

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 2000tm l&bit Forth Chip SC32tm 32-bit Forth Microprocessor
-8 or 10 MHz operation and 15 MIPS speed. *8 or 10 MHz operation and 15 MIPS speed.
1-cycle 16 x 16 = 32-bi multiply. 1 -clock cycle instruction execution.
1 -cycle 1 Cprioritiied interrupts. *Contiguous 16 GB data and 2 GB code space.

*two 2Sword stack memories. *Stack depths limited only by available memory.
*&channel I/O bus 81 3 timer/counters. -Bus request/bus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. -32-bi SC32 industrial grade Forth PGA CPU.
-System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
032 KB to 1 MB 0-wait-state static RAM. -32 KB to 512 KB 0-wait-state static RAM.
Full-length PC/XT/AT plug-in (6-layer) board. elOOmm x 160mm Eurocard size (4-layer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (Parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. 032-bi SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
-Up to 640 KB 0-wait-state static RAM. 064 KB to 1 MB @wait-state static RAM.
*233mm x 160mm 6U size (Slayer) board. *FulClength PC/XT/AT plug-in (Slayer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
RTX 2000 PLCC or 2001 A PLCC chip. =RTX 2000 industrial grade PGA CPU.

*System speed options: 8, 10, or 12 MHz. *System speed options: 8, 10, or 12 MHz.
-32 KB to 256 KB 0-wait-state SRAM. 032 KB to 512 KB &wait-state static RAM.
-1 00mm x 1 OOmm size (+layer) board. -1OOmm x 160mm Eurocard size (Clayer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 655 W. Evelyn Ave. f l , Mountain View, CA 94041 (415) 961-8778

Features

ii File Format Sleuth Bradley R. Olson 7 Ten years ago, file formats were no mystery. But now, data is hidden under objects, file formats
are hidden under applications, and hardware is hidden under an API. When you really need
to know how an application puts together the files it generates, this "format ferret" will show
you the internals in a way you can understand.

P 15 Engineering Notation with Integer Math Richard W Fergus
Standard Forths are very satisfactory for accumulating and massaging data but may not provide
an appropriate format for data display in certain applications. The format should account for
data range and precision. The author's definitions in standard Forth provide engineering
notation with selectable significant digits, decimal point positioning, and exponent offset.

I I*
Interactive Remote Target Compilation Alan M. Robertson
In these days of fat Forths and heavyweight hardware, some companies still thrive in a
minimalist landscape. The author shares his techniques for working in 2K of code space, with
an eight-deep stack and 35 bytes of RAM, showing how a little RISC can pay off.

f Switch in Forth Walter J. Rottenkolber
Most Forthwrights are familiar with CASE to replace multiple branching statements. Its C
equivalent, Switch, is less commonly seen. So, for frustrated C mavens, the incurably curious,
and the enlightened who are converting C to Forth, herewith: Switch in Forth.

23 The Essence of Forth... Randy Leberknight & Dennis Ruffer
Programmers at the grande dame of Forth vendors are investigating Forth systems of the future.
Here they remind us of the long-standing observation that Forth has an almost magical effect
on productivity. But why? And how do Forth systems designers meet the requirements of the
future without sacrificing the unique leverage that the language offers?

I " Simple Mouse and Button Words Richard C. Wagner
DOS-based Forth systems too often lack-unnecessarily-the ubiquitous, point-and-click
graphical user interface. But you can have such tools, even without a Windows-based Forth.
This type of environment can be supplied with only ten blocks of code. The system presented
here provides words to communicate with the mouse drivers, and to display the buttons, detect
a button "press," and execute the code associated with a button.

Departments (
.................. 4 Editorial A gauntlet tossed-choose your weapons.

..................... 5 Letters The Scientific Forth Library Project; Yes, Virginia; Producing
correct code; Random erratum; Pictures worth a thousand
comments.

22 Advertisers Index

38 Fast Forthward.. Exposing Forth's modules; correction to ANS Forth Quick
Reference Card. -

Forth Dimensions 3 September 7 994 October

Forth Dimensions
Volume XVI. Number 3

September 1994 October

A Gauntlet TossedHHH

I'd like to call your attention to the Scientific Forth Library project announced in the
"Letters" section. Not only is this an excellent opportunity for members of the Forth
community to demonstrate leadership, it also points out what organized, motivated
individuals can accomplish.

The Forth Interest Group, as a small non-profit organization, does not have the
budgetary means to conduct market research or to hire project coordinators. Therefore,
it often serves best by encouraging, facilitating, and coordinating the efforts of self-
motivated (and usually self-appointed) leaders.

Without Bell Labs, would Unix even exist? Would it have made the transition from
an interesting, experimental idea to widespread adoption and commercial success?

To those who bemoan Forth's limited penetration, I reply that Forth has enjoyed
spectacular success, given its origins and relative lack of academic or corporate
sponsorship. Besides, playing the victim role doesn't change anything-at least, not for
the better.

What can boost Forth's viability and public esteem is leadership. FIG either has no
R&D and no public relations, or it has a volunteer staff of a thousand inspired, talented,
and motivated workers doing those things. The difference lies in how its members view
themselves and their relationship to the organization.

The new ANS Forth standard is an example of what a dedicated and persistent group
of Forth users can achieve. The "Top Ten List" explains good, succinct reasons for
adopting Forth, and is available only because Mike Elola tackled the job and arranged
with FIG for its use at trade shows, in Forth Dimensions, and in vendor-distributed
literature. The high-powered FORML Conference is a resounding annual success because
of individual leadership. The Scientific Forth Library will come to fruition because (a)
someone had the idea and built others' enthusiasm for it, (b) vendors mindful of the
opportunity will support an interface to existing Fortran code, (c) a number of
programmers will cooperate to develop and refine an extensive library of stable, useful
routines whose (d) widespread availability will bring more users to FIG and to
commercial Forth systems that support the concept.

Those are a few examples, of varying scale, demonstrating the merits of coordinated
volunteerism. The best-organized FIG chapters are another case in point. Of course, the
very availability of Forth today is due to Charles Moore's personal inventiveness; and
FIG'S existence sprang from the original, do-it-because-it's-a-good-idea, fig-Forth
implementation teams.

Published by the
Forth Interest Group

Editor
Marlin Ouverson

Circulation/Order Desk
Frank Hall

Forth Dimensions welcomes
editorial material, letters to the
editor, and comments from its read-
ers. No responsibility is assumed
for accuracy of submissions.

Subscription to Forth D i m -
swns is included with membership
in the Forth Interest Group at $40
per year ($52 overseas air). For
membership, change of address,
and to submit items for publication,
the address is: Forth Interest Group,
P.O. Box 21 54, Oakland, California
9462 1. Administrative offices:
510-89-FORTH. Fax: 510-535-1295.
Advertising sales: 805-946-2272.

Copyright Q 1994 by Forth In-
terest Group, Inc.The material con-
tained in this periodical (but not the
code) is copyrighted by the indi-
vidual authors of the articles and by
Forth Interest Group, Inc., respec-
tively. Any reproduction or use of
this periodical as it is compiled or
the articles, except reproductions
for non-commercial purposes, with-
out the written permission of Forth
Interest Group, Inc. is a violation of
the Copyright Laws. Any code bear-
ing a copyright notice, however,
can be used only with permission
of the copyright holder.

The Forth lnterest Group
The Forth Interest Group is the
association of programmers,
managers, andenginem who create
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that
will advance the general state of the
art. FIG provides a climate of
intellectual exchange and benefits
intended to assist each of its
members. Publications, conferences,
seminars, telecommunications, and
area chapter meetings are among
its activities.

Choose Your Weapons "FoTthDimenswm(lSSN08&1-0822)
is published bimonthly for $40/46/

The most successful volunteer efforts appear to come from someone who is inspired 52 per year by the Forth Interest
enough to make a project "their own" while staying flexible enough to consider the needs Group, 4800 Allendale Ave.,
of the community. So the idea you originate, the concept that really "speaks" to you, may oakland, CA 94619. Second-class

be the one to which you can best contribute. But here are a few entries from my personal postage paid at Oakland,
POSTMASTER: Send address

list of projects that need one or more dedicated champions: changes to Forth Dimensions, P.O.
(Continues on page 36.) BOX 254, oakland, CA 946214054.''

September 1994 October 4 Forth Dimensions

Letters to the Editor-and to your fellow readers-are always wel-
come. Respond to articles, describe your latest projects, ask for input,
advise the Forth community, or simply share a recent insight. Code is
also welcome, but is optional. Letters may be edited for clarity and
length. We want to hear from you!

Yes, Virginia (well, maybe.. .)
Dear Marlin,

About two months ago, I notified the FIG office of an
opening in Houston for a Forth programmer. I learned of
the opening from a programmer who works for the
company having the opening. When I contacted the FIG
office a month later regarding another matter, I asked how
many programmers FIG had referred to the Houston
company. To my surprise, I was told that the opening had
not been posted, and that it was FIG policy not to post a
listing unless FIG had received written notification of the
opening from the company having the opening. To do
otherwise, I was told, would jeopardize the credibility of
FIG.

Wake up, FIG! In the current job market, most adver-
tised openings are filled within a day or two. Although the
FIG office contends that there are few, if any, west-coast
Forth programmers needing work, I have personally
heard from a number of Forth programmers throughout
the nation who have been unable to find work and are
rapidly becoming desperate. A person needing work is
generally willing to follow any promising lead, and he will

Working at what you are good
at and want to do is where the
money and return are.

seldom complain if the lead doesn't pan out. It is uncon-
scionable for FIG to refuse to pass on a lead, unless the
lead is obviously bogus.

So FIG is trying to figure out how to attract new
members and how to hold onto current members? Obvi-
ously, a change in policy is indicated.

Spend perhaps two thousand dollars for a '386 clone, a
good modem, and a phone line.
Begin operating a computer bulletin board, calling it
"The FIG Job Board." If no one in the FIG office can
serve as sysop, surely a FIG member will volunteer: just
ask.
Prominentlypublicize the board in each and every issue
of Forth Dimensions--devote at least half a page.

The Scientific Forth Library Project

The Forth language is at an important crossroad with
regard to its use as a general scientific programming
language. The new FORTRAN-90 is just becoming
available, and long-time FORTRAN programmers are
finding it different enough that many are wondering if
they might as well learn a new language instead of
sticking with FORTRAN. If the Forth community plays its
hand right, that alternate language could be Forth. To do
so, Forth needs to overcome the standard complaints of
the FORTRAN community:

1. It's not standardized, so how can I port my software?
2. I have lots of preexisting FORTRAN code that works

perfectly well, and I am not in any hurry to re-write
it. Can Forth interface with my FORTRAN code?

3. There are no scientific libraries in Forth.

The recently adopted ANS Forth handily addresses
#I, and in fact it is the adoption of the standard that
makes issues #2 and #3 worth addressing.

With regard to #2, 1 think the adoption of the
standard will help, since the interface to other software
is the kind of feature that will distinguish one vendor's
ANS Forth from another's. While the standard does not
address such interfaces, I don't think there will be too
much divergence on how this is done. The Unix world
has no such standard, and I have only encountered two
different C-FORTRAN conventions in over 15 years of
using Unix.

So #1 is now solved, and the vendors will (I hope!)
address #2. The third point can be addressed by the
Forth community itself. Several potential scientific users
of Forth discussed these issues at the recent Rochester
Forth Conference. It was decided that we should under-
take the project of writing a scientific library in ANS
Forth.

The plan is to write a set of Forth words to implement
such libraries as the ACM's BLAS, LINPACK, etc. The
libraries will be publicly available in source form (in
some sort of "publicn release: public domain, copyleft,
copyrighted but freely distributable, etc.).

To get started, we are requesting all those who are
interested in participating to contact Skip Carter at:
skip@taygeta.oc.nps.navy.mil

Those who volunteer to help will be sent a coding
guideline and a status report, and will be added to the
central mailing list:
scilib@taygeta.oc.nps.navy.mil

which has been established to let participants corre-
spond efficiently.

I

Forth Dimensions 5 September 1994 October

Use the board to advertise FIG, and post the table of
contents of recent issues of Forth Dimensions.
Allow anyone to post and read listings pertaining to
Forth employment. Don't worry about verifying job
postings. The principal goal is to announce leak, and
not necessarily certified openings. You might, however,
have a very few categories for postings, such as definite
openings, possible openings, and employment wanted.
Don't d o something foolish like restricting access to FIG
members-such a policy will only ensure that prospec-
tive members never learn enough about FIG to want to
join.
Don't attempt to delete postings which have been filled:
bulletin board postings are dated automatically, and
out-of-date listings will be obvious. Besides, an out-of-
date listing may still provide a useful contact, inasmuch
as it indicates an outfit which is using or has used Forth.

I think a free FIG computer bulletin board devoted to
Forth job referrals should become rather popular, and
should serve to call a great deal of attention to FIG. Once
you have an audience, use the opportunity to sell FIG.

Yours truly,
Russell Harris
Houston, Texas

P.S. I know of another Forth opening in Houston. Would
FIG be willing to post it? Is anyone out there desperate
enough to endure the mosquitoes, the heat, and the
humidity? Is there really a Santa Claus?

manks, Russell, for your concern and for your letter.
Our one paid, part-time o f f e staffer's job is to take

orders and communicate messages to the appropriate
people. Our office is the central place for FIG business
communication. In thepast, we have had many inquiries
about jobs and job availability. We have done our best to
disseminate that information and it has been successful.
We are not staffed toprouide job referrals orto do searches

for clients, but we have done what we could knowing that
this infomation is important to FIG members.

In the particular case you mentioned, we understood
that the employer was anxious tofind a Forthprogrammer
so wepassed the information by word of mouth to people
who we knew were interested or who let us know they were
available between the time you first called and when you
next called wondering why we hadn't done more. I know
we did ourpart because we have recently received a letter
from one of our members thanking us for our help in the
referral to the job you mentioned. Hesaid he was one of the
"considered,'"ut that the job was then given to a Yocal
Forth person. "

Ifa job has a longer recruitingperiod, we will attempt
to put the notice in Forth Dimensions as we have often
done. To be accurate, we would request that the person
doing the looking at leastput it on paper orsend us a fax.
We would put the advertisement in Forth Dimensions,
usually gratis, since it would benefit our members, but it

wouldstill be an advertisement andthe responsibility of the
advertiser.

We cannot do more than help with the big problem of
employers and employeesJinding each other. We are only
a volunteerorganization tying to help, and in this area we
cannot be more. When you are dealing with people's lives
and livelihood" there is plenty of room to get into legal
trouble.

Iguess what I am saying is, in short, we have done the
best we can do even though it may not be perfect.

-John Hall
FIG President

Producing Correct Code
Dear Sir:

Congratulations on Forth Dimensions XV/5. It was
useful, thought provoking, and timely.

I agreed with most of the content of "Forth Develop-
ment Environments for Real-Time Control." My exception
is their choice of Windows as the development and
interface environment. Common practice is not a valid
reason to select real-time operator interface software.
Windows is also continuously being improved, so validat-
ing the entire system becomes an ongoing task.

I am particularly interested in the comments by Mike
Elola on a syntaxless language. The question of syntax vs.
syntaxless languages used to program a microprocessor is
part of the overall problem of producing correct code to
precisely perform the bnctions required by a control
system or application.

From a management perspective, it seems like a good
idea to have the compiler check the source code, as one
of several tests of correctness. Assuming the cost of a
stable, high-performance compiler rarely exceeds one
man-month of programmer time, economics favor a
strongly typedsyntax language where one phase of testing
is the source-compile phase.

Without a carefully defined syntax, syntax checking
does not benefit the validation of the program other than
forcing a common style of programming and compliance
with a language standard.

OCCAM for the transputer seems to have sufficient
restrictions in the language that side-effects and default
actions are drastically reduced. Parameter passing and
variable scope are restricted to a carefully defined syntax.
My impression of C is that the syntax is a result of single-
pass compiler requirements and not restrictions imposed
to force correct constructs. My limited knowledge and
ability with C make this an unsupported generalization.

Viewing Forth as a syntaxless language implies (cor-
rectly, I think) that the programmer is responsible for
ensuring correct parameter passing and data typing. Is it
more error prone to include all parameters in each
procedure call versus maintaining a mental track of the
implied parameters on the stack?

Given my generalizations with C, Forth is comparable
to C for producing correct code. Given the implied
operands of low-level Forth words, Forth may be more

(Continues on page 3 7.)

September 1994 October 6 Forth Dimensions

File Format Sleuth

Bradley R. Olson
Grand Rapids, Michigan

Gripe: Forced To Play Detective
As the half-decade epochs of software history go, we

live in the Hidden Years. Anybody who uses an applica-
tion that almost does everything they want knows what I
mean. Ten years ago, file formats were no mystery. Why,
some application manuals straight out told them to you in
an appendix.

Not any more! I wanted to perform a simple filtering on
some word processing files. My mind told me the program
should be easy to piece together in Forth. I'd just look up
info on the file format and get to work. But there was no
place to look! Plenty of instructions on how to insert disks
and use the function keys, but not a stitch of information
concerning file format.

We know the file formats exist. The multitude of import
and export functions on the latest word processors give
witness to that! And maybe, if we were one of The Big
Ones we could cut a deal and get the information we need.
Or maybe we could shell out the bucks for a (non-
refundable) API or SDK kit from the developer-and hope

This is a simple but powerful
tool for making evident what is
clandestine.

it has the information we seek.
The trend is towards hiding--data hidden under ob-

jects, file formats hidden under applications, and hard-
ware hidden under an API. And what hiding strives for is
good, but when it comes to data, one eventually needs to
deal with what is instead of how an application presents it.

A Simple Tool
Enter the File Format Sleuth. Nothing grand, having no

clever hacks, it just takes a tedious job and does it with
welcome clarity.

Simply put, the Sleuth does a dump of any data file. 11
does so in hex and ASCII. Nothing new, to be sure.
Anybody with Norton Utilities or the like has this capability.

What they don't have, what makes this program handy
enough to type in, is the format.' Not only does the dum~:

Forth Dimensions

lso give decimal values and any other format you care to
dd (an easy process), it displays all of this simultaneously
n an easy-to-read manner. The ordinal position of every
lyte and the several translations of its value are displayed
ogether. No more hunting between columns of hex and
LSCII, no more guessing at decimal equivalents, no more
ontrol characters displayed as meaningless dots.

Moreover, the Sleuth has a rudimentary printer interface
hat gives you a nice print of the dump withplenty of mom
foryourom comments. Need more room? It's easy to add.
Sather type your comments into a file instead of marking
hem on a printout? Just type FILE- I T before starting the
sleuth dump. Then call up your favorite text editor.

Using the Program
To use the program, give it a filename by typing

something like SLEUTH-F I L E " Myf i l e . doc ". Select
~ u t p u t to screen with SCREEN-IT or to the printer with
PRINT- IT. Then execute the main word FSLEUTH to see
h e dump.

You can also dump from a particular point in the file
s i n g FSLEUTHC, which expects a file position (as a
double number) and number of pages to print on the stack
[see code comments for details). 0 0 0 FSLEUTHQ would
print all the pages beginning at the start of the file. So
would FF 0 0 FSLEUTHC.

Adding A New Line Format
The program works by reading a given number ofbytes

From the data file, displaying those bytes in a number of
given formats, and continuing to do so until there is some
reason to d o something else (like an end of page or end
of file).

For sake of terminology, the program refers to the
printing of one group of bytes read as a row. Each row is
made up of several lines. Each line displays the bytes in
a different format by printing each byte in a cell. Also, I use
the verbs print and display interchangeably.

Adding a new display format consists of writing a word
to display the line, adding that word into the routine
PRINT-ROW, and adjusting ROWS /PAGE and other format
values to keep the display tidy.

Sewtember 1994 October

Example: sample file, command lines, sample output.

A Saml:, l e lslist- dPerSer:.t 't . 2 F i 1 e

Tt . 1 i rle i:= i-; .- - t .- I-. .- 3
112 - -er I e -1. .

This i s ur-lder l ir-led.
Ttlis is tlolaj.

This i s the Ii1:st I ic-~e.

s l e u t h - i n i t ok
s l e u t h - f i l e " wpsamp.wpW ok
s c r e e n - i t ok
f s l e u t h

A
65
' t i

F
t-

119
'7 I L .-,

1E
+

195
I,,$

20
i

105
6,,3

Vectoring Makes It Easy
As I began to sketch out the utility, I realized that

sometimes I'd like to send output to different places. Most
Forths make this easy enough to do. The problem is that
printers, screens, and files are different creatures. Sure,
they all accept input and make it visible in one form or
another. But think a minute. When displaying to the
screen, it's nice to be able to back up if you missed
something. It's also nice to highlight especially important
information. O n the other hand, when you send informa-
tion to a printer, one needs to worry about page ends and
margins. On top of that, highlighting on a printer works
quite differently than on a screen. Then there's file output.
The biggest bugaboo here is that files need to be closed
after use.

One could handle this with a good dose of CASE
statements, but it's the hard way out. First, you check
where the output is going and branch one of three ways
to set it up. Then, every time you reach the end of a page
or want to highlight, you can make the decision again.

Finally, you can put in another CASE statement when the
listing is done to decide how to clean u p things and close
any files.

In classic minking Forth style, this program makes
such decisions once. The words SCREEN- I T , PRINT- I T ,
and FILE-IT tell the program where to send the data. It
does so by re-vectoring key words. Once. After that, you'll
find few conditionals regarding the particularia of output
media.

Vectoring also saved me from rewriting a lot of code in
. ROW, which prints out each row. The generic routine
. L I N E can print all the lines, regardless of their format. All
. ROW does is change the routine that prints each cell, then
let . L I N E handle the details of printing the line.

The method of vectoring execution I've chosen is HSF's
word, DEFER. The word TO takes a CFA from the stack and
makes the D E F E R T ~ ~ word a synonym with the word from
which the CFA was obtained. Many dialects differ on the
means to do this. Brodie's DOER MAKE facility in the
appendix of Thinking Forth offers good suggestions on

------ Q = QIJ i t . R = Rew i rid 1 Screen. Othet- C;e:.) = I;i~nt i nrje

0 1 2

32
20

10
f

102
66

I F ,.... "

0
0

2E
5

115
7.-,
I..?

September 1994 October 8 Forth Dimensions

s
$43
53

11
e

101
65

20
b : * "

't2 .-, ...
LH

2F

32 .-, -
LU

97
61

12
c

9'3
63

21

:;T
I F
r, -
,

99 .- .-
b.J

169
60

13
t

116
79

22
+

195
a

.- J1

101
605

a m p l e
112
70

1't

32
20

23
T

8't
5't

32

:I16
6E

108

15

52
34

29
h

109
68

33

116,
7't

101
65

16
' t .

6
2E

25
i

105
6'3

3't
c : e n t e r e , j .

101
65

32
20

17
I .-

50
32

26
-=

73

35

11't
72

3 ' t 5 6 7 $ ' 3 A E : i : D E
1.1

87
57

18

3.2
20

27

32
20

36

101
65

cl

111
GF

19
F

70
46

28
1

108
6C:

... I I

100
6't

r
11't
" 1 ,:

:tA
i

105
69

29
i

105
Ekr3

.:to

't6
2E

d
100
64

:IF;
I

108
6C

2A
r-I

110
EhE

.$j
h

131 - .-
8.j

P
80
50

11:

101
65

2F;
e

101
65

3A
."J
10

A

e
101

65

1[3
e . " J

10
A

.- - ,;c

32 - -
i i k j

.-, .,Ek >

s
1't8

'$q

\ FILE FORMAT SLEUTH - pretty, multi-format file dump
\ Program (c) 1994. Bradley R. Olson. ARR.
\ This implementation written in HS/FORTH REV. 5.0

* * * * * * * * * * USE, CONVENTIONS, AND CREDITS ----------
(((
* * * MAIN WORDS * * * (In Usual Order of Use)
SLEUTH-INIT sets up initial values for the file dump program.
SLEUTH-FILE" (filename" I) sets name of data file.
SCREEN-IT sends consequent output to the screen
FILE-IT sends consequent output to the file SLEUTH.TXT
PRINT-IT sends consequent output to the printer
FSLEUTH dumps the entire contents of the data file.
FSLEUTH@ (Dl Nl) prints a N1 pages of the data file begin-

ning at Dl bytes from the beginning of the file.

* * * COMMENT CONVENTIONS
indicates rest of line is a comment
begins a long comment closed with "))) "

$ address of counted string count byte
c byte value
w word value
'C address of a byte value
'w address of a word value

* * * CREDITS ***
Many thanks to Jim Callahan and Harvard Softworks for their
inspiration and permission regarding these words:

(((VAR IS
Print format derived from Jeff Walden's

"File Formats For Popular PC Software"
1986. NY: J. Wiley.

FIND SLEUTH ? (((SLEUTH FORGET-TASK)))
TASK SLEUTH
DECIMAL

* * * * * * * * * * VARiables, CONSTANTS and PRIMITIVES ----------
27 CONSTANT ESC
179 CONSTANT VERT-SEPARATOR \ " I " Pretty horizontal bar on PC
12 CONSTANT FORM-FEED
15 VAR CELLS/ROW \ Bytes displayed per print row
5 VAR SPACES/CELL \ Width of print cell
3 VAR ROWS/PAGE \ # print rows per page/screen
0 VAR LEFT-MARGIN \ Output margin
0 VAR BYTES-READ \ Bytes this pass. 0 means EOF.
0. DVAR FILE-POS \ Pos in file of first byte in row
0 VAR THE-FILE \ File Handle
0 VAR ROWS-READ \
1 VAR CUR-PAGE \ Current Page
0 VAR MAX-PAGES \ Pages to print
CREATE THE-BUF 80 ALLOT
CREATE INFILES 63 ALLOT
CREATE OUTFILES 63 ALLOT

: BYTES/PAGE ROWS/PAGE CELLS/ROW * ;
: END-OF-PAGE? ROWS-READ ROWS/PAGE MOD O= ;

* * * * * * * * * * M0DULE:FILE SYSTEM INTERFACE ----------
: OPEN-INFILE INFILES OPEN-R IS THE-FILE ;
: CLOSE-INFILE THE-FILE CLOSEH ;
: READ-BUF

0 0 THE-FILE LSEEK+ \ Save current file position
IS FILE-POS
LISTS @ THE-BUF
CELLS/ROW THE-FILE READH \ Read into THE-BUF

Forth Dimensions 9

low to d o vectoring in many
iialects. I have purist friends
who shy from it, but in my
>pinion it's a powerful tool,
ind worth ferreting out. If your
lialect comes with the ability,
>less its creators-and use it! At
east give it a try. It remedies a
ot of Boolean headaches!

Getting It Running
This implementation was

jone in Harvard Softworks' HS/
Forth, which is largely Forth-79
compliant, except that it uses
-1 for true, like the '83 standard,
which makes some mask op-
?rations easier. (HS/Forth users
soon will find this code avail-
able on the Tools/Toys disk.)

Beyond that, there are four
main porting quirks, two that I
could have avoided and two
that I could not.

First the ones I couldn't have
avoided. Access to a host file
system is notoriously dialect
dependent. The key word I've
used here is READH, which I've
explained in the code com-
ments. You'll just have to find
its counterpart. If you're using
an MS-DOS Forth, you'll prob-
ably find something similar
because it's based on a DOS
function call.

I also couldn't avoid specif-
ics for printer and screen
output. I've included words to
condense the listing and under-
line portions on the printer.
The screen I/O highlights parts
of the listing for easy reading.
There are ample comments to
assist with porting. Perhaps the
bigger problem is that dialects
differ on how you direct output
to the printer. HSF does it with
the word PRINT, which changes
the operation of EMIT and all
consequent output.

Now the things I could have
avoided. I could have avoided
using my strange comment op-
erators, but I like how they
make my code look, and the
implementation is interesting. I
could also have avoided using
HS/Forth's VARs, which are

September 1994 October

variables that act like constants.
The idea shouldn't be foreign to
you-HSF ads have touted them
for awhile, and a similar syntax
appears in MMS Forth's QUANs.
The code should make evident
how they work. Fetching is done
by the VAR name alone. Storing
is done by the infix word IS. I
find the syntax helpful and
Harvard softworks'' implemen-
tation very speedy. If you want
to try it out, I've included my
own version of I S that works
with constants in the same way.
But don't try to redefine the
single DVAR as a double con-
stant and use the same IS . HSF's
I S can d o that because its VARS

have multiple CFAs. My I S wants
a single-width CONSTANT and
nothing but. You're on your
own to make a double-width
one. For the few times it's used,
I'd just substitute DVARIABLE,
D@, and D!.

If you don't want to play
with VARs, just change the VARS
to VARIABLES and put a @ after
every occurrence of the name
unless it's preceded by an IS, in
which case get rid of the IS and
put a ! after the name.

Making It Better
One could add much to the

Sleuth. Under MS-DOS, it would
make a fine utility if given a
command-line interface and
saved as an executable file. The
same could be done for any
other OS, given an appropriate
interface.

The display begs for enhance-
ment. One could display the
mnemonic codes for control
characters (AJ is LF, A M is CR, AZ
is EOF). I didn't add this feature
because it lengthens the display
and because the codes are very
familiar to me. What would be
even more helpful, though much
more ambitious, is to allow in-
teractive definition of byte codes
or even byte strings. For ex-
ample, in displaying a file I
might discover that the value
$86 is used in my word proces-
sor to signal the underlining. I

-

\ For this dialect:
\ READH (segment offset n handle -- bytes-read)
\ tries to read n bytes into the buffer at segment:offset
\ from the file handle.
\ It returns actual # of bytes read.

IS BYTES-READ \ 0 bytes read signals EOF
ROWS-READ 1+ IS ROWS-READ ;

** * * * * * * * * MODULE:SCREEN, FILE, PRINTER PRINTER OUTPUT ----------

\ ------- WORDS SHARED IN VARIOUS FORMS OF OUTPUT
: VS VERT-SEPARATOR EMIT ; \ Print vertical separator
DEFER .NEW-PAGE \ Deal with full page or screen
DEFER .UL+ DEFER .UL- \ Turn underline on and off
DEFER INIT-OUTPUT \ Clear or setup output channel
DEFER CLEANUP-OUTPUT \ Set's output back to normal

\ ------- WORDS FOR SCREEN OUTPUT
: FORCE-QUIT 1 IS MAX-PAGES 2 IS CUR-PAGE ;
: REWIND \ Try to back up one screen
(((NOTE: remember that on entering REWIND, the DOS file pos
pointer is positioned just past the page we just displayed. So,
to display the previous page we have to move the pointer back 2
pages!)))

BYTES/PAGE 2* S->D \ How far back is 2 scrns?
DDUP \ Hold that thought!
0 0 THE-FILE LSEEK+ \ Get current position
D> O= (saves loading D<=) \ Room to back up 2 screens?
IF DNEGATE \ YES, shift to into reverse

THE-FILE LSEEK+ DDROP \ . . . and relative disk seek
ROWS-READ ROWS/PAGE 2* -
IS ROWS-READ \ ... and adjust rows read

ELSE \ NO, just go to the beginning
DDROP
0 0 THE-FILE LSEEK DDROP
0 IS ROWS-READ

THEN ;
: PAUSE/QUIT/REWIND (-- f) \ Waits for a key.
(((Q quits. R rewinds. Anything else continues with next page.)))

KEY
BEGIN-CASE

ASCII Q CASE-OF FORCE-QUIT ELSE
ASCII q CASE-OF FORCE-QUIT ELSE
ASCII R CASE-OF REWIND ELSE
ASCII r CASE-OF REWIND ELSE
(OTHER CASES) DROP

END-CASE ;
: SCR-WAIT

0 IS CUR-PAGE \ Fake out MAX-PAGES check
CR

I f --- Q = Quit. R = Rewind 1 Screen. Other Key = Continue ---"
PAUSE/QUIT/REWIND WIPE ;

: INVERSE-SCREEN \ Dialect and machine Specific
(((Works in HSF for IBM screens by inverting the least and most
significant bytes of the screen attribute word.)))

WATRS \ Get screen attribute word
DUP [HEX] FO AND \ Mask out lower byte
10 / \ . . . shift msb to lsb
08 OR \ and turn on hi-intensity bit
SWAP 07 AND \ Mask out msb and any blink bit (bit 4)
10 * \ and shift lsb to msb
OR \ Put them back together inverted
WATRS! [DECIMAL] ; \ Store as new screen attributes.

DECIMAL
\ ------- WORDS FOR PRINTER OUTPUT
: ISSUE-FF FORM-FEED EMIT ;
: PRINT-FOOTER

September 1994 October Forth Dimensions

CR CR 50 SPACES
INFILES $. . " PAGE " DECIMAL CUR-PAGE . ;

: PRINTER-PG PRINT-FOOTER ISSUE-FF ;

(((The following escape codes are made for my EPSON STYLUS-800,
but should work with most Epson-compatible printers.)))
: PRINTER-UL ESC EMIT 45 EMIT ;
: PRINTER-UL+ PRINTER-UL 1 EMIT ;
: PRINTER-UL- PRINTER-UL 0 EMIT ;
: PRINTER-INIT

PRINT \ Vector output to printer
ESC EMIT ASCII @ EMIT \ Init Epson Printer
ESC EMIT 40 EMIT 116 EMIT \ Standard character set
3 EMIT 0 EMIT
0 EMIT 1 EMIT 0 EMIT
ESC EMIT 116 EMIT 0 EMIT

! 15 EMIT ; \ Condensed Print ON

: PRINTER-CLEANUP
END-OF-PAGE? O=
IF PRINTER-PG THEN
CRT ;

\ Page left in printer?
\ YES, spit it out.
\ Turn off printer

\ ------- WORDS FOR FILE OUTPUT
: FILE-INIT

OUTFILES MAKE-OUTPUT \ Select output file
>FILE ; \ Revector EMIT to that file

: FILE-CLEANUP
CLOSE-OUTPUT CRT ; \ End's HSF file revectoring of EMIT

\ ------- WORDS TO SWITCH OUTPUT
: SCREEN-IT \ sends consequent output to the screen

CRT \ Revector EMIT to screen
4 IS ROWS/PAGE
3 IS LEFT-MARGIN
CFA' SCR-WAIT TO .NEW-PAGE
CFA' INVERSE-SCREEN TO .UL+
CFA' INVERSE-SCREEN TO .UL-
CFA' WIPE TO INIT-OUTPUT \ Clear screen for starters
CFA' NOP TO CLEANUP-OUTPUT ; \ Could reset scr colors here

: FILE-IT \ sends consequent output to the file SLEUTH-TXT
0 IS LEFT-MARGIN
10 IS ROWS/PAGE
CFA' NOP TO .NEW-PAGE
CFA' NOP TO . UL+
CFA' NOP TO .UL-
CFA' FILE-INIT TO INIT-OUTPUT
CFA' FILE-CLEANUP TO CLEANUP-OUTPUT ;

: PRINT-IT \ sends consequent output to the printer
PRINT \ Revector EMIT to printer
11 IS ROWS/PAGE
5 IS LEFT-MARGIN
CFA' PRINTER-PG TO .NEW-PAGE
CFA' PRINTER-ULt TO .UL+
CFA' PRINTER-UL- TO .UL-
CFA' PRINTER-INIT TO INIT-OUTPUT
CFA' PRINTER-CLEANUP TO CLEANUP-OUTPUT ;

** * * * * * * * * M0DULE:FORMAT AND OUTPUT ROWS ----------
(((Terminology: Each page or screen is composed of n rows.
Each row is composed of n lines. Each line is composed of n
cells. Each cell represents a single byte in the data file.)))

\ ------- CELL PRINTING
(((Most of the following are possible vectors to .CELL and
expect the address of a character on the stack.)))

could create a syntax that allows:
HEX 8 6 MEANS" UL+"

. . .and then subsequent listings
would show my symbol, UL+
whenever it encountered a hex
byte 86 in the data file.

If your ambition leads you to
some interesting refinements, let
me know! As it is, the File For-
mat Sleuth is a simple but pow-
erful tool for making evident
what is clandestine. May you
find it a good companion in
these hidden years.

1. The idea for the display for-
mat came from File Formats
for Popular PCSo ftware. The
algorithms and Forth imple-
mentation were developed
independently.

2. The words for multi-line com-
ments were inspired by
Harvard Softworks' code and
appear here with permission
from and thanks to that com-
pany. The implementation of
I S was inspired by HSI
Forth's syntax.

The author relates that he is an ordained
minister and novelist who makes a lot of his
own tools to work with words. For him, Forth
is " . ..an inspiration, a hobby, and a working
tool."

I DEFER .CELL ('c) \ Print a single cell I
I I

Forth Dimensions 11 September 1994 October

: .BLANK-CELL DROP VS SPACES/CELL 1- SPACES ;
: .NUM-CELL \ Print's cell in any base

VS C@ SPACES/CELL 1- .R ;
: .CTRL (c) ASCII ^ EMIT 64 + EMIT ;
: .NORM (c) SPACE EMIT ;
: .ALPHA (c) DUP 32 < IF .CTRL ELSE .NORM THEN ;
: .LETTER-CELL (Caddr)

VS SPACES/CELL 3 - SPACES C@ .ALPHA ;
: .POSITION-CELL ('c)

DROP
FILE-POS I' S->D D+
VS
SPACES/CELL 1- DU.R ;

(((We ought to use DU.R, since position is always positive, but not all systems have such
a word for fixed-width output of an unsigned double number. If not, the phrase D->S U.R.
will only cause errors in large files.)))

\ ------- LINE AND ROW PRINTING
: .LINE

LEFT-MARGIN SPACES
CELLS/ROW 0
DO I

DUP BYTES-READ =

IF CFA' .BLANK-CELL TO .CELL THEN
THE-BUF + .CELL

LOOP VS ;
: .ROW CR

\ Print the position line
HEX CFA' .POSITION-CELL TO .CELL .LINE CR

\ Print alpha equivalents
CFA' .LETTER-CELL TO .CELL
.UL+ .LINE .UL- CR \ Accent this line

\ Print decimal equivalents
DECIMAL CFA' .NUM-CELL TO .CELL .LINE CR

\ Print hex equivalents
HEX CFA' . NUM-CELL TO .CELL .LINE CR
END-OF-PAGE?
IF .NEW-PAGE CUR-PAGE I+ IS CUR-PAGE THEN ;

: READ.ROW \ Read the next set of bytes and print them.
READ-BUF
BYTES-READ O>
IF .ROW THEN :

* * * * * * * * * * M0DULE:OPERATIONAL WORDS ----------

: SLEUTH-RESET-VARS
0 IS BYTES-READ 0 IS THE-FILE
0 IS ROWS-READ 1 IS CUR-PAGE ;

: SLEUTH-INIT \ sets up values for the file dump program.
$" WPSAMP.WPW INFILES $! \ Default data file.
$" SLEUTH.TXT" OUTFILES $! \ Default output file.
SLEUTH-RESET-VARS SCREEN-IT ;

: SLEUTH-FILE" \ (filename" I) sets name of data file.
ASCII " WORD \ Find next word
($Theword) INFILES $! ; \ Save it

: FSLEUTH@ (Dl N1) \ prints certain pages of data
(((Begin printing at position Dl, and print up to N1 pages)))
SLEUTH-RESET-VARS
(N1) ?DUP O= \ 0 pgs becomes MAXINT pages
IF -1 THEN IS MAX-PAGES \ MAX-PAGES IS UNSIGNED
INIT-OUTPUT OPEN-INFILE \ Prep i/o devices
(Dl) THE-FILE LSEEK DDROP \ Move to desired spot in file
BEGIN

September 1994 October 12 Forth Dimensions

READ. ROW
BYTES-READ CELLS/ROW < \ IF No more data left
CUR-PAGE 1- MAX-PAGES U< O= OR \ OR last page

UNTIL \ THEN exit loop
CLOSE-INFILE
CLEANUP-OUTPUT SCREEN-IT :

FSLEUTH \ dumps the entire contents of the data file. 1 0 0 0 FSLEUTHB ;

1 EXIT
* * * A * * * * * * test drive ----------
SLEUTH-INIT
PRINT-IT
FSLEUTH

I * * * * * * * * * * POSTLUDE - PORTING LONG COMMENTS AND VARS ---------- I
EXIT \ None of what follows gets compiled.

\ To do multi-line comments in HS/FORTH, try this:

I \ (((- multi-line comments for HS/FORTH
\ Allows multi-line comments in (((...))) pairs.
\ Just gobbles up the intervening text by parsing
\ through it with WORD. Algorithm derived from SHOWing
\ HSF's own word ? (((. Modified by Brad Olson, 1994.

HEX
: CLOSER? ($ -- f) \ TRUE IF WE'VE FOUND A CLOSE OF COMMENT

DUP>R C@ 0 = \ Close comment if word is null length
R@ D@ 29292903. D= OR \ ... OR found a "))) "
R> D@ 2D2D2DOA. D= OR ; \ ... OR found a "----------"

: OPENER? ($ -- f) \ TRUE IF WE'VE FOUND A COMMENT OPENER
\ Used to flag nested comments as possible errors.
DUP>R D@ 28282803. D- \ Found a " ((("
R> D@ 2A2A2AOA. D= O R ; \ ... OR found a " * * * ******* "

: .OPENCMT CR HERE $. ." Comment:" ;
: .CLOSECMT ." .." HERE $. 2 SPACES ;
: EAT-TEXT

\ As implemented, don't use the same strings for
\ openers as closers
BEGIN
BL AWORD
DUP OPENER? \ If the next word opens a comment
IF SPACE $. \ ...p rint that opener

BL AWORD
SPACE DUP $. \ ... and the following word
I' ?? ' 1 \ ... and submit that word to closer?

THEN
CLOSER?

, UNTIL .CLOSECMT ;
: (((

1 \ Doesn't handle nested comments yet.
\ Just flags when an opening word appears within a comment
. OPENCMT I BL AWORD DUP CLOSER?
IF .CLOSECMT
ELSE $. . " . . " \ Print first word in comment

EAT-TEXT
THEN ; IMMEDIATE

SYNONYM * * * * * * * * * * (((IMMEDIATE

(((PORTING NOTE for long comments
The only dialect-dependent word in " (((" is AWORD. If WORD in your dialect will search
across end-of-lines, just use WORD. If not, search your documentation for something that
will.)))

Forth Dimensions 13 September 1994 October

\ T o e m u l a t e H S F ' s V A R ' s i n another FORTH, t r y t h i s .
(((T h e r e s u l t i n g w o r d s f o l l o w HS/FORTH syn t ax , b u t H S / F O R T H 1 s i s t w i c e as e f f i c i e n t . I ' v e
c o m m e n t e d heav i ly t o a s s i s t por t ing. I t ' s w r i t t e n f o r FORTH-79 . FORTH-83 " t i c k " ac t s
d i f f e r e n t . >BODY w o u l d have t o f o l l o w t h e t i c k , and t h e IS1 w o u l d have t o read [COMPILE]
[' I)))

: VAR CONSTANT;
: IS1 (w o r d 1 I --) \ C o m p i l e - t i m e vers ion of IS.

\ C o m p i l e s L I T , t h e P F A of w o r d l , and t h e ! c o m m a n d .
[COMPILE] ' \ dur ing c o m p i l e , F O R T H - 7 9 ' s

\ " t i c k " w i l l c o m p i l e L I T and t h e P F A of next
\ w o r d i n t h e c o m p i l e s t r e a m

COMPILE ! ; \ t h e n w e c o m p i l e a s tore!

: IS0 (w o r d 1 I n --) \ I n t e r p r e t - t i m e vers ion
[COMPILE] \ f i n d PFA of w o r d l
! ; \ and store n there

: IS
STATE @ \ A r e w e c o m p i l i n g ?
I F IS1 \ Y e s , do a c o m p i l e - t i m e IS
E L S E IS0 \ NO, do an i n t e r p r e t - t i m e IS
THEN ; i m m e d i a t e

Total control
with [MI FORTHTM
For Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers

For Development:
Interactive Forth-83 InterpreterlCompilers
for MS-DOS, 80386 32-bit protected m o d e ,
and Microsoft WindowsTM

Ed~tor and assembler included
Uses standard operating system files
500 page manual written in plain English
Support for graphics, floating point, native code generation

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications . Excellent error handling
Produces headerless code, complles from intermediate states,
and performs conditional compilation
Cross-comp~les to 8080, 2-80, 64180, 680x0 family, 80x86 fam~ly,
80x96197 family, 8051131 family, 6303, 6809, 68HC11
No license fee or royalty for compiled applications

Laboratory Microsystems Incorporated
Post Oifice Box 10430, Manna Del Rey, CA 90295

Phone Credit Card Orders to: (310) 306-74 12
Fax: (3 10) 301 -0761 LW

September 1994 October 14

FORTH and Classic
Computer Support

For that second view on FORTH applica-
tions, check out The Computer Journal. Ifyou run
an obsolete computer (non-clone or PC/XT clone)
and are interested in finding support, then look no
further than TCJ We have hardware and software
projects, plus support for Kaypros, S100, C P W
6809's, PC/XTt s, and embedded systems.

Eight bit systems have been our mainstay
for TEN years and FORTH is spoken here. We
provide printed listings and projects that can run on
any system We provide old fashioned support for
older systems. All this for just $24 a year! Get a
FREE sample issue by calling:

(800) 424-8825

TC J ~~"BZFfer JoUUla'
Lincoln, CA 95648

Forth Dimensions

Engineering Notation
with Integer Math
Richard W: Fergus
Lombard, Illinois

Why Do We Need This?
Data acquisition applications generally involve accu-

mulating data from transducers, massaging the data, and
presenting the results in a readable form. Standard Forth
words are very satisfactory for accumulating and massag-
ing data but may not provide an appropriate format for
data display. The data display format should account for
not only data range but also data precision. In many cases,
the precision is much less that the number of digits
required for the data range. Displaying digits which are
not significant not only clutters the readout but can add
confusion when reading the results.

Floating-point math is one solution to this problem but
is usually not available on small systems. With Forth
"style," engineering notation definitions will be described
which can provide engineering notation with selectable
significant digits and decimal point positioning while
using integer arithmetic. In addition, the exponent nota-
tion can be offset to account for data scaling, units, and
unit prefixes.

The input number f 00.
would be represented by
.00f or f ,000E-3 in
the displayed output.

For example, if a transducer produces an output of 100
integer units for a one milliamperes input and the readout
is required to be in amperes, the following illustrates a
solution for that application:
100, -5 ENG+. --> 1.000E-3 amperes

How It Is Done
Four screens have been assembled to describe the

engineering notation definitions. Only standard Forth
words have been used; therefore, the screens should load
without difficulty. Screen One defines the assigns con-
stants for the maximum decimal point positions (number
of places to the right of the decimal point) and significant
digits. An alternate method of using variables is also

described. The variable method allows for easy format
modification at any time, but is slower than the constant
method. In either case, the decimal point position (#DP)
must be three or larger. The significant digit range (LO [
and I HI) can be any number of digits. Obviously, many
combinations will be not be usable. In general, the
significant digits should be equal to or greater than the
decimal point position.

Screen Two defines the word which scales the number
until it is within the required significant digit range. The
SCALE word returns a scaled, double-length number and
an appropriate exponent value. Two BEGIN WHILE loops
are used to either multiply (scale up) or divide (scale
down) by ten until the number is within the significant
digit range. As the number is scaled, the exponent is
incremented or decremented to account for the scaling. A
scaled number with exponent is returned to the calling
word. The scale down has an added feature of rounding
off the remainder after the division. A special multiply-by-
ten word is defined on Screen One, since double-length
multiply words are not available in all Forth systems.

Screen Three defines the basic formatting word. This
word requires a double-length number and exponent
offset on the stack. First the current number base and
exponent are pushed to the return stack. Line four
prepares the input number for string conversion, which
will be done in two steps. Lines five and six either scale
the number or set the exponent if the number is zero.

The exponent offset is pulled from the return stack and
added to the exponent passed by the scaling word. A
multiple of three power is generated from this sum (the
remainder will be used to count the decimal places). The
first conversion step that converts the "power of threen is
prepared for formatting on line eight. The <# initiates a
number conversion of the exponent on line nine. After an
"En is added to the string, the remains of the exponent
number is dropped from the stack, leaving the sign, scaled
number, and the exponent remainder. Line 12 subtracts
the remainder of the /MOD operation from the maximum
number of decimal point positions, and a DO LOOP is
formed from this value. At this time, the scaled input
number is on top of the stack. The DO LOOP converts the

Forth Dimensions 15 September 1994 October

Screen 1
0 \ ENGINEERING FORMAT
1 FORTH DEFINITIONS DECIMAL
2
3 \ *****Constant ve r s ion - - f a s t e r
4 3 CONSTANT #DP 1000, 2CONSTANT L O [9999, CONSTANT] H I
5
6 \ *****Variable version--adaptable
7 \ VARIABLE (DP 5 (DP ! \ Maximum DP p o s i t i o n s
8 \ : #DP (--- n) (D P @ ; \ m i n i m u m o f 3
9 \ 2VARIABLE LO (100000, L O (2! \ S i g n i f i c a n t d i g i t range

l o \ : L O [(- - - d) LO(2@ ;
11 \ ZVARIABLE) H I 999999,) H I 2!
12 \ :] H I (--- d)) H I 2@ ;
13 : D*10 (d --- d)

1 4 2DUP D+ 2DUP \ Mult ip ly by 1 0
1 5 2DUP D+ 2DUP D+ D+ ; --> \ i n l i e u of 1 0 , D*

Screen 2
0 \ ENGINEERING FORMAT
1 FORTH D E F I N I T I O N S DECIMAL
2 : SCALE (d --- d n) \ Sca le t o r equ i r ed s i g n i f i c a n c e
3 #DP >R \ I n i t i a l decimal--push t o s t a c k
4 BEGIN \ Sca le up t o lower l i m i t
5 2DUP LO [D< WHILE \ Less than lower s i g n i f i c a n c e
6 R> 1- >R \ Move DP t o t h e r i g h t
7 D*10 \ Mult ip ly by 1 0
8 REPEAT
9 BEGIN \ Scale down t o upper l i m i t

1 0] H I 20VER D< WHILE \ More than h ighe r s i g n i f i c a n c e
11 R> 1+ >R \ Move D P t o t h e l e f t
12 10 U/MOD \ Divide by 1 0
13 ROT 4 > I F 1, D+ THEN \ I f remainder >4, round o f f
1 4 REPEAT R> ; \ P u l l exponent o f f s t a c k
15 -->

number of digits to the right of the decimal point. At the
conclusion of this loop, a decimal point is added to the
string. The remainder of the number is converted by #S
and the conversion is closed with #>. Restoring the
number base completes the operation.

How to Use It
Several variations of the notation, with or without

exponent offset and right justification, are described on
Screen Four. There is some freedom in this selection since
the exponent offset can be used both to scale the data and
to provide unlimited unit selection.

How to select the exponent offset may not be obvious
at first. It is simply a matter of counting the decimal place
movement to reach the required location (before the
engineering notation is applied). From the previous ex-
ample, the input number (100.) would be represented by
.001 or 1.000E-3 in the displayed output. The decimal
point was moved five places to the left. Therefore, the

exponent offset is a count of the decimal point movement;
minus to the left or plus to the right.

This notation has been used for several years in a
number of data acquisition applications which involved a
wide range of displayed values. Of course, the data was
always scaled to be with double significant "Forth" integer
range. In some cases, it was possible to increase the
dynamic range, with a combination of transducer range
change and exponent offset selection, without an appar-
ent change in the format of the data display.

First question-dialects? The screens for the article
were written in Uniforth, which is F-83, although the
orginal definitions were developed on my own "dialectn
(FFORTH) .

September 1994 October 16 Forth Dimensions

Screen 3
0 \ ENGINEERING FORMAT
1 FORTH DEFINITIONS DECIMAL
2 : (ENG (d n --- adr n) \ Number/offset to text string
3 BASE @ >R DECIMAL >R \ Save base--push offset
4 2DUP DO< ROT ROT DABS \ Double number to sign Idl
5 2DUP OR IF SCALE \ If not 0, scale between limits
6 ELSE 0 THEN \ Leave decimal position for 0
7 R> + 3 /MOD 3 * \ Add offset then "powers of 3"
8 DUP S>D DABS \ Exponent to sign Idl
9 <# #S SIGN \ Convert exponent and sign
10 69 HOLD \ Place "E"
11 2DROP \ Clean stack for next conversion
12 #DP SWAP - 0 DO \ DP position minus /MOD remainder
13 # LOOP \ Do right of decimal point
14 46 HOLD #S SIGN #> \ Place DP then finish number
15 R> BASE ! ; --> \ Restore base

Screen 4
0 \ OUTPUT VARIATIONS
1 FORTH DEFINITIONS
2
3 : ENG. (d ---)

4 0 (ENG TYPE ; \ Engineering notation only
5
6 : ENG+. (d off ---) \ Engineering notation with
7 (ENG TYPE ; \ exponent offset
8
9 : ENG+.R (d off r ---) \ Above with exponent offset
10 >R (ENG R> OVER - SPACES TYPE ; \ and right justified
11
12 : ENG.R (d r ---) \ Right justified engineering
13 0 SWAP ENG+.R ; \ notation
14
15 ;S

The author's experience with Forth began about ten years ago, while develop-
ing radiation-monitoring equipment based on the RCA 1802 for a national
laboratory. He decided on Forth and, after looking for a while, he finally wrote
his own version ('best way to learn Forth!"), and later wrote another for the
Motorola 6800. Through the years, he has also used NewMicros MAXForth and
Harris RTX packages in a number of applications.

Now retired, Mr. Fergus is heavily involved in a personal severe weather
(tornado) warning projectwhich monitors electrical activity from weather fronts.
Several Forth-based systems (RCA 1802, Motorola6800, NewMicros HC11 or
HC16, Harris RTX2001, and PC Uniforth) are running continously, collecting
and analyzing data.

His development platform consists of PC Uniforth configured as a host for the
other Forth packages. He says. "I like the interactive control and limited
restrictions of Forth. It allows me to build a program (language) as I see fit.
There seems to be a tendency in the current Forth literature to demand an
'easier to use language." I like the ability to build an efficient product which
might require some 'effort" on my part.

Forth Dimensions 17 September 1994 October

Interactive Remote
Target Compilation
and the PIC1 6CXX

Alan M. Robertson
Poole, Dorset, United Kingdom

It may seem, at first sight, an odd choice of processor
to run Forth but, as we should all know by now, Forth is
applicable to nearly everything-this being especially true
of embedded systems. The apparent lack of resources of
the Microchip PIC (2K code space, eight-deep stack, and
35 bytes of RAM) need not be a hindrance; indeed, its
strength lies in its RISC architecture. In common with other
machines, the PIC executes one instruction per machine
cycle, the only exception being skip instructions that take
two. The other main advantage of the P I C ~ ~ C X X family is
an 18-pin standalone device. The ~1C16C84 has another
benefit in that the code is E2PROM, so we don't even have
to remove to erase.

For Forth to operate with these limited resources, it is
necessary to use subroutine threading and to generate
native code. The overhead in the PIC for a CALL-RETURN
is only one word and one machine cycle for each. This,
together with in-line code and optimisation, can produce
a very compact result.

The Compiler
The host is a PC running a minimal version of F-PC.'

Onto this is loaded a metacompiler, called IRTC67 8, that
performs the native-code generation for the PIC. This
compiler runs in two modes, HOST and REMOTE. The
HOST mode is really F-PC Forth and performs much as you
would expect. This is used to compile code without
programming the PIC, for simulating and for generating
new compiler directives or additions to the compiler. The
REMOTE mode makes the PC and target transparent,
allowing the PIC to be programmed with compiled code,
and for interactive development using the target PIC via
the Target Link Monitor (TLM). The programming and the
interactive communication with the TLM are both done
serially through the ICEPIC hardware. An 8/16-bit switch
controls the compiler output. In the eight-bit mode,
indicated by the ASCII I character, the data stack is eight
bits wide and code is placed in-line and optimised where
applicable. In the 16-bit mode, invoked by ASCII I 1 , the
stack is 16 bits wide and routines are compiled that may
be CALL^^ later.

September 1994 October

The Ubrary
With the relatively small code space of the P IC~~CXX,

it is not possible to compile a Forth kernel with all the
standard Forth words, and then get in an application.
However, most applications do not require all the stan-
dard definitions, so if we could only load those necessary,
the application space would be much larger. This is the
function of the library. The relevant Forth definitions are
compiled into the LIBRARY vocabulary and executed by
the compiler as they are found in the input stream. The
definitions in the library are special, but the words L : and
L; allow you to create your own functions to extend the
library.

Library words are required to perform two differing
functions, depending on their use. If a word is encoun-
tered when compiling a colon definition in the target, it is
made into what is called a FORWARD reference if it has not
been previously compiled. When the compiler reaches the
end of the current definition, it tests the TARGET vocabu-
lary for any such references. These are then looked up in
the LIBRARY vocabulary to see if they exist. If so, the
library definition is executed. This will generate the target
code necessary and resolve the references. If, however,
the library definition contains other library words, their
execution must create a FORWARD reference, for now, that
will be resolved later. This entire process continues until
no more unresolved references exist in the TARGET
vocabulary that have equivalents in the library. As library
words may themselves contain other library words, it is
necessary that no forward references exist in the library
itself. The compiler will give an exception to any word it
finds that has not been previously defined.

You may add to the library both assembler and Forth
definitions. These are defined as follows:

High level:
L : <name> w o r d 1 w o r d 2 w o r d 3 EXIT L;

Code:
L : <name> M [MOVLW $55

DECF FSR
MOVWF I N D O
RETURN] M L;

18 Forth Dimensions

The interpreter will look for the C+ routine. This may not
be compiled as a standalone routine, as its use to date may
have produced only in-line code. This may be remedied
by using REQUIRED C+, which will force the compilation
of a C+ routine and header in the target.

W o r d l , w o r d 2 , and w o r d 3 mustexist in the library prior
to compiling this new high-level definition. M [and 1 M
must start and end any code fragments. It is possible to
combine both high level and code, but it is necessary to
follow the Forth stack rules if undue results are to be
avoided. This is possible because we are compiling CALLS
to words and then placing the code in-line with them.

Optidsation
As the compiler generates native or machine code, it is

possible to further reduce the code size. The PIC has literal
equivalents of AND, OR, XOR, ADD, and SUB. If the
compiler has just compiled a literal and then is asked to
compile an AND, the literal may be replaced by an ANDLW.
This is true for eight-bit operation only, but can lead to
excellent code generation. Some other areas may also be
improved, e.g.,

I : ? s w i t c h (S - b) PORTA fC@ 7 AND 1+ ;

PORTA and the 1 represent literals, fixed values. f C @ , AND,
and 1+ are TRANSITION Forth words. In the eight-bit
mode, the compiler generates the following code:

MOVF PORTA, W
AND LW 0 7
DECF F S R
MOVWF (F S R)

I N C F (F S R)
RETURN

This represents the least amount of code necessary to do
the job, full optimisation.

The optimising words are compiled in the TRANS I -
T I O N vocabulary. Their names are those of Forth: AND,

OR, +, -, etc. Their function is dictated by the 8/16-bit
switch, and the name added to the TARGET vocabulary
will be prefixed by a C or w, depending on the switch.
Thus, an eight-bit + may compile in-line code or a C+
routine, whereas a 16-bit + will compile a W+ routine. To
improve transparency, a REMOTE vocabulary is placed in
the search order whenwe are in the remote mode. This has
the generic Forth words, but allows the appropriate target
word to be run interactively, depending on the switch. So,
if in remote, we type:

1 1 2 + . c r

Simulation
Often it is necessary to write assembler definitions,

even when using a high-level language like Forth. Testing
these with the interactive nature of IRTC is generally

possible but, in the case of interrupts, this is much more
difficult. To assist assembler and Forth programmers,
I R T C 6 7 8 provides a code simulator for the PIC16CXX.

This allows any code fragment to be stepped through,
run for n cycles, or run to a breakpoint. The code space
may be dumped; the file memory changed; and Forth
definitions, interrupts, and PIC registers called by name.

The simulator may be entered with a Forth word and
stack values; e.g.,

1 2 s IM C+ cr

This invokes the simulator with the 1 and 2 placed on the
stack in the file memory, and executes the code for an
eight-bit +. Pressing the space bar steps the simulator,
showing the following:

$ 0 1 8 8 [C +]
$ 0 8 0 0 MOVF IND0,W
[WREG=$02 f 2 D = $ 0 2 S P = l]

$ 0 1 8 9 $ 0 ~ 8 4 I N C F FSR, f
[WREG=$02 f 0 4 = $ 2 E S P = 1]

$ 0 1 8 A $ 0 7 8 0 ADDWF INDO,£
[WREG=$02 f 2 E = $ 0 3 S P = 1]

$ 1 0 8 B $ 0 0 0 2 RETURN

[WREG=$02 S P = o]

The WREG is popped with the top stack item, 2, and then
the stack pointer, FSR, is incremented to point at the next
item, 1. The two are added directly to the stack via INDO.

This tool gives greater confidence of proper code
execution prior to interactive testing. The only areas not
checked are the operation of on-board hardware like
timers. However, the effects of these may be simulated by
appropriately setting the file memory contents.

The simulator steps through code compiled into a 64K
segment in the host memory. An Intel Hex file utility may
save the contents of this code space or load the space from
a Hex file. This allows the simulator also to be used on
imported code.

Target Link Monitor
The TLM is the communication program that resides in

the target PIC to enable execution of compiled code, and
inspection and modification of PIC resources. This is all
carried out by the word SERVER which is defined as
follows:

: SERVER (S -)

BEGIN >STACK >STACK EXECUTE
AGAIN ;

We must thank the University of Rostock,3 in what was
East Germany, for this deceptively simple idea. The words
>STACK wait for the host to send two bytes of data, LSB
first, to the target stack. This 16-bit value must be a valid
CFA (code field address) of an existing target definition.
The word EXECUTE performs a computed GOT0 to this

Forth Dimensions 19 September 1994 October

address.
The basic TLM words are:

STACK> >STACK

f C @ S P @
EXECUTE FREEZE

P I C . RESET

With only these, it is possible for SERVER to interrogate
the PIC internals. For example, if we wish to look at the
current value of the status register, we need to perform an
f C@ on file address 03 and send the result to the host for
display. This is what happens if we type:

STATUS f C @ H . cr

Host sends CFA of >STACK, EXECUTE runs it.
Host sends 03 (STATUS adds) which >STACK puts on

target stack.
Host sends CFA of f C @ , EXECUTE runs it, and f C@ fetches

value to stack.
Host sends CFA of STACK>, EXECUTE runs it and sends

the top-of-stack to host.
Host displays the eight-bit value in Hex.

With the addition of f C ! , by using REQUIRED f C ! , the
host may modify PIC resources. This allows you to write
host programs that require no further target code, but that
will exercise hardware external to the PIC. This is very
useful in development and production, to do initial circuit
testing. The only limitation is the use of the CLK and SDA
pins, PortB bits 6 and seven.

Smart-ICEPIC
The Smart-ICEPIC module allows the compiler to

program the PIC16C71/84 directly and, via a cable, the
PIC16C64 or larger external devices. The ICEPIC has all the

necessary logic to provide the +12V for programming and
the signals for serial communication on RB6&7. These
programming pins are switched by relays to the target
hardware, allowing all the PIC port pins to be used during
debugging and testing. Also, to facilitate prototyping, an
on-board oscillator with nine frequencies from 19.66 MHz
to 74.6 KHz is provided.

Conclusions
Yet again, Forth comes to the aid of the developer

wishing to make use of minimum resources. Its interactivity
gives us a quick and reliable method of solving our
application problems. Why should anyone wish to use
that What's-C-called language? It beats me.

References
1. F-PC v. 3.5, fat Forth for the PC by Tom Zimmer.
2. Interactive Remote Compilation for Development and

Machine Integration. Alan M. Robertson, EuroFORML
'89.

3. A Distributed Forth Environment. Dr. Egmont Woitzel,
EuroFORML '90.

4. The inter-Application Execution of Forth Words for
Seamless Cooperative Systems. Roy Goddard ,
EuroFORML '90.

5. A 448ByteForthMuItitasking Kernel. Alan M. Robertson,
EuroFORML '92.

Copyright O 1994 by RAM Technology Systems, Ltd.

Alan M. Robertson has an honorary degree in electronics from the University
of Salford in the United Kingdom. He worked for many years on the design of
hardware-based controllers for machine tools, coming to Forth in the late 70's
when he started using micros. He has been using Forth ever since. He works
as aconsultant for industrial embedded control applications for RAM Technol-
ogy Systems, Ltd., which he founded in 1983.

September 1994 October 20 Forth Dimensions

Switch in Forth

Walter J. Rottenkolber
Mariposa, California

Most Forthwrights are familiar with CASE to replace
multiple branching statements. Its C equivalent, Switch, is
less commonly seen. So, for frustrated C mavens, the
incurably curious, and the enlightened who are convert-
ing C to Forth, I present Switch in Forth.

An example of the switch statement:

s w i t c h (e x p) {

c a s e 1: one;
d e f a u l t : t h r e e ;
c a s e 2 : two;

b r e a k ;
c a s e 3 : t h r e e ;
c a s e 4 : f o u r ;
1

"Exp" can be any expression that produces a value to
be matched with the values after "case." If the two values
are equal, a match occurs. Then all the statements after the
colons are run until either a "break" or the end of switch

is reached, including the one after "default." If no match
is made, control jumps to "default" as though the match
had been made there.

In this example, if n=l , then statements "one," "three,"
and "two" would run, with "break" stopping further
progress. If n=3, then "three" and "four" would run. N=6
would run the "default" code "three" and "two."

To avoid conflicts with pre-existing words in my Forth,
I've modified the C syntax to protect the innocent. In the
Forth Switch, the example would appear as:

s w i t c h : (n)

c a s e 1 1 =: : one ; ;
d e f a u l t : t h r e e ;;
c a s e f 2 =:: two b r e a k ;
c a s e f 3 =:: t h r e e ;;
c a s e f 4 =:: f o u r ;;
e n d s w i t c h < d e f a u l t ;

The value "n" is on the stack. Break; substitutes for
; ; where it occurs. Do not place it as a separate statement

syntax of the C language. Study the listing for more examples.
The switch code uses the Forth branching words. A

Switch perfectly matches
the arcane and inscrutable

Figure One. 1
(n) JMPWORD [DEFLG] DEFLG ON TRUE I F

DUP n1 = IF-DROP-DEFLG-OFF-THEN <code> E L S E

ELSE BEGIN <code> ELSE
DUP n1 = IF-DROP-DEFLG-OFF-THEN <code> E X I T ELSE
DUP n1 = IF-DROP-DEFLG-OFF-THEN <code> ELSE
DUP n r = IF-DROP-DEFLG-OFF-THEN <code> ELSE
DROP THEN DEFTOG U N T I L ;

as you would in C. Endswitch must always end the
switch statement, but (d e f a u l t is present (after
endswi tch) only when a d e f a u l t : statement is used.

Forth Dimensions

flag, DEFLG, marks if a match has occurred. 1t's a reverse
flag, in that a match = false. Originally, DEFLG was in a
variable, but I decided that this could be a source of
conflict in multitasking systems, as it would not be re-
entrant. So I moved it inline within SWITCH: just after
JMPWORD. The variable is now used only while compiling

the switch statement to hold DEFLG's

address.
In the example, the branching goes as

shown in Figure One. It uses the fact that
the code between I F and THEN can leave
a flag to be used by a subsequent I F .
Because of the 2 SWAP in (: :) , ?>RE-

SOLVE (the code for THEN) refers to the
previous branch, the I F in s w i t c h : or
the E L S E's, not the immediate I F for the
match comparison. As a result, a no-

2 1 September 1994 October

To avoid conflicts with
pre-existing words in my Forth,
I've modified the C syntax to
protect the innocent.

match condition jumps to the next comparison, whereas
once the <code> runs, the jump is to the next <code>.

D e f a u l t is a B E G I N U N T I L loop that uses DEFLG.
DEFLG is originally set to true. If a match occurs, DEFLG
is set false so that when it is toggled in DEFTOG it becomes
true and d e f a u l t is by-passed. If no match occurs, then
DEFLG toggles false, and the back branch occurs. The next
time through DEFTOG, DEFLG is toggled true and s w i t c h

is exited.
Note that B r e a k ; exits the s w i t c h word, so be

careful of adding further code between E n d s w i t c h or
< D e f a u l t and ; , or you may be surprised.

Forth always does more, so I've added the words < : : ,
> : : , and range : : . These allow tests for "n" values less-
than, greater-than, and range-between the selector values
after c a s e f .

S w i t c h perfectly matches the arcane and inscrutable
syntax of the C language. Its complexity encourages
programming tricks not allowed by the plain logic of
CASE. S w i t c h in Forth follows the logic of the original,
permitting nearly direct translation of code from C, includ-
ing the tricks.

Walter J . Rottenkolber bought his first computer in 1983. Early on, he experi-
mented with fig-Forth and other languages, butgravitated toassembler until re-
introduced to Forth in 1988. He notes that Forth provides the same close-to-the-
silicon feeling as assembler, but without the pain. Interests include small
embedded systems, programming, and computer history, about which he
enjoys writing.

........................ The Computer Journal 14

........ Forth Interest Group centerfold, 40

........... Laboratory Microsystems, Inc. 14

Miller Microcomputer
Services ... 20

I Silicon Composers 2 I
September 1994 October

1
0 \ Snitch in Forth
1 VRRIRWE MSG
2 : JMPWORD R) 2+)R ;
3 :)MFLG HERE DEFLS ! h , ; IHMEDIRTE
4 : DEFM\1 DEFLS i? [SlMPILE3 LITERR CDMPILE 9N ; IMMEDIFITE
5 : MFEF DEFtG F [COMPILE1 LITERQL CO#PILE DFF ; !#EDIRTE
6 : SWITCH: t r,) COMPILE Ji?PWDRD [CMPILE!)DEFLG
7 IWK1lLE! MFDN CD1'1PI'iE TWE ',C9KP!?El IF ; IREDIRTE
8 : CRSE1 (rt - n n) CWILE DUP ; IM#ED:RTE
9 : f::) (n - In) XC!tQILE3 IF 2SWP W@ILE DROP

18 ICDHPItE! WDFF ?)RESlrlVE ; IMEDIRTE
11 : =:: (n n r? - In) CDMPILE = [CONPILE: (::) ; IMKDIRTE
12 : (:: (n r~ n* - In) CMPILE (ISlRPILEI (::I ; IMMEDIATE
13 :) : : (n n n* - !rO CCMFtILi) tCOMPlLi1 I : : ; ItrlEEDIRTE
14 \S
15

2
@ \ Switch in Fcgrth
1 : RME:: (ri n n' r~' - Ini
2 COMPILE EE?#EEN TCOt?F'!LEl (: : ; I%KED!RTE
3 : ; [CCHPILE! ELSE ; IMEDIRTE
4 : BRERK; CDZPILE EX';? X3MPItEI ELSE ; IMEDIRTE
5 : XFRULT: :CDP!PlLEl ELSE ? (?IFIRK 2SWFiF' ; i8MEDiRTE
6 : JEFTDG (a - f! DUP La @= TCK SWRP ! ;
7 : (MFRLILT DEFLG id [COMi'ilEl LITERRL CDP!P!LE EFT%
8 [MNPILE: UNTIL ; IWEDIRTE
9 : ENDSWiTM (n) CCMF'ILE D9OP ?)RESU?tlE ; IF'kE9iRlE

re \s
11
12
13
14
15

: t i c r ." 7515 is " ;
: ore ti$. " one." ;
: two t i 9 ." twc~." ;
: thwe t i 9 ." three." ;
: faur ti$." four." ;

4
\ Switch in Forth
: 51

switch:
case1 3 =:: t hwe ;;
case1 4) :: four break;
case1 1 =: : one ;;
case' 2 =: : two ; ;
endswitch ;

: 52
switch:
case1 5 !$ RRNGE: : three ; ;
case1 4 =:: faur ;;
default: cine ;;
casei 2 (:: two ;;
enGswitchidefault ;

2 Forth Dimensions

The Essence of Forth...
... is the Relationship Between Programmer and Source

Randy Leberknight and Dennis Ruffer
FORTH, Inc., Manhattan Beach, California

It has long been observed that Forth has an almost
magical effect on the productivity of a programmer. Chuck
Moore's original aim in developing Forth was to increase
his productivity, and he has estimated the increase was
more than ten-fold. Many of us have real-life experiences
with projects estimated at en> months in C (or whatever)
that were completed in <n> weeks or less using Forth.
Thoughtful observers of this phenomenon agree that the
magic lies in the intimate relationship between the pro-
grammer and the program under development.

Recently, we at FORTH, Inc. have been studying
platforms and programming environments in order to
determine how our systems of the future should look and
act. We've been using various programming tools, includ-
ing Forths on other platforms such as Windows and UNM.
The major deficiency we have found with other ap-
proaches is that they seem procedurally to separate the
programmer from the source more than is comfortable.

For us as programmers, everything we do has some
connection with source code. Whether editing, compiling,

intimacy with the source code
is being lost and, with it,
much of the ccmagic.~y

or debugging, we are performing these functions on
source code. While editing, we make the source code look
right; while compiling, we make it fit together in an
executable fashion; while debugging, we make it work as
intended. All this time, it is only the source code and how
it expresses the application that really matters.

The traditional (i.e., 'MY) Forth interface is an interac-
tive, line-oriented command interface. From the original
dozen or so editing commands that the very early (and
very resource-constrained) Forths supported, we have
expanded our set of editing commands in our "traditional"
editor to over 70 (most of which are single-keystroke or
function key commands), plus rich command sets for
managing source and related resources. In addition, we
offer two "full-screenn editors (one incorporated in our
GUI toolkit) and an optional text-file-management facility.

However, most of us find the extended command-line
interface to yield the most intimate-and most produc-
tive-relationship with the source.

Recently, we had some experience with a large Forth
application in a UNIX environment. We have had little
exposure to this world, and were more than a little curious
about what is often promoted as the ultimate program-
ming environment for the black-belt programmers with
turbo-props on their beanies. The users had networked
workstations, their favorite editors, source-management
utilities, grep, make files, etc.. . This system is very large,
and there are literally thousands of source files and
hundreds of directories. Due to issues such as version
management and the size of the application, we could see
they really needed all those directories and files, and the
UNIX network seemed to be a good place to keep them.

But in exploring this complex system with their ex-
perts, we were appalled at just how difficult it was to
perform simple actions that we had come to take for
granted. For example, to find the source for a particular
word was a nightmare. We had multiple editor sessions
going, including one with a cross-reference list showing
the path and file name of the source file for each word. To
find our word, we had to:

1. Leave the current window and switch to the file with
the cross-reference list.

2. Search the cross-reference file for an occurrence of the
target text string (sometimes skipping matching strings
which were substrings of larger words).

3. Note the file name containing the source for the word
in question (including a path which could be four or
five levels deep, requiring accurate typing in subse-
quent steps).

4. Begin an editing session on that file.
5. Do another text search on this file to find the actual

definition of the word.
6. Try to remember why we wanted to find it in the first

place.

Back home, we would simply have typed:
LOCATE <wordname>

Forth Dimensions 23 September 1994 October

"Help screenn for polyFORTH GUI screen editor. In addition to these commands, ~ g u p and P g D n move
forward and back one block, respectively, and buttons are available for common functions.

C u r s o r k e y s : S p e c i a l K e y s :
.... A r r o w k e y s m o v e c u r s o r C t l - F Search f o r t e x t

C t l - R i g h t A r r o w . R i g h t o n e w o r d C t l - R R e p l a c e f o u n d t e x t
.... C t l - L e f t A r r o w .. L e f t o n e w o r d C t l - 0 E d i t l a s t selected b l o c k

Home S t a r t of l i n e I n s e r t T o g g l e s I n s e r t m o d e
E n d E n d of l i n e
C t l - H o m e T o p of s c r e e n I n Wrap mode :

... C t l - E n d E n d of s c r e e n C t l - E n t e r J u s t i f i e s t o n e x t l i n e
C t l - P g U p Go t o s t a r t of f i l e C t l - D e l D e l e t e s spaces
C t l - P g D n Go t o e n d of f i l e I n C l i p mode :

... C t l - E n t e r I n s e r t s n e w l i n e
C t l - D e l D e l e t e s l i n e i f b l a n k

W o r k i n g w i t h S e l e c t e d t e x t :
H o l d i n g down t h e s h i f t k e y w h i l e m o v i n g t h e c u r s o r selects t e x t .

D e l D e l e t e s selected t e x t
C t l - C ... C o p i e s selected t e x t t o cl ipboard
C t l - V ... I n s e r t s t e x t f r o m cl ipboard
C t l - X ... C o p i e s selected t e x t t o cl ipboard t h e n deletes it
I n s e r t i o n s replace selected t e x t . D o u b l e c l i c k i n g selects a w o r d .

O t h e r E d i t i n g K e y s :
F 1 T o g g l e s c r e e n edi tor F 6 L o c a t e c o m p i l e d w o r d
F 2 T o g g l e C l i p / W r a p F 7 E d i t s h a d o w b l o c k

........ F 3 S a v e t o d i s k F 8 R e v e r t b l o c k t o l a s t s a v e d
F 4 C r o s s - r e f e r e n c e w o r d F9 A c k n o w l e d g e a l a r m s
F 5 R e c o m p i l e a p p l i c a t i o n F 1 0 D i s p l a y t h i s he lp s c r e e n

to get the source displayed immediately.
We have also experimented with a Windows Forth that

provides an interactive window attached to your applica-
tion, with some debugging tools. But there is no editing
capability in that window, and no access to source. Editing
is done in a completely separate window, either with an
editor provided with the system or your favorite commer-
cial editor. As in the UNIX case, the lack of a direct
connection leads to clumsy procedures that break your
concentration just when it's most important.

There's a lot more to using polyFORTH than just being
able to type DUP DROP and LOAD. There is being able to
type L after an error occurs and seeing the offending
source, with the problematic text highlighted. There is
being able to fix the problem right there and continue
compiling immediately. There is using LOCATE to let us
see a word we don't remember, and:
WH < w o r d n a m e >

to get a cross-reference of WHere it's used. Having
 LOCATE^ a word, Q shows us its documentation, and 0
returns to the point in the source we were before the
LOCATE. (the Other block). There is the string editor that
lets us type things like:

F DUPA R DROPA MANY

the effect of which is to find the string DUP, replace it with
DROP, and repeatedly interpret this command line until no
more occurrences are found. Then there are the tools that
make the management of a modular, hierarchical source
organization almost effortless: Qx, which displays a "quick
indexn of the first (comment) lines of each of a set of 60
blocks; its siblings Nx, LX, and Bx that let you move
around in this "index space"; and a similar set of file-
management words. The figures show "help screens" for
the GUI screen editor and enhanced character editor.

In our polyFORTH environment, blocks and groups of
blocks provide what seems to us a more convenient and
manageable level of modularity than the files, and mul-
tiple host OS files occupy the role of directories in the
UNIX or Windows environments. We may still have
thousands of blocks and hundreds of files open concur-
rently for a complex application, but functions like
LOCATE and WH work instantaneously, making the entire
environment instantly within reach.

Although these tools are optimized for a block-oriented
source system, which we find to be most convenient to
use, we have versions of most of them that connect to our

September 1994 October 24 Forth Dimensions

"Help screenn for polyFORTH string editor. In addition to these commands, ~ g u p and PgDn move forward
and back one block, respectively, and function-key equivalents are available for common functions.

See t h e polyFORTH Reference Manual f o r more on S t r i n g E d i t o r commands.

L i s t next block F
L i s t previous block E
L i s t shadow block I
L i s t o t h e r block K
Move t o l i n e number M
Put s t r i n g a t c u r r e n t l i n e L
Put s t r i n g under c u r r e n t l i n e A
Dele te c u r r e n t l i n e J
Dele te s p e c i f i e d t e x t S

Arrows
RETAIN
TILL
UNDO
FLUSH
LX

QX
NX, BX
CLIP
WRAP
COPY
LIST

Move c u r s o r
Copy l i n e t o i n s e r t b u f f e r
Dele te till s p e c i f i e d t e x t
Revert block t o l a s t saved
Save b locks t o d i s k
Show c u r r e n t 60-blk index
Show s p e c i f i e d index
Show Next, prev. indexes
Change t o c l i p mode
Change t o wrap mode
Copy block
E d i t s p e c i f i e d block

Find s p e c i f i e d t e x t , keeping it i n Find b u f f e r
Dele te t h e l a s t found t e x t
I n s e r t s t r i n g , keeping it i n I n s e r t b u f f e r
Swap f i n d and i n s e r t b u f f e r s
Move l i n e s from ano the r block
R e l i s t t h e c u r r e n t block
Adjust t e x t (d e l e t e t o 1st non-blank)
J u s t i f y t e x t (next non-blank s t a r t s new l i n e)
Search blocks f o r a s t r i n g

PART
LOAD
FINISH
WH
TABS
CUT
PASTE
. S
YANK
I N
BEYOND
LOCATE

Change t o ano the r f i l e p a r t
Load t h e block number
Load t h e r e s t of t h e block
Cross-reference a word
Display t a b s
Cut l i n e s
P a s t e l i n e s
Display s t a c k
Copy l i n e s
Block number of s p e c i f i e d f i l e
Last block number i n source code
Locate a word

MULTIPLE R e i n t e r p r e t t h e c u r r e n t command l i n e with query
MANY R e i n t e r p r e t t h e c u r r e n t command l i n e

optional text-file interpreter as well. The issue isn't "blocks
vs. files," it's the programmer's relationship to the source.

In the absence of easy access to source, most systems
rely on decompilers and disassemblers. We have a
decompiler and disassembler, but generally would much
prefer to work with source. When you go to the source,
you see a lot more than the definition of the word. You see
its stack comment, the context of related words in which
it was defined, any special compiling techniques used in
its construction, and with a single keystroke (Q) can access
its documentation. Any of this may be crucial information.
Most importantly, if you now wish to make a change,
you're there, all ready to go, with no further procedure
required. A decompiler shows you different kinds of
information: the effects of vectoring, compile-time ac-
tions, pointers to run-time code, re-vectoring, etc. The
decompiler shows you what happened in the compiling
process; the source shows how it happened, and provides
the mechanism for changing it. Both can be important; the
latter is the mainstream of programming life.

Forth has traditionally been thought of as an integrated
editor, compiler, and linker, but as we think about how we
actually use it, we see that the editor is really where we
spend our lives, and everything else can be seen as merely

extensions of the editing environment. The editor needs
to be intimately connected to the running application, so
we can find definitions easily (e.g., LOCATE), and able to
index words as it encounters them (for wH). It needs a
command-type interface, so we can flexibly combine
repetitive commands into application-specific extensions.
And it needs a way for the system to interact with us so we
can tell it to execute a word and it can tell us what it did.
All told, this begins to look a lot closer to a special kind
of wordprocesso~f

As we work toward the "dream system" of the W's, we
are working with push-buttons, pull-down menus, icons,
and other modern devices. But as systems increasingly
compartmentalize these functions, we find that the level of
intimacy with the source code that we are accustomed to
is being lost, and with it much of the "magic." Using our
current tools, we can move anywhere our thoughts take
us so fast we never break our train of thought. Zoom out
for a broad look, dive into a word, take a side trip, and
jump back without thinking about it at all, never more than
one command away from an interactive interpreter. That's
the magic. The challenge is to use modern tools to
enhance it.

Forth Dimensions 25 September 1994 October

Simple Mouse and
Button Wods
for DOS-Based Systems

Richard C. Wagner
Revere, Pennsylvania

One of the utilities missing from most MS-DOS Forth
systems is the now-ubiquitous, point-and-click graphical
user interface. This type of environment, which at first may
seem like a complex software system, isn't, and can be
supplied with a few simple Forth words, comprising only
ten blocks of code.

Introduction
One of the greatest detriments Forth programmers

using DOS-based systems see in their language is the
"primitiven command-line interface. Exposure to commer-
cial applications with point-and-click graphical user inter-
faces (GUI's) has led programmers to question the power
and acceptability of their own applications, and wish they
had a Mac- or Windows-based system providing all of the
words needed to develop a custom GUI. It seems as
though many Forth programmers, out of their desire to
have these tools, and not realizing how simple this type of
system can be, have resorted to using other languages
such as C or (gasp) C++. Let us not forget that, even though

Graphical user interfaces have
led programmers to question
the power and acceptability of

Forths, providing the graphics words are replaced with
those of the other system, and the CODE words be
rewritten to work in the other system (there are only eight
CODE words, so don't sweat it.)

Mouse Words
Communicating with the MS-DOS mouse drivers is

straightforward, using CODE words to call various func-
tions attached to interrupt 33H. The first order of business
is initializing the mouse. IMOUSE (on block 101) returns
both a true or false flag, depending on the presence or
absence of the MS-DOS mouse drivers, and the number of
buttons on the mouse. In addition, the mouse position is
reset to the middle of the screen, the cursor is turned off,
and the default cursor shape (the arrow) is selected (more
on this later). Displaying the cursor is done using .MOUSE.
This causes the drivers to display the cursor at the current
mouse location continuously until -MOUSE is executed.
MOUSE? returns the current mouse location, and a number
from zero to seven representing the mouse buttons as
three bits, least significant to the right. So if this word is
executed while the left button is pressed, a four will be
returned. MOUSEAT ("mouse at") accepts an X and Y
screen location, and sets the mouse there. MOUSE? and
MOUSEAT both operate whether or not the cursor is

their own application^..^ displayed.
The last two major mouse words are ?PRESS and

September 1994 October 26 Forth Dimensions

the libraries of GUI routines for these languages may
appear to be magically available, the guys at Borland and
Microsoft had to write the routines using either the high-
level language or some form of assembler. Therefore, the
concepts and architecture of the system must be straight-
forward-doable. Like my old Forth mentor and program-
ming partner used to say, "Somebody's already done it,
how hard could it be?" And since we're using Forth, we'll
probably find it easier than they did.

The GUI development system presented here provides
two major sets of words: one set to communicate with the
MS-DOS mouse drivers; and another set to display the
buttons, detect a button "press," and execute the code
associated with a button. This system was written for
polyFORTH, using F-83. However, it should work on other

?RELEASE on block 102. These both accept a button
number (zero for left; two for center; one for right) and
return the number of times that button was pressed or
released since the last time this word was executed. They
also return the location of the latest press or release. These
words are very important, for they allow you to determine
where the last click was without having to poll the mouse
to capture it. Thus, if a button is clicked while your
software is off doing something, the event will still be
detectable when execution returns to the GUI. The Microsoft
Flight Simulator, just for example, ignores this technique,
polling the mouse for input. Consequently, a user some-
times must click on a button numerous times before his
click and the software's polling cycle coincide, and the
system finally responds. See, there's no magic in software

Table One. polyFORTH register assignments.

Intel Name polvFORTH Name polvFORTH Use

AX 0 Scratch
CX 1 Scratch (counter)
DX 2 Scratch
BX U Base address for user variables
SP S Parameter stack pointer
BP R Return stack pointer
SI I Interpreter pointer
D I W CFA pointer, need not be preserved

Figure One. The cursor-definition array. 1

register assignments in Table
One will help to reverse-engi-
neer my code.

The last (and optional) mouse
words are used to change the
shape of the graphics cursor. In
most systems employing a GUI,
access to the computer is limited
strictly to the mouse. After click-
ing on a button requiring a lot of
processing, the user will find the
machine unresponsive until it
returns to the GUI. It would be
nice to let the user know that the

l!!i!il: 16 pixels

land, and those Microsoft guys aren't smarter than us after
all. Worse, they released this system fully aware of the
deficient performance.

All of these words work either in text or graphics mode.
So for those who don't have a Forth system with graphics
words, they can use these words to build a text-based
point-and-click interface. Our "UI," however, contains a
"G" and, therefore, we'll assume from now on that we're
in graphics mode. Should you need to rewrite the CODE
words for another system, Reference One provides an
adequate description of the interrupt calls. The polyFORTH

4 w
16 pixels

machine is busy, using a clock (A la Macintosh) or an
hourglass (5 la Windows) or (how about this) an "ok" (5
la Forth). The DOS mouse drivers provide for this by using
a software-defined shape for displaying the cursor.

When the mouse drivers are loaded into the computer,
a 32-cell (64-byte) array is established somewhere in
memory (you don't have to know where). The data in the
array defines the shape of the default arrow cursor
displayed by .MOUSE. Those kindly Microsoft guys left us
with the option of redirecting the mouse drivers to use an
alternate cursor-defining array. Changing the shape of the
cursor is merely a matter of setting up a new array and

32 Cel 1 Bit-Array

screen mask: cells 0 through 15 -.
- cursor mask: cells 16 throuah 31 -

I I I I I

I I

Forth Dimensions 27 September 1994 October

telling the DOS drivers where it is.
As illustrated in Figure One, the graphics cursor is a

floating region of display, 16 pixels high by 16 pixels wide.
Each bit in the cursor-definition array represents one pixel
of the cursor, starting at the upper left. Thus, the zeroth cell
of the array represents the top row of the cursor, the
number one cell represents the second row, and so on.
The attentive reader will note that there are twice as many
cells as there are rows. The cursor definition array is
actually split into two 16-cell "masks." Cells zero through
15 represent the "screen mask." This mask determines
where the cursor will appear transparent or opaque. For
transparent cursor pixels, the corresponding bits of the
screen mask must be set to "one." The bits corresponding
to the opaque cursor pixels must be set to "zero." Cells 16
through 31 of the array contain the "cursor mask." This
determines the color of the cursor's opaque pixels. A
"zero" bit in this mask, provided it falls in an opaque
section of the cursor, yields a black pixel; a "one" bit
produces a white pixel. In the transparent portions of the
cursor, it doesn't matter how the cursor mask bits are set.

SET-SHAPE, on block 104, redirects the DOS mouse
drivers to use a new cursor array. It accepts the array's
address and the location, within the 16-by-16 pixel cursor
field, of the hot spot. This is the actual pixel representing
the cursor's position on the graphics screen. For the
default arrow cursor, it is set to 0,O (upper left). Block 103
contains the words which load the masks into the array.
MASK-DEST is a variable used to temporarily hold the
array address and keep it off of the stack. ! Row accepts 16
zeroes or ones (along with the cursor row number they
represent, and the address of the array) off the stack and
packs them into a single 16-bit value. It then stores the
value into the correct cell of the array. ! SCREEN-MASK
and ! CURSOR-MASK execute this word 16 times to fully

load each mask into the array. They each accept 256
zeroes or ones off the stack, with the address of the array
on top. If your system doesn't have this much stack space,
you'll have to rewrite these words to use, perhaps, a
temporary array.

The final step in creating a new cursor is shown in
block 105. CLOCK-MASKS is the array which will hold the
masks. On line four, the screen mask is loaded onto the
stack from block 106 (you can see the outline of the clock
in the one/zero pattern). The address of the array is then
put on top, and the screen mask is stored. On line five, the
same is done for the cursor mask of block 107. CLOCK-
CURSOR, when executed, redirects the mouse drivers to
use the new clock array, with the hot spot in the center
(pixel 8,8).

Returning to the arrow cursor is done by initializing the
mouse with IMOUSE. This, however, turns off and centers
the cursor. To make the switch back to the arrow seamless,
ARROW-CURSOR (block 104) first calls MOUSE?, stacking
the current position. It then calls IMOUSE, restores the
cursor position using MOUSEAT and the stacked coordi-
nates, and redisplays the cursor.

Button Words
The button words, like the mouse words, are simple

and straightforward. However, a solid understanding of
the philosophy and software architecture behind the code
is probably necessary for a real grasp of the system.

When I set out to develop this system, my goal was to
have a way of establishing (or instantiating, for you
computer science buffs) a button by supplying only:

a. the button's location on the screen,
b. the code to be executed by the button, and
c. the name of the button.

Figure Two. Button-software architecture.
t

. . .

September 1994 October 28 Forth Dimensions

In addition, I wanted a single word to display all of the
buttons, and another word to monitor button clicks and
execute the code associated with a button.

The architecture used to accomplish this is illustrated
in Figure Two. Each button is essentially an object. The
data structure representing a button contains all of the
information necessary to draw the button, check to see if
it is clicked, and execute the code associated with the
button. Figure Two contains data structures representing
buttons called "Printn and "Exit." The first two cells of these
structures contain the Y and X coordinates of the button's
upper-left corner. The next two cells contain the height
and width of the button. The data in these four cells is used
both to draw the button, and to determine whether the
cursor is positioned on the button. The fifth cell contains
the address to be executed should the button be clicked.
Following this is a counted string containing the name to
be printed on the button.

A button's height and width are dependent on the
name of the button. polyFORTH's EGA graphics generate
characters that are 11 pixels tall by eight pixels wide. Two
blank pixels above and below the name make a very
presentable-looking button. Thus, the height of a button
will always be 15 pixels. A three-pixel buffer in front of and
behind the name also looks good. Thus, "Printn will be (5

8) + 6 (that's 5 8 * 6 +) or 46 pixels wide. "Exitn will
be 38 pixels wide. The minimum size of a button data
structure is 12 bytes. The maximum size depends on the
length of the name.

Notice that these data structures are headless. Having
single words to both display the buttons and check for
clicks requires that these words be able to cycle through
the button data structures, doing the necessary work with
the data from one button, and then moving on to the next.
Thus, the addresses of all the structures must be stored and
managed somewhere. This is done using a higher-level
data structure named BUTTONS. The first cell of BUTTONS
contains the number of buttons in the system. Each cell
following this contains the address of one button. Thus,
the words which display and check the buttons can be
written with DO loops, working their way up this data
structure, visiting each of the buttons. Since the button
data structures are accessed in this indirect fashion, heads
are unnecessary. In fact, they don't lend anything useful
to this application.

Block 42 contains the words to set up, manage, and
access the BUTTONS data structure. On line four, BUT-
TONS is created. Note that it is MAX#-BUTTONS 2 * 2
+ long, providing for, in this case, nine button addresses
plus the button count. INIT-BUTTONS initializes BUT-
TONS by storing zeroes in each cell. ADD-BUTTON accepts
the address of a button data structure off the stack, and
stores it in the next available cell of BUTTONS, incrementing
the count. If BUTTONS is full, ADD-BUTTON says so and
does nothing.

Block 43 contains the code to create a button and its
data structure, and to access the data contained in a
button's data structure. Note the usage of BUTTON. Let's
say we wanted to make a button named "Hello" which

Forth Dimensions

printed out "Hi." First, we could write:
: TEST (- -) . " H i . " ;

Then we could create the button with:
100 200 ' TEST BUTTON Hello

The word BUTTON first puts the current dictionary
pointer location on the stack with HERE. This is the
address of our soon-to-be-created data structure. It adds
this button to BUTTONS by giving a copy of the address
to ADD-BUTTON. It then moves this button's address,
along with the executable address, to the return stack and
lays down the Y and X coordinates of the button location.
Next, the height, 15, is laid down, followed by a zero as
a space keeper for the width. Finally, the executable
address is laid down, followed by the name string. Last,
the string count is fetched back out from its location ten
bytes above the button's base address. The button's width
is then calculated and stored back over the place holder,
zero. With that, a new button data structure exists in
memory, with the latest cell of BUTTONS pointing to it.

The data access words on block 43 are used to pull the
necessary information out of a button's data structure.
>BUTTON takes a button number (0, 1, 2, . . .) and returns
the address of that button's data structure. Note that if you
provide a button number that doesn't yet exist, you'll get
a nice surprise. BUTTON-LOC accepts a button's address,
and returns the Y and X coordinates of the button.
BUTTON-SIZE returns its dimensions. DO-BUTTON ex-
ecutes the code associated with a button.

Block 44 contains all the words used to display a
button. . BUTTON-NAME accepts a button's address and
prints the button's name at the correct location on the
screen. .BODY displays a rectangle with a white border at
the button's location. . BUTTON displays a button by first
drawing the button's body, a red rectangle with white
border, and then printing the name on it in white.
. RBUTTON draws the button in reverse, a white rectangle
with red lettering. This is used later on to provide a visual
cue that a button is pressed. .BUTTONS displays all of the
active buttons. This is typically used only during the
initialization of the GUI, when the graphics screenis being
set up. Note how simple this word is.

Block 45 contains the words used to determine whether
a given set of coordinates (from the mouse) lies on a
button. XRANGE and YRANGE accept a button's address
and return the pixel values corresponding to the button's
left and right, or top and bottom edges. ON-BUTTON?
accepts the three values returned by the ?PRESS mouse
word, along with a button address. If the correct mouse
button is pressed and the cursor is on the button, this
word returns true. UP-WAIT creates a pause until the
mouse button is released, then exits. This provides a
means for executing a clicked button's code after the
mouse button is released, rather than when it is pressed.

Finally, block 46 is where it all happens. The word DO-
BUTTONS is typically used in a BEGIN ... UNTIL loop
looking something like this:

29 September 1994 October

5 1 182 153 284 255
---------.--

386 357 408 459 5 1 g

September 1994 October 30 Forth Dimensions

: MY-GUI (--)
BEGIN DO-BUTTONS ?KEY UNTIL ;

DO-BUTTONS first calls ?RELEASE for the left mouse
button, clearing this function. It then calls ?PRESS for the
left mouse button. Using the information returned by
?PRESS, a DO loop is entered calling ON-BUTTON? for
each active button in the system. If ON-BUTTON? for a
given button returns false, nothing happens. Should ON-
BUTTON? return true, this button is being clicked. Given
that, the first order of business is to show the user the
button is clicked. The cursor is turned off (this should
always be done before drawing-drawing over the cursor
yields strange results). The reversed button is then dis-
played and the cursor is turned back on. UP -WAIT is then
entered. At this point, the user sees a reversed button on
the screen and can move the mouse wherever he wants.
Nothing will happen until he releases the mouse button.
After the mouse button is released, the button is redrawn
normally and DO-BUTTON executes the button's code.
And with that, our voyage is complete.

I have used these words in a number of applications,
and have found them to be very robust and complete. An
example of one of these applications is the Fourier
analysis package illustrated in Figure Three.

Block 47 contains a simple example of the system in use.
Rather than using a keystroke to exit the GUI, a variable is
tested. This way, the button named "Exit" can modify the
variable from within DO-BUTTONS, and take us out of the
loop-just the way the big boys do it. The GUI generated
by the words on block 47 is illustrated in Figure Four.

Alterations/Alternatives
The software architecture illustrated in Figure Two is

Figure Three. The mouse-and-button words in use.

simple, straightforward, (Have I been using that phrase a
lot? Good.) and gets the job done. However, the number
of buttons is limited by the size of the BUTTONS data
structure, and should the number be less than the maxi-
mum, memoryspace is wasted (it may only be a few bytes,
but some systems can use those bytes). An expandable
system could be made by using a linked list of button data
structures, rather than maintaining an array of pointers to
them. The architecture of this type of system would look
something like Figure Five. Each button data structure
would contain an additional two-byte field for the link.
The first (bottom) button would contain a link address of
zero. The link field of the next button contains a pointer
to the link field of the bottom button. The third button's
link field points to the second button's, and so on. The
address of the topmost button's link field is kept in the
variable LAST-BUTTON.

In the system with the BUTTONS data structure, words
which must traverse the button list do so using a DO loop
and a count. In the linked list system, button traversal is
done by using an uncounted BEG IN.. .UNTIL loop, fetch-
ing the next link address by using the current one, and
testing each address until a zero link is fetched, indicating
that the bottom of the list has been reached. This obviously
changes the software a bit. Block 42 is completely dis-
carded, and the variable LAST-BUTTON is created. The
word BUTTON can be easily altered to lay down the link
to the topmost button, and store the address of the latest
button in LAST-BUTTON. Also, the data-access words on
block 43 must all have their offsets altered to work from
the link field address. The button-traversing .BUTTONS
and DO-BUTTONS words must, of course, be altered to use
a BEGIN ... UNTIL loop.

This architecture is more elegant and uses a block less

r 1 ~ ~ - ' F t signal] / ~ J S a n p l e l ~ l ~ ~ / K G T 1 I

Figure Four. The GUI generated by block 47. 1 -- - ----- - -

[Exit]

4 T E S T

Exec. Addr.
(' PRINT) 5 P R 1 N T

Height Width
YLOC XLOC (15)

Exec. Addr.
4 E X I T

Forth Dimensions 31 Se~tember 1994 October

code than the original. It will run at about the same speed
as the original system, far faster than the operator can
detect. In the end, personal preference will probably
determine which system you will use.

The word BUTTON, as it was originally written, accepts
a string for the name to be printed on a button. BUTTON
could be rewritten to instead print the name of the
executable word to which a particular button is con-
nected. I wasn't interested in this kind of functionality.
Instead, I wanted to be able to use any ASCII string for the
name of the button. In Figure Three, you can see that I
used a set of arrow buttons to move back and forth
through the input signal.

The Benediction
Remember that anything someone else can do on a

computer, you can d o too. There is no magic in this
universe, and since you're using Forth, you can probably do
about ten times what those other programmers can do-if
you address 7he Real Problem. I'll leave you with this:

Creativity is more than just being different.. .
Anybody can play weir&thatJs easy.
What's hard is to be as simple as Bach.

Making the simple complicated is commonplace.. .
Making the complicated simple-awesomely simple;

nut's creativity.
---Charles Mingus

References
1. DOSProgrammer's Reference, 3rd Ed.; Terry Dettmann,

Jim Kyle, and Marcus Johnson; 1992. Que Corporation,
11711 N. College Ave., Carmel, IN 46032.

Rich Wagner is an aerospace engineer and computer programmer living in
Revere, Pennsylvania. He began using Forth in 1989 while developing the
Sensor Driven Airborne Replanner, an RTX2000- and CMForth-based robotic
aircraft control system for the U.S. Navy's Unmanned Air Vehicles.

BLOCK 4 1
0 (GRAPHIC INTERFACE - COORDINATE TRANSFORMATIONS)
1
2 CODE XFORM (Y,X--Y',X1) 0 POP 1 POP 349 # W MOV
3 1 W SUB W PUSH 0 PUSH NEXT
4
5 : PEL (Y,X--) XFORM PEL ;
6 : RULE (Y1, X1, Y2, X2--) 2>R XFORM 2R> XFORM RULE ;
7 : PFAT (Y, X--) AT ;
8 : AT (Y,X--) XFORM AT ;
9

BLOCK 42
0 (GRAPHIC INTERFACE - BUTTONS)
1
2 9 CONSTANT MAX#-BUTTONS
3
4 CREATE BUTTONS MAX#-BUTTONS 2* 2+ ALLOT
5
6 : INIT-BUTTONS (- -) BUTTONS MAX#-BUTTONS 2+ ERASE ;
7
8 : #BUTTONS? (--N) BUTTONS @ ;
9
10 : ADD-BUTTON (a--) #BUTTONS? MAX#-BUTTONS =

11 IF ." B u t t o n s f u l l . " DROP
12 ELSE #BUTTONS? DUP 2* 2+ BUTTONS + ROT SWAP !
13 1+ BUTTONS !
14 THEN ;
15 INIT-BUTTONS

BLOCK 4 3
0 (GRAPHIC INTERFACE - BUTTON DATA STRUCTURE AND ACCESS)
1
2 : BUTTON (YLOC,XLOC,a--) HERE DUP ADD-BUTTON >R >R SWAP
3 , , 15 , 0 , R> R> SWAP , 32 STRING DUP 10 +

I I
September 7994 October 32 Forth Dimensions

6 (- - - - - - - - - - USED: YLOC XLOC ' Name BUTTON String------------
7

1

8 : >BUTTON (N--a) 2* 2 + BUTTONS + @ ;
1 9
10 : BUTTON-LOC (a--Y,X) DUP @ SWAP 2+ @ ; I 11
12 : BUTTON-SIZE (a--dY,dX) DUP 4 + @ SWAP 6 + @ ; 1 13
14 : DO-BUTTON (a--) 8 + @EXECUTE ; 1 15
BLOCK 44
0 (GRAPHIC INTERFACE - BUTTON DISPLAY)
1
2 : .BUTTON-NAME (a--) DUP BUTTON-LOC XFORM 1 3 V+ PFAT
3 10 + DUP C@ 0 DO 1+ DUP C@ PLACE LOOP DROP ;
4
5 : .BODY (a--) DUP BUTTON-LOC XFORM 2DUP PFAT ROT BUTTON-SIZE
6 2DUP RECTANGLE 2SWAP PFAT WHITE BOX ;
7
8 : .BUTTON (a--) DUP RED .BODY WHITE .BUTTON-NAME ;
9
10 : .RBUTTON (a--1 DUP WHITE .BODY RED .BUTTON-NAME ;
11
12 : .BUTTONS (- -) #BUTTONS? 0 DO I >BUTTON
13 WHITE .BUTTON LOOP ;
14

BLOCK 45
0 (GRAPHIC INTERFACE - BUTTON POLLING AND CONTROL)
1
2 : XRANGE (a--Xl,Xh) DUP BUTTON-LOC XFORM SWAP DROP
3 SWAP BUTTON-SIZE SWAP DROP OVER + ;
4
5 : YRANGE (a--Yl,Yh) DUP BUTTON-LOC XFORM DROP SWAP
6 BUTTON-SIZE DROP OVER + ;
7
8 : ON-BUTTON? (X,Y,t,a--t) >R
9 IF R@ YRANGE WITHIN SWAP R> XRANGE WITHIN AND
10 ELSE 2DROP R> DROP 0 THEN ;
11
12 : UP-WAIT (- -) BEGIN 0 ?RELEASE >R 2DROP R> UNTIL ;
13

BLOCK 46
0 (GRAPHIC INTERFACE - BUTTON POLLING AND CONTROL)
1
2 CODE 3DUP (N,N,N--Nl:N3,Nl:N3) S W MOV 4 W) PUSH 2 W) PUSH
3 W) PUSH NEXT
4
5 CODE 3DROP (N,N,N--) 6 # S ADD NEXT
6
7 : DO-BUTTONS (- -) 0 ?RELEASE 3DROP 0 ?PRESS
8 #BUTTONS? 0 DO
9 3DUP I >BUTTON DUP >R ON-BUTTON? R> SWAP
10
- .

IF DUP -MOUSE .RBUTTON .MOUSE UP-WAIT - -

DUP -MOUSE .BUTTON .MOUSE DO-BUTTON
ELSE DROP THEN

13 LOOP 3DROP ;
14
15

Forth Dimensions 33 September 1994 October

BLOCK 47
0 (BUTTONS -- GUI SETUP EXAMPLE)
I

2 VARIABLE ?EXIT
3
4 : GET-OUT (- -) -1 ?EXIT ! ;
5 : DING-DONG (- -) BELL ;
6 : TAKES-A-WHILE (- -) CLOCK-CURSOR 3000 MS ARROW-CURSOR ;
7
8 175 131 ' GET-OUT BUTTON Exit 1 9 175 300 ' DING-DONG BUTTON Bell
10 175 470 TAKES-A-WHILE BUTTON Test
11
12 : GUI-INIT (- -) GR .BUTTONS .MOUSE 0 ?EXIT ! ;
13
14 : GUI (- -) GUI-INIT BEGIN DO-BUTTONS ?EXIT @ UNTIL -MOUSE ; 1 15

I BLOCK 1 0 1
0 (MOUSE WORDS) HEX
1 CODE IMOUSE (--t,#B) 3 W MOV 0 # 0 MOV 33 INT
2 0 PUSH 3 PUSH W 3 MOV NEXT
3
4 (RETURNS t IF MOUSE IS PRESENT, AND #BUTTONS)

1 5 I
1 6 CODE .MOUSE (- -) 01 # 0 MOV 33 INT NEXT

7

1 8 CODE -MOUSE (- -) 02 # 0 MOV 33 INT NEXT
9
10 CODE MOUSE? (--XI Y, B) 3 W MOV 03 # 0 MOV 33 INT
11 1 PUSH 2 PUSH 3 PUSH W 3 MOV NEXT
12
13 CODE MOUSEAT (X,Y--) 2 POP 1 POP 04 # 0 MOV 33 INT NEXT
14
15 DECIMAL

BLOCK 1 0 2
0 (MOUSE WORDS) HEX
1
2 CODE ?PRESS (0/2/1--X,Y,#) 3 W MOV 3 POP 05 # 0 MOV 33 INT
3 1 PUSH 2 PUSH 3 PUSH W 3 MOV NEXT
4
5 CODE ?RELEASE (0/2/1--X,Y,#) 3 W MOV 3 POP 06 # 0 MOV 33 INT
6 1 PUSH 2 PUSH 3 PUSH W 3 MOV NEXT
7
8 (?PRESS & ?RELEASE RETURN # OF TIMES THE SPECIFIED BUTTON WAS)
9 (PRESSED OR RELEASED, AND THE LATEST LOCATION, SINCE LAST CALL)

11 CODE !XLIMS (H,L--) 1 POP 2 POP 07 # 0 MOV 33 INT NEXT I 12 1 13 CODE !YLIMS (H,L--) 1 POP 2 POP 08 # 0 MOV 33 INT NEXT
14

1 l5 DECIMAL

BLOCK 1 0 3
0 (MOUSE WORDS - CURSOR DEFINITION)
I

2 VARIABLE MASK-DEST
3
4 : !ROW (16 0's OR lls,ROW#,a--) >R >R 0
5 16 0 DO 2* OR LOOP R> 2 * R> + ! ;
6

1 7 : IMASKS (a--) 32 0 DO DUP 0 I 2* ROT + ! LOOP ;
8 I
9 : !SCREEN-MASK (256 0's OR lls,a--) MASK-DEST !
10 0 15 DO I MASK-DEST @ !ROW -1 +LOOP ;

September 1994 October 34 Forth Dimensions

11
12 : !CURSOR-MASK (256 0's OR 1 's ,a--) MASK-DEST !
13 16 31 DO I MASK-DEST @ !ROW -1 +LOOP ;
14
15

BLOCK 1 0 4
0 (MOUSE WORDS - CURSOR DEFINITION) HEX
1
2 CODE SET-SHAPE (HOTX,HOTY,a--) 2 POP 3 W MOV 1 POP 3 POP
3 09 # 0 MOV 33 INT W 3 MOV NEXT
4
5 DECIMAL
6
7
8
9 : ARROW-CURSOR (--) MOUSE? DROP IMOUSE 2DROP MOUSEAT .MOUSE ;
10

BLOCK 1 0 5
0 (CLOCK MOUSE CURSOR)
I

2 CREATE CLOCK-MASKS 64 ALLOT
3
4 106 LOAD CLOCK-MASKS !SCREEN-MASK
5 107 LOAD CLOCK-MASKS !CURSOR-MASK
6
7 : CLOCK-CURSOR (--) 8 8 CLOCK-MASKS SET-SHAPE :

BLOCK 1 0 6
0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1
2 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1
4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
14 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1
15 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

BLOCK 1 0 7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
2 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
3 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
4 0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 0
5 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0
6 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0
7 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1
9 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1
10 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1
11 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0
12 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0
13 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0
14 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I I
Forth Dimensions 35 September 1994 October

(Editorial, continued fmmpage 4.)
On-lineForth connectionsdevelop and maintains com-
prehensive list of on-line Forth resources from around the
world for both print and electronic distribution.

FIG Chapter vitality-meister-develop resources, tools,
and skills that will enable local leaders to hold meetings no
Forth user will want to miss, and which may even attract
non-Forthers, with content rich enough to warrant report-
ing in Forth Dimensions and, better yet, in the technology
sections of local newspapers.

FIG membershipgrowt&work closely with the FIG office
to support ongoing efforts to build its membership base,
which will in turn enable us to expand our range of
services and involvement in worthy projects.

Forth business news and gossip--tap into information
about interesting Forth projects, new contracts awarded,
product development, technical advances, hiring and
promotions, companies adopting Forth, etc., and regularly
feed the acquired data to Forth Dimensions to keep our
readers informed.

Academia-collaborate with academic Forth users to
develop a high-quality textbook which will provide the
instruction universally needed by

an intensive, one-shot effort, while others will need lower-
level but long-term attention. Some can be accomplished
by the rugged individualist, but others will succeed only
as a result of teamwork and consensus (for which e-mail,
and perhaps the occasional conference call, should suf-
fice).

I do not underestimate the amount of dedication,
enthusiasm, and hard work that it takes to accomplish any
worthy endeavor. But it would not be overstating the case
to say that such efforts are at the very heart of the
international Forth community and of FIG, and that they
will determine its future course. Please consider exercising
your own leadership by accepting the challenge presented
by a worthy cause.

-Marlin Ouverson
ouversonm@aol.com

mmmsuch efforts are at the very
heart of the international
Forth community and of FIG.

engineering students, for example,
using Forth on class-related projects.
Get the book published (perhaps
through Fig Leaf Press), then pro-
mote its adoption by E.E. depart-
ments and sneak it into the occa-
sional C.S. department.

Instruction-write a book that
teaches practical Forth in terms of
how to build applications; more
than "this is a stack" but stopping
short of metacornpilation and pyro-
technics. Use ANS Forth and make
sure the examples work with avail-
able implementations; encourage
one or more vendors to provide
inexpensive Forth systems that will
work verbatim with the book's ex-
amples. Completing the book's ex-
ercises should make the reader a
solid intermediate-level Forth pro-
grammer, if not yet seasoned in the
field. (Prediction: this is not the
easiest task on my list, but the
author who pulls it off will have a
major success, and will have done
more to promote Forth than the
original Forth issue of BYi'E and
Starting Forth combined.)

That is my wish list for today.
Some of the items on it will require

September 1994 October

Forth Interest Group
Statement of Change in Financial Position

Apr 30,1992 to Apr 30,1993

4/30/92 4/30/93 Change
ASSETS: + = Increase

- = Decrease
Current Assets:

Money Market 33,956.22 23,740.48 -10,215.74
Checking 2,845.94 9,855.61 7,009.67
Pending Foreign Clearing 51.67 0.00 -51.67
Returned Checks Pending 110.00 0.00 -110.00

Total Current Assets: 36,963.83 33,596.09 -3,367.74

Inventory:
Inventory at cost 24,600.57 16,280.00 -8,320.57

Total Inventory: 24,600.57 16,280.00 -8,320.57

Other Assets:
Deposit, United Parcel Service 200.00 0.00 -200.00
Second Class Postal Account 174.51 161.10 -13.41
Accounts Receivable 1,285.50 500.00 -785.50
Equipment 0.00 5,826.02 5,826.02

Total Other Assets: 1,660.01 6,487.12 4,827.11
TOTAL ASSETS: 63,224.41 56,363.21 -6,861.20

LIABILITIES :
Sales Tax 46.66 100.88 54.22
FD Dues Alloc to

future months 30,289.20 29,526.10 -763.10
TOTAL LIABILITIES: 30,335.86 29,626.98 -708.88

Financial Reserve: 32,888.55 26,736.23 -6,152.32

36 Forth Dimensions

(Letters, continued from page 6.)

rigidly defined (and therefore have fewer side-effects)
than C.

The practice of incrementally coding and testing that is
so simple in Forth attracts people who want to work this
way (me!). With local data for each module held on the
stack, modular testing of each word is valid even after the
word has been incorporated into other, secondary words.

As an end user of software products, I am continuously
verifying the correct operation of the system (including
hardware). It should not matter what source language/
paradigm was used. My comfort level improves with
software generated in a high-level language but if the
system works, that is all that is required.

Regarding Jim Mack's letter, point three in his sugges-
tions, I agree that FIG and Forth programmers should stop
discussing threading issues. Selecting token vs. subroutine
vs. direct vs. indirect threading is a performance and
memory usage design issue and not a feature of the
language. It is important to know that a design decision
can be made, but it is an implementation decision and not
part of the Forth language. The performance improvement
between indirect and subroutine threading can be the
difference between a microprocessor using a two-sided or
a four-sided printed circuit board.

Lastly, I take exception to one of Jim Mack's opening
comments. If a company (even the main force behind
Forth acceptance) chooses to target their resources at a
niche market, then it is their risk, their choice, and their
reward. I have spent the last few years trying to be all
things to all people. Working at what you are good at and
want to do is where the money and return are.

Yours truly,
Tom Saunders
Edmonton, Alberta, Canada

Random Erratum
Everett (Skq) Carter m t e to inform us of an error in his
code that accompanied "Generation and Application of
Random Numbers, " FD XVV1,2:

I was re-writing my R250 random number code in
order to make it ANS compliant so that it can be part of the
Forth Scientific Library and found an error.

In both R2 5 0 and R2 5 OD there is a line:

r250 i n d e x @ 248 > i f 0 r250-index ! t h e n I -
that should be:

Pictures Worth a Thousand Comments
Dear Marlin,

One of my favourite Forth aphorisms is, "Forth is
hardware by other means." With this is mind I devised,
some time ago, a program development tool which allows
me to visualise a colon definition as a kind of idealised
circuit. I call it Stackflow.

Essentially, it is an extension of the redoubtable Wil
Baden's control-flow diagrams which shows both control
flow and data flow within one three-dimensional construct.

n 2
: GCD (nl n2 -- n3)

BEGIN

DUP

WHILE

TUCK

M O D

REPEAT

DROP

.1. ;
n3

The example I give here is Euclid's diagram for greatest
common divisor. I trust that it is quite self explanatory. The
Stackflow metaphor has been of some benefit to me, as it
gives a better handle on the stack than the classic "pile of
plates in a cafeterian metaphor. I hope it is of some interest
to other FIGgers.

Yours faithfully,
Gordon Charlton
Hayes, Middlesex, United Kingdom

Forth Dimensions 37 September 1994 October

A Forum for Exploring Forth Issues and Promoting Forth

The Next Installment: Exposing Forth's Modules

In the last column I made considerable headway in
showing that through its vocabulary mechanism, Forth has
native namespace management facilities that can approxi-
mate a module or library mechanism-but nevertheless
fall short of what is really needed.

In this installment I will elaborate upon other of the
module-like ways of Forth. (Sort of like a game of "find the
Pope in the pizza." Got it?)

A Compiler Module?
Leaving vocabularies aside, I think that Forth already

contains at least one module, the collection of words that
implements the Forth compiler.

There is a natural cohesiveness to the compiler words.
For example, most of them have their immediate bit set
and they all serve the purpose of helping compile routines.

True modules regulate the re-use of routines by estab-
lishing different levels of visibility for public and private
routines. Forth asks the programmer to be self-regulating.
"You should know better than to specify a compiler

With Forth as our foundation,
we should use nothing less
than state-of-the-art tools.

extension outside of the compilation of a routine."
The compile-time behaviors of compiler extensions are

limited to a single usage context, the compiling of a
routine defintion. Whether a module system is proactive
about making words invisible or the words themselves
have a built-in limitation to reuse in certain contexts, the
effect is similar.

The production of errors and undefined results under-
scores the need for more refined (dynamic) management
of the visibility of Forth routines. Modules in general and
a compiler module in particular can help manage the
visibility of compiler routines so that their use is better
regulated.

(Likewise, POSTPONE should eventually become a
private routine of the COMPILER module.)

Not Diminished But Enhanced
If we use the visibility-management features of modules

to prevent the misapplication of routines, the potential for
successful routine reuse does not diminish. So modules
don't have to produce the inefficient factoring that Leo
Brodie feared (see chapter three of Thinking Forth).

Furthermore, we ought to use modules to tidy up the
loose ends in an already well-optimized design, such as
the design of Forth itself.

Perhaps in regard to its namespace management, Forth
is still unrefined. However, there are considerable merits
to Forth's unusual approach to it.

(Forth is both a compiler and an interpreter. It's not
really all that unusual for interpreters to use some routine
attribute in place of scope rules to distinguish search
orders and routine visibility. For example, a PATH variable
is often used in the command-line interpreters. Neverthe-
less, vocabularies can be considered somewhat unique.)

Because Forth vocabularies can be extended any time,
they can be composed incrementally in separate compila-
tion runs. Traditional modules are lexically delimited, so
extending a module usually means recompiling the whole
module from start to finish. (This is certainly true for C
libraries.)

On the other hand, the mere existence of modules
should help limit the need for annoying edit-compile-load
cycles. A goal of modularization is the stabilization of one
module at a time. So although lexically scoped modules
are more trouble to manage, the idea is to design them
only once, and then reuse them forever.

Them and Us
Instead of Them or Us

Perhaps Forth can strike a compromise in order to
obtain the benefits typically associated with lexically
delimited modules, as well as the convenience of devel-
opment of vocabulary-delimited modules. Inheritance
and subclassing are a way to achieve such a blend of
advantages in an object-oriented language. However, I
don't think we have to buy into all the trappings of an
object-oriented language to obtain the best of both mecha-
nisms. More incremental refinements of vocabularies

September 1994 October 38 Forth Dimensions

should suffice.
The benefits of lexically delimited modules usually

extend to simplified management of the code within a

-Mike Elola
elolarn@aol. corn

pp@d(ZJ@g waG@b
module. For example, it becomes easier to create operations
that load and run a module, that release modules (freeing the
associated memory), and that manage interm~dule depen-
dencies. An include-module operation is usually available to
suppress repeated compilation of the same module yet
ensure that module is compiled (or loaded) ahead of the
modules that depend upon its services.

One of the disadvantages of vocabularies over mod-
ules was already claimed as an advantage. The ability of
vocabulary-delimited modules to be defined in an inter-
leaved and openended fashion tends to make the con-
tents of the module less clear. This lets the programmer
easily lose track of how the code has been modularized.

Certainly a fully featured modularization facility would
instill incentives into Forth programmers to modularize
their code more concretely. In previous columns, I urged
the Forth community to adopt industry-standard linking
and library technology. That's about as concrete as it can
get. However, 1 am also amenable to Forth innovations.

AS a first step toward a Forth-specific solution, 1
Propose that module-supporting vocabularies be subdi-
vided into privately and publicly visible namespaces with
INTERFACE, a subvocabulary specifier.

Definitions placed in the INTERFACE subvocabulary
of a normal vocabulary would be visible outside the parent
vocabulary without making any reference to the parent
vocabulary (providing that the module/vocabulary is
already loaded or preloaded). Definitions not in the
INTERFACE subvocabulary require the usual naming of
the associated vocabulary to become visible. To add a
definition to the interface portion of a vocabulary, how-
ever, both the vocabulary name and INTERFACE need to
be specified, followed by DEFINITIONS.

Such a step falls far short of our need for substantive

Correction to
ANSI Standard Forth Quick Reference

The stack diagram offered in FIG'S quick reference
for ANS Forth had at least one error. The stack diagram
for the run-time operation associated with S" is incor-
rect, as is the description offered. (There is no compile-
time stack diagram shown.)

The correct stack diagram is:
-- s t r A d d r u

A more faithful description (or interpretation) is:
Compile a string delimited by a double-quote character
from the input stream and compile an operation that
pushes the address of the first character of that string
(nl) and its length (n2).

Please note these changes on your quick reference
card so that you will not be confused by the error at
some future time. Also, please send me (elolam@aol.com)
notices of any other problems you encounter with the
quick reference card so that subsequent editions of the
card can be less misleading.

APRIL 1994
Triangle Digital Services ~ t d . announced the 40

megabyte and 20 megabyte TDS2020HD40 and
mS2020HD20 piggy-back boards for its TDS2020 SBC.
These boards use the 1.3-inch KittyhawkTM hard disk
drive from Hewlett Packard. The drive features a match-
box form factor, glass media, automatic error detection
and correction, and software-controlled spin-down
modes. Power is further conserved by a large (up to a
half-megabyte) static RAM buffer on the mS2020 SBC.
The size of the piggy-backed motherboard is 100x80~39
-. (For two piggy-backed drives, the 39 mm. height
increases.) A month of life can be obtained from a small
battery with a system set up to conserve power.

Redirection of ~ ~ r t h output operations permits simple
storage of data to a disk log. (Other data storage formats
are supportable.) The retrieval of such data can be
moderated through the serial port. Faster data transfer is
possible through removal of the disk drive after field
use. The TDs2020 sBC has additional connectivity
options for graphics displays, a keyboard, and up to two
PCMCWJEIDA boards, as well as serial communica-
tions links.

COMPANIES MENTIONED
Triangle Digital Services ~ t d .
223 Lea Bridge Road
London EIO 7NE
United Kingdom
Fax: 081-558 81 10
phone: 081-539 0285

Forth Dimensions

modularization tools. But it is only a first step. Many more
coordinating refinements are needed. An important con-
sideration is exactly how the interface portions of (loaded
or preloaded) vocabulary modules are searched.

(Charles Moore has created a Forth that uses an IMME-
DIATE vocabulary as a way to eliminate the IMMEDIATE
attribute. We could likewise simplify Forth somewhat by
treating as immediate all words that are placed in the
INTERFACE subvocabulary of a COMPILER vocabulary.)

Regardless of their format, I hope you will learn to use
full-blown modularization tools. With Forth as our foun-
dation, we should not be using anything less than state-of-
the-art tools. Let's bait Forthers and non-Forthers alike to
go faster Forthward.

39 September 1994 October

CALL FOR PAPERS
for the sixteenth annual and the 1994

FORML CONFERENCE
The original technical conference for professional Forth programmers, managers, vendors, and users

Following Thanksgiving, November 25 - November 27,1994
Asilomar Conference Center, Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California U.S.A.
Conference Theme:

"Interface Building"

belong together. What are
some possible treatments of Forth code that can establish
more formal interfaces at the library-routine level or the
module level?

Can interfaces be fashioned between Forth routines and
the libraries, run-time systems, or data structures of other
languages?

New programming languages keep appearing to tame
various interfacing problems. Examples include Postscript,
which establishes an interface around diverse printing
engines so they can be treated similarly. Open Firmware

Papers are sought that explore how code and data (formerly Open Boot) wraps a standard environment
resources in various forms can be interfaced to maximize around computer sub-system components, facilitating their
code reuse and programming efficiency. configuration and initialization. X-Script and Telescript

Compiled routines represent the most fundamental code encapsulate multimedia and communications services,
resources. The interface that makes it possible for compiled respectively. Among other things, they make it possible to
routines to work together so well involves a run-time view the same mail or multimedia item on disparate
system's call (return) stack and its parameter-passing viewing platforms and over disparate, intervening networks.
mechanism. Nevertheless, exploiting their cooperative What common features do these interface-serving languages
potential requires skillful possess? Can an

Play"?
How can Forth be interfaced to Windows, or equivalent

GUIs? Besides linker technology, what is the most
substantial obstacle that prevents our use of GUI-
encapsulating class libraries such as MFC or OWL? Because
SOM (system object model) attempts language
independence, can it lead to a Forth interface to class
libraries? What run-time interface provisions besides a call
stack and a parameter-passing mechanism are going to be
needed to support object-oriented Forths? To support
event-driven programming?

programming. Each routine
must be outfitted with just
the right amount of
functional scope (factoring),
and with the correct choices
of input and return
parameters. How can this
inteqacing art be learned
and fostered?

Libraries and modules
have not been exploited
well. In mainstream
languages they offer only
token support for managing
related routines as

Completed papers are due November 1,1994.
Registration fee for conference attendees includes registration, coffee breaks, notebook of papers submitted, and for

everyone rooms Friday and Saturday, all meals including lunch Friday through lunch Sunday, wine and cheese parties
Friday and Saturday nights, and use of Asilomar facilities.

Routine

forother languages

-0s and other APIs;
I/O device or bus

Conference attendee in double room - $400 Non-conference guest in same room - $280 Children under 18 years old
in same room - $180 Infants under 2 years old in same room - free Conference attendee in single room - $525

*** Forth Interest Group members and their guests are eligible for a ten percent discount on registration fees .*.*
Mike Elola, Conference Chairman Robert Reiling, Conference Director

Register by calling, fax or writing to:
Forth Interest Group, P.O. Box 2154, Oakland, CA 94621, (510) 893-6784, fax (510) 535-1295
This conference is sponsored by FORML, an activity of the Forth Interest Group, Inc. (FIG).

interface be
constructed between
Forth routines and
the APIs and system
call interfaces that
serve as the
language counterparts
to these interface-
serving languages?

Can Forth
modules be crafted to
let it talk to one or
more I/O bus
interfaces, such as
those for PCMCIA,
PCI, and "Plug N (indivisible) collections that -I

