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A Hardware Interrupt Handler

Tim Hendtlass

Data often must be acquired when the world is ready to provide it, even if the computer is busy
with other tasks. Thus, hardware interrupts are a must for programmers working with real-time
devices and data acquisition. This interrupt handler allows interrupt service routines to be written
directly in high-level Forth—hiding all the tedious detail—and has been used in scientific
instrumentation. High-level ISRs have general-purpose applications, and are easier to write and
debug than assembler, at some expense in speed.

Principles of Metacompilation, Part Two
B.J. Rodriguez

There may be no better way to learn Forth inside and out than by mastering metacompilation. For
those ready to take the leap, the author’s series of articles (begun in our last issue) tackles all the
fundamental issues, addresses the thorniest obstacles, and provides ample illustrations and code.
With this knowledge—bearing in mind the lessons of Shelley’s Frankenstein—you can dissect and
customize Forth to your heart’s content. Not incidentally, you will also thoroughly understand your
Forth system and will be able to apply its resources more wisely.

Character Graphics
C.H. Ting

Forth represents new territory to both novice programmers and to those already adept in other
languages. Exploring such terrain in hit-or-miss fashion can cause missed landmarks and shortcuts
(where would Lewis and Clark have gotten withoul Sacajawea?), or may even end in terminal
frustration. Sometimes it’s best to start with a competent guide at the very beginning: here, the
author teaches beginners how to use Forth commands to print messages on the screen. So begins
lesson one... more tutorial installments to follow.

Styling Forth to Preserve the Expressiveness of C
Mike Elola

Forth’s freedomm from multiple syntax formats is the source of some confusion: it fails to package
code so that the flow of parameters is unmistakable. In pursuit of simplicity and compactness, Forth
streamlined its parsing requirements by abandoning support for several syntax formats, thus
impairing its expressiveness. Such concerns prompted the author to take up the challenge of
designing-a new Forth styling convention.
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5 Lefters .....:....ococoomu Visible words & ugly complexity, a challenge to standards warriors,
Combsort revisited, and Megasort in Forth.
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Program ... Forth writers’ rewards.
26 Fast Forthward ........ Forth threading models; new products; and China calls for
benchmarks., |
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38 On the Back Burner ... Some assembly required: working with the 8051. J
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e had just decided to
W give readers a respite
from ANS Forth's labor pains
when we received a letter by
Chuck Eaker. In it, he
challenges Forthexperts who
are up to their necks in the
standardization debates to

turn to another worthy, |

rewarding, and perhapsmore |

difficult task. Coincidentally,

columnist Mike Elola passed |

this month’s “Fast Forthward”
essay space to fellow Board
member Jack Woehr, instead
developing an article closely
related o Eaker's leuter.
This issue’s other con-

tents range from a tutorial |
| always some task clamoring

introduction to Forth to an
8051 assembler, an interrupt
handler, and metacompila-
tion. But if you're too expe-
rienced to need a tutorial,
and too jaded to learn from
others’ work with metacom-
pilation, start with Eaker’s

letter and Elola’s article; if !

you take them seriously, we
think you'll have your hands
full.

The next issue will pub-
lish winners of our “Forth on

create an informative and
uscful publication. Tell us
what you are doing with
Forth, share your discoveries
and obstacles, teach the rest
of us something we should
know.

well, a peril of the self-em-
ployed worker is the persis-

tent lack of “down time.” |
i as much information as a
checkbook register. A gradu- |

The telephone rings at inter-
national hours; there is sel-

| domanyonctodclegate tasks

to; and every ime you pass
the office door, a twinge of
conscience strikes—there’s

for your attention. Paid va-
cations and benefits? Forget
about them.

Sometimes the only way
to really take off work is to
take off literally, and even
that doesn’t always work,
not entirely. I recenty left
office and work (except for
calls to the printer) for the

| first time since 1 don’t re-
 member when. Taking to
the road, T ended up at a

a Grand Scale” contest. The |

object was to describe Forth
projects ofan unusually large
or complex nature, and the
top authors succeeded hand-
ily. We look forward to shar-
ing their work with you.
We hope you will give

scrious thought to writing |
| servances of the unity of

for Forth Dimensions. As a
publication that is both by
and for the Forth commu-
nity, it rests on cach of us to
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small encampment on a
mountainous, native Ameri-
can reservation near the Ca-
nadian border. Nothing bet-

| ter counterracts a long-term,

low-level overdose of tech-
nology than big sky, fresh
air, spring water, general hi-
larity, and ceremonial ob-

diverse pcople, their spiri-
tual traditions, and the nur-
turing earth.

Asignwas postedto help |
new arrivals find their way
over the winding, unmarked
roads. A family of Romanian
expatriates chanced upon the
gathering and found itself
welcomed intoa culture they
had studied in books but
never experienced. I over-
heard the father tell some-
one he is an engineer, and
the technophile in me—not
entirely exorcised—intro-
duced itself to him. What a
strange surprise, thereamong
the jagged peaks and native
culture, 1o meet a man who,
when he came to the United
States, was required to learn
Forth for his first job.

We discussed how hard-
ware has changed: the entire
Romanian financial system
once was maintained on a

As you may know too | 256K computer (no docu-

mentation) with four wash-
ing-machine-sized hard
drives that could store about

ate of the old People’s Com-
puter Co. philosophy of put-
ting computer power in the
hands of the people, I told
him that every time I con-
sider junking my old TRS-80,
[ think, “But in its day, it
could have launched a Third
World space program!” Once
ordained in Eastern Europe’s
original mainframe priest-
hood, he told me he dislikes
Forth and loves languages
with libraries.

Draw your own conclu-
sions. Meanwhile, your edi-
tor is back at his desk and
working on the next couple
of issues. But even in the
midst of juggling these man-
made deadlines, press re-
leases, and various develop-
ments, I'm remembering the
fragrant sweetgrass and wild-
flowers, the sound of singers
and drums under the full
moon, tipis radiant with in-
ner fires, and the age-old les-
sons of kinship and gratitude.

—Marlin Ouverson

| The Forth Interest Group is the
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[Letters

’ L efters to the Editor—and to your fellow readers—are always welcome.
Respond to articles, describe your latest projects, ask for input, advise
the Forth community, or simply share a recent insight. Code is also

| welcome, but is optional. Letters may be edited for clarity and length.
We want to hear from you!

Visible Words & Ugly Complexity
Dear Marlin:
Thanks to Mike Elola for introducing the topic of graphi-
cal interfaces. He mentioned the term “ugly complexity,” and
| it got me thinking again about the perception of complexity.
Three elements contribute to the perception of ugly
| complexity. The perception of complexity happens when a
| system forces you to think about more than you are
comfortable thinking about. The ugly part of this perception
| happens when, even after you understand and can use the
system, the system still doesn’t make sense. The third facet
of ugly complexity is finding that you've gained little or no
functionality after the struggle to learn the system. Systems
like a factory’s materials-storage system or the tax laws come
to mind.
' A given Forth environment seems simple because you
don't have to think about very many of its parts at once. You
| usually have the choice of thinking about only what you can
| handle. This may be because it is a small Forth system with
a relatively small number of words. Even when Forth gels

Give Forth the ability to
swallow whole the work of
others and make it
interactively available...

| large, it still scems simple because you have a choice about
! how much you have o deal with at once. The C language,

because of its syntax and compilation, doesn't allow nearly as
‘ much flexibility concerning what you'll think about, and when.

IUs a mistake to think that, because graphical interfaces |

| are written in C or C++, they are by nature complex. Yes, they
have a lot of parts and a lot of layers, but they don’t have to
be complex. IU's also a mistake (o believe that all graphical
interfaces are equal and that any collection of shapes on a
screen constitutes a good visible interface. ILis important here

| means that graphics are used. This is a pretty easy thing to
| do. Visible means that the system is made visible and, hence,
| more understandable to the user. This is not so easy but,
' when done right, removes much complexity.

Forth Dimensions

to distinguish “graphical” from “visible.” Graphical simply |

People who believe in command lines don’t have to panic
here; instead, take a look at the Macintosh Programmer’s
| Workshop. It provides a visible means of creating and using
command lines. You can get commands working quickly
and save them, if you use them a lot, in a smooth, natural
fashion. In fact, it works so smoothly that you may not think
' you're getting much done. This is because you can actually
get a lot done without occupying the best parts of your mind
with tasks that should be relegated to the lizard brain.

Consideringall of this, I think it's a shame to avoid putting
a lovely, simple visible interface on such a lovely, simple
system as Forth. Creating a visible Forth environment would
be easy, because the concept of “word” translates easily into
the visible concept of a “box.” One could open the box to see
what is inside and to manipulate what is there. Stacks have
already been pictured in the literature—all that remains is
putting in a mechanism to allow the user to point to and grab
items on the stack. Visible words and dictionaries are a much
better way of distributing functionality than DLLs.

I'm working on these ideas now, and I invite anybody else
who is interested to write or call me. Thanks again, Mike.

Sincerely,

Mark Martino

14115 N.E. 78th Court
Redmond, Washington 98052

A Challenge to Standards Warriors

Chuck Eaker says: Hammer your standards-warfare swords
into plowshares and figure out how to use them to break new
ground by giving Forth the ability to swallow whole the work
of others and make it available in the interactive way we all
know and love.

Try this. Develop Forth++, which will operate in a Unix
environment. Define Forth++ words which take the name of
a (preferably C++) library (such as some of the X libraries)
and link the library into the Forth++ environment so that a
user can interactively list the classes, functions, etc. provided
by the library, create instances, execute methods, and
| generally perform reckless experiments quickly and cheaply
in the manner that, for me, is the essence of Forth.

Off-the-shelf class libraries provide incredible leverage

| but they are stpifyingly complex, and the documentation is

enormous but still incomplete. It takes foreverto create and
run a little program that will give you an answer Lo how this
litde widget behaves when you do this weird thing with it that
isn’t mentioned anywhere in the documentation. If I had
Forth++ running in another window, I could significantly
increase my productivity.

Devise a Forth++ vocabulary and syntax that I could use

| for interactive development; and a tool that will translate

- Forth++ to C++, which I can then compile and link the object
file to Forth++, so that I can continue development, then
translate...

In my opinion, the proposed standard has more than
captured the essence of Forth, What Forth needs is a way to
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capture other standards. There are lots of
common, well-known libraries out there
with which tens of thousands of profession-
als are familiar. They are using them to
leverage themselves into positions of powecr,
from which they can develop sophisticated
software quickly and cheaply. Forth can
never hope Lo match this achievement on its
own.

Chuck Eaker
P.O. Box 8, K-1 3C12
Schenectady, New York 12301

Combsort Revisited
Dear Mr. Ouverson,

After 1 sent my article, “Combsort in
Forth” to you, I experimented with the
shrinkage factor (FD XII1/4).

I set up speed tests using Combl o
double-check the effect on Combsort perfor-
mance of varying the shrinkage factor. The
results are given in Figure One. I discovered
that if arrays have randomized elements,
even a slight deviation from a factor of 1.3
causes the sort speed to suffer. But if the
elements are flat or sorted to some degree, a
higher factor actually results in a speed
increase. This explains the erratic perfor-
mance found by Box and Lacey with higher
factor values. I don't know why a value of 1.3
proves so critical to Combsort performance,
so you'll have to accept it as a given.

Walter J. Rottenkolber
P.O. Box 936
Visalia, California 93279

Megasort in Forth
Dear Editor,
The article by Walter J. Rottenkolber
(FD X111/4) on Combsort, was very interest-
ing but the table of contents entry was

Figure Two. More readable Meg asortj

\ MEGASORT FOR EASY READING
: ARRY ( 16 bit array maker )
( Size-in-items ) CREATE Z2* ALLOT
({ Index - Addr ) DOES> SWAP 2* + ;
256 ARRY BUCKETS ( TO PUT COUNTS OF EACH OCCURENCE )
256 ARRY POINTERS ( LOCATION TC PUT VALUE )
ITEMS ARRY DATATEMP ( TEMPERARY ARRAY )

: INITBUCKETS ( init BUCKETS )
[ 0 BUCKETS ] LITERAL
512 0 FILL ;

: SCANLSB ( ITEMs - )
{ FOR EACH ITEM PUT ONE COUNT INTO THE CORRECT BUCKET )
( ITEMS ) 0 DO
1 I S@ 255 AND BUCKETS +!
LOOP ;

: BUCKETS>POINTERS1
0
256 0 DO
DUP I POINTERS ! I BUCKETS @ +
LOOP DROP ;

( MAKE POINTERS TC THE START OF EACH PILE )

| : REORDERLSB ( ITEMS - )
( MOVE TUE ITEMS TC THE PILES DEFINED BY POINTERS )
( ITEMS ) 0 DO
I s@
DUP 255 AND POINTERS DUP >R
@ DATATEMP !
1 R> +!
LOCP ;

: SCANMSB ( ITEMS - )
( ITEMS ) 0 DO
1 I DATATEMP 1 + C@ BUCKETS +!
LOOF ;

: BUCKETS>POINTERSZ2

0

256 128 DO ( NEGATIVE NUMBERS FIRST )
DUP I POINTERS ! I BUCKETS @ +

LOOP

128 0 DO

DUP I POINTERS ! I BUCKETS @ +

LOOP DRCP ;

: REORDERMSB ( ITEMS - )

( ITEMS ) 0 DO

I DATATEMP DUP @
SWAP 1+ C@

POINTERS DUP >R

@ s!

1 R> +!
LOOP ;

{ : MEGASORT ( #Items - ) ( Language Nov 87 )
INITBUCKETS ( init BUCKETS )

DUP SCANLSB BUCKETS>POINTERS1 DUP REOQORDERLSB

INITBUCKETS

DUP SCANMSB BUCKETS>PCINTERSZ2 REORDERMSB ;

_-Fié'l.lre One. Combsort shrin'l;a'g_e factors & performance.

Sort time in seconds
Factor Ramp Slope Wild Shulffle Byte Flat Checker Hump
1.1 - - 96 - — -— -— _—
1.2 49 54 61 62 60 50 52 58
1.3 36 41 52 51 48 35 38 47
1.4 29 36 67 65 64 29 71 108
1.5 -——- 31 -— -— —— -— -— -—
1.6 - 31 -— -— - —— -— -—-
1.7 20 27 - -—- - -——= - -
1.8 - 27 -— - —— -— -—— ——
1.9 -— 27 —— -— - - -— -
2.0 15 31 120+ 120+ 120+ 17 120+ 120+
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Figure Three. Smaller, faster Megasort1.

SPEED AND SIZE
512 ALLOT
ITEMS 2* ALLOT

% MEGASORT1 FOR
CREATE BKT/PNTR
CREATE DATATEMP

: OBKT/PNTR ( init BUCKETS )
BKT/BENTR 512 0 FILL ;

: CNTLSB ( ITEMS - )

( ITEMS ) 0 DO
2 T S@ 255 AND 2* BKT/PNTR + +!
LOQP ;
|
: CNT>PNTR1 |
DATATEMP BKT/PNTR
256 0 DO
DUE @ >R

OVER OVER ! 2+
SWAP R> + SWAP
LOOP ZDROP ;

: LSB ( ITEMS - )
( ITEMs ) 0 DO
I s@
DUP 255 AND 2* BKT/PNTR +
DUP >R @ !
2 R> +!
LOOP ;

DATATEMP 1+ CONSTANT DATATEMP1

: CNTMSE ( ITEMS - )
( ITEMS ) O DO
1 I 2* DATATEMP1 + CR@ 2* BKT/PNTR + +!
LOOP ;

: CNT>PNTR2

0 BKT/PNTR 256 +
128 0 DO

DUP & >R

OVER OVER ! 2+
SWAP R> + SWAP
LOOP DROP BKT/PNTR
128 0 DO

DUP @ >R

OVER OVER ! 2+
SWAP R> + SWAP
LOOP 2DROP ;

: MSB ( ITEMS - )

( ITEMS ) 0 DO

I 2* DATATEMP + DUP @
SWAP 1+ C@ 2%
BKT/PNTR + DUP >R

@ st

1 R>» +!
LOOP ;

: MEGASORT1 ( #Items - ) ( Language Nov 87 )
OBKT/PNTR DUP CNTLSB CNT>PNTR1 DUP LSB
OBKT/PNTR DUP CNTMSE CNT>PNTR2 MSB ; |

misleading. “Rumors of my death have been greatly exagger-
ated.” T pulled out my old code and found there was no
competition with the Combsort and DVD&KNKR. It did get
me thinking that even DVD&KNKR might not be the fastest
and I didn’t want to be caught with my pants down. I did
some research and found yet a better sort——one called
| Megasort. I found an article describing it in a November 1987
copy of Language. Well, here are the results:

Test Condition:
Test set: Challenge of Sorts
CPU: 10MHz *286

Forth Dimensions

Timing: average of ten passes timed by stop watch and
corrected for pattern-generation time,
Forth: F-PC 3.34

Sort Speed  Size

COMB1 6.94 -

COMB2 7.05 -

DVD&KNKR .65 6728 (Not counting stack and names)
MEGASORT .62 3136 (Not counting stack and names)
MEGASORT1 .48 20616 (Not counting stack and names)

The king is dead, long live the king!

I'have included the code for both MEGASORT [Figure Twol
and MEGASORT1 [Figure Three], since MEGASORT is more
readable and MEGASORT1 is “pedal to the metal.” It should
be noted that DVD&KNKR is about three times faster than
Quicksort for 1000 items and MEGASORT 1 is four times faster!

Dwight K. Elvey
Santa Cruz, California

Total control
with LMI FORTH"
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 Full screen editor and assembler
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* 500 page manual written in plain English

» Support for graphics,floating point, native code generation

For Applications: Forth-83 Metacompiler

» Unique table-driven multi-pass Forth compiler
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* Excellent error handling
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and performs conditional compilation

 Cross-compiles to 8080, Z-80, 8088, 68000, 6502, 8051, 8096,
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¢ No license fee or royalty for compiled applications
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Post Offica Box 10430, Marina del Rey, CA 90295
Phone Credit Card Orders to: (213) 306-7412
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F-PC

Hardware-
Interrupt Handler

Dr. Tim Hendltlass
Melbourne Australia

Interrupts are powerful, but often are not used because
a knowledge of assembly language programming and atten-
tion to many details is usually required. This paper describes
an interrupt service routine compiler that allows interrupt
service routines to be written directly in high-level Forth

while hiding all the tedious detail. It was originally developed |

for teaching, so students could concentrate on what they
were doing and why they were doing it, rather than be lost
in how they were doing it. Subsequently, it has been used in
a number of other sitations, principally in the area of
scientific instrumentation. Although ISRs written in high-
level Forth are slightly slower than those written in assem-

bler, high-level ISRs have applications for general purpose |
| pieces of code which transfer activity from the main program |

use and are far easier to write and debug. The example given
is written for F-PC, but it can readily be adapted to other
processors and implementations of Forth.

Introduction to Interrupts
In most computing, the timing is set by the processor. The

user supplies input on demand when the processor wants it |

and receives output when the processor is ready Lo provide

Hardware interrupts may
occur at any time, even when
Forth is not in control...

it. Timing is not of great interest in these cases, except to
make the task run as fast as possible, overall.

However, in some situations such as interfacing, the data
must be acquired when the world is ready to provide it, and
if it is not acquired it is lost forever. In such cases, correct
handling of the inconsistent and variable timing imposed by
the world is most important. Such programs have no way of
knowing something is going to happen before the moment
at which occurs. Of course, it is possible for the processor to
periodically stop doing its main task and look to see if
something has happened, just in case; but the chance of missing
an event is very high unless an cnormous proportion of the
processing time is spent looking at very frequent intervals.

Abetter way to respond to random events is (o use special
hardware to inform the processor when an event has
occurred. Tt ‘informs’ the processor with an electrical signal
called an interrupt, applied to a pin on the processor, which

November 1992 December

triggers the interrupt response mechanism inside the proces-
sor. The processor (normally) will immediately suspend the
task it is doing, establish exactly which of the possible
sources just interrupted it, and take whatever action has been
deemed appropriate to handle interrupts from that source.
After performing this action, the processor will returnto carry |
on with the task it was doing before the interrupt occurred.
By making the processor subservient to special interrupt
hardware, the programmer can wrile a program that gives its
full attention to the main task, safe in the knowledge that
these external, spontancous events will be handled quickly,
safely, and automatically when they occur. The programs to
handle each of the possible interrupts are quite separate |

to them and back again automatically when an interrupt
occurs. Of course, the hardware must be initialized before it
can handle an interrupt.

Interrupt Response Mechanism ;

The processor response mechanism is generally very |
similarin all processors. First the processor finishes its current
instruction and saves the minimum information that will be
needed later to resume as if nothing had happened. Then the |
processor jumps o a pre-established address and starts
executing the instructions there. The (usually) short program
the processor executes in response to an interrupt is called
the interrupt service routine (or ISR for short). There are often
a number of them, each starting at a different address. These
start addresses are known as the interrupt vectors. Usually |
there is one ISR for each possible interrupt source, although
it is possible for two or more interrupling sources to trigger
the same routine to service all of them. There must be a
special instruction at the end of each ISR that causes the
processor to rescue the information it saved before going Lo

Tim Hendtass obtained his Ph.D. in lonospheric Physics in 1974 but later
swilched to Scientific Instrumentation. He is now an Associale Professor respon-
sible for the Scienlific Instrumenlation major atthe Swinburne Institute of Technol-
ogy. He discovered Forth in about 1980 and since has used it extensively, first for
research and later for leaching. He leaches Forth lo about 80 students a year, who
use it for leaming about instrument interfacing and real-time processing. In
research, he has used itin diverse fields: from intelligent adaptive technological
support for the elderly, lo highly distributed induslrial data collection, o devices
for the measurement of capacitance under adverse conditions. He likes F-PC
because itis a fullimplementation with adequate support for even vague sludents
and because, as it is public domain, he can share il with all interested persons
without restriction. He can be contacted by mail at the Physics Department,
Swinbume Inslitute of Technology, P.O.Box 218 Hawthomn Auslralia 3122, or by
phone (61 3 819 8863) or by fax (61 3 818 3645).
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| the ISR and use this to return to what it was doing when it
was interrupted, carrying on as if nothing had happened,

Preparing a processor to receive interrupts involves first
putting the interrupt service routine(s) in place in memory,
then arranging for each interrupt to cause the processor to
find its way to the correct ISR. How this is to be done depends
on the processor; in some simple systems, the manufacturer
specifies the start addresses of the interrupt service routines
for all the possible interrupts. In this case, all that is required
is to put the ISRs into memory slarting at the pre-specified
addresses. More commonly, a table of start addresses of the
ISRs is kept in memory. This allows the ISRs to be anywhere
in memory, of any length, and most importantly (o be quickly
changed by just changing the appropriate entry in the table.
Italso allows one physical interrupt service routine to service
more than one interrupt source.

Interrupts on the
80x8x Processor Family

From now on, we will limit this discussion to the 80x8x
processor family on which F-PC runs. In this family a table
of 256 addresses is kept, each entry consisting of a four-byte
address in segment:offset form, Possible interrupt sources are
numbered from zero to 255, and identify themselves by that
number when they interrupt. When interrupt source zero
interrupts, the processor reads the zeroth entry in the table,
goes to thataddress and executes the ISR there. The response
to an interrupt from source number one is the same, except
the first entry is read, and so on. The table of ISR start
| addresses is called the interrupt vector table.

There are times when an interrupt would be an acute
embarrassment, such as when the processor is placing (or
changing) interrupt service routines, or when the processor
is running a piece of code that is so lime critical that even the
| briefest interruption cannot be tolerated. To allow for these

situations, two special instructions control whether the
| processor will respond to interrupts. The machine-level
| instruction set interrupt flag (STI) allows it to respond, the
‘ instruction clearinterrupt flag (CLI) stops it from responding.

There are also non-maskable interrupts (NMD! which are
responded to no matter what the state of the interrupt-enable
flag. The processor automatically disables further interrupts
as it goes to do an ISR, and re-enables them when the final
instruction of the ISR, the special instruction IRET, is ex-
ecuted. If it is the intention that a particular ISR itselfl may be
interrupted if a more important (urgent) interrupt occurs, the

1. Themoslusual lype of interrupts which can be swilched on or off at will are called
maskable interrupts. There are also non-maskable interrupts (NMI) which cannol
be tumned off inside the processor. These are normaily reserved for responding to
emergency situations, such as power failing, the consequences of which would be
so cataclysmic that responding to them would be more important than anything
else the processor might be doing. The response mechanism is almost identical
o the way the processor responds to maskable interrupts, and the words we

address of the non-maskable interrupt service routine is entry 2 in the interrupl
vector lable.
‘ For IBM-PC users, non-maskable inlerrupls can be turned off by hardware
| external tothe processor. Indeed, they are turned off at power-up (but lurned back
on by the BIOS almost immedialely). They may be turned on by a program wriling
| 80 hex to YO port AD hex or turned off by wriling 0 to the same porl. This uses
| hardware provided on the PC motherboard to conlrol a gate which allows or
| prevents the actual electrical NMI signal reaching the chip. It does not exercise
| control within the procassor as CLI and STI do for maskable interrupts. If the
clectrical signal for a non-maskable interrupt reaches the processor, no power on
earth will prevent the processor from responding to it.
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Figure One. Registers which must be correctly |
reloaded for ‘safe’ re-entry to Forth. |

The data stack pointer SP

The return stack pointer BP

The next instruction pointer ES:SI

The current word pointer AX

The scratch pad registers BX, CX, DX, DI

The segment registers CS, DS, SS

The direction flag DF I

develop here will work with either maskable or non-maskable interrupls. The |

programmer must re-enable interrupts with an STI as soon
as it is safe for another interrupt to be recognised.

Interrupts can be triggered by either external hardware,
as described above, or by software command. The assembly
language instruction INT 0 will cause interrupt zero to run just
as if a hardware interrupt signal had been received from
interrupt source zero; and similarly for all other interrupts.
This is very useful for testing purposes.

Designing an ISR Compiler for F-PC

[Lis mostimportant to realise that once an interrupt occurs
and is responded to, the processor is running normal
machine code, no matter what it was running when the
interrupt occurred. So, if we were running Forth, after an
interrupt Forth no longer has control. The ISR must at least
start out in assembly code.

If a software command causes an interrupt while Forth is
running our program, the environment the processor is in at
the time of the interrupt is known: it will be in Forth.
However, hardware-initiated interrupts may occur at any
time, even when Forth is temporarily not in control. (Forth
seeks service from DOS from time to time when it needs to
use the screen, the keyboard, or the disks.) To handle
hardware interrupts successfully, we have to preserve all the

| same registers as for the software-initiated case (because

most of the time Forth will be in control), as well as any
registers over and above these that DOS might use (just in
case). The net result of this is that, to be quite sure, we have
to save all registers at the start of our interrupt service rouline
and restore them all just before we return from processing
our interrupt.

When we wish to run our Forth interrupt service routine,
we can make no assumptions about the contents of any
register (DOS could have changed them temporarily) and
must reload all the ones (shown in Figure One) absolutely
required by Forth (the scratch ones do not need to be loaded
when we go into the ISR, as we will always be going to the
start of a Forth word; but they must be restored before we

! return from our ISR, in case Forth was in control and their

contents were important when the interrupt occurred). So
our skeleton interrupt service routine looks like:

| = assembly code to save all registers

* assembly code to reload all registers as Forth needs
them

* assembly code to switch to high-level code

e high-level code 1o do what the ISR has to do

« high-level code to return to assembly code

November 1992 December



» assembly code to reload
all the registers we
originally saved

¢ assembly code instruction
to return from interrupt

(IRET)

As all but the ‘high-level
code to do what the ISR has to
do’ are always the same, we
can write them as two words
(calling the bit before the high-
level code TSRENTRY and the
bit after ISREXIT). As a fur-
ther refinement, we can have
a defining word, say INT:,
that starts an ISR definition.
This will build the list that is
the user-supplied, high-level
ISR code. The definition ter-
mination word, say INT;,
would append the high-level
(colon) version of ISREXIT
automatically as the last item
on this list. The run-time
behaviour ISR: gives to the
ISR it is building is to perform
ISRENTRY and then to pro-
cess the list just as if it were a
normal colon definition. OQur

Figure Two. Source code for the ISR-building wordﬂ

5 constant STACK-NUMEER \ # stacks = nesting depth of ISRs

variable STACK-BASE \ place to keep the top of the current stack

100 constant STACK-SIZE \ size of one data stack return stack pair

AD constant RSTACK-OFFSET \ depth of data stack {offset to return stack)
create ISR-STACKS \ pointer to bottom of the stack of stacks
stack-size stack-number * \ number cof bytes the stacks will take

allot \ make space for the stacks.

isr-stacks stack-size + \ calculate top of first data stack I
stack-base ! \ initialize base pointer

LABEL ISRENTRY

comment :

( stack on entry = pc cs flags n )

( old stack on exit = pc cs flags n ax di bp bx ds )

{ new stack on exit = es si old~sp old-ss cx dx

n is the offset in list space to the list of high-level words to do in this ISR. We
first use the stack we are in when the interrupt occurred to save some information
comment ;

PUSH DI PUSH BP
sP

PUSH AX

MOV BP, \ stack pointer to bp

MOV DI, 6 [BP] \ adr of offset to list to process (n) to di
MOV €S: AX, 0 [DI] \ get the actual offset (from the code segment)
PUSH BX \ we will also need BX

PUSH DS \ and DS

\ old stack is now pc cs flags n ax di bp bx ds.
\ Register ax contains the actual offset into Forth list space
| \ switch to new stack

|MOV BP, SP MOV DI, SS \ old stack pointers to bp and di

MOV BX, Cs \ new stack segnment=new code segment

| MOV 55, BX

|MOV DS, BX \ data seg = stack seg = current code seg
| MOV BX, # STACK-BASE \ get new stack pointer

| MOV sP, 0 [BX] \ new stack set up

\ Finish setting up the registers for Forth and
‘\ saving any registers not already saved

ADD 0 [BX], # STACK-SIZE WORD \ adjust stack-base lest we get

ISR structure is now:

PUSH ES PUSH ST
ADD AX, # XSEG @ MOV ES, AX
: < > % f
I§R name SUB SI, ST
high-level Forth words | pysy se pusH DI PUSH CX PUSH DX
ISR; MOV BP, SP SUB BP, # RSTACK-OFFSET \
NEXT

This is conceptually neater
and encourages programmers

interrupted

save registers we are going to use
point es to the correct list segment
clear si (part of Forth program counter)

-

Set up new return stack pointer
% Start the ISR.
\ New stack now es si old-sp old-ss cx dx

(Continued on next page.)

to concentrate on what they
are trying to do rather than the details of how it is being done.

Implementation of the ISR compiler.

The definitions of ISRENTRY, ISREXIT, ISR:, and
ISR; are shown in Figure Two. It is not necessary lo
understand how they work to use them, but these notes are
intended 1o assist those who are curious or wish to modify
them for a different system.

When the interrupt occurs, we do not know where the
stacks’ pointers used by F-PC point, nor do we know how
much room exists on these stacks before we write over
something important. Although F-PC has a substantial amount
of stack space, other versions—especially those on embed-
ded systems—do not, and the only safe thing is 1o have a pair
of new stacks (one for data, onc for return addresses)
exclusively for the use of our interrupt. We cannot have only
one pair of stacks available if this interrupt may itself be
interrupted. For interruptable interrupts, we need as many
pairs of stacks available as the maximum depth to which we
will allow interrupts to be nested. In short: a stack of pairs of
stacks, the depth of which determines the maximum inter-
rupt nesting depth. In Figure Two, this is set arbitrarily at five.
On entry to the ISR, a variable STACK-BASE is read to get the
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| things we need to save are placed on this new stack.

10

initial value of the data stack pointer, then this is incremented |
by STACK-SIZE 50 it points to the next stack to use should
this interrupt be interrupted. The return stack pointer is
inilialized to the data stack pointer minus RSTACK-OFFSET.
At the time of exit from the ISR, the value of STACK-BASE
is decremented by STACK-SIZE. In the interests of speed,
no check is made to see that you do not run out of ISR stacks
(that is, have interrupts nested too deep).

When we get to ISRENTRY, the stack already contains
four items of interest to us. The contents of the instruction
pointer, the code segment register, and the flag register were
saved automatically by the interrupt-handling hardware built
into the processor. The minimum run-time behaviour of |
CREATE places on the stack the address of the word after the
call to the run-lime routine. In this case, as for a colon
definition, this contains the offset from the start of the list
segment to the start of the list of things to do. For a description
of the internal structure of F-PC, see [Ting89]. A few more
things must be saved to give us some working room before
we switch to our interrupt stack. Then the remainder of the

When we come to the end of the ISR, we cannot just jump
back into what we were doing before the interrupt occurred. |
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END-CODE

CODE ISREXIT

comment :
( old stack on entry = pc cs flags n ax di bp bx ds )
( new stack on entry = es si old=-sp old=-ss cx dx )

( both stacks empty on exit )
comment. ;
MOV

BX, # STACK-BASE

wrile the interrupt service rou-
tine and then install it by put-
ting the address of this ISR in
the correct place in the inter-
ruptvector table in the memory
region from 0:0 to 0:3FFH.
Before you write the address of
your new ISR, however, you
should note the current service
installed for that interrupt (ap-
parentdy ‘unused’ interrupts
may have a trap service in-
stalled). The address currently
there should be saved so that
the original service can be re-

abort®™ Not compiling an ISR!"™

2csp \
compile ISRexit \ add special exit
(compile] { \ when encountered
; immediate

SUB 0 [BX], # STACK-SIZE WORD \ adjust stack-base down one level
POP DX POP CX POP AX POP BP
POP S1 POP ES \ restore registers saved on ISR stack
MOV SP, BP MOV SS, AX \ switch back to the entry stack
POP DS POP BX POP BP POP DI \ restore all but one reglster we had there
MOV AL, # 20 OUT # 20 AL \ re-enable the Pcs hard. int. controller
POP AX ADD spP, § 2 \ lose offset to list we processed
IRET \ finished with this interrupt
END-CODE
: ISR: \ Interrupt Service Routine defining word
\ builds the name and list of things to do
create \ build header (in head segq)
xhere paragraph + \ justify list pointer to next multiple of 16
dup xdpseg ! \ save one copy into xdpseg
xseqg @ - \ calc offset from xseg to where list will start
’ \ place after where the jump to isrentry will be code space
xdp off \ set xdp to 0
) \ make a list of the colon words that make up the
\ ISR continuing until compiler turned off by ISR:
isrentry \ get address of run time routine we will use
last @ \ get name field address of this definition
name> \ move to start of code field
1+ \ move over the opcode byte (call)
tuck 2+ - \ calculate relative offset
swap ! \ install offset to isrentry as target of call
: ISR;
state @ O= \ check we really compiling

\ abort if word used out of turn

check for any stack errors, abort if any
word ISR; to the ISR list

will turn off the list compiler

\ this word must run when compiling

stored later. Of course, if you
are sure you will never want to
restore the original service, you
can wrile over it. To assist
when using interrupts with F-
PC, a number of convenience
words are reproduced in Fig-
ure Three, based on the file
INTERRUP.SEQ contributed to
the F-PC package by C.H. Ting.
?INTERRUPT returns the ad-
dress of the current interrupt
service routine; this can be
replaced later with RE-IN-
| STALL-INTERRUPT. IN-
| STALL-INTERRUPTIisusedto
wrile the address of a Forth ISR
into a specified position in the
vector table. You must never get
into the situation where an inter-
rupt vector ‘points to’ (s the
address of) an ISR that no longer

First we mustexecute ISREXITto return all the registers exactly
as they were when the interrupt occurred. This recaims
| everything from the interrupt stack, resets the interrupt stack
pointer down one level, switches back to the original stack,
reloads all the information we saved there, loses the list offset
which is still there but no longer needed, then issues the spedial
command that signifies to the PC hardware interrupt controller
that the current interruptis finished, and finally lets the processor
do its normal end-of-interrupt housckeeping.

The remainder of the code in Figure Two defines the
words that build ISR type words. The first ISR: marks the
start of an ISR definition. It builds the list of things to do in
list space, just as the colon defining word : does. However,
unlike : which installs NEST as the run-time behaviour,
! ISR: installs the word ISRENTRY which we just wrote.

The list compiler ] will continue to build the list until
turned off. ISR;, the word that marks the end of the
definition, turns off the list compiler and then adds the special
word ISREXIT to the end of the list. When this word is
processed, the registers are reloaded and control is returned
to whatever was going on before the interrupt.

Convenience Words for Interrupts
To handle a source of interrupts, first one would have to
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- exists. Disaster is assured if you
do so and this interrupt occurs.

It is sometimes convenient to turn interrupts off and on
directly with high-level Forth words. Two trivial Forth words
to do just that are also shown in Figure Three, as is an
example of a word that triggers a software interrupt so you
can test an ISR without the hardware needing to be present.

Example of a High-Level ISR
The example shown in Figure Four produces an inter-
rupt-driven counter which is incremented at a regular rate
and can be used as the basis for a host of timing purposes.
External hardware interrupts the processor in the IBM-PC
family at a regular rate. As well as producing interrupts used
by the BIOS in the PC, this hardware signal triggers interrupt
1CH, which normally is serviced by a ‘do nothing’ ISR in the
BIOS.Z2 We may re-vector this interrupt to our own ISR that

2.Asfaras | know such aroutine (literally just IRET)is available inevery BIOS.
However, the address varies from BIOS to BIOS. The only portable way to
install interrupt vectors is to read and save whatis there and then putit back
when you have finished, not to assume that the vector installed was a veclor
to the do-nothing routine and that this routine exisls at a standard address.
For this reason, | do not use or allow my students to use the REMOVE-
INTERRUPT word from Dr. Ting's file—it just writes in the address FOO0:FF53
which may or may not be the address of the do-nothing ISR, depending on
the BIOS you are using.
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|

increments a 32-bit counter. The interrupl occurs at 18.2 He, |

Figure Three. Convenient words for use with
interrupts (hex entry is assumed).

so our counter will be incremented approximately once |
every 55 milliseconds.
We need to install this ISR before it can be used, e.g.:

hex

2variable OLD-VECTOR
\ space to save the original vector
\ we could save it on stack instead

1C ?interrupt old-vector 2!
\ read and save old wvector

' ticking 1C install-interrupt
\ install our new vector

decimal

A couple of other minor words are needed, one 1o
initialize (zero) the value in the counter, and the other to read
and display the current value in the counter. These are also
shown in Figure Four.

INIT-TICKS will zerothe counterand TICKS? will print
the current value in the counter. Despite 1C interrupts
occurring at, no doubt, inconvenient times as Forth continues
to be used, all continues as it should because TICKING meets
the requirements of a good ISR: it is short, fast, and leaves no
trace of itself on any stack when it has finished running.
When we have finished with our ISR for good, we can restore
things as they were before we installed it by typing:

hex

old-vector 2@

1C re-install-interrupt
decimal

\ get saved vector
\ put it back

Remember that interrupt 1C ‘fires’ 18 times or so every
second. So it must always be vectored to a physically existing |

CODE ?INTERRUPT [ int# -- seg offset )

POP AX %\ get interrupt number

PUSH ES

PUSH BX \ preserve these registers

MOV AH, # 35 \ load DOS service number to AX

INT 21 \ call DOS to do the work.

MOV DX, ES \ segment returned in ES

MOV AX, BX \ offset returned in BX

POP BX

POP ES \ restore registers we preserved

2PUSH \ put answer on the stack
END-CODE

CODE INSTALL-INTERRUPT |( addr int# -- )

POP AX \ get interrupt number to AX

POP DX \ and ISR offset address to DX

PUSH DS \ preserve DS for later restoraticn

MOV AH, # 25 \ we reguire DOS service number 25 hex

PUSH CS \ ISR segment address is in CS

POP DS \ so copy it via stack to DS

INT 21 \ let DOS5 do the work

POP DS \ restore orliginal DS

NEXT \ no values to return, just use NEXT
END-CODE

CODE RE-INSTALL-INTERRUPT ( seqg offset int# -- )

POP AX \ get interrupt number to AX
POP DX % and ISR offset address to DX
PUSH DS \ preserve DS for later restoration
POP DS \ and pop ISR segment address to DS
MOV AH, # 25 % we require DOS service number 25 hex
INT 21 \ let DOS do the work
POP DS \ restore original DS
NEXT \ no values to return, just use NEXT
END-CCDE
CODE INT-ON STI NEXT END-CODE

CODE INT-OFF CLI NEXT END-CODE

CODE TRIGGER-INT-1C \ replace 1C by the interrupt
\ number you wish to test

INT 1C NEXT
END-CODE

ISR. Don't leave F-PC and load another program without
replacing the original vector, or the system will crash as the
memory image of the ISR code of TICKING get overwritten.

Figure Four. Example of a high-level interrupt
service routine plus test words.

Lean, Mean, Interruptable

Interrupts and DOS

Interrupt service routines should be as short and as fast
at executing as possible. They should never perform any
input or output (for example) if it can be possibly avoided,
as both of these operations take considerable time. The idea |
is 10 service the interrupt but also to make as small an |
interruption to the main program as possible. The ISR should
do the most time-critical part of the total service and, if there
is more service to do, set a flag so that the main program can
complete the task when it is convenient. For example, when
collecting data samples under interrupts, the 1SR should just
acquire the value from the input port, put it in a holding
buffer, and set a flag so that the main program knows to
process the values from the buffer when it is convenient.
Using a multitasker in conjunction with flags makes this
process particularly simple.

When using F-PC with DOS, there is another reason why
you should not make use of any DOS-based input or output.
Recall that above we arranged for our interrupts to be
themselves interruptable. To achieve this, we arranged 10 |
have a number of stacks available for use by the ISR, cach ISR |
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| 2variable ticks

: DINC ( adr -- )
dup 2@ 0.1 d+ rot 2! ; \ increment a double variable
: INIT-TICKS ({ -- )
0 0 ticks 2! ; \ initialize the counter to zero
: TICKS? ( --)
ticks 2@ ud. ; \ read and display the counter
ISR:

TICKING ticks dinc ISR; \ that’s it - the whole ISR

automatically using the next one above the last one used.
DOS has no such facility. It always uses the same stack for
a given function. So if, for example, we are outputting to the
screen, DOS will set up a stack for its use at a fixed place. If,
part way through this output operation, another interrupt
occurs and the new interrupt also goes to output something,
DOS will set up a new stack directly on top of the old one.
This will cause no trouble for the interrupt that is currently
being serviced, but when that is over and the processor goes

to finish the interrupted interrupt, the information it needs |

has been overwritten. Disaster is now but a few pulses of the
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processor clock away. Avoiding DOS service in our ISRs is
the only way to ensure this never occurs,

i Extra Info about IBM PC Hardware Interrupts
The information given so far describes how the processor
itself handles interrupts. Many computers use extra hardware

| interrupts—in particular to exercise various forms of priority

control which allow high-priority interrupts to take prece-
‘ dence over lower-priority ones. The IBM PC/XT/AT family

is no exception and has one or more 8259A interrupt-priority
' controller(s), which provides various features at the cost of
| having to be programmed. A full discussion of this chip is
- outside the scope of this paper, but the following section

i should provide enough information to allow use to be made |
] |
' of the interrupt lines on the 1/0 bus of the IBM PC family of

computers. For information about features not discussed
here, such as changing the priorities of the various interrupt
request signals, the user is referred to the 8259A data sheet.
The /O bus of the IBM PC and XT provides six lines,
| called IRQ2 through IRQ7, each of which signals that an
interrupt service is required when taken high. Two other
lines are are also on the motherboard but are not brought out
onto the I/O bus. The electrical signals on these lines have
| to pass through the interrupt controller chip to get to the
processor. The controller decides which, if any, request
should be passed on to the processor. It decides this based
on the priority of the interrupt (whether this is of high enough
| priority to be allowed to interrupt what the processor is
currently doing) and whether it has been explicilly disal-
lowed from passing on this type of interrupt. Each of the
signals from the eight lines may be disabled by writing a 1
{ to the appropriate bit in a register inside the 8259A. Bit 3 of
' this register controls line IRQ3, etc. The IBM AT has more IRQ
| linesonthe secondary1/0 channel 8259A controllerand uses
the normal IRQ?2 to indicate activity on the secondary 8259A

! controller IRQ lines.

The eight interrupt request lines on the 1/O bus, their
| normal use, and the interrupt number they are mapped to are
' listed in Figure Five. Each line may be used by an end user’s
. hardware, although difficulties will be experienced if the
! normal ‘owner’ ofa line uscsitat the same time. If you doinstall

your own interrupt service routine for any of these interrupts,
‘ be sure to restore the one normally there when you are done.
' Aninterrupt can be signaled by bringing the relevant IRQ
1 line from the low to the high state. It must be kept in the high

state until the interrupt service routine for this interrupt has
| begun. As initialized by the BIOS, the interrupt controller will
| not pass a second interrupt signal to the processor until it has
| been given a signal to do so. This signal is given by the

processor writing 20 hex to output port 20 hex. This is
| automatically done by the code of TSREXIT at the end of the
ISR, but can also be done as soon as it would be convenient
| to receive another interrupt. It does not matter if the
| controller is reset more than once. Do not confuse this signal,
| which re-enables the external interrupt priority controller
| chip, with the interrupt enable (lag inside the processor. The
| external interrupt priority controller can stop any hardware
| interrupt signal from passing on to the processor. The
processor interrupt enable flag will stop or allow all maskable
| interrupts, hardware- or software-triggered.
i The mechanism by which the relevant TRQ line was held
Forth Dimensions

| external to the processor, that provides extra control over |

Figure Five. Interrupt Request Lines on the IBM PC. |
IRQO

Used for system timing applications and ismapped |
to interrupt 8. Interrupt 8 on completion passes |
control to interrupt 1C (hex), which is the user
timer interrupt and whose vector normally points
to a simple IRET. This line does notappearonthe
1I/O channel. |

Used for the keyboard and mapped to interrupt
veator9, This line does notappearonthe I/O channel.

IRQ1

Reserved in the PC and XT. It is used in the AT
family to reccive the output of another 82594, so
thatatotal of 15 individual interrupts can be handled.
It is vectored to interrupt number 0A (hex).

IRQ2

IRQ3  Normally used by the secondary asynchronous
communications device (COMS2) and mapped to

interrupt number 0B (hex).

I IRQA Normally used by the primary asynchronous
communications device (COMS1) and mapped to

interrupt number 0C (hex).

Normally used by the fixed (hard) disk and
mapped to interrupt number 0D (hex).

IRQ5

IRQ6  Normally used by the diskette (floppy disk) and

mapped to interrupt number OE (hex).

IRQ7  Normally used by the parallel printer (PRN) and

mapped 1o interrupt number OF (hex).

high until the ISR was started (usually a flip-flop) must be
reset by the ISR routine itself as the interrupt-acknowledge
signal from the processor is not brought out onto the 1/O bus.
Thus, the ISR will need to have two extra items in it over and
above what it needs to suit the processor and the main ISR
task 1o be done—it needs 1o reset the interrupt priority
controller (automatically done) and it needs to reset the IRQ
generating mechanism (left to the programmer).

The 8259A is fairly complex; although it only occupies
two output ports, it is programmed by sending information
by way of strings of bytes written in carefully controlled
sequences to these two ports. To rewrite the contents of the
interrupt mask register (the register that determines which
interrupts are calegorically not to be allowed through), one
needs to do more than just write the one byte that controls
each of the eight lines. The sequence required is: 13 hex to
output port 20 hex, 8 hex to output port 21 hex, 9 hex to
output port 21 hex, and finally the interrupt mask to output
port 21 hex. The values given here will result in the interrupt
mask being changed, but they preserve all the other features
as sel up by the BIOS al system initialization. See an 8259A
data sheet or [Eggebrechi83] for the meaning of each bit and
the sequences needed to alter other features.
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Moving ForTH, Paar Two

Principles of
Metacompilation

B.J. Rodriguez
Hamilton, Ontario, Canada

F. Creating the Forth Header

Assembly code rarely exists in isolation in a Forth system,
Usually, it is part of a Forth “word” (dictionary entry). This
requires that some information be prefixed onto the machine
code.

1. Use

The Forth word CODE performs two functions: it builds
the header for a Forth dictionary entry, then it invokes the
assembler. A word of the same name in the “hosting”
vocabulary will begin a code word for the Target image.

HOST CODE name

Starts a Target “code word.” Builds a Forth header with the
given name in the target image, and invokes the cross-
assembler.

Normally, during cross-assembly, the HOST vocabulary
(or its ASSEMBLER branch) remains active throughout a
cross-assembly. It is not necessary to return to the NATIVE
vocabulary. So, once HOST is selected, each code word can
begin with simply

CODE name
Depending on the assembler, it may be necessary to end
each code word with ; C or END-CODE.

2. Implementation (screen 75)

This is the first point at which the structure of the Target
machine’s Forth must be known.

It is not likely that the Target Forth’s header structure is
the same as the Host Forth's. There is no shortcut; it is

necessary to write a word which causes the Host to build a |

header in the format required by the Target machine.

(TCREATE) name
Builds a header in the Target image, in the format required
by the Target’s Forth.

Note once again the use of the T-prefix, rather than just a
different vocabulary, to distinguish this word from the native
(CREATE) . Both will be needed.

Figure Three illustrates the dictionary header for a
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| common fig-Forth model. The “name field” consists of one
{ byte, indicating the name length (0..31) followed by the
name text, with the high bit set in both the length byte and
the last text byte. The next two bytes are the “link field,” a
pointer to the name field of the previous definition. The last
two bytes are the “code field,” pointing to the executable
machine code for this word. In the case of a CODE word, the
executable code is stored immediately after the code field
address (“CFA™.

This implementation takes advantage of the fact that the
name field in the Host is stored in exactly the same formal.
The work of parsing a name from the input stream, and
adding the length byte and the “end bits.” (TCREATE)
assumes that a Host CREATE has already been performed,
and simply copies the name field (with >TCMOVE) o the
Target image.

The link field and code field must be explicitly handled
for the Target image, since they bear no relation to the I1ost.
Since the link field must have the Target image address of the
previous Target definition, the compiler must maintain a
LATEST for the Target.

HOST LATEST (-—-a)

Target dictionary. (screen 72)

referencing a pointer to the current vocabulary header.
Although the vocabulary header is stored in the Target image,
the pointer to it is a variable in the Host. Thus, LATEST is
defined as:

CURRENT @ T@

| where CURRENT is the name of the pointer, @ fetches the
contents of the pointer, and T@ then gets the last-entry
information from this address in the Targel image.

_ To maintain the fig-Forth vocabulary structure, the
| following pointers must be kept. They are defined in the

'r HOST CURRENT
| Holds the pointer to the vocabulary header, forthe vocabulary

HOST vocabulary, and are stored in the Host memory space.

Returns the Target address of the last definition added to the |

Since this is a fig-Forth model, LATEST is implemented by |

!
|
|
i
|
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Figure Three. The dictionary—creating the header. |

TCREATE

cf

.| 4| TEST | link
A7 4

Must be copied  §

from the Host's i

input stream. i
A link to another
word in the
Target image.

FF

a
k\

Address of code
in the Target image.

The host must keep a LATEST pointer
for the image!

where new definitions are “currently” being added.

HOST CONTEXT

Holds the pointer to the vocabulary header, for the vocabulary
| which is to be searched for references to already-defined
words.

HOST VOC-LINK
Holds the pointer to the vocabulary header, for the most
recently defined vocabulary.

3. Issues
a) Direct-Threaded Code
The fig-Forth implementation for the Zilog Super8
uses Direct-Threaded Code, rather than the Indirect-
Threaded Code more commonly seen in Forth.
Direct-Threaded Code does not use a code field
pointer; instead, the executable machine code for
each word directly follows the link field.

The relative merits of direct vs. indirect threading are
a hotly debated topic in Forth circles. In this case, the
fact the Super8 CPU includes instruction-level support
for DTC was the deciding factor.

The impact on the Image Compiler is that, for CODE
words, nothing need be compiled by (TCREATE)
after the link field—the assembler is invoked
immediately. For high-level and defined words which
use a common machine language routine for all the
words in a class, a subroutine call must be compiled
after the link field. In practice, (TCREATE) always
compiles the subroutine call, and CODE “removes” this
unnecessary call by backing up the dictionary pointer
three bytes.

b) Word alignment

, Some machines (notably the PDP-11 and the 68000)
i require that 16-bit values, such as addresses, be word-
: aligned in memory. This is commonly ensured by
word-aligning the definitions, and the link and code
; address fields.

|
Forth Dimensions
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This must be accomplished within (TCREATE).
Normally, (TCREATE) will begin with a word named
something like ALIGN, which forces the Target
Dictionary Pointer to an even boundary. Then, if the
combination of length byte and name text is an odd
length, a null will be appended to the name to make
it even. (Whether or not this null is included in the
length byte value is problematical.)

¢) Packed name fields
Occasionally, clever schemes are devised to speed up
dictionary searches by compressing or packing the
name information. One PDP-11 implementation (3]
packed four characters of name, the length, and the
link into two 16-bit words.

Allof this, if desired, is the responsibility of (TCREATE) .

d) Different linking methods
Other linking methods than the simple, last-to-first,
singly linked list are possible. (TCREATE) is the word
most affected by these.

Links can be stored in forms other than addresses (as
in [3]).

Several versions of Forth use multiple dictionary
threads to speed the sequential search. Which thread
to search for any given name is decided by performing
a hashing function on the name. (This has repercussions
in vocabulary structure as well, as will be seen shortly.)

) Separated headers
It is becoming increasingly common for the header
information—specifically, the length, name, and link—
to be stored in a separate region of memory. On the
IBM PC, for example, a separate 64K segment can be
devoted exclusively to dictionary headers, thus freeing
more space in the 64K “program” segment.

4. Alternatives
a) Re-scanning the name text

Atleast one metacompiler creates the name field in the
Target, not by copying a name field from the Host
machine, but by rescanning the input text. The name
is parsed with WORD, and then it and its length arc
copied to the Target image. The text input pointer is
then backed up to the start of the name so that the
Host’'s CREATE can parse the input normally. (The
need for parsing the name twice will become evident
shortly.)

G.Searchingthe Target Dictionary (mirrorvocabularies)
The reason Forth words have this header information is
so they may be found by name later. This is the core of the
“high-level” Forth compilation process: each word in a new
definition is searched in the “dictionary” and the address of
its executable code is compiled.
Obviously, a metacompiler must be able similarly to find
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words in the Target’s dictionary.

1. Usage

Words created in the Target image are accessed by name,
just like any other Forth words.

If the Host is in the “compiling” state, Target words are
compiled into the Target image. (More on this later.)

If the Host is in the “executing” state, Target words
generate an error. The words being created in the Target
image are not executable by the Host. (Chances are, they are
for a different CPU entirely.)

It will be seen later that, under some circumstances, a
word defined in the Target may also have an “executing”
behavior in the Host.

2. Implementation
Every word defined in the Targetimage has a corresponding

word, of the same name, defined in the Host system. These

words in the Host system are called “mirror” words.

The metacompiler never needs to search through the
Target image. The Host’s own, ordinary search logic is
sufficient to find the mirror word in the Host’s
dictionary. Each mirror word identifies where its
counterpart is located in the Target image. (This
eliminates the need for the metacompiler to

Figure Five. The diclionary—vocabularies.l.

Figure Four.The dictionary—searching. l

Rather than writea TFIND ...

Target Root
vocabulary vocabulary
LIT 1:1 >» LT
correspondence
“mirror” code we're
words creating

... this lets us make “headerless” definitions
in the image.

have a TFIND—a non-trivial problem).
Figure Four shows the relationship between

Host Target

the Target dictionary and the Host dictionary.
This illustrates a kemel word, LIT, as it appears
in the dictionary being built in the Target image,
and in the Host dictionary.

It is likely that many words defined in the
Target will have the same name as important
words in the Host. (If the metacompiler is
creating a new Forth kernel, this is certain.) To
avoid these name conflicts, and to allow words
to be found unambiguously, all of the mirror
words are kept in yet another vocabulary, called
TARGET, as shown in Figure Four,

It may well happen that, in the course of
writing a metacompiled application, the Forth
programmer desires to create vocabularies.
Vocabularies are commonly used in Forth to
distinguish duplicate names, to control the
search order, or to “modularize” the program.

root

HERE

\stembler

\ed itor
Host
AN

HERE
assembler

A

‘The metacompiler must, therefore, duplicate
these effects.

Fortunately, with a tree-structured vocabulary
system (such as in the fig-Forth model), a tree of
any complexity can be represented as a branch
of another tree.

“This means that all the branching vocabularies
in the Target image can be made to correspond
exactly with branches from the TARGET
vocabulary in the Host dictionary. (Figure Five.)
And, as long as the Host is in the corresponding

N o

HERE

N N\

vocabulary, it will have exactly the same search
order as the Target.

Figure Five shows all the vocabularies likely we will

As long as we're in the corresponding vocabulary,

have exactly the same search order.
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to be present in the Image Compiler.

| “root” FORTH
The basic vocabulary of the Host's Forth system.

“root” ASSEMBLER
' The vocabulary which holds the HosU's resident assembler.
| (On the IBM PC, an 8086 assembler.)

“rool” EDITOR
‘The vocabulary which hold the Host's screen editor.

HOST
| All of the Image Compiler is contained within this vocabulary
and its branches.

HOST ASSEMBLER
The vocabulary which holds the cross-assembler for the
Target. (In this example, a Super8 assembler.)

HOST TARGET
All the mirror words created during metacompilation are
contained in this vocabulary and its branches.

Observe that there are three words named HERE in Figure
Five:

“root” HERE

Returns the Dictionary Pointer of the Host, ie., where
compilation will occur in the Host (if new definitions are
| added to the Host dictionary).

| HOST HERE
Returns the Dictionary Pointer of the Target image; i.e.,
where compilation will occur in the Target.

TARGET HERE
| A mirror word. This example presumes that a Forth kernel is

This is why it is necessary to use the name of the new
word twice.

The resulting mirror word for the LIT example is shown
in Figure Six. This data structure appears in the Hosts
dictionary as an entry in the TARGET vocabulary. The code
address field points 1o machine code, in the Host, which will
be executed by the Host when this word is referenced. The
address of the corresponding word in the Target image is
stored as one of the two data fields following. (The first data
field, shown shaded in Figure Six, will be used later.)

The Image Compiler builds the Host header first. It then
copies the name field from that header—with adjustments,
if necessary—to the Target image.

3. Issues
a) Headerless code
Since the metacompiler always finds words in the
Target by searching the Host dictionary, it would seem
that the headers in the Target image are dispensable.

They may be, if the final metacompiled application
will never need to do a dictionary search. This is likely
to be the case in, say, a microwave oven. Such an
embedded program is likely to benefit from the
memory savings achieved by eliminating the headers
from the Target image.

If, on the other hand, the metacompiled application
will be using the Forth interpreter—for example, if a
new Forth kernelis being compiled—then the headers
must be retained. It may still be possible to delete the
headers from certain words; this is a popular means to
protect “internal” words which should neverbe directly
used by the Forth programmer.

The Image Compiler includes a flag variable ?HEADS
which is tested in (TCREATE) to disable the code

being compiled for the Target machine. All Forth

Figure Six. The “mirror” word LIT in the Host.

. kernels have a word HERE. So, this word points to
| the Super8 version of HERE in the Target image.

l (As an extreme example, it has happened that
| five different words called I were defined—in the
Host kernel, the editor, the resident assembler, the

7

code address of
LIT | link | address this named word | |
in Host in the Image '

7 g

cross-assembler, and the mirror word of the Target
 kernel.)
| Target words are defined with the “host
environment” word

HOST CREATE name

Builds a header in the Target image, and a mirror
| word in the Host dictionary which points to the
| new word in the Target image.

‘This word uses (TCREATE) to build the
header in the Target image, and the ordinary,
“native” Forth <BUILDS to build the header in the
Host system for the mirror word. It then adds the
Target image address to the mirror word.

Run-time action—what will happen when this
word is executed in the Host.

The usual run-time action is:
“compile this word into the target image.”

Forth Dimensions
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which builds the Target image header. It is not
sufficient to simply skip (TCREATE), since it also
builds the code field—which is always required,
headers or no.

b) Different vocabulary structures
Not all Forths use tree-structured vocabularies.
polyFORTH, for example, uses eight parallel
vocabularies. The current vocabulary is hashed with
the name of a word to direct scarches to one of eight
threads. [9]

Other Forth systems define vocabulariesina hierarchy,
but do not cause the vocabularies to chain together as
in the fig-Forth model. Fach vocabulary is “sealed.”

Some Forths (including fig-Forth) search both the
CONTEXT and CURRENT vocabularies. Others search
only CONTEXT. Still others support a stack or list of
vocabularies which are searched in a defined sequence.
[9,10]

These variations do not pose a problem when creating
the Target image; they are handled by changing the
linking logic of (TCREATE) . The problem is ensuring
that the search order through the mirror words—

which use the Host’s vocabulary scheme—is the same |

as the eventual search order in the Target.

The current Image Compiler ignores the problem
completely, assuming either that the Target Forth will
use a vocabulary structure analogous to the Host
machine’s, or that the finer subtletics of the search
order are not important, as long as the CONTEXT
vocabulary is searched first. These assumplions seem
to hold true for most applications.

4. Alternatives
a) Single vocabulary compilers
Some metacompilers provide no support for multiple
vocabularies. This is adequate for Forth kernels (which
use only one vocabulary), but is a handicap in larger
applications.

b) Differing name lengths
Some metacompilers allow the length of the name in the
Target dictionary to differ from the length of the name
used in the Host’s “mirror” words. This seems to offer no
advantage, and can lead to quite a bit of confusion.

H. Compiling a Colon Definition

The implementation described so far is sufficient to build
a Forth dictionary of CODE words for the Target machine. The
real power of Forth, however, lies in its ability Lo use existing
words to define new words. These are the high-level “colon”
definitions.

1. Use
A colon definition in the Image Compiler looks exactly
November 1992 December

the same as in “normal” Forth:

;. name word word word ;

‘This will build a colon definition name in the Target image.
All of the “words” are presumed to already have been defined
in the Target.

‘The Image Compiler works with some subtle differences
from the normal Forth compiler, though:

a) The word : (colon) does not switch the Host's text
interpreter to“compiling” state. It remains in “exccuting”
state.

b) All of word word .. word will execute.

©) Fach word, when itexecutes, will compile itself into the
Target image.

This technique was described by Laxen [5].

2. Implementation |
Each definition in the Target dictionary can be used in the |
construction of new Forth words in the Target image. |
(Compiler directives are a special case, to be discussed
shortly.) '.

One approach would be to give the Host's Forth interpreter
three states—execute, compile into the Host, compile into
the Target. This, however, requires surgery on the Host and
complicates the interpreter.

Instead, the function of “compiling into the Targel” is
achieved by executing words in the Host. These are words
in the Host which correspond to the definitions in the Target
image—in other words, the “mirror” words.

Each mirror word in the Host belongs to a “class” of words
which share the same run-time action: When executed,
compile the address of the corresponding Target word, into
the Target image. Since the address of the Target word is one
of the parameters stored in the Host in the mirror word, this
action is represented simply:

@ T,

In this implementation a 2+ is prefixed, since the Target
word’s address is stored in the second word of the parameter
field.

All mirror words are created by the HOST version of
CREATE. The “self-compiling” action is attached to all of the
mirror words by the DOES> clause in CREATE. (Screen 76; |
also shown in Figure Six.) '

This leaves the problem of beginning and ending a colon
definition in the Target, i.e., : and ;. To understand these it
is best to look at Figure Seven and focus on the First Rule of
Metacompiler Design: Always keep in mind what the resull
should look like!

The metacompiler must have a special version of : which |
constructs a header in the Target image. As shown in Figure |

| Seven, this header must contain the name length, name text,

18

link field, and the code address for a colon definition. This |
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|
|
|
{
|

I scion'sto-nest the Frt 3 TEST PO BAR _;
inner interpreter.) F
The first three fields are | y F Y "
| built by the metacompilers | Special version Executes! Executes! Special version
| CREATE, which also builds a of : which Compiles Compiles of ; which
mirror word in the Host for compiles name address into address into compiles address
| this new colon definition. The into the target the image. the image. of target's ;s.
3 : ; X . :
| code address can be simply Mg N "‘-.\ \
stored in the Target image by SNy ™ “"'-.,“ 3 L |
| T! if the address of this code j L ‘ ‘ Y |
| inthe Targetis known. Forthe target addr faraich add A .
| time being, it will be assumed | a | rest | link 1 cfa | '@ geofaFOOeSS a geofaBAReSS a Qeofa : Sress
{ that this machine code has 1 ’

I already been assembled at a

i.
i

|

Figure Seven. Compiling a colon definition.

is the address of machine code
in the Target image, which
will invoke the Target's colon
interpreter. (Strictly speaking,

Host’s input stream

known location in the Target
image.

(In fact, this code is part of
aDOES> clause in the Target's
definition of :. The “patching”
of Target CFAs by DOES>
clauses willbe discussed later.)

The entire definition is done in the host's “executing” state.
FOO and BAR are “self-compiling” words.

Rule #1 of Metacompiler Design:
Always keep in mind what you want the result to look like!

The job of the meta-
compiler’s ; is much simpler. It must simply compile the

address of the Target’s ; S word, the run-time routine for ;. |

;S is a CODE definition in the Target.
A subtle point is illustrated here. Some parts of the

| metacompiler— : and ; —must know addresses of certain

routines in the Target image. The process of creating the
metacompiler and the process of creating the Target image
are to some extent “intertwingled.” The Image Compiler
takes the expedient of first defining the cross-assembler, then
the CODE wordsin the Target, then the rest of the metacompiler.

3. Alternatives
a) Metacompiling by INTERPRET
Of course, “ordinary” Forth does not have words
which compile themselves. It is the responsibility of
the text interpreter (INTERPRET or 1) to “compile the
word’s address into the dictionary.”

The metacompiler could work in the same way. A
“metacompiling” text interpreter could be written. It
would compile each address—as obtained from the
mirror word—into the Target dictionary. (As will be
seen shortly, it is necessary to redefine the interpreter
loop anyway.) '

The advantage of self-compiling words is that their
action issomewhat more obvious thana code fragment

buried inside INTERPRET. Also, the philosophy of “all |

words execute” allows quite a bit of flexibility, and
some useful “tricks.” This will become apparent later.

b) T-prefix naming
The notion of two words named : is confusing to
Forth Dimensions
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some, even when they can be distinguished by
vocabulary. Some systems have used T : to invoke the
metacompiler.

While perfectly valid, this is not in keeping with the
stated goal of minimizing the differences between
“normal” and metacompiled Forth. Many applications
will be debugged in a “normal” (resident) Forth envir-
onment, and then moved to a metacompiler for
optimization and PROM-ing. Consider the amount of
editing required to convert every : toa T:!

©) Reverse-patching Target code addresses

Some metacompilers are loaded as a complete unit,
before any of the Target code is begun. As noted
above, the metacompiler requires the location of
certain Target machine code. These conflicting demands
are resolved by defining Forth variables within the
metacompiler to hold these special addresses. It is
necessary to store the correct values in these variables
before the metacompiler attempts to use them! (This
technique is will be used, for a different Target routine,
later in the Image Compiler.)

L The Problem of Numbers
In addition to previously defined words, numbers may be
used to construct a high-level Forth definition.

1. Use
Numbers may be freely intermixed with Forth words in

a colon definition:
name word 1234 word 5678

r
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Forth’s action on parsing a word from the input stream is:
first, check to see if it is an already-defined word. If not, then
check if it is a number in the current base. If not, it is an error.
The metacompiler works the same way.

2. Implementation

Remembering again the First Rule of Metacompiler
Design: a number is compiled as two cells in a Forth
definition. The first cell is the address of an executable CODE
word, frequently called LIT. The second cell is the number
itself, which will not be executed.

The action of LIT when executed will be to fetch the next
cell—the number—from the instruction stream, and putiton
Forth’s stack.

Obviously, the metacompiler must perform similar actions:
on encountering a number, compile the address of the
Target's LIT into the Target image. Then compile the
numbser itself into the Target image.

The problem lies in how the Host system handles
numbers. Unlike Forth words, whose compile-time and run-
time actions can be changed, the action for numbers is fixed
in the text interpreter, INTERPRET. This action cannot be
changed without altering the kernel, which is “off-limits.”

Fortunately, the new compile-time action for numbers is
only required within the metacompiler. Itis perfectly orthodox
to redefine the text interpreter before defining the
melacompiler. The metacompiler will use the latest defined
version, which can have any desired behavior.

Observe thatonly the “metacompiling” action for numbers
need be changed. When a “compiling” interpreter is defined
separately from the “executing” interpreter, it is usually made
part of the word ]. (] means “enter the compiling state” in
all Forth systems; whether this enters an interpreter loop or
merely sets a flag is system-dependent.) The word : always
uses ] to enter the compiling state.

So, a “metacompiling” ] is created, which is used by the
“metacompiling” :. The Host still remains in the “executing”
state, and mirror words are slill searched and executed in the
Host. Only the handling of numbers is different.

(In the next section, ] will need to affect the STATE flag,
as well.)

Anaother problem: the metacompiler needs to know the
location of the Targel's LIT, so that the number-compiling
code can know what to compile. Once again, part of the
Target code must be assembled before the metacompiler can
be completed. In this case, however, the Image Compiler
uses an internal variable, *LIT*, to hold this magic Target

address. The programmer must store the address of the:

Target LIT in *LIT*, before attempting to compile any in-
line numbers!

3. Issues
a) Double precision
The Forth interpreter recognizes any integer containing
a decimal point as a double-precision number.

Usually, double-precision numbers are compiled in-
line as two single-precision numbers, with the low cell
first. When this sequence is later executed, the two
single-precision values will be stacked one after the
other to make a double-precision value, with the high

November 1992 December
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cell on top of the stack. |

The Image Compiler’s number-handling logic
(TLITERAL) examines the value of DPL—Ileft by
NUMBER—t0 identify a double-precision number. It
then compiles one or two single-precision values, as
required. f

b) Floating point and other literal values

Similar extensions can be employed 1o recognize
floating-point numbers, and other in-line literal data
types. Since Forth’s NUMBER provides no mechanism
to recognize these, NUMBER must be redefined.

Fortunately, like the text interpreter, a new NUMBER
will replace the old, wherever it is used by the
metacompiler.

4. Alternatives
a) Redefining INTERPRET instead of ] :
There are two schools of thought in the Forth
community, on how to handle the compiling “state” in

Forth.

1) The first school, exemplified by fig-Forth, uses a
single text interpreter loop, INTERPRET, and a
state flag, STATE. INTERPRET is made “state-
smarl.” When it parses a word from the input
stream, it may either compile or execute that word,
depending on the value of STATE.

2) The second school, exemplified by polyFORTH and
F83, uses two interpreter loops. The “executing”
interpreter is INTERPRET and the “compiling”
interpreteris ] . There is no need fora STATE flag,
since the compile vs. execute action is determined
by which loop is in progress.

This is not the place for philosophical debales; suffice
it 1o say that either approach can be used within the
metacompiler. The former requires the metacompiler
to redefine INTERPRET. The latter requires ] to be |
redefined.

Note that the metacompiler needn’t use the same
technique as the Host machine’s Forth. For example,
the Image Compiler uses approach (2), while running
on a fig-Forth system that uses (1). (Perhaps a minor
advantage can be claimed; if the Host Forth ABORTS,
it will restart the “native” INTERPRET, which is the |
same execution interpreter used by the metacompiler
under approach (2).)

It is expedient—as will be seen later in this series—to '
maintaina STATE flag for the metacompiler, regardless. |
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solutions, control structures, debugging techniques, recursion,
semaphores, simple I/O words, Quicksort, high-level packet
communications, China FORML.

Volume 7 Forth Dimensions (1985-86) 107 - 320 24
100 Generic son, Forth spreadsheet, control structures, pseudo-
interrupts, number editing, Atari Forth, pretty printing, code
modules, universal stack word, polynomial evaluation, F83
strings.

Volume 8 Forth Dimensions (1986-87) 108 - $20 2#
100 Interrupt-driven serial input, data-base functions, TI 99/A,
XMODEM, on-line documentation, dual-CFAs, random
numbers, arrays, file query, Batcher's sort, screenless Forth,
classes in Forth, Bresenham line-drawing algorithm, unsigned
division, DOS lile L/O.

Volume 9  Forth Dimensions (1987-88) 109 - $20 2#
100 Iracial landscapes, stack error checking, perpetual date routines,
headless compiler, execution security, ANS-Forth meeting,
computer-aided instruction, local variables, transcendental func-
tions, education, relocatable Forth for 68000.

Volume 10 Forth Dimensions (1988-89) 110-520 2#
00 dBase file access, string handling, local variables, data structures,
1 object-oriented Forth, lincar automata, stand-alone applications,
8250 drivers, serial data compression.

Volume 11 Forth Dimensions (1989-90) ] 111-320 2#
100 local variables, graphic filling algorithms, 80286 extended
memory, expert systems, quaternion rotation calculation,
multiprocessor lorth, double-cniry bookkecping, binary table
search, phase-angle differential analyzer, sort contest.

Volume 12 Forth Dimensions (1990-91) 112 - 320 2#
100 Moored division, stack varables, embedded control, Atari Forth,
optimizing compiler, dynamic memory allocation, smart RAM,
extended-precision math, interrupt handling, neural nets, Soviet
Forth, arrays, metacompilation.

!
|
|

| 1980 FORML PROCEEDINGS

1981 FORML PROCEEDINGS

FORML CONFERENCE PROCEEDINGS

FORMIL (Forth Modification Laboratory) is an educational
forum for sharing and discussing new or unproven [prc:Fosals
intended to benefit Forth, and is an educational forum for discus-
sion of thetechnical asg::cls of applications in Forth. Proocedmﬁ
are a compilation of the J[)apers and abstracts presented at t

annual conference. FORML is part of the Forth Interest Group.

310 - 530 24
Address binding, dynamic memory allocation, local variables,
concurrency, binary absolute & relocatable loader, LISP, how to Last 10
manage Forth projects, n-level file system, documenting Forth,
Forth structures, 'orth strings. 231 pgs

311 -545 4#
CODE-less Forth machine, quadruple-precision arithmelic, Last 50
overlays, executable vocabulary stack, data typing in Forth, 2
vectored data structures, using Forth in a classroom, pyramid

files, BASIC, LOGO, automatic cueing language formulumedia,
NEX0OS—aROM-based multitasking operating system. 655 pgs

1982 FORML PROCEEDINGS 312 - 530 44
Rockwell Forth processor, virtual execution, 32-bit Forth, ONLY

for vocabularies, non-IMMEDIATE looping words, number- Last 100
input wordset, I/O vectoring, recursive data structures, program-
mable-logic compiler. 295g pes

1983 FORML PROCEEDINGS 313 -830 2#

Non-Von Neuman machines, Forth instruction set, Chinese Last 100
Forth, 83, compiler & interpreter co-routines, log & exponential

funcuon, rational arithmetic, transcendental functions in
variable-precision Forth, ponable ﬁIc—s;stc:m interface, Forth

coding conventions, expert systems. 352 pgs

1984 FORML PROCEEDINGS 314 - 330 2#
Forth expent systems, consequent-reasoning inference engine,
Zen Moating point, poriable graphics wordset, 32-bi Forth, Last 100
HP71B Forth, NEON—object-oniented Sm)gramming, decom-
piler design, arrays and stack variables. 378 pgs

1986 FORML PROCEEDINGS . 316 - $30 2#
Threading techniques, Prolog, VLSI Forth microprocessor,
natural-language interface, expert system shell, inference engine, Last 100
multiple-inhentance system, automatic programming environ-
ment. 323 pgs

1987 FORML PROCEEDINGS 317 - 8540 3#
Includes papers from *87 euroFORML Conference. 32-bit Forth, Last 50
neural networks, control structures, Al, optimizing compilers,
thcncxl, field and record structures, CAD command language,
object-oriented lists, trainable neural nets, expert systems.

463 pgs

1988 FORML PROCEEDINGS 318 - 340 2#
Includes 1988 Australian FORML, Human interfaces, simple Last 100
robotics kernel, MODUL Forth, parallel processing, as

rogrammable controllers, Prolog simular.ions.languaﬁe topics,

Ea‘rbgwam,Wil's workings & Ting's philosophy, Forth hardware

applications, ANS Forth session, future of Forth in Al
applications. 310 pgs

1989 FORML PROCEEDINGS 319 - 540 3#
Includes papers from '89 euroFORML. Pascal 10 Forth, Last 50
extensible optimizerfor compiling, 3D measurement withobject- ~2%
oriented [Forth, CRC polynomials, F-PC, Harris C cross-
compiler, modular approach to robotic control, RTX recompiler
for on-line maintenance, modules, trainable neural nets. 433 pgs

1990 FORML PROCEEDINGS 320 - 340 3#
Forth in industry, communications monitor, 6805 development. Last 50
3-key keyboard, documentation techniques, object-oriented 2%
programming, simplest Forth decompiler, error recovery, stack
operations, process control event management, control siructure
analysis, systems design course, group theory using Forth.

441 pgs 7

% - These arc your most up-to-date indexes for back issucs of Forth Dimensions and the FORML proceedings.
Fax your orders 510-535-1295




1991 FORML PROCEEDINGS 320 - $50 3#
Includes 1991 FORML, Asilomar, curoFORML '91,
Czechoslovakia and 1991 China FORML, Shanghai.
Differential File Comparison, LINDA on a Simulated Network,
QS2:RISCing itall, A threaded Microprogram Machine, Forthin
Networking, Forth in the Soviet Union, FOSM: A FOrth Strin,

Matcher, VGA Graphics and 3-D Animation, Forth and TSR,
Forth CAE System, Applying Forth to Electric Discharge
Machining, M(Y,‘S%-FOLEJ;H Single Chip Computer. 500 pgs

BOOKS ABOUT FORTH

ALL ABOUT FORTH, 3rd ed., June 1990, Glen B. Haydon 201 - 890 4#
Annotated glossary of most Forth words in common usage,
including Forth-79, Forth-83, F-PC, MVP-Forth. Implementation
examples in high-level Forth and/or 8086/88 assembler. Useful
commentary given for each entry. 504 pgs

THE COMPLETE FORTH, Alan Winfield 210-514 1#
A comprehensive introduction, including problems with answers
(Forth-79). 131 pgs

eFORTH IMPLEMENTATION GUIDE, C.H. Ting 215-525 1#
eForth is the name of a Forth model designed to be portable to a
large number of the newer, more powerful processors available
now and becoming available in the near future. 54 pgs  (w/disk)

F83 SOURCE, Henry Laxen & Michael Perry 217 - $20 2#

A complete listing of F'83, including source and shadow screens.

Includes introduction on getting started. 208 pgs
FORTH: A TEXT AND REFERENCE 219 - 331 2
Mahlon G. Kelly & Nicholas Spies
A textbook approach to Forth, with comprehensive references 1o
MMS-FORTH and the *79 and '83 Forth standards. 487 pgs

THE FIRST COURSE, C.H. Ting 223 -825 1#
This wtorial's goal is 10 expose you to the very minimum set of

m Forth instructions so that you can start to use Forth to solve

practical problems in the shortest possible time. "... This tutorial

was developed to complement The Forth Course which skims too

fast on the elementary Forth instructions and dives too quickly in

the advanced topics in a upper level college microcomputer

laboratory. ..." A running F-PC Forth system would be very

useful. 44 pgs

THE FORTH COURSE, Richard E. Haskell 225-325 1#
This set of 11 lessons, called The Forth Course, is designed to
make it easy for you to leam Forth. The material was developed
over several years of teaching Forth as part of a senior/graduate
course in design of embedded sofiware computer sysiems at

Oakland University in Rochester, Michigan. 156 pgs  (w/disk)

FORTH ENCYCLOPEDIA, Mitch Derick & Linda Baker 220 - 330 24
A detailed look at each fig-Forth instruction. 327 pgs

FORTH NOTEBOOK, Dr. C.H. Ting 232 -825 2#

Good examples and applications. Great leaming aid. poly-
FORTH is the dialect used. Some conversion advice is included.
Code is well documented. 286 pgs

FORTH NOTEBOOKII, Dr. C.H. Ting
Collection of research papers on various topics, such as image
groccSSing, parallel processing, and miscellaneous applications.

37 pgs

F-PC USERS MANUAL (2nd ed., V3.5) 350 - 520 1#
Users manual 1o the public-domain Forth system optimized for
{,Ij-l';d PC/XT/AT computers. A fat, fast system with many tools.
PES

“-PC TECHNICAL REFERENCE MANUAL 351 -330 2#
A must if you need to know the inner workings of F-PC. 269 pgs

INSIDE F-83, Dr. C.H. Ting 235-525 2#
Invaluable for those using F-83. 226 pgs

LIBRARY OF FORTH ROUTINES AND UTILITIES,
James D. Terry 237 -$23 24

Comprehensive collection of professional quality computer code
for Forth; offers routines that can be put to use in almost any Forth
application, including expert systems and natural-language

interfaces. 374 pgs

232a - $25 2#

OBJECT ORIENTED FORTH, Dick Pountain 242-835 1#
Implementation of data structures. First book to make object-
oriented programming available to users of even very small home
compulers. 118 pgs

SEEING FORTH, Jack Wochr 243 - 825 14#

"...Iwould like 10 share a few observations on Forth and computer
science. Thatis the purpose of this monograph. Itis offered inthe
hope that it will broaden slightly the streams of Forth literature ..."
95 pgs

SCIENTIFIC FORTH, Julian V. Noble 250 - 350 24
Scientific Forth extends the Forth kemel in the direction of
scientific problem solving. It illustrates advanced Forth
programming techniques with non-trivial applications:
computer algebra, roots of equations, differcntial cquations,
function minimization, functional representation of data (FFT,
polynomials), linear equations and matrices, numerical
mntegration/Monte Carlo methods, high-speed real and complex
floating-point arithmetic. 300 pgs (Includes disk with programs
and several vtliues), IBM

STACK COMPUTERS, THE NEW WAVE
Philip J. Koopman, Jr. (hardcover only)
Presents an altemative to Complex Instruction Set Computers
(CISC) and Reduced Instruction Set Computers (RISC) by
showing the strengths and weaknesses of stack machines (hard-
cover only).

244 - 562 2#

STARTING FORTH (2nd ed.), Leo Brodie 245 -$29 24
In this edition of Starting Forth—the most popular and complete
introduction to Forth—syntax has been expanded to include the
Fonh-83 Standard. 346 pgs

WRITE YOUR OWN PROGRAMMING LANGUAGE USING C++, S
'?h%?b&ksggnml an application language. More specificall 2.?;(1} 33
is about how to write your own custom application language. The
book contains the tools necessary to begin the process and a
complete sample language implementation. [Guess what language!]

Includes disk with complete source. 108 pgs

ACM - SIGFORTH

The ACM SIGForth Newsletter is published qluanerly by the
Association of Computing Machinery, Inc. SIGForth’s focus is
on the development and refinement of concepts, methods, and
techniques needed by Forth professionals.

Volume 1 Spring 1989, Summer 1989, #3, #4 911 - 524 24
F-PC, glossary utility, euroForth, SIGForth '89 Workshop
summary (real-time software engineering), Intel 80x8x.
Metacompiler in cmForth, Forth exception handler, string case
statement for UF/Forth. 1802 simulator, tutorial on multiple
threaded vocabularies. Stack frames, duals: an altenative 1o
variables, PocketForth.

Volume 2 #1,#2, #3, #4 912 - 524 2#
ACM SIGForth Industry Survey, abstracts 1990 Rochester conf.,
RTX-2000. BNF Parser, abstracts 1990 Rochester conf., F-PC
Teach. Tethered Forth model, abstracts 1990 SIGForth conf.
Target-meta-cross-: an engineer’s viewpoint, single-instruction
computer.

Volume 3, #1 Summer '91 913a - 56 1#
Co-routines and recursion for tree balancing, convenient number
handling.

Volume 3, #2 Fall '91 913b-56 1#
Posiscript Issue, What is Postscript?, Forth in Postscript, Review:
PS-Tutor.

1989 SIGForth Workshop Proceedings 931 -320 1#
Software engineering, multitasking, interrupt-driven systems,
object-oriented Forth, error recovery and control, virtual memory
suppont, signal processing. 127 pgs

1990-91 SIGForth Workshop Proceedings 932 - 320 1#

Teaching computer algebra, stack-based hardware, reconfig-
urable processors, real-line operating systems, embedded
control, marketing Forth, development systems, in-flight
monitoring, multi-processors, neural nets, security control, user
interface, algorithms. 134 pgs

For faster service, fax your orders 510-535-1295




DISKS: Contributions from the Forth Community

The “Contributions from the Forth Community” disk library contains
author-submitted donations, gencrally including source, for a variety
of computers & disk formats. Each filc is detcrmined by the author as
public domain, shareware, or use with some restrictions. This library
does not contain “For Sale” applications. To submit your own contri-
butions, send them to the FIG Publications Commitiee.

Prices: Each item below comes on one or more disks, indicated in
parentheses after the item number. The price is $6 per disk or $25 for
any five disks. 11020 disks=1#.

FLOATSthBLK V4 RobentL Smith €001 -(1)
Software floating-point for fig-, -, 719-Sud., 83-Sid.
Forths. IEEE sﬁﬂpggtbill fol.llg smnpggrd functions, square

root and log. IBM.

Games in Forth ) C002 -(1)
Misc. games, Go, TETRA, Life... Source. IBM
A Forth Spreadsheet, Craig Lindley C003 - (1)

This model spreadsheet first appeared in Forth Dimensions

VII, 1-2. Those issues contain docs & source. IBM

Automatic Structure Charts, Kim Harris Co04 - (1)
Tools for analysis of large Forth programs, first presented at
FORML conference. Full source; docsinel. in 1985 FORML
Proceedings. IBM

A Simple Inference Engine, Martin Trar?r C005 - (1)
Based on inf. engine in Winston & Hom's book on LISP,
takes you from pattern variables to complete unification
algorithm, with running commentary on Forth philosophy &
style. Incl. source. IBE’I

The Math Box, Nathanicl Grossman C006 - (1)
Routines by foremost math author in Forth. Exiended double-
precision arithmetic, complete 32-bit fixed-point math, &
auto-ranging text. Incl. graphics. Utilites for rapid

lynomial evaluation, continued fractions & Monte Carlo
aclorization. Incl. source & docs. IBM

AstroForth & AstroOKO Demos, LR. Agumirsian Co07 - (1)
AstroForth is the 83-5td. Russian version of Forth. Incl.
window interface, full-screen editor, dynamic assembler &
a great demo. AstroOKO, an astronavigation system in
AstroForth, calculates sky position of several objects from
different earth positions. Demos only. IBM

Forth List Handler, Martin Tra(:ﬁ' C008 - (1)
List primitives extend Forth to provide a flexible, high-
environment for AL Incl. ELISA and Winston &
Hom’s micro-LISP as examples. Incl. source & docs. IBM

8051 Embedded Forth, William Payne CO050 - (4)
8051 ROMmable Forth operating system. 8086-10-8051
1arget compiler. Incl. source. Docs are in the book Embedded
Controller Forth for the 8051 Family. IBM

68HC11 Collection C060 - (2)
Collection of Forths, Tools and Floating Point routines for
the 68HC11 controller. IBM

F83 V2.01, Mike Perry & Henry Laxen C100-(1)

The newest vetrsion;]pan.:d to a variety of machines. Editor,
assembler, decompiler, metacompiler. Source and shadow
screens. Manual available separately (items 217 & 235).
Base for other F83 applications. 1BM, 83.

F-PC V3.53, Tom Zimmer C200 - (5)
A full Forth system with pull-down menus, sequential files,
editor, forward assembler, metacompiler, floating point.
Complete source and help files. Manual for V3.5 available
separately (items 350 & 3513}."335(: for other F-PC
applications. Req. hard disk. IBM, 83.

F-PC TEACH V3.5, Lessons 0-7 Jack Brown C201a-(2)
Forth classroom on disk. First seven lessons on leamning
Forth, from Jack Brown of B.C. Institute of Technology.
IBM, F-PC.

VP-Planner Float for F-PC, V1.01 Jack Brown c202-(1)
Software floating-point engine behind the VP-Planner
spreadshect. 80-bit (temporary-real) routines with transcen-

ental functions, number Ug support, vectors 1o sumxm
:l!‘uglccric co-processor overlay & user NAN checking. 1BM,

F-PC Graphics V4.4, Mark Smiley C203a - (3)
‘The latest versions of new graphics routines, including CGA,
EGA, and VGA suppport, with numerous improvements over
epaélier versions crwmr supported by Mark gmi]ey. IBM, F-

PocketForth V1.4, Chris Heilman C300-(1)
Smallest complete Forth for the Mac. Access toall Mac functions,
files, graphics, floating point, macros, create standalone
applications and DAs. Based on fig & Starting Forth. Incl. source
and manual. MAC

Yerkes Forth V3.6 C350 - (2)
Complete object-oriented Forth for the Mac. Object access to all
Mac functions, files, g ics, floaling point, macros, create
standalone applications. Incl. source, tutorial, assembler &
manual. MAE System 7.01 Compatable.

JLISP V1.0, Nick Didkovsky C401 -(1)
LISP interpreter invoked from Amiga JForth. The nucleus of the
interpreter is the result of Martin Tracy’s work. Extended to allow
the LISP interpreter to link to and execute JForth words. It can
communicate with JForth's ODE (Object-Development
Environment). AMIGA, 83.

Pygm}{ V1.3, Frank Sergeant C500 - (1)
lean, fast Forth with full source code. Incl. full-screen editor,
assembler and metacompiler. Up o 15 files open at a time. IBM.

KForth, Guy Kelly Co00 - (3)
A full Forth s{slu'n with windows, mouse, drawing and modem

packages. Incl. source & docs. IBM, 83.

ForST, John Redmond C700 - (1)
Forth for the Atari ST. Incl. source & docs. Atari ST.

Mops V2.2, Michael Hore C710-(2)

Close cousinto Yerkes and Neon. Very fast, compiles subroutine-
threaded & native code. Object oriented. Uses F-P co-processor
if present. Full access to Mactoolbox & system. Supports System
T E:,g,. AppleEvents). Incl. assembler, docs & source. MAC

BBL & Abundance, Roedy Green C800 - (4)
BBL public-domain, 32-bit Forth with extensive support of DOS,
meticulously optimized for execution s . Abundance is a

ublic-domain database language written in BBL. Req. hard disk.
cl. source & docs. IBM HD, hard disk reequir
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fig-FORTH ASSEMBLY LANGUAGE SOURCE
Listings of fig-Forth for specific CPUs and machines with compiler security and

variable-length names (see Installation Manual, below): -§15 14
6502 514 - September 80 9900 519 - March 81
6809 516 - June 80 Apple Il 521 - August 81
8080 517 - September 79
fig-FORTH INSTALLATION MANUAL 501 - $15 1#
Glossary model editor—we recommend you rchase. this
manual when purchasmg any of the source oode tings above.
61 pgs
SYSTEMS GUIDE TO fig-FORTH 308 - 325 1#
C. H. Ting (2nd ed., 1989)
How'sand why's of the fig-Forth Model by Bill Ragsdale, internal
structure of fig-Forth system.
MISCELLANEOUS
T-SHIRT “May the Forth Be With You” 601-$12 1#

(S c:llsm: Small, Medium, Large, Extra-Large on orderform)
sign on a dark blue shirt.

POSTER (Oct., 1980 BYTE cover) 602 -55 1#
FORTH-83 HANDY REFERENCE CARD 683 - free
FORTH-83 STANDARD 305-815 14

Authoritative description of Forth-83 Standard. For reference, not
instruction. 83 pgs

BIBLIOGRAPHY OF FORTH REFERENCES
(3rd ed., January 1987)
Over 1900 references to Forth articles throughout computer
literawre. [04pgs

340 - 318 2#

MORE ON FORTH ENGINES

Volumc 10 January 1989 810-315 1#
reprints from 1988 Rochester Forth Conference, object-

anForth, lesser Forth engines. 87 pgs

Volume 11 July 1989 811-3515 1#
TX supplement to Footsteps in an En?ly Valley, SC32, 32-bit
Forth engine, RTX interrupts utility. 93 pgs

ril 1990 812-815 1#
architecture and instructions, Neural Cm&l (%
Modu]el\C 3232, pigForth, binary radix sort on 80286, 6801

and RTX2000. 87 pgs

Volume 13 October 1990 813-815 1#
PALS of the RTX2000 Mini-BEE, EBForth, AZForth, RTX-
2101, 8086 eForth, 8051 eForth. 107 pgs

uricn

Volume 12 A[():h

Volume 14 814 - $15 14
RTX Pocket-Scope, eForth for muP20, ShBoom, eForth for CP/
M & Z80, XMODEM for eForth. 116 pgs
Volume 15 8§15-315 1#
1, A portrait of the P20;

Moore: New CAD System forCrug
Rible: QS1 Forth Processor, QS RI
Software Simulator/Debugger. 94 pgs

ing it all; P20 cForth

Volume 16 816 -515 1#
OK-CAD System, MuP20, eForth System Words, 386 eForth,
80386 Protected Mode Operation, FRP 1600 - 16Bit Real Time
Processor. 104 pgs

DR. DOBB’'S JOURNAL

Annual Forth issue, includes code for various Forth applications.

Sept. 1982 422-55 14

Sept. 1983 423 -85 14#

Sept. 1984 424 -35 1#

FORTH INTEREST GROUP

P.O.BOX 2154 OAKLAND, CALIFORNIA 94621
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AL
Ul"' 11 Park Street,
Bacchus Marsh,

Tel: 61 53 673155
Fax: 61 53 674480

The RTI1000 is a Forth based controller providing
three language levels for program development, and
i a real time multitasking/multiuser operating system.

l. 1. The PC element language is a graphical boolean
language in which application programs are creat-
_ ed by linking together library modules. Users may
[ define their own PC elements if required. The
| application program may be represented graphi-
' cally on the VDU and printer as shown below.

2. FORTH high level language.

3. 68000 machine code assembler.

000 0 11 AND 000 2 F1
000 1 F1 TD
E LI‘JN out 000 3 F1
| 500 ¢ —————————|td SR
- S @ 001 5 F1

000 1 FL

RTI1000 Programmabﬁ Controller

Victoria, Australia 3340.

Hardware

The RTI1000 is a modular system based on the 6U,
19 inch rack standard built to withstand harsh in-
dustrial environments. Input and output modules are
available for digital, analog and pulse type signals.

Pewr Mg

Documentation

® Industrial FORTH technical Manual (245 Pages)
® 638000 Assembler Manual (222 Pages)

® PC Elements User Manual (221 Pages)

® On Line Glossary Supplied In Prom.

To recognize and reward authors of Forth-related ar-
| | ticles, the Forth Imterest Group (FIG) adopted the following
| | Author Recognition Program.
| .

| | Articles
! [ The author of any Forth-related article published in a
i periodical or in the proceedings of a non-Forth conference
is awarded one year’s membership in the Forth Interest
| Group, subject to these conditions:

a. The membership awarded is for the membership year |

following the one during which the article was

| i
| published.

b. Only one membership per person is awarded in any |

year, regardless of the number of articles the person
published in that year.

magazine in which it appeared.

‘The author must submit the printed article (photo-
copies are accepted) to the Forth Interest Group,
including identification of the magazine and issue in
which it appeared, within sixty days of publication.
In return, the author will be sent a coupon good for
the following year’s membership.

¢. If the original article was published in a language

d.

Forth Dimensions

AUTHOR RECOGNITION PROGRAM

¢. The article’s length must be one page or more in the

21

other than English, the article must be accompanied
by an Engish translation or summary.

| Letters to the Editor ’
Letters to the editor are, in effect, short articles, and so
deserve recognition. The author of a Forth-related letter to

| an editor published in any magazine except Forth Dimen- I
sionsis awarded $10 credit toward FIG membership dues,
subject to these conditions:

a. The credit applies only to membership dues for the |
membership year following the one in which the
letter was published.

b. The maximum award in any year to one person will
notexceed the full cost of the FIG membership dues
for the following year.

¢. The author must submit to the Forth Interest Group
a photocopy of the printed letter, including identi-
ficaion of the magazine and issue in which it
appeared, within sixty days of publication. A cou-
pon worth $10 toward the following ycar's mem-
bership will then be sent to the author. .

d. If the original letter was published in a language |
other than English, the letter must be accompanied |
by an English translation or summary.,
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Principles of Metacompilation—code.

screen # 64

( IMAGE COMPILER load screen) (7 590 bjr 21:53)
¢ THRO 14 SWAP DO CRI . .S T LOAD LOOP :
65 LOAD { vocabularies)
68 LORD { image to target)
43 LOAD ( hex files) 71 LOAD { image dump)
72 LOAD  { multiple dicticnaries)
(

73 LOAD SUPERB create and compile)
74 75 THRU { create, fwd refs)
45 59 THRU ( SUPER8 assembler)
76 81 THRU ( Image compller)
HOST ;S 91 94 THRU { test) HOST ;5

91 112 THRU ( SUPERB source code - assembler primitives)
HOST DECIMAL B4 89 THRU { SUPERB source code - high level)
HOST DECIMAL 114 153 THRU
HOST DECIMAL 159 16C THRU
HOST ;5

HOST DEFINITIONS

( initialization values)

screen § 65

( image compiler's vocabularies) ( 7 6 88 bjr 12:15 )

: ARA  <BUILDS [COMPILE] * CFA , DOES> @EXECUTE STOP
: IMPORT IN @ <BUILDS IN ! [COMPILE]} ' CFA , DOES> @EXECUTE
STOP

VOCABULARY HOST IMMEDIATE
AKA NATIVE FORTH IMMEDIATE
AKA EQU CONSTANT

HOST DEFINITICNS

VOCABULARY TARGET IMMEDIATE
HOST IMPORT HCST IMMEDIATE
HOST IMPORT TARGET IMMEDIATE

TARGET DEFINITIONS
{ must be first defn. in TARGET!)

HOST DEFINITIONS

screen § 66

{ Image to extended memory, byte-swapped) (
{ for 8086 hosts)

CS@ HEX 1000 + CONSTANT TSEG { 64K segment for image)
CODE >< (n - n) AX pCP, AH AL XCHG, 1PUSH

T@ (a - n) TSEG SWAP BL >< ;

TCR ( a - b) TSEG SWAP C@L ;

T! {( n a) SWAP >< TSEG ROT 'L ;

TC! ( b a) TSEG SWAP CIL ;

8 590 bjr 9:20)

>TCMOVE ( s d n)
INVCKE ( a) u.
DECIMAL

BOUNDS DO DUP C@ I TC! 1+ LOOP DROP ;
2COMP ; ( err msg if exec'ing target word)

screen § 67
()
{ Image to disk, byte-swapped)

screen # 68

{ Image to target machine, byte-swapped) (
{ for 8086 hosts)

CCDE >< (n - n)
@ (a-n)
TC@ ( a - b}
T! (n a) XADR DUP >< X!+ X!+ ;

¢! ( b a) KADR X!+ ;

STCMOVE ( s d n) SWAP XADR BOUNDS DO 1 C@ X!+ LOOP ;

8 5 90 bjr 9:29)

BX POP, AH AL XCHG,
XADR X@+ >< X@+ OR ;
XADR X@+ ;

1PUSH

P T

INVOKE ( pfa)
5

2+ @ GO AWAIT ;

screen § 69
()
{ Image to extended memory, byte-normal)

screen 4 70
)

{ Image to disk, byte-normal)

screen § 71

{ Image dump)

: (DUMP} \ addr ct ---
SPACE BOUNDS DO

{ 27 5 88 bijr 10:04 }
| dump as pointed to by reloc
I TCR 3 .R LOCP ;

AKA defines a synonym word. Usage: AKA newname oldword
IMPORT defines a synonym word of the same name in the current
vocabulary. Usage: source-voc IMPORT word

Vocabulary usage for the lmage compiler:

TARGET holds the "symbol" words for all target definitions. It
also holds target compller directives and target assembler.
Within TARGET is a vocabulary tree exactly paralleling the

vocabulary tree being built in the image.

HOST is used as an escape to the host's FORTH words.

FORTH 15 redeflned to return to the root target vocabulary...in
case it's encountered durlng the target compilation.

These words store the target image in 8086 extended memory.

TSEG 1is the segment value for the image. We assume that
the 64K following real-forth is avallable.

>< swaps the hi and lo bytes of the top stack item.

TR TC@ T! TCR are the cell and byte, fetch and store operators
into the target image.
The image byte order is opposite that of the host.

>TCMOVE coples a string from the host memory to the image.

These words implement Charles Curley's DUMP as part of the
image compiler. Use HOST DUMP to look at the image.
Use NATIVE DUMP for the "original® dump of real-Forth memory,
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: LASCT \ addr ct --- | asci type as pointed to by reloc
SPACE BOUNDS DO I TC@ 127 RAND DUP

BL ASCII ~ WITHIN 0= IF DROP ASCII . THEN EMIT LOOP ;

: HEAD \ addr —- | headder for dump display

16 0 DO I OVER + 15 AND 3 .R LOOP DROP ;

\ N. B: Not responsible for negative counts! -- the MGT.
: DUMP \ addr ct -—-- | dump as pointed to by reloc

OVER CR 6 SPACES HEAD BEGIN DUP WHILE CR OVER 5 U.R
2DUP 16 MIN >R R 2DUP (DUMP) 54 TAB LASCI
R B> MINUS D+ 2TERMINAL IF DROP O THEN REPEAT 2DROP ;

screen § 72

{ Multiple target dictionaries) { 4
{ 16 bit addresses)

HOST DEFINITIONS 0 VARIABLE ‘DP

DICTIONARY ( org limit) <BUILDS SWAP , , DOES> 'DP ! ;
DP ( - a) 'DP @ ;

HERE ( # a) DP @ ;

2FULL DP 2@ SWAP U< 2 ZERRCR ;
ALLOT ( n) DE +! 2FULL ;

T, (n) HERE T! 2 ALICT ;

C, (n) HERE TC! 1 ALLOT ;

5 90 bjr 15:48 )

\ error if DP > limit

VARIABLE CONTEXT 0 VARIABLE CURRENT
LATEST ( - a) CURRENT @ TE@ ;
these variables need to be initialized before compilation)

] 0 VARIABLE VOC-LINK
(

screen # 73
( Super8 create and compile) HEX ( 4 5 90 bjr 14:37 )
{ byte-aligned, same name format as host, same width as host)
0 VARIABLE ZHEADS %\ set 0 for headerless
: (TCREATE} ?HEADS @ IF
HOST HERE NATIVE IATEST 2DUP \ dest, src adresses
C@ 1F AND WIDTH @ MIN 1+ DUP \ length
HOST ALLOT >TCMOVE \ compile name field in image
HOST LATEST T, \ compile link field in image
HOST CURRENT @ T! THEN )\ change image vocabulary ptrs
( subroutine threading header)
i \ no header for subroutine threaded code
t TCFA (a - a)
( subroutine threading compile)

: TCOMP, ( a) OF6 TC, T, ; \ a super8 subroutine CALL
: TMARK, ( - a) OFC TC, HOST HERE 0 T, ;
DECIMAL

screen # 74

( Change execute and compile actions) ( 1 688 bjr 17:44 )
0 VARIABLE ‘MIRROR M\ pfa of latest mirror word

%) [ *:CFA @ ] LITERAL , ;

: ACTS: NATIVE HERE °*MIRROR @ ! (2)

!CSP NATIVE SMUDGE ] ;

: ACT [COMPILE] * ACTS: NATIVE COMPILE DROP CFA ,
COMPILE ;S SMUDGE [COMPILE] [ ;

\ : MAKES: NATIVE | HERE [COMPILE] DOES> 2+ LATEST PFA CFA !
A ICSP NATIVE SMUDGE ;

HERE 2+ | DOES> DUP ( 2+ @ swap) @EXECUTE [

: IMPERATIVE NATIVE LITERAL 'MIRRCR @ CFA ! [ 2 CSP +! | ;
screen # 75

{ Image create) { 8 590 bjr 9:21 )

: CREATE <BUTLDS (TCREATE) NATIVE HERE ‘MIRROR !
{ ' INVOKE CFA ] LITERAL , HOST HERE TCFA ( cfa) NATIVE ,
DOES>» ( a) STATE @ IF 2+ @ TCOMP, ( compile)
ELSE DUP @EXECUTE ( execute) THEN ; DECIMAL

screen £ 76

{ Forward reflerences,
HOST DEFINTTTONS

: FORWARD <BUILDS O ,

16 bit addresses) { 4 5 90 bjr 15:46 )

TMARK, , [ MATIVE HERE 2+ |

These words manage the dicticnary being bullt in the image.

DP HERE ALLOT are analogous te their native forth counterparts,
except that they work in ‘image addresses*. These words are
located in the TARGET vocabulary so they can be found
separately from the native forth words in HOST.

T, TC, store words/bytes into the image.

RDP heolds the image address of the next available RAM location.
Separate DP and RDP are needed when compiling for PROM/RAM.
RHERE RALIOT operate on the "ram dictionary".

CONTEXT CURRENT VOC-LINK contain image addresses of the
dictlonary being built. IATEST returns the image address of
the latest definition. (Note the usage: @ T@ )

These TARGET words are analogous to thelr HOST counterparts.

These words are CPU- and model-specific code.
?HEADS if true, causes headers to be compiled in the image.

(TCREATE) builds a header in the image, linking it into the
image vocabulary. The name for the header is obtained
from the most recently defined word in the host; thus you
must define a host "mirror* word first.

SUPER8 NOTE: no code field is compiled; pfa follows link.

TCFA given a target pfa, returns the target cfa.

TCOMP, compiles a high-level “thread" to a given target adr
Subroutine thread: compile a CALL to the given adr.

TMARK, reserves a high-level “thread®, and stacks the target
location of the address field for later resolution.

(For forward referencing.)

Each target word has assoclated with it (in the "mirror" word)
a "compiling" action and an "executing" action. For most words
compiling is “compile my address™ and executing is "error".
(z}) compiles the cfa for a colon definition in the host.
This is used to make headerless colon definitions.
ACTS: changes the "executing® action of a mirror word.
Usage: ACTS: word word word ;
ACT makes the "executing® action identical te an existing word.
Usage: ACT word
MAKES: changes the "compiling" action of a mirror word.
Usage: MAKES: word word word ;
NOTE that this becomes the executing action as well!
IMPERATIVE makes the "compiling" action of a mirror word the
same as its "executing” actlion. This is akin to IMMEDIATE.

'MIRROR holds the address of the latest-defined mirror word,

CREATE builds a header in the imaye, and bullds a dual-actlion
word in the host dictionary. When executed in compile state,
it puts the target word's cfa (Super8: pfa) into the image.

The default action for execute state is an error message.

After CREATE we have enough of the image compller to compile
CODE words (assembler primitives).

FORWARD bullds a root word for a linked list of forward
references. When an unknown name is first encountered,
FORWARD builds a word by that name with a pointer to where
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DOES> ( a) NATIVE HERE 0 , TMARK,
OVER @ OVER | SWAP ! [ -2 CSP +! ] ;
CONSTANT (FORWARD)

: RESOLVE ( pfa a) SWAP BEGIN 2DUP 2+ @ T! @ -DUP 0= UNTIL
DROP ;

: CREARTE IN @ >R -FIND R> IN ! CRERTE
IF DROP DUP CFA @ (FORWARD) = IF ." ...Resolving"
HOST HERE TCFA RESOLVE ELSE DROP THEN THEN ;

screen § 77
( Image complling) HEX ( 4 5 90 bjr 14:41 )
HOST DEFINITIONS O VARIABLE *LIT*
: TLITERAL ( d) DPL @ 1+ IF SWAP *LIT* @ TCOMP, T,
ELSE DROP THEN *LIT* @ TCOMP, T, 7

: INUMBER (a - d f) 0 0 ROT DUP 1+ CR 2D = DUP >R + -1
BEGIN DPL ! (NUMBER} O OVER C@ ASCII . - UNTIL DROP ( d a)
C@ BL = IF R> IF DMINUS THEN 1 ELSE R> DROP O THEN ;

: [ STATE OFF ( [CCMPILE] HOST) ;

| C0 STATE ! BEGIN IN @ ~FIND
IF ( found) ROT 2DROP CFA EXECUTE
ELSE NATIVE HERE ?NUMBER IF ( number) TLITERAL DROP
ELSE ( undef) 2DROP IN ! FORWARD THEN
THEN 2?STACK STATE @ O= UNTIL ; DECIMAL

screen § 78
( target interpretaticn) (13 5 90 bjr 17:18 )
: DT ( d) DPL @ 1+ IF SWAP >T ELSE DROP THEN >T ;

: TINTERPRET  BEGIN -FIND
IF { found) DROP CFA EXECUTE
ELSE NATIVE HERE ?NUMBER O= 0 2ERROR { number) D>T
THEN ?STACK AGAIN ;

: TQUIT BLK OFF STATE OFF BEGIN
RP! CR QUERY TINTERPRET ." Tok" AGAIN

HOT * TQUIT CFA 'QUIT ! ." Tok" QUIT
COOL ' (QUIT) CFA *QUIT ! ." ok" QUIT

screen # 79

( Utllity words: equ label gap zap seal) ( 30 5 B8 bjr 7:06 )
HOST DEFINITIONS

: SEAL [COMPILE] ' CFA 2- OFF ;

% : ZAP [COMPILE] * NFA BL TOGGLE ;

\ NATIVE AKA FQU CONSTANT
\ : LABEL HOST HERE EQU ;

\ i GAP HOST 2 ALLOT ; { word machines)
HEX

: STOP  HOST 2CSP [ ; IMMEDIATE

: IMMEDIATE HOST LATEST DUP TC@ 40 XOR SWAP TC! ;
DECIMAL

screen § 80
{ Support for defining words) ( 7 688 bjr 20:22 )
0 VARIABLE TODO

: (DCES>) R> DUP 2+ HOST 'MIRROR @ ! ( host's def'd actn,}
@ 'MIRRCR @ 2+ @ 1+ T! ; . { change image's defined action}

: DOES>  NATIVE COMPILE (DCES>) TODO @ , (:} ;
NATIVE IMMEDIATE

its address should be compiled. Subsequent references cause

headerless pointers to be linked onto a list. Last link=0.

When the word is finally defined, it should be RESOLVEd.
{Note: IN must be restored after -FIND, to use FORWARD.)

RESOLVE name fills the forward reference list starting at pfa
with the given value a . ( pfa 1is the pfa of the root word
built by FORWARD.)

CREATE 1is redefined so that, 1f the word already exists as a
forward reference word, it is resolved with the new cfa.

*LIT* must be filled with the CFA of the LIT primitive,
before any colon definitions with literals are attempted.
TLITERAL compiles a single or double literal into the image.

INUMBER works like NUMBER, except that it returns a flag
indicating if the conversion was successful.

[ sets interpreting state, and sets CONTEXT to HOST so that
host words have precedence in search order.

] sets compiling state, and enters the image compiling loop.
Words from the input stream are searched (in the TARGET
vocabulary) and executed, The execution action of a defined
target word is to compile itself. Other words, such as
compiler directives, perform their programmed action.

*DOCOL* must be filled with the address of the colon CCDE,
before any colon definitions are made. This is the value
which is stuffed into the CFA of all colon defs.
SUPER8 ONLY: no CFAs; the ENTER opcode is stuffed Instead.

: sets up for a colon definition in the image, builds the
header (with the appropriate CFA), then enters compile mode.

*:5* must be filled with the address of the ;S primitive,
before any image colon definitions are made.

ends an image colon definition,

After ; we have enough of the image compiler to compile simple
colon definitlions.

SEAL name makes this word the end of a dictionary chain.
ZAP name removes (smudges) this word from dictionary searches

These are various compile-time directives.
EQU builds a CONSTANT in the TARGET dictionary, but nothing in
the image. EQU'd values will not compile, even as literals!!
LABEL EQU's the current compile address in the image.
GAP leaves room in the image for a compiled Forth word.

These words allow the host machine to correctly build "defining"
and "defined" words ln the target.

TODO holds the ;CODE or DOES> code address just defined in the
image.

(DOES>) when executed by the host machine, changes the execute

action of the most recently defined target word, in the image
AND In the host's mirror word. The lmage's code address ls
set to the contents of TODC., The host's "execute" vector is
set to the address lmmediately following the (DOES») .

DOES> compiles (DOES>) & builds a headerless colon definition
in the host for the DOES> action.
Usage: HOST ACTS: word word word DOES> word word word

Refer to the targel's source code for DOES> and ;CODE .
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| R - "'
| | screen # 81

i { Seal target vocabulary) ( 7 6 88 bjr 12:26 ) TARGET is the root of the "mirrored" dictionary tree, which
| | TARGET DEFINITICNS { first get a few more needed words) will be built in the host. This tree will hold all of the
| HOST IMPORT CODE *mirror" words and will exactly duplicate the search order
HOST IMPORT IMMEDIATE of the dictionary being built in the image.
| HOST TMPORT ;S
HOST IMPCRT ( Once the TARGET vocabulary is sealed, the only exits are
HOST IMPORT HEX HOST to select the HOST vocabulary
HOST IMPORT \ CODE to create a code header and select HOST ASSEMBLER

HOST TMPORT STOP
Note that the vocabulary must be sealed at its first definition,
TARGET SEAL HOST ( now seal at the first word in TARGET) which in this case 1s the just-defined HOST synonym.

| HOST ;S

screen § 82

screen § B3
{ Test interactive assembly) ( 8 5 9 bjr 9:55)
HOST HEX C030 FFFF DICTIONARY PRCM PROM \ origins

CODFE. 1EDOUT  HERE EQU $1 1D RB # OFF LDC OFFEQ RB
ID RE & OFF LDC OFFDO R8 LD RB # OFE LDC OFFEQ RB
IDR2 ¥ 4 BEGIN, LDC OFFDO RO NOP NOP NOP NOP NOP
1DC OFFDO R1 NOP NOP DEC R2 Z UNTIL,
:C

- v,

CODE DEMO IDW RRO # OF000 IDW RR12 # 1234 1DW RR14 & OF000
BEGIN, CALL $1 BEGIN, DEC R2 2 UNTIL,

INCW RRO Z UNTIL, RET NOP NOP NOP

|1 iC

\ HOST ;S

screen # B4
5 ( 7 688 bjr 12:26 )

{ Supers
TARGET CODE ENTER, HOST | TARGET

?EXEC !CSP CURRENT @ CONTEXT ! CREATE -2 ALLOT | ;S
HOST {

HOST ACTS: ( a) DROP !CSP NATIVE CURRENT @ CONTEXT !
HOST CURRENT @ CONTEXT ! CREATE -2 ALIOT | ;

i L]
TARGET : ; ?CSP COMPILE ;S SMUDGE [ ;S5 HOST [ IMMEDIATE WI I rl I
HOST ACTS: ( a) DROP 2CSP TARGET ;S HOST [ ; IMPERATIVE

HOST ;5

Subscription

{ Super8 dodoes does> (;code) HEX ( 7 688 bjr 12:30 )
TARGET CCDE DODCES ( - a) TOS 1+ 5P @ LDEPD, TOS 5P @ LDEPD, . .

T0S POP, TOS 1+ POP, NEXT, \ pop rtn stack to parm stack There are whole other worlds in micro computers
than DOS and Windows. If embedded controllers,

TARGET : (;CODE R> LATEST PFA 2~ ! ; . .
L ! : Forth, S100, CP/M or robotics mean anything to you,

| | 05T § OB HosT 2CSP ARGET (OODE) EOST HERE TOO | then you need to know about The Computer Journal.
{ ENTERCODE ; = - :
' L JERRGORE. 3 Hardware projects with schematics, software
| TARGET : DOES> COMPILE (;CODE) 1F C, COMPTLE DODCES ; articles with full source code in every issue. And you
IMMEDIATE can try The Computer Journal without cost or risk!
HOST ACTS: ( a) DROP TARGET (;CODE) HOST HERE TCDO ! . L. :
1F 7¢, TARGET DODOES HOST ; Call toll free today to start your trial subscription and
only if you like it.
— pay only if y

Rates: $18/year US; $24/year Foreign. You may
screen # B6 . cancel your subscription without cost if you don’t feel The
( Super8 constant varlable) ( 12 11 88 bjr 20:03 ) Computer Journal is for you. Published six times a year.
| TARGET : CONSTANT CREATE SMUDGE , ;CODE
TOS 14 SP @ LDEPD, TOS SP @ LDEPD, ( ) -
IP W LDW, W @ TCS LDCI, W @ TOS 1+ LDC, EXIT, 800 424 8825
HOST ACTS: ( a) DROP CREATE T,

HOST DOES> (a) 2+ @ 3+ T8 ; TCI The Computer Journal

TARGET : VARIABLE ( n) CONSTANT ;CODE The Spirit of the Individual Made This Industry
TOS 1+ SP @ LDEPD, TOS SP @ LDEPD, TP TOS LDW, EXIT,

Hogn Metes (i DGR GRESEY, Socrates Press
HOST DOES> (a) 2+ 8 3 + ; PO BOX 535
— Lincoln, CA 95648
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A Forum for Exploring Forth Issues and Promoting Forth

[Fasit [FOR TR weare)

When I started Fast FORTHward, I promised to use it to
share essays about Forth, essays about marketing issues, and
essays aimed at educating others about Forth. I am pleased to
be able to share with you the excempt concerning threading
models from Jack Woebr’s essay “Seeing Forth” in his book by
the same name. —Mike Elola

Excerpt from “Seeing Forth”
by Jack Woehr

Forth has traditionally a very simple execution engine, but
the number [of] Forth implementation strategies can [no]
longer be counted on the fingers of one hand. There is
perhaps no other computer language whose execution
engine exhibits wider and more varied implementations,
though Pascal, LISP, BASIC and Prolog are certainly contend-
ers for the crown.

Forth is described as a virtual machine, a software
emulation of an imaginary processor which would possess
an infinitely extensible instruction set. In the ideal machine,
a routine defined in terms of pre-existent operations would
become a member of the microprocessor’s instruction set.

In order to emulate this ideal processor, the traditional
Forth compilers lay down address lists to be stepped through
[by the inner interpreter] in the course of executing a Forth
word (function). These addresses, for the purpose of the
emulation, correspond to the instruction set of the ideal
Processor.

[...] The hoariest member of the family of Forth inner
interpreters is the Indirect-Threaded Interpreter. The body of
a colon definition in an indirect-threaded Forth is constructed
as follows:

/ addr-of-interpreter/ address/ address/ address/ ...
where

addr-of-interpreter is the address of a routine which will |

handle the first step of processing the list which follows.
Usually the interpreter is a nesting routine, which saves
the Instruction Pointer of the caller on the Return Stack
and sets the Instruction Pointer to point to the first cell of
the following list of addresses.

and
addressis the address of a previously-defined Forth word
called in the course of executing this delinition. The last
address in the list of addresses may be the address of an
unnesting routine which pops the former Instruction
Pointer from the Return Stack.

November 1992 December

Forth words executed in this manner continue to nest
downwards into lower- and lower-level words until they
reach a definition constructed as follows:

/ address-of-next-cell/ code/ code/ code/ code/ next/
where

address-of-next-cellis just that, the address of the body of

the definition itself. This definition is code and posesses

no interpreter which must be pointed to. Simply stepping
into itself is sufficient, and it will clean up after itself and
begin the process of nesting back upwards as described
below.

and

code is executable machine code.
and

next is either a jump to, or the inline expansion of a

routine which causes the contents of the cell pointed to

by the current Instruction Pointer to be fetched and fed to
the interpretive engine, post-incrementing the Instruction

Pointer in the process. In other words, this level of Forth

execution is the beginning of the end for a Forth Machine

Cycle.

Closely related to the Indirect-Threaded Interpreter is the
Direct-Threaded Interpreter. The body of a colon definition
in a direct-threaded Forth is constructed as follows:
/interpreter-inline/ address/ address/ address/ ...
where

interpreter-inline is the the actual routine that will handle

the first step of processing the list which follows. As

above, the interpreter is usually a nesting routine, which
saves the Instruction Pointer of the caller on the Return

Stack and sets the Instruction Pointer to point to the first

cell of the following list of addresses.
and

addressis the address of a previously-defined Forth word

called in the course of executing this definition. The last

address in the list of addresses may be the address of an
unnesting routine which pops the former Instruction

Pointer from the Return Stack.

Once again, Forth words executed in this manner con-
tinue to nest downwards into lower- and lower-level words |
until they reach a definition constructed as follows:
/code/ code/ code/ code/next/
where |
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this definition is code and posesses no interpreler which |
must be pointed to. Execution commences at the first |
instruction cell. Stepping into itself is sufficient, and it will
clean up after itself and begin the process of nesting back
upwards as described below.
d

code is executable machine code.
d

next is either a jump 1o, or the inline expansion of a
routine which causes the contents of the cell pointed to
by the current Instruction Pointer to be fetched and fed to
the interpretive engine, post-incrementing the Instruction
Pointer in the process. In other words, this level of Forth
execution is the beginning of the end for a Forth Machine

Cycle.

(Continued on page 32.)

Benchmarks Wanted

In late July, the Forth Interest Group (FIG) received a
letter from China. The Society of Forth Application Re-
search (SOFAR) there was organizing a large-scale promo-
tion of the Forth language. For Forth vendors and other
Forth advocates, here was a golden opportunity to help
promote Forth worldwide:

“We are urgently in need of material concerning the
comparisons of Forth with languages [such as] C, Pascal,
and assembly and other comparisons like arithmetic and
general processing. These are needed in the form of
performance briefs or testing reports that have source code
listings, comparisons of length and speed, etc.

“In addition we would like to know about the fields or
businesses which have set Forth as their standard language.
L...J We sincerely look forward to your earliest response and
assistance on this matter by the 30th of July, 1992. You can
contact us through: 10 Third lange, North Street, XiSSi,
Beijing, Postal Code 100034, China.”

My response to SOFAR has been merely to direct their
request to several of the Forth language vendors, asking
them to reply directly to SOFAR as well as send me a copy
of their response. So far, I have not received anything.

Information such as that requested is of vital importance
to support a manager’s decision to use Forth. Unfortu-
nately, it can be difficult to find out how Forth measuresup.

FIG can act as a channel for information supplied by the
vendors—or FIG can generate its own information. Either
way, I think FIG needs to be a supplier of such information.
I would like for FIG to publish fig-Forth, eFORTH, F83, and
I-PC benchmark comparisons with assembly language.
With help from the vendors, T would like to see FIG
distribute benchmarks of subroutine-threaded, direct-
threaded, and indirect-threaded Forths relative to assembly
language. FIG should also distribute information regarding
the performance improvements possible from optimiza-
tion techniques. I'll gladly organize the information.

Prospective Forth users may not give Forth its due
consideration if we cannot offer information such as this.
So if you have any of this information, please mail it to me
in care of the FIG office.

| | Mountain View, California 94040

Prodtcs

JULY-AUGUST 1992

In July, Creative Solutions, Inc. announced a 4.2.2
release of MacForth® Plus (4.2 shipped last January and
included MacsBug Interface, editor enhancements, and
68040 compatibility). Upgrades range from $5 to $69
depending on the 4.X version you are upgrading from. As
of August, they were still offering a $99 upgrade for the
now-defunct Mach2 Forth with proof of ownership. In
August, they announced a new Hurdler® card containing
a SCSI port as well as four serial ports at a limited-time
introductory price of $595.

JULY 1992

The Saelig Company offers the TDS2020 16-bit com-
puter that now accepts up to two TDS2020CM daughter
boards with removable SRAM card memory for up to 8Mb
of nonvolative memory. It uses the industry standard
JEIDA/PCMCIA 68-pin cards. The TDS2020 includes 10-bit
A/D, real-time clock, and interfaces for keyboard, LCD,

i and graphics LCD. A related product is the TMB-200-03

which plugs into a PC to provide a ThinCard drive that
accepts the JEIDA/PCMCIA card memories.

AUGUST 1992
Bradley Forthware announced Forthmacs-3806, a 32-bit

| Forthsimilar to the 680x0 and SPARC workstation versions

of the same product. DOS Extender capability is included
to provide a full 32-bit environmentunder DOS, DESQview,

' and Windows. A ROMable version was also announced.

Forth, Inc. announced a $195 evaluation version of its
EXPRESS Event Management and Control System™, a
process-control software package. Expresslile can exer-
cise all EXPRESS functions. For example, the graphics
subsystem can be used to create a visual representation of
any of your controlled devices in such a way that it is

| updatedto reflectits simulated status. Although 1/O drivers

are lacking, up to 256 /O points can be simulated. It also
comes with the EXPRESS Technical Manual. The full

i | package sells for $6,875.

Companies Mentioned

Creative Solutions, Inc.

4701 Randolph Road, Suite 12
Rockville, Maryland 20852
Phone: 301-984-0262

Bradley Forthware
P.O. Box 4444

Phone: 415-961-1302
Fax: 415-962-0927

The Saelig Company
1193 Moseley Road
Victor, New York 14564
Phone: 716-425-3753
Fax: 716-425-3835

Forth, Inc.

111 N. Sepulveda Blvd.
Manhattan Beach,
California 90266-6847
Phone: 310-372-8493
Fax: 310-318-7130
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FortH TuroriaL, [esson #1

Character
Graphics

C.H. Ting
San Mateo, California

This lesson uses the simplest examples to illustrate the
principles of Forth programming: building new instruc-
tions from the existing instruction set.

We will use the simple Forth instruction . " xxxx" (0
display characters on the screen, and will also use it to build
an instruction set which will allow us to construct any block
characters on the screen.

To illustrate the use of the . ™ instruction, let’s write the
first Forth program:

hello ." Hello, world!'™

Now, when you type the word hello and a return on
your keyboard, the characters Hello, world! will appear
folowing your typed hello.

Explanation:
Start a new instruction
hello Name of the new instruction
p Print the character string until, but not including,
the next "
Terminate the new instruction

Hello is now a new instruction whose function is to
print the string Hello, world! to the screen. This is the first
program most computer courses use to introduce you to a
computer language.

Now, what we want to do next is to use this simple
technique to display large, block-shaped English alphabets
on the screen.

Let's use the letter F as an example:

baE gE % Fhoukoad
post cr " * il
F bar post bar post post post ;

Type the letter F followed by a carriage return on your
keyboard, and you will see a large F character displayed on
the screen, like this:

o e
*
ARk
*

*

q
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| characters using the 5 x 7 format.

Here we recognize that the character F has two compo-
nents: a bar composed of five asteriks and a post which can
be represented by one or more single asterisks. Therefore,
we define two new instructions bar and post which,
respectively, display five asteriks and one asterik. The final
instruction F can then be defined, which displays a bar, a
post, a bar, and then three posts.

The instruction cr starts a new line and causes the
subsequent characters to be displayed from the left margin
of the screen.

Exercise 1: Using the new instructions bar and post,
define new instructions C, E, and L which display the
corresponding block characters on the screen.

Exercise 2: Analyze your own surname. Define a set of
instructions like bar and post and use them to construct
all the characters in your surname. I will construct my name
TING as an example:

: center cr * ;
: sides cr ." * £
: triadl cr .M * x xm
: triad2 cr .M **% k" .
: triad3 cr " * kx© .
: triadd cr " xkExkx v .
: quart cr " ** xxkn o, |
: right cr " X ¥xx® o .
T bar center center

center center center center

’

: I center center center

center center center center ;
: N sides triad2 triad2

triadl triad3 triad2 sides ;
: G triad4d sides post

.
r

right triadl sides triad4

TING T I NG ;
Exercise 3: It is easy to construct English alphabets this
way. The question is, how many primitive instructions are
needed to construct all the 26 upper-case letters in this 5
x 7 block format? How about the other characters?

Exercise 4: In principle, we can construct all the Chinese
characters using similar techniques. However, most Chi-
nese characters require an enlarged 16 x 16 block format;
the more complicated Chinese characters may require a
24 x 24 block. Try to construct a few simple Chinese

Dr. C.H. Ting is a noted Forth authority who has made many significant contribu-
tions lo Forth and the Forth Interest Group. His tutorial series will continue in
succeeding issues of Forth Dimensions.
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Styling Forth to
Preserve the
Expressiveness of C

Mike Elola
San Jose, California

Part of the expressiveness of other programming lan-
guages arises from their syntaxes for function calls and
expressions. These syntaxes help “package” the flow of
function parameters in a way that is easily distinguished.

Most programming languages use one syntax format for
function calls, one syntax format for conditionals, and one
syntax format for expressions. C is no exception.

The code that is packaged as C expressions always

5 generates a single value. This property of expressions is of
. key importance. Expressions may be very simple, as exem-
| plified by a variable reference. Or they may be very complex,

such as when they use nested expressions. Nevertheless,

| they are all ultimately reduced to a single value by various

binary and unary operations. This packaging lends the
programmer an easy “handle” with which to recognize the
processing of values and the flow of parameter values into
various called routines.

Sometimes parentheses are used to package expressions
as part of their incorporation into other units. For example,

| parentheses appear around expressions that are part of the

syntax for branch and loop conditionals. Various syntax

Consider the boost
we’d enjoy if Forth compiled
C source code.__.._

formats are thereby combined, yet it is easy to see where one
ends and the next begins.

Besides its simplicity, Forth's freedom from multiple
syntax formats—and its freedom from symbols reserved for
distinguishing between them—is the source of some confu-
sion regarding where parameter values are being generated

are a requirement for the use of functions.

Because we are able to recognize unary and binary
arithmetic operations and properly ascertain their input
parameters within algebraic notations, many languages do
not require us to write code only using a function-oriented
syntax. Nevertheless, most languages leave us the ability to
create a purely functional syntax. By declaring a function for
addition, for example, we can write the following code:
add(1,1).

Switching to a functional syntax may be considered a
partial step towards (Forth) postfix notation. Forth has taken
a bigger step towards a uniform syntax by abandoning
support for algebraic notation. Nevertheless, Forth hangs on
to the symbols of algebraic notation as the names of its
functions. As long as most languages continue to define those
symbols as infix arithmetic operators, they cannot allow you
to redefine those symbols as the names of functions.
Generally, you cannot expect to use code such as: +(1,1).
Forth offers more freedom in the names you assign to
functions due to its relative lack of reserved meanings for
symbols.

C shows a slight movement in the direction of syntax
consolidation, particularly if you look at its repetition con-
structs that have been packaged as functions, such as
while () and for () loops. For its conditional statements,
however, C still resorts to an alternate format involving open
and close braces around blocks of code. Forth does a more

| thorough job of integrating its language elements into a

and where they are being consumed (see Figure One-a). |
Stack comments are an attempt to make up for the lack of |

visual cues (Figure One-b), but they are not always provided.
As you declare a C function, you also declare how
references to it will appear as enforced by the compiler: each
of its input parameters must be separated by a comma, and
no more and no less than the declared number of parameters
must be supplied (each of the correct declared type).
However, for most arithmetic operations, an algebraic
syntax format is fashionable. In that notation, the generation
and passing of parameters lacks the delimiting symbols that
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uniform syntax format.

Regularization steps such as these are what have led to
Forth’s simplicity and compactness: it abandons support for
several syntax formats, streamlining its parsing requirements.
While most of the accompanying effects are good ones, there
might have been undesired consequences. We may be
overlooking how a simpler parsing model has impaired the
expressiveness of Forth source code.

Taken together, these two measures afford levels of
expressivencss that Forth cannot equal: (1) the use of
parentheses for subexpressions that generate values; and (2)
the use of parentheses and commas to distinguish the end,
the beginning, and the continuation of input parameters for
a function. Statements such as
%i”,

printf (*The value is: int (sgrt (3))
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convey clearly how many parameters are passed to each |

function and what happens with the values returned by each
of the functions. Furthermore, the notation is very compact.

How clear is it that PRINTF in Figure One-a requires two
stack parameters? The misleading visual cues in Figure One-
a suggest two unary functions, one (SQUARED) that takes a
number as its input and another (PRINTF) that takes a string
as its input. Forth code needs to make dear how many par-
ameters are being passed to each routine. Stack comments are
the usual way we go about this, as shown in Figure One-b.

| Figure One-a.
3 SQUARED
‘ "The value is: %i" PRINTF
| Figure One-b.
3 SQUARED
’ "The value is: %i"
( product addr -- ) PRINTF

The coexistence of several syntaxes in languages such as
C contributes to the easy visual subdivision of source code,
improving its readability. You can easily subdivide such code
into spans that correspond to the generation of values and
spans that correspond to the consumption of values, with
reserved symbols punctuating the various transitions. Since
many programmers have strong math backgrounds, they
learn this notation quickly and view it in a friendly way.

So expressiveness is largely a matter of packaging.
Furthermore, Forth’s syntax fails to package code so that the
flow of parameters is unmistakable.

These concerns prompted me to take up the challenge of
designing a new Forth styling convention.

Styling Forth for Parameter Flow

Our indentation of Forth code provides important cues
about the start and end of a control-flow construct. I propose
that we also use indents to provide visual cues about the start
and end of a block of code that generates the parameters for
a Forth routine. (I spent considerable time trying to coerce
other symbols to serve the same purpose, but T had no
success.)

The startling—or perhaps amusing—part of this pro-
posed indenting convention is that it is a postfix convention,
since input parameters always precede the Forth word that
uses them. Furthermore, any code that generates parameters
is placed on its own line to help distinguish parameter
generation as well as in a C function call—where commas
serve a similar purpose. The result is postfix indents that are
part of a vertically oriented specification:

3
SQUARED
“The value is:
PRINTF

%i"

To make the format of the code less vertical and
somewhat more compact, consider placing any unary opera-
tion on the same line as the code that generates its input—
but still allow a separate line for the duo:

3 SQUARED

“The value is: %i”

November 1992 December

| favor, they could help someone learning Forth. If a uniform

PRINTF
This styling convention looks its silliest when we write
simple arithmetic expressions:

3
4

+

While I don’t expect these conventions to win immediate

syntax is a Forth virtue, then a uniform indenting convention
can also be a virtue, despite its occasional spaciousness.

A Pretty-Printer Challenge

Rather than enter code according to these style guide-
lines, we could develop a pretty printer to create the
indentations. (This is left as an exercise for the reader, as
usual.)

Such a tool would help make all prior Forth code more
expressive, regardless of the originator’s reluctance to in-
clude stack comments. Further, such a tool will suggest how
we might create source-code checkers that can detect stack
errors without debugging effort.

To make the pretty printer even more challenging,
consider that Forth source code typically contains stack-
manipulating words that introduce artificial separation be-
tween input parameters and the routines that use them. For
example, try adding parameter-flow indentations to the
following code:

One solution might be to introduce comments 1o show
the values that were unprocessed, yet were specified in
positions that made them appear as if they would be
processed:

4
6
SWAP (
4 ) i
8
*
X
6 )

A Way to Eliminate Forth’s Stack Operators

Because every expression and every function in C
generates one and only one value, I anticipate that the
conversion of C programs to Forth will never require Forth’s
stack operators.

The only occasion when a value may be generated in the
wrong position on the stack is when an expression or
function is able to generate more than one value (which they
cannot do in languages such as C). With the extra flexibility

Forth Dimensions



HARVARD SOFTWORKS
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

MEET THAT DEADLINE ! 1!

¢ Use subroutine libraries written for
other languages! More efficiently!

* Combine raw power of extensible
languages with convenience of
carefully implemented functions!

* Faster than optimized C!

* Compile 40,000 lines per minute!
(10 Mhz 286)

e Totally interactive, even while
compiling!

* Program at any level of abstraction
from machine code thru application
specific language with equal ease
and efficiency!

¢ Alter routines without recompiling!

¢ Source code for 2500 functions!

* Data structures, control structures
and interface protocols from any
other language!

* Implementborrowed features, more
efficiently than in the source!

e An architecture that supports small
programs or full megabyte ones
with a single version!

¢ No byzantine syntax requirements!

* Qutperform the best programmers
stuck using conventional languages!
(But only until they also switch.)

HS/FORTH with FOOPS - The only
full multiple inheritance
interactive object oriented
language under MSDOS!

Seeing is believing, OOL’s really are
incredible at simplifying important
parts of any significant program. So
naturally the theoreticians drive the
idea into the ground trying to bend all
tasks to their noble mold. Add on
OOL’s provide a better solution, but
only Forth allows the add on to blend
in as an integral part of the language
and only HS/FORTH provides true
multiple inheritance & membership.

Lets define classes BODY, ARM, and
ROBOT, with methods MOVE and
RAISE. The ROBOT class inherits:

INHERIT> BODY

HAS> ARM RightArm

HAS> ARM LeftArm
If Simon, Alvin, and Theodore are
robots we could control them with:
Alvin ’s RightArm RAISE or:
+5 -10 Simon MOVE or:
+5 +20 FOR-ALL ROBOT MOVE
The painful OOL learning curve
disappears when you don’t have to
force the world into a hierarchy.

WAKE UP!!!

Forth need not be a language that
tempts programmers with "great
expectations”, then frustrates them
with the need to reinvent simple tools
expected in any commercial language.

HS/FORTH Meets Your Needs!

Don’t judge Forth by public domain
products or ones from vendors
primarily interested in consulting -
they profit from not providing needed
tools! Public domain versions are
cheap - if your time is worthless.
Useful in learning Forth’s basics, they

" fail to show its true potential. Not to

mention being s-1-0-w.

We don’t shortchange you with
promises. We provide implemented
functions to help you complete your
application quickly. And we ask you
not to shortchange us by trying to
save a few bucks using inadequate
public domain or pirate versions. We
worked hard coming up with the ideas
that you now see sprouting up in other
Forths. We won’t throw in the towel,
but the drain on resources delays the
introduction of even better tools that
could otherwise be making your life
easier now! Don’t kid yourself, you are
not just another drop in the bucket,
your personal decision really does
matter. In return, we’ll provide you
with the best tools money can buy.

The only limit with Forth is your
own imagination!

You can’t add extensibility to fossilized
compilers. You are at the mercy of
that language’s vendor. You can easily
add features from other languages to
HS/FORTH. And using our automatic
optimizer or learning a very little bit
of assembly language makes your
addition zip along as well as and often
better than in the parent language.

Speaking of assembler language,
learning it in a supportive Forth
environment virtually eliminates the
learning curve. People who failed
previous attempts to use assembler
language, often conquer it in a few
hours using HS/FORTH. And that
includes people with NO previous
computer experience!

HS/FORTH runs under MSDOS or
PCDOS, or from ROM, Each level includes
all features of lower ones. Level upgrades:
$25. plus price difference between levels.
Source code is in ordinary ASCII text files.

HS/FORTH supports megabyte and larger
programs & data, and runs as fast as 64k
limited Forths, even without automatic
optimization -- which accelerates to near
assembler language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminate
headers without recompiling. Compile 79
and 83 Standard plus F83 programs.

PERSONAL LEVEL $299.

NEW! Fast direct to video memory text
& scaled/clipped/windowed graphics in bit
blit windows, mono, cga, ega, vga, all
ellipsoids, splines, bezier curves, arcs,
turtles; lightning fast pattern drawing
even with irregular boundaries; powerful
parsing, formatting, file and device I/O;
DOS shells; interrupt handlers;
call high level Forth from interrupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file search paths; format to strings.
software {loating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4
words, 1..4 dimension var arrays;
automatic optimizer delivers machine
code speed.

PROFESSIONAL LEVEL $399.
hardware floating point - data structures
for all data types from simple thru
complex 41) var arrays - operations
complete thru complex hyperbolics;
turnkey, seal; interactive dynamic linker
for foreign subroutine libraries; round
robin & interrupt driven multitaskers;
dynamic string manager; file blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $499.
Metacompiler: DOS/ROM/direct/indirect;
threaded systems start at 200 bytes,
Forth cores from 2 kbytes;

C data structures & struct+ compiler;
MetaGraphics TurboWindow-C library,
200 graphic/window functions, PostScript
style line attributes & fonts, viewports,

ONLINE GLOSSARY $ 45.

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

FOOPS+ with multiple inheritance $ 79.
TOOLS & TOYS DISK $79.
286FORTH or 386 FORTH $299,
16 Megabyte physical address space or
gigabyte virtual for programs and data;
DOS & BIOS fully and freely available;
32 bit address/operand range with 386.
ROMULUS HS/FORTH from ROM § 99.

Shipping/system: US: $9. Canada: $21.
foreign: $49. We accept MC, VISA, & AmEx



of one routine generating multiple outputs comes the
possibility that other routines may require the same param-
elers to be supplied in an alternate sequence.

This suggests that one way to rid Forth of its stack
operators is to exclusively define words that generate no
more than one parameter. This imparts to Forth the nota-
tional granularity needed to give back control of stack
configuration (or parameter flow) through notational means:
you merely order your code to reflect how you want the
stacked parameters ordered.

Benefits of the Verbosity Requirements of C

In C, each item in the input parameter list of a function is
filled by an expression—and an expression must always
produce exactly one value. This correspondence helps
generate dynamic syntax requirements for each function call
that must be satisfied: you must always call the function in
a consistent manner by specifying an expression for each of
its declared parameters.

InC, the flow of parameters cannot be factored across two
routines—the way they can in Forth—-at least not notationally.
In Forth, we are free to compile definitions where there is no
mention of missing inputs. Even though MOD requires two
parameters, we are free to compile the following definition
of MOD®, in which the missing parameter for MOD becomes
an input requirement for the dedlared routine, MOD6:

: MOD6 6 MOD ;

The same level of factoring granularity is available in C,
but the code must be written more verbosely: you must
explicitly specify all of the input parameters that flow into
each called routine. Notationally and otherwise, there can be
no mistaking the fact that a modulus operation requires two
parameters. So C requires the explicit specification of both
inputs for the modulus operation, aided by a placeholder that
represents the input parameter supplied to MOD6.

/* code that once compiled can */
/* be linked into numerous appli- */
/* cations without redefinition. */

MOD6 (input)

int input;

{

return (input % 6);
}

Comparatively, the Forth notation is abbreviated. This
helps afford Forth its macro-assembler feel.

[ fear that this short-cut has also inhibited the develop-
ment of Forth libraries. 1 feel that a Forth library mechanism
should be created that can faithfully match the features of C
libraries,

Looking Forward
Whereas the evolution of the many other programming
languages tends to reveal an incremental refinement of
earlier ones, Forth seems to be a major departure from its
peer languages. To help demystify Forth to others, we need
to note its similarities to other languages as often as we can.
The indentation styling I have suggested adds visual cues to
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Forth code such that it becomes much easier to correlate |
Forth code to that of other languages.

Another helpful exercise is to try to translate C source
code into Forth. Such an exercise should make clear further
similarities and differences between these two languages.

This article could be considered an introductory one in a
series focused on the issues of translating C to Forth. I do not
feel adequately qualified for that undertaking. Perhapsitcan |
take the form of an article contest.

Consider the boost we might enjoy if Forth supported the |
compilation of C source code as a readily available option.
Forexample, we could decisively lay to rest the old argument
that there are too few Forth programmers to support Forth.

(Fast Forthward, continued from page 27.) |

There are a variety of means whereby direct threading is |
implemented. On a typical Complicated Instruction Set |
(CISC) processor, all interpreters are carefully designed tobe |
compact and speedy, since they are compiled inline every |
time the Forth system lays down a colon definition in the
dictionary.

The Zilog Z880 (Super 8) took another approach, dedi- |
cating a set of registers to the emulation of the Forth virtual
machine and providing the one-byte opcodes ENTER (“nest”),
EXIT (“unnest”) and NEXT in microcode on the processor
itself.

Another form of threading commonly used on advanced |
microprocessors such as the 68000 is Subroutine Threading.
A subroutine-threaded Forth possesses colon definition
bodies which are pure assembly code. The typical call-by-
address scheme of Forth compilation is implemented in
machine-code subroutine calls to the CFAs of called defini-
tions. As the entire body of every definition, code or colon,
compiles down to code, there is much latitude for a smart
compiler to optimize by inline expansion of short definitions
instead of call compilation.

There are also Token-Threaded Forths, where addresses
refer to entries in a jump table which contains the actual hard
adresses where the code resides.

And finally, there are the “Silicon-Threaded” Forths,
where the instruction set of the processor and ils call
mechanism are designed to suit the peculiarities of Forth. The
Novix, the Harris RTX Series, and the Silicon Composers SC32
all implement decoding logic which decides if an instruction
is an address call or a machine instruction depending on the
state of certain bits in the instruction. The result of this scheme
is the fastest execution speeds obtainable for threaded code.

The arbitrary categorization performed in the above
paragraphs is by no means exhaustive. What are we to call,
for example, William “Mitch” Bradley’s CForth83, a Forth
system primarily aimed at *NIX systems, in which the user
dictionary is JSR-Threaded but the kernel is a gigantic C- |
language “switch” statement?
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Backburner code. 8051 assembler (see articie, pages 38-39). I

index

600 8051 assembler/primary locad block
601 8051 assembler/secondary load block
602 support

603 virtual array support
604 revectored NUMBER

605 operand definition

606 operand vectoring

607 operand vectoring

608 vector definition

609 vector definition

610 destination vectoring
611 instruction definition
612 instruction classes
613 instructions

614 instructions

615 instructions

616 instructions

617 vectors

618 vectors

619 vectors

620 vectors

621 vectors

622 vectors

623 vectors

624 vectors

625 vectors

626 vectors

block 600
0 ( 920910/8051 assembler/primary load block)

1 ( support) 602 603 THRU
2 ( application) 601 LCAD
3
4
5 ( initialization) * ([NUMBER] ‘NUMBER !
6
7 EXIT
8
9 current memory reguirement above FORTH nucleus & electives:
10 13 547 bytes
11
12
13
14
15
block 601
0 ( 920910/8051 assembler/secondary load block)
1 ( operand definition) 605 LOAD
2 ( redefined NUMBER ) 604 LOAD
3 ( operand vectoring) 606 607 THRU
4 ( vector definition) 608 609 THRU
5 ( destination vectoring) 610 LOAD
6 ( instruction definition) 611 LOAD
7 ( instruction classes) 612 LOAD
8 ASM DEFINITIONS
9 ( instructions) 613 616 THRU
10 FORTH DEFINITICNS
11 ( vectors) 617 626 THRU
12
13
14
15
block 602
0 ( 920910/support) HEX
1 : FORGET [*] (NUMBER) °‘'NUMBER ! FORGET ;
2 : EMPTY [*'] (NUMBER) °‘'NUMBER ! EMPTY ;
3
4 001B VOCABULARY ASM
5
6 : CCONSTANT ( ¢) CREATE C, DOES> ( - ¢) ce ;
7
8 VARIABLE <BASE>
9 : .5 BASE @ <BASE> ! HEX .S <BASE> @ BASE ! ;
10
11
12
13
14
15
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block 902
0 FORGET
EMPTY

is redefined to accommodate the revectoring of NUMBER
is redefined to accommcdate the revectoring of NUMBER

vocabularies already defined or reserved in 8086 polyFORTH:
normal use: 0001 FORTH 0013 ASSEMBLER 0015 EDITOR
metacompilation: 0071 FORTH 0017 HOST 0179 ASSEMBLER

8051ASM specifies a vocabulary linked to the vocabulary FORTH

CCONSTANT provides a byte-size constant

W@ W W

<BASE> preserves the value cf BASE during stack display
11 .5 is redefined to display the stack in hexadecimal and then
return to the previous numeric base
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block 603 block 903

0 ( 920910/virtual array support) 0 VARRAY names the first block of the virtual array residing in
1 2400 CONSTANT VARRAY 1 an MS-DOS file at the specified offset in the FORTH block map
2 : VH { - a) VARRAY BLOCK ; 2 VH obtains the block buffer address of the array pointer
3 : VHERE ( - n) VH @ ; 3 VHERE returns the array pointer, kept in the first cell of the
4 : VADDRESS ( elem - a) 1024 /MOD VARRAY + BLOCK + 2+ ; 4 array: the pointer is the number of the next available byte
5 : VC! { c elem) VADDRESS C! UPDATE ; 5 VADDRESS takes an element number and returns the corresponding
6 1 VC@ ( elem - c) VADDRESS C@ ; ] block buffer address; the 2+ skips over the array pointer
7:VvC, (¢ VHERE VC! UPDATE 1 VH +! UPDATE ; 7 VC! stores a byte at the specified byte offset in the array
8 : VSTORE ( n} 0 DO VC, LOOP ; 8 VCR fetches a byte from the specified byte offset in Lhe array
9 9 VC, stores a byte into the next available position in the array
10 : VDUMP BASE @ <BASE> ! HEX VHERE ?DUP IF 10 and advances the array pointer
1 i | 0 DO I VC@ U. LOOP THEN <BASE> @ BASE ! ; 11 VSTORE stores the specified number of bytes from the stack inte
12 : VFORGET 0 VH ! UPDATE ; 12 the array
13 13 VDUMP displays the array, up to the current value of the array
14 ( initialization) VFORGET 14 polnter; the array is displayed in hexadecimal
15 15 VFORGET resets the array pointer
block 604 block 904
0 ( 220910/revectored NUMBER ) 0 [NUMBER] 1is a modification of the vectored routine (NUMBER) ;
1 : [NUMBER] (NUMBER) 1 SEQUENCE ! ; 1 encounter of a data or address byte sets SEQUENCE to 1, but
2 2 does not alter either byte of OPERANDS ; this modification
3 3 allews the assembler to discriminate between instructions of
4 4 the form (data) (operand) (mnemonic) and those of the form
5 5 (operand) (data) (mnemonic) ; otherwise, the single operand
6 6 would always leave its value in the first byte of OPERANDS ;
7 7 CAUTION: before EMPTYing the dictionary or FORGETting the
8 8 application, NUMBER must be revectored to (NUMBER) or the
9 9 system will crash, since forgetting the application will also
10 10 forget |[NUMBER] ; thus, for safety, EMPTY and FORGET have
11 11  been redefined to accomplish this; to speed loading, the
12 12  initial revectoring to [NUMBER] 1is done after the
13 13 application has been loaded
block 605 block 905
0 ( 920910/cperand definition} HEX 0 execution of an instruction loads the class into CLASS

CVARIABLE CLASS 1 SEQUENCE is used in logging the order of operand encounters; it
VARIABLE SEQUENCE 2 is zeroed before assembly of each instruction; see PREPARE

1
2
3 : 2FIRST ( = n}) SEQUENCE DUP @ 1 ROT ! ; 3 IFIRST obtains from SEQUENCE the value 0 when executed by the
4 CREATE OPERANDS 2 ALLOT 4 first operand, then stores in SEQUENCE the value 1, which
5::0 (¢ CCONSTANT 5 is returned when ?FIRST is executed by the second operand
6 DOES> CR ?FIRST OPERANDS + C! ; 6 OPERANDS 1is a byte array which holds, in order of encounter,
7 ASM DEFINITIONS 7 the operand numbers of the operands, if any, which apply to
8 1 :0¢# 2 :0R 3:0C 8 the instruction being assembled; it must be cleared before
9 4 :0 BRO 5 :0 @R1 9  assembly of each instruction; see PREPARE
1¢ 6 :0 RO 7 :0 R1 8 :0 R2 9 :0 R3 10 :0 is a defining word for operands; associated with each
11 CA :0 R4 OB :0 RS 0C :0 R6 0D :0 RY 11 operand is a constant, the operand number; the value zerc is
12 OE :0 @A OF :0 AB 12 reserved for the operand NULL ; at run time, the cperand
13 10 :0 DPTR 11 :0 @A+DPTR 12 :0 BA+PC 13 :0 @DPTR 13 stores its number into the appropriate byte of >VECTCRS
14 {14 :0 /) 14 the operands, defined with :0 , are compiled into the
15 FORTH DEFINITIONS 15 vocabulary ASM
block 606 bleck 906
0 { 920910/operand vectoring) 0 #CLASSES holds the number of potential instruction classes
1 11 CONSTANT #CLASSES { z-dimension) 1 #OPERANDS holds the number of potential operands, including
2 20 CONSTANT #OPERANDS 2  NULL , which corresponds to instructions with no operands
3 #OPERANDS CONSTANT #X ( x-dimension) 3 #X , #Y , #XY , & AELEMENTS are named to clarify index
4 §#OPERANDS CONSTANT #Y ( y-dimension) 4 calculations for accessing the 3-dimensional array
5 5 VECTORS is a 3-dimensional array which associates a vector with
6 #OPERANDS #OPERANDS * CONSTANT #XY 6 each combinaticn of lst operand, 2nd operand, & instruction
7 #0OPERANDS #OPERANDS * #CLASSES * CONSTANT #ELEMENTS 7 class
8 8 ELEMENT computes the linear element number from the operand
9 CREATE VECTORS ( 3-dimensional array) #ELEMENTS 2* ALLOT 9 numbers and the instructicn class
10 10 >VECTOR returns a pointer to the specified element of VECTORS
11 : ELEMENT ( x y z - elem#) #XY * SWAP #X * + + ; 11 !VECTOR stores a pfa into the specified element of VECTCRS
12 : >VECTOR { elem# - a) 2* VECTORS + ; 12 AVECTOR fetches a pfa from the specified element of VECTORS
13 13
14 : IVECTOR { a elem#) >VECTOR ! ; 14
15 : @VECTOR ( elem# - a) >VECTOR @ ; 15
bleck 607 bleck 907
0 920910/cperand vectoring) 0 NULL>VECTORS makes NULL the default vector; executing it before
1 : NULL ; 1 loading operand behaviours alleows onc to load only vectors
2 : NULL>VECTORS #ELEMENTS ¢ DO ('] NULL I !VECTOR LCCP ; 2 corresponding to valid combinations of operand pairs and class;
3 3 invalid pairings for a particular instruction will not always
4 { initialization) NULL>VECTORS 4 execute NULL , since, in general, not all operand behaviours
5 5 defined for a particular class are valld all for instructicns
6 ; LALL CR #ELEMENTS ¢ DO 1 @VECTOR 10 U.R LOOP ; 6 in the class; If classes are limited to a single instructien,
7 : .CLASS { cl) #CLASSES 1- MIN CR #Y 0 DO % 0 DO 7 all invalid pairings will be trapped, in which case NULL may
8 DUP I J ROT ELEMENT @VECTOR 10 U.R LOOP LOOP DROP ; 8 be replaced with the word : INVALID ." invalid operand(s)" ;
9 9 .ALL displays in linear sequence | (x0,y0,z0), (x1,x0,20}, ...,
10 : .OPERANDS BASE @ <BASE> ! HEX 10 (xn,y0,20), (x0,y1,z0), (x1,y1,z0), ... , (xn,yn,zn) | all
11 CPERANDS DUP C@& U. 1+ C@ U. <BASE> @ BASE ! ; 11 elements of VECTORS
12 12 .CLASS displays in llnear sequence all elements of VECTORS
13 13  corresponding to the specified instruction class; since the
14 14 class typlically is input manually, it is checked for validity
15 15 .OPERANDS displays OPERANDS , for diagnostic purposes
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block 608 block 908

0 ( 920910/vector definitlion) 0 :V 1is a defining word for cperand/class vectors; it expects cn
1 : :V { opl op2 cl}) : LAST @ @ CFA 2+ 1 the stack the operand numbers of the first and second
2 ROT ROT 2SWAP SWAP 2SWAP ELEMENT [VECTOR ; 2 cperands, respectively, fcllowed by the instruction class; it
3 3 creates a colon definition and leads inte the appropriate
41 4 element of VECTORS the pfa of that colen definitien
5 5
& EXIT ]
7 pfa ¢l op2?2 opl 7
8 a z y X need z Y x a 8
9 - 9
10 ROT ¥ a ] o 10
11 ROT z ¥ a X 11
12 ZSWAP a x z Y 12
13 SWAP x a z Yy 13
14 2ZSWAP 2z y X a 14
block 609 bleock 909
0 ( 920910/vector definition) HEX 0 these byte constants facilitate the definition of vectors
1 1 CCONSTANT =4# 1
2 2 CCONSTANT =A 3 CCONSTANT =C 2 ~ causes the full name to be complled; polyFORTH normally
3 3  complles only the first 3 characters of the name and the
4 4 ~ CCONSTANT =@RO 5 ~ CCONSTANT =@R1 4 length, so that the names =8R0 and =@R1 would be
5 5 indistinguishable
6 ©& CCONSTANT =RO 7 CCONSTANT =R1 6
7 8 CCONSTANT =R2 9 CCONSTANT =R3 7
8 OA CCONSTANT =R4 0B CCONSTANT =RS 8
9 0C CCONSTANT =R6 0D CCONSTANT =R7 9
1 10
11 OE CCONSTANT =RA OF CCONSTANT =AB 11
12 10 CCONSTANT =DPTR 11 CCONSTANT =@A+DPTR 12
13 12 CCONSTANT =@A+PC 13 CCONSTANT =@DPTR 13
14 ( 14 CCONSTANT =/) 14
block 610 block 910
0 ( 920910/destination vectoring) 0 (MODE) holds the pfa of the compilation word ( VSTORE or
1 VARIABLE (MODE) 1 or DISPLAY }
2 2 STORE is vectored to the previously-selected compilation word
3 : STORE ( n) (MODE) REXECUTE ; 3 (VC, or DISPLAY ); the argument passed on the stack is the
4 4 number of bytes to be compiled; the arqument is used by VC,
5 : DISPLAY .5 CR ABORT ; 5 and is discarded by DISPLAY
6 6
7 : >DISK [*')] VSTORE (MODE) ! VFORGET ; 7 DISPLAY displays and then clears the stack; note that assembled
8 : >DISPLAY [*] DISPLAY (MODE) ! ; 8 instructions, prior to compilation, are in the form of cne or
9 9 more bytes on the stack, in proper order fer compilation via
10 ( default) >DISPLAY 10 VvC,
11 11
12 12 >DISK vectors STORE te VSTORE , so that assembled
13 13 instructions are compiled to the virtual disk array VARRAY
14 14 >DISPLAY vectors STORE te DISPLAY ; no code is compiled
15 15
block 611 block 911
0 ( 920910/instruction definition} 0 PREPARE 1s executed before assembly of each instruection; it is
1 : PREPARE 0 SEQUENCE ! O OPERANDS ! : 1  executed at load time te prepare for the first instruction
2 2 ASSEMBLE uses the operand and class numbers to index into the
3 ( initlalization) PREPARE 3 array VECTORS , from which it obtains the pfa of a routine
4 4 correspending to the specific operands & sequence of encounter
5 : ASSEMBLE ( opc) OPERANDS DUP CE& ( x) SWAP 1+ CE ( y) 5 for the instruction being assembled; the opcode basis is left
6 CLASS C@ ( z) ELEMENT >VECTOR @EXECUTE PREPARE STCORE ; 6 on the stack by execution of the instructicn; assembled code
7 7 is compiled or displayed by the vectored rcutine STORE ;
8 : :INSTRUCTION ( opc cl) CCONSTANT C, 8 PREPARE precedes STORE to allow use of ABORT in DISPLAY
9 DOES> DUP C@ CLASS C! 1+ C@ ASSEMBLE ; 9 :INSTRUCTION defines instructions; it is executed by the
10 10 run-time behaviour of :CLASS ; the run-time behaviour of an
11 : :CLASS ( cl) CCONSTANT DOES> C@ :INSTRUCTION ; 11 instruction is to load CLASS , leave on the stack the basis
12 12 for the opcode, then invoke ASSEMBLE
13 13 :CLASS defines instruction classes; each instruction class is a
14 14 defining word for instructicns of that class; the run-time
15 15 behaviour of :CLASS executes :INSTRUCTION
block 612 block 912
0 ( 920910/instruction classes) HEX 0 OCLASS , ete are instructlon classes; each class is a defining
1 0 :CLASS OCLASS . 1 word for instructions of that class
2 1 :CLASS 1CLASS 2
3 2 :CLASS 2CLASS 3
4 3 :CLASS 3CLASS 4
5 4 :CLASS 4CLASS 5
6 5 :CLASS SCLASS 6
7 ©& :CLASS 6CLASS 1
8 7 :CLASS T7CLASS 8
9 8§ :CLASS BCLASS 9
10 9 :CLASS 9CLASss 10
il OA :CLASS ACLASS 11
12 0B :CLASS BCLASS 12
13 13
14 14
15 15
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block 613

0 ( 920910/instructions)
00 OCLASS NOP

03 OCLAS5 RR

13 OCLASS RRC
22 OCLASS RET

23 OCLASS RL

32 OCLASS RETI
33 OCLASS RLC
OCLASS JMP
OCLASS DIV
OCLASS MUL
CLASS SWAP
0OCLASS DA

~ OCLASS MOVC
14 OEOQ ~ OCLASS MOVX

HEX

L . R A

block 614
0 ( 920910/instructions)
70 1CLASS MOV

HEX

20
30
40

2CLASS
2CLASS
2CLASS
2CLASS
2CLASS
2CLASS
2CLASS
2CLASS

ADD
ADDC
ORL
ANL
XRL
SUBB
XCH
XCHD

W~ O N & L B

3CLASS

3CLASS

INC
DEC

lock 615
{ 920910/instructions)
QD0 4CLASS DJNZ

o

OV LN B B O

HEX

0BO 5CLASS CJNE
0BO
oCco
opo

6CLASS CPL
6CLASS CLR
6CLASS SETB

TCLASS JBC
JCLASS JB
7CLASS JNB

,.
QW m

W ks

[=N=-N-]

block 6lée
0 ( 920910/instructions)
40 BCLASS JC
50 BCLASS JNC
60 BCLASS JZ
70 BCLASS JNZ
80 BCLASS SJMP
0CO0 BCLASS PUSH
0D0 BCLASS POP

HEX

9CLASS LJIMP

2
2 9CLASS LCALL

1

- (S
Ui M OO0 U WA e

1 ACLASS AJMP
11 ACLASS ACALL

block 617
0 { 920910/vectors)
0 ]

-h 0

=DPTR Q
AB 0
RA+DPTR O

=A =@A+DPTR
A =@A+PC

=3 =@DPTR

=A =gRO

=A =gR1

=@DPTR =A

=@R0
£R1

e

=R -1 T R A RN

-

CCoCOoO0OQCQOO0O0OO0OCC
]

ns W

C
[t

vo.
v0o.01
vo.
va.03
vo.
v0.0s

0o

02

04

vo.o7
~ V Vo.
V0.09
vo.10
Vvo.
V0.12

08

11

1

e

0

WO WM

+ + +

b b e bl e e e b

[

s

T T

bleck 913

0 these are instruction mnemonics defined as class 0 instructions;

1 Lhe number preceding the instructlon delining word
is the basis for assembly of the opcode for the instruction

N A L

MAKE YOUR SMALL COMPUTER

THINK BIG

(We've been doing it since 1977 for IBM PC, XT, AT, P52,
and TRS-B0 models 1,3, 4 & 4P )

‘F“gn THE OFHC‘E“’ Simplify and speed your work
and I softwa are easy to
M0 e, ledger re. They are easy to use, powerful,

print-outs, site license costs
i ' Ralph K. Andrist, author/
on

OCLASS

F&STEH

FOR PROGRAMMERS — Buid

ing support. Modmm'hsmmsoumoode Famm
Macintyre, n}u Forhsﬂuwwm

puters were

SOFTWARE ERS — Efficient soft-
ware tools save time and money. MMSFORTI-I’:MHM:\
mmamwmminmm

Isastmel‘ora\mde

Lockh Tm!:'mlh and m..ummm

lets me
-" Stewart Johnson, Boston
AHANDLER-PLUS becauseit's

from $179.95

mm’ —InlethystemMonlym
FOKTMIT!MW

MILLER MICROCOMPUTER SERVICES
81 Lake Shore Road, Natick, MA 01760
(508/653-6138, 9 am - 9 pm)

momummm from $179.95
Needs only 24K compared to 100K for IC. C,
Pascal and others. Convert computer into a Forth virual
machine with sophisticated oﬂhed:horsndfehhdhoohm
can result in 4 to 10 times greater

mm—lmmmmsmmuumwm

Eomirmme 18

UTILITIES - Graphics, 8087 support and othec facifities.

and a little more!

THIRTY-DAY FREE OFFER — Free MMSFORTH
GAMES DISK worth $39.95, with purchase of MMSFORTH
System. CRYPTOQUOTE HELPER, OTHELLO, BREAK-
FORTH and others.

Call for free brochure, technical info or pricing detalls.

block 917

0 a behaviour is defined for each possible combination of class
1 and operand pair; invalid combinations are assigned the null
2  behaviour; the behaviours are arbitrarily named { Vz.xx for
3 "vector xx of class z"), the name is not used, except

4 for diagnostics; :{0) expects on the stack the following
5 order of operand and class numbers:

6 operandld operand2+ classé

7 the number left on the stack by the vector is the number of

8 bytes (opcode + data/address) to be complled; it is consumed
9 by STORE

10

11

12

13

4

15
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block 618 10 =A =R4 2 ~ :V V2.17 oc +1 ;

0 ( 920910/vectors) HEX 11 =A =R5 2 ~ :V V2.18 oD +1 ;

10 =@RO 1 ~ :Vv V1.01 16 + 2 ; 12 =A =R6 2 ~ :V V2.19 0E + 1 ;

2 0 =@R1 1 ~ :V V1.02 17 + 2 ; 13 =A =R7 2 ~ :V V2.20 oF + 1 ;

3 0 =R0 1 ~ :V V1,03 8 + 2 ; 14 0 =+ 2 ~ :V V2,21 3 +3;

4 0 Rl 1 ~ :V V1.04 19 + 2 ; 15

5 0 =R2 1 ~ :V V1.05 1A + 2 ;

6 0 =R3 1 ~ :V V1.06 1B + 2 ; block 623

7 0 =R4 1 ~ :V V1.07 1C + 2 ; 0 ( 920910/vectors) HEX

8 0 =RS 1 ~ :V V1.08 iD + 2 ; 1 0 =A 2 ~ :V V2,22 2+ 2;

9 © =R6 1 ~ :V V1.09 1E + 2 ; 2 =A 02~ :VV2,23 S+ 2
10 0 =R7 1 ~ :V V1.10 1IF + 2 ; 3 =A =4 2 ~ 1V V2.24 4+ 2 ;
71 =RRO 0 1 ~:V V.l 36 + 2 ; 4 =C 02~ :VV2.25 32+ 2 ;
12 =@R1 0 1 ~::VVl.12 37+ 2 ; S (=C =/ 2 ~ :VV2.26 60 + 2 ;)
13 =RO 0 1 ~:vvi.as 38 + 2 ; 6
14 =R1 0 1~ :V V1.4 39 + 2 ; 7 =@RO 0 3 ~ :V V3,01 6+ 1 ;
15 8 =@R1 0 3 ~ :V V3,02 7+1;

9 =R0O 0 3 ~ :V V3.03 8 +1 ;
block 619 10 =R1 0 3 ~ :V V3.04 9 +1;

0 ( 920910/vectors) HEX i 11 =R2 0 3 ~ :V V3.05 OA + 1 ;

1 =R2 0 1 ~ :vV V1.15 3A + 2 ; 12 =R3 0 3 ~ :V V3.06 08 + 1 ;

2 =R3 O 1 ~ :V Vl.16 3B+ 2 ; 13 =R4 0 3 ~ :V V3.07 cC + 1 ;

3 =R4 O 1 ~ v Vv1.17 3¢ + 2 ; 14 =RS 0 3 ~ :V V3.08 0D + 1 ;

4 =R5 0 1 ~ :v V1,18 3D + 2 ; 15

5 =R6 0 1 ~ :vV V1,19 38 + 2 ;

6 =R7 0O 1 ~:vvVvl, 20 3F + 2 ; block 624

7 =A =@RO 1 ~ :V V1.21 76 + 1 ; 0 ( 920910/vectors) HEX

8 =A =@R1 1 ~ :V V1.22 77 + 1 ; 1 =R6 03 ~ :V V3.09 OE +1 ;

9 A =RO 1 ~ :V V1,23 78 + 1 ; 2 =R7 03 ~ vV V3,10 OF + 1 ;
10 =A =Rl 1 ~ :V V1.24 79 + 1 ; 3 0 03 ~ :vv3.ll 5+ 2;
11 =A =R2 1 ~ :V V1,25 A+ 1 ; 4 =A 03 ~ :vVv3,i2 4+ 1 ;
12 =A =R3 1 ~ :V V1.26 7+ 1 ; 5 =DPTR 0 3 ~ :V Vv3.13 OA3 + 1 ;
13 =A =R4 1 ~ :V V1,27 C +1; 6
14 =A =RS 1 ~ :V V1.28 M+ 1 ; 7 =R0O 0 4 ~ :V V4,01 8 + 2 ;
15 8 =R1 0 4 ~ :V V4,02 9+ 2 ;

9 =R2 C 4 ~ :V V4,03 OA + 2 ;
block 620 10 =R3 0 4 ~ :V V4.04 oB + 2 ;

0 ( 920910/vectors) HEX 11 =R4 0 4 ~ :V V4,05 C + 2 ;

1 =A “R6 1 ~ :V V1,29 7E + 1 ; 12 =RS 0 4 ~ :V V4,06 oD + 2 ;

2 =A =R7 1 ~ :V V1.30 TF + 1 ; 13 =R6 0 4 ~ :V V4,07 OE + 2 ;

3 =@RO =A 1 ~ :V V1.31 86 + 1 ; 14 =R7 0 4 ~ :V V4,08 OF + 2 ;

4 =@R1 =A 1 ~ :V V1,32 87 +1 ; 15 0 0 4 ~ :V V4,09 S+ 3 ;

S =RO =A 1 ~ :V V1.33 88 + 1 ;

6 =Rl =A 1 ~ ;V V1.34 89 + 1 ; block 625

7 =R2 =A 1 ~ :V V1.35 8A + 1 ; 0 ( 920910/vectors) HEX

8 =R3 =A 1 ~ :V V1.36 88 + 1 ; 1 «@RO ~# 5 ~ :V V5,01 6 + 3 ;

9 =R4 =A 1 ~ :V V1,37 8C + 1 ; 2 =@R1 =§ 5 ~ :V V5,02 74+ 3;
10 =R5 =A 1 ~ :V V1.38 8> + 1 ; 3 =RO =f§ 5 ~ :V V5.03 8 + 3 ;
11 «R6 =A 1 ~ :V V1,39 8E + 1 ; 4 =Rl =§ 5 ~ :V V5,04 9+ 3 ;
12 =R7 =A 1 ~ :V V1.40 8F + 1 ; 5 =R2 =f 5 ~ :V V5,05 OA + 3 ;
13 =@RO =¢ 1 ~ :V V1.41 6+ 2 ; 6 =R3 =# 5 ~ :V V5,06 0B + 3 ;
14 =@R1 =¢ 1 ~ :V V1.42 T+ 2 ; 7 =R4 =§ S ~ :V V5.07 oC + 3 ;
15 8 =R5 =# 5 ~ :V V5.08 oD + 3 ;

9 =R6 =# 5 ~ :V V5,09 OE + 3 ;
block 621 10 =R7 =# 5 ~ :V V5,10 OF + 3 ;

0 ( 920910/vectors) HEX 11 =A =f§ 5 ~ :V V5,11 4 + 3 ;

1 =R0 =# 1 ~ :V V1.43 8 + 2 ; 12 =A 05 ~ :vVVs.12 5+ 3 ;

2 =Rl =4 1 ~ :V V1.44 9+ 2 ; 13

3 =R2 =# 1 ~ :V V1.45 OR + 2 ; 14

4 =R3 =# 1 ~ :V V1.46 0B + 2 ; 15

5 =R4 =% 1 ~ :V V1.47 oc + 2 ;

6 =RS =# 1 ~ :V V1.48 oD + 2 ; block 626

7 «R6 =# 1 ~ :V V1.49 OE + 2 ; 0 ( 920910/vectors) HEX

8 =R7 =4 1 ~ :V V1.50 OF + 2 ; 1 006 ~ :VV6.01 24+ 2 ;

9 0 01~ :V V1,51 15 + 3 ; 2 =A06 ~ :V V6,02 44 + 1 ; ( 44 for A CPL ; 24 for A CLR )
10 ¢ =4 1 ~ 1V V1,52 S+ 3, 3=C06 ~ :VV6.03 3+1;
i1 0 =A 1 ~ :V V1,53 85 + 2 ; 4
12 0 =C 1 ~ :V V1.54 22 + 2 ; 5 007 ~ :vyv7.01 37
13 =A 01 ~ :V V1.5 75 + 2 ; 6
14 =C 01~ :VV1.56 32 + 2 ; 7 008~ :VV8.01 2 ;

15 8
9 009 ~ :vVooOl 3
block 622 10

0 ( 920910/vectors) HEX 11 ( 0 0 0OA ~ :V VA.01 ;)

1 =A =§ 1 ~ :V V1.57 4+ 2 ; 12

2 =DPTR =# 1 ~ :V V1,58 20 + 3 ; 13

3 14

4 =A ~@RO 2 ~ :V V2.11 6+ 1 ; 15

S =A =@R1 2 ~ :V V2.12 7+1;

6 <A =RO 2 ~ :V V2.13 8 +1;

7 =A =R1 2 ~ :V V2.14 9+ 1 ;

8 =A =R2 2 ~ :V V2,15 OA + 1 ;

4 =A =R3 2 ~ :V V2.16 oB + 1 ;

b —— -
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Some Assembly

Required...

Conducted by Russell L. Harris
Houston, Texas

As promised, with this column we begin an expedition
into the realm of embedded systems. According to the
ancient proverb, a journey of a thousand miles begins with
a single step. Our first step, as you will shortly see, is directly
ontoa figurative “cow pie.” (Those of you unfamiliar with the
term obviously have never walked through a pasture in
which cattle graze.)

A Rational Rationale

The nature of Forth, as well as the nature of embedded
systems, necessitates the occasional use of assembly lan-
guage. Although hand assembly is possible, it is tedious and
prone to error. An assembler is almost always a worthwhile
investment. Also, designing and coding an assembler is one
of the better ways to gain familiarity with the instruction set
of a processor.

While it is possible to utilize an assembler which is
external to the Forth environment, the convenience of an
assembler integrated with Forth and the ease (in general)
with which such a tool may be created, combine to make the

There are processors for which
this task can become an
arduous and irksome chore.

writing of assemblers a fairly common activity among Forth
programmers. Forth programmers experienced in metacom-
pilation typically will write an assembler upon first encoun-
tering a new processor. The assembler then can serve both
as the means to port Forth to the new platform and as the
resident assembler for the new Forth system.

Consistent Inconsistency

The art of assembler design admits of many interpreta-
tions. I find most appealing the approach of Forth, Inc., as
illustrated by the 8080 assembler in Starting Forth. The
source for polyForth assemblers I have seen typically occu-
pies less than half a dozen screens. However, such compact-
ness is possible only when the processor instruction set
consistendy follows patterns.

If a processor has a reasonably consistent instruction set,

November 1992 December

an assembler is neither a lengthy nor a difficult undertaking.
However (and here is where the cow pies come in), there are
processors for which the task can become an arduous and
irksome chore, rather than a stimulating exercise. Such,

unfortunately, is the case for the 8051 processor family, the |

family with which we shall deal. The 8051 instruction set is |

a hodgepodge, difficult to handle by any means.

Seeing an upcoming need (that of a potential client) for |

a Forth system for the 8051 family, I decided to assault two
birds with one stone—hence, our project: an 8051 assembler.
Were my client not already committed to the 8051 family, our

present and future endeavours would be based on a |

Motorola processor, such as the 68HC11. However, I cannot
at present manage a parallel effort with both platforms, so,
unless some patron wishes to rescue us by engaging my
services for programming in the Motorola environment, we
are doomed to the wastelands of Intel. Circumstances such
as this have left our civilization burdened with such ill-
conceived contrivances as the segmented memory architec-
ture of the 80x86, the QWERTY keyboard, and Word Perfect.
But then, thats life. (Note: The author types on a Dvorak
keyboard and does all his writing with Microsoft Word.)

The Nitty-Gritty

The accompanying screens contain the basis of an
extensible 8051 assembler which, in its present state, com-
piles all 8051-family instructions, except for a couple of
pathological cases. The assembler is written in polyForth
ISD-4/MS-DOS for the 8086/8088. An entire instruction is
built on the stack before being compiled. Included in the
code is support for a virtual array on disk, into which the
assembled code may be compiled. The assembler uses
postfix notation, and operands must be separated by spaces,
rather than by commas. Otherwise, the opcode mnemonics
and operands are as specified in the appropriate Intel
documentation. Some examples of valid syntax are the
following instructions:

@A+DPTR JMP A ¥ 25 XRL
A 32 41 CJNE @GRO # 57 2 CJNE
5 C MOV C & MOV
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The assembler is based on active operands, a table of
execution vectors, and a mechanism (a toggle and a two-byte
array) for tagging the first operand encountcred. Named
operands (#, A, @RO, R1, etc.) are active, in the scnse of

| having a run-time behaviour other than that of CONSTANT.

I

Execution of a named operand loads either the first or the
second byte of the array OPERANDS with the value of the
operand and sets the toggle SEQUENCE. The toggle initially
is clear, and is cleared after assembly of an instruction. If the
toggle is clear, the operand value is stored in the first byte of
OPERANDS; if the toggle is set, the value is placed in the
sccond byte.

A problem not initially envisioned was the need to
discriminate between instructions of the form

(mamed operand)(numeric operand)(mnemonic)

and those of the form
(numeric operand)(mamed operand)(mnemonic)

without requiring non-standard syntax. When parsing the
input stream, the text interpreler automatically converts
numeric operands (i.e., data or address bytes) and pushes
them onto the stack; thus, with no flag or mechanism o
indicate that a numeric operand precedes it, the named
operandalways storesits value into the first byte of OPERANDS.

In an effort to avoid redesign of the entire assembler, [
envisioned two approaches to the problem. The first was to
parse the input stream under program control, then attempt
to convert the resulting string, using CONVERT (because
CONVERT returns an address which can be used to determine
success of the conversion). Successful conversion would
automatically push numeric operands onto the stack. A string
which failed to convert would be either a named operand or
amnemonic. In such a case, juggling of the input pointer >IN
could allow the string to again be parsed and then executed.
I experimented for a while with this technique, but was
unable to devise a suitable implementation, so Lturned to the
second approach, which was to redefine NUMBER.

Upon loading the assembler, I revector NUMBER 10 a
version which, after performing a conversion, sets the toggle.
Thus, encounter of a numeric operand causes the following
namcd operand, if any, to place its valuc in the second byle
of OPERANDS. This solution does not interfere with the
ordinary function of NUMBER, but there is an associated
hazard, as detailed in the shadow block documentation.

I'have grouped the 8051 instructions into classes, in which
all members of a class follow the same pattern with respect
to operands. Instruction mnemonics (ADD, SUBB, XRL, etc.)
are defined with : INSTRUCTION. When executed, 2 mne-

| monic pushes onto the stack the basis or base value for the

opcode and calls ASSEMBLE. ASSEMBLE uses the instruction
class and operand numbers to index into the three-dimen-
sional array VECTORS in order to obtain an execution vector.
The typical run-time behaviour of a vector is to add to the
base value an offset corresponding to the operand(s), then
push onto the stack the number of bytes to be compiled.

to PREPARE, which clears both the toggle and the array
OPERANDS. Control passes thence to the vectored rouling
STORE, which disposes of the assembled code, now resident
on the stack. By default, STORE is vectored lo DISPLAY,
which simply displays and then clears the stack. STORE may
be redirected to VSTORE in order to compile the 8051 code
into a virtual array on disk. It is a simple matter to redirect
STORE to other destinations, e.g., a serial port.

Note the ease with which the virtual array is implemented:
a single source block does it all! The same approach may be
used for a virtual array in extended memory. Virtual memory
techniques are invaluable for darta logging applications, and
they form the basis of metacompilation.

An understanding of defining words is essential to the
mastery of Forth. Note the nesting of the defining words
:CLASS and :INSTRUCTION. Also note the manner in
which the defining words :0 and :V are used to define
operands and veclors, respectively. In spite of its unusual
appearance, operation of the defining word : Vis really quite
simple. :Vis nothing more thana : which calculates the PFA
of the word being defined and stores the PFA into the array
VECTORS. Otherwise, :V is used as one would use :.

Although the assembler is usable in its present state,
several amenities remain to be added, among them, labels
and high-level Forth control of loops and branching. Also, at
the cost of creating a separate class for each instruction (thus
expanding the array VECTORS), it should be possible to trap
all invalid combinations of operand and mnemonic.

This code will be posted on GEnie. If there is sufficient
interest, I will post an updated listing once my implementa-
tion is complete. Conversely, [ am interested to see what my
readers do, given this code as a basis or for inspiration.

Preview of Coming Attractions
For the next leg of our journey, you may want to pull out
your soldering iron and wire-wrap tool. Mctacompilation
and related subjects are easier to discuss and understand
when specificinstances are in view. Accordingly, column No.
5 will complete the preliminaries by documenting a repro-

| ducible, minimal-cost, 8032-based single-board computer

(SBO). Boasting little more than a serial and a parallel pon,
a reset button, and a full complement of RAM, the device is
an easy weckend project in the $50 range. It has becn
designed for software development in RAM, and requires
neither EPROM programmer nor ROM emulator. For those
with an aversion to hardware projects, I will attempt to find
a source of a suitable commercial SBC.
R.S.V.P.

Russell Harris is an independent consullant providing engineering, program-
ming, and technical documentation services lo a variety of industrial clients. His
main interesls lie in wriling and teaching, and in working with embedded syslems
in the fields of instrumentation and machine control. He can be reached by phone
al 713-461-1618 or by mail at 8609 Cedardale Drive, Houslon, Texas 77055.
Caveal: His GEnic address is RUSSELL H).

“A rose by any other name would still bave thorns.”

Aftler ASSEMBLE executes the vector associated with a Code beg;nsonpage 33 andca” a!SObe downfoaded ]

particular combination of class and operands, control passes | from the Forth RoundTable on GEnie. |
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Fourteenth Annual

FORML CONFERENCE

The original technical conference
for professional Forth programmers, managers, vendors, and users.

Following Thanksgiving, November 27 — November 29, 1992

Asilomar Conference Center

Monterey Peninsula overlooking the Pacific Ocean
Pacific Grove, California U.S.A.

Theme: Image display, capture, processing, and analysis

Papers are invited that address relevant issues in the development and use of Forth in image display, capture, processing,
and analysis. Additionally, papers describing successful Forth project case histories are of particular interest. Papers about other
Forth topics are also welcome.

Conference Registration

Registration fee for conference attendees includes conference registration, coffee breaks, notebook of papers submitted, and
for everyone rooms Friday and Saturday, all meals including lunch Friday through lunch Sunday, wine and cheese parties Friday
and Saturday nights, and usc of Asilomar facilities.

Conference attendee in double room—3$365 » Non-conference guest in same room—>3225 « Children under 18 years old in same
room—3155 « Infants under 2 years old in same room—{rec « Confcrence attendee in single room—3$465

Forth Interest Group members and their guests are eligible for a ten percent discount on registration fees.
Register by calling the Forth Intercst Group business office at 510-893-6784 or by writing to:
FORML Conference, Forth Interest Group, P.O. Box 2154, Oakland, CA 94621
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