
which establishes an interface around diverse printing
engines so they can be treated similarly. Open Firmware

Papers are sought that explore how code and data (formerly Open Boot) wraps a standard environment
resources in various forms can be interfaced to maximize around computer sub-system components, facilitating their
code reuse and programming efficiency. configuration and initialization. X-Script and Telescript

Compiled routines represent the most fundamental code encapsulate multimedia and communications services,
resources. The interface that makes it possible for compiled respectively. Among other things, they make it possible to
routines to work together so well involves a run-time view the same mail or multimedia item on disparate
system's call (return) stack and its parameter-passing viewing platforms and over disparate, intervening networks.
mechanism. Nevertheless, exploiting their cooperative What common features do these interface-serving languages
potential requires skillful possess? Can an

How can Forth be
interfaced to Windows, or equivalent GUIs? Besides linker
technology, what is the most substantial obstacle that
prevents our use of GUI-encapsulating class libraries such
as MFC or OWL? Because SOM (system object model)
attempts language independence, can it lead to a Forth
interface to class libraries? What run-time interface
provisions besides a call stack and a parameter-passing
mechanism are going to be needed to support object-
oriented Forths? To support event-driven programming?

programming. Each routine
must be outfitted with just
the right amount of
functional scope (factoring),
and with the correct choices
of input and return
parameters. How can this
intefacing art be learned
and fostered?

Libraries and modules
have not been exploited
well. In mainstream
languages they offer only
token support for managing
related routines as
(indivisible) collections that

Advanced Registration Required
Call Forth Interest Group Today, 510-893-6784

Registration fee for conference attendees includes registration, coffee breaks, notebook of papers submitted, and for
everyone rooms Friday and Saturday, all meals including lunch Friday through lunch Sunday, wine and cheese parties

forother languages

>OS and other APIs;
VO device or bus

-

~ r i d a ~ and Saturday nights, and use of Asilomar facilities.

interface be
constructed between
Forth routines and
the APIs and system
call interfaces that
serve as the
language counterparts
to these interface-
serving languages?

Can Forth modules
be crafted to let it talk
to one or more I/O
bus interfaces, such
as those for PCMCIA,
PCI, and "Plug N
Play"?

Conference attendee in double room - $400 Non-conference guest in same room - $280 Children under 18 years old
in same room - $180 Infants under 2 years old in same room - free Conference attendee in single room - $525

*** Forth Interest Group members and their guests are eligible for a ten percent discount on registration fees .***
Mike Elola, Conference Chairman Robert Reiling, Conference Director

Register by calling, fax or writing to:
Forth Interest Group, P.O. Box 2154, Oakland, CA 94621, (510) 893-6784, fax (510) 535-1295
This conference is sponsored by FORML, an activity of the Forth Interest Group, Inc. (FIG).

