

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 2000tm l&bit Forth Chip SC32tm 32-bit Forth Microprocessor
-8 or 10 MHz operation and 15 MIPS speed. *8 or 10 MHz operation and 15 MIPS speed.
1-cycle 16 x 16 = 32-bi multiply. 1 -clock cycle instruction execution.
1 -cycle 1 Cprioritiied interrupts. *Contiguous 16 GB data and 2 GB code space.

*two 2Sword stack memories. *Stack depths limited only by available memory.
*&channel I/O bus & 3 timer/counters. -Bus request/bus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. -32-bi SC32 industrial grade Forth PGA CPU.
-System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
032 KB to 1 MB 0-wait-state static RAM. -32 KB to 512 KB 0-wait-state static RAM.
Full-length PC/XT/AT plug-in (6-layer) board. elOOmm x 160mm Eurocard size (4-layer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (Parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. 032-bi SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
-Up to 640 KB 0-wait-state static RAM. 064 KB to 1 MB @wait-state static RAM.
*233mm x 160mm 6U size (Slayer) board. *FulClength PC/XT/AT plug-in (Slayer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
RTX 2000 PLCC or 2001 A PLCC chip. =RTX 2000 industrial grade PGA CPU.

*System speed options: 8, 10, or 12 MHz. *System speed options: 8, 10, or 12 MHz.
-32 KB to 256 KB 0-wait-state SRAM. 032 KB to 512 KB &wait-state static RAM.
-1 00mm x 1 OOmm size (+layer) board. -1OOmm x 160mm Eurocard size (Clayer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 655 W. Evelyn Ave. f l , Mountain View, CA 94041 (415) 961-8778

I Features

Interactive Embedded Soft ware
Development Garth Wilson
You can achieve complete interactiveness for developing Forth software on a target computer.
The method requires no hardware or software except the host computer, the target, the text
editor, and the metacompiler-no communications software, no emulator. And the metacompiler
will only be used to compile code for ROM after it is developed and working.

f 7 3 Quicksort and Swords Redux Wil Baden
After more than 30 years, C.A.R. Hoare's quicksort is still the fastest general algorithm for sorting
in place on a single processor. Following up on earlier work, this FORML-award-winning author
presents his implementation in ANS Forth (except for NOT), and shows how to implement in your
Forth three words new in ANS Forth. And he narrowly avoids tempting fate.. .

2 7 Understanding F83 Vocabulary Usage Byron Nilsen
Vocabularies are a unique feature of the Forth language. They provide a means to isolate
groups of definitions so as to avoid naming conflicts, to preserve order in large applications
programs, to reduce compilation time, and to achieve other worthy ends. We can ignore them
at first, but eventually we will want to access words defined in other vocabularies, and when
this need arises some confusion may follow. The discussion is for novices but, as another
author points out in this issue, implementors have a different lesson to learn from it.

Generation and Application of 1 24 Random Numbers Dr. Everett F. Carter, Jr.
The world's computers generate ten billion random numbers per second. Many subtle
problems can occur, and various compromises have to be made in order to even pretend to
generate random numbers with a computer. This article explores the generation of random
numbers and some important applications that use such numbers.

f "' Pygtools-A Library of Reusable Utilities L. Greg Lisle
One often hears of the need for reusable libraries of Forth tools. The most common call is for
the ability to access C libraries from Forth. An alternative is a library structure designed for use
with Forth, where the programmer can do whatever he or she wishes. In addition to that, this
package demonstrates the flexibility of a screen-based disk structure. Written in Pygmy Forth,
the concepts should apply to any Forth that provides block access.

I Departments I

4 Editorial Interfaces and artifacts.

5 Letters Malevolent fungus; Case of the human parser.

7 9 Advertisers Index

42 Fast Forthward.. Rapid development demands quality interfaces.

Forth Dimensions 3 May 1994 June

Forth Dimensions
Volume XVI. Number 1

May 1994 June

Published by the
Forth Interest Group

Editor
Marlin Ouverson

Interfaces and Artifacts
I finally caved in to pressure from above and signed up for another on-line service.

I had agreed in principle but resisted in practice-knowing these beasts can suck cash
right out of the wallet (or the credit out of the line) and hours out of the day and night-
until the free sign-up package arrived in the mail: mostly a diskette of custom software.

Custom software? What happened to twiddling my com settings until screen chaos and
abrupt disconnects subsided to something passable? The new software would only work
with the one service; good thing it included a generous number of free start-up hours,
or my doubt might have triumphed and I'd still be using my generalized, tweak-when-
you-change-services telcom setup.

Okay, it wasn't all dial-and-smile. My newfangled modem gave the software fits and
this was, of course, not during business hours. But the tech-support voice mail worked
surprisingly well, and ten or so minutes later I had acquired a different initialization string
that had my modem shrieking cooperatively.

After that, I pretty much melted. I was cynical about the whistles (synthesized voice
greeting at log-on), but loved the bells-an interface consistent with my own system's
interface. Or, with another start-up diskette, consistent with the otherpopular interface,
too, keeping lots of new users happier than they had expected to be. An interface might
call attention to itself at first if we aren't used to it, but a good one makes it easier to focus
on content and function. I've now seen both the net-jaded and the net-leery turn on to
functionality dispensed via a decent interface.

Infer what you will about signs of the times, you can read more about the implications
of interfaces in the new call for papers for this year's FORML conference: see page 12.

1 1

While rummaging around my new on-line service, I dipped into the newsgroups to
see what was happening in the world of comp.lang.forth. What 1 found at the tip of the
iceberg was pretty in-
teresting: a list of the
computer languages
for which there are
newsgroups, showing
the current number of
messages within each
group. Especially in
light of its grass-roots
origins, Forth shows a
decent ranking; be-
s ides, C and C + +
should probably be
discounted because of
the institutional sup-
port they receive. (Pas-
cal was once leader of
the corporate pack,
and where is it now?)

-Marlin Ouverson
ouumonrn@aol. corn

Admittedly Unscientific Sam~linq

5743 .. C++
5201 .. C
968 ... Fortran
932 .. Ada
668 ... LISP MCL
434 .. Forth
424 .. LISP
387 ... Modula-2
331 .. Eiffel
247 ... Miscellaneous
229 ... APL
221 .. Oberon
213 ... Dylan
199 .. IDL PV-Wave
170 Functional (functional languages)
11 5 ... Modula-3
91 ML (including Standard ML, CAML, Lazy)
86 .. Logo
34 CLOS (Common Lisp Object System)
2 Hermes (for distributed applications)

May 1994 June 4

Circulation/Order Desk
Frank Hall

Forth Dimensions welcomes
editorial material, letters to the
editor, and comments fromits read-
ers. N o responsibility is assumed
for accuracy of submissions.

Subscription to Forth Dimen-
siom is included with member-
ship in the Forth Interest Group at
$40 per year ($52 overseas air).
For membership, change of ad-
dress, and to submit items for
publication, the address is: Forth
Interest Group, P.O. Box 2154,
Oakland, California 94621. Ad-
ministrative offices: 510-89-
FORTH. Fax: 510-535-1295. Ad-
vertising sales: 805-946-2272.

Copyright Q 1994 by Forth In-
terest Group, Inc. The material con-
tained in this periodical (but not the
code) is copyrighted by the indi-
vidual authors of the articles and by
Forth Interest Group, Inc., respec-
tively. Any reproduction or use of
this periodical as it is compiled or
the articles, except reproductions
for non-commercial purposes, with-
out the written permission of Forth
Interest Group, Inc. is a violation of
the Copyright Laws. Any code bear-
ing a copyright notice, however,
can be used only with permission
of the copyright holder.

The Forth Interest Group
The Forth Interest Group is the
association of programmers,
managers, andengineers who create
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that
will advance the general state of the
art. FIG provides a climate of
intellectual exchange and benefits
intended to assist each of its
members. Publications, conferences,
seminars, telecommunications, and
area chapter meetings are among
its activities.

"ForthDimenswm(ISSN 088443322)
is published bimonthly for $40/46/
52 per year by the Forth Interest
Group, 4800 Allendale Ave.,
Oakland, CA 94619. Second-class
postage paid at Oakland, CA.
POSTMASTER: Send address
changes to Forth Dimensions, P.O.
Box 2154, Oakland, CA 946214054."

Forth Dimensior

Forth. While not a beginner's book, it is a must read for
understanding Forth and Moore's philosophy.

Walter J. Rottenkolber
P.O. Box 1705
Mariposa, California 95338

May 1994 June

Letters to the Editor-and to your fellow readers-are always wel-
come. Respondtoarticles, describe yourlatestprojects, ask forinput,
advise the Forth community, or simply share a recent insight. Code is
also welcome, but is optional. Letters may be edited for clarity and
length. We want to hear from you!

Malevolent Fungus

Dear Mr. Ouverson,
God knows that I don't intend to write unreadable

code. Indeed, after the code is written, it is eminently
readable, logical, and sensible. But after aging for nine
months or more in a cool, dark place, I am sometimes
horrified to discover that the code has been transformed
into an obscure Klingon dialect. Rays from an alien
spacecraft? A malevolent fungus spawned in a toxic pond?
Another Unsolved Mystery?

The only solution seems to be handing the code to a
trusted Forth-literate colleague with instructions to question
any aspect of the code. Your answers and explanations
would then become the comments and documentation.

Garth Wilson's recent article, "Readability Revisited"
(I:D XV/6) presents many good ideas, but also inadvert-
ently points out some differences between programming
Forth screens and Forth text.

'fhe need to program screens came with my Forth. For
quite some time, I wrote in C programmers' mode,
essentially taping screens together into a text scroll. I
thought shadow screens wasteful and awkward.

After some experience with Forth, and a fifth read of
Leo Brodic's Thinkingl:orlh, I finally understood the how
and why of short words with short stacks. It's interesting
that Mr. Wilson, in commenting on Listing Two-a, shows
a reluaance to factor the over-long code in SAMPLEWORD
because the result would be a more dense and, hence, less
readable text code.

After studying Charles Moore's code in crnForth, I've
concluded that screens, unlike text, benefit from a high-
density format. Because screens cause your eyes to focus
at a small space, short words stacked with little white
space are actually more readable and understandable than
the looser style appropriate to text. Since white space in
screens is comprised of real spaces, a dense format also
compiles faster. Using shadow screens for comments
makes sense now, as they don't clog the compiler but still
can b e printed adjacent the code with the six-screen-per-
page format. What a circuitous journey!

FIG should be commended for reprinting Thinking
Forth Dimensions

Case of the Human Parser

Dear Marlin,
I applaud Garth Wilson's attempt in Forth Dimensions

(XV/6) to improve the readability of Forth, but h e hides
some important advice near the e n d of his article and fails
to follow it in most of his examples.

When I am reading a Forth program, I need o n e vital
piece of information before I can understand it. Is what I
am reading part of the code or a comment? In most of Mr.
Wilson's examples, unless I visually parse a line to find the
paren~heses , I can't tell code from comment. O n e of
Forth's strong points is that parsing is not needed to
compile it. Why should it b e necessary when one reads it?

Please, programmers, use upper case for code and
normal, mixed upper/lower case for comments. Then one
can tell at a glance whether o n e is reading something
intended for a compiler to interpret or something intended
for a human being to understand. One's mind has to
change states between the two. Make the case match the
reader's STATE flag.

Forth style is in the eye of the beholder. For example,
I find Mr. Wilson's Listing Two-a merely confusing. There
is n o indication that it represents nested expressions
unless one parses the code in detail. Listing Two-b, though
under-factored, expresses the form of the code at a glance.
Maybe this is one of those left-braidright-brain issues.

Another grumble is prompted not by Mr. Wilson's style
but by his Forth implementation. Just because BASIC used
the fairly English-like syntax " I F test-condition THEN do-
this-to-end-of-line," that is n o excuse for any Forth to use
the word THEN in the quite different syntax, "test-condition
I F do-this THEN." In Forth, I F is an opening parenthesis.
It marks the start of the expression to b e executed if the
condition test is true. It needs a related closing parenthesis.
I am happy with ENDIF and I install it as a n alias for THEN
in any Forth I use. It might b e more logical to use something
like I F { do-this]ELSE [do-that 1 I F .

By the way, my programming environment sounds at
least as simple as Mr. Wilson's. I use Mike Haas' Textra
(written in J-Forth). Switching from editing to compiling is
a matter of clicking the mouse in the J-Forth window or in
the Textra window. I can have as many source-file
windows open as I please. This is very handy for copying
chunks from one's old programs. (PC users, don't try this
at home. You'll need to buy an Amiga first.)

Regards,
Tom Napier
O n e Lower State Road
n'orth Wales, Pennsylvania 19454

5

Interactive Embedded
Soft ware Development
Garth Wilson
Whittier, California

The purpose of this article is to describe how you can
achieve complete interactiveness for developing Forth
software on a target computer. It is very simple, and a
natural for Forth.

The method discussed here is carried out with n o
hardware or software except the host computer (a PC-AT
clone, in my case), the target, the text editor, and the
metacompiler-no communications software, n o pP emu-
lator. You will probably want either a PROM programmer
o r a ROM emulator. The content of the ROM will be
changed s o few times during the development process
that the time saved by a ROM emulator will b e very little.

The metacompiler will only be used to compile code
for ROM after it is developed and working.

The traditional idea of developing the software for an
embedded system o n a host computer first and then
moving it over to the target has major weaknesses. The
host often cannot handle o r even emulate all the I/O your
finished system will have; a n d even if it could, the timings
and I/O port types would probably b e different, forcing a
painful transition. We will avoid that here.

Requirements
It is very easy to d o the development on the target itself

using target RAM, even though the final application
usually goes into ROM. The target unit you use for
development will need some things that you may b e able
to leave out of the e n d product, including:
A. the ability to interpret and compile Forth source

code
B. a free port for inputting source code (bi-directional

not necessary). I use a n RS-232 port.
C. It should have some type of display, even if only an

eight-character LCD. This w ~ l l b e the main feedback
to the programmer as to the internal status of the
computer.

D. A printer port is optional. I've always had one
because it was s o easy, but it is seldom needed.
Sometimcs it's nice for debugging.

E. appropriate port-driver software (for 13 a n d C above)
F. You may need more RAM for development than for

the finished system.

The target computer can be virtually any computer
with any processor for which a Forth kernel is available.
The kernel can b e either in ROM o r loaded into RAM from
a storage medium before beginning interactive develop-
ment. This article primarily addresses the simple situation
where the final code resides in ROM, and the same address
space is used for program, data, headers, etc. Standard
kernels may need some small changes in order to transpar-
ently transfer the already-developed code into ROM for
the finished product. This will be addressed below.

Definitions
Before continuing, perhaps w e should give some non-

colon definitions. The "target" is a computer that w e want
to develop software for, but usually o n e that is inadequate
for stand-alone software development use. This is often
because i t is a n embedded computer with little or n o user
interface. This basically dictates that a host computer will
take part in the development. The "host" is a separate
computer involved in the development of the target's
software. It is used for a varying range of functions,
typically for writing, editing, and storing the source code
and, later on, metacompiling the working finished code
and programming it into PROM. The host does not have
to b e able to emulate the target's function.

The host is what most lay people think of when you say
"computern-it typically has a typewriter-style keyboard,
a TV-style display, disc drives, etc. The target is typically
an embedded computer, like the ones most lay people
don't even know they own. Embedded computers lurk in
TVs, VCRs, coffee makers, toys, under hoods, in car radios,
printers, musical keyboards, microwave ovens, mobile
telephones, and cameras, plus milling machines, plotters,
extruders, film developers, navigation equipment, mis-
siles. . . O n and on the list goes.

Getting Started
With an RS-232 or Centronics port o n the target

computer, a host computer such as an IBM PC clone can
send information to it. Sending information the other
direction is usually not necessary if you have even a small
LCD or some other sort of display device o n the target,

May 1994 June 6 Forth Dimensions

even if it is there for devel-

that the target is nothing but
a printer. This paves the
way to sending it a piece of
code withoutleaving the text
editor. It also means w e don't

Figure One. Hardware setup example. I
opment only.

Since w e don't need to
send information back to
the PC, w e can let it think

I Any alpha-
numeric display I

RS-232 - Centronics

need a terminal emulator or

HOST
(usually a PC)

any other communications
software.

We can let the target think the PC is nothing but a n RS-
232 keyboard, a n d w e bring in the information using
?TERMINAL and KEY in EXPECT. In the systems I've
done, I also had a small keypad that would b e part of the
finished system, so I wrote definitions that would d o what
w e usually think of ?TERMINAL and KEY doing, calling
them by the same names but preceded by a 'p' for 'pad,'
that is, keypad-p?TERMINAL and pKEY.

A hardware se tup example is shown in 1:igurc One . All
three links can be unidirectional.

In the Norton (programmers') Editor, you put your
block markers (which on the screen look like little
squares) around the code you want to send to the target,
either by pressing "F4 S" or by clicking the middle mouse
button when the cursor is where you want a marker. F/t is
for block operations, and the S is for "Set block marker."
The portion to send will appear highligl-ired on the screen.

Itemember that since we're usually using EXPECT in
the target, whatever w e scnd i t must be followed by a CR
for the target to d o anything with it. 'l'his means your
second block marker will usually b e on the left margin o f
your PC screen, o n the line irnmcdiatcly after the last line
you want to send. To actually send it from the Norton
Editor, press "F7 I3 Y". The F7 is for printer operations; the
B is for "print Block"; and the Y is for "Yes," since it asks,
"Print block?"

I set it u p to use a serial port from the PC. Normally,
printer output from the text editor is directed to the parallel
port, but i t can be redirec~ed in a DOS MODE instruction
in a batch file. I have called the 1)atch file "TAI(GE'S.I~I\T,"
and i t consists of:
C:\DOS\MODE C O M 2 : 9 6 0 0 , N , 8 , 1 , P
C : \ D O S \ M O D E LPTl:=COM2:

The first line sets u p the PC port for (in this case) 9600
bps, n o parity bit, eight data bits, and one s top bit. 'l'he "1'"
tells it to continually rc-try i f the target is not ready to
accept data.

My batch file to undo the port redirection just says,
C : \ D O S \ M O D E L P T ~ :

I must admit that, unfortunately, this did not always
work o n one of our computers. I t acted happy to d o it, but
sometimes nothing happened. (Someone ought to write a
song about DOS. More o n that in the s idet~ar , "Beware o f
DOS.")

Forth Dimensions

TARGET >

Since you're using a text editor, you might as well keep
the number of data bits at eight, not seven, because with
the text editor it is easy to use characters that are not o n
the keyboard, like O , C, p, Q, and others that will b e very
useful in typical embedded applications. You can also use
the graphics characters to put diagrams in the comments
in your source code. Most of these special characters have
values between $80 and $FF, and they will need the eighth
data bit. Note that I'm not talking about word processors
that put in all those unprintable control codes that are
hostile toward compilers.

These characters usually won't show u p correctly in the
intelligent LCD modules that everybody and their brother
makes now, since they usually interpret the upper 128
values as Japanese characters; but you will get the benefit
o f nicer source code, and you wouldn't want FIND to
confuse "Y2" and "+" in word names just because they look
the same when you strip off the high bit. The only
drawback is that Forth words that find a n NFA given a CFA
or I,FA (like L>NAME) may not always work right without
modification. I used the high bit in names for over a year
before I finally modified my L>NAME--it's just not a big
deal unless you depend heavily o n 100% correct output of
WORDS and decompiling words.

The serial port o n the target will get set u p by INIT-
HDWR in ABORT. I have implemented a 256-byte software
buffer and zero-overhead, high-level Forth interrupt re-
sponse. Before I figured out h o w to accomplish the
interrupts in an F83 system that didn't come with any such
support, I just had ?TERMINAL poll the serial interface IC.
'That works, but it's slower, which can b e an issue if you
want to send more than a few lines at a time to a very slow
target.

The zero-overhead interrupt support is very simple,
adds only a few bytes to your overall code, and can be
nested as many interrupt levels d e e p as you wish, as long
as you don't run out of room o n your data or return stacks.
Even separate stacks are not necessary. I'll get to this in
another article. It's another natural for Forth.

I made TIB to b e 128 bytes s o it can handle any line I
scnd it, even if it hangs over the right edge of my 80-
column PC screen a little ways.

The sidebar entitled "Beware of DOS" tells of some of
the DOS problems I ran into in the effort to get the PC
talking nicely to the target. It may save you a lot of time
if you use a DOS machine.

7 May 1994 June

PRINTER

Once w e have our interactive system up , w e can write
a piece of code (optionally followed by a line to try it out),
: HELLO (name (--)

CR ." H e l l o "
BL WORD COUNT TYPE
. " ! How a r e y o u ? " ;

HELLO Mac

put our block markers around it to send it out to the target
(remembering to put the last block marker after the last
line's CR s o EXPECT knows to wrap it u p s o it can be
passed o n to INTERPRET)
m : HELLO (name (--)

CR . " H e l l o "

BL WORD COUNT TYPE
. " ! How a r e you?"

HELLO Mac
¤

and send it (by pressing "F7 B Y" if you are using the
Norton Editor). The target should ignore LF characters. As
I'm writing this, I tried the above to be extra sure I didn't
have some silly embarrassing mistake. After I pressed the
"Y," I turned toward the workbench and my target had
already compiled HELLO and executed the last line,
leaving "Hello Mac! H o w are you? ok{ 0 }" in the display.

If you wanted to FORGET the definition and recompile
it with changes, you could just type FORGET HELLO and
put the first block marker above or to the left of it before
sending it:
.FORGET HELLO
: HELLO (name (--)

CR ." H I "

BL WORD COUNT TYPE
. " ! I l i k e y o u r t i e . "

HELLO Mac
m

After sending it, w e get "Hi Mac! I like your tie. oki 0 1"
in the display.

So what happened?Actually the same thing hat would
have happened if the target had a full user interface and
you could have typed the same lines into the target at
several thousand words per minute without mistakes!
However, since you first typed it in on your text editor, you
have the source code there, immune to target crashes even
if you had not saved it to disc before sending it out. The
colon definition also got compiled into the target's Rhnl
and has become part of the target's Forth.

Actually, I would recommend that you save your
source code to disc before sending out a block if you don't
know for sure you have everything hooked u p and
working, since if there's a communication fault, you'll be
given a message (again, compliments of DOS) that says
something like "Drive not ready" or "Out of paper" or
"Write fault," followed by the choices "Abort to DOS,
May 1994 June

Retry, Ignore?" Notice that none of the choices is to abort
just the print and g o back to your application, in this case
the editor! Abort loses any n e w stuff, retrying will get you
nowhere unless you leave the message there until you are
able to correct the problem; and ignore is only good for
one byte, then you get the b e e p and the error message
again.

Since the interactive development we're after depends
o n a certain minimum amount of code o n the target
already working, w e will have to get that part working first
by using our old-fashioned methods. Fortunately, it's not
that much (except when you have the misfortune of
running into problems like the ones described in the
sidebar "Beware of DOS"). You can soon get o n to
developing your application with total interactiveness and
almost instant turnaround time between writing a piece of
code and trying it o n the actual target.

The turnaround time here is the amount of time
required for you to place the block markers where you
want them in the text file (typically with the mouse), then
press the appropriate key or keys to "print" it, and
whatever time it takes the target to process the incoming
information. As I set it up , everything taken in by EXPECT
also gets displayed.

In the June '93 issue of Electronic Component News,
Randy Devol of Nohau Corporation has an article o n
emulators. He says there that the "traditional" change-
compile-test method with EPROMs has a cycle time of five
minutes to a n hour, and goes o n to say that with their
emulators you can bring the cycle time down to as little as
tenseconds. Although the interactive development method
I a m advocating here does not by itself provide the
instruction history that the emulator does, it makes it
possible for you to get through the change-compile-test
cycle even faster than the ten seconds Mr. Devol is touting.
This is one of the things that got m e hooked on Forth.

Even the slowest targets should b e able to finish a
typical line in a second or two. If this seems terribly slow,
consider that you could be testing a typical definition less
than ten seconds from when you're finished writing it, and
without leaving, suspending, or backgrounding the editor.
Most targets will be much faster. I have done this o n 2 MHz
65CO2's, which would handle the source code coming in
at about 250 bytes per second for normal compiling. This
includes displaying the lines sent over, and searching
through a 500-word vocabulary for compilation. It would
g o considerably faster if the source code were to come in
on a parallel port instead, since less time would be taken
actually operating the port. The physical limit o n a 9600
bps serial port would b e about 960 bytes per second, since
it takes ten bits to get a byte through-one start, eight data,
and one stop.

O n a slow target, it's nice to have a way to make
changes in previously compiled code without recompiling.
This is t o save the time of recompiling all the code that
follows it and depends on it. I have defined a few words
I occasionally use to d o this.

If you're thinking ahead, you might have already
thought of the situation where you have a lot of code

8 Forth Dimensions

compiled in RAM and you crash the system. Unless you
have a lightning-fast target computer, it's going to take
some time to recover from the crash because of all the
code you will have to recompile. In my experience, most
crashes are due to getting into loops where the exit
conditions are never met, and they seldom destroy data.
My five-second, crash-recovery method is to press the
reset button, then have the cold boot routine ask, "NEW?"
to which I respond by pressing the "no" key. This avoids
reinitializing the dictionary pointer and CONTEXT. Imme-
diately, the target computer is back under control as if it
had executed ABORT instead of an uncontrolled crash.
There is usually no loss of data or program.

There are also times when I find a problem with
something that got put into the ROM a long time ago, and
there's a lot of stuff after it. Re-defining it is, of course, no
problem, s o I might work o n it in RAM again, then d o
another EPROM sometime after I believe the bug is taken
care of. When you accumulate a lot of code working in
RAM, you will want to metacornpile to put it in ROM (an
erasable one or a IiOM emulator, since we're in the
development process).

Figure Two shows a typical software diagram of the
flow of code during and after code development. Only the
top line (labeled "Forth source text") is used during actual
development. The other paths are for getting the code into

Beware of DOS

Forth Dimensions 9 May 1994 June

ForthDimensiomrecently published a letter I wrote to
the editor, which I started by commenting on an article
written by Russell Harris entitled, "A Lesson in Economics"
(FD XIV/5).

I-Iarris tells of problems with using PCs in embedded
and instrument-control applications, especially real-time.
I praised the article, but was embarrassed later to realize
that I made myself sound like an over-zealous, biased
neophyte who really didn't know, and that I thought
everybody who embedded a PC was na'ive. What I had
failed to mention is diat I've had many of those problems
myself, and that it's nice to have several articles to be able
to prove that it's not just me. I've wasted about six months
of my working time in the last six years just to DOS and
DOS-machine problems that had n o excuse for existing.
Unfortunately, I have to be conlpatible with the rest of the
industry, so I have a DOS machine on my desk.

One of the nasty problems I've run into goes something
like this: you send data out a PC's serial port. Sometime
right before the target finishes receiving the last byte
necessary to f i l l its buffer, the target sets the CTS line false,
whereupon the PC should just finish the byte already
started, then quit. The problem is that sometimes it will
send out a few more bytes before realizing that it's
supposed to stop.

'This is something that drove me nuts for a while, even
after figuring out what was happening and being able to
see those bytes frozen on a DSO. 'The problem was worse
on our .US-110s than on DR-110s. When I bought the DOS
computer I use at home, it came with DOS 5.0 installed,
but I had to go back to 110s 3.3 because rriy editor would
not recognize my mouse under DOS 5.0. I don't know i f
the serial port problem would exist under later versions of
DOS. I may have to buy a newer version of the editor.

Oh, the joys of DOS! In the recent words of a co-
worker, "1)OS ist not gooht!" I tried using different
hardware handshake possibilities to see if the PC would
respect DSR any more than it does C'TS (or vice versa, or
both together), but I was not able to completely get rid of
the problem. I haven't looked into whether I could write
my own port driver for the PC and expect the editor to use
it when it tries to "print." It may require writing my own
BIOS, which does not interest me.

My main remedy was to have the target keep the CTS
1 line false starting when there were six bytes left in the

buffer to fill. I first tried two and then three bytes, but it
wasn't enough. Before I went to hitting the brakes with
six bytes left to go, out of desperation I had also tried
slowing the baud rate way down. Although this made it
easier for the target to keep u p with the data coming in,
strangely enough it also increased the chance that the PC
wouldn't quit right away those times that it did receive
a CTS-false signal.

Obviously, having the interrupt support o n the target
is helpful, since otherwise the data sent when the target
is saying it's not ready would b e lost. If you're a DOS
expert (and I'm not convinced there is any such thing),
I would appreciate an explanation for this and other
problems.

While we're on this note, I suppose I should warn you
of another related PC problem I encountered, in case the
warning might save you some time. Since I did not have
interrupts yet the first time I implemented this idea of
interactive development on the target, I would pulse the
CTS line of the RS-232 interface long enough to get a byte
started, but not long enough to get more than one byte
through. I made the pulse about half as long as the
amount of time required to get a whole byte through.
After giving enough time for a byte to finish coming in,
1 would poll the ACIA to see if, indeed, a byte did come
in. But I wrongly assumed that if a byte did come, the PC
would have started it some time at, or before, the time
CTS went false.

What actually happened was [hat, if the next byte for
the PC to send was the first one of a new line, the PC
might wait u p to ten or fifteen milliseconds before
starting that byte. (Keep in mind that a byte at 9600 bps
only takes about one mS to transmit!) The solution for
that was simply to wait longer before polling the ACIA
if SPAN was still zero. Of course, this slowed things
down; but without doing this, the first byte might finish
u p during a later pulse, and that pulse would start the
second byte, some time after which you poll the ACIA
whicti tells you there is, in fact, something to b e picked
up. 'The second byte is read, appearing to be the first in
the line. 'l'he real first byte got run over by the second,
and was lost. This may have been an idiosyncrasy of my
text editor. 1 don't know. I t was all too strange-my com
port problems were sometimes different if using, for
example, the DOS PRINT command.

ROM space after development.

Transparent Transfer to ROM
Now, we wouldn't totally be accomplishing our goal if,

after getting our code working, \ye had to modify it for the
metacompiler to accept it so we could get it into ROM. You
may have to change some definitions or some methods to
make sure the code you got working in RAM will make the
transfer to ROM transparently.

A problem I had to address with a metacompiler I was
using a couple of years ago was the fact that the
metacompiler would not allow (for example):
[YR MINUTES - 1t] LITERAL

where YR and MINUTES were variables. It would stop and
tell me it couldn't access a ROMed variable. The explanation
in the manual was that the metacompiler is trying to defend
against operation in the target's RhM area, since it does not
exist (or is not accessible) at metacompilation time. This
makes sense; but the job of a variable is to put the first
address of the variable or array on the stack, and in this case
all I want to d o is compile another number (a byte count)
that is pre-calculated from other variables' addresses.

'I'he vendor's solution was to use >DATA as follows:
[' YR >DATA ' MINUTES >DATA - 1+]

LITERAL

Since this was so cumbersome, I redefined VARIABLE
to be a constant that just returned thc address of the next
available RAM byte. This still didn't work, because the
metacompiler ignored redefinitions of essential words like
VARIABLE. My final solution (which ended u p working
very well) was to rename it VAR. I also made it require an
input, the number of bytes I wanted in that variable. I
know this breaks away from the Forth-83 Standard, but it
helps the transition from I W to 1 < 0 M because the first
byte of the variable's data area is the same whether the
constant pointing to it is in the ROM or right after the data
area in RAM. The definition is
: VAR (name (n --)

THERE SWAP ALLOT CONSTANT ;

IMMEDIATE

The IMMEDIATE was a requirement of our metacompiler
to interpret it. A typical syntax example of our new

Listing One I

variable word would be
6 VAR TMBUF (TIME BUFFER W/ ROOM FOR)

(SEC, MINI HR, DAY, MO, YR)

In a ROMed system, if you have five variables in a row
that each have a two-byte data field, those data fields will
be one after the other in RAM. This makes it nice if you want
to initialize the whole group of them with a single CMOVE
or ERASE, for example. However, when you develop in
RAM, the variable's headers and code will sit between those
data fields. You can get around this difference if you want
to by writing something like what is shown in Listing One,
which will work with both systems. (This particular ex-
ample is from the automated test equipment system I did a
couple of years ago. At the end of a set of tests, the
information in RESULTS got moved to the end of the
archive data chain, if archiving was requested.)

Other changes I had to make were due to bugs in the
software we bought. Since the target source code was
supplied (basically right out of the public-domain stuff), I
was able to fix the target-specific bugs. I've just had to
learn ways of getting around most of the metacompiler
bugs, since the metacompiler is a black box to us, the
customer. I'd be glad to try to help anyone who suspects
they may be having the same problems, but I don't want
to use this space to publicly dishonor the supplier. We got
good use of the software, and I intend to buy another
nletacompiler from them.

As I pointed out earlier, this is all done with no
hardware or software except the host computer, the target,
the text editor, and the metacompiler-no communica-
tions software, no hardware emulator. In my experience
with embedded systems, the emulators you really need
would be for the I/O silicon anyway. I've spent a lot of time
trying to guess what's going on inside peripheral interface
ICs whose data books didn't tell me all I needed to know.

There are times, however, when you would like to put
in a breakpoint to stop and look around at the stacks,
different variables, etc., for debugging purposes. Listing
Two shows a word BREAK for that purpose. I seldom need
it, but it is valuable when the need arises. It can be called
anywhere in your code where you might want a breakpoint.
The code should be pretty self-explanatory. Notice that
you can even compile new code or make changes, since
this is basically the same as what's in QUIT. The fact that

100 VAR RESULTS RESULTS
DUP CONSTANT ARCTM 5 +
DUP CONSTANT OP# 1 t
DUP CONSTANT MODEL# 2 +

DUP CONSTANT MAXTEST# 1 +
DUP CONSTANT PASS£ 2 +

CONSTANT ISTRESULT

(Test results array. 1st 6 bytes are time &)

(date simply moved from variables MINUTES-YR.)
(Next is a 1-byte operator number,)

(2-byte model identifier number [actually the)
(address o f string o f test menu item name.])

(Highest test number logged. 1
(2-byte pass flag [true=pass, false=fail.])

(Start logging results here. Test number will)
(be used as index for ! i n g & @ing results.)

May 1994 June 10 Forth Dimensions

it suspends other defi-
nitions that were in the
process of executing is
okay, as long as you
don't mess u p the stack
or any critical values
before exiting BREAK.

Assembly
Development

Normally, the target
will not have any as-
sembl ing capability.
However, this interac-
t ive d e v e l o p m e n t
methodcanstill be used
to greatly speed u p the
development of prirni-
tives by using Forth
definitions for what

Figure Two. Flow of code during and after development. I

-1 ROM EMULATOR

Forth source goes into
text (ASCII) com. port

or
ROM

ROM PROGRAMMER

TARGET TEXT
EDITOR

Listing Two
I

goes into
ROM socket(s)

text file
(after development)

METACOMPILER

I

,

(development only) >

amounts to a monitor I
program. 'l'his "rnoni-

: BREAK (--)

KEYBEEP
B E G I N

CR . " >" CURSORON
QUERY >IN OFF CURSOROFF
SPAN @ 1 >
I F INTERPRET

STATE @ O=
I F . " B o k { " DEPTH 0

WAIT1/2SEC
T H E N FALSE

ELSE CR . " LEAVING BREAK"

ATTNBEEP WAIT1/2SEC
TRUE

THEN
UNTIL

tor program" can have seamless integration with the 1:orth
system, because i t is part of the Forth system. 'l'his way,
you can use your favorite macro-asscrnblcr and linker to
generate the machine-language codc from the assembly-
language source code, then feed Intcl hex (or whatever
you like) over the RS-232 into the target. Making a change
in your assembly-language source codc and trying i t out
in your Forth application still gives a relatively fast
turnaround time.

I use a word LDMEM (load memory) ro bring thc Intel
hex file from the assembler into the target. ilfter 1.I)l\lliAI
is invoked, it receives the hex filc, putting the data bytes
into memory and checking for errors accortiing to the Intel
hex protocol. After the lasl line (:00000001 I:[:), LDMEM is
finished and the target will again expect I:orth text, just as
before.

A separate assen1l)lcr anci linkcr that is not related to

T h i s i s a c o d e - i n s e r t a b l e b r e a k p o i n t)
Announce a r r i v a l a t b r e a k p o i n t . 1
Loop u n t i l u s e r w a n t s t o e x i t BREAK.)
D i s p l a y t h e p r o m p t & f l a s h c u r s o r .)

G e t r e a d y t o p r o c e s s i n p u t l i n e .
Empty l i n e [C R o n l y] m e a n s t o e x i t .)

L i n e n o t e m p t y : h a n d t o INTERPRET.)

(I f n o t i n c o m p i l e mode,)

1 " (give t h e " o k " & t h e s t a c k
(d e p t h w i t h e n u f t i m e t o see ,)

& s i g n a l t o UNTIL n o t t o e x i t BREAK.)
I f i n p u t l i n e e m p t y , a n n o u n c e e x i t ,)

b e e p , g i v e t i m e t o see a n n o u n c e m e n t ,)
t h e n s i g n a l t o U N T I L t o e x i t BREAK.)

your Forth software will b e very clumsy at writing primi-
tives that would b e made part of the target's Forth. T o
remedy this, you can have a primitive that just calls the
subrouti~le at the address pointed to by a variable. I used
a small assembly language routine for digital audio
playback in a recent project. After I was happy with it, I
didn't even bother to rewrite the assembly language code
s o the metacompiler could use it. I just relocated it to R O M
space and merged the hex output files from the assembler
and the metacompiler. I t made the combination painless,
and it allowed me to use a nice macro-assembler.

Conclusion
I<ecenlly, I was talking to a friend who used to work with

me, whom I respect very much. He had gone to work at
another company, where his experience in C and the68HC11
was a perfect fit. As w e were talking about our development

Forth Dimensions 1 1 May 1994 June

(Continues onpage 23.)

1994 FORML Forth Conference
Conference Theme:

~llnterface Building91

Papers are sought that explore how code and data larly. Open Firmware (formerly Open
resources in various forms can be interfaced to maximize Boot) wraps a standard environment around
code reuse and programming efficiency. computer sub-system components, facilitating their

Compiled routines represent the most fundamental configuration and initialization. X-Script and Telescript
code resources. The interface that encapsulate multimedia and communications services,
makes it possible for compiled respectively. Among other things, they make it
routines to work together s o possible to view the same mail or multimedia item on
well involves a run-time disparate viewing platforms and over disparate,
system's call (return) stack intervening networks. What common features d o
and its parameter-passing these interface-serving languages possess? Can
mechanism. Neverthe- an interface b e constructed between Forth
less, exploiting their routines and the APIs and system call
cooperative potential interfaces that serve as the com-
requires skillful
programming.
Each routine
must be outfitted with
just the right amount of
functional scope (factoring), crafted to let it talk
and with the correct choices of to one or more 1/0
input and return parameters. How can bus interfaces, such
this inteqacing art be learned and fostered? as those for PCMCIA,

Libraries and modules have not been ex- PCI, and "Plug N Play"?
ploited well. In mainstream languages they offer How can Forth be
only token support for managing related routines as interfaced to Windows, or
(indivisible) collections that belong together. What are equivalent GUIs? Besides
some possible treatments of Forth code that can linker technology, what is the
establish more formal interfaces at the library-routine most substantial obstacle that
level or the module level? prevents our use of GUI-encapsu-

Can interfaces be fashioned between Forth routines lating class libraries such as MFC or OWL.? Because
and the libraries, run-time systems, or data structures of SOM (system object model) attempts language
other languages? independence, can it lead to a Forth interface to class

New programming languages keep appearing to libraries? What run-time interface provisions besides a
tame various interfacing problems. Examples include call stack and a parameter-passing mechanism are
Postscript, which establishes an interface around going to be needed to support object-oriented Forths?

1 diverse printing engines so they can be treated simi- To support event-driven programming?

Time allotments for presentations will favor early submittals and/or theme relevance.
Abstracts are needed by September 1, 1994.

I Mail your submissions to: I
Forth interest Group

att'n: Mike Elola
P.O. Box 21 54

Oakland, California 94621

1 ANS Fonm

Quicksort and
Swords Recfux
Wil Baden
Costa Mesa, California

Forth Dimensions 13 May 1994 June

"Quicksort and Swords" was the first Forth-83 program
to be published in I;br/h Dimensions. A decade later, here
they are reconsidered for Standard Forth, a.k.a.ANS Forth.

Quicksort
In this implementation of quicksort, except for NOT,

all constituent words are Standard Forth core or core
extension words. In the unlikely event that you don't have
NOT as a primitive, replace it with the ugly O = . Three
words new in Standard Forth, ALIGNED, CELL+, and
CELLS, can be implemented easily in your Forth.

This implementation is not recursive and thus avoids
the overhead of recursion. Improved code makes it even
a little faster. Freedom from the Forth-83 constraints of
blocks of 16 rows and 64 columns, and everything in
upper case, makes it easier to program and comprehend.
With Forth's stack no data structure has to be defined.

Although the code is longer in column inches, i t has
fewer characters than two old fashioned blocks, and is
about the same compiled size.

After more than 30 years, C. A. R. Hoare's quicksort
algorithm, with slight n~odifications from sundry authors,
is still the fastest known general algorithm for sorting in
place on a single processor. Naming something "quick" or
"fast" invites the fates to humble you, but quicksort is
still quick.

The algorithm works like this.
If an array has more than a certain number of
elements, partition the array into two sections such
that n o element of one section comes after any
element of the other section.
But if the array has at most the certain number of
elements, then use a simpler method with less
overhead to sort it.
Keep doing this with the resulting sections until
there are no sections left.

This begs the questions:
What is the certain number?
What is the simpler method?
How do you partition?

For the original Hoare algorithm the certain numberis

1, and the simpler method is "don't d o anything."
For many implementations in profane languages the

certain number is something between 7 and 17, and the
simpler method is "insertion sort."

For this implementation the certain number is 3, and
the simpler method is "just d o it."

To partition, the ideal thing to d o would be to take the
median element and put everything o n one side of it in one
section and everything o n the other side in the other
section.

(The median is the element that will be in the middle
when the array is sorted.)

But you don't know what or where the median element is.
So you guess.
And how do you guess?
IIoare said in effect: Since you can't tell, take an

element at random-nondeterminism will give optimum
performance; if that's too much trouble just take the first
clement, although with extremely bad luck such as
everything being in order or almost in order already, this
will be as bad as bubble sort.

A less mystical method that has been found to be
practical is: Take the first, last, and middle elements;
arrange them in order with two or three comparisons; and
take the median of the three as your guess for the median
of the whole.

That's what is done here.
?*his has a further pay-off when w e do the actual

partition, as we shall see.
As this is Forth, the code is written bottom to top, but

the comments here are top to bottom.
I'm not going to tempt fate by calling the top word

QUICKSORT, especially since I know some ways to make
it faster, but I call it QSORT, hoping that the fates don't
recognize acronyms.

QSORT (a-addr k xt --)

Take an aligned address a-addr, a count of the
number of elements k, and an execution token for a
comparison routine xt: sort the k cells at a-addr with the
comparison routine given by xt, using the method of
quicksort.

(Code follows; text continues on page IG.)

Quicksort and Swords 1

1 (H o a r e ' s Q u i c k s o r t) (Non-Recursive) (W i l Baden 1967-1993)

3 v a r i a b l e INORDER#

5 : EXCHANGE 2dup @ >r @ s w a ~ ! r> s w a ~ ! ; (X Y - - 1

7 : O r d e r T h r e e (l o h i mid -- l o h i mid)

8 > R (l o h i)
9 o v e r @ R@ @ INORDER# @ e x e c u t e O>

1 0 i f o v e r R@ EXCHANGE t h e n
11 R@ @ o v e r @ INORDER# @ e x e c u t e O > i f
1 2 R@ o v e r EXCHANGE
1 3 o v e r @ R@ @ INORDER# @ e x e c u t e O >
1 4 i f o v e r R@ EXCHANGE t h e n
1 5 t h e n
1 6 R> (l o h i mid)
17 ;

1 9 v a r i a b l e g u e s s

2 1 : SkipLowers (X y - - x y)
2 2 > R (X)

2 3 b e g i n
2 4 c e l l +
2 5 dup @ 4- INORDER# @ e x e c u t e 0< n o t
26 u n t i l
2 7 R> (X y)
28 ;

30 : S k i p H i g h e r s (. y - - . y)
3 1 b e g i n
3 2 1 ce l l s -
3 3 s u e s s @ o v e r @ INORDER# @ e x e c u t e 0< n o t
3 4 u n t i l
35 ;

37 : P a r t i t i o n (l o h i -- l o y x h i)

3 8 2dup o v e r - 2 / a l i g n e d + (l o h i mid)
3 9 O r d e r T h r e e
4 0 @ s u e s s ! (l o h i)
4 1 2 dup (l o h i x y)
4 2 b e g i n
4 3 SkipLowers
4 4 S k i p H i g h e r s
4 5 2dup > n o t
4 6 w h i l e
4 7 2dup EXCHANGE
4 8 2dup 2 c e l l s - >
4 9 u n t i l
5 0 >r c e l l + r>
5 1 1 c e l l s -
5 2 t h e n
5 3 SWAP ROT (l o y x h i)
54 ;

May 1994 June 14 Forth Dimensions

56 : S m a l l e r S e c t i o n F i r s t (l o y x h i -- l o y x h i)
5 7 2 o v e r 2 o v e r swap - >r s w a ~ - r>
5 8 i f 2swap t h e n
59 ;

6 1 : H o a r i f y (l o h i -- . . . l o h i)
6 2 b e g i n (' S o r t s n a p s h o t ' g o e s h e r e .) (. . . l o h i)
6 3 2dup swap - 2 c e l l s >
6 4 w h i l e
6 5 P a r t i t i o n (. . . l o y x h i)
6 6 S m a l l e r S e c t i o n F i r s t
6 7 r e p e a t (. . . l o h i)
68 ;

7 0 : O r d e r A P a i r (l o h i --)

7 1 2dup = n o t i f
7 2 o v e r @ o v e r @ INORDER# @ e x e c u t e O >
7 3 i f 2dup EXCHANGE t h e n
7 4 t h e n 2 d r o p
7 5 :

7 7 : S h o r t O r d e r (l o h i --)

7 8 2dup swap - 1 c e l l s > i f
7 9 dup 1 c e l l s - (l o h i mid)
8 0 O r d e r T h r e e
8 1 d r o p 2 d r o p
8 2 e l se
8 3 Orde rAPa i r (1
8 4 t h e n
85 ;

QSORT (a - a d d r k x t --)

INORDER# ! (a - a d d r k)
dup 2 < i f 2 d r o p e x i t t h e n
1 - CELLS OVER + (l o h i)
DEPTH >R

BEGIN (. . . 10 h i)
H o a r i f y
S h o r t o r d e r (. . .)

DEPTH R@ <
UNTIL ()

R> DROP

100 (F u n c t i o n t o compare c o u n t e d s t r i n g s .)

102 : CCOMPARE (c -add r -1 c -addr-2 -- f l a g)

1 0 3 >R COUNT R> COUNT COMPARE

Forth Dimensions May 1994 June

If there are n o elements, there's nothing to sort.
ltJs more convenient for the program to work with first

and last elements than address and count, s o I convert.
DEPTH is saved on the rack to tell when there are n o

more sections.
QSORT uses H o a r i f y to make partitions until it makes

a partition with n o more than three elements. This small
partition is sorted by S h o r t o r d e r .

When there are n o more partitions, we're done.
S h o r t o r d e r checks whcthcr the section has three, or

fewer, elements. Three elements are sorted by ~ r d e r ~ h r e e
using brute force.

With two elements O r d e r A P a i r makes a comparison
to see which comes first. wi th one element 0 r d e r A P a j . r

doesn't have to d o anything.
So long as it is looking at a section with more than three

elements H o a r i f y uses P a r t i t i o n to turn that section
into two sections.

S m a l l e r S e c t i o n F i r s t is used to select the smaller
of the two sections for the next use of P a r t i t i o n . 'l'his
is insurance against stack overflow.

P a r t i t i o n is the essence of I-Ioare's method. As
mentioned above, w e take the first, last, and middle
elements, and put them into order using O r d e r T h r e e .
The median of the three is used as the guess of the
median of the whole section.

Elements at the beginning of the section which are
lower than the guess are skipped using S k i p L o w e r s .
Elements at the e n d of the section which are higher than
the g u e s s are skipped using S k i p H i g h e r s . Until the
skippings cross over each otllcr w e EXCHANGE the two
elements that have terrninatcd S k i p L o w e r s a n d
S k i p H i g h e r s .

Because w e have taken the median of three as the
g u e s s , S k i p L o w e r s and S k i p H i g h e r s a rceach guar-
anteed to find an element to cause termination o f the
search. Thus just o n e test is needed. Also w e can begin
testing with the second element.

O r d e r T h r e e arranges three elemcnw in order by
making two o r three comparisons and exchanges.

EXCHANGE takes two addresses and exchanges their
contents.

INORDER# is the cxccution vector containing the
execution token of the Forth word that decides the order
of two elements.

Swords
WORDS is a Standard Forth word that cannot b e defined

with Standard Forth words. None-the-less it generally
comes with source using some of your implementation's
non-standard extension words. Since I don't know your
implementation I will dcscribe in detailed vagllcncss what
you must have for WORDS to work.

You must have a way to get a word identifier for ~ h c most
recently defined word in your current cnvironrnent.
With elaborate dictionary structures this may not be an
easy lhing to do. The most useful word idcn~ificr \vould
be an execution token.

May 1994 June

You must have a way to g o from a word identifier to a
pointer to a string naming the word. In Forth-83 this was
>NAME. This also may b e non-trivial in some implemen-
tations.
You must have a way to print the name of the word,
preferably with some simple formatting.
You must have a way to g o from a word identifier to the
word that was defined just before it. Again in some
implementations this may b e tricky. We impose the
requirement that the last word identifier to be printed
return 0 for this operation.

From the actual definition W WORDS in your system you
can scavenge what you need 10 define SWORDS, "sorted
words."

1'11 take the definition of WORDS in This Forth as a
example of one of the simplest definitions.
: WORDS

d e p t h O= ? ? LAST (x t)
0 COL# !
begin

?DUP
w h i l e

d u p . I D
>PREVIOUS

repeat ()

;

'Ihere's an alien word " ? ? " but the intent of the line is
clearly to give us a word identifier to start our listing.

0 COL# ! must be to initiate formatting.

: . I D >NAME .WORD ;

l'he definition of . I D gives us >NAME and .WORD. With
>PREVIOUS these look like the operations w e want.

'Iheir implementation in This Forth use some more
unexplained extensions and definitions. They will be
different in your system.
: > L I N K 2 ;
: L I N K > 2 ;
: LAST 0 h a s h a s L I N K > ;
: >NAME 1- h a s ;

: .WORD (c-addr --)

c o u n t (c-addr l e n)
d u p MORE

type (1
TAB

;

: >PREVIOUS (addr -- addr)

> L I N K h a s d u ~ ? ? L I N K >
;

1 , ~ ~ ' s whack the definition of WORDS, replacing the
occurrence of .WORD with something to save a value in an
array rather than print what the value is pointing to. We
can then sort the array with QSORT, and finally print the
array.

The implementation factors we'll use are:

16 Forth Dimensions

Quicksort in Action

As an example of QUICKSORT in action, here are snapshots of a short sort.
Arrange the 20 rnost frequent words in English in alphabetic order. We start with them in order of their frequency.

[t h e o f a n d t o a i n t h a t i s was h e f o r it w i t h a s h i s on b e a t b y i]

Take the first, last, and middle words, and guess " in as the median. Using this gives us two equal-sized sections.

[f o r by a n d a t a b e h i s a s i h e] [was it w i t h i s t h a t on i n t o o f t h e]

With equal-sized sections take the upper one next. Guess "the" as the median.

[f o r by a n d a t a b e h i s a s i he] [on i t o f i s t h a t i n 1 [t h e t o w i t h was]

In the shorter section guess "\vas".

[f o r by a n d a t a b e h i s a s i h e] [on it of i s t h a t i n] [t h e t o] was [w i t h]

No guessing with at most three elements.

[f o r by a n d a t a b e h i s a s i he] [on i t o f i s t h a t i n] [t h e t o] was w i t h
[f o r by a n d a t a b e h i s a s i he] [on it o f i s t h a t i n] t h e t o was w i t h

Guess "is".

[f o r by a n d a t a b e h i s a s i h e 1 [i n i s 1 [of i t t h a t on] t h e t o was w i t h
[f o r by a n d a t a be h i s a s i he] i n i s [of it t h a t on] t h e t o was w i t h

Guess "on".

[f o r by a n d a t a b e h i s a s i h e 1 i n i s [of it] on [t h a t] t h e t o was w i t h
[f o r by a n d a t a b e h i s a s i h e] i n i s [of it] on t h a t t h e t o was w i t h
[f o r by a n d a t a b e h i s a s i h e] i n i s i t of on t h a t t h e t o was w i t h

Gucss "for"

[b e by a n d a t a a s] [h i s f o r i he] i n i s i t of on t h a t t h e t o was w i t h

[b e by and a t a a s] [h e f o r] h i s [i] i n i s i t o f on t h a t t h e t o was w i t h
[b e by a n d a t a a s] [he f o r] h i s i i n i s it of on t h a t t h e t o was w i t h
[b e by a n d a t a a s] f o r h e h i s i i n i s it o f on t h a t t h e t o was w i t h

Guess "at".

[a s a a n d 1 a t [by b e 1 f o r he h i s i i n i s i t o f on t h a t t h e t o was w i t h
[a s a a n d 1 a t b e by f o r h e h i s i i n i s i t o f on t h a t t h e t o was w i t h

I All done.

a a n d a s a t b e by f o r h e h i s i i n i s it o f on t h a t t h e t o was w i t h

Forth Dimensions 17 May 1994 June

Appendix

Stock Definitions--Common Implementation Factors

v a r i a b l e COL#
v a r i a b l e COLS# 72 COLS# !
v a r i a b l e TAB# 8 TAB# !

: LINE CR 0 COL# ! ;

: MORE dup COLS# @ COL# @ - >LINE COL# + ! ;
: c o l s COLS# @ COL# @ - min 0 max dup SPACES COL# + ! ;

: T A B C O L # @ T A B # @ m o d T A B # @ s w a p - c o l s ;

Sample Output from SWORDS

! I, # # > # s $ ((. I I

* * / */mod t + ! +loop - - - >
. . . i d . r . s .word .words /

/mod 0 x l k 2 ! 2 / 2 > r 2 @ 2 d r o p 2dup
2 o v e r 2 r > 2 r@ 2 r o t 2swap 3dup 4dup : noname

; s < < # <> > >body > c h a r - -

> l i n k >name > p r e v i o u s > r ? ? ? ?do ? dup

@ H o a r i f y Orde rAPa i r Orde rThree P a r t i t i o n
S h o r t o r d e r S k i p H i g h e r s SkipLowers S m a l l e r S e c t i o n F i r s t

[[' I [0x1 [c h a r] [h e r e] \ 1 a b o r t a b o r t "
a b s a g a i n a l i g n a l i g n e d a l l o t a n d a n d i f a rgument
b a s e b e g i n b l bye c ! c " c t ! C I c @
c a s e ccompare c e l l + c e l l s c h a r c h a r + c h a r s c l o s e
c l o s e d c o l # c o l s c o l s # compare c o n s t a n t c o u n t cr
c r e a t e d + d - d e c i m a l d e p t h d o d o e s > d r o p d u p
e l e c t i v e e l se e m i t empty e o l e s a c e v a l u a t e
exchange e x e c u t e e x i t f a l s e f i l e f i l l f i l t e r f i n d
f l u s h f l u s h e d g u e s s h a s h e r e h e x h o l d i i '
i f immed ia t e i n l i n e i n o r d e r # i n p u t i n v e r t j
k key l a s t l e a v e l i n e l i n k > l i t e r a l l o a d l o o p
l s h i f t m a r k e r max min mod more move n e g a t e n e s t i n g
n i p n o t o f open opened o r o r i f o u n t o u t p u t
o u t s i d e o v e r p a d Page p a r s e p a t c h p i c k p l e a s e p o s t p o n e
p u s h q s o r t q u i t r > r @ r e c u r s e r e f i l l r e i n p u t r e o p e n
r e o p e n e d r e o u t p u t r e p e a t r ewind r o l l r o t r s h i f t
s " s + s e a r c h - w o r d l i s t s e e k s i g n s o u g h t s o u r c e - i d
s p a c e s p a c e s s t a t e s t r e a m swap swords s y s t e m t a b t a b #
t e l l t h t h e n t i m e & d a t e t o t o l d t r u e t u c k

t y p e U . U . r U < u> um* um/mod u n c h a r unde r+
unf i l t e r u n l o o p u n s t ream u n t i l u n u s e d v a l u e v a r i a b l e
w h i l e w i t h i n word words x . x o r - p l e a s e

May 1994 June 18 Forth Dimensions

and the non-<;L1 camps is ttiercfore inappropriate.
The problem of obtaining finely tunable l~ehavior from

(Quicksort, continued.)

: OUNT DUP @ 1 C E L L S UNDER+ ;

: PUSH (x a n A r r a y --)

DUP >R
OUNT C E L L S + ! ()

1 R> + !

: .NAMES (a n A r r a y --)

0 COL# !
OUNT 0 ?DO (a - a d d r)

I C E L L S OVER + @ .WORD

LOOP DROP

We can now define SWORDS using the dataspace at
HERE as a work array.
: SWORDS

d e p t h O = ? ? LAST (x t)
ALIGN 0 HERE !
begin

?DUP
w h i l e

d u p >NAME HERE PUSH
>PREVIOUS

repeat ()

HERE OUNT ['I CCOMPARE QSORT
HERE .NAMES

I apologize for doing one of the worst things someone
writing about a program can d-using undefined hnc-
tions. However my purpose is to show a method. I don't
know what the words will be in your system, and you will
have to work that out yourself.

I hope that you have UNDER+ as a primitive in your
system. A high-level definition if you don't is-
: UNDER+ r o t + s w a p ;

UNDER+ should have been used in S k i p L o w e r s and
P a r t i t i o n in the q u i c k s o r t suite.

? ? thingy is identical to I F thingy THEN. I don't
know how to define it in your system.

The name OUNT is a pun which I'll leave for you to
discover and groan over.

In This Forth dataspace and codespace are separate.
" @ " is for dataspace; " h a s " gives you what codespace has.

...
one routine so that it can serve well in several different

Alamo contexts dogs us in many ways-particularly when a loop
is responsible for the apparent inflexibility of a routine. I'll

FORML ... have more to say about the issue of coaxing flexibility out

(Fast Forthward, continued from page 43.)

However, our experience with Forth vocabulary imple-
mentations is considerable. We should know about more
alternatives by now. Some changes to consider are:

Assuming that the current vocabulary should always be
at the top of the search order, F I N D could be altered
to search the current vocabulary before searching the
vocabularies in the vocabulary stack.
If the current vocabulary should be at the top of the
search order provisionally-such as only during com-
pilation-then F I N D could search the current vocabu-
lary when the variable KERNEL-MANAGED-VOC is
non-zero. The routines that invoke interpretation mode
can set it to zero. The routines that invoke compilation
mode can set it to a non-zero value.

Either of these options could help reduce the number
of "cooks in the kitchen." The vocabulary stack could be
left untouched by computer hands (so to speak). From a
user-interface vantage, the vocabulary stack is better
controlled when subject to explicit manipulation by the
programmer only. It should not remain subject to implicit
manipulation due to vocabulary operations buried inside
a sprinkling of Forth kernel words.

We should try more varied resources for search-order
control to see how they feel. Name-space management
might be handled by scoping mechanisms more aligned
with traditional programming languages.

Note that all these old and any new vocabulary-
oriented tools seek the same thing. They seek to fine-tune
the behavior of FIND'S search loop according to various
input-stream processing contexts. We should identify
more precisely what those contexts are and why we need
to cater to each one differently. Better solutions often
come to us when we develop a complete understanding
of the problem that we want to solve.

To Be Continued.. .
In summary, ineffective routine and user interfaces can

be annoying to programmers and users. Defects are
certain to reduce programmer productivity. Accordingly,
the more conversant we become with interface design
principles, the better off we will be. Besides, it will help
us secure Forth's reputation as a rapid development tool.

Code refinernem is often a matter of routine-to-routine
interface refinement. Dismissing interfacing concerns
merely as a religious debate to be carried on by the GUI

Forth Interest Group centerfold

Harvard Softworks 20

of routines that rely on loops in the next installment of this
@rowing) series,

Meanwhile, are there more Forth interface issues that
you know about and that should be brought out into the

Silicon Composers 2 o~en?Do~ouhavean~ideasaboutdis~lacingvocabular-
ies? I'd be interested in hearing your answers to these
questions.

Forth Dimensions 19 May 1994 June

HARVARD SOFTWORKS
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

Just how good is HS/FORTH? Well, it's already
good enough to control mile long irrigation arms to water
the nations crops, good enough to control orbiting shuttle
experiments, good enough to analyze the nation's blood
supply and to control the telephone switching systems.
It monitors pollution (nuclear and conventional) and
simulates growth and decline of populations. It's good
enough to simulate and control giant diesel generator -
engines and super cooled magnet arrays for particle
accelerators. In the army and in the navy, at small
clinics and large hospitals, even in the National Archives,
HSIFORTH helps control equipment and manage data.
It's good enough to control leading edge kinetic art, and
even run light shows in New York's Metropolitan
Museum of Art. Good enough to form the foundation of
several of today's most innovative games (educational
and just for fun), especially those with animation and
mini-movies. If you've been zapping Romulans, governing
nations, airports or train stations, orjust learning to type
- you may have been using HSIFORTH.

Our customers come from all walks of life. Doctors,
lawyers and Indian Chiefs, astronomers and physicists,
professional programmers and dedicated amateurs,
students and retirees, engineers and hobbyists, soldiers
and environmentalists, churches and social clubs.
HSIFORTH was easy enough for all to learn, powerful
enough to provide solutions, compact enough to fit on
increasingly crowded disks. Give us a chance to help you
too!

You can run HSIFORTH under DOS or Microsoft
Windows in text andlor graphics windows with various
icons and pif files for each. What I really like is cranking
up the font size so I can still see the characters no
matter how late it is. Now that's useful. There are few
limits to program size since large programs simply grow
into additional segments or even out onto disk. The Tools
& Toys disk includes a complete mouse interface with
menu support in both text and graphics modes. With
HSIFORTH, one .EXE file and a collection of text files
are all that you ever need. Since HSIFORTH compiles to
executable code faster than most languages link, there is
no need for wasteful, confusing intermediate file clutter.

HSlFORTH runs under MSDOS or PCDOS,
or from ROM. Each level includes all features
of lower ones. Level upgrades: $25. plus price
difference between levels. Source code is in
ordinary ASCII text files.

HSlFORTH supports megabyte and larger
programs & data, and runs as fast as 64k
limited Forths, even without automatic
optimization -- which accelerates to near
assembler language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminate
headers without recompiling. Compile 79 and
83 Standard plus F83 programs.

PERSONAL LEVEL $299.
Fast direct to video memory text
& scaled/clipped/windowed graphics in bit
blit windows, mono, cga, ega, vga, all
ellipsoids, splines, bezier curves, arcs,
turtles; lightning fast pattern drawing
even with irregular boundaries; powerful
parsing, formatting, file and device ID;
DOS shells; interrupt handlers;
call high level Forth from interrupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file search paths; format to strings.
software floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4
words, 1..4 dimension var arrays;
automatic optimizer delivers machine
code speed

PROFESSIONAL LEVEL $399.
hardware floating point - data structures fr

all data types from simple thru
complex 4D var arrays - operations
complete thru complex hyperbolics;
turnkey, seal; interactive dynamic linker f?x

foreign subroutine libraries; round
robin & interrupt driven multitaskers;
dynamic string manager; file blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $499.
Metawmpiler: DOSmOM/direct/indirect;
threaded systems start a t 200 bytes,
Forth cores from 2 kbytes;
C data structures & struct+ compiler;
MetaGraphics lbrboWindow-C library,
200 graphidwindow functions, PostScript

style line attributes & fonts, viewports.

ONLINE GLOSSARY $46.

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

FOOPS+ with multiple inheritance $ 79.
TOOLS & TOYS DISK $ 79.
286FORTH or 386FORTH $299.

16 Megabyte physical address space or
gigabyte virtual for programs and data; DOS
& BIOS fully and freely available; 32 bit
addressloperand range with 386.
ROMULUS HS/FORTH from ROM $99.

Shippinglsystem: US: $9. Canada: $21. foreign:
$49. We accept MC, VISA, & AmEx

Understanding F83
Vocabulary Usage

I Byron Nilsen

The concept of "vocabularies" is aunique feature of the
Forth language. We may ignore them at first, since a typical
computer such as F83 defines the most popular words in
the FORTH vocabulary, which is always available after the
compiler is loaded. But eventually we will want to access
words defined in other vocabularies, and when this need
arises some confusion may follow.

Vocabularies provide a means to isolate groups of
definitions so as to avoid conflicts that can occur if two or
more definitions (in different parts of the program and
dealing with different issues) are given the same name.
They also admit a narural and easy way to preserve order
in large applications programs, and can reduce compila-
tion time by allowing the compiler to forego searching
through groups of definitions that do not immediately
pertain. Thoughtfully grouping definitions into various
vocabularies with meaningful names can greatly enhance
the interactive readabiliry and maintainability of the pro-
gram by other people-an important, but too-often-
neglected consideration.

I t is worthwhile to be aware
of these behaviors and to
observe a few simple rules...

Another valuable use of vocabularies is in creating
"turnkey" applications wherein it is not desirable to
expose the entire Forth lexicon. F83 supports the word
SEAL which effectively "hides" all but one designated
vocabulary. This is an easy way to protect a program from
accidental or malicious tampering without having to
rewrite all the keyboard-handling routines.

Or perhaps the programmer(s) might wish to keep new
definitions in small "semi-private" vocabularies while a
program is being developed. What Forth programmer
hasn't had occasion to wonder exactly how the name of
a word was spelled a few days earlier, when referencing
it in a later definition? It's much easier to find (using
WORDS) in a fairly small vocabulary. This is especially
useful when several programmers are collaborating on a
project.

The Forth-83 Standard does not prescribe how vocabu-
laries are to be accessed, other than that the CONTEXT
vocabulary shall be searched for pre-defined words, and
the CURRENT vocabulary shall receive new definitions.
F83 supports a search-order list of up to eight vocabular-
ies, with that pointed to by CONTEXT being the first. There
is no limit to how many vocabularies may exist, but only
eight at a time can be in the search order. The CURRENT
vocabulary is not searched unless it is also included in the
CONTEXT search order.

As released by Laxen and Perry, F83 is comprised of
these nine vocabularies:
ROOT contains a small number of vocabulary-

related words such as ONLY, ALSO, FORTH,
etc. It will always be last in the search order.

BUG holds "low-level" definitions used by the
high-level words DEBUG and SEE. (Here,
"high level" means "defined in the FORTH
vocabulary.)

ED I TOR contains all the words unique to the screen-
editing functions. -

ASSEMBLER contains the 8086 assembly definitions for
CODE and LABEL.

FORTH has all of the Forth-83 Standard definitions,
plus the large collection of extension words
provided by the authors of F83.

DOS contains the definitions needed to interface
with MS(PC)-DOS for disk and console
access.

H I D D E N contains some keyboard, display, and de-
bug/decompile routines.

SHADOW holds definitions that deal with shadow
screens.

USER holds definitions pertaining to multi-task-
ing.

New vocabularies are created by the defining word
VOCABULARY. The header is identical to that of other
definitions. The code field points into the parameter field
of VOCABULARY to find its run-time action (CONTEXT!).
The parameter field contains four thread pointers for
dictionary hashing, and a link to the most recently created

Forth Dimensions 21 May 1994 June

vocabulary. The variable VOC-LINK points to the link cell
in the parameter field of the most recently createdvocabu-
lary.

A multi-vocabulary search order is created by a series
of words such as this:

FORTH Ensure that FORTH is the CONTEXT vo-
cabulary.. .

DEFINTIONS ... then make it the CURRENT vocabulary,
too.

VOCABULARY NEWVOC Create a new vocabulary within
the FORTH vocabulary.

ONLY Clear the context search order, leaving
only ROOT.

FORTH Make FORTH the context, with ROOT
second-in-list.

ALSO FORTH is CONTEXT and also second in
search order.

DOS DOS is now the context. FORTH is sec-
ond-in-list.

ALSO Replicate DOS as both CONTEXT and
second-in-list.

NEWVOC NEWVOC is now the context vocabulary.
DOS is second.

ALSO Replicate NEWVOC as the second vocabu-
lary to be searched.

DEE INITIONS Copy CONTEXT (NEWVOC) to CURRENT.

This produces an "active" vocabulary search order of:

Context: NEWVOC NEWVOC DOS FORTH ROOT

(This is the search order.)
Current: NEWVOC
(New definitions go here.)

(Why NEWVoC appears twice in the search order will be
discussed below.)

The word ALSO replicates CONTEXT, pushing it down
into the search-order list to the limit of eight. Thereafter,
the vocabulary just above ROOT is removed from the list
while CONTEXT is being replicated as the second element.
The word PREVIOUS shifts he sccond vocabulary up into
CONTEXT and shortens the search-order list by one.
ORDER displays the search order, beginning with CON-
TEXT, and also shows the CURRENT vocabulary. VOCS
displays the names of all vocabularies, whether or not they
are part of the search order, in reverse order of creation
(i.e., newest first). ONLY empties the search-order list,
leaving ROOT.

The search order can be altered using "embedded
directives" within a colon definition, by switching out of
compile mode with the left-bracket ([I and naming the
desired vocabulary. The named vocabulary is moved to
CONTEXT, discarding what was iherc. Compilation contin-
ues at the right-bracket (1).

The programmer should be aware hat , while F83 has no
intrinsic mechanism to automatically "manage" the entire
search order, several words do alter CONTEXT. This is usually
done in such a way as to go unnoticed, but there are some
May 1994 June

situations that can be disruptive. Consider the following:
E D I T replicates CONTEXT (using ALSO) and makes

EDITOR the CONTEXT vocabulary. DONE finishes the
edit, updates the disk buffer, and restores the original
context by executing PREVIOUS. Attempting to interac-
tively compile a word while editing is possible, but may
cause headaches. It is generally wise to eschew such
activities when E D I T is active.

CODE saves the CONTEXT vocabulary in a variable,
then invokes ASSEMBLER. The original context will be
restored by END-CODE. But-an error will occur if the
new code definition calls for a variable or constant that
was defined in the original CONTEXT vocabulary and ifa
second reference to that vocabulary is not in the search
ordedThe word will not be found! This potential problem
could, perhaps, be avoided by rewriting CODE and END-

CODE to mimic EDIT and DONE. It's better just to have an
extra reference elsewhere in the list.

LABEL makes ASSEMBLER the CONTEXT vocabulary
but does not save the original context. Because label
definitions do not terminate with END-CODE, ASSEM-
BLER remains as the CONTEXT vocabulary. As with CODE,

LABEL could be redefined (by adding ALSO) to at least
postpone the loss of a vocabulary from the search order.
But then, repeated label definitions would soon push
everything except ASSEMBLER and ROOT out of the list!
This implies that label definitions must be terminated with
a word similar to DONE. Not necessary! Here again, no
problem exists so long as CONTEXT is replicated in the list.
(Restoring the original search order by executing P R E V I -

OUS and ALSO after compiling a label definition is good
practice, but should not really be necessary.)

The colon (:) copies CURRENT into CONTEXT. This is
done so as to consistently restore CONTEXT in the event
that it has been altered by a LABEL or embedded directive.
There is a very good possibility that the programmer wants
the CURRENT vocabulary and the CONTEXT vocabulary to
be the same anyway. Thus, when a colon definition
follows a labeled one, everything returns to normal. But,
if an attempt is made to "temporarily" include a vocabulary
by making it the CONTEXT before beginning to compile a
colon definition, it will be discarded by execution of the
colon! (This is where embedded directives are useful.)
Being always obliged to have CONTEXT and CURRENT the
same might annoy the programmer who seeks maximum
compilation speed when all constituents of new words to
be compiled into one vocabulary just happen to be
defined in another. "Ideally," the vocabulary holding those
definitions should be first in the search order. If this is
really important enough, the colon itself may be redefined,
omitting the portion that copies CURRENT into CONTEXT.

Compiler directives embedded in a colon definition
(e.g., . . . [DOS] . . .) should pose no problem, so long
as the extra context reference is present. Howel~er, a
problem can occur if a definition holds an embedded
directive to change the nurnberbase(e.g., . . . [HEX I . . .)
and the programmer-noting that CONTEXT is always
restored to what it was before (same as CURRENT&
assumes that all such embedded directives are in effect

22 Forth Dimensions

FIG
MAIL ORDER FORM

HOW TO USE THIS FORM: Please enter your order on the back page of this form and send with your payment to the Forth Interest Group.
All Items have one price and a weight marked with a # sign. Enter weight on order form and calculate shipping based on location and delivery method.

FORML, Article Reference 152 - $4 0# * An index of Forth articles by keyword, author, and date from the
FORML Conference Proceedings (1980-93).

"Were Sure YOU Wanted TO Know ..."
Forth Dimensions, Article Reference 151 - $4 0# * An index of Forth articles, by keyword, from Forth Dimensions

Volumes 1-14 (1978-93).

FORTH DIMENSIONS BACK VOLUMES

1982 FORML PROCEEDINGS 312 - $30 4#
Rockwell Forth processor, virtual execution, 32-bit Forth, ONLY
for vocabularies, non-IMMEDIATE looping words, number-
input wordset, 110 vectoring, recursive data structures, program-
mable-logic compiler. 295 pgs

A volume consists of the six issues from the volume year (May-April)

Volume 1 Forth Dimensions (1979-80) 101 - $ I 5 I#
introduction to FIG, threaded code, TO variables, fig-Forth.

Volume 6 Forth Dimensions (1984-85) 106-$15 2#
Interactive editors, anonymous variables, list handling, integer
solutions, control structures, debugging techniques, recursion,
semaphores, simple 110 words, Quicksort, high-level packet
communications, China FORML.

Volume 7 Forth Dimensions (1985-86) 107 - $20 2#
Generic sort, Forth spreadsheet, control structures, pseudo-
interrupts, number editing, Atari Forth, pretty printing, code
modules, universal stack word, polynomial evaluation, F83
strings.

Volume 8 Forth Dimensions (1986-87) 108 - $20 2#
Interrupt-driven serial input, data-base functions, TI 99/4A,
XMODEM, on-line documentation, dual CFAs, random
numbers, arrays, file query, Batcher's sort, screenless Forth,
classes in Forth, Bresenham line-drawing algorithm, unsigned
division, DOS file 110.

Volume 9 Forth Dimensions (1987-88) 109 - $20 2#
Fractal landscapes, stack error checking, perpetual date
routines, headless compiler, execution security, ANS-Forth
meeting, computer-aided instruction, local variables,
transcendental functions. education. relocatable Forth for

Volume 10 Forth Dimensions (1988-89) 1 10 - $20 2#
dBase file access, string handling, local variables, data
structures, object-oriented Forth, linear automata, stand-alone
applications. 8250 drivers, serial data compression.

Volume 11 Forth Dimensions (1989-90) I l l - $ 2 0 2#
Local variables, graphic filling algorithms, 80286 extended
memory, expert systems, quaternion rotation calculation,
multiprocessor Forth, double-entry bookkeeping, binary table
search, phase-angle differential analyzer, sort contest.

Volume 12 Forth Dimensions (1990-9 1) 112 - $20 2#
Floored division, stack variables, embedded control, Atari
Forth, optimizing compiler, dynamic memory allocation, smart

FORML CONFERENCE PROCEEDINGS
FORML (Forth Modification Laboratory) is an educational
forum for sharing and discussing new or unproven proposals
intended to benefit Forth, and is an educational forum for
discussion of the technical aspects of applications in Forth.
Proceedings are a compilation of the papers and abstracts
presented at the annual conference. FORML is part of the Forth
Interest Group.

1983 FORML PROCEEDINGS 313 - $30 2#
Non-Von Neuman machines, Forth instruction set, Chinese
Forth, F83, compiler & interpreter co-routines, log & exponential
function, rational arithmetic, transcendental functions in
variable-precision Forth, portable file-system interface, Forth
coding conventions, expert systems. 352 pgs

1984 FORML PROCEEDINGS 314 - $30 2#
Forth expert systems, consequent-reasoning inference engine,
Zen floating point, portable graphics wordset, 32-bit Forth,
HP71B Forth, NEON--object-oriented programming, decom-
piler design, arrays and stack variables. 378pgs

1986 FORML PROCEEDINGS 316-$30 2#
Threading techniques, Prolog, VLSI Forth microprocessor,
natural-language interface, expert system shell, inference engine,
multiple-inheritance system, automatic programming environ-
ment. 323pgs

1987 FORML PROCEEDINGS 317 - $40 3#
Includes papers from '87 euroFORML Conference. 32-bit Forth,
neural networks, control structures, AI, optimizing compilers,

L

hypertext, field and record structures, CAD command language,
object-oriented lists, trainable neural nets, expert systems.
463 pgs

1988 FORML PROCEEDINGS 318 - $40 2#
Includes 1988 Australian FORML, Human interfaces, simple
robotics kernel, MODUL Forth, parallel processing,
programmable controllers, Prolog, simulations, language topics,
hardware, Wil's workings & Ting's philosophy, Forth hardware
applications. ANS Forth session, future of Forth in A1
applications. 310 pgs

1989 FORML PROCEEDINGS 319 - $40 3#
Includes papers from '89 euroFORML. Pascal to Forth,
extensible optimizer for compiling, 3D measurement with object-
oriented Forth, CRC polynomials, F-PC, Harris C cross-
compiler, modular approach to robotic control, RTX recompiler
for on-line maintenance, modules, trainable neural nets. 433 pgs

1991 FORML PROCEEDINGS 321 - $50 3#
Includes 1991 FORML (Asilomar), euroFORML '91 1
(Czechoslovakia) and 1991 China FORML (Shanghai).
differential file comparison, LINDA on a simulated network,
QS2: RISCing it all, A threaded microprogram machine, Forth in
networking, Forth in the Soviet Union, FOSM: A Forth String
Matcher, VGA Graphics and 3-D animation, Forth and TSR,
Forth CAE system, applying Forth to electric discharge
machining, MCS96-FORTH single chip computer. 500pgs

1992 FORML PROCEEDINGS 322 - $40 2#
Object oriented Forth bases on classes rather than prototypes,
color vision sizing processor, virtual file systems, transparent
target development, Signal processing pattern classification,
optimization in low level Forth, local variables, embedded Forth,
auto display of digital images, graphics package for F-PC, B-tree
in Forth 200 pgs

1981 FORML PROCEEDINGS 311-$45 4#
CODE-less Forth machine, quadruple-precision arithmetic,
overlays, executable vocabulary stack, data typing in Forth,
vectored data structures, using Forth in a classroom, pyramid
files, BASIC,LOGO,automatic cueinglanguage for multimedia,
NEXOS-a ROM-based multitasking operating system. 655pgs

k These are your most up-to-date indexes for back issues of Forth Dimensions and the FORML proceedings.

Fax your orders: 510-535-1295

BOOKS ABOUT FORTH

ALL ABOUT FORTH, 3rd ed., June 1990, Glen B. Haydon 201 - $90 4#
Annotated glossary of most Forth words in common usage,
including Forth-79, Forth-83, F-PC, MVP-Forth. Implementa-
tion examples in high-level Forth andlor 8086188 assembler.
Useful commentary given for each entry. 504 pgs

eFORTH IMPLEMENTATION GUIDE, C.H. Ting 215-$25 I#
eForth is the name of a Forth model designed to be portable to
alargenumber of thenewer, more powerful processors available
now and becoming available in the near future. 54pgs (wldisk)

Embedded Controller FORTH, 8051, William H . Payne 216 - $65 2#
Describes the implementation of an 805 1 version of Forth. More
than half of this book contains source listings (wldisks C050)
511 pgs

F83 SOURCE, Henry Laxen & Michael Perry 217 - $20 2#
A complete listing of F83, including source and shadow screens.
Includes introduction on getting started. 208pgs

FORTH: A TEXT AND REFERENCE 219- $31 2#
Mahlon G. Kelly & Nicholas Spies
A textbook approach to Forth, with comprehensive references to
MMS-FORTH and the '79 and '83 Forth standards. 487pgs

THE FIRST COURSE, C.H. Ting 223 - $25 I#
This tutorial's goal is to expose you to the very minimum set of
Forth instructions you need to use Fo;h to solve practical
problems in the shortest possible time. ... This tutorial was
developed to complement The Forth Course which skims too
fast on-the elementary Forth instructions and dives too quickly
in the advanced topics in a upper level college microcomputer
laboratory ..." A running F-PC Forth system would be very
useful. 44 pgs

OBJECT-ORIENTED FORTH, Dick Pountain 242 - $35 I#
Implementation of data structures. First book to make object-
oriented programming available to users of even very small
home computers. 11 8 pgs

SEEING FORTH, Jack Woehr 243 - $25 I#
"... I would like to share a few observations on Forth and
computer science. That is the purpose of this monograph. It is
offered in the hope that it will broaden slightly the streams of
Forth literature ..." 95 pgs

SCIENTIFIC FORTH, Julian V. Noble 250 - $50 2#
Scientific Forth extends the Forth kernel in the direction of
scientific problem solving. It illustrates advanced Forth
programming techniques with non-trivial applications:
computer algebra, roots of equations, differential equations,
function minimization, functional representation of data (m,
polynomials), linear equations and matrices, numerical
integration1Monte Carlo methods, high-speed real and complex
floating-point arithmetic. 300 pgs (Includes disk with
programs and several utilities), IBM

STACK COMPUTERS, THE NEW WAVE 244 - $62 2#
Philip J. Koopman, Jr. (hardcover only)
Presents an alternative to Complex Instruction Set Computers
(CISC) and Reduced Instruction Set Computers (RISC) by
showing the strengths and weaknesses of stack machines.

STARTING FORTH (2nd ed.), Leo Brodie 245 - $29 2#
In this edition of Starting Forth-the most popular and
complete introduction to Forth-syntax has been expanded to
include the Forth-83 Standard. 346pgs

WRITE YOUR OWN PROGRAMMING LANGUAGE USING C++,
Norman Smith 270- $15 I#

This book is about an application language. More specifically,
it is about how to write your own custom a~olication lanrruage.

THE FORTH COURSE, Richard E. Haskell 225 - $25 I#
This set of 11 lessons, called The Forth Course, is designed to
make it easy for you to learn Forth. The material was developed

FORTH NOTEBOOK, Dr. C.H. Ting 232 - $25 2#
Good examples and applications. Great learning aid. poly-
FORTH is the dialect used. Some conversion advice is included.
Code is well documented. 286 pgs

The book contains the 601s necessary to bkgin the proc&s &d
a complete sample language implementation. [Guess what
language!] Includes disk with complete source. 108 pgs

over several years of teaching Forth as part of a seniorlgraduate
course in design of embedded software computer systems at
Oakland University in Rochester, Michigan. 156pgs (wldisk)

FORTH ENCYCLOPEDIA, Mitch Derick & Linda Baker 220 - $30 2#
A detailed look at each fig-Forth instruction. 327pgs

FORTH NOTEBOOK 11, Dr. C.H. Ting 232a - $25 2#
Collection of research papers on various topics, such as image
processing, parallel processing, and miscellaneous applications.
237pgs

ACM - SIGFORTH
The ACM SIGForth Newsletter is published quarterly by the
Association of Computing Machinery, Inc. SIGForth's focus is
on the development and refinement of concepts, methods, and
techniques needed by Forth professionals.

FORTH: The New Model, Jack Woehr 233 - $45 2#
This book teaches Forth and the proposed new standard from the
perspective of a Technical Committee member. You will find it
especially helpful if you are: An experienced Forth programmer
who wishes to become familiar with the draft-proposed standard
for Forth, a Forth programmer who needs to know how to convert
existing programs to the new proposed standard, a programmer,
experienced in other languages, who is using Forth for anembedded
control project. or a beginning Forth programmer who wishes to
learn the language. 315 pgs, w/disk

F-PC USERS MANUAL (2nd ed., V3.5) 350 - $20 I#
Users manual to the public-domain Forth system optimized for
IBM PCIXTIAT computers. A fat, fast system with many tools.
143 pgs

F-PC TECHNICAL REFERENCE MANUAL 351 - $30 2#
A must if you need to know the inner workings of F-PC. 269pgs

INSIDE F-83, Dr. C.H. Ting 235 - $25 2#
Invaluable for those using F-83. 226pgs

LIBRARY OF FORTH ROUTINES AND UTILITIES,
ast James D. Terry 237 - $23 2#

Comprehensive collection of professional quality computer
code for Forth; offers routines that can be put to use in almost any
Forth application, including expert systems and natural-
language interfaces. 374 pgs

Volume 1 #I -#4 911 -$24 2#
F-PC, glossary utility, euroForth, SIGForth '89 Workshop
summary (real-time software engineering), Intel 8 0 x 8 ~ .
Metacompiler in cmForth, Forth exception handler, string case
statement for UFForth. 1802 simulator, tutorial on multiple
threaded vocabularies. Stack frames, duals: an alternative to
variables, PocketForth.

Volume 2 #I-#4 912-$24 2#
ACM SlGForth Industry Survey, abstracts 1990 Rochester conf.,
RTX-2000. BNF Parser, abstracts 1990 Rochester conf., F-PC
Teach. Tethered Forth model, abstracts 1990 SIGForth conf.
Target-meta-cross-: an engineer's viewpoint, single-instruction
computer.

Volume 3, #1-#4 913 - $24 2#
Co-routines and recursion for tree balancing, convenient number
handling. Postscript Issue, What is Postscript?, Forth in
Postscript, Review: PS-Tutor.

I I

For faster service, fax your orders: 510-535-1295

DISKS: Contributions from the Forth Community
The "Contributions from the Forth Community" disk library contains
author-submitted donations, generally including source, for a variety
of computers & disk formats. Each file is determined by the author as
public domain, shareware, or use with some restrictions. This library
does not contain "For Sale" applications. To submit your own contri-
butions, send them to the FIG Publications Committee.

Count any number of disks as equal t o U
FLOAT4th.BLK V1.4 Robert L. Smith COO1 - $8

Software floating-point for fig-, poly-, 79-Std., 83-Std.
Forths. IEEE short 32-bit, four standard functions, square
root and log.
*** IBM, 190Kb, F83

Games in Forth COO2 - $6
Misc. games, Go, TETRA, Life . . . Source.

* IBM,760Kb

A Forth Spreadsheet, Craig Lindley COO3 - $6
This model spreadsheet first appeared in Forth Dimensions
VI1/1,2. Those issues contain docs & source.

* IBM, 100Kb

Automatic Structure Charts, Kim Harris COO4 - $8
Tools for analysis of large Forth programs, first presented at
FORMLconference. Full source;docs incl. in 1985 FORML
Proceedings.

** IBM, 114Kb

A Simple Inference Engine, Martin Tracy COO5 - $8
Based on inf. engine in Winston & Horn's book on LISP,
takes you from pattern variables to complete unification
algorithm, with running commentary on Forth philosophy &
style. Incl. source.

** IBM, 162 K b

The Math Box, Nathaniel Grossman COO6 - $10
Routines by foremost math authorinForth. Extended double-
precision arithmetic, complete 32-bit fixed-point math, &
auto-ranging text. Incl. graphics. Utilities for rapid
polynomial evaluation, continued fractions & Monte Carlo
factorization. Incl. source & docs.

** IBM, 118Kb

AstroForth & AstroOKO Demos, I.R. Agumirsian COO7 - $6
AstroForth is the 83-Std. Russian version of Forth. Incl.
window interface, full-screen editor, dynamic assembler &
a great demo. AstroOKO, an astronavigation system in
AstroForth, calculates sky position of several objects from
different earth positions. Demos only.

* IBM, 700 K b

Forth List Handler, Martin Tracy COO8 - $8
List primitives extend Forth to provide a flexible, high-
speed environment for AI. Incl. ELISA and Winston &
Horn's micro-LISP as examples. Incl. source & docs.

** IBM, 170Kb

8051 Embedded Forth, William Payne C050 - $20
8051 ROMmable Forth operating system. 8086-to-8051
target compiler. Incl. source. Docsarein the book Embedded
Controller Forthfor the 8051 Family. Included with item
#216
*** IBM HD, 4.3 M b

68HCl l Collection C060 - $16
Collection of Forths, tools and floating point routines forthe
68HC 1 1 controller.
*** IBM HD, 2.5 Mh

1 F83 V2.01. Mike Peny & Henry Laxen CIOO - $20
The newest version. oorted to a varietv of machines. Editor. , . ~ ~- -. - -

assembler, decompiler, metacompiler. Source and shadow
screens. Manual available separately (items 217 & 235).
Base for other F83 applications.

* IBM, 83,490 K b

F-PC TEACH V3.5, Lessons 0-7 Jack Brown C201 - $8
Forth classroom on disk. First seven lessons on learning Forth,
from Jack Brown of B.C. Institute of Technology.

* IBM HD, F-PC, 790 Kb

VP-Planner Float for F-PC, V 1.01 Jack Brown C202 - $8
Software floating-point engine behind theVP-Plannerspreadsheet.
80-bit (temporary-real) routines with transcendental functions,
number V 0 support, vectors to support numeric co-processor
overlay & user NAN checking. ** IBM, F-PC, 350 K b

F-PC G r a hics V4.6, Mark Smiley C203 - $10
The Patest versions of new graphics routines, including CGA,
EGA, and VGA suppport, with numerous improvements over
earlier versions created or supported by Mark Smiley.

** IBM HD, F-PC, 605 Kb

PocketForth V6.1, Chris Heilman C300 - $12
Smallest completeForth for the Mac. Access to all Mac funct~ons,
events, files, graphics, floating point, macros, create standalone
applications and DAs. Based on fig &Starting Forth. Incl. source
and manual. * MAC, 640 Kb, System 7.01 Compatible.

Kevo V0.9b6, Antero Taivalsaari C360 - $ I0
Complete Forth-like object Forth for the Mac. Object-Prototype
access to all Mac functions, files, graphics, floating point, macros,
create standalone applications. Kernel source included, extensive
demo files, manual.
*** MAC, 650 Kb, System 7.01 Compatible.

Yerkes Forth V3.66 C350 - $20
Complete object-oriented Forth for the Mac. Object access to all
Mac functions, files, graphics. floating point. macros, create
standaloneapplications. Incl. source, tutorial, assembler &manual.

** MAC, 2.4Mb, System 7.1 Compatible.

Pygmy V 1.4, Frank Sergeant CS00 - $20
A lean, fast Forth with full source code. Incl. full-screen ed~tor,
assembler and metacompiler. Up to 15 files open at a time.

** IBM,320 K b

KForth, Guy Kelly C600 - $20
A full Forth system with windows, mouse, drawing and modem
packages. Incl. source & docs.

** IBM, 83,2.5 M b

Mops V2.3, Michael Hore C710 - $20
Close cousin to Yerkes and Neon. Very fast, compiles subroutine-
threaded & native code. Object oriented. Uses F-P co-processor
if present. Full access to Mac toolbox & system. Supports System
7 (e.g., AppleEvents). Incl. assembler, manual & source. ** MAC, 3 Mb, System 7.1 Compatible

BBL & Abundance, Roedy Green C800 - $30
BBLpublic-domain, 32-bit Forth withextensive support of DOS,
meticulously optimized for execution speed. Abundance is a
public-domain database language written in BBL. Incl. source &
docs.
*** IBM HD, 13.8 Mb, hard disk required

Version-Replacement Policy

F-PC V3.5615 & TCOM, Tom Zimmer
A ~ U I I ~ o r t h system with pull-down menus, sequential files, Return the old version with the FIG
editor, forward assembler, metacompiler, floating point.
Complete source and help files. Manual for v3.s available labels and get a new version
separately (items 350 & 351). Base for other F-PC
applications. replacement for 112 the current

* IBM HD, 8 3 , 3 . s ~ b version price.

Starting ** - lntermedlate * * * -~dvanced For faster service, fax your orders: 510-535-1295

T-SHIRT "May the Forth Be With You" 601 - $12 I#
(Specify size: Small, Medium, Large, X-Large on order form)
white design on a dark blue shirt or green design on tan shirt.

Lt:bOSTER (Ocr . 1980 BYTE cover) 602 - $5 I#

I FORTH-83 HANDY REFERENCE CARD 683 - free

FORTH-83 STANDARD 305 - $15 I#
Authoritative description of Forth-83 Standard. For reference,
not instruction. 83 pgs

BIBLIOGRAPHY OF FORTH REFERENCES 340- $18 2#
(3rd ed., January 1987)
Over 1900 references to Forth articles throughout computer
literature. 104pgs

MORE ON FORTH ENGINES

Volume 10 January 1989 810- $15 I#
RTX reprints from 1988 Rochester Forth conference, ob.ject-
oriented cmForth, lesser Forth engines. 87pgs

Volume 11 July 1989 811 - $15 I#
RTX supplement to Footsteps in an Empfy Valley, SC32.32-bit
Forth engine, RTX interrupts utility. 93 pgs

Volume 12 April 1990 812-$15 I# I ShBoom Chio architecture and instructions. neural cornnutine

I module ~ ~ ~ 3 2 3 2 , p~gForth, binary radix sort on 80286,68016
and RTX2000. 87pgs

Volume 13 October 1990 813-$15 I# I PALS of the RTX2OOOMini-BEE.EBForth, AZForth, RTX2IOI.

Volume 14 814- $15 I#
RTX Pocket-Scope, eForth for muP20, ShBoom, eForth for
CP/M & 280, XMODEM for eForth. 116 pgs

Volume 15 815-$15 I#
Moore: new CAD system for chip design, a portrait of the P20;
Rible: QS1 Forth processor, QS2, RISCing it all; P20 eForth
software simulator/debugger. 94 pgs

Volume 16 816-$15 I#
OK-CAD System, MuP20, eForth system words, 386 eForth,
80386 protected mode operation, FRP 1600 - 16-Bit real time
processor. 104 pgs

Volume 17 817-$15 I#
P21 chip and specifications; Pic17C42; eForth for 68HC11,
805 1, Transputer 128 pg.7

DR. DOBB'S JOURNAL back issues
Annual Forth issue, includes code for various Forth applications. I
Sept. 1982, Sept. 1983, Sept. 1984 (3 issues)

JFAR BACK ISSUES
Rochester, 1981 Standards Conference
Rochester, 1989 Industrial Automation
Rochester. 1990 Embedded Svsterns
~ochester, 1991 Automated $stems

FORTH INTEREST GROUP
P. 0. BOX 21 54 OAKLAND, CALIFORNIA 94621 51 0-89-FORTH 51 0-535-1295 (F A X)

(510-893-6784)

*MEMBERSHIP IN THE FORTH INTEREST GROUP
The Forth Interest Group (FIG) is a world-wide, non-proflt, member-supported organization with over 1,500 members and 40 chapters. Your membersh~p includes a subscription to the bl-monthly
magazlne Forth 0,mensions. FIG also offers its members an on-line data base, a large selection of Forth literature and other services. Cost is $40 per year for U.S.A &Canada surface; $46 Canada
air mail; all other countries $52 per year. This fee includes $36 for Forth Dimensions. No sales tax, handling fee, or discount on membersh~p.
When you join, your flrst issue will arrive In four to six weeks; subsequent issues will be mailed to you every other month as they are published-six issues In all. Your membership entltles you to
a 10% discount on publicat~ons and functions of FIG. Dues are not deductible as a charitable contribution for U S. federal Income tax purposes, but may be deductible as a busmess expense.

MAIL ORDERS: PAYMENT MUST ACCOMPANY ALL ORDERS "CALIFORNIA SALES TAX BY COUNTY:
Forth Interest Group 7.75%: Del Norte, Fresno, Imperial, Inyo,
P.O. Box 21 54 PRICES: All orders must be prepaid. Prices are POSTAGE: SHIPPING TIME: Madera. Orange. Riverside, Sacramento.
Oakland. CA 94621 subject to change wlthout notice. Credlt card All orders calculate postage Books in stock are shlpped within San Benlto. Santa Barbara, San Bernardino,
PHONE ORDERS: orders will be sent and billed at current prices. as number of #s times seven daysof receipt oftheorder. San Dlego, and San Joaquln; 8.25%:
510-89-FORTH Creditcard Checks must be In U.S. dollars, drawn on a U.S. selected postage rate. "'SURFACE DELIVERY: Alameda, Contra Costa, Los Angeles San
orders, customer servlce. bank. A $10 charge wilt be added for returned Soeclal handlina available US: 10 days. Other: 30-60 days Mateo. San Francisco. Santa Clara. and

(
CHECK ENCLOSED (Payable to: FIG)

VISAIMasterCard Expiration Date

Card Number

Signature

I Hours: Mon-Fri. 9-5 p.m. checks on request. Santa Cruz; 7.25%: other count~es.

For faster service, fax your orders: 510-535-1295 x v - 6

Sub-Total
10% Member Discount, Member #

**Sales Tax on Sub-Total (CA only)
Postage: Rate x #s

*Mem ers ~p ln t e 'ort nterest 'rou
&iew & e w $ S 6 / 5 !

BtHSHIP Total

only until completion of that definition! Also, attempting
to continue compiling after a "crash" may b e unsuccessful
if the search order was altered by any of the above events.

Summary
Many Forth programmers will probably lead long and

productive lives writing much useful code without ever
noticing what might be happening to the CONTEXT vocabu-
lary during compilation. It is, nevertheless, worthwhile to be
aware of these behaviors and to observe a few simple rules:

Always replicate the CONTEXT vocabulary with ALSO
before beginning compilation-most certainly when
CODE or LABEL definitions are planned, or if embed-
ded, context-altering directives are expected. The
compiler's dictionary-search routine (FIND) antici-
pates this replication and skips over a vocabulary if it
is the same as that just previously scanned, thereby
diminishing any compilation-speed penalty.
Be wary of embedded compiler directives. Remember
that anything done between the brackets remains in
effect until explicitly changed again.
Use caution if performing any non-editing operations
while a screen edit is in progress. An extra reference to the
original CONTEXT vocabulary can help to avoid some
problems here, but a risk of trashing the edit does exist.
Be content that CONTEXT and CURRENT will normally
be the same vocabulary during colon compilation.

(Interaclive Embedded Darelopment, from page I I .)
systems, he admitted that the system his company had just
bought for $8000 did not have the interactiveness described
here. Our software cost about one-tenth as much, and our
system used no special hardware.

This will b e a good challenge for anyone doing
embedded systems programming. I have used it as de-
scribed here without problems for a couple of major
projects. It's beautiful to b e able to hit the backspace key,
change just a digit or a word, and instantly try your code
again, without leaving the editor, and on the target to boot!
It also seems to improve your chances of finding and fixing
bugs early in the game. The automated test system I
mentioned earlier has been in daily use for nearly two
years, and not a single bug has shown u p in that time.

I hope this description was clear enough for many to pick
it up and run with it. After all, crawling is not the Forth way.

Garth Wilson began programming in Fortran and assembly in college in 1982.
Three types of BASIC and Forth were among the languages he later used for
data acquisition and automated test equipment. He wrote the code for a flight-
following computer in assembly. Much of his early programming was on a
series of TI and HP hand-held programmables, which he used to facilitate a
wide range of work. A friend told him a little about Forth in 1985, but it wasn't
until 1989 that he picked up Brodie's book and started getting to know Forth.
As a project to learn Forth, he wrote a cross-assembler and linker program. He
enjoyed the language immensely, and was delighted to see development time
plunge. Programming has been a part of his job since 1986. Now he is part
owner of an aircraft communicalions company. He can be reached by phone
at 310-695-7054 or by mail at 1 1 123 D~cky Street, Whittier, California 90606.

' $10 OFF A RENTAL OR
Study These Great Offers. 1 I . Ccinficate $20 15 valld OFF for $10 ANUPGRADE OFF a rmt.11 or $20 OFF I

upqradc charqec. The smart molley is on Alamo. operated nationwide to ensure a I o;dY one ce;tlfi~.irc er rental not to be uecd ~n col~junctlon
I

Now you can e11joy $10 OFF any uniform standard of quality. tvlth an\, other ccm&atec/oE~n. I
I Ccrtlficbte 111ust he resrnted at the Alan10 counter on aln\~al. I rental of three ddys or more or As a you'll I . Th15 cert~ficitr n re8eniahle at ru A i s ~ i o laatlorn 111 the

U.S.A. only. Orlce rcdeenied, this certlficatr I\ vold. $30 OFF an upgrade on rentals of other valuable coupons throughout I . T I I ~ ccmfiiate and the car rental utuuant to It are subject to
I

two days or niore with Alan~o's Alanlo', condlt~otlc at the tlnle ofirntal. Mlnlmum aqe for I
the year that \vill save you money I rcr~ul IS 21. All renters must have ,I valld driver', 11ccr;ce.

Associ~tion l1rograln. Alld as T h s certlficatc IS noll and \,old ~f .~ltered. re~lsrd or dupllcdted
I

always, you'll get ~~rr l i r r r i tc ' r l~f icc.
On each So study these offers 1

111 anv lV3\-. In the T Y C I I ~ oflo% or exp~rat~oll, ccrtlficdte \VI" I
and select the one that is best for I . not bt? replaced.

OEer valid through Julv 21, 1991- cxcept 02/17/94- I rr~i lcuxc on every rental in the U.S. you. For member reservations call I ,12/19194, ,)3/S1/~j4~,i1/02/~~4, ,ji/26/04.f~i,,28,1)1 and 1
06/30/94-~I7/02i94. In addition, you'll rccrive fiequent your I'rofessional Travel Agent I . No rehlnd will r\rll ‘lnv ulll lied onlo oicemfieatr I flyer mileage credits ~v i th Alaska, or Alamo's Melnbership line at Ccrtlficate 15 not rekee~llab~r (0; cash.

Delta, Hawaiian, United and I . A 24-hour advance reccn.atlon 1s rcqulred. Ilesm~atlo~ic are I
1-800-354-2322' Use Rate Code

USAir. Alan10 features a fine fleet BY and ID# ,37@?/0 I
of General Motors cars and all making reservations.

I
I Vdhd on ~ntmiiedlate throuqh Iilxury car catt.gov

locations are company-o\vned and Offer vahd on rentds of 3 dim to 28 davc.
I

I The maslmunl valuc of thls certificate khlch may be C I ~ 11ed I
I toward upgrade charges IS $10 off (not v h d on tlnie ,lnK

tideage) N O rriulld w111 be qvetl on 'In\, llrluced polrloli of I
I ccrt~fir,~te. Certlfic~te a mlt ;edreniablr for c~sll.

If $20 off an Upgrade is chosen:
I

0-ffer vahd on rental\ of a nllnlrnum of .! &ye and a ~ I A ~ I ~ I U I I I I
ot 28 cL1y5.
The max~nlum value ofthle crrtlficate which rnav be dp lied

I
toward ~~pqradc charges 1s $20 o~i(11ot \.a11d on rr;lle J n R I
nulcaqe). N U rciulld \mil be gven on anv ul~uced pomon of
certl&atr. Crrtlficdte 1s not redeemable for cash I
Upgrade subect to av,ldabllmty .lt tlmc of rcnwl.

For resenJatlons call your Profrcclonal Travel Agent or call
I

Alalno at 1-800-354-2322.

-1 Upgrade
Whaeall thelnik

Rental mbw I
37876ASJ L,-,-,,--,---,,--

Generation and
Application of
Random Numbers
[Article continues in next issue, including Listings Three, Four, and Five, and Figure Three.] I
Dr. Everett F Carter, Jr.
Monterey, California

Anyone who considers arithmetical methods of
producing random digits is, of course, in a state of sin.

-John Von hleumann (1951)

1. Introduction
The famous statement of John von Ncumann notwith-

standing, the generation of random numbers with a com-
puter is a major enterprise. In fact it is estimated that the
world's computers generate ten billion random numbers
persecond (Cooper, 1787). What von Ncumann meant, of
course, is that it is not so easy to generate a random number
with a deterministic algorithm. There are many subtle
problems that can occur and various compromises have to
be made in order to even pretend to generate random
numbers with a computer. In this article we will explore the
generation of random numbers and some important appli-
cations that use such numbers. We will find that there is no
universal solution because different appl~cations demand
different properties of our numbers.

The Forth code that accompanies t h~s article (Listings
One through Five) is written using F-PC V3.56. It requires
the tools files DMULDIV. SEQ for extra words that handle
double-precision integers, and FFLOAT . SEQ for extra
floating-point words. Both of these extra files are ordi-
narily distributed with the F-PC package. Listing Five,
F I L E I O . SEQ, is a collection of support words to make
file I/O simpler.

2. Required Properties of a Good Generator
A good random number generator must reasonably

represent a known probability distribution function (usu-
ally uniform over some finite domain). We do not want
any built-in trends, biases, or periodicities. We usually do
not want the value generated at a given time to be
correlated in any way with previous values (see below for
exceptions).

There are many ways to test the quality of a random
number generator. The two most important quantitative
ones are the x2 test and the lagged correlation.

The lagged correlation will reveal the relationship
between the numbers at one time and at another; it also
can reveal trends and periodicities. The correlation at lag

May 1994 June

z is calculated by the formula,

1 Ciqyi+r-_ Ci&CiVi+r

(all sums are over n - z points in the n point data set).
Usually this quantity is called the cross-cowelation when
x and y represent two different data sets. It is called the
auto-cowelation when x and y are the same data. In this
application (and in the listing), w e a r e interested in the
auto-correlation.

An ideal random number generator will give an auto-
correlation value of 1.0 for z= 0, and a value of 0.0 for any
other value of z. A significant peak at non-zero values of
z indicates that there is a periodicity at that time lag. If the
correlation values slowly drop to zero as zincreases, then
the numbers are not very independent of each other.

The x2 test is for measuring how well the presumed
distribution (generally uniform for these canonical gen-
erators) is represented. This test works the following way.
First divide up the whole interval that the random number
will be within into a finite number of bins or class intervals
(these intervals need not be of the same size, but for
simplicity we will take them to be here). Then we count
the number of random numbers observed within each
interval and calculate the eqectednumber of observations
(when the intervals are uniform, this is just the number of
random numbers used divided by the number of class
intervals). Then we calculate the sum,

y2 =
(ob.sewedi - expected) 2

Z

i= 1
expected

Note that m is the number of class interuals, not the
number of data points. As long as none of the observed
counts is wildly different from the expected values (in
particular if none of them is zero), then the ~2 value can
estimate the probability that the observed data is a
representative sample of the expected distribution (by

1 Forth Dimensions

looking u p the above value in a table of critical x2 values).
For this test, small values are good values. Generally, small
means less than the number of class intervals. Statistics
tables either give the x2 value as a function of the degrees
of freedom or give the reduced ~ 2 , which is the above
quantity divided by the degrees of freedom. In this context
the number of degrees of freedom is just the number of
class intervals minus o n e (m-I).

Listing One, STATS . SEQ, implements ttle auto-corre-
lation and the ~2 tests. Both of the Forth words cor and
chi-2 read the data to be analyzed from a named file. I
used the x2 test o n a test set of 2000 double random
numbers. These were created with test-drand with
drandgen set to r2 5 0d. The result gave ~2 = 21.34 for 29
degrees of freedom. If w e wanted to be 90% confident that
we were sampling a uniform distribution, then the statis-
tics tables say that w e should get a value less than 39.07.
Since w e d i d get a smaller value, then w e accept the
hypothesis that a uniform distribution is being sampled
(with 70% confidence).

Beyond these tests, my favorites are very powerful
qualitative measures. O n e is to plot pairs of random
numbers in a scatter plot, like Figure One. With this kind
of plot, clumps of number, gaps, and patterns can easily
b e seen. The second test is the random walk test. TO

generate a random walk in two dimensions, one divides
the range of the random number generator into four equal
intervals. Then generate a number. I f the value falls in the
first interval, increment the X value. ~f the number falls in
the second, increment the Y value. A number in the third
interval means decrement X. And finally, a number in the
fourth interval means decrement the Y value. For a n
ordinary random walk, the mean squared distance from
the origin is linearly proportional to the amount of time for
the walk. So, generate t steps of a random walk for n
walks, calculate the mean squared distance reached
(averaged over the n walks), and plot this distance versus
time. The word walk-test in 1,isting'l'wo (RANTST. SEQ)

will generate a set of random walks and write the mean
square distances (for X and Y separately) to a named file.
A plot for several values o f t and distance shouMbe roughly
linear, like Figure Two-a; if it bends over like in Figure Two-
b or shows periodicities, then there is a problem.

3. Linear Congruential Generators
One of the most popular methods for generating

random numbers is the l inear congruenlial generalor.
These generators use a method similar to the folding
schemes in chaotic maps. l 'he general formula is,

& = (alk-l+c)mod m (3)

The values a , c, and m are pre-selected constants. a is
known as the multiplier, c i s the increment, and m is the
modulus. The quality of the generator is strongly depen-
dent upon the choice of these constants (a significant part
of Knuth's chapter o n random numbers is dedicated 10 this
topic). The method is appealing however, because once
a good set of the parameters is found, it is very easy to

Forth Dimensions

Program. O n e fairly obvious goal is to make the period
(the time before the generator repeats the sequence) long;
this implies that m should be as large as possible. This
means that 16-bit random numbers generated by this
method have a t most a period of 65,536, which is not
nearly 10% enough for serious applications.

The choice of a = 1277, c = 0, m = 131072 looks okay
for a while but eventually has problems. Figure One-b is
an XY plot for this generator for 2000 pairs; o n e sees linear
bands emerging from the plot. The random walk plot
(Figure TWO-b) shows that after a while the slope changes.
This generator is implemented in the word lcm-bad in
I~isting Three (RANDS . SEQ).

The choice of a = 16807, c = 0, m = 2147483647 is a very
good set of Parameters for this generator. These Param-
eters were published by Park & Miller (1788). This
generator often is known as the minimal s t andard ran-
dom number generator; it is often (but not always) the
generator used for the built-in random number function in
compilers and other software packages. This generator is
implemented in the word lcm - rand in Listing Three.

4. R250
Another useful generator uses a shift-register Sequence.

The implementation known as R250 has several advantages
over a linear congruential generator. First, it has a ve7ylong
period, 2249. m a t is more, this period does not depend
upon the number of bits used in the random number
generator. This makes 16-bit random numbersgeneratedby
R250 adequate for many applications. The very 10% period
makes i t suitable for scientific applications, such as Monte
Carlo and stochastic integration, where many numbers
need to be generated. The implementation ofthis generator
is given in Listing Three. The word r250 generates 16-bit
numbers, while r250d generates positive 32-bit (i.e., 31-
bit) numbers. R250 is also generally much faster to run than
an ICM implementation (my 66MH.Z '486 generated 30000
r250d numbers in 0.55 seconds, and 30000 lcm-rand
numbers in 0.71 seconds); this also pays off when many
numbers need to be generated.

R250 has a n overhead of calling another generator 500
times for Set-up, SO if the set-UP time is counted there won't
b e a speed advantage to R250 when only a small number
of values is to b e generated.

This generator is built from a one-bitrandom generator
that is based upon the equation,
Ik = cik-1 + c21k-2 + . . . + ~p-i Ik-~+l + Ik-pm~d 2 (4)

which applies for each bit. The maximum period of this
sequence is 2P1, s o a large value o f p is called for: we will
use p = 250. We now judiciously choose mosl of the ci
temms to be zero, s o that there are only two terms on the
right-hand side,
Ik = Ik-q + Ikp (5)

and choose q = 103. This means then, to generate a
random bit, w e add the previously calculated 103rd and
250th bits. NOW of course, w e want to generate a random
number of 16 or 32 bits. Obviously this can b e accom-

25 May 1994 June

Figure One. Two-dimensional scatter plots of a good (a, upper plot) and a poor (b , lower plot)
pseudo-random number generator. 2000 pairs were used in each case.

2.5e+09 1 I I I I I

May 1994 June 26 Forth Dimensions

plished by doing the above one-bit addition for each bit
in the desired random number. Noticing that exclusive-or
is the same thing as bitwise addition, w e can d o all the
bitwise additions in parallel by using the above equation
(5) where the Zk are n o w words and the + is exclusive-or.
It is this use of exclusive-or as opposed to the multiply and
modulus that gives R250 a speed advantage over a linear
congruential method.

f +
f d u p
£ 1 . 0 f < n o t \ i s sum >= 1 ?

w h i l e
f d r o p f d r o p f d r o p \ i f s o t r y a g a i n

r e p e a t
f d u p f l n f s w a p f/ -2 i f l o a t f * fsqrt

\ m u l t i p l y t h e t w o r a n d o m n u m b e r s b y

Getting uniformly distributed floating-point values is ob-.
viously done by just dividing by the appropriate value. T o
get uniform integers over a smaller range than the full
range of a canonical uniform integer generator cannot be
done by just taking the modulus with respect to the desired
range-that will change the distribution of the results. This
is especially noticeable if the desired range is nearly the
size of the base range. If the desired range is not too big,
one can use the shuffling technique that is described
below. For large ranges, unfortunately one has to resort to
using floating point and multiplying by the ratio of the
ranges and then truncating the fraction. What about
obtaining distributions other than uniform? '141crc are
many ways of solving this problem (see, for example,
Rubinstein, 1981, for an extensive discussion of this topic)
but w e will only g o into two important methods here.

If w e have a n equation that describes our desired
distribution function, then i t is possible to use some rather
obscure mathematical trickery involving something called
inverse probability to obtain a transformation funclion.
This transformation function takes randorn variables from
one distribution as inputs and outputs random variables in
a new distribution function. Probably ttlc most important
of these transformation functions is known as the 13ox-
Muller (1958) transformation. I t allows us to transform
uniformly distributed randorn variables to a new set of
random variables with a Gaussian (or Normal) distribution,

yl = ,I- cos 27rX~

5. Non-Uniform Distributions
All the generators w e have discussed so far attempt to

generate uniformly distributed integers over some range.

The polar form also takes two uniform floating-point
numbers in the range 0 to 1, from the routine r a n £ as inputs
and returns two Gaussian floating-point numbers (on the
float stack) as output. (The code for r a n £ is in RANTST. SEQ).
The polar form is faster because it does the equivalent of the
sine and cosine geometrically without a call to the trigono-
metric function library. It also is somewhat more robust to
numerical problems that can occur when the result of r a n f
is very close to 0.0 or 1 .O (this willeventually happen to you
if you are generating millions of numbers).

'The Gaussian distribution is of major importance in
modeling natural systems. This is chiefly because of some-
thing called the central-limit theorem. This theorem holds
that if a given process is the result of the sum of many other
processes, then that process will tend towards a Gaussian
distribution as the number of processes composing it gets
large. There are some restrictions for this theorem to hold,
but these restrictions are usually (but not always!) satisfied.

'There are other very important distributions as well; in
particular the Erlang, exponential, and hyper-exponential
distributions are suitable for describing queuing problems
such as those that occur in modeling computer and
comn~unication systems. Transformations for these distri-
butions, based upon inverse probability, can b e found in
the literature (see for example, MacDougall, 1987).

Finding transformations like the Box-Muller is a tedious
process, and in the case of empirical distributions it is not
possible. Another technique for obtaining values from a
different distribution is due to John von Neumann; it is

\ a b o v e f a c t o r
f s w a p f o v e r f *
f - r o t f *

.

Y;! = 4- sin 2nx2

We start with two random numbers, X I and x2, which come
from a uniform distribution (in the range from 0 to 1). Then
apply the above transformations to get two new random
numbers which have a Gaussian distribution with zero
mean and a standard deviation of 1.

The equivalent po la r form of this transformation is:
: POLAR BOX MULLER - -

b e g i n
\ get t w o r a n d o m n u m b e r s i n
\ t h e r a n g e -1 t o 1
2 i f l o a t r a n £ f * f l . O f -
2 i f l o a t r a n f f * £ 1 . 0 f -

\ calculate the sum of the squares
f o v e r f d u p f *
f o v e r f d u p f *

known as [he rejection method.
'I.he mjcction method is basically a 'dart throwing"

approach to solving the problem. In o n e dimension, to
generate a random number from a distribution f(x), one
generates a trial random number, x, from a known
distribution, p(x). ?'he distributionp(x)must be such that
for any x, the probability p(x) 2 f(x). Usually p(x) is taken
to b e uniform, but it is not necessary. A second random
number is generated from a distribution that is uniform o n
the possible range of the desired distribution; call this
number y. If the value y is less than o r equal to f(x), then
w e accept x. If y is greater than f(x1 then w e reject it.

The rejection method is very powerful, since it can be
applied to distributions that are known only in tabular form,
a s w e l l as to analytic distributions. It is also easy to
implement in any number of dimensions. If the domain of
the desired distribution is infinite (like the Gaussian distri-

Forth Dimensions 27 May 1994 June

Figure Two. The mean square distance from the starting point for the X (solid) and Y (dashed) comDonents for
a two-dimensional random walk. Each curve is the average of 50 independent walks. (a, above) is
an example of the result for a good generator (R250); the plot is roughly linear. (b, below) is an
example from a poor generator (LCM-BAD); note how the plot changes slope after about 900 steps.

May 1994 June 28 Forth Dimensions

bution), then a finite truncation approximation must be
used. Depending upon the application, this may or may not
be a problem. In the example of the rejection method
shown in ListingTwo (gaus s-test), we generate Gaussian
random numbers (with zero mean and unit standard
deviation) using the rejection method. We have assumed
that the application is not sensitive to values above 4.0 and
below -4.0. Values like these should occur on the average
once in ten thousand times, but the rejection method will
neverproduce them. The biggest problem with the method
is that it can be inefficient, in the sense that many random
numbers need to be generated in order to keep only a few
of them. The efficiency is controlled by the ratio of the
volume of the starting distribution to the volume of the
desired distribution. If a uniform distribution is used to start
with, then the starting volume is the volume of the box that

as 10-5). In two dimensions, the best possible efficiency is
50% (one good number is produced for every two numbers
generated). This would imply that an acceptable random
number was generated each time. This gets worse in higher-
dimension problems. The efficiency for the one-dimen-
sional truncated Gaussian distribution in the above example
is 15.7%.

In most of the methods used to get a given distribution
function, the easiest starting distribution is uniformly
distributed random variables. Therefore, the ability to
reliably generate uniformly distributed random numbers
is fundamental to applications that use random numbers,
no matter what distribution function is appropriate to the
problem at hand. This is the reason that so much effort is
put into the building of a canonical uniform integer
generator. [Continues in next issue.1

I numbers a week running stochastic models of oceanic currents

1 Listina One. STATS.SEQ

bounds the desired If the desired
distribution has tall peaks, the resulting ratio Can be very'
small (I have used applications where the ratio was as small

\ s t a t s . s e q C a l c u l a t e s s t a t i s t i c s (chi-2 and c o r r e l a t i o n)
\ of f i l e s of numer ica l d a t a
\ NOTE: U s e s f l o a t i n g p o i n t numbers i n t h e i r own s t a c k
\ (c) Copyr igh t 1994 E v e r e t t F . C a r t e r . Pe rmiss ion i s g r a n t e d by t h e
\ a u t h o r t o u s e t h i s s o f t w a r e f o r any a p p l i c a t i o n p r o v i d e d t h e c o p y r i g h t
\ n o t i c e i s p r e s e r v e d .

Everett Carter is an Assistant Professor of Oceanography at the Naval Post-
graduate school. Prof. Carter wrote the Forth system for and helped design the
RAFOS float which is being used internationally as part of the World Ocean
Circulation Experiment. Back on land, he generates several billion random

I : s t a t s - t a s k ;

needs f f l o a t . s e q
needs f i l e i o . s e q
needs r a n d s . s e q \ need t o have maxrand

I c r . (STATS. SEQ ~ 1 . 1 1/2/94 EFC)

dec imal

: f i a r r a y (n --) \ l i k e f a r r a y , e x c e p t a r r a y i s i n i t i a l z e d t o 0
c r e a t e

dup , 0 do fO.0 f, l o o p
does>

swap dup 0<:
i f d r o p @
e l s e

8 * 2 + +
t h e n

\ code f o r c a l c u l a t i n g t h e a u t o c o r r e l a t i o n

I 5 0 c o n s t a n t maxlag

maxlag 1t f i a r r a y d a t a - b u f f e r
v a r i a b l e lag-value

£ v a r i a b l e sumx £ v a r i a b l e sumy
£ v a r i a b l e sumxy £ v a r i a b l e sumxx

/ : b u f f r s h i f t (- - I -
I l a g - v a l u e @ O = i f e x i t t h e n

f v a r i a b l e sumyy

l a g - v a l u e @ 1+ 1 do
i da ta -buf fe r f @
i 1- d a t a - b u f f e r f !

Forth Dimensions 29 May 1994 June

l o o p

: x v a l u e (-- a d d r)
l a g - v a l u e @ d a t a - b u f f e r

: y v a l u e (-- a d d r)
0 d a t a - b u f f e r

dup l ag -va lue !

£ 0 . 0 sumx f ! £ 0 . 0 sumy f !
£ 0 . 0 sumxx f ! £ 0 . 0 sumxy f ! £ 0 . 0 sumyy f !

: c a l c - c o r (n --, f : -- c) \ c a l c u l a t e t h e c o r r e l a t i o n a t g i v e n l a g

dup 0= n o t i f
\ r e a d i n t h e f i r s t l a g p o i n t s
1+ 1 do r e a d f l o a t O= i f a b o r t " r e a d e r r o r " t h e n
i d a t a - b u f f e r f ! l o o p

e l s e
d r o p

t h e n

0 \ s t a r t d a t a c o u n t

\ r e a d i n a n d a c c u m u l a t e t h e c o r r e l a t i o n s
b e g i n

read-f l o a t
w h i l e

b u f f r s h i f t
x v a l u e f !
x v a l u e f @ sumx f @ f + sumx f !
y v a l u e f @ sumy f@ f+ sumy f !
x v a l u e f @ f d u p f * sumxx f @ f + sumxx f !
y v a l u e f @ f d u p f * sumyy f @ f t sumyy f !
x v a l u e f @ y v a l u e f @ f * sumxy f @ f + sumxy f !

1 + \ i n c r e m e n t d a t a c o u n t

r e p e a t

\ now f o r m t h e a c t u a l c o r r e l a t i o n
dup

sumxy f @ sumx f @ sumy f @ f * i f l o a t f / f -

dup
sumxx f @ surnx f @ f d u p f * i f l o a t f / f-

sumyy f @ sumy f @ f d u p f * i f l o a t f / f -

f * f s q r t

: c o r (n --) \ c a l c u l a t e a n d p r i n t c o r r e l a t i o n s up t o l a g n

dup max lag > i f . " c o r : c o r r e l a t i o n l a g must b e <= "
maxlag . c r a b o r t t h e n

May 1994 June 30 Forth Dimensions

seqhandle+ !hcb
seqhandlet hopen abort" file open error"

1 +
O d o i .

i calc-cor f. cr
hrewind

loop

seqhandle+ hclose abort" file close error"

\ code for calculating the chi-square

50 constant maxbins

maxbins fiarray observed
maxbins fiarray expected
£variable factor

: set-factor (bins --)
ifloat maxrand float f/ factor f!

: calc-chi-2 (n --, f: -- c) \ calculate the chi-squared

£0.0
0 do i expected f@ i observed f@ fover

f- fdup f *
fswap f/
f +

loop

\ accumulate histogram from data file
: hist-accumulate (bins -- count) \ count is the number of data points

dup 0 do £0.0 i observed f! loop

set-factor

\ count them up, leaving number of data points on the stack
0
begin

\ get the float number from the file on the (float) stack
read-float

while
\ calculate the class interval -- 0 assume to be minimum
factor f@ f* int drop
observed dup f@ fl.O f+
F 1

1 +
repeat

I : set-uniform (bins count --)

ifloat
dup ifloat f/

0 do
fdup i expected f!

loop

\ set expected to count/bins

\ calculate the expected number

Forth Dimensions 3 1 May 1994 June

f drop

: verify-observed (bins --

dup
0 do i observed f@ £0.0 f=

if cr . . " bins are too many, bin " i . . " is empty "
cr abort then

loop

drop

: chi 2 (bins --, f: -- c) -

dup maxbins > if . " chi-2: number of bins must be <= "
maxbins . cr abort then

seqhandle+ !hcb seqhandle+ hopen abort" file open error"

dup dup
hist-accumulate

\ check that observed has no zeros at this point
over verify-observed

set-uniform
calc-chi-2

seqhandle+ hclose abort" file close error"

Listing Two. RANTSTSEQ 1
\ rantst. seq code to set up tests of random number code
\ (c) Copyright 1993 Everett F. Carter. Permission is granted by the
\ author to use this software for any application provided the copyright
\ notice is preserved.

: rantst-task ;

needs ffloat.seq
needs fileio.seq
needs rands. seq

cr . (RANTST. SEQ V1.l 12/28/93 EFC)

I decimal I
: lcm-test-loop (--)

1. seed 2 ! \ set initial seed value
1. \ push a temporary value
10000 0 do 2drop lcm-rand loop

. " final value: " d.

. " should be 1043618065" cr

: shuffle-test (n --) \ shuffle n elements and display result
1. rand-init

dup ramp \ set the initial sequence
C r
dup 0 do i 20 mod 0= if cr then \ show the initial sequence

i s@ .
loop
C r

dup shuffle \ shuffle the sequence
I I
May 1994 June 32 Forth Dimensions

0 do i 20 mod 0= i f cr t h e n \ show t h e r e s u l t
i s@ .

l o o p
C r

: t e s t - r a n d (n --)
1. r a n d - i n i t

\ w r i t e o u t n p a i r s o f random numbers

s e q h a n d l e + ! h c b
s e q h a n d l e + h c r e a t e a b o r t " f i l e c r e a t i o n e r r o r "

[' I h t y p e i s t y p e
[' I h c r l f i s c r

0 d o r andgen u . 3 s p a c e s
r andgen u . c r

l o o p

[' I (t y p e) i s t y p e
[' I c r l f i s c r

s e q h a n d l e + h c l o s e a b o r t " f i l e c l o s e e r r o r "

: t e s t - q u a s i (n --)
2 q u a s i - i n i t

s e q h a n d l e + ! h c b
s e q h a n d l e + h c r e a t e a b o r t " f i l e c r e a t i o n e r r o r "

[' I h t y p e i s t y p e
[' I h c r l f i s c r

0 d o q u a s i 0 i x 2@ u d . 3 s p a c e s
1 i x 2 @ u d . c r

l o o p

[' I (t y p e) i s t y p e
[' I c r l f i s c r

s e q h a n d l e + h c l o s e a b o r t " f i l e c l o s e e r r o r "

: t e s t - d r a n d (n --)
1. r a n d - d i n i t

\ w r i t e o u t n p a i r s of 32 b i t random numbers

s e q h a n d l e + ! h c b
s e q h a n d l e + h c r e a t e a b o r t " f i l e c r e a t i o n e r r o r "

[' I h t y p e i s t y p e
[' I h c r l f i s c r

0 d o d r a n d g e n u d . 3 s p a c e s
d r a n d g e n ud . c r
l o o p

[' I (t y p e) i s t y p e
[' I c r l f i s c r

s e q h a n d l e + h c l o s e a b o r t " f i l e c l o s e e r r o r " I ;

\ c o d e f o r g e n e r a t i n g a random walk
16384 c o n s t a n t q r t r
32767 c o n s t a n t h a l f
49151 c o n s t a n t t h r e e q r t r

L

Forth Dimensions 33 May 1994 June

v a r i a b l e xpos
2 v a r i a b l e x s q

v a r i a b l e ypos
2 v a r i a b l e y s q

: x i n c 1 xpos + ! ; : xdec -1 xpos + ! ;
: y i n c 1 ypos + ! ; : ydec -1 ypos t ! ;

: rwa lk (--) \ do a s i n g l e random walk s t e p

randgen

dup q r t r u< i f x i n c e l se
dup h a l f u< i f y i n c e l se
dup t h r e e q r t r u< i f xdec e lse

ydec t h e n t h e n t h e n
d r o p

: walk (n m -- E<yA2> E<xA2>) \ n -- number of s t e p s p e r w a l k e r
\ m -- number o f w a l k e r s t o a c c u m u l a t e o v e r
\ r e t u r n s a v e r a g e x s q and y s q

0 . x s q 2 ! 0 . y s q 2 !

swap o v e r
0 do

0 xpos ! 0 ypos !
dup 0 do rwa lk l o o p
xpos @ s > d 2dup d * x s q d + !
ypos @ s > d 2dup d * y s q d t !

l o o p
d r o p

d u p
x s q 2 @ r o t m/mod >r d r o p
y s q 2 @ r o t m/mod swap d r o p
r >

: walk - t e s t (n m --)

1234 . r a n d - i n i t

(n -- maximum number o f s t e p s p e r w a l k e r)
(m -- number of w a l k e r s t o a v e r a g e)

s e q h a n d l e t ! h c b
s e q h a n d l e t h c r e a t e a b o r t " f i l e c r e a t i o n e r r o r "

C r
swap
20 do

I .

i o v e r walk

['I h t y p e i s t y p e
1 ' I h c r l f i s c r

i u . 3 s p a c e s
u . 3 s p a c e s
u . c r

[' I (t y p e) i s t y p e
['I c r l f i s c r

C r
20 + l o o p
d r o p

s e q h a n d l e + h c l o s e a b o r t " f i l e c l o s e e r r o r " ! ;
I

May 1994 June 34
I

Forth Dimensions

\ Test of Monte Carlo integration
\ integrate 2-d function func() from 0 - 1, 0 - 1

: func (--, f: xl x2 -- y) \ test function xlA2 + x2-2 I
fdup f* fswap fdup f* f+

: fquasi (n -- , f: -- xl x2 . . . xn) \ form floating point values
\ in range from 0 to 1

quasi

0 do
i ix 2@ float quasi-max float f/

loop

: mcint-test (iters --, f: -- x)
2 quasi-init

dup 0 do 2 fquasi func f+ loop I
\ generate (an approximation to) Gaussian random numbers using the
\ rejection method. Will not produce values below -4.0 or above 4.0
\ which SHOULD occur on the average once in 10,000 times

FLOATS I
2.50663 fconstant fnorm
-4.0 £constant lbound
4.0 £constant ubound

ran£ (--, f: -- x) \ generate a random value from 0.0 to 1.0 I
drandgen float maxrand float f /

: gauss (-- , f: x - - y) \ calculate Gaussian pdf at given value
fdup f* f2/
f negate
f exp

fnorm f/

: trial-value (--, f: -- x)
ran£
ubound lbound f-
f *
lbound f+

: gauss-rand (--, f: -- x)

\ form trial value

\ generate a Gaussian random variate
\ using the rejection method

begin
trial-value
f dup
gauss

ran£ f<
while

fdrop
repeat

Forth Dimensions 35 May 1994 June

: gauss-test (n --) \ write n Gaussian numbers to file

seqhandle+ !hcb
seqhandle+ hcreate abort" file open error"

[' I htype is type
[' 1 hcrlf is cr

0 do
gauss-rand f. cr

loop

[' I (type) is type
[' I crlf is cr

seqhandle+ hclose abort" file close error"

\ Differential equation example
\ solve for the steady state temperature distribution within an annulus

fvariable xi
fvariable yi
0.1 iconstant scale

: laplace (maxit -- , f : x y - - t)

1. rand-init

yi f! xi f!

£0.0

\ loop over maxit walks
dup 0 do

xi f@ scale f/ fix drop xpos !
yi f@ scale f/ fix drop ypos !

begin
rwalk

\ determine current radial position
xpos @ dup *
ypos @ dup * +
ifloat fsqrt

\ account for scaling
scale f*

fdup fdup 3.0 f> 1.0 f< or not
while

fdrop
repeat

\ at this point we are either at r < 1.0 or r > 3.0
3.0 f> if 60.0

else 40.0 then

f +

loop

if loat f /

May 1994 June 36 Forth Dimensions

Pygtools-
/ A Library of Reusable Utilities

1 L. Greg Lisle
1 Winston-Salem, North Carolina

Reading the available literature on Forth, and espe-
cially the comments on the Forth-Net, one often hears of
the need for reusable libraries of tools. Unfortunately,
there seems to be a companion lack of these libraries. The
most common call is for the ability to access C libraries
from Forth. This seems a rather unsatisfactory solution.

As an alternative, I would like to propose a library
structure designed for use with Forth, where the program-
mer can do whatever he or she wishes. In addition, this
package demonstrates the flexibility that comes with using
a screen-based disk structure. I wrote this package using
Pygmy Forth largely because of the clean disk interface,
but the concepts should apply to any Forth that provides
block access.

The Pygtools
What follows is a brief description of the contents of the

Pygtools library, and an exposition on the utilities 1 have
created to make the library (or any other similar library)
more useful and accessible.

A s Screens 3-9 of the .

clude: read-only file opening, function key translations,
DOS environment access, file attribute handling, filename
input and construction, and hard copy utilities. I/O
includes BOX definitions for the screen, calendar func-
tions, time I/O, Soundex, and number output in English.

Debugging tools include an advanced decompiler, a
single-step utility, a breakpoint function, divide-by-zero
protection, extended DOS error display, and a display of
all the words that use a given word. 'There are hardware
drivers for the display, joysticks, sound (w/PC speaker),
music, mouse, keyboard, COM ports, and timers in both
hardware and software.

Also included are some experimental words for sup-
porting overlays. If these aren't enough, two additional
packages are available.

New Library Prototype
Pygtools may be viewed as a prototype for a new style

of Forth library. I did not have a concrete set of design
goals when I started the project, and I doubt that what I

DO.. . LOOP, secondary stacks,
and string handlers.

Integer math functions in-
clude: trig, Log2, xAn, random
numbers, interpolations, julian
dates, factoring, and RCD con-
version. System utilities in-

BLK @ >UNIT# DUP 1000 * DUP SCR ! $COO0 SET-EDGE

1 5 + LOAD (?LOAD & ULOAD) REPORT OFF
1 4 ULOAD (DIR, FROM & GET)

GET TUCK

sample listing indicate,
Pygtools coversa broad range
of tools and utilities. Using the
DOCUMENT utility, you find
the library has close to a thou-
sand definitions. They cover a

wide range of topics
ing: basic tools, F83 compat-
ibility, double number math,
advanced integer math, sYs-
tem utilities, advance terminal
I/O, debugging tools, and hard-
ware device drivers. 'l'here are
a couple of CASE structures,

Forth Dimensions 3 7 May 1994 June

(SAMPLE.SCR v1.3 Library utilities & tools 12Nov93LGL)
(T h i s b l o c k f i l e c o n t a i n s a s a m p l i n g o f t h e t o o l s c r e a t e d by

L . Greg L i s l e and i s c o p y r i g h t e d by him i n 1993 . I h e r e b y
l i c e n c e anyone t o u s e them and d i s t r i b u t e t h i s s ample , s o l o n g
a s t h i s a t t r i b u t i o n s c r e e n i s i n c l u d e d .

The B a s i c PYGTOOLS package i s s h a r e w a r e and i s a v a i l a b l e i n
t h e GEnie F o r t h Board L i b r a r y . The F u l l PYGTOOLS l i b r a r y a n d an
Advanced Too l L i b r a r y a r e a v a i l a b l e f o r p u r c h a s e f rom m e a t t h e
address below.

If you h a v e any comments, c o m p l a i n t s , bug r e p o r t s , r e q u e s t s o r
w h a t e v e r s , you c a n c o n t a c t me a t t h e f o l l o w i n g a d d r e s s o r by

E-Mail on I n t e r n e t a s L.SQUARED@GEnie.geis.com
Greg L i s l e 2160 F o x h u n t e r Ct Winston-Salem, NC 27106)

(STANDARD LOADER 12Nov93LGL)

(Environmental Comments:) . " No Target " (12Nov93LGL)

(You can edit screen 1 to include the tools you most often use.
I personally use the following standard SCR usages:

0 description, 1 development LOAD, 2 target LOAD, 3-5 index
or 3-5 could be optional utilities or LOAD screens.

Therefore, I automatically load screen uOOl when I open a
source file. This loads any utilities I use for development.
I then load screen u002 to create a target.COM file for
production.

In general, my tool libraries will have indices on screens
3 through whatever, while application code will have additional
load screens.)

(Loadable Index { use with GET } Drivers 12Nov93LGL)
10 >A-BLK 11 FROM 13 GET
14 DIR 15 ?LOAD 16 EXIT? Optionals
Device Drivers
18 VEMIT 19 BLINK 20 CYAN colors
21 VMODE 22 dWIDE 132 col 23 dL double List
24 PIX! pixel! 25 PIXROW 26 PIXBOX
28 BJOY BIOS 29 JOYSTICK noBIOS
30 TONE Sounds 32 PLAY Music 35 TUNE:
36 ESC# for printer 37 PITCH printer 38 PRN-STAT
39 ?MOUSE 41 MOUSEXY 42 PWM
45 BKEY F11, F12 46 #KEY only 47 CAPS-ON off etc
48 CPORT Serial 49 DXR wait for in 50 COMM
56 DOS-EMIT
57 ETIME elapsed 58 TIMER in Secs 59 HWTIMER HW time
17 RECORD@ disk 1/0

(Loadable Index { use with GET } Basic Tools 13Nov93LGL)
16 TUCK 17 UNDO
Basic Tools
60 TUCK etc 61 CUR+ etc 62 l+! etc
63 PICK & ROLL 64 COMBINE& SPLIT 65 -ROT &-ROLL
66 ARGUMENTS 68 DIGIT? 71 LATEST DO LOOP
72 2SWAP 20VER 73 2PUSH 2POP 74 2SPLIT
75 2CONSTANT 76 D-AND D2^ 77 BROLL Bit shft

7 8 ARRAY 79 VARRAY
80 T: Table Build 82 ASTACK Aux 83 TSP Stack

84 bcase
8 4 BCASE

86 ECASE

87 SCANS 88 LOOKUP 89 SCANS2

(Loadable Index { use with GET } 1/0 5Nov93LGL)
Advanced Terminal 1/0
90 BOX$ 93 BOX: creator 94 BCLS scroll

1 95 BINIT boxes 97 BSIZE BPUT BGET

: 98 UC>lc 99 NUMS 100 VAL
101 T. temp conv 104 SreENTER 105 #reENTER
106 $INPUT 107 SOUNDEX

108 DAYS Calendar 109 .CALENDAR
110 DOW/MON adv cal 111 .DATE date out
112 UNTIME DOS dcod 113 TIMEIN & Out

114 DNUMBER D Input 115 D. D Output 116 ,D. Comma .
117 .CARDINAL 118 .ENGLISH numbers
119 B. bit print

I

May 1994 June 38

have achieved thus far is the
final form it will take. Given
those caveats, these are the
features I a m currently high-
lighting:
I . Ease of access to tools
2. Tool file can be modified

without changing access
3. Access to tools is more

c o m p r e h e n s i b l e t h a n
standard LOAD

4. Tools are provided as
source code

Item one is provided by
the words FROM, PREVIEW,
GET, and their variants. Their
syntax is as follows:

FROM toolfile.scr
PREVIEW toolgroup
GET toolgroup

FROM designates the tool
file to be used until further
notice. If the file is open, the
whole filename is not needed,
FROM will match a partial
string as well. It will also
check both upper and lower
cases. If the library file is not
currently open , FROMwill try
to open it. E.g.,
PYGT ==> PYGTOOLS.SCR
pygm ==> PYGMY.SCR

The operation of PRE-
VIEW and GET are similar,
and use the same search
code. Given a tool-group
name, they use a file index to
locate the screen on which
that group is defined. PRE-
VIEW then lists the file, while
GET loads il. Obviously, for
 his to work, the index must
b e in a known location and
of a known formal. The con-
vention I am currently using
is to start the index o n the
second line of the fourth
block in the file, and to con-
tinue with as many blocks as
needed. Line zero of each
block is reserved for com-
ments, labels, and date stamp.
The format is three entries
per line, consisting of a local
block number, the group
name, and a short label.

Forth Dimensions

I f , as is done in the
Pygtools, the group label is
one of the words in the group,
another access tool is also
possible. One problem that
arises with complex applica-
tions using a large collection
of reused code, is reloading
something that is already resi-
dent. To prevent this, I cre-
ated the word ?GET. ?GET

looks like a normal GET, but
in action it first looks to see i f
the tool-group name is cur-
rently in the dictionary. If it is
not found, ?GET proceeds
like a normal GET; otherwise,
it skips to the next operation.
This allows loading interre-
lated tools in any order, with
no reloading of subtools.

A recent addition is a swit-
chable E X I T . If the variable
? E X I T is off, the exit is
skipped, thereby loading the
whole screen. To use this, I
also added L O A D A L L ,

I GETALL, and ?GETALL to
disable the E X I T while load-
ing a screen.

Item two is accomplished
by using a separate index to
the tool groups. Thus, blocks
can be added, moved, even
shuffled, but GET will still
load the correct block. This
means that programs that use
GET to access the library will
not need to be updated. The
index could be manually up-
dated, but I have created a
REINDEX function to update
the pointers automatically. (I
will often rearrange the index
manually after a reindex, but
this is done for clarity and
aesthetics.) To support the
REINDEX function, I use an
additional convention. All
blocks have comments in their
first line, but only tool-group
load screens have the open-
ing parenthesis in the first
byte. Further, the Grst word in
the comment is the tool-group
name. As just implied, a tool
group is loaded by loading a
single block. If the group uses

Forth Dimensions

(Loadable Index { use with GET } U t i l s 12Nov93LGL)
S y s t e m U t i l i t i e s

1 2 0 >FILE & Rd O n l y 1 2 1 BCOMP b l o c k Comp 1 2 2 AUNIT
1 2 3 INDEX o f b l o c k s 1 2 4 CHANGES 1 2 6 Q u i c k I n d e x
1 2 7 BLK>PG 1 2 8 VOC?
1 2 9 STAG sc r w/ d a t e 1 3 0 NEWBOOT 1 3 1 FENCE & EMPTY
1 3 2 ADDS s t r i n g b l d 1 3 3 ADD-DATE m o r e 1 3 4 WORDS> f i l e
1 3 5 +EXT b l d f i l e 1 3 6 USE & WO Work On
1 3 7 GETFN 1 3 8 UNDO & VIEW 1 3 9 COPY+
1 4 0 BUILD 1 4 1 LDUMP LC@+ 1 4 3 ENVIRON (DOS)
1 4 4 '705 f u n c t i o n K e y s 1 4 7 F 0 1 m o r e F k e y s
1 4 8 FTYPE 1 4 9 F-ATTRIB 1 6 1 ?FMAKE
1 5 0 GETCHAR 151 RESEED e n c r y p t 1 5 2 SWORD
1 5 3 $+$ c o n c a t . 1 5 4 $. R F i e l d . 155 MID$ e x t r a c t
1 5 8 S&R S r c h & R e p l 1 5 9 CODE-SRCH 1 6 0 DOCUMENT

(Loadable Index { use with GET } Math 5Nov93LGL)
M a t h T o o l s

1 6 2 D+ D- S->D 1 6 3 D= D< DMAX
1 6 4 UMD* 1 6 5 MD* UD* D* 1 6 6 D/MOD D/ DMOD
1 6 7 UM* 2/MOD MU* 1 6 8 M/MOD /MOD

1 6 9 SQRT 1 7 0 BCD>Bin & b a c k 1 7 1 RANDOM
1 7 2 Log2 x A n 1 7 3 AFACTOR p r i m e s

1 7 4 JD J u l i a n d a t e s 1 7 5 J>YMD i n v e r s e 1 7 6 INTERP OLATE

1 7 8 S I N COS 1 7 9 ATAN2

(Loadable Index { use with GET } Debug & 12Nov93LGL)
D e b u g T o o l s

1 8 1 .XID 1 8 5 SEE: d e c o m p i l e r
1 8 6 USAGE 1 8 7 USERS 1 8 8 ORPHANS
1 8 9 . S s p e c i a l . S 1 9 0 .SV v e r t i c a l 1 9 1 SS@
1 9 2 GUARD memory 1 9 3 ?/O D i v i d e prot 1 9 4 . T t racer
1 9 5 XABORT m o r e i n f o 1 9 6 SOFT-ABORT 1 9 7 MY.ID p r i n t
1 9 8 STEP o n e w o r d 207 BREAK-ON p o i n t s
2 1 0 DOS4 E r r C o d e 2 1 1 DFREE s t a t u s 2 1 2 SPEED o f CPU
2 1 3 .STATS 2 1 4 .EQUIP
2 1 5 .COMSTAT RS232 2 1 6 .ERROR code 2 1 8 DSTAT
2 1 9 HEXED mem e d i t
2 2 2 EHELP2 s i m p l e 2 2 3 HELP f r o m D i s k 2 2 5 DUMMY w o r d s
2 2 7 REBOOT C o l d 2 2 8 >ASCII d i s p l a y 2 2 9 >PAD" $ t o PAD

(Loadable Index { use with GET } Extras 10Nov93LGL)
A d v a n c e d D e v e l o p m e n t

2 3 1 ALLOC 2 3 2 SET-BUFF 2 3 6 OVERLAY:
F u l l P y g t o o l s

2 4 6 ?DO 2 4 9 C+! & m i s c 2 5 0 DCONVERT
2 5 2 FGETS 2 5 3 F INDIT 2 5 4 BSWAP
2 5 5 I" a l t 2 4 3 2 5 7 ATABLE 2 5 8 l o *
2 6 1 > F I L E w
2 6 7 DTA T o o l s 2 6 8 GETDRV 2 6 9 GETDIR
2 7 0 DOSDIR 2 7 1 VOL-LABLE
2 7 3 READ-SECT
2 7 9 SSORT s o r t f c n

2 8 3 REINDEX 284 UNINDEXED

(>A-BLK Active Unit Handling
: B>BASE (n - n ') >UNIT# 1 0 0 0 * ;

39 May 1994 June

VARIABLE AU BLK @ B>BASE AU ! (Active Unit)

: >A-BLK (n-blk#) AU @ B>BASE 2DUP O= SWAP 3 = AND
189 AND + + ;

I : o>a (o - a) AU @ BLOCK + ;

: Cswap (a-) COUNT FOR DUP C@ $20 XOR OVER C! 1+ NEXT DROP ;

: SAME? (a u - f) FNAME @ 1+ SWAP 2DUP COUNT COMP
IF DUP Cswap COUNT COMP ELSE 2DROP 0 THEN O= ;

(FROM Select Tool File UNIT#< 12Nov93LGL)
-1 +LOAD

: UNIT#< (a-n) -1
BEGIN MAX-FILES 1+ OVER > WHILE

1+ 2DUP SAME? UNTIL THEN NIP ;

: FROM HERE 20 0 FILL 32 WORD DUP UNIT#< DUP MAX-FILES >
IF DUP ?CLOSE 2DUP OPEN THEN
1000 * A U ! DROP;

EXIT
Example: FROM PYGT GET TABLE GET INTERP GET SQRT

FROM BRADTOOL.SCR PREVIEW XDUMP

(GET tools
11 ?ULOAD FROM

I : GNEXT (0-0' a) 21 + DUP 1022 >
IF 1 A U + ! 960 - THEN
DUP 63 AND 10 < - DUP o>a ;

I : ThisIt? (a a-f) COUNT COMP O= ;
I : Finish (a - f) " *END* " ThisIt? ;

I : B# (a-n) BASE @ PUSH DECIMAL
3 -TRAILING (SNUMBER >A-BLK POP BASE ! ;

: SEARCHDEX (a-o f) PUSH 3 >A-BLK AU ! 47 0
BEGIN DROP GNEXT DUP R@ ThisIt?

SWAP Finish OVER OR UNTIL POP DROP ;

(GET PREVIEW use Index 12Nov93LGL)

-1 +LOAD (Tools)

: GET# (a-a b#) DUP C@ O= ABORT" No ID " DUP SEARCHDEX
IF 4 - o>a B#
ELSE DROP TYPES 1 ABORT" Not Found " THEN ;

: GET 32 WORD GET# SWAP ' g ALoad LOAD ;

: PREVIEW 32 WORD (OVER TYPES SPACE) GET# SCR ! DROP L ;

: ?GET >IN @ CONTEXT @ - ' NIP
IF >IN ! GET ELSE DROP THEN ;

(DIR Print a 2 Column Directory 12Nov93LGL)
13 ?ULOAD GET

I : D-ONE (a-) DUP 1- C@ 32 >

May 1994 June 40

more than one block, or re-
quires other, subsidiary tools,
they are loaded by that load
block. To maintain location in-
dependence, I use either ?GET
or +LOAD to load additional
blocks.

Item three is inherent in the
GET function. Using the form
GET 2SWAP instead of 2072
LOAD makes a reading of the
load screens easier to under-
stand. What is being accom-
plished is obvious from the
code itself.

Item four is both an advan-
tage and a disadvantage. I t is a
disadvantage LO the toolsmith,
in that it reduces the control
over the tool library. It is an
advantage to the programmer
by allowing customization
when needed. Given Forth's
his~ory, I feel that the latter is
more in keeping with "stan-
dard practice." Whether it is a
fatal flaw remains to be seen.

The adjoining listing in-
cludes most of the tools I have
described, plus a few extras.
REINDEX is included with the
full version of Pygtools. 'She
sample file and basic Pygtools
files are available in the Forth
library on GEnie.

Future development will in-
clude a smarter FROM to open
the file, an improved DIR to list
the index, and perhaps a
SUBGET to load just part of a
tool group. In addition, I expect
10 continue expanding the con-
tents of the library and will
consider submissions or requests
from the Forlh community. As
an alternative, if you wish to use
the library structure described
here to create a specialized li-
brary, please do so. Subjects
could include advanced graph-
ics, floating point, complex
math, matrices, or whatever.

Greg Lisle IS an E.E. with over Len years of
working with Forlh, and 18 years wilh mi-
croprocessors. He is currently bullding a
consulllng practlce in North Carol~na. He
may be reached on the Internet at
L SOUARED@GEnie.GEIS.COM.

Forth Dimensions

IF CR ." ==== w 4 - 4 0 TYPE CR

E L S E DUP C@ 3 2 >
I F 4 - B# BLOCK 1+ 3 9 TYPE SPACE

ELSE DROP THEN THEN ;

: D I R 3 >A-BLK AU ! 4 7 CLS . " D i r e c t o r y of "
AU @ >UNIT# FNAME @ TYPES CR

BEGIN GNEXT F i n i s h NOT ?SCROLL (OVER 1 DU)
WHILE D-ONE REPEAT 2DROP ;

(E X I T (O p t h a r d c o p y) ?GET ESC#
: P D I R RESETPRN >PRN AU @ WHD D I R CR

>SCR SETPRN ;

(?LOAD ?OLOAD LOAD if not present 4Nov93LGL)

I VARIABLE REPORT REPORT ON

I : A L o a d (n a c - n) REPORT @ I F 2 SPACES EMIT . " L o a d i n g "
TYPES . " @ " DUP .

ELSE 2DROP THEN ;

: ?LOAD (n) CONTEXT @ - ' I F 3 2 A L o a d LOAD
E L S E 2DROP T H E N ;

1 7 7 ?LOAD ULOAD

: ?ULOAD (n) CONTEXT @ - ' I F ' U A L o a d ULOAD
E L S E 2DROP THEN ;

1 : +LOAD (n -) BLK @ + '* ' + A L o a d LOAD ; I
(TUCK L other Missing tools X .L H. [#60] 10Sep93LGL)

1 CODE TUCK (a b-b a b) AX POP, BX PUSH, AX PUSH, NXT, END-CODE

CODE >< (n - n ') BH BL XCHG, NXT, END-CODE

I : L CLS L 1 8 7 0 A T ;
: .L (s c r # -) SCR ! L ;

: UL (n -) SCR @ >UNIT# 1 0 0 0 * + . L ;

: VIEW (-) ' VFA @ ?DUP I F . L THEN ;

: H. (n -) BASE @ HEX SWAP U . BASE ! ;

(UNDO & New VIEW V RV PV [scr# 1381 15Sep93LGL)

: UNDO PREV @ BUFFERS DUP @ S 7 F F F AND 0 ROT ! . L ;

I VARIABLE OLDSCR

: VIEW (-) SCR @ OLDSCR ! 3 2 WORD 2 -FIND
I F 4 -FIND ABORT" ? ? " THEN
VFA @ ?DUP I F . L THEN ;

I : V VIEW ; (s h o r t h a n d)

(: RV OLDSCR @ . L ; (R e v i e w w h e r e y o u w e r e)

: PV SCR @ OLDSCR ! PREVIEW ;

Forth Dimensions 41 May 1994 June

A Forum for Exploring Forth Issues and Promoting Forth

Rapid Development Demands Quality Interfaces

Mike Elola
San Jose, California

With our productivity hanging in the balance, interface
design is a significant concern. U'ell-crafted interfaces are
required between routines, not just bct\vecn software and
its users (the so-called "user interface").

We like to think of Forth as a means of increasing our
productivity. Forih is part of the solution, not part of the
problem. Our preoccupation with increased productivity can
be Forth's competitive advantage-t~ut only if Forth vendors
and Forth programmers steadfastly make this their goal.

Even Forth systems as popular as I:83 have reduced our
productivity at particular times. In this issue of I;D, you will
come across an article by I%yron Nilsen warning us about
some of the pitfalls of the 1:83 vocabulary mechanism.

Forth productivity is not a matter of creating l:orth
systems that are mostly of sound design. 1:orth systems
must be fashioned from corn/)rehcn.siucly sound designs.
Anything less will unciercut our claims to rapid develop-
ment. Considering that the loss of one day's work for 500
Forth programmers is two-man years of 1:orth program-
ming labor misspent, the need for high-quality develop-

Nothing is more humbling
than to be the primary user o f
your own soft ware creations...
ment systems is obvious.

The burden for this rcsponsil)ility falls in the hands o f
the Forth vendors. 'fheir labors will determine if the
reputation of Forth as a rapid development tool withers or
grows. Articles like Nilsen's need to be written and
published to motivate all of us to design in a user-centric
fashion. (In this case, 1:orth programmers arc thc users.)

I would also like to see guicielines published that can
help us produce consistently t)chaved and easily lcarncci
sets of routines. In keeping with the philosophy that he
who asks for something must volunteer 10 pro\lidc it
(which is especially true for I:IG), I ' l l try to intelligently
discuss certain interface issues.]:or starlers, 1'11 exanline
the technique of using variat)lcs to help serve as the
interface between routines.

Using Stack-Buffered Variables
'I'here is at least one known way to use variables to help

parameterize routines yet still enjoy interfacing advan-
tages such as recntrancy. 'l'o do this, use a stack as a buffer
for older input variable states. This is how Forth makes use
of the return stack, which stores the states of instruction
pointers for all routines that are underway-with the
exception of the currently executing routine.

A similar approach is used to create a new text
interpretation stream by pushing the old > I N and BLK

values onto return stack, resetting their states for the new
stream, and then letting interpretation of the new stream
end before restoring the old states of >IN and BLK.

('l'his technique differs from the use of local variables
in small ways. 'I'he scope of a local variable is more
restricted. I t cannot be referenced in several routines, as
you can a stack-buffered BLK variable. In accordance with
thc way that many local variables are ini~ialized, the values
contained in BLK start out as stack parameters. However,
the stack-orientation of local variat~lcs is hidden from view
most of the time. Many experts view such encapsulation
actions as the way to make programs more readable.)

Sensitivity to the Calling Context
Suck buffering of variable values helps preserve vital

information that, i f lost, would cause a loss of program
synchronization. For example, i f I request the interpreta-
tion of block 81 and, halfway through, another request in
the input stream caused block 91 to be loaded, the calling
contcxt information about loading block 81 must be
preserved correctly by LOAD so that (1) the first half of the
t~lock 81 is not interpreted twice, and (2) the second half
of block 81 is not overlooked.

'I'tic following guideline can be formulated: 'Take all the
necessary actions to ensure that the details of operation
specified at the calling contcxt for a routine are preserved
for as long as they will be needed. The necessary actions
could include preserving certain state information that
accumulates beyonci the context of the original call, if it is
esscn~ial to the proper completion of the original opera-
tion. In the example just given, the value of >IN (the
position in the input stream for block 81 where interpre-

May 1994 June 42 Forth Dimensions

tation last stopped) is part of the critical information that
must be preserved. So both the original LOAD parameter
(81) and the value of > I N must be stack-buffered to
guarantee their proper restoration later as part of the
continuing task of interpreting block 81.

In the case of recursive or reentrant routines, the
routine-to-routine interface involves several executing
instances of the same routine. Newer LOAD calls d o not
walk all over older LOAD calls. Through the stack buffering
it performs, LOAD synchronizes the current execution
instance with any previous execution instances.

Too Many Calling Contexts
with Different Requirements

The F83 vocabulary mechanism appears to be subject
to losses of synchronization. I believe this occurs because
the vocabulary mechanism is overworked. There are too
many calling contexts with different requirements.

Sometimes the calling context for an F83 vocabulary
change is an explicit vocabulary switch entered by the
programmer (such as entering ONLY FORTH). At other
times, the calling context is a word that is setting u p special
environmental modes, such as an editing mode or a CODE
compilation mode.

(The system needs occasional tweaking, but only
under unusual conditions. Still, the goal must be to build
Forth systems with the fewest possible "gotchas.")

The code for F83 vocabularies is not poor code, but the
design can be questioned. The design can be criticized
because it depends on code in far-flung locations for its
synchronization. For example, the colon and semicolon
routines contain vocabulary operations. Such code seems
out of place in those locations. Similarly, no location
seems to be a good place to put any corrective ("fully
synchronizing") code.

Choosing Between Interface Options
A loss of refined control can arise due to the use of too

few discrete control elements compared to operations that
are sought. Combining an automobile's control elements
for braking and acceleration might at first seem to simplify
a car's operation. However, certain operations may be
become difficult, such as allowing the car to slow down by
coasting. With separate pedals for acceleration and brak-
ing, letting the ca; coast is performed with very little effort.

Being able to select the best control elements is half of

APRIL
Triangle Digital Services Ltd. announced a half-price

reduction in the quantity price for its TDS3092, down to
550 each. The TDS3092 is an eight-bit control computer
based on a surface-mount microprocessor with on-
board Forth. A custom gate array provides a watchdog
timer, character and graphics LCD interfaces, more
parallel ports and spare address decoding. Features of
the Forth board include two timers, two serial ports, and
support for I2C peripherals. Software support is in-
cluded for 32-bit math, trigonometry. The development
system Starter Pack is also halved in price, down to
6150. It adds PC software, non-volatile RAM, and disk-
based library routines. For f10, the 275-page manual
from the Starter Pack can be purchased separately. It
includes circuit diagrams for LCD, keypad, and stepper
motor interfaces. (A 16-bit version, the TDS2020 re-
mains available as well.)

APRIL
AM Research announced several new products.

Leading the pack is the 80C537-based amr537LC. The
processor is comparable to many 16-bit processors, but
is code-compatible with the 8051. It uses low-power
CMOS and runs at speeds u p to 16 MHz. The new SBC
includes 10-bit A/D with 12 inputs, timer-counters, two
UARTs. The amr51LC is the most versatile new SBC in
the lineup. Some configurations have an 12C port or
internal AID, while others have large ROM spaces, extra
timer-counters, EEPROM, or extra RAM. A new version
of amr8051 Forth is also available, which previous
customers can download from the AM Research bulletin
board.

A new product line was also introduced around the
MC68HCllLl. The amr8051 development system has
been re-implemented for this new family of SBCs. One
of the innovations in these new SBCs is a serial Boot
Loader, which eliminates the need for EPROM or ROM
during development, yet acts like a production, ROM-
based system.

COMPANIES MENTIONED

the battle of good interface design.
In any case, you don't want to end u p with too few or

too many control elements. To consider various options,
I often use trial and error so I can get a feel for the different
approaches.

For application domains that are new to us, we often
have too little experience to render stable judgments.
Today, one approach feels best; tomorrow, a different
approach tempts us. (Nothing is more humbljng than to be
the primary user of your own software creations over a
period of many years.)

(Continues onpage 19,)

Triangle Digital Services Ltd.
223 Lea Bridge Road
London El0 7NE England
Fax: 081-558 81 10
Phone: 081-539 0285

AM Research
4600 Hidden Oaks Lane
Loomis, CA 95650
Fax: 916-652-6642
Phone: 916-652-7472

Forth Dimensions 43 May 1994 June

The European Forth Conference, EuroForth'94

Exploiting Forth: Professionallv. Commerciallv, & Industriallv

EuroForth, the annual European Forth Conference is celebrating its tenth anniversary this year in England. The Conference
title, "Exploiting Forth", reflects the need in todays economic climate to make the best use of all the features that Forth provides.
In particular this year's conference will show all the benefits and capabilities of merging Forth with modem programming
environments.

The EuroForth conference provides a forum for the exchange of techniques, philosophies, and application notes, with papers
presented by a range of speakers from industry, commerce, and academia. The conference covers both software and hardware,
including stack-based processor architectures.

Delegates from all parts of Europe including Eastern Europe and the Former Soviet Union are expected. EuroForth is an
international conference with delegates from other continents. EuroForth is a friendly conference at which time is made
available for meeting people, for informal discussions, and for contacts.

Topics and Papers
The subjects proposed are shown below, together with subjects covered by papers already received.
Working with GUIs Compiler Construction
Objects, Natural Languages, and Databases Commercial Topics and Packages
Formal Methods Industrial Applications
Programming Techniques Networking and Communications
Forth Hardware

Conference delegates are welcome and encouraged to give papers on subjects related to the conference topics. These papers
should be no more than 6 pages. Suggestions for any topic not listed will be gladly considered. Papers should take between 20
and 25 minutes to deliver including questions.

Abstracts should be submitted as soon as possible for acceptance by the committee. Refereed papers must be in by May 3 1st.
Camera ready copy is required by 10 October 1994, so that delegates can receive the papers at the conference. Late papers may
be accepted at the discretion of the committee.

Proceedings
These will b e published by January 1995, and will be available from the Conference Organizer, and other sources of Forth
literature. They will also be published by the Forth Interest Group.

Exhibitions and Demonstrations
The conference includes an exhibition and demonstration session at which systems discussed during the other sessions will
be on show, alongside commercial products including Forth engines.

Location and accommodation
EuroForthS94 is being held in a pleasant hotel situated in the heart of Winchester, a lovely medieval city featuring the well known
Winchester Cathedral. The city is only a 50 minute trainjoumey from London to Winchester, with easy access from both Gatwick
and Heathrow airports. Many activities can be found less than 25 miles away including:

Broadlands - The house of the late Lord Mountbatten, National Motor Museum, Jane Austin's House, Stonehenge, Salisbury
Cathedral, Mary Rose Ship Hall & Exhibition, HMS Victory - HM Naval Base Portsmouth, The New Forest

Saturday night of this conference is Guy Fawkes night in England. This is celebrated in the town of Winchester with a candle
lit procession and fireworks - it will be a night to remember.

Sunday night there will be an informal survivors party at MPE in Southampton for those staying until Monday.

Fees
Resident delegate £290.00 + VAT. (including conference fee, hotel accommodation, and all meals)
Nonresident delegate £2 15.00 + VAT. (includes conference fee, lunch on Friday, Saturday. and Sunday
Resident visitor f 140.00 + VAT. (including shared accommodation and all meals.)
Student Rate f 192.00 + VAT. (To obtain this rate you must have a National Union of Students card.

Also accommodation will be shared.)
VAT - Please note that VAT (sales tax) is charged at 17.5% ,in addition to the above prices.

Registration: For further information please contact:
The Conference Organizer, EuroForthY94
c\o Microprocessor Engineering Limited
133 Hill Lane, Southampton SO1 5AF, England
Tel: +44 703 631 441, Fax: +44 703 339691
net: mpeOcix.compulink.co.uk

