

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 2000"" l&bit Forth Chip SC32"" 32-bit Forth Microprocessor
08 or 10 MHz operation and 15 MIPS speed. 08 or 10 MHz operation and 15 MIPS speed.
1-cycle 16 x 16 = 32-bi multiply. 1 -clock cycle instruction execution.
1 -cycle 1 &prioritized interrupts. *Contiguous 16 GB data and 2 GB code space.

*two 256-word stack memories. *Stack depths limited only by available memory.
-&channel 1/0 bus & 3 timer/counters. *Bus request/bus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. 032-bi SC32 industrial grade Forth PGA CPU.
*System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
-32 KB to 1 MB 0-wait-state static RAM. 4 2 KB to 512 KB 0-wait-state static RAM.
*Full-length PC/XT/AT plug-in (&layer) board. .100mm x 160mm Eurocard size (+layer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (Parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. 032-bi SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
Up to 640 KB 0-wait-state static RAM. 064 KB to 1 MB 0-wait-state static RAM.

-233mm x 160mm 6U size (Slayer) board. *FulClength PC/XT/AT plug-in (Slayer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
*RTX 2000 PLCC or 2001A PLCC chip. *RTX 2000 industrial grade PGA CPU.
-System speed options: 8, 10, or 12 MHz. *System speed options: 8, 10, or 12 MHz.
-32 KB to 256 KB 0-wait-state SRAM. *32 KB to 512 KB 0-wait-state static RAM.
100mm x lmmm size (&layer) board. *100mm x 160mm Eurocard size (+layer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 208 California Avenue, Palo Alto, CA 94306 (415) 322-8763

/ Features 1
Rational Numbers, Vulgar Words Gordon Charlton 7 A rational number can be represented as the ratio of two integers, numerator and denominator.
This is how we are taught fractions in primary school-I knew them as "vulgar fractions." Derigeur
in school, they are less than common in computer-based math, where some number theory is also
required: it is necessary to switch from rational representation to continued-fraction format and
back again during rounding. The code presented here will work on 16-bit or a 32-bit systems.

The Visible Virtual Machine Ellis D. Cooper; Ph. D.
Eve, computer language has a virtual machine, and a person who understands it can tell the story
about how the machine works. The best way to make the Forth virtual machine come alive is to
inject "intelligence" into the Forth terminal, so that it can better help with the more error-prone
and taxing programming chores. There is no need to develop another Forth-all that is needed
is a GUI development language with serial communication capability. The benefit of h s new
development environment is greater programming fun!

I Needed It: Mini-Math Tim Hendtlass 21 neural network project needed 16-bit numbers consisting of an eight-bit integer and an eight-
bit fraction. Fast and convenient, they are a natural addition to the number representations
described in an earlier article. There is also a simple way to move between 16- and 32-bit fured-
point numbers. The package ofwords that manipulate both, providing several convenient features,
is the Mini-Math pack.

26 Forth Development Environments for Embedded
Real-Time Control 5. Meuris, V Vande Keere, J. Vandewege
Faced with the requirements imposed on present-day development environments, it is clear that
few-if any-Forth environments are satisfactory. But Forth ideally suits the particular needs of
embedded real-time control. This paper describes a Forth development environment designed as
a global answer to the needs of real-time embedded control. It is intended for hardware and
software design of real-time embedded control systems, supporting both development and final
operation. This development environment has an open character, in which it is possible to install
value-adding tools according to the needs of specific projects.

Comma9d Output for Forth Charles Curley 34 Large numbers, presented without some son of internal column device, are difficult to read and
are liable to errors. The simple addition of commas (in North America) or periods (elsewhere) to
indicate hundreds, thousands, millions, etc., makes for much more readable output. This has long
been the custom in financial documents. A simple technique to add commas or other custom
characters to integer output is shown.

i
3 8 4 1

42

Forth Dimensions

Editorial Of Awards and Incentives

Letters ..Aborting with the Same Message?

World's Fastest Programmer?

New N G Chapter On-line a t the WELL

resource Listings FIG, AYS Forth, classes, on-line connections, FIG chapters

Advertisers Index
Fast Forthward Now Showing-Forth

3 January 1994 February

Forth Dimensions
Volume XV, Number 5
January 1994 February

Of Awards and Incentives
As I explained to FORML attendees, before rushing home to put this issue to bed, the Forth

Interest Group in recent years has generously sponsored cash awards for contests in Forth
Dimensions. This time, we are pleased to present winning papers on the topic of Forth
Development Environments.
* First Place: B. Meuris, V. Vande Keere, J. Vandewege, "A Novel Approach to

Forth Development Environments for Embedded Real-Time Control"
* Second Place: Richard Astle, "Forth and the Rest of the (DOS) World
* nird Place: Ellis D. Cooper, "The Visible Virtual Machine"

Richard Astle's paper was printed in our preceding issue; the other two winners appear
herein. The additional papers we received had considerable merit, and we hope to present - -
some of them in the near future.

Forth Development Environments was also the theme of this year's FORML conference and,
interestingly, the awards committee for that event independently selected two of these FD
papers for recognition there. (Cooper's paper was not presented at FORML.) Although the
criteria for FORML awards may differ from those used in selecting papers for publication in Forth
D i m i o n s , those submissions were judged to be of great interest andvalue to both audiences.

Bill Ragsdale, who presented the awards, will provide general conference coverage later,
both in these pages and on the Internet. But in the interests of timeliness, here are the awards
that were given for papers at FORML:
* Bet Presentation of a Work in Progress

(shows value andpromise-we e.xpct more next year):
Wil Baden, "Optimization, Macros, I/O Re-direction, and Ecumenicity"

* Featured Paper on Forth with Benefit to the non-Forth Community:
Richard Astle, "Forth and the Rest of the (DOS) World

* Outstanding Paper on Applications and Utilities
(of interest to most people, timely and useful):
Richard Wagner, "Simple Mouse and Button Words"

* 'Blue Ribbon" Award for the Premier Paper on
Forth Deuelopment Envimnments (the conference theme):
B. Meuris, V . Vande Keere, J. Vandewege, "A Novel Approach to Forth
Development Environments for Embedded Real-Time Control"

Although I have tried before, and no doubt will again, no description adequately conveys
the effect of attending FORML. The association with peers, new friends and old, repeated
immersions into very technical (but user friendly) sessions, cross-pollination of ideas, and a
small-conference facility that takes full advantage of one of California's most spectacular
natural settings, create a stimulating, unforgettable, and rewarding experience. (Even I,
notoriously bonded to my homestead, get nostalgic as the conference draws to a close,
postponing departure as long as practical.) I encourage you to pre-register usearlyuspossible
to ensure your seat at the November 1994 FORML

1 1 1

Published by the
Forth Interest Group

Editor
Marlin Ouverson

Circulalion/Order Desk
Frank Hall

Forth Dimensions welcomes
editorial material, letters to the edi-
tor, and comments from its readers.
No responsibility is assumed for
accuracy of submissions.

Something seems to be happening. Whether it is caused by advance ripples from dpANS
Forth, by mention of Forth in other publications, or by the normal (but poorly understood)
cycles of public interest, is unknown. Quietly, the Forth language has been getting some
intercsling attention. This is evidenced by secondhand reports at FIG Chapter meetings and
occasionally by telephone calls received at the FIG office--calls from employers looking for
Forth programmers and engineers. Out of fairness and objectivity, the FIG office tells me it
does not recommend particular programmers, but it can circulate information about job
openings to the Forth community. The easiest ways to do that are through on-line venues
and FIG Chapters. They were able to help place five Forth engineers with Varian recently,
for example, by contacting chapter leaders and asking them to announce the oppor tu~ty

Subscription to Fo7thLXmemiom
is included with membership in the
Forth Interest Group at $40 per
year ($52 overseas air). For mem-
bership, change of address, and to
submit items for publication, the
address is: Forth Interest Group,
P.O. Box 2154, Oakland, California
94621. Administrative offices: 510-
89-FORTH. Fax: 510-535-1295.
Advertising sales: 805-946-2272.

Copyright 0 19% by Forth In-
terest Group, Inc. The material con-
tained in this periodical (but not
the code) is copyrighted by the
individual authors of the articles
and by Forth Interest Group, Inc.,
respectively. Any reproduction or
use of this periodical as it is com-
piled or the articles, except repro-
ductions for non-commercial pur-
poses, without the written permis-
sion of Forth Interest Group, Inc. is
a violation of the Copyright Laws.
Any code bearing a copyright no-
tice, however, can be used only
with permission of the copyright
holder.

The Forth lnterest Group
The Forth Interest Group is the
association of programmers, man-
agers, and engineers who create
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that /
will advance the general state of
the art. FIG provides a dimate of
intellectual exchange and benefits
intended to assist each of its mem-
bers. Publications, conferences,
seminars, telecommunications, and
area chapter meetings are among
its activities.

"Forth Dimensions (ISSN 0884-
0822) is published bimonthly for
$40/46/52 per year by the Forth
Interest Group, 4800AUendaleAve.,
Oakland, CA 94619. Second-dass

at their next meeting. This is just one example of FIG membership at work, and one more postagepaidat~akland,~~.~~~~- /
reason to stay in touch on line and at your nearest chapter. (MASTER: Send address changes to /

Forth Dimensions, P.O. Box 2154, -Madin Ouwrson / Oakland, CA 94621-0054."
January 1994 February 4 Forth Dimensions

Letters to the Editor-and to your fellow readers-are always welcome.
Respond to articles, describe your latest projects, ask for input, advise
the Forth community, or simply share a recent insight. Code is also
welcome, but is optional. Letters may be edited for clarity and length. We
want to hear from you!

Aborting with the Same Message?
Dear Mr. Ouverson,

I originally used Forth to do some tremendous business
applications for a company on the VIC-20 and Commodore
64! Unfortunately, they were highly specialized, and I had no
marketingexperience, so nothing ever came of this. I ignored
Forth for eight years. The reason I'm back is I'm finally
working for myself, and no longer have to justify the
languages I choose to anyone.

I am now back up to speed on Forth, I still love it for all
the same reasons, am even more dissatisfied with every other
language I have used. But it still has the same problems as
ever, and it seems the "official community" has even less of
a chance than ever of getting it.

Based on my exposure to euety other language and
applications development system I have used: Pascal, C,
C++, BASIC (ugh), FOXpro, dBase, Paradox, R:Base, Clipper,
and Clarion, I expected by now to be able to buy an
applications-development-oriented Forth with the following
characteristics:

4. A way of ordering add-on libraries with:
a. CUA-compliant menus and windows, dialog boxes
b. graphics
c. other file drivers (spreadsheet, word processing)
d. report writers
e. printer drivers
f. fax drivers
g. TrueType font generatodinterface/driver for printers

and screens
5. The possibility of being able to fax a client a few lines of

fures and allowing them to recompile an application,
achieving painless bug fures or customization. CIhs is the
most controversial suggestion, I suppose. I think vectored
execution and speedy recompilation are the most signifi-
cant tools for improving and customizing a program, and
would bring Forth program development way, way, way
out in advance of anything the other guys can do. It means
includmg source code, possibly at additional cost. Two
possible ways to make this more palatable: either develop
a shroud, or trust in the inability of the standard Joe to get
in and do anything with Forth. Either way, you are no less
protected from theft by copying than you are by distrib-
uting the program itself.)

6. Real hopes for being able to run without modflcation on
the DOS, Macintosh, and Unix platforms.

What I found instead was that you are still talking about
writing your own compilers, that embedded systems is your
last toehold, that you can't include the ability to compile
when distributing applications, that the company I naively
considered the main force behind general acceptance of
Forth has a sign on its wall saying, "Ernbe&d Forth
Controllers for Industly, Stupid'-a great niche for a com-
pany, but hardly an adequate vision for the kind of accep-

1 I tance I think the rest of us want.

who simply want a good
environment from which
to solve problems.

You need to attract the kind of
users who value their time,

1. A fully implemented link to the most common data-
management program in the DOS world (dBase I11 file
standard).

2. A resolution to the problem of not being able to type
anyone's source code in without understanding more
than you care to about the dfferences between imple-
mentations.

3. An editor similar to the one shipped in any of the above
packages. Does anyone know the history of Wordstar-
compatible DOS editors? This is really, reaIIy frustrating.
So what if I can reconfigure it-why isn't it the way I
expect out of the box? What world do you live in?

My suggestions:
1. Split embedded systems from general application work.

We need separate user's groups. I am so bored with talk

I
Forth Dimensions

at my local user's group that I no longer go in the hopes
of an occasional application-oriented dscussion. Embed-
ded systems care about size; DOS users really don't.
Embedded systems care about speed; '386 users trying to
develop for the main market should put this about 45th
on the list.
Obeythe damn standards. If you insist on having your DO

LOOP work differently, name it differently. I won't mind
seeing DO-LMI, CFA-HSF, LOOP-7 9, and ASCII-FPC,
but I really get steamed when I can't type in examples
from magazines. If you are thinking, "But it's no big deal
if you understand ..." just drop it and get with the
program. Application programmers have zero, zero, zero
interest in keeping straight all the dialects. Might as well
go with Clipper.
a. Now, all m e vendors must support all major possibili-

ties. Please don't argue that this is a major hassle, it
makes your product usable.

(Continues on page 36.)

January 1994 February

HARVARD SOFTWORKS
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

Just how good is HSD'ORTH? Well, it's already
good enough to control mile long irrigation arms to water
the nations crops, good enough to control orbiting shuttle
experiments, good enough to analyze the nation's blood
supply and to control the telephone switching systems.
It monitors pollution (nuclear and conventional) and
simulates growth and decline of populations. It's good
enough to simulate and control giant diesel generator
engines and super cooled magnet arrays for particle
accelerators. In the army and in the navy, a t small
clinics and large hospitals, even in the National Archives,
HSIFORTH helps control equipment and manage data.
It's good enough to control leading edge kinetic art, and
even run light shows in New York's Metropolitan
Museum of Art. Good enough t o form the foundation of
several of today's most innovative games (educational
and just for fun), especially those with animation and
mini-movies. If you've been zapping Romulans, governing
nations, airports or train stations, or just learning to type
- you may have been using HSD'ORTH.

Our customers come frorn all walks of life. Doctors,
lawyers and Indian Chiefs, astronomers and physicists,
professional programmers and dedicated amateurs,
students and retirees, engineers and hobbyists, soldiers
and environmentalists, churches and social clubs.
HSIFORTH was easy enough for all to learn, powerful
enough to provide solutions, compact enough to fit on
increasingly crowded disks. Give us a chance to help you
too!

You can run HSD'ORTH under DOS or Microsoft
Windows in text and/or graphics windows with various
icons and pif files for each. What I really like is cranking
up the font size so I can still see the characters no
matter how late it is. Now that's useful. There are few
limits to program size since large programs simply grow
into additional segments or even out onto disk. The Tools
& Toys disk includes a complete mouse interface with
menu support in both text and graphics modes. With
HSIFORTH, one .EXE file and a collection of text files
are all that you ever need. Since HSIFORTH compiles to
executable code faster than most languages link, there is
no need for wasteful, confusing intermediate file clutter.

HSJFORTH runs under MSDOS or PCDOS,
or from ROM. Each level includes all features
of lower ones. Level upgrades: $25. plus price
difference between levels. Source code is in
ordinary ASCII text files.

HSlFORTH supports megabyte and larger
programs & data, and runs as fast as 64k
limited Forths, even without automatic
optimization - which accelerates to near
assembler language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminate
headers without recompiling. Compile 79 and
83 Standard plus F83 programs.

PERSONAL LEVEL $299.
Fast direct to video memory text

& scaled/clipped/windowed graphics in bit
blit windows, mono, cga, ega, vga, all
ellipsoids, splines, bezier curves, arcs,
turtles; lightning fast pattern drawing
even with irregular boundaries; powerful
parsing, formatting, file and device 110;
DOS shells; interrupt handlers;
call high level Forth from interrupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file search paths; format to strings.
software floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4
words, 1..4 dimension var arrays;
automatic optimizer delivers machine
code speed.

PROFESSIONAL LEVEL $389.
hardware floating point - data structures fr

all data types from simple thru
complex 4D var arrays - operations
complete thru complex hyperbolics;
turnkey, seal; interactive dynamic linker fm

foreign subroutine libraries; round
robin & interrupt driven multitaskers;
dynamic string manager; file blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $499.
Metawmpiler: DOS/ROM/direcVindirect;
threaded systems start a t 200 bytes,
Forth cores from 2 kbytes;
C data structures & struct+ compiler;
MetaGraphics TurboWmdow-C library,
200 graphidwindow functions, Postscript

style line attributes & fonts, viewports.

ONLINE GLOSSARY $46.

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

FOOPS+ with multiple inheritance $ 79.
TOOLS & TOYS DISK $ 79.
286FORTH or 386FORTH $299.

16 Megabyte physical address space or
gigabyte virtual for programs and data; DOS
& BIOS fully and freely available; 32 bit
addresdoperand range with 386.
ROMULUS HS/FORTH from ROM $99.

Shippinglsystem: US: $9. Canada: $21. foreign:
$49. We accept MC, VISA, & AmEx

Rational Numbers,
Vulgar Words

Gordon Charlton
Hayes, Middlesex, U. K.

There are several lfferent ways of representing fractional
numbers in a computer. The suite of words given here
implements one of the less common ones, a rational
representation.

A rational number is one that can be represented as the
ratio of two integers, called the numerator and the denomi-
nator. If this sounds familiar, it is because this is how we are
first taught to deal with fractions, in primary school. Chances
are that you have not dealt with them much since, but you
can vaguely recall bits and pieces about multiplying across
the diagonal and cancelling out common terms and so on. I
knew them as vulgar fractions.

The idea of implementing a system that is taught to seven-
year-olds appealed to me, having looked at the complexities
involved in floating-point representations. It soon turned out
that primary level maths was not sufficient for the task, some
number theory is also required. In particular, it is necessary
to switch from a rational representation to a continued
fraction format and back again during rounding, but that will
be described later.

Between accuracy and
precision, I would choose
accuracy every time.

Although the code presented here will work equivalently
on either a 16-bit or a 32-bit system, I shall describe it in terms
of an eight-bit Forth, to keep the numbers simple. Feel free
to multiply any numbers up to suit your Forth.

The Representation
A rational number is here represented by two cells, the

first being completely filled by a sign bit and the numerator,
which occupies seven bits. The second cell contains the
denominator, which is also seven bits wide. The high bit is
unused. This decision was made to allow the full range of
Forth operators to be used in the implementation rather than
just the signed operators, or just the unsigned ones. It also
allows the double-length division that is at the heart of the
rounding routine to operate only on signed positive num-
bers, which allows a more efficient implementation.

Some Extra Integer Operators
In fact we require a very rich set of maths operators, so

my first task was to beef up my Forth with some additional
maths operators, mostly intended for the double division. I
am indebted to Prof. Tim Hendtlass and, in turn, to Prof.
Nathaniel Grossman for a good chunk of this code. Other
words are derived from work I had done previously. In each
case, I have selected the most efficient rather than the most
comprehensible. As Hendtlass reworked Grossman's code to
iron out a few inefficiencies, so I have reworked the double
division to iron out a few more. One is forced to wonder how
much further the process can be taken.

However, during the writingtesting phase of develop
ment, it became obvious that some of my primitives were in
error. In particular, UM/MOD and D-. UM/MOD gives up the
ghost with some numbers where the h g h bit is set. I am not
terribly upset by this, as I have a 32-bit Forth and it is very
unusual to push UM/MOD terribly hard, so I had not previ-
ously encountered the bug. Secondly, I use a budget Forth,
and it is a sad fact that, in this world, one gets what one pays
for. On the other hand, I am fuming about D-, whch
consistently gives the negation of the correct answer. That
kind of error should not occur. End of story.

So the first screen gives high-level equivalents of these
two words. They are included as it is a policy of mine only
to publish code that can be run on my own machine. The
other is to try and make it reasonably portable. Hopefully,
your UM/MOD will be up to the demands we are going to
place on it. If it is not, the high-level one given here works,
but it is slow. This means I will not be discussing execution
speed in any great detail.

I have attempted to name the maths operators according
to what I infer to be the convention adopted by the ANSI
committee, as I find it satisfactory. +D/ and +D/MOD work only
on positive signed integers, which explains the plus sign.

Median Rounding
Plunging on into the code, we find that the first thing

required is a rounding routine. There is a problem with a
rational representation-the number of digits required to
exactly represent a number can grow beyond the bounds of
the cell containing it quite frequently, even when kept in a

Forth Dimensions 7 January 1994 February

normalised format. By this,
we mean not only that the sign
bit be kept in the right place,
but that the numerator and
denominator be relatively
prime and, hence, in their
simplest state. Normalising
rationals in that respect does
slow the process, so we will
make it a convention that num-
bers are he ld in their
normalised form at all times,
thereby spreading the delays
out evenly through the code.
GCD uses the Euclidean algo-
rithm to determine the highest
common divisor of the nu-
merator and denominator. In
common with many words in
the suite, it assumes that only
the second on stack is a signed
number.

This is used by NORMAL,
which converts a vulgar frac-
tion to its simplest form (i.e.,
1/2 rather than 26/52). The
next key definition, REDUCE,
takes rather more explana-
tion.

It is first necessary to realise
that a vulgar fraction can over-
flow in three different ways:
by becoming too large, so the
numerator overflows; by be-
coming too small, so the de-
nominator overflows; or by
the fraction becoming too com-
plex to be represented within
a single representation, whilst
still lying within the range of
representable numbers. To
cater for ths, primitives which
can increase the size of the
numerator or denominator
produce intermediate double-
length results which are then
rounded when the represen-
tation becomes too large. RE-
DUCE does this.

If no overflow has oc-
curred, or a large double num-
ber can be normalised to single
length, then it simply makes it
SO. Numbers which exhibit
the third form of overflow are
reduced to that single-length
vulgar which most closely
approximates the value of the
double vulgar passed to it. I f
January 1994 February

\ high l e v e l D- UM/MOD (c o r e v e r s i o n s a r e i n c o r r e c t)
: 4DUP (n n n n--n n n n n n n n) 2over 2over ;
: D- (d d--d) dnegate d t ;
: UD< (ud ud--f) r o t 2dup = not

IF swap 2swap THEN 2drop u< ;
: (UM/MOD) (ud ud--ud U)

2dup >r >r dup 0<
IF 2drop 0 ELSE 2dup d t RECURSE 2* THEN
- r o t r> r> 4dup ud<
IF 2drop r o t ELSE d- r o t 1t THEN ;

: UM/MOD (ud u--u u) dup IF 0 (um/mod) THEN n i p ;

\ mixed maths o p e r a t o r s
: MU* (ud u--ud) t u c k * >r um* r> + ;
: T* (ud u--ut) tuck um* 2swap um* swap >r 0 d+ r> - r o t
: T / (u t u--ud) dup >r um/mod - r o t r> um/mod n i p swap ;
: M*/ (ud u u--ud) >r t * r> t / ;
: UM/ (ud u--u) urn/mod n i p ;
: MU/ (ud u--ud) >r 0 r@ um/mod r> swap >r um/ r> ;
: UM*/ (u u u--ud) >r urn* r> mu/ ;

\ double maths o p e r a t o r s
: UD* (ud ud--ud) dup IF 2swap THEN drop mu* ;
: D* (d d--d) dup 0< >r dabs 2swap dup 0< >r dabs

ud* r> r> xor IF dnegate THEN ;
: +D/ (+d +d--+d) ?dup IF dup 1+ 0 1 r o t um/ dup >r mu*

>r over swap r@ urn*/ d-
r> r> swap m*/ n i p 0

ELSE mu/ THEN ;
: +D/MOD (+d +d--+d +d) 4dup +d/ 2dup >r >r ud* d- r> r> ;
: DO<> (d--f) o r 0= not ;

\ vulgar s i m p l i f i c a t i o n . . .
: GCD (n n--n) BEGIN ?dup WHILE tuck mod REPEAT ;
: NORMAL (v--v) 2dup gcd tuck / >r / r> ;

0 1 2 um/ c o n s t a n t H I G H B I T

: UD>U? (ud--u f) over h i g h b i t and o r 0= not ;

v a r i a b l e DEN v a r i a b l e PDEN v a r i a b l e NUM v a r i a b l e PNUM

: SETVARS () 0 num ! 1 pnum ! 1 den ! 0 pden ! ;
: NUM>? (ud--u f) nurn @ mu* pnum @ 0 d+ ud>u? ;

\ vulgar s i m p l i f i c a t i o n cont inued . . .
: DEN>? (ud--u f) den @ mu* pden @ 0 d+ ud>u? ;
: NEXT! (u u) den @ pden ! den ! num @ pnum ! num ! ;
: DV>UDV? (dv--udv f) 2swap dup 0< >r dabs 2swap r> ;
: ?NEGATE (n f--n) IF nega te THEN ;

: REDUCE (dv--v) [a l s o ucs] s e t v a r s dv>udv? >r
BEGIN 2dup do<> WHILE

2over +d/mod 2dup num>? WHEN n e x t ! d rop END

- r o t den>? WHEN nex t ! END nex t ! 2swap
AGAIN 2drop 2drop pnum @ r> ?negate pden @ ; prev ious

8 Forth Dimensions

\ vulgar s i m p l i f i c a t i o n cont inued
: SMALL (dv--f) h i g h b i t 0 u d i - r o t dabs h i g h b i t 0 ud< and ;
: DV>V (dv--v) 4dup smal l IF drop n i p normal ELSE reduce THEN ;
: V>UV? (v--uv f) swap dup O i > r abs swap r> ;
: SNUM>? (u u--u f) >r num @ * pnum @ + dup r> u> ;
: SDEN>? (u u--u f) >r den @ * pden @ + dup r> u> ;
: VROUND (v +n--v) [a l s o ucs] >r s e t v a r s v>uv? r> swap >r >r

BEGIN dup WHILE
over /mod dup r@ snum>? WHEN n e x t ! END

swap r@ sden>? WHEN n e x t ! END

n e x t ! swap
AGAIN 2drop r> drop pnum @ r> ?negate pden @ ; prev ious

\ vulgar a r i t h m e t i c . . .
: V* (v V--v) r o t urn* 2swap m* 2swap dv>v ;
: V+ (v v--v) r o t 2dup urn* >r > r

r o t m* 2swap m* d+ r > r> dv>v ;
: VNEGATE (v--v) swap nega te swap ;
: RECIPROCAL (v--v) swap dup 0< I F negate vnegate THEN ;

: V/ (v V--v) r e c i p r o c a l v* ;
: V- (v v--v) vnegate v+ ;
: VABS (v--v) swap a b s swap ;

\ vulgar a r i t h m e t i c cont inued, vu lga r comparison . . .
1 cons tan t S>V (n--v)
: V>S (v--n) / ;
: VFRAC (v--v) tuck mod swap ;
: VSPLIT (v--v v) 2dup v>s s>v 2swap v f r a c ;
: SIMPLIFY (v +n--v) >r v s p l i t r> vround v+ ;
: VO< (v--f) d rop O < ;

: V= (v v--f) r o t = - r o t = and ;

\ vulgar comparison, vu lga r inpu t
: D< (d d--f) swap >r >r dup r@ xor h i g h b i t and

r> r> swap r o t
IF 2drop ELSE d- THEN n i p 0< ;

: V< (v v--f) - r o t m* 2swap m* 2swap d< ;
: VO= (v--f) drop O= ;
: VOVERELOW (v--f) n i p 0= ;
: BASEA (+n--+d) 1 0 r o t 0 ?DO base @ mu* LOOP ;

: WLGARISE (d--v) d p l @ baseA dv>v ;

\ vulgar ou tpu t . . .
: STRIP (addr n--addr n)

BEGIN
2dup + 1- c @ a s c i i 0 =

WHILE 1- REPEAT

2dup + 1- c @ a s c i i . = - ;
: >CHAR (addr ch--n)

>r 0 BEGIN 1+ swap 1+ tuck c @ r@ = U N T I L

n i p r> drop ;

v a r i a b l e PLACES 10 p l a c e s !

: SIGN (n) - r o t s i g n ; \ My system uses f i g S I G N , not ' 8 3 !

Forth Dimensions 9

the number is too large to be
represented, then REDUCE re-
turns 1/0 or -1/0 which can be
trapped at any time, as this
value will propagate through a
running program. Denomina-
tor overflow causes a value of
zero to be returned, which is
represented in a vulgar system
as 0/1 or 0/-1. This can also be
tested for, although care must
be taken not to confuse it with
a genuine zero.

It is also possible to detect
rounding, as when this occurs
the main loop takes a different
path than when it does not
occur, providng a place where
a flag could be set. This would
be one possible use for the
unused bit in the representa-
tion I have chosen, whereby a
number could be identified as
being completely accurate af-
ter a series of calculations, rather
than being an approximation.
As stripping the bit out before
manipulating a vulgar number
and putting it back in after-
wards would tend to distract
from the code, I have not imple-
mented h s facility. However,
there may be instances where
it would be useful, so I men-
tion it.

How It Works
What it does is best shown

by a demonstration. Fetch your
calculator and follow these
steps. Punch up pi, 3.14159
etc. Subtract the integer por-
tion and write it down: 3. Take
the reciprocal of the remain-
der. Subtract the integer por-
tion of this and write it down.
Repeat this procedure a few
times. You should end up with
a sequence of numbers: 3, 7,
15, 1, 292, etc. This is the
continued fraction form of pi.
Now we use it to generate
successive approximations to
pi. The first approximation is
3/1 or 3. The second is 22/7,
the next 333/106, then 355/
113. These successive numera-
tors and denominators are gen-
erated by a system similar to

January 1994 February

January 1994 February 10 Forth Dimensions

one whch produces Fibonacci
numbers, with the difference
that the current term is multi-
plied by the next number in
the continued fraction before
adding to the previous term to
produce the next term in the
sequence. For numerators, the
"zeroth" and "minus oneth"
terms are one and zero, re-
spectively, so the sequence
goes 0, 1, 22, 333, 355 ... For
denominators, the zeroth and
minus oneth terms are zero
and one, respectively, so the
sequence goes 1, 0, 7, 106,
113 . . .

ln the program, the two
phases of producing the con-
tinued fraction and summing
it are performed concurrently,
with the loop ceasing on three
conditions. Either the expan-
sion into a continued fraction
form has produced a zero, in
which case the vulgar fraction
has been normalised without
overflow, or the numerator or
denominator has overflowed,
in which case we take the

\ vulgar ou tpu t cont inued. . .
: #V (tv--0 0) 0 swap

p l a c e s @ 1+ 0
DO dup >r um/mod swap base @ urn* r> LOOP
2drop drop
p l a c e s @ 0 DO s>d # 2drop LOOP
a s c i i . hold s>d #s ;

: V.FR (v n) >r over abs swap
<# #v r o t s i g n #>
over a s c i i . >char r> swap - spaces
s t r i p t y p e ;

: V . F (v) 0 v . f r space ;

\ vulgar ou tpu t cont inued
: V.SR (v +n n) >r s i m p l i f y over abs swap

<# dup 1 = not
IF b l ho ld

dup s>d # s 2drop a s c i i / hold
2dup mod s>d # s 2drop THEN

over O = >r 2dup < not r> o r
IF b l hold

v>s s>d # s THEN

r o t s i g n #>
over bl >char r> swap - spaces t y p e ;

: V . (v) 10 0 0 v . sr ;

previous approximation, which is the best attainable. The
indicators 0/1 and 1/0 derive from the earliest terms in the
sequences.

If you want to know why this works, I suggest you read
a book about number theory. The key words are continued
fractions and convergence. It works, and it produces the best
possible approximations. This form of approximation has
another advantage which Knuth mentions, although he gives
no proof. Using this system, rounding errors tend to cancel
out rather than grow with successive calculations. I would
very much like to see an explanation of this property.

To speed things up, we wrap REDUCE in a test to see if
NORMAL would be sufficient to the task before executing it,
as NORMAL is rather faster than REDUCE, giving the word
DV>v. I trust the name is self-explanatory.

As REDUCE has three exit points, I have used the Unified
Control Structure described in ForthDimensionsXN/6. The
word VROUND is structurally similar to REDUCE, and performs
a similar function on single-length vulgar numbers, reducing
them to fit within a specified range, rather than the width of
a cell. This may be used where a loss of precision is an
acceptable cost for increased speed of execution. It is also
used by some of the numeric output routines, to simplify
fractions for legibility purposes.

Simple Vulgar Maths
I am pleased to note that the rest of the code is a lot simpler

than this. Indeed, the basic maths operators v* and v+
multiply and add just as we were taught at school, with the

difference that they produce intermediate double-length
results, which are then rounded down to single-length
fractions (i.e., two cells) as described above.

Finding the reciprocal of a vulgar (the result of dividing
one by a vulgar) is just a question of S W ~ ~ p i n g the numerator
and denominator, then moving the sign bit back to the right
place. This allows us to divide vulgars almost as simply as we
multiply them. Subtraction is equally trivial.

The next few words are concerned with translating single-
length integers into vulgars and back again, and extracting
the integral and fractional portions from a vulgar number. We
will see later that the precision of a vulgar in this represen-
tation drops off significantly as the integral part becomes
large, so VSPLIT, which separates a vulgar number into an
integral-valued vulgar and its proper remainder, is of some
use. The integer part is returned as a vulgar fraction to allow
them to be recombined later using v+.

SIMPLIFY is similar in function to VROuND, with the
difference that attention is only paid to the size of the
denominator. This is intended primarily for use in the output
routines.

Some Vulgar Comparisons
The comparison words which follow in the listing are

mostly trivial. We note that V= in particular expects that the
numbers passed to it are in normalised form, s o that equal
numbers are identical. V< also warrants a brief comment. It
is possible that two vulgar numbers could differ by an
amount that is smaller than the smallest representable vulgar

Glossary

: 4DUP
(n l n2 n3 n4 -- n l n2 n 3 n4 n l n2 n3 n4)

The action of 4DUP is as the name suggests.

: +D/ (+d l +d2-- +d)
Divide positive double +dl by positive double +d2, giving
positive double result.

: D- (d d--d)
Core word. Corrects system fault. See text.

: UD< (u d l ud2--f)
Returns true if unsigned double udl is less than unsigned
double ud2. Returns false otherwise.

: (UM/MOD) (ud ud--ud u)
The recursive portion of UM/MOD (below).

: UM/MOD (ud u--u u)
Core word. Corrects system fault. See text.

: MU* (u d u--ud)
Multiply unsigned double by unsigned single, giving un-
signed double result. No overflow check (this is true
generally and will not be repeated).

: T* (ud u- -u t)
Multiply unsigned double by unsigned single, giving un-
signed triple result. Most-significant cell is TOS, as with
doubles.

: T/ (u t u--ud)
Divide unsigned triple by unsigned single, giving unsigned
double result. Intended for use with T* (above).

: M A / (ud u l u2--ud)
Multiply unsigned double ud by unsigned single u l , and
divide by unsigned single u2, giving unsigned double result.
Uses triple-length intermediate result to avoid overflow.

: UM/ (ud u--u)
Divide unsigned double by unsigned single, giving unsigned
single result.

: MU/ (ud u--ud)
Divide unsigned double by unsigned single, giving unsigned
double result.

: UM*/ (u l u2 u3--ud)
Multiply unsigned single u l by unsigned single u2, and
divide by unsigned single u3, giving unsigned double result.

: UD* (ud ud--ud)
Multiply unsigned double by unsigned double, giving un-
signed double result.

Forth Dimensions 11 January 1994 February

: +D/MOD (+ d l +d2 -- +d3 t d 4)
Divide positive double +dl by positive double +d2.
Returns positive double quotient +d3 and positive double
remainder +d4.

: D O o (d--f)
Returns true if double is not equal to zero. Returns false
otherwise.

: GCD (n l +n2-- tn)
Returns greatest common divisor of (largest number divis-
ible by) signed single n l and positive single n2. Returns n l
when n2 is zero, and n2 when n l is zero.

: NORMAL (v--v)
Reduces an umormalised single vulgar to its simplest
terms. (Both numerator and denominator have their small-
est possible values.) Sign bit conventions must be observed
in the argument passed to NORMAL.

c o n s t a n t HIGHBIT

Returns a bit pattern. The most significant bit is 1, the rest
are 0.

: UD>U? (ud--u f)
Accepts an unsigned double number. If this can be
represented as a positive single, returns true and its value
as a single. Otherwise, returns false and an unspecified bit
pattern.

v a r i a b l e DEN
Used by REDUCE and VROUND (below). DEN represents the
current best approximation to the denominator of a vulgar
number.

v a r i a b l e PDEN
Used by REDUCE and VROUND (below). PDEN represents
the previous value of DEN.

v a r i a b l e NUM
Used by REDUCE and VROUND (below). NUM represents the
current best approximation to the numerator of a vulgar
number.

v a r i a b l e PNUM
Used by REDUCE and VROUND (below). PNUM represents
the previous value of NUM.

1 : D* (d d--d)
Multiply signed double by signed double, giving signed
double result.

: SETVARS ()

Used by REDUCE and VROUND (below). Initialises variables
used therein. See text for explanation of starting values.

: NUM>? (ud--u f)
Used by REDUCE (below). Returns next approximation to
numerator, given next number in continued fraction,
expressed as an unsigned double. Flag is true if overflow
has occurred in numerator, fake otherwise.

: DEN>? (ud--U f)
Used by REDUCE (below). Returns next approximation to
denominator, given next number in continued fraction,
expressed as an unsigned double. Flag is true if overflow
has occurred in denominator, fake otherwise.

: NEXT! (ul u2)
Used by REDUCE and VROUND (below). ul is the next
approximation to the numerator of an unsigned vulgar
number, u2 is that of the denominator. For both numerator
and denominator, NEXT ! makes the next approximation
the current one, and makes the current one the previous
one.

: DV>UDV? (dv--udv f)
Accepts a signed double vulgar number, and returns its
absolute value. Flag is true if the argument was negative,
fake otherwise.

: ?NEGATE (n f--n)
Returns negation of n if flag is true. No action if flag is fake.

: REDUCE (dv--v)
Returns a normalised single vulgar representing the best
approximation to the unnormalised double vulgar passed
to it. If the magnitude of the double is too great to be
represented, either 1 0 or -1 0 is returned. Numbers too
small to be represented are returned as 0 1 or 0 -1 (i.e.,
rounded to zero). Where a number cannot be represented
exactly, it is rounded to the nearest representable value.
Numbers that are equidistant from the two nearest values
are rounded up or down with equal distribution.

: SMALL (dv--f)
Returns true if the double vulgar passed to it can be
converted to a single vulgar just by dropping the high cells.

: DV>V (dv--v)
Same action as REDUCE, but works faster when there is a
reasonable chance that the double passed to it is small (see
SMALL).

: V>UV? (v--uv f)
Returns absolute value of vulgar number. Flag is true if
vulgar was negative, fake otherwise.

: SNUM>? (u l u2--u3 f)
Used by VROUND. Returns next approximation to numera-
tor u3, given next number in continued fraction u l . Flag is
true if u3 is greater than u2, fake otherwise.

: SDEN>? (u l u2--u3 f)
Used by VROUND. Returns next approximation to denomina-
tor u3,given next number in continued fraction u l . Flag is
true if u3 is greater than u2, fake otherwise.

: VROUND (v +n--v)
Returns an approximation to a vulgar number such that
neither the numerator nor the denominator exceed the
positive single number on TOS. Comments regards rounding
and overflow are the same as for REDUCE.

: v* (v v--v)
Returns the product of the two single vulgar numbers passed
to it. Uses a double-length intermediate result, which is then
rounded.

: v+ (v v--v)
Returns the sum of the two single vulgar numbers passed to
it. Uses a double-length intermediate result, which is then
rounded.

: VNEGATE (v--v)
Returns the negation of the vulgar passed to it.

: RECIPROCAL (v--v)
Returns the reciprocal of the vulgar passed to it.

: v/ (v l v2--v)
Returns a vulgar approximation of vulgar v l divided by
vulgar v2.

: v- (v l v2--v)
Returns a vulgar approximation of vulgar v2 subtracted from
vulgar v l .

: VABS (v--v)
Returns the absolute value of the vulgar passed to it,
expressed as a vulgar.

c o n s t a n t S>V (n--v)
Returns the integer passed to it, expressed as a vulgar.

: V>S (v--n)
Returns the integer component of the vulgar passed to it,
expressed as an integer. Non-integral numbers are rounded
towards negative infinity.

: VFRAC (v--v)
Returns the fractional component of the vulgar passed to it,
expressed as a vulgar.

: VSPLIT (v--vl v2)
Splits a vulgar number into its integral (vl) and fractional (v2)
components. Both are expressed as vulgar numbers.

: SIMPLIFY (v +n--v)
Generates an approximation to the vulgar number passed to

I I

January 1994 February 12 Forth Dimensions

it, such that the denominator does not exceed +n. For
overflow, etc., see REDUCE.

: vo< (v-- f)
Returns true if the vulgar passed to it is negative, false
otherwise.

: V= (v v--f)
Returns trueif the two vulgars passed to it are identica1,false
otherwise.

: D< (d l d2--f)
Returns true if the signed double d l is less than the signed
double d2, Jake otherwise.

: V< (v l v2--f)
Returns true if the vulgar vl is less than the vulgar v2, false
otherwise.

occurrence of the character char. Typically, addrwill be the
start of a string. char should be present in the string, or
>CHAR will search beyond the end of the string.

v a r i a b l e PLACES
Holds the number of places after the decimal point which
will be displayed when a vulgar number is printed in
floating-point format. PLACES is initialised with a default
value of 10. It should not be set to zero or less.

: SIGN (n)
Core word. Corrects system fault.

: #v (+v--0 0)
Pictured numeric output word. Converts a positive vulgar
fraction, appending it to the output string as a floating-point
number, padding out the string with trailing zeroes until
there are PLACES characters after the point.

: VO= (v--f)
Returns true if the vulgar passed to it is equal to zero.

: VOVERFLOW (v--f)
Returns true if the denominator of the vulgar passed to it is
zero. This typically happens if a number whose magnitude
is too great to be expressed in a rounded form occurs in a
word which invokes Dv>v.

: BASEA (+n--+dl
Returns the current value of BASE raised to the power +n, as
a double number. +n should be strictly positive.

: WLGARISE (d--v)
Interprets the signed double passed to it as a floating-point
number in the current base, and returns a vulgar approxima-
tion to that number. The position of the point should be
available in DPL.

: STRIP (a d d r n--addr n)
Strips trailing zeroes from a string. Will not remove a zero that
is preceded by a ". ". STRIP cannot handle null strings, or
strings composed entirely of zeroes.

: >CHAR (a d d r char--n)
Returns an offset indicating the distance from addr to the first

: V.FR (v n)
Prints a vulgar number in floating-point format. The output
string is padded with leadng spaces until there are at least n
characters before the point. Trailing zeroes are stripped out.
At least one character must follow the point. No trailingspae.

: V . F (v)
Prints a vulgar number as V.FR with the following
differences: no leading spaces, one trailing space.

: V . SR (v +n n)
Prints a vulgar number in vulgar format. This consists of an
minus sign, if needed, followed by the integral portion of
the number, followed by a space. If there is a fractional
component, t h s is printed as numerator/denominator
followed by a space. The fraction is rounded using
SIMPLIFY with the limit +n. The output string is padded
with leadng spaces until there are at least n characters
before the space separating the integral from the fractional
component. Symmetrical division is employed for output,
as it is easier to read.

: v. (v)
Prints a vulgar number as V.SR with the following
differences: no leading spaces, numerator/denominator
will not exceed 100.

number. In this case, subtracting one from the other will give
a result that is rounded to zero by DV>V. Therefore, it is not
advisable to use subtraction to tesr for a difference in
magnitude. The code given here will detect any difference
and is faster than V-. VOVERFLOW is explained above.

Vulgarising Numbers
WLGARISE is probably the most useful word in the suite

as, even if you have no great desire to use vulgar arithmetic,
every Forth programmer eventually requires good rational
approximations to irrational numbers, and this produces
such approximations in a format suitable for * /, which has

been described as the most useful ma th operator in Forth.
Everyone knows that 355/113 is the best approximation of
pi for a 16-bit Forth, but what about a 32-bit Forth-is there
a better one?

(Yes! To find out what it is, you will need a 32-bit Forth.
Enter the listing, then type:
3.14159265358793238 WLGARISE 2CONSTANT P I

PI now returns the best rational approximation to pi, which
is accurate to 16 decimal places, quite sufficient for most
requirements.)

Bear in mind when using WLGARISE that it makes use
Forth Dimensions 13 January 1994 February

of DPL and BASE, which are transitory variables and cannot
be relied on to retain their values. 'The double number passed
to WLGARISE naturally cannot have more digits than the
Forth will support.

Accuracy and Precision
Finally, having performed our calculations, it may be

necessary to output some results, which brings us to the
vulgar output words. Vulgar numbers can be output in two
forms, as common fractions (i.e., -3 1/2) or as floating point
(i t . , -3.5). Both have variable precision, so in the former the
fractional part can be simplified to within a specified
complexity (i.e., no number larger than 100) and in the latter
the number of places after the point (i.e., three decimal
places).

Having control over precision invites the question of
accuracy and precision in a rational representation. Accuracy
and precision are occasionally confused, so let me state what
I mean by them. If I said that pi was 22/7, I would be quite
accurate but not terribly precise, whereas if I said it was
29.45450752879436751 I would be very precise, but awfully
inaccurate. Given the choice between accuracy and preci-
sion, I would choose accuracy every time. Regrettably,
accuracy is rather harder to quantify than precision.

In the case of a floating-point representation, precision is
a matter of how many bits make up the mantissa, and
accuracy is a question of how many of those bits can be relied
upon. I do not understand the process of determining
accuracy in floating point, but gather that even experts tend
to rely upon rules of thumb whenever possible in preference
to getting embroiled in the complexities involved. This
explains the redundancy that is built into floating-point
representations in the form of guard bits. One simply bungs
in as many guard bits as one hopes will sop up any rounding
errors thar may occur.

One advantage offloating point in this area is that the gaps
between representable numbers are spread through the
range such that relative precision remains constant through-
out its vast range. Absolute precision falls off towards the
high end of the range.

A rational system is a little different. Firstly, it has some
redundancy built in, but not in the form of guard bits. In a
normalised format, some number combinations, such as 2/4
cannot occur. Specifically, the numerator and denominator
must be relatively prime. Determining the number of relatively
prime pairs within a range brings us back to number theory
again, but a workable approximation is 61 per cent of the
possible combinations of two numbers in a range will be
relatively prime. This rule of thumb gets better with larger
numbers, but we will apply it to our eight-bit Forth. (Remem-
ber that?) Ignoring the sign bit for the moment (exactly the
same considerations apply to negative numbers, so we need
not mention them again), the range of representable numera-
tors is 1 to 127, the same as the range of representable
denominators. Therefore, 127*127*0.61=7839 (or thereabouts)
rational numbers can be represented. Obviously, if a given
fraction can be represented, then so can its reciprocal, so half
of these numbers lie in the range 0 to 1, and half in the range
1 to 127. (These are known as proper and improper fractions,
January 1994 February

respectively.) Within each of these ranges, the representable
fractions are distributed quite differently.

Taking improper fractions first: clearly, above 64, only
integers can be represented, as 64 1/2 has the representation
129/2, which requires more bits than we have. Equally,
above 42 1/3, only multiples of 1/2 can be represented, as 42
2/3 is 128/3. So precision falls off steeply but predictably
within this subrange.

Within the proper-fraction subrange, we find ourselves
back in number theory land. The distribution of vulgar
fractions between 0 and 1 with a limit on the size of the ,

denominator is called a Farey sequence. It has a vaguely
fractal look to it, with clusterings of representable fractions
within larger clusterings along the number line. It is sym-
metrical about the midpoint (1/2). The worst possible
precision is between 0 and 1/127, and the best is between 1/
126 and 1/127, which differ by 1/16002. The average
difference between two adjacent numbers between 0 and 1
is 1/(9839/2)=1/4919, approximately. The best approxima-
tion to pi is 22/7, which is wrong by about 1/800.

As noted above, accuracy appears to be better than the
precision would imply, but this is, at least for me, not proved.
My own limited tests, as well as others such as those made
by Knuth, tend to uphold the hypothesis.

Other Representations
Other representations are possible, such as a three-cell

integer and proper fraction format, which would do wonders
for absolute precision, or even an integer exponent and
vulgar mantissa, to combine some of the advantages ofvulgar
fractions with floating point's dynamic range. I have not
investigated these areas.

Vulgar Output Words
Now that we have some idea as to how precision goes

with vulgar fractions, we can get back to the output routines.
We will start off with some utility words. STRIP removes
trailing zeroes from a string. It then checks if the last character
in the string is a dot and adds one zero back on if it is. STRIP
assumes the last character in the string is not a dot.

>CHAR searches for the first instance of a specified
character in a string and returns its position. >CHARassumes
the specified character will be present.

The variable PLACES is used to specify how many
numbers after the point will be displayed when a number is
printed in floating-point format.

#V is the basic vulgar output word. It accepts an unsigned
vulgar number and appends the equivalent string to the
numeric output buffer. Trailing spaces are included. In
common with other "#" words, it returns two zeroes. V . FR
demonstrates the use of #v. V. FR strips out trailing zeroes
and aligns the number about the decimal point. How many
characters and spaces occur before the point is specified by
the TOS. v. F is not aligned, but is otherwise similar.

v . SR prints a vulgar number in a simplified vulgar format.
I t prints the integer portion (with sign if needed), followed
by a space and then the fractional part in the familiar
numerator/denominator format, if there is a fractional com-
ponent to the number. In addition to the number to be

14 Forth Dimensions

printed, it takes two parameters. The TOS specifies align-
ment, i.e., how many characters and spaces are to be printed
before the space that separates the integral and fractional
components. 20s specifies the maximum value of the
denominator, and hence the complexity of the fractions
shown. v . is not aligned, and has a default complexity of 100,
but is otherwise similar.

A Comparison With Other Representations
Vulgar fractions are not a replacement for floating-point

numbers, but are another alternative amongst a variety of
representations for non-integral numbers. They have their
own particular strengths and weaknesses. They differ from
other representations in that they are not tied to a specific
base. Both scaled integer and exponent/mantissa cannot
represent accurately numbers that conflict with the binary
implementation. This means that numbers such as one-third
cannot be expressed exactly. With a rational representation,
one-third is 1/3. I suspect this is a factor in its resistance to
rounding errors. Another is the fact that the median rounding
employed throughout is equally likely to be larger or smaller
than the exact value. The rules for predicting which way a
rounding will go, up or down, are quite complex.

On the down side, it lacks the dynamic range of floating
point, as does scaled integer. Equally, it lacks the years of
research that floating point has had applied to it, which is
why most worthwhile routines are published for floating
point rather than rational numbers. Much as I dislike floating
point, this is at times a significant factor. Whilst we are on the
subject, there are some very good continued-fraction expan-
sions of most ofthe transcendental functions. Also, Chebyshev
approximation seems ideally suited, as the range of greatest
precision, -1 to 1, coincides exactly with Chebyshev's
requirements. SQRT is just a question ofgenerating convergents
to a continued fraction that can be derived directly and quite
simply. And so on.

I have to bluster a little when it comes to the question of
speed. I have not been able to do any actual timings, as mine
is rendered artificially slow by the high-level UM/MOD. The
implementation makes extensive use of UM/MOD. Theoreti-
cal timings are complicated, to say the least. The bottleneck
lies in the routine DV>V. On one path, it selects Euclid's
algorithm and, on the other, a routine that generates
convergents to a continued fraction. In fact, this is a variation
on Euclid's algorithm, and similar considerations apply to it.
Knuth really goes to town on Euclid, and it's all Greek to me.

Unlike floating point, where rounding has no best case,
rounding of rational numbers takes a variable amount of
time, depending on the numbers presented to it. Although its
worst case is slow, most numbers that it receives, if selected
randomly, will display best behaviour, or at least very good
behaviour, which issignificantly faster than worst case. Worst
case is where the numerator and denominator are large, and

I are successive terms in the Fibonacci seauence. Best case

Forth Dimensions 15 January 1994 February

do not see any reason why one could not design a rational
coprocessor. That would, to me, be a nice addition to a Forth
processor, effectively adding a newwordset to the processor.
(Incidentally, I feel that coprocessors are the way for stack
processors to develop, thereby introducing the concept of
wordsets-which is central to Forth-to Forth-in-hardware.)

This has been a whistlestop tour through rational num-
bers. I hope it has whetted your appetite. I finish with a few
references.

References
Firstupcomes Knuth, fieA7tofComputerPmgramming:

Vol. 2, SeminumericalAlgonthrns. He gives three interesting
pages about fractions, and twenty-odd, mind-numbingly
mathematical pages to Euclid's algorithm. There is other stuff
about continued fractions scattered throughout the volume.

Then we have "Numerical Recipes" in C. f ie Art of
Scientific Computing, Second edition, by Press, Teukolsky,
Vetterling, and Flannery, which is good for stuff concerning
the higher functions. They use floating point predominantly,
but much could be applied to vulgar fractions.

There has been some work done in Forth. Both myself
and Ron Wilson have published related articles in Forthwrite,
the FIG-UK magazine. Particularly interesting is the second
of Wilson's articles, in issue 54, which tackles some of the
harder maths. This article supersedes, rather than augments,
my earlier work.

The integer maths routines come from my own work in
the'91 euroFORMLproceedngs, andfromprof. TimHenddass'
article in FD ~ 1 ~ 1 6 , and Prof. Nathaniel Grossman's in FD
VI/3. Grossman also talks about approximation of vulgar
fractions using medan rounding.

S.Y. Tang gives an interesting paper, "Approximate
Rational Arithmetic" in the '90 FORML proceedings. He gives
code for a lot of higher functions, albeit for a representation
with a very limited range, making it impractical. I am not
convinced that his technique for addition and multiplication
is valid, as it reduces one of the arguments to a much simpler
form to avoid overflow, rather than reducing a result which
gives equal respect to both arguments. Nonetheless, it is a
worthwhile paper.

As I am not into heavy maths books, my sources for
information about continued fractions, et al., are of an
introductory nature. They are The HigherArithmetic by H.
Davenport, and Recreations in the Theoy ofNumbets by H .
Beiler. The latter book is written by the sort of person who
discovers new prime numbers as a hobby, and believes he
can write. The section about convergents of a continued
fraction starts, "Did you ever dream, perhaps after eating not
wisely but too well, of crawling along tortuous passageways
and finally emerging into celestial worlds of Maxfield Parrish
architecture?" No.

happens 40 per cent of the time' and requires Only One

trip through the loop.
Therefore, the general impression I get about speed is that

it be a little better than point, things
being equal. Of course, all other things are not equal, but I

Gordon Charlton is thirty-one years old, and was consequently named after
Charlton Heston. He has been described as tall, handsome, witty, intelligent,
charming, and world famous. Gordon is alsoquitetall. He wishes to thankreaders
of Forth Dimensionsfor not responding to his request for a rigorous description of
theRatcliffe-Obershelpalgorithm, as this prompted him to developarather better
one himself.

The WorldYs Fastest Programmer?

On March 8, 1994, the A CM Special Interest Group on Forth (SlGForth) will invite fiftv
programmers to joust with computer and compile(to vie for the title of "World3 Fastest
Programmer:" Individuals and teams will compete to program a physical "gizmo" in the
shortest possible timel using the computer and language of their choice.

First held in 1988 under the auspices of the Forth Interest Group, the /
World's Fastest Programmer contest has travelled from California to
Europe, and now arrives in Phoenix, Arizona for the 1994 Symposium
on Applied Computing. This symposium is jointly held by six Special
Interest Groups of the Association for Computing Machinery:

SIGAPP (Applied Computing)
SIGAPL (APL)
SIGBIO (Biomedical Computing)
SIGCUE (Computer Uses in Education)
SIGSMALYPC (Personal and Small Computers)
SIGFORTH @ o h)

Now's your chance to prove the worth of your platform, language,
or programming methodology! Any computer that suppons a parallel
printer can be used. Entrants (individuals or teams) need not be
members of ACM or SIGForth, but only fifty can compete, so register
now! I

Registration
The contest registration fee is $25 (U.S.), payable to ACM SlGForth

(U.S. chedts or money orders only, please). Send your name, address,
and a check or money order to the contest chairman: 1

Brad Rodriguez
Box 77, MNaster University
1280 Main Street West
Hamilton, Ontario L8S 1CO Canada
e-mail: B.RODRIGUEZ2 on GEnie, or

b.rodriguez2@genie.geis.com on Internet

(U.S. entrants note: fist class postage to Canada is 40 cents!)

For teamenuants, only one member need register. You may register
by e-mail; however, your registration will not be accepted until the $25
fee is received. Participation is limited to the fist f i y registrations
received by December 31, 1993. Cancellations after December 31, 1993
will forfeit the registration fee. (The contest organizers reserve the right
to extend the registration period at their discretion.)

The contest will be held at the Phoenix Civic Plaza, in conjunction
with the 1994 Symposium on Applied Computing (SAC '94) and the 1994
ACM Computer Science Conference (CSC '94). While in Phoenix you
may wish to attend SAC '34. For registration mformation, contact:

Ed Deaton, Conference Director
Department of Computer Science
Hope College
Holland, Michigan 49422 U.S.A.
e-mail: deaton@cs.hope.edu

SAC '94 can also provide information on housing in Phoenix.

Contest Rules
The object of the contest is to solve a real-time programming

problem in the shortest time. This problem will involve a hardware
"gizmo" to be controlled by a computer.

Rules
1. Entrants may be individuals or teams. Teams may have any number

of members. / I
The "gizmo" will be supplied by the contest organizers at the
commencement of the contest. Only one gizmo will be supplied to
each entrant (i.e., only one gizmo per team). !
Entrants may use any programming language(s). 11
Entrants may use any computer(s), and any number of computers.
Entrants must supply their own computer(s).
Entrants must ensure that their computer has an interface suitable for
the gizmo, as follows:
a. The computer must provide 8 bits of parallel output, and 1 bit

of parallel input which can be read by software (i.e., not an
interrupt input).

b. The gizmo will use a standard Centronics-type 36-pin female
connector, and will electrically resemble a standard "IBM PC
compatible" parallel printer. Pins 2 through 9 on this connector
(DO-D7) will be the 8 data inputs of the gizmo. The data output
of the gizmo will appear simultaneously on pins 11 (BUSY), 12
(PAPER END), and 13 (ON LINE). Ground will be pins 19
through 30. ?TL levels will be used. All other pins will be
unconnected.

c. Entrants must supply their own cables. A cable that connects the
computer to a standard parallel printer should be satisfactory;
however, it is the responsibility of each entrant to verify that the 11
signal assignments given above are compatible with their
computer's parallel port, and to provide any necessary adapt-
ers.

d. The gizmo will not require power from the computer. I/
e. The contest organizers will exercise care in the design and

construction of the gizmo. However, the organizers assume no
responsibility for any damage to any entrant's computer(s), 1
caused by connection to the gizmo. / /

No other information about the gizmo will be provided until the start
of the contest.
No information about the problem to be solved will be provided until 1
the start of the contest. I
The winner of the contest will be the entrant who completes the
assigned problem in the shortest time after the start of the contest.
Completion criteria will be provided in the problem description; but 1
no entry will be deemed complete until so pronounced by contest
judge(s).
The contest organizers may elect to award honorable mentions in !
other categories, such as shortest program, most readable program, /I
etc. Information about these awards (if any) and their judging criteria
will be available immediately before the contest.
Entrants must provide their source code to the contest organizers at
the condusion of the contest. Entrants will retain full rights to their

All disputes about the interpretation of these rules, and all other 1)

work. However, by entering this contest, each entrant agrees to grant
the contest sponsors and contest organizers unlimited right to use,
publish, or dstribute their contest entries. (In particular, the contest
organizers intend to publish the winning entry in a suitable journal.)

matters pertaining to this contest, will be decided by contest judge(s)
to be named by the contest organizers. The decision of the judge(s)
will be final.
Participation will be limited to the first f i y (50) entrants whose
applications are received by 31 December 1993.

1

January 1994 February 16 Forth Dimensions

A New Forth Development Envimnment

The Visible
1 Virtual Machine

Ellis D. Cooper; Ph. D.
New York, New York

The Benefit to You
Fonh is deep, Forth is fun. This paper is about a new and

even more fun way for you to program in Forth. The idea is
to automate the chore of visualizing the stack from word to
word. I will summarize my experience which motivated the
development of this idea. Then I provide a small historical
and philosophical argument that the best way to make the
Forth virtual machine come alive is to inject "intelligence"
into the Forth terminal. The Visible Virtual Machine is
described, and some of the plans for enhancements which
are in the works. The benefit of this new Forth development
environment is the greater programming fun you will have
by relegating error-prone chores to the terminal.

1. What are my Forth Credentials?
This is not supposed to be a resume, but I should try to

establish my Forth credentials if I am to offer you a new tool
for Forth programming. Worshiping in the temple of batch
compilation never appealed to me. Interactive languages like
BASIC and APL sought my fancy, but walking into the Forth
machine shop opened my eyes. In the early 1980's I engi-

, neered a hand-held, battery-powered, 80186-based options
trading computer running PCForth; once I spent several
months using NEON on a Macintosh (too bad Chuck Duffs
work is not more appreciated, especially his Actor language);

development for embedded microcontroller systems put more
intelligence into the terminal: it became a PC with a text
processor and a download capability to send code to RAM,
EPROM emulator, or EPROM programmer. O h s dispensed
with the artificial segmentation of source programs into
blocks.) For example, the New Micros, Inc. system merely
requires plugging one of their 68HCll products onto a serial
port They offer a full-featured communication program called
Mirror which has a built-in editor (or the ability to invoke your
favorite programmer's editor), the option to toggle "capture to
a file," a complete transcript of the development session, and,
of course, h e protocol for sending a file down to the target
Other than that, everything is the same as it always has been:
you get an OK prompt, and you are on your own. What more
could you want?

3. Languages, Virtual Machines, and Mental Models
This word "terminal" is a misnomer. It implies something

at the end of the line. Nothing is more untrue. A terminal is

By making the terminal
more complex in the right way,
life gets simpler.

I have enjoyed using SC/Forth on the very rapid RTX 2000 for
scienthc data acquisition; recently I generated a motion-
control system using Max-Fonh from New Micros, Inc. in their
68HC11; and for a few months I have had to use (the defunct)
Bryte-Forth in the 8051 for industrial signal processing.

2. Forth Development in the Past
Right at the outset, being a complete operating system

entailed that Forth provide a means to load and edit programs.
The choice of input stream (from keyboard or disk) involved
the organization of Forth programs into blocks. This was
before the widespread use of personal computer word
processors, and enabled the target system itself to be the
development system with nothing more than a terminal as
intermediary between being (the programmer) and object
(target system). The next stage in the evolution of Forth

an intermediary between a being and an object for tweway
interaction. In the old days we had "dumb" terminals, and
KEY and EMIT were the sole portals for interaction. Now, we
have smarter terminals, but KEY and EMIT still limit the
"bandwidth of the communication. The competition for
survival in the terminal world will be won by "intelligence."
This means that the "language" mediatingthe interaction will
evolve towards complexity more tuned to the minds of
beings. (No problem with the objects at the other end of the
line.)

Every computer language has a virtual machine, and a
person who understands it can tell the story about how the
machne works. The brain structure for telling the story is
called the mental model. Every Forth programmer starts by
understanding the "stack-oriented virtual machine." You

Forth Dimensions 17 January 7994 February

"explain" the Forth machine
to someone by telling the story
based on your mental model,
and he or she "understands" it
when they, too, have the men-
tal model. A programmer is
always tellingstories. He must
be able to explain to himself
how the program-under-de-
velopment works. (And ex-
actly the same is true with
"he," "himself' replaced by
"she," "herself", respectively.)

The point of the paper is
that by making the terminal
more complex in the right
way, with a graphical user
interface (GUI), life gets sim-
pler. The GUI for Forth devel-
opment must visibly show us

3 EMPTY E E

Strlck not deep enough;

23 (n l n 2 - - n 3 >

T E S T 2 0 1 2 3 4 5 OK

the virtual machine and let us
I -- - -.

get our hands right on the
"levers" for operating it. This is
how KEY and EMIT become wide-open portals for Forth
development.

4. The Visible Virtual Machine
I have repeatedly encountered two fundamental prob-

lems with Forth. It is undeniably elegant to pass parameters
on the stack instead of through named variables. The first
problem, though, is the need to develop a mental skill for
"keeping the stack straight." If it is more than two or three or
four deep, I have to write little columns of stack values
between successive words spelled out on a piece of paper.
That is the only way I can gain some confidence that
everything put on the stack is used, and that every Forth word
gets the arguments it needs. This exercise, even on paper, is
error prone. The second problem is that one must also
develop the skill of imagining the linear organization of the
dictionary. It is a real chore to print out a DUMP and then
annotate it byte by byte to be sure that some defining word
did the right thing. I am sure there are geniuses who never
have to do these chores, just like there are people who were
born to ski. But when things get tough for me, I try to invent
a way out of a boring, error-prone chore.

The basic idea of the Visible Virtual Machine is that you
should be able to type a word, press the spacebar, and see
the stack as a column of values immediately to the right of
the word:

ROT SWAP + XXX ! DROP

1 3 1 4 7AFE 2
2 1 3 2 4
3 2 2 2

More, the chore of checking arity should be automated.
"Arity" means the number of arguments on the stack required

January 1994 February 18 Forth Dimensions

. i

FORTH and Classic
Computer Support

For that second view on FORTH appli-
cations, check out The Computer Journal. If you
run a classic computer (pre-pc-clone) and are
interested in finding support, then look no
hrther than TCJ. We have hardware and soft-
ware projects, plus support for Kaypros, S 100,
CP/M, 6 8 0 9 ' ~ ~ and embedded controllers.

Eight bit systems have been our mainstay
for TEN years and FORTH is spoken here. We
provide printed listings and projects that can run
on any system. We also feature Kaypro items
from Micro Cornucopia. All this for just $24 a
year! Get a FREE sample issue by calling:

(800) 424-8825

TC J :B:zter
Lincoln, CA 95648

can be toggled.) The depth of
the stack is checked before
putting values on it, to be sure
that it does not overflow. (This
feature can be toggled.) There
are various "hot keys," such as
Ctrl-S to see the stack, and Ctrl-
W to see the last eight entries

EMPTY 23

23 7 6
[3 7 * 1 LITERR

in the dictionary.
Both windows are text edi-

tor windows, with arrow keys
for two-dimensional motion,
mouseselection, cut, copy, and
paste operations, scroll bars,
and paging. The main window
is called the "workstrip," and it
can be saved as a normal ASCII
text file. No longer do you
have to re-type a colon defini-
tion in your editor after having
already entered it in your ter-
minal: just copy and paste.

by a Forth word, coupled with the number of values left on
the stack after the word is executed. The arity of a Forth word
is implied by its stack diagram. For example, the stack
diagram (nl n2 -- n3) for + implies arity "2 in, 1 out."

The second idea of the Visible Virtual Machine was that
there is no need to develop yet another Forth to do these
things. All that is needed is a GUI development language with
serial communication capability, for then the Forth of the
target system can be installed as a module in the terminal. The
bill is filled by Actor 4.03 under Windows 3.1. Years ago, I
picked off a bulletin board the Actor code for serial commu-
nication and, after a little debugging, it serves perfectly well
for talking to embedded systems. In particular, as already
mentioned, I use the New Micros, Inc. 68HC11-based
products. The entire glossary of Max-Forth provided by NMI
was scanned into a text file which is read into the Visible
Virtual Machine on startup. The stack diagrams are all there,
and the English gloss of word functionality is also instantly
available on-screen.

As I said, to fully understand, you need a mental model.
To get the mental model of the Visible Virtual Machine
(WM), all you need is to learn the language. The language
is all there, in the menu bar of the GUI, which is given below.
The W M supplies two windows. The smaller one in the
foreground has two functions. First, it is a standard Forth
terminal with the OK prompt, etc. Second, it is used for
displaying messages and information generated by the main
window. The main window has the menu bar, and is where
the virtual machine becomes visible.

The default setting for the stack is that it be shown
whenever the spacebar is pressed after typing a word. W s
feature can be toggled.) Also, the arity requirements of all
words are checked before the word is executed. (This feature

Such files can- be loaded or
appended to the current workstrip. Pressing the Enter key
switches the workstrip into a mode where, instead of sending
blank-delimited words immedately, the sequence of words-
which is called a "phrase"-is accumulated in a buffer; and
when the Enter key is pressed again, the phrase is sent as a
whole to the target system. Thus, the Enter key toggles
between two modes. A portion of the workstrip selected with
the mouse can be commented out with automatic insertion
of "(" characters, or can be downloaded drectly to the target
system. Many other useful capabilities will be added to the
WM, and some of these are briefly described below. The
menu bar titles, accompanied by their help bar entries, are
displayed in Table One. Included here are actual screen
images of the Visible Virtual Machine in action.

5. Forth Development in the Future
Improved visibility would result from being able auto-

matically to see a fully annotated, byte-by-byte listing of the
dictionary: show the NFA, LFA, CFA, and PFA with decompiler
information for PFA entries and defining word information
for the CFA. There should be a search mechanism to find all
locations in the dictionary which refer to any specified word,
constant, variable, or other defined object. Similarly, the
branching vocabulary structure should be visible, and allow
cross-vocabulary searches.

It ought to be possible to enter arithmetic formulas with
"normal" infix notation and parentheses, and have automatic
conversion to efficient Forth stack manipulations. The high-
level Actor intermediary provides the additional degree of
freedom, so that control structures such as IF.. .ELSE.. .THEN,

I DO.. .LOOP, BEGIN.. .AGAIN, etc., could be available at the
interpreter level of activity, not only during compilation. 1 Another advantage of the Actor intermediary is that Forth

Forth Dimensions 19 January 1994 February

I Table One. Visible Virtual Machine menu bar. I

"Setuw: "
"m" "Open COMl s e r i a l po r t . "
"u" "Open COM2 s e r i a l p o r t . "

"NMI F68HCll V3.3" " I n i t i a l i z e a t a r g e t system which uses
t h e F68HCll V3.3."

NMI F68HCll V3.5" " I n i t i a l i z e a t a r g e t system which uses
t h e F68HCll V3.5."

"CLOSE" "Close COMx s e r i a l por t . "
.. ..
"ELLS: "

" ~ " "Replace workstr ip with f i l e from hard d i sk . "
" A m " "Append f i l e from hard d isk t o workstrip."
"sAY.e" "Send se l ec t ed code of workstr ip t o t a r g e t system."

----------_---------- .. ------------
"U: t l

"SZUL" "Cut s e l ec t ion t o workstr ip buf fer . "
"m" "Copy se l ec t ion t o workstr ip buf fer . "
"paste" "Replace s e l ec t ion with workstr ip buf fer contents . "

" C l e a ~ ~ " "Delete s e l ec t ion . "
"Comment" "Comment s e l ec t ion . "
"Phrase" "Copy se l ec t ion t o phrase buf fer . "

"Select All" "Select t h e e n t i r e workstr ip."
..

"Search: "
"Find. . ." "Search workstr ip f o r spec i f ied t e x t . "
"Find Next" "Repeat t h e l a s t search operat ion."
R e d a c e . . ." "Replace spec i f ied t e x t with new t e x t . "

.. ..
"Clear: "

"Works t r i~" "Clear t h e e n t i r e workstr ip."

"LiaQ" "Clear t h e e n t i r e information window."
"!h?&" "Clear t h e workstr ip and information window."
...
" W d ' "Clear t h e word buf fer . "
"Phrase" "Clear t h e phrase buf fer . "
"Stack" "Clear t h e s tack ."

..

"FORTH : "
"Carriaae Return" "Send a car r iage re turn t o t h e t a r g e t system."
"2" "Display t h e parameter s tack a t t h e cursor . "
"WORDSw "Display t h e t o p of t h e d ic t ionary i n t h e

information window."
...

"BASE: "
"DECIMAL" "Send t h e word DECIMAL t o t h e t a r g e t system."

"w" "Send t h e word HEX t o t h e t a r g e t system."

"Stack: "
"Automatic D i S ~ l a v " "Automatically d isp lay t h e s tack a t t h e

cursor a f t e r each v a l i d FORTH word."
"No Displav" "Do not d i sp lay t h e s tack a f t e r each word."
"Ari tv Checking"

"ON" - "Automatically check s tack depth p r i o r
t o executing most recent ly en tered word."

"m" "Do not check s tack before invoking next word."
.. ..
"Status" "Display WM s t a t u s i n information window."
.. --_-------__--

January 1994 February 20

words couldbe single-stepped
through their PFA entries, and
even allow stack corrections to
be made between steps.

A further feature would re-
introduce "blocks" into Forth
at a higher level. Namely, there
should be a Forth "browser"
modeled on the concept famil-
iar to object-oriented program-
mers. The browser would give
access to variable-size blocks
of Forth code, and be able to
assemble a suitable collection
of blocks into a finished ASCII
text file, ready to download.
All dependencies between
Forth words would be resolved
automatically.

6. Conclusion
The paper surveys the back-

ground, motivation, and fea-
tures of a new tool which
automates some of the chores
in Forth programming. The phi-
losophy is to imbue the terrni-
nal with ever more "intelli-
gence" in its role a s mediator
between programmer and tar-
get embedded microcontroller
system. Future features of the
new development environ-
ment are described. The Vis-
ible Virtual Machine should be
immediately useful to Forth
programmers. For beginners,
it should flatten the learning
curve and lighten the load.

Forth Dimensior

I Needed It:

Tim Hendtlass
Hawthorn, Victoria, Australia

Murphy's Laws take many forms-here is one of them:
"As soon as you tell somebody you have finished something,
you find you haven't." In my case, no sooner had I finished
my article, "Math-Who Needs It?" (Forth Dimensions XIV/
6) than I came across a situation in which I needed a smaller
version of the futed-point arithmetic described there. The
application is a neural network which attempts to model
some of the behaviour of the human brain. The brain does
not provide the equivalent of more than about two or three
digits of precision in the signals it uses. The net I am using
is large, and the memory requirements and the time taken to
move data around were becoming embarrassing. Taking a
leaf from the brain, I realised I had a use for a 16-bit number
representation which consists of an eight-bit characteristic
(the integer bit) and an eight-bit mantissa (the fraction). The
more I used them and found how fast and convenient they
were, the more I realised they were a natural addition to the
number representations I described before.

However, the limited range that can be represented with
only eight bits allocated to the signed integer part is a
problem at times. So I also wanted a simple way to move
between 16-bit Fured-point numbers and "double sized 32-
bit Futed-point numbers (with a 16-bit signed integer part).
Being able to convert to 32-bit fixed-point numbers meant I
needed words to manipulate them, too. The total package of
words to manipulate both 16-bit and 32-bit fured-point
numbers is my Mini-Math pack.

I won't repeat the information about Fied-point numbers
I gave before, and refer you to "Math-Who Needs It?" for
clarification of anything that follows which is unclear to you.
I will refer to a 16-bit fixed-point number (eight-bit charac-
teristic and eight-bit mantissa) as a single fixed number
(SFIX#), and a 32-bit Futed-point number (16-bit character-
istic and 16-bit mantissa) as a double Futed number (DFIX#).
The 32-bit futed-point numbers that I described in "Math-
Who Needs It?" allowed you to trade off the precision of the

Tim Hendtlass. R.D., is an Associate Professor responsible for the Scientific
Instrumentation major at Swinburne Institute of Technology. He discovered Forth
in about 1980 and since has used it for research and for teaching to about 80
students per year. In research, he has used it in fields from intelligent adaptive
technological support for the elderly, to highly distributed industrial data collec-
tion, to devices for the measurement of capacitance under adverse conditions.

characteristic against the precision of the mantissa to best suit
your need. The 32-bit futed-point words given here obtain
some speed advantages from Furing these at 16 bits each but,
more importantly, give you simple ways to move from single
to double futed numbers, and back again.

You can use the normal integer operators +, -, abs , max,
and min on single fixed numbers, just as you would with
integers. They "fit" into normal variables and constants, and
are stored and read just as you would an integer. The only
special routines needed are to perform multiplication (s f ix*)
and Qvision (sf i x /) , and for number input (sf ix#) and
output (sf i x .).

You can use the normal 32-bit integer operators d+, d-,
dabs , dmax, and dmin on double f i e d numbers. They "fit"
into normal double variables and double constants, and are
stored and read just as you would a double integer.

One or two other convenient features are:

If you divide two integers using the s f i x / routine (in tA
i n t B s f ix /) , the result is correctly expressed as a single
Futed number. For example, if you divide 14 by 4 using
s f i x / , the result is 896, which is 3.5 in single futed point.

Similarly, if you divide one 32-bit integer number by a
second 32-bit integer number with d f i x / , the result is a
double futednumber. (123. 34 . d f i x / d f i x . correctly
gives 3.6716.)

Indeed, if you take a double fured number and integer
divide it by a single futed number that has been converted
to a double number with the usual integer conversion
word s>d, the result after converting by dropping the high
word is a single fixed number. (12 3 . d f i x # 3 4 . s f i x #

When I found how fast and
convenient they were, I realised
they were a natural addition...

s > d ud/ d r o p s f i x . gives 3.62,)This latter is only useful
if the result is not larger than a single fixed number can
represent, otherwise the result is garbage.

The normal word you use to multiply one 16-bit integer by
a second 16-bit integer to get a 32-bit answer is *din F-PC.
The name might vary for your system. If you multiply two
single fured numbers with *d (or its equivalent), the result
is a double Futed number. This is very useful if, as I did for
example, you have to accumulate the sum of a series of
numbers squared and the sum is far too big to express as
single fixed numbers.

You can convert any single futed number into the equiva-
lent double Futed number by convening it to a double
integer and double integer multiplying by 256. You can

Forth Dimensions 2 1 January 1994 February

convert a double fmed number into a single fured number
by dividing by 256 and dropping the top 16 bits (which
should be zero).

The code for the four special words (s f ix* , s f i x / ,
sf ix# , and sf i x .) needed to implement single fured
numbers in simple Forth is given below, as are the four
special words (df i x * , d f i x / , d f i x # , and d f i x .) needed
to implement double fued numbers. I had to find the square
root of the sum of all my double fixed numbers, so I
implemented a word that takes a double fured number and
returns the square root as a single fvted number. This is
included in the listing, in case anyone else finds it useful. It
isn't super fast or even super accurate, but I was only working
with two or three digits of precision, remember?

A second version for s f i x * and s f i x / , and simple
words to convert single fixed numbers to and from double
fmed numbers, are also given in assembler. The high-level
words should (I hope) be usable with any Forth; the
assembly words will only work with F-PC. The multiply and
divide routines are ones in which the put-on-the-stack-and-
immediately-wtrieve-it-fmm-the-st- of the
high-level definitions slows things down substantially, so

Description
Single fixed point (16 bits),
about two decimal places, written in
Forth, portable.
Single fixed point (16 bits),
about two decimal places, written in
assembler for F-PC.
Double fixed point (32 bits),
about 4.5 decimal places,
written in Forth, portable.

they benefit most from conversion to assembler.
I give speed figures for the various words implemented

in the accompanying code, standardsed to a 16-bit integer
addition. This allows then to be directly compared with the
results for other number representations given in Table Two
of my previous article. The 32-bit double fured divide
calculates the answer to the highest accuracy possible (which
varies according to the numbers involved), rather than the
lesser fured accuracy of the version from "Math-Who Needs
It?" For this reason, the time for the version given here varies
and is slightly longer than for that version.

The range for single futed-point numbers is small, from
approximately 127.99 to -127.99, which I have found to be
perfectly adequate for most of my purposes. The range for
double fured numbers is from approximately 32767.000 to
-32768.000. The ability to painlessly switch up to double
fured numbers when needed, and back down again when
the need passes, allows for the most efficient use of
resources. If you only need limited precision (a bit better than
two or four decimal places) and modest range, and have tight
memory requirements, these mini-math words may well suit
your purpose.

Multiply

2.2

1.8

13

\ A f i l e o f 16- and 32 -b i t f i x e d - p o i n t math o p e r a t o r s .
\ W r i t t e n i n 1993 by T i m Hend t l a s s , P h y s i c s Department , Swinburne U n i v e r s i t y
\ of Technology, P.O.Box 218 Hawthorne 3122 A u s t r a l i a
\ phone 63 3 819 8863, f a x 63 3 819 0856, e m a i l tim@brain.physics.swin.oz.au
\ T h i s i s p u b l i c domain code , u s e and e n j o y . P l e a s e l e t me know o f any bugs .
\ W r i t t e n i n , and tested f o r , F-PC.
\ Except f o r code v e r s i o n s , s h o u l d t r a n s l a t e e a s i l y .

Add

1

as above

2.4

Divide

2.3

1.8

98-137

comment: *************** Sing le Fixed Number Maths i n F o r t h ****************
SFIX+ same a s +, SFIX- same a s -.
ABS, MAX, M I N work w i t h s i n g l e f i x e d numbers, see t e x t
comment; \ .

Subtract

1

as above

3.8

: SFIX.
dup 0< i f a s c i i - else b l t h e n emi t \ p r i n t s i g n
a b s s p l i t o v e r 253 > \ f r a c t i o n > .99?
i f n i p 1+ 0 swap t h e n \ yep, i n c i n t e g e r , set f r a c t i o n t o 0
(.) t y p e a s c i i . e m i t \ p r i n t h i g h b y t e & dec ima l p o i n t
10 * s p l i t a s c i i 0 + > r \ f i r s t d i g i t a f t e r dec ima l p o i n t
10 * s p l i t swap 128 > \ need t o round up?
i f 1+ dup 10 = \ yes now rounded up t o l o ?

I I
January 1994 February 22 Forth Dimensions

i f r> 1t >r drop 0 t h e n \ i f s o round up
then r> emit a s c i i 0 t emit b l emit \ output d i g i t and one space

: SFIX#
d p l @ O < i f 256 \ i f i n t e g e r s c a l e by 256
e l s e d rop 256 1 d p l @ 0 ?do 10 * loop */mod n i p \ s c a l e a s a p p r o p r i t e
then

: SFIX* (s f i x l s f i x 2 -- s f i x 3 { = s f i x l * s f i x 2)) 256 */mod n i p ;
: SFIX/ (s f i x l s f i x 2 -- s f i x 3 { = s f i x l / s f i x 2)) 256 swap */mod n i p ;

comment: * X X * * * * * X * * * * Double Fixed Number Math in Forth .
DFIX* and DFIX/ a r e d e r i v e d from FIX* and FIX/ i n "Math-Who Needs I t ? "
DFIXt same a s D+, DFIX- same a s D-,

DABS, DMAX, D M I N work wi th double f i x e d numbers, s e e t e x t
comment; \ .

: DlO* d2* 2dup d2* d2* d t ; \ m u l t i p l y a +ve double number by 10
: DFIX. \ p r i n t a double f i x e d number

dup 0< i f a s c i i - else b l then e m i t \ p r i n t s i g n
dabs over 65529 u> \ f r a c t i o n > .9999?
i f n i p 1+ 0 swap t h e n \ yep, i n c i n t e g e r , set f r a c t i o n t o 0
(.) type a s c i i . e m i t \ p r i n t i n t e g e r and decimal p o i n t
0 d10* >r \ g e t f i r s t d i g i t of man t i s sa
0 d10* >r 0 d10* >r 0 d10* >r \ and second, t h i r d and f o u r t h
32768 u> i f 1 else 0 then \ s e t up c a r r y i f remainder 5 o r more
r> + dup 10 = i f d rop 0 1 e l s e 0 then \ apply c a r r y t o bottom d i g i t , propagate c a r r y
r> + dup 10 = i f d rop 0 1 e l s e 0 then \ d i t t o t o second bottom, p ropaga te c a r r y
r> + dup 10 = i f d r o p 0 1 else 0 t h e n \ d i t t o t o second most s i g n i f i c a n t
r> + 4 0 do a s c i i 0 + emit loop \ do most s i g n i f i c a n t and p r i n t d i g i t s

: T / (u t un -- ud) \ unsigned t r i p l e / unsigned s i n g l e = unsigned double
>r r@ um/mod swap \ d i v i s o r t o r, d i v i d e t o p two 16 b i t s , rem t o t o p
r o t 0 r@ um/mod swap \ combine wi th next 16, d i v i d e t h e s e by d i v i s o r
r o t r> um/mod swap drop \ repea t f o r l a s t 16 b i t s , l o s e f i n a l remainder
0 2swap swap d+ \ combine p a r t s of answer t o form f i n a l answer

: DFIX# \ e n t e r a double f i x e d number
tuck dabs 0 d p l @ O< i f swap \ save s i g n , i f i n t e g e r move i n t o c o r r e c t word
e l s e - r o t \ e l s e * 65536

1 d p l @ 0 ?do 1 0 * loop t / \ work ou t d i v i s o r and s c a l i n g
t h e n r o t 0< ?dnegate \ apply s i g n a s needed

: DFIX* (d f i x l d f i x 2 -- d f i x 3 { = d f i x l * d f i x 2))
r o t 2dup xor >r - r o t \ s i g n of answer t o r e t u r n s t a c k
dabs 2swap dabs \ make bo th number p o s i t i v e
dup>r r o t dup>r >r over >r
>r swap dup>r um* 0 2 r > um*
d+ 2 r> um* d t 2 r > * + \ assemble 6 4 b i t answer
r o t drop \ t r i m t o on ly 32 b i t s
r> ?dnegate \ apply s i g n t o answer

: T* (ud un -- u t) \ unsigned double * unsigned s i n g l e = unsigned t r i p l e
dup r o t urn* 2 > r um* 0 2 r > d t

: UD/ (udl ud2 -- ud3) \ unsigned double / unsigned double = unsigned double
dup 0= \ t o p 16 b i t s of d i v i s o r = O?
i f swap t / \ yes , make it a t r i p l e and do t h e d i v i s i o n

Forth Dimensions 23 January 1994 February

e l s e
0 over 1 swap 1+ urn/mod >r
drop r@ t * d rop 2 > r
dup 0 2 r @ >r t * r> t / d-
2 r> r> - r o t n i p >r t * r> t /
n i p 0

then
,
: D/MOD (u d l ud2 -- udrem udquot

4dup ud/ 2dup 2>r
r o t > r over >r >r over >r
urn* 2 r > * 2 r > * + +
d- 2 r >

\ work o u t s c a l i n g f a c t o r , c o p y t o r e t u r n s t a c k
\ s c a l e denominator, move t o r e t u r n s t a c k
\ c a l c u l a t e (U-UO*Wl/WO)
\ m u l t i p l y by (D/WO)
\ /2"16 (use t o p 1 6 b i t s only),rnake ans double

) \ a s UD/ but a l s o g i v e s t h e remainder
\ do t h e d i v i s i o n , save copy answer
\ m u l t i p l y answer. . . .
\ by t h e d i v i s o r
\ c a l c u l a t e remainder, r e t r i e v e q u o t i e n t

v a r i a b l e s c a l e
: DFIX/ (d f l d f2 -- dfquo t=df l /d f2)

2 p ick over xor >r \ work o u t s i g n of answer and save
dabs 2swap dabs 2dup o r O = \ dividend=O?
i f 2drop r> drop \ then make answer=O, l o s e s i g n
else 2swap 2dup o r O= \ d i v i s o r - O?

i f ." DFIX/ by O!" a b o r t \ yep a b o r t
e l s e 2dup >r >r \ nope, keep copy of d i v i s o r

d/mod drop - r o t \ move i n t e g e r p a r t of answer below remainder
0 s c a l e ! \ i n i t i a l i z e s c a l i n g
16 0 do \ l i m i t t o s c a l i n g t o no more t h a n 16 b i t s

dup $8000 u>= \ h i g h e s t b i t of remainder s e t ?
? l e a v e \ i f so, s t o p t h e s h i f t i n g b e f o r e w e overflow
d2* 1 s c a l e + ! \ no, s h i f t one b i t l e f t

loop r> r> ud/ \ now d i v i d e t h e s c a l e d remainder
16 s c a l e @ ?do d2* loop drop swap \ now unscale t h e answer, move i n t o p l a c e
r> ?cinegate \ put on f i n a l s i g n

then
t h e n

\ ****************** Square root of a double f ixed number * * * * * * * * * * X * * * * * * * * *

\ F a s t d i v i d e a double number by 256 whi le p r e s e r v i n g s i g n .
\ I f not u s i n g FPC r e p l a c e wi th 256. d /
CODE D256/ (d l -- d2)

POP ax POP dx
s a r ax, # 1 r c r dx, # 1 s a r ax, # 1 r c r dx, # 1
s a r ax, # 1 r c r dx, # 1 s a r ax, # 1 r c r dx, # 1
s a r ax, # 1 r c r dx, # 1 s a r ax, # 1 r c r dx, # 1
s a r ax, # 1 r c r dx, # 1 s a r ax, # 1 r c r dx, # 1
2push

END-CODE
\ a l g o r i t h m new-guess = o l d guess + (I - (o l d - g u e s s) - / t a r g e t) on ly v a l i d f o r numbers > 1
\ A s implemented d f i x # must be >2 and <I6363 and r e s u l t o n l y good t o about 1 i n 1000.
: (FSQRT) (d f i x # -- s f i x #) \ f i n d s q r t of d f i x # , g i v e answer a s a s f i x #

2dup d256/ d2/ drop \ f i r s t s f i x g u e s s = t a r g e t / 2
b e g i n d u p > r d u p * d 2 o v e r d f i x / d256/ drop \ (o ld -guess) - / t a rge t

256 swap - dup abs 2 > \ c o r r e c t i o n s t i l l worth worrying about?
whi le r> + \ add on i f s o
r e p e a t d rop 2drop r > \ e l s e l o s e i n s i g n i f i c a n t c o r r e c t i o n

,
\ add p r o t e c t i o n f o r people e n t e r i n g numbers o u t s i d e t h e range above. S c a l e
\ inpu t t o >2 and <16 t o keep number of i t e r a t i o n s t o no more t h a n 7 .
\ range now 0 t o 16274 (s c a l i n g s l i g h t l y reduces h igh e n d) .

January 1994 February 24 Forth Dimensions

: FSQRT (df i x # -- s f i x #)

dup $8000 u> a b o r t " S q r t of neg number!" \ a b o r t i f nega t ive number
2dup o r 0 = \ number zero?
i f drop \ s p e c i a l case , answer = 0
e l s e 0 - r o t dup 2 < \ number < 2?

i f beg in d2* d2* r o t 1+ - r o t \ m u l t i p l y number by 4
dup 2 > \ w e go t a number > I ?

u n t i l \ loop till w e have
e l s e dup 16 > \ g o t a number > 4?

i f begin d2/ d2/ r o t 1- - r o t \ yes , d i v i d e by 4
dup 16 < \ w e go t a number below 16 y e t ?
u n t i l t h e n

t h e n (f s q r t) \ g e t square r o o t
over O > \ need t o d i v i d e ans by power of two?
i f swap 0 do 2/ loop \ do s o i f r e q u i r e d
else over O < \ need t o m u l t i p l y ans by power of two?

i f swap nega te 0 do 2* loop \ do s o i f r e q u i r e d
else n i p \ l o s e t h e ze ro power of 2 f a c t o r
t h e n

then
then

comment: ****** S i n g l e Fixed Mul t ip ly and Divide i n Assembler f o r FPC ******
These a r e a s t r a i g h t t r a n s l a t i o n from t h e For th above, minimising t h e number
of s t a c k pushes and pops by making more use of r e g i s t e r s f o r temporary
s t o r a g e . Uncomment t o u s e i n s t e a d of t h e ones above
.

code SFIX* (n l n2 -- nl*n2)

mov bx, # 256 pop ax pop c x imul cx mov cx, bx xor cx, dx 0>=
i f i d i v bx lpush t h e n i d i v bx o r dx, dx O < >
i f add dx, bx dec a x t h e n lpush

end-code
code SFIX/ (n l n2 -- n l / n 2)

pop bx mov ax, # 256 pop cx imul c x mov cx, bx xor cx, dx 0>=
i f i d i v bx lpush t h e n i d i v bx o r dx, dx 0 0
i f add dx, bx dec a x t h e n lpush

end-code

\ *********** F a s t Conversion between s i n g l e and double f i x e d numbers *******
code DFIX#>SFIX# (d f i x # -- s f i x #) \ s igned /256 and d>s

POP ax POP dx
s a r ax, # 1 r c r dx, # 1 s a r ax, # 1 r c r dx, # 1
s a r ax, # 1 r c r dx, # 1 s a r ax, # 1 r c r dx, # 1
s a r ax, # 1 r c r dx, # 1 s a r ax, # 1 r c r dx, # 1
s a r ax, # 1 r c r dx, # 1 s a r ax, # 1 r c r dx, # 1
push dx next

end-code
code SFIX#>DFIX# (s f i x # -- d f i x #) \ s > d (p r e s e r v e s i g n) and * 256

pop ax cwd xchg dx, a x
s h l dx, # 1 r c l ax, # 1 s h l dx, # 1 r c l ax, # 1
s h l dx, # 1 r c l ax, # 1 s h l dx, # 1 rcl ax, # 1
s h l dx, # 1 r c l ax, # 1 s h l dx, # 1 r c l ax, # 1
s h l dx, # 1 r c l ax, # 1 s h l dx, # 1 r c l ax, # 1
2push

end-code
comment ;

1 I

Forth Dimensions 25 January 1994 February

A Novel Approach to

Forth Development
Environments
for Embedded Real-Time Control

B. Meuris, V Vande Keere, J. Vandewege
University of Gent, Belgium

This paper describes the features of a novel Forth develop
ment environment that has been designed as a global answer,
both on the hardware and software level, to the specific needs
of real-time embedded control. An investigation is made into
general system requirements for real-time distributed control
applications. A general design philosophy is procured, provid-
ing the fundamental ideas applied in the system design. After
a comprehensive description of the system architecture, the
paper concentrates on the use of Forth in the development
environment. It will be demonstrated that Forth perfectly suits
the particular needs of embedded real-time control. A data-
flow diagram is presented to define the global system concept.
The design and implementation of the major parts of the
development environment are dscussed in more detail.
Finally, conclusions are stated, together with an outline of the
current status and future work.

1. Introduction
Forth has often been regarded as a programming lan-

guage that is very well qualified for embedded real-time
control. Taking into account the increased industrial interest
in digital control systems, it is appropriate to bring up new
ideas about the use of Forth in this application area. A major
issue in the design of such control systems is the question of
which development environment to use. Faced with the
severe requirements that are currently imposed on present-
day development environments, one will find only a few
Forth development environments, if any at all, which present
a satisfactory solution in the application area of embedded
real-time control. Moreover, in some cases it may be
necessary not only to master the bits and bolts of the final
control system, but to know about the internals of the
development system. This applies especially to Forth, since
the development system actually becomes the final control
system. Both act as complementary components in a unified
system approach, and are closely linked. Therefore, a
profound kowledge of the internal structure of the develop-
ment system is equally important.

B. Meuris, V. Vande Keere, J. Vandewege. Department for Information Technol-
ogy (LEAIIMEC), University of Gent, Sint-Pietersnieuwstraat 41, 8-9000 Gent,
Belgium. tel.: +32 9 2643316, fax.: +32 9 2643593

E-mail: meuris@lea.rug.ac.be, vdkeere@lea.rug.ac.be

For these reasons, a novel Forth development system has
been designed, including both system hardware and software.
It is intended for use in the hardware and software develop
ment of real-time embedded control systems. An initial
analysis of the main system requirements and a subsequent
evaluation of the prototype version have guided the current
system definition and the specification of a general design
philosophy. Some elements of importance are presented next

The prime requirement imposed on the system is a
distributed architecture, together with common design ob-
jectives like high operating speed, flexibility, modularity, low
system cost, etc. A distributed architecture implies the use of
a communication protocol that manages multiple types of
data in an intelligent way. In order to reduce communication
bandwidth and, hence, system cost, it is important to have
functionality implemented in the right places in the system:
focused on embedded real-time control close to the control
points, and focused on user interface support close to the
programmer. Experience has indicated that a uniform and
straightforward user interface is highly appreciated. Further-
more, an open environment in which it is possible to set up
all sorts of value-adding tools is preferred. In order to
guarantee a smooth transition from design to final use, the
entire system is required to simultaneously support develop-
ment and final operation. Concurrent engineering of hetero-
geneous components [I71 in the final control application is
desirable. This requires not only support for simultaneous
development of different tasks, but also support for parallel
hardware and software design within each task.

The notion of having functions implemented in the right
location was adopted as a general system &sign philosophy,
together with special emphasis on well-considered user inter-
face features. Before going into detail about the implementation,
an overview of the hardware configuration is given.

2. System Architecture
The hardware configuration of the development system

is displayed in Figure One, and is more extensively discussed
in [I41 and [241. The backbone of the architecture is a real-time
communication network with active star topology. It is
implemented optically, using plastic optical fibre (POF) as
transmission medium 1131. Different nodes are connected to

January 1994 February 26 Forth Dimensions

Figure One. Hardware configuration of the development system.

Plastic Optical Fibre Neefork

Y

Interface

Host Side Target Side

specnlc weci~ic
llhudwae I lhoK3vure I I ~ z r e Host Systen

!
I

Host System 2

a central starpoint. A dstinction is made between target
nodes and host nodes (i.e., the target and host sides of the
system, respectively).

The target side may be composed of one or more
individual target units, which are physically part of the
control system and execute the control tasks. Each target unit
is a combination of an intelligent plug-on unit with addi-
tional, application-specific, non-intelligent hardware. Three
types of plug-on units have been designed. They span the
range of most common performance requirements and are
based on microprocessors from the Motorola 6 8 ~ family. The
application-specific, non-intelligent hardware, which is usu-
ally not programmable, may consist of transducers (sensors
and actuators combining AD and DA convertors), drivers,
communication controllers, local displays, ASIC's or dedi-
cated processors (e.g., DSP's), according to the application-
dependent requirements. The physical separation of plug-on
intelligence and non-intelligent application hardware is
justified by the observation that dedicated hardware is, in
many cases, significantly more expensive than the micropro-
cessor and its memory. Universal and modular plug-on
intelligence offers the benefit of not having to redesign the
microprocessor hardware for each new application. Instead,
several standard units with different capabilities are available
off-the-shelf. The hardware design of the target units for a
given application is reduced to just selecting appropriate
devices according to the problem specifications and require-
ments, and interfacing them to the microprocessor on the
plug-on unit, mostly by memory mapping. This unit has a
Forth system on board, which makes it possible to define an
expansion word set for each external device. Another
substantial argument in favour of the concept of plug-on
intelligence is the fact that it permits more independent and
simultaneous hardware and software development, the key
element in concurrent engineering.

At the host side, one or more individual host machines

provide a means for access to the control system. It is
pertinent to note that the function of a target and a host unit
are highly distinct. The prime function of a target unit is
embedded real-time control, whereas the host is not involved
in any control activity at all, and is merely used for interface
purposes, both at the development and the operational
stage. The general system philosophy is based upon this
distinction. A host unit acts as the hardware platform for the
Forth development interface while under development, and
as the final application interface when the system eventually
becomes operational. In order to find an optimal ratio
between cost and performance, PC's are used as host units,
with MS-WindowsTM as the operating system interface.

3. Forth in the Development Environment
A prerequisite to plunging into the software implementa-

tion of the development environment, is to carehlly consider
the use of Forth. A broad diversity of software functionality
is required in the system, focused on embedded real-time
control at the target side anduser interface support at the host
side. Requirements are profoundly different in both cases
and, by consequence, suggest the use of different program-
ming languages and tools. The consideration of where to use
Forth in the development system must be done at an early
stage, since it thoroughly determines any further evolution of
the design. Other Forth-related issues to reflect on are the
question whether the Forth system should be "thin" or "fat,"
and the choice of a language standard to which the Forth
system should comply.

3.1 Strengths and Weaknesses of Forth
The strengths and weaknesses of Forth as a programming

language are sufficiently described in literature [61, [lo], 11 11,
1151. Some features are of particular interest in the application
field of real-time embedded control. An overview is pre-
sented next.

Forth Dimensions 27 January 1994 February

Strengths
As a result of the code threading mechanism, Forth code

can be uncommonly compact and requires only few memory
resources. Software is developed according to a top-down
decomposition, bottom-up implementation paradigm. The
implementation stage is characterised by a highly interactive,
incremental way of programming, which results in greater
debugging ease and increased programmer productivity.
The interactive approach allows iterative application of
analysis, design, implementation, and validation steps during
development. Testing is done close to the point offailure and
bugs are more likely to be revealed. The resulting code tends
to be safer, more deterministic and, hence, more depend-
able. Moreover, subsequent validation of small parts of
decomposed code usually guarantees more predictable
behaviour than single validation of large, undecomposed
parts. Programming in Forth consists of extending the
language itself towards the specific application and is fairly
straightforward, considering the semantic language model
without many syntactical constraints. Once the concept of
the Forth 'word' as a fundamental language element, and the
stack-oriented data processing with reverse Polish notation
(RPN), are understood, a programmer quickly gains reason-
able programming skills, without having to pass through
extensive manuals. Forth programming environments are
generally very open and offer direct access to all system
levels, including the lowest, hardware-dependent level. As to
execution speed, Forth code performs comparably to the
code of other compiled languages.

Weaknesses
Forth source code is generally harder to read than the

source code of many other programming languages, since it
demands more intellectual effort to visualise the action
performed by each definition. Furthermore, it is noticed that
only a basic functionality is at hand in a more or less
standardised form. The availability and/or implementation of
more sophisticated features, such as graphcal possibilities,
file management, complex data structures, mouse control, or
windows support, are highly dependent on the language
version and often very heterogeneous. This is explained by
the fact that Forth's history is marked by several standardisation
efforts with varying success. The absence of a universally
accepted language standard has led to the existence of many,
often vendor-specific, language versions with confusing little
differences. These differences do not impose any problems
to an experienced Forth programmer, but may startle neo-
phytes and inhibit general language acceptance. Additional
weak points can be observed as to operating system anduser
interface support. Although many Forth systems already run
on top of another operating system, little effort is undertaken
to keep pace with the evolution of what is commercially
available. The adaptation of Forth systems to present-day
user interface technologies appears to happen only after
considerable delay. As a consequence, it is difficult to find
well-trained Forth programmers, and other programmers
show little inclination to start using Forth.

January 1994 February

3.2 Appropriate Use of Forth
Although Forth has the unique capability of covering all

levels ofsoftware abstraction [61, it doesn't always provide the
best answer to the needs of the programmer. The point is to
use Forth in the particular occasions where it outperforms all
other programming languages.

Bearing in mind the previously mentioned strengths and
weaknesses, it is clear that Forth is well-suited to use at the
target side, since the target functionality is focused on real-
time embedded control. The applicability of Forth to embed-
ded control has been indicated before in [121. Basically, it is
explained by the fact that the requirements imposed by an
embedded application map almost exactly into the strengths
of Forth as a programming language. The compactness of
Forth code permits operation with a minimum of memory
resources. The highly interactive, incremental way of code
development has been shown to result in more dependable
and prelctable code. These features are well-known as
paramount for real-time operation t51. Another aspect of real-
time software mentioned in [51 is simplicity, which is
sustained by the straightforward programming style of Forth.
The low-level hardware access, typical for many control
systems, is made possible by Forth in a high-level, hardware-
independent way. Also, execution speed and response time
to asynchronous events are important for real-time opera-
tion, and are well supported by Forth systems.

The main point of interest at the host side is user interface
support. Whereas there is little doubt that Forth is well-suited
to programming embedded applications, it is questionable
whether the same statement also applies to user interface
support. A traditional Forth system include a user interface
with editor and utilities. This is made possible by Forth's
unified approach of closing the entire semantic gap between
hardware and application. However, history teaches that
Forth was originally designed for hardware control [151, in an
era when user interfaces were very limited due to severe
technological restrictions.

Although many Forth versions now offer improved user
interface support, the weaknesses above still indicate poor
suitability for the implementation of user interfaces that are
comparable to what is commercially available for other
programming languages. It seems that the idea of Forth as a
total solution is outdated and is no longer valid, except for
systems with limited resources. This observation also applies
to operating system support. Although Forth can act as its
own operating system, many vendors have adapted Forth to
run on top of common operating systems, such as MS-DOSTM.
Even keeping pace with present-day evolutions in the field
of operating system interfaces seems to be equally dfficult.
Up to now, for example, the authors know about only one
Forth programming environment under MS-WindowsTM [251.
Given the fact that PC's are preferred as host machines for
their optimal cost/performance ratio, and that graphical,
window-oriented interfaces tend to become common prac-
tice on this type of platform, it is advisable to look for better
solutions among languages such as Visual Basic and Visual
C++, which feature more advanced possibilities for the
implementation of user interfaces.

The previous observations lead to the conclusion that it
28 Forth Dimensions

is advisable to limit the use of Forth to the target side, and to
regard the network not only as a physical separation between
host and target units, but also as the border for Forth.

3.3 Forth System Size
The observation that other programming languages are

more appropriate to implement user interfaces has immedi-
ate repercussions on the size of the Forth system on the target
side. All user interface-related functions like source code
management and editing, mass storage control, and pro-
gramrning utilities are transferred to the host side for
implementation in another programming language. The
removal of these functions strips the target Forth system of
a substantial number of words and reduces its size signifi-
cantly. The basic design philosophy, however, goes further.
An objective was to concentrate target operation on real-time
embedded control, i.e., to enhance system compactness,
execution speed, and simplicity: the target Forth system
should be a small, fast, and simple processing engine that
constitutes the heart of the control system. This implies a
"thin" Forth system, containing nothing more than the
necessary words for real-time embedded real-time control.
Indeed, things like double or floating-point arithmetic, string
and block manipulation, search order, and vocabularies are
taken to be strictly irrelevant to real-time control, and
therefore to be omitted.

It can be concluded that a " h n " Forth system is preferable
to a "fat" Forth system. The omitted functionality is either not
an absolute requirement (or is even unsuitable) for real-time
control, or is better implemented by other means than Forth.
As a consequence, the development interface is left with a
much more complicated job than just showing things on the
screen. Four categories of development interface functions
are distinguished: (1) source code editing and management,
(2) providing access to the target side of the system, (3) Forth
utilities, such as debugging tools, error-handling, help, code
pre-processing, and (4) system utilities, like off-line multi-
tasking support or system help. Details on their implemen-
tation are discussed in a later paragraph.

3.4 Language Standard Compliance
A last aspect related to the use of Forth in the development

system is the choice of the language standard to comply to.
Literature clearly shows that standard compliance and
standardisation has always been a controversial issue for Forth.
141 refers to the inherent difficulty of standardsation due to the
extensibility aspect of Forth. [71 illustrates the problem of
standardisation by comparing Forth to a natural language,
submitted to natural evolution. However, the authors follow
the ANSI Forth Techca l Committee currently working on an
ANS-Forth, in their recognition of the serious fragmentation of
the Forth community and their approach of unification. A
certain degree of compliance to a universal Forth standard is
necessary for a number of reasons. First, it is easily noticed that
it supports certain aspects of real-time software quality, as
defined in [81. Furthermore, [I61 mentions a standard as the
starting point for language education and for making it easier
to bring in trained programmers who may be familiar with it
Standard compliance contributes to unification by presenting

Forth Dimensions

a uniform programming platform and encourages the imple-
mentation of value-adding tools, such as general C and C++
to Forth translators or application-specific languages like
ESTEREL [ll or LACATRE [201, [211, [221, I231 on top of Forth. All
previous considerations fit in with the general design philoso-
phy and requirements analysis.

4. Implementation Details
In this section, three parts of the development environ-

ment are discussed in more detail, starting with the commu-
nication layer which forms the backbone of the system
architecture. The implementation of the Forth system at the
target side is discussed next. Finally, a description of the
development interface at the host side is given.

4.1 The Communication Layer
Versatility and transparency

Gentle exchange of information between the different
units in the development environment is an absolute prereq-
uisite for the communication protocol. Moreover, the appli-
cation domain for which the system has been designed
requires well-arbitrated, real-time network operation. By
consequence, the choice of network protocol will depend
upon its versatility. It must possess the ability to handle the
communication related to the development system, as well
as the communication related to the final application. It
should be noted that the corresponding data may have very
distinct characteristics, ranging from short messages that
require minimal network access delays (on the order of a few
100 p.) for extremely time-critical control applications, to
large contiguous amounts of data without severe timing
constraints for the development environment.

A second requirement in the implementation of the
communication layer is uniformity and transparency. The
user of the development environment should have access to
a well-defined set of communication tools, whch provides
a means for information exchange between two or more
units, without having to be concerned with network arbitra-
tion, priorities, error recovery, network management, etc.
The ultimate goal is to support transparent communication
between any two or more tasks, independent of their
physical distribution over the system. In a distributed multi-
tasking development environment, this implies communica-
tion between multiple Forths on target units and multiple
applications under MS-WindowsTM.

Implementation with CAN
The network hardware in the development system is

implemented optically with an active star topology. Its
physical layer uses plastic optical fibre (POF), together with
inexpensive LED'S and photo diode receivers (770 nm.). It is
a low-cost solution, competitive with electric differential
twisted pair, but offers a number of specific benefits such as
galvanic isolation, compactness, easy handling, robustness,
etc. Moreover, a star configuration does not have a single
point of failure, in contrast to a ring configuration, for
instance 1131. The network protocol implemented on top of
this physical layer is the Controller Area Network (or CAN)
protocol [31, 1181, 1191. CAN is a powerful serial multimaster

29 January 1994 February

protocol, primarily intended for real-time control and multi-
plex-wiring applications. It originated in the automotive
industry and is now finding its way to many applications in
industrial control systems. To resolve medium access con-
flicts, CAN uses non-destructive, bit-wise arbitration. The
mechanism guarantees a very short network access latency
for highest priority messages (max. 11 1 ps worst case). The
message priority is determined by its frame identifier. Fur-
thermore, CAN has a powerful set of reliability and safety
features, including error detection, error signalling, and error
recovery by automatic retransmission of corrupted mes-
sages. The protocol is implemented in silicon using commer-
cially available CAN controllers.

As a communication protocol, CAN specifies only parts of
the physical and data link layer of the OSI reference model
[91, viz. physical signalling and the medium access (MAC)
sublayer. On top of the MAC sublayer, a CAN network
management protocol is being implemented. A central
network manager, which can be located either in a host or
target unit, supervises communication on the network. In
each host or target unit, a local communication manager
organises the communication tasks for that unit. At system
initialisation, the local communication manager in each unit
connected to the network identifies itself to the central
network manager. It reports the current status of the unit, its
configuration, etc. This information is stored by the central
network manager. Through the Forth development interface
on a host unit, a programmer can access any target unit in the
system. The interface, therefore, calls the local communica-
tion manager to set up a communication link to the requested
unit. This request is dispatched by the central network
manager, which knows the current status of the entire
network. According to the available transmission capacity
and the priority of other, already existing communication
links, the central network manager sets up a new link with
a certain priority. This is done by sending the local commu-
nication managers at both ends a message to recognise the
ncw link and to allocate memory for data buffering. After
setting up and updating the network configuration, the
central network manager withdraws and leaves the actual
data transmission to the local communication managers at
both ends. The above procedure is entirely transparent to the
programmer. It is as easy as making a phone call: one dials
a number and gets connected by the telephone operator.

All functions to talk to the local communication manager
are grouped in a straightforwardset of communication tools.
At the host side, this set is implemented in a Dynamic Link
Library (DLL). DLL services can be made available in almost
any programming language that is used to develop applica-
tions under MS-WindowsTM (C, C++, Visual C++, Visual Basic,
Smalltalk.. .). One application on a host unit using these
communication tools is, as explained above, the Forth
development interface. Other applications may include, for
example, a user interface for the final application. At the
target side, the same set of communication tools is present
as a Forth word set. It is evident that this uniform and
straightforward approach offers many opportunities. A Forth
programmer can, for example, in the development interface
on a host unit, simultaneously develop and test code for two
January 1994 February

different tasks on different target units. If these tasks need to
exchange data, a communication link can be setup from one
target to the other and data transfer can be started by making
use of the Forth communication word set on the target unit.

4.2 Forth System Aspects
The importance of compliance to a standard has been

demonstrated before. A "thin" Forth system has been shown
to be most appropriate. Therefore, the decision was made to
implement a ROMmed ANS-Forth system with the minimum
required word set, i t . , the core word set. Currently, compli-
ance is established to dpANS-5 1261. Main implementation
options are the 16-bit cell size for highest speed; the availability
of a single vocabulary, avoiding the need for search order
specification; network-oriented input and output; and a
compilation scheme based on macro/subroutine (or M/S)
threadng. [21 describes this threading scheme and demon-
strates it to be optimal for applications where both compact-
ness and execution speed are paramount, as for embedded
real-time control. All Forth core words are individually imple-
mented in assembler, which allows them to be optimised for
speed and makes it possible to easily integrate existing, native
assembler routines into the system. The aspect of limited
system portability is, in this case, a minor disadvantage
because the development system is based on the idea of
universal, intelligent, plug-on units, which are application
independent and can be reused without the need for redesign.
Error-checking on the target system is deliberately reduced to
compromise beween safe, consistent operation and optimal
execution speed. The host side, however, provides extensive
error-checking tools and debugging features.

Apart from the minimum required core word set, two
more Forth word sets are available in the system ROM. They
fully depend on this specific environment and are, conse-
quently, not part of any standard. We distinguish (1) a CAN
Forth extension word set, representing the well-defined,
straightforward communication tools mentioned before, and
(2) application-specific Forth extension words, providing a
universal means of access to hardware peripherals that are
interfaced to the processor. The final control application
software is developed on top of these three word sets.

The Forth system on a target can be single- or multi-
tasking. The multi-tasking system is based on a scheduler that
manages local system resources, such as computing power
and memory. Each task runs in a Forth task environment,
which is presented to the programmer as if it were a single-
tasking Forth system. Hence, the multi-tasking operation is
externally invisible. Internally, however, each task locally
stores its own contextual user information and word defini-
tions, whereas the underlaying Forth wordsets are centralised
and shared by all tasks. In other words, a task only requires
resources for the storage of information that is necessary for
continuing its operation on top of a centralised core function-
ality when the scheduler allows the task to do so. One
important task is the communication manager. Since it must
be available on each target, it is incorporated in each Forth
system at the assembler level. It provides communication
services to input- and output-related words in the core and
the CAN extension word set.

30 Forth Dimensions

The communication itself can be organised in two
different ways, depending on whether or not the Forth
source code is pre-processed at the host side. In the absence
of pre-processing, Forth source code is transmitted as it is
entered by the user, i t . , as one long, contiguous sequence
of ASCII characters. This form of communication is imple-
mentation independent, because the host doesn't need to be
concerned about the type of target to which code is sent.
Major drawbacks are the large bandwidth requirement and
lower communication speed. However, the target Forth
system uses execution tokens, which have the size of one cell
anduniquely identify each Forth wordin thesystem. Nothing
prohibits the translation of parsed words into tokens at the
host side instead of the target. In this case, less bandwidth is
required, communication gets faster and is more protected,
since tokens alone are meaningless without a translation
table. A disadvantage is that this kind of communication is
implementation dependent, because different Forth systems
may use different types of execution tokens.

4.3 Deuelopment Intmface
Design considerations

According to the general design philosophy, all user
interface functions have been transferred to the host side.
Programming and monitoring of tasks, source code manage-
ment, graphical data representation, and providing a final
application interface are tasks that are preferably handled in
a graphical, windows-oriented environment. It has been
argued that these interface functions are better implemented
in a programming language designed for this particular job,
rather than in Forth.

During the software development phase, a programmer
needs a flexible and user-friendly environment in which
code can be implemented and validated. It must be tailored
to both the specific characteristics of the programming
language and the target system it interfaces to. This means
optimal support for Forth's interactive and incremental style
of software development, good debugging facilities, direct
access to the system hardware, and full control of the
network communication. A basic functionality should be
available standard, such as source code editing and manage-
ment, and a means for access to the target side of the system.
However, it should be possible to extend this functionality by
adding extra tools to the environment in a modular way.
Examples are Forth utilities such as debugging tools, exten-
sive error handling, programming help, and code pre-
processing; and system utilities like off-line multi-tasking
support or system help. Hence, an open environment is very
much preferable. Finally, it is obvious that the development

, environment will not run forever, but will be replaced in the
end by an application interface. Extra support to smooth this
transition should be at hand.

i Implementation and features
The Forth development interface attempts to formulate an

answer to the above needs. A prototype has been imple-
mented under MS-WindowsTM in Visual Basic, and the final
version is now being developed in Visual C++. Those
programming languages have been chosen because they are

Forth Dimensions

designed specifically for the development of general appli-
cations with the typical MS-WindowsTM features, such as a
menu bar, a toolbar, cut-and-paste options, etc. The basic
functionality of the development interface is cenualised
around scripts and task, two fundamental concepts associ-
ated with source code generation and target access, respec-
tively. Both have highly uniform characteristics.

A script is a set of individual Forth source code files.
Brought together in a specific order, they make up a Forth
program. A script is comparable to a project, as defined in
programming interfaces such as Borland C++. Within a single
program, separate files are used to distinguish functionally
dfferent blocks of source code, each containing a group of
word definitions related to a specific job. In more conventional
Forth systems, this distinction is made by using vocabularies.
However, the use of vocabularies is somewhat cumbersome
in the context of embedded control. Strictly considered, they
deal with code management and, therefore, fit in with the host
functionality. For this reason, the implementation of vocabu-
laries at the target side has been omitted and translated into the
script concept at the host side. W i h n the Forth development
interface, dormation on the contents of a certain script is
presented to the programmer in a script window. Basically, th~s
window gives a list of all files in the script. From the script
window, a file can thenbe opened for edting or file dormation
can be accessed, such as the name of the programmer, the
storage format, a brief description, and comments. Multiple
scripts can be opened at the same time.

The second concept is that of a task. In the case of multi-
tasking, several programs can run on a single target unit. Each
separate program is called a task, and is an independent
Forth system that knows the words defined in the program
and can be put to action. Within the Forth development
interface, the programmer can select tasks from a task list in
the task window and assign his programs to them. This
selection of tasks is presented to the programmer in exactly
the same way as for scripts. The task window contains a list
of selected tasks, as well as some essential information on
each task, such as the target it runs on, the percentage of
allocated memory space that is free, its status, and so on. Each
task claims an amount of computing power and memory
resources somewhere in the development system. In case a
programmer wants to work on-line, he opens the task in the
task window instead of assigning a program to it.

Notice again the parallelism between scripts and tasks.
For scripts, an editor window opens, presenting the selected
file. For tasks, an on-line window opens with the Forth OK
prompt, representing the selected task. Furthermore, de-
tailed task information can be accessed, again in the same
way as file information for files in a script. The task
information window that is opened as a result displays the
settings of the allocation of physical resources and configu-
ration options for the selected task. The programmer can use
this task information window to change the settings or
configuration according to his needs and to make the link
between the selected task and the script that will be
downloaded to t h~s task. When this information has been
entered, downloading a script to a task can easily be
accomplished by selecting some download facility in the

31 January 1994 February

Figure Two. Data-flow diagram of the development system I
I

Netwgrk

Nelwotk
Management Dato ;

Host Side Target Side

Operational
Environment

Fom Sfltem Tosk
Source Code Control Data Data

Manoger

CAN Message

External Target Appl~cohon

System Controller

Forth Task System
Source Code Data Control Data

CAN Message

Cornmun~cot~on Commun~cat~on

Physical Network Layer

January 1994 February 32 Forth Dimensions

toolbar. One step further, all scripts can be automatically
downloaded to their respective tasks, by selecting some
download-all facility. A programmer may not always want to
download the whole script, but rather test one or more Forth
words that he has written. Therefore, the drag-and-drop
feature, common to many MS-WindowsTM applications, has
been extended to perform a drag-and-drop of selected Forth
source code from an editor window to an on-line task
window. In this case, a selected fragment of Forth source
code is copied from the editor window and attached to the
mouse cursor. A simple mouse click drops the code in one
of the on-line task windows. This feature has proven to be
extremely useful, considering the interactive nature of code
development in Forth.

The Forth development interface can further be extended
with additional features, which are implemented as indi-
vidual modules in a toolbox. One of these tools is an interface
for the central network management module that supervises
network communication. If this module is situatedin the host
unit where the Forth development interface is running, the
programmer will then be able to visualise the current status
and capacity allocation of the network, and even change the
settings and characteristics if there is authority to do so. Other
modules in the toolbox will be related to Forth or the real-time

control aspect of the system. Forth tools include syntax
checking, error signals, debugging tools like a stack monitor,
and context-file generation facilitating code reuse. (Context
files are files containing word definitions that are common to
many programs in a particular application Geld. The Forth
programmer can select a number of words from a list of all
available word defmitions ever made, bring them together in
a context file, and put that file on the first place in the selected
script.) Tools that support real-time software design and multi-
tasking also take advantage of a graphical user interface.
Examples are off-line task scheduling and schedulability
analysis, prediction of code timing behaviour, memory alloca-
tion, and network communication support.

5. Data-Flow Diagram
Figure Two displays a data-flow diagram representing the

way in which the development environment and the final
application at the host side interact with the external target
application at the target side. The possible actions that a
programmer can carry out in the development environment
take place through either the editor interface, the task
interface, or the toolkit interface. These interfaces are linked
during development, allowing, for example, code drag-and-
drop from an editor to a task window, sending code from an

editor window to a pre-processing tool, or calling a sched- 8. Bibliography
uling tool from a task window. For the final a~~l ica t ion . [ll Andre, C. and Peraldi, M.A., "Hard Real-Tie S~s temImplmat ion - . .
however, the development environment is replaced by an
operational environment which interfaces only to the final
system tasks. Each host or target unit has a high-level CAN

on a Microcontroller," Proc. Intemat. Workhcp on Real-Time h-
gramming(WRTP '92), IFAC, PergarnonPress, June 1992, pp. 185-189.

[21 Burger, A. and Greene, R., "Comfort: A Faster Forth," Dr. Dobb's
Toolbook of GB000 Programming, Prentice Hall, New York, 1986.

.,
These modules distinguish three types of data and inter-
change them using standard CAN messages on a POF
physical network layer. Forth source code goes only down

I communication manager which handles all data transfer. I -
[41 Colburn, D., "A New Standard for Forth: Bits of History, Words of

Advice," FORML Conference Proceedings, FIG Inc., San Jose,
California, November 1986, pp. 176-180.

[51 Halang, W.A. andStoyenko,A. D., ConshuctinghdLfaMeReal-Time

[31 ~ ~ p e c i k c a t i o n v e r i o n 2.0, philips Semiconductors, 1991.

travel bidirectionally. At the target side, a Forth system
interfaces to the external target application through appropri-
ate transducers. A system controller module is available for
multi-tasking support and Forth system configuration. A
central network manager, which can be located either at a

/ to a target unit, whereas system control data and task data
[61 Harris, K., "The FOFXH Philosophy," h. Dobb's Toolbwk ofForfh,

Vdume I, M&T Publishing, Redwood C i , California, 1987, pp. 5-10.
[71 Haydon, G. B., "A Forthstandard?' Forth Dimensions, Vol. XIII, No.

4, November/December 1986, pp. 28-31.
[81 Hindel, B., "How to Ensure Software Quality for Real T i e

Systems," h. Infernat. Workshop on Real-Time Programming

/ syslons, K~UWU Academic Publishers, NOI-well, Massachusetts, 1991.

(network management data.

-

host or a target unit, supervises the network communication.
It is accessible as a tool on the host side, and controls all the
high-level CAN communication managers using special

6. Conclusions and Future Work
Based on the strengths and weaknesses of Forth, the

authors plead for an appropriate use of the language. It has

(WRTP '92), IFAC, Pergamon Press, June 1992, pp. 231-236.
[91 IS0 7498 Information Processing System-Open System

Intconnection (0SI)-Basic Reference Model, International
Standardisation Organisation, 1984.

LlOl Kelly, M. G. and spies, N., FORTH, A Text and Reference, Prentice-
Hall, Englewood Cliffs, New Jersey, 1986.

I111 Koopman, P. J. Jr., SlackComputers, tbeNav Wave, Ellis Horwood
Ltd, Chichester, England, 1989.

1121 Koopman, P. J. Jr., "Embedded Control: Path to Forth Acceptance,"
Forth Dimensions, Vol. XII, No. 1, May-June 1990, pp. 35-37.

- -
embedded real-time control. For this application area, a
novel Forth development environment has been presented.
The general philosophy in this system is to separate real-time
and non-real-time features. The development interface is,

I been shown that Forth is well-suited as a language for I

therefore, implemented in a highly graphical, windowed
environment, whereas Forth is used for embedded real-time
control through intelligent target units distributed in the
system. The distributed concept implies the need for a
flexible and uniform communication network. A realisation
has been presented in the form of an optical Controller Area
Network with an active star topology.

The system has been completely defined at the time of
writing this paper. All hardware for the system has been
designed and extensively tested. A single-tasking Forth
kernel was developed. A first version of the CAN network
management protocol and the local communication man-
agement software has been implemented, offering basic
functionality. Also, a prototype version of the Forth develop-
ment interface has been written. The authors are currently
extending the different parts in the system towards the full
system concept as defined in this paper.

[I31 MeurisB.,VandewegeJ.,andDemeesterP., " ~ m ~ l ~ ~ n t a t i o n o f a n

7. Acknowledgements
The authors wish to acknowledge in particular Dirk

Schamp for his numerous ideas, efforts, and solid patience
during the implementation of the Forth development inter-
face. They further wish to express their appreciation and
gratitude towards all users of the development system who
have helped and inspired them during its implementation.

Optical controller Aria Network (CAN) using plastic Optical Fibre,"
First International Conference On Plastic Optical Fibres and Appli-
cations, Paris, France, June 1992.

[I41 Meuris B., Vande Keere V., and Vandewege J., "Distributed Real-
T i e Control Implemented on an Optical Plastic Fibre Star Net-
work," Second International conference On Plastic Optical Fibres
and Applications, The Hague, The Netherlands, June 28-29,1993.

[I51 Moore, C. H., "The Evolution of Forth, an Unusual Language,"
E m , Vol. 5, No. 8, August 1980, pp. 76-92.

[I61 Peterson, J. V., "The Forth'Standards'," FORML CaferenceProceed-
ings, FIG Inc., San Jose, November 1986, pp. 170-175.

[I71 Pulli, P. and Heikkinen, M., "Heterogeneous Prototypes in Concur-
rent Engineering of Embedded Software," h c . Infernatl Workshop
on Real-Time Programming (WRTP'92), IFAC, Pergamon Press,
June 1992, pp. 4F54.

[I81 Road Vehdes - Interchange of &gital information - Controller Area
Network (CAN) for high speed communication. Document ISO/DIS
11898, International Standardization Organization, 1992.

[I91 Road Vehicles -Serial data communication for automotive applica-
tions. Pan 1: Controller Area Network (CAN). Document ISO/DIS
11519 pan 1, International Standardization Organization, 1992.

[201 Schwarz, J. J., Miquel, M., and Skubich, J. J., "Graphical Program-
ming for Real-Tie Systems. An Experience from the World of
Education," h c . InLemat. Workshop a Real-TimeProgramming
(WRTP '92), IFAC, Pergamon Press, June 1992, pp. 225-230.

[211 Schwarz, J. J. and Skubich, J. J., "Graphical Programming for Real
Time Systems," ControlEng. Practice, Vol. I, No. 1, 1993, pp. 43-49. . -

[221 Schwarz, J. J., Skubich, J. J., Swed, P., and Maranzana, M., "RealTie
Multitasking Designwith a Graphical Tool," to be published in h.
of First IEEE Workshop on Real-Time Applications (RTAW '93),
Manhattan, New York, May 1993.

[231 Skubich, J. J., "Graphical Design of Real-Tie Applications," lecture
to be published in h c . ofNATOAduanced Study Institute on Real-
Time Computing, St.-Maarten, Dutch Antilles, October 1992.

[241 Vande Keere, V., Meuris, B., and Vandewege J., "Embedded Real-
Time Intelligence in the Physical Layer of Telecom Networks," to
be published in h c . ofFirst IEEE Workrhop on Real-Time Applica-
lions (RTAW '93), Manhattan, New York, May 1993.

[251 WinFORTH by Laboratory Microsystems Inc., USA.
i261 X3J14 Technical Committee, dpANS-5 draJ proposed American

Natmnal Sfandard - Programming Language FORW, Global Engi-
neering Documents, January 1993.

Forth Dimensions 33 January 1994 February

Comma'd Output
for Forth
Charles Curley
Gillette, Wyoming

The addition of commas to numeric text output makes it
much more readable. A simple technique to add commas to
integer output is shown.

Historical Note
The version of Forth used here is fastForth, a 68000 JSW

BSR-threaded Forth described in Curley, "Optimization Con-
siderations," Forth DimemiomXN/5. There is no code which
is specific to fastForth, and implementation on other Forths
should be fairly easy. The binary-to-text conversion operators
are double precision, in the manner of fig-Forth, 79-Standard,
and other common, garden-variety Forths. Being fig-Forth
style, variables are initialized at compile time by a value on the
stack. F@ is a fast, word-boundary-only version of @. Users of
other Forths will have to adjust the code.

Background
Large numbers presented without some sort of internal

column device are difficult to read and are liable to errors.

... we add some flexibility to
the user's ability to make
custom output words...

Anyone who has worked with the Mess-DOS utility CHKDSK
on a huge partition is aware that one can easily slip by an
order of magnitude in determining the free space on a hard
drive. The simple addition of commas (in North America) or
periods (elsewhere) to indicate hundreds, thousands, rnil-
lions, etc., makes for much more readable output. This has
long been the custom in financial documents.

The Existing Code
Forth stores all numbers internally as binary data. Binary

Coded Decimal (BCD) is not used. Integer values may thus
range the full storage capability of the data word (or cell, in
dpANS Forthese) on a given implementation.

The typical Forth system for numeric output converts
binary values to text by a process of dividing by the contents

of the variable BASE. Thus, the output string is written into
memory a character at a time, from right to left. Typically, a
double-precision value is placed on the stack. It may be
tested for sign, if signed output is desired.

Conversion is commenced with the word <# ("begin
sharp"), which initializes the relevant variables. One digit
may be converted and added to the string with the word #
("sharp"). The value under conversion may be rendered into
text until it is exhausted by the word #S ("sharps"). Single
characters may be added to the string with the word HOLD.
S I G N consumes the single-precision value under the double-
precision value being converted to insert a minus sign, if
needed, into the string under construction. Conversion is
ended with the word #> ("end sharp"), which consumes a
double-precision value from the stack (presumably, the
detritus of conversion), and leaves an address and count
ready for TYPE or other text output words. The location
where the string is built up is system specific, not re-entrant.
It may be guaranteed valid only between <# and #> or
shortly thereafter, which encourages the programmer to use
the string as quickly as possible.

Conversion to any reasonable number base, and some
unreasonable ones, may be done by changing the contents
of the variable BASE.

To illustrate how this all works, we will examine the word
D . R, which is used to place signed output of a double-
precision value, right-justified in a field of given size:

: D . R

\ d fld --- I type signed d in field of
\ size fld

>R SWAP OVER DABS <# #S SIGN #>
R> OVER - SPACES TYPE ;

>R places the field size onto the return stack for later use.
The phrase SWAP OVER gives us a sign flag on the stack,
below the double-precision value for conversion. This sign
flag will later be consumed by SIGN. We then convert our
value to an unsigned value, ready to be converted. Conver-
sion is started with <#. The entire value is converted to a
string using # S , leaving a double-precision value of zero on

January 1994 February 34 Forth Dimensions

the stack. SIGN does its thing, optionally adding a minus sign
to the string, and eating the signed value left earlier. We end
conversion with #>, which eats the double-precision zero,
and leave the address and count of the string on the stack.
We now recover the field size from the return stack, subtract
the length of the string from it, and print the appropriate
number of spaces. Finally, we TYPE the string itself.

Comma'd Output
With this sort of facility available, all we need do is add

a variable to hold the delimiter (so the user may change it if
he wishes), a variable to count columns, and re-write # S to
respect them. In the accompanying code, the variable for
tracking columns is PLC ("place counter," or, for the British,
"PLC"), and the delimiter is saved in DELIM

Our version of # s , called #, S ("sharp commas"), begins

Design Considerata
In Forth, it is considered good form to eliminate variables

whenever possible, but not at the expense of unreadable
code. The variable PLC could probably have been eliminated
without greatly confusing the code in #, S. However, by
making it available to the user, we add some flexibility to the
user's ability to make custom output words. Mind you, I
haven't the fornest idea why the user might want access to
PLC, but he might. Let me know if you figure out a use for it.

Sample Output
The impetus for writing cornrna'd output words originally

was to allow operating system code to present large numbers
(such as file sizes and hard drive specifications) in a readable
format. This results in the following output for the fastForth
version of dJ; a Unix utility which give the user the free space

S c r # 598
0 \ comrna'd decimal output (2 2 3 9 2 C R C 1 1 : 0 9)
1 FORTH DEFINITIONS BASE F @ >R HEX
2 0 VARIABLE PLC A S C I I , VARIABLE DELIM

3 : #, S PLC OFF BEGIN # 2DUP OR
4 WHILE PLC I t ! PLC F@ 3 =

5 I F DELIM F@ HOLD PLC OFF THEN REPEAT ;

6
7 : D , . R >R SWAP OVER DABS <# # , S SIGN #>
8 R> OVER - SPACES TYPE ;
9 : D , . 0 D , . R SPACE ;

1 0 : , . R >R S->D R> D, . R ;
11
1 2 : , . S->D D, . ; \ - - I - 7 @ 1 . ;

13 \ : W , ? W@ , . ; : C , ? C@ , . ;
1 4 R> BASE !
1 5

on line three. We set the place counter to zero. We then begin
conversion. The first act of conversion is to convert a digit,
leaving a remainder on the stack and a digit in the string
buffer. The remainder is then 2 ~ U P e d and one copy is ORed

together to a single-precision flag for the benefit of WHILE

(on line four). If the result of the ORing is zero, the code
branches to the return code at the end of line five.

If the result of the test for completion is not zero, we still
have at least one more digit to convert. We increment PLC

by one, and test for it being equal to three. If it is equal to
three, we insert a delimiter character into the string with the
phrase DELIM F@ HOLD and then reset the counter to zero.
Then it's back to the beginning and another conversion.

That's it, that's the trick paa. Everything else consists of
duplicating the resident non-comma output functions as
needed. D . R (supra) is exactly duplicated with D, . R (line
seven), except that we use #, S instead of #S.

on the disk:

Free Bytes on Drive: 24,070,144
Total Bytes on Drive: 30,751,744
Occupied: 6,68l,600
Number of Clusters: 30,031
Sector Size, bytes: 512
Cluster Size, sectors: 2

Much more readable than the typical Mess-DOS or Unix
output!

Availability
This code is released to the public domain. Enjoy it in

good health and toast the health of contributors to the public
domain from time to time.

Charles Curley, a long-time Forth nuclear guru, lives in Wyoming and has his own
private postal code: 82717-2071

Forth Dimensions 35 January 1994 February

(I~ l lers, continued from page 5.)
b. FIG should make available a conversion/equivalency

list. I will tend to keep the entire thing as part of my
precompiled system, so I can always get results from
typing in source code. If this makes you shudder, you
just don't get it. My time is way more important than
1 K. (See, we are nottalking about embedded systems,
so most of your issues just evaporate.)

3. Stop building or optimizing compilers, linking methods,
etc., etc. Stop talking about it, too, except in a specialized
journal I can avoid. You need to attract a different kind
of user, one who values their time and simply wants a
good environment from which to solve problems. A good
half of the manual of the Forth system I eventually bought
($700) is about issues I couldn't care less about, then it
skimps where I need it, with fewer than five pages on the
object-oriented stuff or the C-linking package.

4. Vendors: I want to include in my dstributed packages the
capacity to compile. I am even willing to use a shareware
version to get this capability. Don't try to argue me out of
it, try to see what you can do. Are my end users
(secretaries in law offices) capable of taking your Forth
compiler, without manuals or help information, and
doing harm to you? When they can get a compiler for free
any time they want?

5. There doesn't need to be an issue between screens and
ASCII files, sense and support both simultaneously. But
give me Ctrl-Q and Ctrl-F, Ctrl-Y and AIt-X out of the
package, in both editors.

6. Get out replaceable drivers for the main database pack-
ages. Share them, it is one of the most important things you
can do for a busy applications developer. Include indexes.

7. You could really jump past the other languages if you get
the TrueType font support for DOS. How nice of Windows.

8. Even beyond the database managers, there should be the
equivalent of dBase itself, complete with all functions and
syntax, as a standalone but extensible product. Other
programs extol the size of their macro language, but we
know that's n o h n g compared with the power of a Forth.
Imagine the performance benefit of a system where you
can even select the buffer-management method file by
file: single-record use (one buffer), sequential-record use
Oarge buffer, large block read), random with expected
frequent reuse (expand to use all available memory, one
buffer at a time).

9. Find something new to repeat. I love Forth, but it is clear
the same old arguments aren't cutting it. It's kind of like
you keep loading the same screen, and the screen keeps
aborting with the same message.

Yours,
Jim Mack, President

Coreworks, Ltd.
126 Front Street, Suite B

Beaver Dam, Wisconsin 53916

/See also, in this issue, sections 3.1 and3.2 o m * , Van&
Keere, a n d Vandewege regarding perceived Forth weak-
nesses. -Ed./

(Fast Forrhward, continued frompage 43.)
performance penalty for the Forth virtual processor. This
ignores how efficient the conversion of one syntaxless
language to another canbecome. If Forth were not syntaxless,
their fears would be justified.

First, Forth uses a compilation phase to resolve all
symbols to executable addresses that the virtual processor
can handle. There are no symbol-table lookups to slow the
system at run time.

The remaining translation is performed at run time.
Mostly, it involves de-referencing one or more levels of
pointer indirection, incrementing an instruction pointer, and
maintaining the function-return stack. Even the description
of this final Forth "translation" process sounds more like the
microcode for a JSR instruction rather than a true language-

Forth attains the same
processor independence
and code portability that other
high-level languages attain,
but with none of the burdens
of an intervening syntax.

translation effort.
The C run-time system does roughly equivalent work as

it tears down and sets up stack frames for each function that
is called.

Now, many Forth systems can directly compile native
processor instructions to correspond with high-level Forth
source code. With the advent of those systems, Forth
performance concerns can be laid to rest, leaving one less
perceived problem for Forth. (Other perceived problems are
Forth's use of postfix notation and stack operations. But the
stack serves as a good intermediary between the virtual Forth
processor and the actual hardware. I'd much prefer the
debugging of a stack-related problem over the debugging of
a problem related to dynamic memory allocation, pointers,
or syntax miscues.)

To the extent that other languages hide real processor
behavior behind the foreign constructions of syntaxes, we
cannot expect them to offer the same positive control that
Forth does. The result is unnecessary difficulties creating
reliable, bug-free applications.

Considering that it is a high-level language that faithfully
steers the underlying computing technology, programmers
should be lining up to use Forth!

-Mike Elola

January 1994 February 36 Forth Dimensions

New On-line Chapter
1 of the Forth Interest Group

Jack J. Woehr
jax@well. sf. ca. us

On-line communications increasingly occupy niches pre-
viously reserved for print media or even face-to-face contact.
In 1787, the Forth Interest Group recognized this trend in
initiating the GEnie Forth Interest Group Roundtable.

Now the Forth Interest Group has authorized its first
electronic Chapter: The Whole Earth 'Lectronic Link (WELL)
Chapter of the Forth Interest Group.

By the time you read this article, the Chapter will be open
for business on the WELL. I'll be your on-line host, and it's
my goal to attract enough users to the WELL Chapter to make
it worth our collective while to conduct such an experiment.

The WELL is one of America's fastest growing and most
enjoyable commercial telecommunication services, and has
been mentioned in articles in 77MEmagazine, the Wallstreet
Journal, and elsewhere. The WELL describes itself as a
"virtual community" of people from all walks of life. While
original participants were mostly computer hackers, the
diversity of interests among WELL participants is astounding.
The WELL is a friendly site to explore on-line conferencing,
the world of the Internet, and the Unix operating system, in

the world of the Internet, and
the Unix operating system.

415-332-6106. If that's a long distance call for you, you may
access the WELL via Compusewe Packet Network (CPN). In
the lower 48 states, the surcharge for CPN access is $4 per
hour. Contact the WELL'S voice line 415-332-4335, or their fax
line 415-332-4727 for more information about CPN access.
Alternatively, dial in directly, subscribe, and get the same
information on-line for future CPN sessions. Outside the
lower 48 states, CPN rates vary. CPN access is currently
available from selected nodes on all continents of the planet
except Antarctica.

If you are already a user of PCPursuit, the WELL is
accessible via PCPursuit San Francisco outdial modems. It's
also accessible via other popular intercity outdial services.

Best of all in terms of reducing the phone bill is if you
have, as I do, access to a local Internet node at work or at
school. In t h~s case, you may rlogin well.sf.ca.us to access the
WELL across Internet. Of course, as in all other cases, you
must subscribe to the WELL in order to access the WELL.
Subscribers accessing the WELLfrom other Internet sites may
also ftp to and from the WELL.

It's our plan to have a full local conference, in addition to

The WELL is a friendly site to
explore on-line conferencing,

download or for ftp'ing (sorry, WELL subscribers only may
ftp to and from the WELL). Additionally, since the WELL
supports live real-time conferencing, we plan to have on-line

providing access to the popular comp.lang.forth on USENET.
A large number of Forth files will be copied to the WELLForth
Interest Group Chapter from the RCFB and other sites for

addition to being potentially the site of the most dynamic
Forth idea exchange on the planet-if you participate!

The WELL is a conferencing system built on top of the
UNIX operating system. WELL participants have full access

Chapter meetings at least once a month.
subscribe to [he m ~ ~ b ~ connecting via one ofthe means

described above and then

go fig

to t h e i r favorite UNIX shell: sh, csh, or ksh, along with
popular variants thereof, are all available and are included in
the basic service, as is ftp, e-mail, and other forms of Internet
access. The WELL is truly an open system!

WELL rates and connectivity are excellent also. The WELL
costs $15 per month and $2 per on-line hour to subscribe,
which includes up to 512 kilobytes of disk storage. Additional
disk storage is $20 per megabyte per month, prorated. There
is no additional charge for shell access, Internet access, or
electronic mail.

To subscribe, you may modem into the WELL directly at

to reach the WELLOn-line Chapter of the Forth Interest Group.
By the way, do not send e-mail to fig@well.sf.ca.us! You

see, one of the very first founders of the WELL is named
Clifford Figallo (currently of the Electronic Freedom Founda-
tion) and his handle on the WELL is fig. Instead, send e-mail
to jax@well.sf.ca.us for more information on the WELL On-
line Chapter of the Forth Interest Group.

Note: no portion of your WELLsubscription accrues to the
Forth Interest Group or to the host of the WELL On-line
Chapter of the Forth Interest Group.

Chat you on-line soon on the WELL!
Forth Dimensions 37 January 1994 February

Forth resources & contact information

P@S@UP@@ L ! B E E ~ ~ B
Please send updates, corrections, add~tional listings, and suggestions to the Editor.

Forth Interest Group 1
The Forth Interest Group serves both expert and novice
members with its network of chapters, Forth Dimen-
sions, and conferences that regularly attract participants
from around the world. For membership information, or
to reserve advertising space, contact the administrative
offices:

Forth Interest Group
P.O. Box 2154
Oakland, California 94621
510-89-FOli'TH (i.e., 5 10-8936784)
Fax: 510-535-1295

Board of Directors
John Hall, President Founding Directors
Jack Woehr, Vice-president William Ragsdale
Mike Elola, Secretary Kim Ilarris
Dennis Ruffer, Treasurer Dave Boulton
David Petty Dave Kilbridge
Nicholas Solntseff John James
C.H. Ting

/ In Recognition 1
Recognition is offered annu-
ally to a person who has
made an outstanding contri-
bution in support of Forth
and the Forth Interest Group.
The individual is nominated
and selected by previous
recipients of the "FIGGY."
Each receives an engraved
award, and is named on a
plaque in the administrative
offices.

January 1994 February

1979 William Ragsdale
1980 Kim Harris
1981 Dave Kilbridge
1982 Roy Martens
1983 John D. Hall
1984 Robert Reiling
1985 Thea Martin
1986 C.H. Ting
1987 Marlin Ouverson
1988 Dennis Ruffer
1989 Jan Shepherd
1930 Gary Smith
1991 Mike Elola

ANS Forth 1

Forth Instruction

Los Angeles-Introductory and intermediate three-day
intensive courses in Forth programming are offered
monthly by Laboratory Microsysterns. These hands-on
courses are designed for engineers and programmers
who need to become proficient in Forth in the least
amount of time. Telephone 213-306-7412.

38 Forth Dimensions

The following members of the ANS X3J14 Forth Standard
Committee are available to personally carry your propos-
als and concerns to the committee. Please feel free to call
or write to them directly:

Gary Betts Charles Keane
Unisyn Performance Pkgs., Inc.
301 Main, penthouse #2 515 Fourth Avenue
Longmont, CO 80501 Watervleit, NY 12189-3703
303-924-9193 51 8-274-4774

Mike Nemeth George Shaw
CSC Shaw Laboratories
10025 Locust St. P.O. Box 3471
Glenndale, MD 20769 Hayward, CA 94540-3471
30 1-286-83 13 415-276-5953

Andrew Kobziar David C. Petty
NCR Digitel
Medical Systems Group 125 Cambridge Park Dr.
950 Danby Rd. Cambridge, MA 02140-2311
Ithaca, NY 14850
607-273-5310

Elizabeth D. Rather
FORTH, Inc.
11 1 N. Sepulveda Blvd.,

suite 300
Manhattan Beach, CA 90266
213-372-8493

/ To communicate with these systems, set your modem and
communication software to 300/1200/2400 baud with eight
bits, no parity, and one stop bit, unless noted otherwise. GEnie
requires local echo.

--

GEnie
For information,
call 800-638-9636

Forth Round'Table
(FortbNet9
Call GEnie local node, then

type M710 or FORTH
sysops:
Elliott Chapin (ELLI0'IT.C)
Bob Lee (B-LEE)

CompSerue
For information,
call 800-848-8330

Creative Solutions Conf.
Type !Go FORTH
SysOps: Don Colburn, Zach
Zachariah, Ward
McFarland, Jon Bryan, Greg
Guerin, John Baxter, John
Jeppson

MACH2 RoundTable Computer Language
Type M450 or MACH2 Magazine Conference
Palo Alto Shipping Type !Go CLM
Company SysOps: Jim Kyle, Jeff
Sysop: Brenton, Chip Rabinowitz,
Waymen Askey (D.MILEY) Regina Starr Ridley

BIX (ByteNet)
For information,
call 800-227-2983

Forth Conference
Access BIX via TymNet,
then type j forth
Type FORTH at the :

prompt
sysop:
Phil Wasson (PWASSON)

LMI Conference
Type LMI at the : prompt
LMI products
Host:
Ray Duncan (KDUNCAN)

Unix BBS's with fortb.conf
(FortbNet* and reachable Yia
StarLink node 9533 on
TymNet and PC-Pursuit node
casfa on TeleNet.)

WELL Forth conference
Access WELL via
CompuserveNet
or 415-332-6106
Fairwitness:
Jack Woehr (jax)

Wetware Forth conference
415-753-5265
Fairwitness:
Gary Smith (gars)

PC Board BBS's hated to
Forth (ForthNet')

British Columbia Forth
Board
604-434-5886
SysOp: Jack Brown

Grapevine
501-753-8121 to register
501-753-6389
StarLink node 9858
SysOp: Jim Wenzel

I Real-Time Control Forth
Board

'FortbNet is a virtual Fortb net- 303-278-0364

work that links desi~nated mes- StarLink node 2584 on
"

sage bases in a n attempt topro- TymNet

&greater infonnation distri- PC-Pursuit node coden on

bution to the Fortb wers served. TeleNet

It is provided courtesy of the SysOp: Jack Woehr

1 SysOps $i6 uanow links

Other Forth-specific BBS's
Laboratory Microsystems,

Inc.
213-306-3530
StarLink node 9184 on

TymNet
PC-Pursuit node calan on

TeleNet
SysOp: Ray Duncan

Knowledge-Based Systems
Supports Fifth
409-696-7055

Druma Forth Board
512-323-2402
StarLink node 1306 on

TymNet
SysOps: S. Suresh, James
Martin, Anne Moore

Interface BBS
Santa Rosa, CA
707-544-3661
(FortbNet9 14.4K BPS
SysOp: Bob Lee

Non-Forth-speci~ic BBS's with
extensive Forth libraries

DataBit
Alexandria, VA
703-719-9648
PCPursuit node dcwas
StarLink no& 2262
SysOp: Ken Flower

The Cave
San Jose, CA
408-259-8098
PCPursuit node casjo
StarLink node 6450
SysOp: Roger Lee

Intanational Fortb BBS's
Melbourne FIG Chapter
(03) 809-1787 in Australia
61-3-809-1787 international
SysOp: Lance Collins

Forth BBS JEDI
Paris, France
33 36 43 15 15
7 data bits, 1 stop, even

parity

Max BBS (ForthNetv
United Kingdom
0905 754157
SysOp: Jon Brooks

Sky Port (FortbNetY
United Kingdom
44-1-234-1006
SysOp: Andy Brimson

SweFlG
Per Alm Sweden
46-8-71-3575 1

NEXUS Servicios d e
Informacion, S. L.

Travesera d e Dalt, 104-106
Entlo. 4-5

08024 Barcelona, Spain
+ 34 3 2103355 (voice)
+ 34 3 2147262 (modern)
SysOps: Jesus Consuegra,
Juanma Barranquero
barrant3nexus.nsi.e~

(preferred)
barrant3nsi.e~
barran (on BIX)

ACM SIG-Forth 16

..................... The Computer Journal 18

Forth Interest Group centerfold

Harvard Softworks6

Miller Microcomputer
.. Services .41

Silicon Composers 2 I
Forth Dimensions January 1994 February

I
January 1994 February 40

7 FIG Chapters

The Forth Interest Group Chapters listed below are currently
registeredas active with regular meetings. lfyour chapterlisting
is missing or incorrect, please contact the FIG office's Chapter
Desk. This listing will be updatedregularly in Forth Dimensions.
If you would like to begin a FIG Chapter in your area, write for
a "Chapter Kit and Application."

Forth Interest Group
P.O. Box 2154
Oakland, California 94621

U.S.A. Silicon Valley Chapter
ALABAMA 4th Sat., 10 a.m.

Huntsville Chapter Applied Bio Systems
Tom Konantz Foster City
(205) 8816483 (415) 535-1294

ALASKA Stockton Chapter
Kodiak Area Chapter Doug Dillon (209) 931-2448
Ric Shepard
Box 1344 COLORADO
Kodiak, Alaska 99615 Denver Chapter

1st Mon., 7 p.m.
ARIZONA Clifford King (303) 693-3413
Phoenix Chapter
4th Thurs., 7:30 p.m. FLORIDA
Arizona State Univ. Orlando Chapter
Memorial Union, 2nd floor Every other Wed., 8 p.m.
Dennis L. Wilson Herman B. Gibson
(602) 381-1 146 (305) 855-4790

CALIFORNIA Tampa Bay Chapter
Los Angeles Chapter 1st Wed., 7:30 p.m.
4th Sat., 10 a.m. Terry McNay (813) 725-1245
Hawthorne Public Library
12700 S. Grevillea Ave. GEORGIA
Phillip Wasson Atlanta Chapter
(213) 649-1428 3rd Tues., 7 p.m.

Emprise Corp., Marietta
North Ray Chapter Don Schader (404) 428-0811
3rd Sat.
12 noon tutorial, 1 p.m. Forth ILLINOIS
2055 Center St., Berkeley Cache Forth Chapter
Leonard Morgenstern Oak Park
(4 15) 376-5241 Clyde W. Phillips, Jr.

(708) 7 13-5365
Orange County Chapter
4th Wed., 7 p.m. Cenwd ILLinois
Fullerton Savings Champaign
Huntington Beach Robert Illyes (217) 359-6039
Noshir Jesung (714) 842-3032

INDIANA
Sacramento Chapter Fort Wayne Chapter
4th Wed., 7 p.m. 2nd 'rues., 7 p.m.
1708-59th St., Room A I/P Univ. Campus
Bob Nash B71 Neff Hall
(916) 487-2044 Blair MacDermid

(219) 749-2042
San Diego Chapter
Thursdays, 12 Noon
Guy Kelly (619) 454-1307

NEW YORK
Long Island Chapter
3rd Thurs., 7:30 p.m.
Brookhaven National Lab
AGS dept.,
bldg. 911, lab rm. A-202
Irving Montanez
(5 16) 282-2540

IOWA
Central Iowa FIG Chapter
1st Tues., 7:30 p. m.
Iowa State Univ.
214 Camp. Sci.
Rodrick Eldridge
(515) 294-5659

Fairfield FIG Chapter
4th Day, 8:15 p.m.
Gurdy Leete (515) 472-7782

MARYLAND
MDFIG
3rd Wed., 6 3 0 p.m.
JHU/APL, Bldg. 1
Parsons Auditorium
Mike Nemeth
(301) 262-8140 (eves.)

MASSACHUSElTS
Boston FIG
3rd Wed., 7 p.m.
Bull HN
300 Concord Rd., Bilierica
Gary Chanson (617) 527-7206

. MICHIGAN
Detroit/Ann Arbor Area
Bill Walters
(313) 731-9660
013) 861-6465 (eves.)

MINNESOTA
MNFIG Chapter
Minneapolis
Fred Olson
(612) 588-9532

MISSOURI
Kansas City Chapter
4th Tues., 7 p.m.
MAG Midwest Conference Research Center Institute

Linus Onh (913) 236-9189

St. Louis Chapter
1st Tues., 7 p.m.
Thornhill Branch Library
Robert Washam
91 Weis Drive
~ l l i ~ ~ i l l ~ , MO 6301 1

NEW JERSEY
New Jersey Chapter
Rutgers Univ., Piscataway
Nicholas Lordi
(201) 338-9363

NEW MEXICO
Albuquerque Chapter
1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
Jon Bryan (505) 298-3292

Rochester Chapter
Monroe Cornm. College
Bldg. 7, Rm. 102
Frank Lanzafame
(716) 482-3398

OHIO
Cleveland Chapter
4th Tues., 7 p.m.
Chagrin Falls Library
Gary Bergstrom
(216) 247-2492

Columbus FIG Chapter
4th Tues.
Kal-Kan Foods, Inc.
51 15 Fisher Road
Terry Webb (614) 878-7241

Dayton Chapter
2nd Tues. & 4th Wed., 6:30 p.m.
CFC
11 W. Monument Ave. #612
Gary Ganger (513) 849-1483

OREGON
Willamette Valley Chapter
4th Tues., 7 p.m.
Linn-Benton Comm. College
Pam McCuaig (503) 752-5113

PENNSYLVANIA
Villanova Univ. Chapter
1st Mon., 7:30 p.m.
Villanova University
Dennis Clark
(215) 860-0700

TENNESSEE
East Tennessee Chaptor
Oak Ridge
3rd Wed., 7 p.m.
Sci. Appl. Int'l. Corp., 8th FI.
800 Oak Ridge Turnpike
Richard Secrist (615) 483-7242

TEXAS
Austin Chapter
Matt Lawrence
PO Box 180409
Austin, TX 78718

Dallas Chapter
4th Thurs., 7:30 p.m.
Texas Instruments
13500 N. Central Expwy.
Semiconductor Cafeteria
Conference Room A
Clif Penn (214) 335-2361

J

Forth Dimensions

Houston Chapter
3rd Mon., 7 3 0 p.m.
Houston Area League of
PC Users Univ. of New South Wales Genl. Sci Bldg , RM 212 Via Gerolamo Forni 48
1200 Post Oak Rd. Peter Tregeagle McMaster Unrversity 20161 M~lano
(Galleria area) 10 Binda Rd. Dr. N. Solntseff
Russell Harris Yowie Bay 2228 (4 16) 525-9140 x3443
(713) 461-1618 02,524-7490 Tokyo Chapter

Usenet. ENGIAND 3rd Sat, afternoon
VERMONT tedrausage csd unsw.oz Forth Interest Group-UK Hamacho-Kaikan, Chuoku
Vermont Chapter Toshio Inoue
Vergennes BELGIUM (81) 3-812-21 11 ext. 7073
3rd Mon , 7 3 0 p.m. Belgium Chapter Polytechn~c of South Bank
Vergemes Umon Hlgh School 4th Wed., 8 p.rn REPUBLIC OF CHINA
RM 210, Monkton Rd. Luk Van Loock R.O.C. Chapter
Hal Clark (802) 4534442 Lariksdreef 20 Ching-Tang Tseng

2120 Schoten 58 Woodland Way P.O. Box 28
VIRGINIA 03/658-6343 Morden, Surry SM4 4DS Longtan, Taoyuan, Taiwan
First Forth o f (03) 4798925
Hampton Roads
Wrll~am Edrnonds
(804) 8984099

B-6290 Nalinnes Arkk~tehd~nkatu 38 c 39
Potomac FIG 071/213858 46/8-92963 1
D.C. & Northern Virginia
1st Tues. CANADA SWITZERLAND
Lee Recreation Center Forth-RC GERMANY Swiss Chapter
5722 Lee Hwy., Arlington 1st Thurs , 7.30 p.m. Germany FIG Chapter Max Hugelshofer
Joseph Brown Industrieberatung
(703) 471 -44W
E Coast Forth Board
(703) 442-8695 (604) 596-9764 or D-8044 Unterschlersshe~rn 01 810 9289

(604) 436-0443
Richmond Forth Group BCFB BBS (604) 434-5886 SPECIAL GROUPS
2nd Wed., 7 p rn. NC4000 Users Group
154 Busmess School Northern Alberta Chapter John Carpenter
Un~v of Richmond 4th Thurs , 7-930 p m secretary@Adrmn FORTH-eV de 1698 Villa St.
Donald A. Full N. Alta Inst of Tech. Mountarn View, CA 94041
(804) 739-3623 Tony Van Muyden HOLLAND (4 15) 960-1256 (eves)

(403) 4864666 (days) Holland Chapter
WISCONSIN (403) 962-2203 (eves) VIC Van de Zande
Lake Superior Chapter
2nd Frr , 7.30 p rn.
1219 N 21st S t , Superior
Allen Anway (715) 394-4061

INTERNATIONAL
AUSTRALIA
Melbourne Chapter
1st Fn , 8 p.m
Lance Collins
65 Martin Road
Glen Iris, V~ctoria 3146
03/889-2600
BBS: 61 3 809 1787

System CRYPTOQUOTE HELPER OTHELLO BREAK-

Forth Dimensions 41 January 1994 February

A Forum for Exploring Forth Issues and Promoting Forth

Mike Elola
San Jose, California

Now Showing-Forth
The Embedded Systems Conference in October was an

opportunity to gain exposure for Forth and the Forth Interest
Group. I worked in the booth on the first day of the
exhibition, along with several other volunteers from the
Silicon Valley FIG Chapter. Throughout the three-day show,
volunteers distributed literature from FIG and from Forth
vendors.

At occasional intervals, a visitor would approach us with
a smile indicating that they were aware of Forth. Occasion-
ally, a visitor who knew nothing of Forth would also
approach us. All 100 literature kits had been distributed
before the end of the third day.

I recall trying to d o justice to Forth in one- or two-sentence
descriptions. Different booth partners had different ap-
proaches. Considering where we were, it seemed appropri-
ate to mention that Forth is well suited to embedded systems
development. If our short descriptions of Forth did not win
them over on the spot, visitors could read lengthier explana-

Windows developers to become acquainted with Forth.

Deeds that Lncrease Forth's Appeal
Many programmers will not accept the proposition that

Forth is on equal footing with mainstream development
tools, while Forth linkers and similar tools are not widely
available. So certain utilities can promote Forth simply
through their availability. Examples are utilities that help
bridge Forth and mainstream development tools.

(A lack of conventional tools such as linkers and library
facilities is not evidence of a Forth flaw. Nevertheless,
detractors may treat such omissions as though they were
evidence of irreversible Forth defects.)

To help make it clear to others that Forth is a high-level
language, a contribution such as that of Richard hstle in the
preceding issue of FDsure helps. I am referring to his article
describing how Forth can gain access to precompiled library
routines, such as those created using C development tools.

Giving Forth facilities equivalent to those of mainstream
programming languages sends the message that Forth is truly
a high-level language. Facilities to create and use libraries

I encourage builders of bridges 1 should be crafted not just once, but over and over again.

between Forth and other 1 I wish to encourage those w h o are building such bridges 1
development tools. between Forth and other development tools. This work

t)olsters the image of each and every Forth programmer.

tions of Forth in the literature kit.
In time for the show, I had prepared a new, article-length

brochure to introduce Forth. Its larger-than-usual format
allowed m e to elaborate more in support of Forth's claims.

If w e don't build such bridges, w e appear disinterested in
what's going o n around us. We'll b e perceived as "out of
touch." As has been suggested by Tyler Sperry, w e will be
perceived as though w e are addicted to substandard tools.
(Tyler Sperry is the editor of Embedded System Program-

/

The piece still had a marketing purpose, however. It / mingmagazine. He commenteduponForth'sfuture byway
positions Forth in the world of computer languages, identi- / of h N S Forth and its acceptance by the Forth community in

January 7994 February 42 Forth Dimensions

fies its distinguishing features, and highlights Forth benefits
that other languages are at a loss to provide.

Jax4th
A new, shareware implementation of Forth made its

debut in MindmsNTDmelopersmagazine. Jaxrith is notable
for its MIS (draft proposal) compliance. In i ts first incarna-
tion, Jax4th is less complete than most commercial systems.
Kudos to Jack Woehr, the creator of Jaxdth, for encouraging

his September editorial.)

EDN Letter Generates 300 Queries
I got word from the FIG office that 300 inquiries were

received in response to a recent letter published by Electronic
Design News (E m . In his letter, Tom Napier asserts Forth
to be the natural programming language for small micropro-
cessors. He characterizes Forth as a "clean" language, and as
the "simplest computer language ever invented."

Syntaxless Iaflguages
While Tyler Sperry thinks there may be a chance for Forth

to take up a respectable role in embedded systems develop-
ment, I am still puzzling over Forth's place in the broader
programming realm. Regardless of its area of application, we
need to make Forth less of a mystery.

Recently, I latched onto the idea of looking at Forth as a
syntaxless language. Perhaps Forth can be marketed as the
rare blend of a syntaxless and a high-level language.

Most syntaxless languages are by-products of rnicropro-
cessor instruction sets. These languages are the definitive
low-level languages. (Forth is often dsmissed as too low-
level a language.) Forth's appeal will be clearer when we
understand how syntaxless programming languages can aid
programming. I want to show that they offer a better
foundation upon which to base a high-level language.

One way that high-level languages distance themselves
from processor-level instructions is by introducing a syntax,
so that many different behaviors can be invoked through the
combinatorial juxtaposition of relatively few keywords and
punctuation symbols. Very large swings in meaning can
result from changing a single symbol, assuming the syntax
rules are still satisfied.

When source code contains misused syntax that still
produces syntactically legal code, modern languages will not
see it as an error. Instead, the erroneous code is assigned a
meaning the programmer was not intending. Errors in
syntaxless language seem more conspicuous. Without syn-
tax processing, there is no chance for seemingly reasonable
but incorrect expansion or interpretation. Programming
languages based on a syntax work hard to make sense out
of many different combinations of elements, whether they
came together by error or by design.

Different compilers will map dfferent processor instruc-
tions to the same source code. Through syntax-based
translation, compilers are allowed to synthesize processor
instructions according to very complex relationships of
language elements, some of which the programmer tends to
forget. Accordingly, the translation may lead to the synthesis
of instructions that defeat the real intentions of the program-
mer. Then the programmer must discover which recent code
refinement gave the wrong syntax cue to the compiler.

A high-level programming language needs to strike an
effective balance between reaching a processor abstraction
and preventingus from easily forecasting the actions that will
be produced. We don't need to predict the actual processor
instructions that are called upon to carry out an action; we
do need to be able to identify the type of action that will be
elicited.

A better balance may be achieved by omitting syntax
1 September 1993 / altogether. This approach doesn't depend on our ability to

Forth, Inc. announced a new release of its chipForth
cross-compiler for targets based on the 68HCll family. This
release sports support for a 32-bit ("big") memory model. It
allows the development of lengthy programs for target
hardware (theirs or yours) that you communicate with
through a PC host. The $1,775 package includes software,
target hardware, documentation, and telephone support,

November 1993
Silicon Composers announced the Formula Data Log-

ger32 (FDL32TM), a 12 MIPS SBC based on the SC32 Forth
microprocessor. It supports up to 64 Mb. of PCMCIA FLASH
or SRAM memory, and comes standard with battery-backed
4 Mb. SRAM PCMCIA cards. Two RS-232 and two RS-422
ports are provided along with 13 T T L input lines and ten 'ITL
output lines for parallel I/O. Device drivers are included in
source code format.

Companies Mentioned
Forth, Inc.
11 1 N. Sepulveda Blvd.
Manhattan Beach, California 70266-6847
Phone: 310-372-8473 or 800-55-FORTH
Fax: 310-318-7130

Silicon Composers Inc.
655 W. Evelyn Avenue #7
Mountain View, California 74041

think like a compiler with respect to language syntax.
While a processor abstraction is essential for a high-level

language, why not choose a "compatible" abstraction? If the
processor is syntaxless, the high-level language can also be
syntaxless. Forth is a high-level language because it uses an
instruction-processing model a level removed from the real
instruction-processing resources of the hardware.

Forth uses a threadexecution engine to satisfy the need
for processor abstraction. We Forth programmers often refer
to the threadexecution engine as a virtual processor (or
Forth run-time engine). This reinforces how the Forth
language lets the emulation of a processor serve as its
processor-abstraction model. Through this means, Forth
attains the same processor independence and code portabil-
ity that other high-level languages attain, but with none of the
burdens of an intervening syntax.

At run time, previously compiled code guides a virtual
Forth processor (implemented as a handful of low-level
routines) through lists of high-level instructions--each of
which eventually resolves to a sequence of low-level instruc-
tions executed by the real processor. Without any syntax
processing to complicate this mapping process, the actual
outcome is much more predictable. Upon seeing a trace of
the code's execution, the Forth programmer is less likely to
receive any rude surprises.

Forth detractors observe that, in effect, some translating
occurs at run time. Accordingly, they expect a heavy

1 Phone: 41 5-761-8778

Forth Dimensions

(Continues on page 36.)

January 1994 February

A mod- language far s d e a t i f i r computinp

-4

Jultn V. Noble
Prd.=-rofPhydu, U n l N . I Q e f ~

Vahum Bmk* Ulblbhing

"...FORTH is not usually en-
countered within the context
of scientific or engineering
computation, although most
users of personal computers or
workstations have unwittingly
experienced it in one form or
another. FORTH has been
called "one of the best-kept
secrets in computing". It lurks
unseen in automatic bank teller
machines, computer games, in-
dustrial control devices and
robots. ...
Some scientists and engineers
have gained familiarity with
FORTH because it is fast, com-
pact, and easily debugged; and
because it simplifies interfac-
ing microprocessors with ma-
chines and laboratory equip-
ment
... FORTH has the ability not

only to reproduce all the func-
tionality of FORTRAN -us-
ing less memory, compiling
much faster and often execut-
ing faster also-but to do
things that FORTRAN could
not accomplish easily or even
at all
One reason FORTH has not
yet realized its potential in sci-
entific computing is that sci-
entists and programmers tend
to reside in orthogonal com-
munities, so that no one has
until now troubled to write the
necessary extensions. One aim
of this book is to provide such
extensions in a form I hope
will prove appealing to cur-
rent FORTRAN users.
Since time and chance happen
to everything, even FORTH, I
have devoted considerable ef-
fort to explaining the algo-

Scientific Forth rithms and ideas behind these
extensions, as well as their nuts

by Julian V. Noble and bolts"

Scientific Forth extends the Forth kernel in the direction of scientific
problem-solving. It llustrates advanced Forth programming techniques
with non-trivial applications: computer algebra, roots of equations,
differential equations, function minimization, functional representation
of data (FFT, polynomials), linear equations and matrices, numerical
integrationMonte-Carlo methods, high-speed real and complex floating
point arithmetic. (Includes disk with programs and several Utilities)

$50.00

