$10 Volume XIV, Number 3 September 1992 October

Principles of Metacompilation

Structured Pattern Matching (II)

What’s in a Standard?

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R

Harris RTX 2000"™ 16-bit Forth Chip
+B or 10 MHz operation and 15 MIPS speed.
«1-cycle 16 x 16 = 32-bit multiply.
=1-cycle 14-prioritized interrupts.
«two 256-word stack memories.
«8-channel 1/0 bus & 3 timer/counters.

SC/FOX PCS (Parallel Coprocessor System)
+RTX 2000 industrial PGA CPU; 8 & 10 MHz.
«System speed options: 8 or 10 MHz.
+32 KB to 1 MB O-wait-state static RAM.
-Full-length PC/XT/AT plug-in (6-layer) board.

SC/FOX VME SBC (Single Board Computer)
«RTX 2000 industrial PGA CPU; 8, 10, 12 MHz.
«Bus Master, System Controller, or Bus Slave.
*Up to 640 KB O-wait-state static RAM.
+233mm x 160mm 6U size (6-layer) board.

SC/FOX CUB (Single Board Computer)
-RTX 2000 PLCC or 2001A PLCC chip.
+System speed options: 8, 10, or 12 MHz.
+32 KB to 256 KB O-wait-state SRAM.
+100mm x 100mm size (4-layer) board.

SC32'™ 32-bit Forth Microprocessor
+8 or 10 MHz operation and 15 MIPS speed.
«1-clock cycle instruction execution.
«Contiguous 16 GB data and 2 GB code space.
«Stack depths limited only by available memory.
+Bus request/bus grant lines with on-chip tristate.

SC/FOX SBC32 (Single Board Computer32)
+32-bit SC32 industrial grade Forth PGA CPU.
-System speed options: 8 or 10 MHz.
+32 KB to 512 KB O-wait-state static RAM.
+100mm x 160mm Eurocard size (4-layer) board.

SC/FOX PCS32 (Parallel Coprocessor Sys)
-32-bit SC32 industrial grade Forth PGA CPU.
+System speed options: 8 or 10 MHz.
+64 KB to 1 MB O-wait-state static RAM.
+Fulklength PC/XT/AT plug-in (6-layer) board.

SC/FOX SBC (Single Board Computer)
«RTX 2000 industrial grade PGA CPU.
-System speed options: 8, 10, or 12 MHz.
+32 KB to 512 KB O-wait-state static RAM.
+100mm x 160mm Eurocard size (4-layer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 208 California Avenue, Palo Alto, CA 94306 (415) 322-8763

September 1992 October

Forth Dimensions

C@

R>

Comitenis

Features |

; 6 The Little Help Engine
Frank Sergeant

|

| On-line help is de rigeur for many applications today, and even for some language
' implementations. Enhancing your programs in this way makes them easier to use, adds to their
l apparent completeness and value, and demonstrates the programmer’s awareness of user
i considerations. The author shares such a utility in his signature style: small, simple, and fully
functional.

l 1 3 Principles of Metacompilation, Part One
| B.J. Rodriguez

I

i

|

!

!

|

|

[

|

|

[

|

[

|

|

[

]

i

| ; : : N . |
Metacompiler mystique is compounded by the dearth of “what, why, and how” documentation |

for this powerful feature of Forth. This well-known Forth expert dispells the difficulties thathave |
prevented many Forth users from mastering the art and science of metacompilation. With such |
knowledge, you can experiment with re-tooled versions of your Forth, create a new Forth for I
|

|

|

|

|

|

|

f

[

f

|

|

]

|

|

|

I

| a different processor, and optimize embedded applications.

i 2 2 Structured Pattern Matching
i Ariel Scolnicov

i The code presented here implements the ground-breaking work published in our last issue.
. With it, you can define patterns to describe classes of strings, then use the search engine to find
| permutations of pattern combinations. A Forth user at Bell Labs writes that these definitions
[“...g0 a long way to implement Unix System Tools functionality” and form the basis of Forth
replacements for grep, sed, and awk.

| Debarfmen tsjf

| 4 Editorialccco.oie Endangered Species?
4 FIG Financial Statement
5 Letters Paging through RAM with CREATE ... DOES>,
Building on Monumental Analysis, the Future of Forth and FIG,

: Pattern Matching Rings True.

21 Advertisers Index

; new products.

! 32 Bestof GEnie On-line debate over what ANS Forth should include; different
ways to make a standard; impact of a standard on extant code.

37-41 reSource Listings Forth Interest Group, ANS Forth, classes, on-line resources,
FIG chapters.

43 On the Back Burner ... The Fireman Syndrome: going where no others dare.

Forth Dimensions @ PRINTED ON RECYCLED PAPER 3 September 1992 October

-

|
|
i
|
|
i
|
!
|
|
|
|
|
30 Fast Forthward The Changing Marketplace; plus Forth press coverage and !
i
|
|
|
|
|
|
{
E
|
]
|
|

Endangered Species?

Salmon swimming up-
stream is an overworked
analogy, but it may apply
well enough to those who
insist that large and complex
Forth systems contradict an
essential virtue of Forth. Sev-
eral items in this issue remind
us that, regardless of personal
and philosophical prefer-
ences, most programmers get
employment today by work-
ing in large systems. Those
who won'tadapt their Forthly
ways to accommodale the
demands of such environ-
ments don’t get that kind of
work, or mustabandonForth |
along with all its virtues.

Has anyone satisfactorily
answered the question,
“What is Forth?” Is it small-
ness and permutability, or is
it also elegance and a way of
thinking about software tools
and access to the fundamen-
tal hardware? Can we apply
its principles universally, to
feel equally potent in mult-
megmemoryandapplications?
Can we (we can, but should
we?) communicate with the
rest of the computing world,
or must we focus on standa-
lone (e.g., embedded) sys-
lems? Some say that small

applications that require no |

OS and litlle user interface
also comprise a smaller (and
less visible) market, one eas-
ily saturated both by prod-
ucts and by programmers.
They say, adapt Forth or die!
And maybe, just a little, they
want to prove that Forth re-
ally could be a contender...
Sull, those contrary and
willful salmon—just barely
cnough of them—do make
their way through opposing
currents, negotialing bears,
rapids, and man-made ob-
stacles. They still die, in the
end, but at least they get to
September 1992 October

the spawning before their
life cycle ends.

Can two different con-
| ceptualizations of Forth co-
1 exist under the same name,
or must one be right and the
. other doomed? Standards, a
FORML committee once de-
clared, are best viewed as
tools for communication; in
practice, Forth has many faces,
and each is beautiful in the
eyes of the implementor. As
always, Forth will be what
the Forth community delines/
allows it to be.

Maybe the question
should notbe “What is Forth”
but “Where is Forth at home?”
| Thatshifts the emphasis from
| an ideological to a practical
| note, while challenging Forth
ideologues totest their convic-
tions under contemporary
conditions. Practical tools,

after all, will always provide |
more income Lo more pro- |
- grammers. And, like spawn-
ing salmon, the more the
merrier and the more likely it
is that the species as a whole
will prosper.

Happily, while arguments
about survival of the fittest
continue, we have a wide
selection of Forth implemen-
tations, and they represent a
large spectrum of ideologies.
Some are optimized for tiny
embedded applications, oth-

ersare well-adapted toMacin- i
tosh, Amiga, and OS/2 envi- |

ronments, among many oth-
ers. Some are of the lean,
mean, roll-it-yourself variety,
while others are so feature-
rich as to entice even the
most spoiled programmers.

Regardless of your own

programming proclivities,
we'd like to hear from you.
FD needs articles and letters
from ils readers, who are

Tell us how you have used,
extended, or modified Forth:
share what you ve learned!

|
1
lr Forth Interest Group
|

Statement of Change in Financial Position

Apr 30, 1991 to Apr 30, 1992

[
always our main inspiration. |

! 4/30/91 4/30/92 Change
| ASSETS: + s Tacrease
| = Decrease
Current Assets:
i_ Money Market 41,782.37 33,956.22 -7,826.15
| Checking 1,936.78 2,845.94 909.16
Pending Foreign Clearing 51.67 51.67 0.00
Returned Checks Pending 72.00 110.00 38.00
Total Current Assets: 43,842.82 36,963.83 -6,878.99
! Inventory:
Inventory at cost 26,601.17 24,600.57 -2,000.60
Total Inventory: 26,601.17 24,600.57 -2,000.60
| Other Assets:
Deposit, United Parcel Service 200.00 200.00 0.00
Second Class Postal Account 192.41 174.51 -17.90
Accounts Receivable 2,099.00 1,285.50 -813.50
Total Other Assets: 2,491.41 1,660.01 -831.40
i TOTAL ASSETS: 72,935.40 63,224.41 -9,710.99
LIABILITIES:
Sales Tax 35.58 46.66 11.08
FD Dues Alloc to future months 41,518.51 30,289.20 -11,229.31
[TOTAL LIABILITIES: 41,554.09 30,335.86 -11,218.23
Lmﬁncjﬂ Reserve: 31,381.31 32,8838.55 1,507.24
4

Forth Dimensions
Veolume XIV, Number 3
September 1992 October I

Published by the |
Forth Interest Group

Editor
Marlin Ouverson }

Circulation/Order Desk |
Frank Hall |

Forth Dimensions welcomes
editorial material, letters to the edi-
tor, and comments from its readers.
No responsibility is assumed for
accuracy of submissions.

Subscription o Forth Dimen- |
sions is included with membership
in the Forth Interest Group at $40
per year (852 overseas air). For
membership, change of address,
and to submit items for publication,
the address is: Forth Interest Group,
P.O. Box 2154, Oakland, California
94621. Administrative offices: 510-
89-FORTH. Fax: 510-535-1295. Ad-
vertising sales: 805-946-2272.

Copyright © 1992 by Forth Inter-
est Group, Inc. The material con-
tained in this periodical (but not the
code) is copyrighted by the indi-
vidual authors of the anticles and by
Forth Interest Group, Inc., respec-
tively. Any reproduction or use of
this periodical as it is compiled or
mc articles, except reproductions
fornon-commercial purposes, with-
out the written permnission of Forth
Interest Group, Inc. is a violation of
the Copyright Laws. Any code bear-
ing a copyright notice, however,
can be used only with permission of
the copyright holder.

The Forth Interest Group

The Forth Interest Group is the
association of programmers,
managers, and engineers who create
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that
will advance the general state of the
art. FIG provides a climate of
intellectual exchange and bencfits
intended to assist each of its
members. Publications, conferences,
seminars, telecommunications, and
area chapter meetings are among its
adivities.

“ Forth Dimensions(ISSN (884-0822)
is published bimonthly for $40/46/
52 per year by the Forth Interest I
Group, 1330 S. Bascom Ave., Suile |
D, SanJose, CA 95128. Second-class i

!

|

postage paid at San Jose, CA. |
POSTMASTER: Send address
changes o Forth Dimensions, P.O.
Box 2154, Oakland, CA 94621."

Forth Dimensions

([Letiers

| Letters to the Editor—and to your fellow readers—are always welcome.
| Respond to articles, describe your latest projects, ask for input, advise
| the Forth community, or simply share a recent insight. Code is also
| welcome, but is optional. Letters may be edited for clarity and length.
i We want to hear from you!
|
{
|

. Paging through RAM
i with CREATE ... DOES>
Dear Marlin,

I enjoyed Leonard Morgenstern’s article on CREATE ...
DOES> (FD XIV/1). One aspect of the subject that might be
' worth a mention is the ability of a defining word to choose
from a selection of DOES> or ; CODE routines for the words
it defines. For example, many constants are small positive
numbers that can be contained in a single byte. This can be
exploited to economize on space:

: CONSTANT (n --)
CREATE DUP 256 U<
IF

C, DOES> CR EXIT
THEN
, DOES> @ ;

(-—— n))

| be redefined, leaving out the compile-time stack depth
| check):

Forth is the better programming
' philosophy; C has more
' subroutine libraries. Both
' together would be the optimum.

|
|
|
|
|
! Or in assembler (the following is in F83, but ; CODE must
i
|
|
i

]' : CONSTANT (n -—-) (-— n)
| CREATE DUP 256 U<
|
C, ;CODE
2 [W] AL MOV
0 # AH MOV
AX PUSH
NEXT FORTH]
THEN
, ;CODE
2 [W] PUSH
NEXT END-CODE

|
|
| In theory, any constant could be accommodated in a
§

Forth Dimensions

single byte by storing only the low-order byte with the
defined word and having the high-order byte supplied by the
appropriate DOES> or ; CODE routine. On some processors,
this can be done in assembler without incurring any execu-
tion-speed penalty. In practice, there are seldom enough
constants in any particular range (except for 010 255) to make
the space overhead of the extra code worthwhile.

An exception to this occurs in the case of ROMable
variables, whose data fields are in an area of memory
separate from the main dictionary. At run time, such a
variable is effectively a constant whose value is the address
of the assodiated data field. A simple high-level definition
might be:

: VARIABLE (--) (-- addr)
CREATE HERE (R)

; 2 ALLOT(R)

DOES> @ ;

where HERE (R) and ALLOT (R) play the same role in
relation to the data area of memory that HERE and ALLOT
perform with respect to the main dictionary (“R” stands for
RAM—cleverly distinguishing it from ROM). Since many
variables may have data fields on the same 256-byte page of
RAM, it can make sense to provide a separate DOES> or
; CODE routine for each page used. When I have employed
this technique in the past, T have used explicit RAM addresses
in the definition of VARIABLE, but Morgenstern’s NUMBER -
MACHINE has inspired a more generalized form:

HEX

: HALF-PAGER
(addr --) (-- page-aligned-addr)
CREATE (QFF00 AND , IMMEDIATE
DOES> DUP @ 80 ROT +! OFFO00 AND
STATE @ IF [COMPILE] LITERAL THEN ;

A word defined by HALF-PAGER always returns a page-
aligned address, but it takes two references to flip it over to
the next page. Itis state smart, so it can be used in high-level
Forth or assembler.

HERE (R) HALF-PAGER RAMPAGE
VARIABLE (--) (-- addr)
CREATE HERE(R) 2 ALLOT(R) DUP

OFF00 AND
DUP RAMPAGE =
IF DROP C, DOES> CR RAMPAGE
OR EXIT THEN
DUP RAMPAGE =
IF DROP C, DOES> C@ RAMPAGE
OR EXIT THEN
DUP RAMPAGE =
IF DROP C, DOES> C@ RAMPAGE
OR EXIT THEN
(...repeat for however many pages of RAM...)
DROP , DOES> @ ;

(Continued on page 10.)
September 1992 October

App Hewe to Your ArpLicATIONS

The Little

Help Engine

Frank Sergeant
San Marcos, Texas

I wanted on-line Help for my latest project, the Bare
Bones EPROM Programmer kit. The clearer the documen-
tation, the happier the users and the easier the technical
support. Here is the code in Pygmy Forth for the Help
system, along with a discussion of various alternatives and
enhancements. You can use this approach with just about
any Forth system to add Help to your own applications.

What should happen when F1 is pressed? Pop up the
message “Read The Manual?” No, we need a richer facility,
but without spending too much time or memory on it.

The Basics
Later we will add some features, but first let’s consider
a simple Help system. Pressing PgDn or PgUp moves
through the entire Help system sequentially. Pressing a

number key (i.e., 0 to 9) jumps directly to a sclected topic. l

Pressing Esc (escape) exits the Help system. It must be easy
for the developer to add and change the text and the links
between topics. Changing the text does not require re-
building or re-compiling the application. Thus, the Help
“engine” is independent of the specific text and applica-
tuon.

What should happen when
F1 is pressed? Pop up the
message “Read The Manual?”
No, we need a richer facility...

The Help system is invoked from application code by
specifying a range of Forth blocks, as in:

3000 3031 HELP

HELP then clears the screen and displays the first 15 lines
of the first block (block #3000 in the example above). The
next block to be displayed depenas on the key the user
presses. As mentioned above, PgUp and PgDn move
sequentially through the allowable range of blocks, and
Esc ends the Help session. The last line of the block
conlains the block numbers 1o jump to if the user presses
the keys 0 to 9. These destinations are in plain ASCII, five

September 1992 October

digits per number, with a single space between numbers.
If any other key is pressed, HELP beeps and ignores it.
Since both the text and the links are in plain ASCII format,
no special compilation step is needed. Type the text and
any destination numbers with your regular block editor. To
allow the uscr to jump from the current block, give him a
numbered list of choices and put the associated destina-
tions on the bottom line of the block.

The entire Help engine consists of just five or six Forth
words and takes very little space in the dictionary, no
matter how simple or fancy the Help text may be. See
Figure One for the source code.

_' NUM (a # -- n) is a replacement for

_l NUMBER (a —- n). Your Forth system may already have
such a word. If so, use it instead. Unfortunately, my
NUMBER takes a counted string (and actually uses the
count), and I do not wish to embed a count into the Help
blocks. Later I will probably change my NUMBER to take an
address and count. Meanwhile I use NUM for this purpose.
The variable HELP# (-- a) holds the number of the
current Help block.

INDEX@ (choice -- next-help-scr#) uses the
choice number of 0 1o 9 to index into the list of numbers
on the bottom line of the current Help block. Each number
occupies five characters and is followed by a space. For
example, the number associated with choice three starts 18
bytes from the beginning of the last line. The word
-LEADING cats leading spaces, so we can omit leading
zeroes. We must stll right-justify the numbers in their
proper five-byte fields. Alternatively, we can use ~-TRAIL~
ING to eat trailing spaces, and left-justify the numbers.
Unused choices may be left blank.

.HELP (—-) clears the screen and displays the first 15
lines of the current Help block.

Based on the key the user presses,
NEXT-HELP# (key -- new-scr#) proposesanumber

|
i
|
|
|
1
|
|
l
|
i
|
|
|
|
i
I
i
!
I
|
1
| for the next Help block to be displayed.
i

6

i
|
i

Forth Dimensions

| Figure One. All the code necessary for a simple Help Engine. |

|
|
|
|
|

lkey 1 jumps to screen 5.
|field, follow each number by a space.

file HELP.SCR

scr # 2000
|EXIT

Help System Summary
Display the first 15 lines of the current help screen.
Wait for a keypress:
Esc ends the help session.
PgUp or PgDn moves sequentially through help screens.
0-9 selects a new help screen to jump to.
When jumping to a screen, the key 0-9 is used as an index

See bottom of this screen for an

Leading zeroces are

i
|
|
|
|
|
| VARIABLE HELP#
l
l
|
|
|
|

|optional.

|

| Example:

112345 00005 00000 345 2341 75 16 77 64432 119
|

scr # 2001

| (Help NUM HELP#)

(replacement for NUMBER that uses an address and count)

: NUM (a # - n})

DUP PAD C! PAD 1+ SWAP CMOVE () PAD NUMBER >

(block # of current help screen)

|
| =
|
|
I
|
|
|
I
|
|
|

scr # 2002
| (Help

INDEX@)

| { Choose next help screen from list at bottom of current screen)

INDEX@ (choice - next-help-scr#)

6 * (ie 6 bytes per choice number)
HELP# @ BLOCK (ie starting address of current help screen)
[15 64 *] LITERAL + (ie start of last line)

+ { addr-of-selected-number)
5 -LEADING (a #) (ie eat any leading spaces)

NEXT DROP ;

NUM ;
scr # 2003
| { Help .HELP)
|
| (show the 1lst 15 lines of current help screen)
|
| JHELP (# -)
| CLS (clear screen)
| HELP# @ BLOCK (a)
| 15 FOR (a)
| DUP 64 -TRAILING TYPE CR (type a line)
| 64 + (advance to next line)
|
|
|
|
|

|into the last line of the current help screen to find the number|
|of the next help screen.
|example, where pressing key 0 jumps to screen 12345 and pressing]|
Right justify numbers in a 5-character|

Forth Dimensions 7

l

I

HELP (lst-scr# last-
scr# --) puts it all to-
gether, displaying the first
block, collecting keystrokes,
and moving to the next block.

I've spread the code out
with extra lines and screens
and comments to make it more
readable, but you can prob-
ably crowd it onto a single
screen if you wish.

Alternatives

The simple system de-
scribed above is easy loimple-
ment, surprisingly powerful,
and takes about 336 bytes of
dictionary space. However, it
has some limitations. First,
the text displayed is limited to
15 lines of 64 characters. This
can be fancied up by sur-
rounding the text with a box,
the title “HELP,” and a mes-
sage at the bottom suggesting
which keys could be pressed
next. See the alternate defini-
tion of . HELP in Figure Two.

Perhaps 15lines of 64 char-
acters are enough. It forces
you to be concise when you
create the text, or to spread it
out in bite-sized pieces among
several screens. This may well
improve the ease of use and
the clarity of the system from
the user’s viewpoint.

Another limitation is the
ten direct-jump destinations,
one for each of the digits 0 to
9. A list of 15 or 20 destina-
tions must be broken down
into groups and subgroups so
that, at each level, you have
no more than ten choices.
Since humans are usually more
comfortable with a list begin-
ning with one than with zero,
you may wish to further limit
the number of choices to only
nine.

If we need more than nine
or ten choices, we can allow
letters and/or larger numbers.
This requires several key-

September 1992 October

strokes from the user and a
more complex Help engine.
The single keystroke is easier
on the user, I think, and on
the programmer. Various
other approaches, such as
making certain words appear
in bold, and tabbing to them,
could be tried, but I think
they cost too much in com-
plexity for what they give. All
inall, pressing a key between
0 and 9 is preity convenient.

The limitation of 15 lines
by 64 characters can be got-
tenaround, and may be worth
doing at times. For example,
you might sct up the Ilelp
blocks in pairs, where 16
lines of the first and eight
lines of the second are dis-
played. Then you have lots
of room remaining on the
second block to associate let-
ter or digit keypresses with
destinations. Some combina-
tion of these variations should
handle just about any Help
system need.

Backing Up

This is a hierarchical, di-
rect-access system, not purely
sequential. As such, it might
be nice to be able to back-
track. Three possibilities come
to mind. The first is to stack
each screen as we move O
the next. Then, whenever the
we press Esc, we back up to
the previous screen, until we
are at the root. Then Esc exits
the Help system. This is no
good: If we traverse the en-
tire system sequentially, we
surely should not nced to
revisit every single screcen
again just to get out of Help.

A more reasonable ap-
proach is to stack only the
screens we jump from. When
we move sequentially with
PgUpand PgDn, nothing gets
stacked. As before, Escbacks
up, but to the last place we
Jumped from. This could be

September 1992 October

scr # 2004
| (Help

|
!
|
NEXT-HELP# (key - scr#) |
|
|
|
|

NEXT-HELP#)

1
[
|

(propose a new help screen number) i

|

HELP# @ SWAP (old-scr# key)
DUP 201 (PgUp) = IF DROP 1- EXIT THEN
DUP 209 (PgDn) = IF DROP 1+ EXIT THEN
'9 BETWEEN IF
' = (ie >DIGIT, convert character to a number) |
INDEX@ ({ and then to a block number) |
SWAP DROP EXIT THEN |
DROP (old-scr¥) ; (for illegal key return old-scr#) |

(ie increment)
{ ie decrement)
DUP '0

REPEAT (1st last key)

AND (1st last flag) ({ must be in-range and different)
POP SWAP (1lst last scr# flag)
DROP BEEP THEN
DROP 2DROP ;

IF HELP# ! ELSE (1st last)

scr # 2005 |
| (Help HELP) |
|: HELP (1lst last -) I
| OVER HELP# ! (make the 1lst screen the current help screen) |
| BEGIN (lst last) I
| .HELP (display the current help screen) | |
| KEY DUP 27 - i
| WHILE (while not Esc) ||
| NEXT-HELP# (convert the key to a possible next screen) | |
| (1st last new) PUSH 2DUP (lst last lst last) |
| RE@ ROT ROT BETWEEN (ie is new scr# in-range?) | |
| R@ HELP# @ - (ie is new scr# different from current#?) |
| |
| |
I |
I I
| |
| i

Figure Two. Alternate definitions for a fancier Help en-g_ine.”_- i

scr # 2006

| (Help

Alternate version of .HELP)

|
I
|: .HELP ({
|
|

|
I
(show the 1lst 15 lines of current help screen) | ‘
|
[
|

(propose a new help screen number)

=)

CLS (clear screen) |

W e e e ———— Help -—=—=-==-—m—mmmm oo | 1

| m——— " CR 64 SPACES ." |" CR I’
| HELP# @ BLOCK (a) |

| 15 FOR (a) ||
| DUP 64 TYPE ." |" CR (type a line) |
| 64 + (advance to next line) |
| NEXT DROP 64 SPACES ." |" CR |
| M e e e Esc—--PgUp--Pghn--0 th|
jru 9 " : |
I |

scr # 2007
| { Help Alternate version of NEXT-HELP#) |
I

|
|
: NEXT-HELP# (key - scr#) |
|
|

HELP# @ SWAP (old-scr# key)

DUP 201 (PgUp) = IF DROP 1- EXIT THEN (ie increment)

DUP 209 (PgDn) = IF DROP 1+ EXIT THEN (ie decrement) | |

I

|

i

|

| DUP 27 (Esc) = IF 2DROP 0 INDEX@ EXIT THEN (ie backtrack) |

| DUP '0 '9 BETWEEN IF |

| 0 - (ie >DIGIT, convert character to a number) |

| INDEX@ (and then to a block number) |

| DUP IF SWAP THEN DROP (retain old-scr# if new=0) |

| EXIT THEN |

| DROP ; |
| I
| N

8 Forth Dimensions

scr # 2008
| (Help Alternate version of HELP, Esc backs up through tree)
|: HELP (1lst last -)

OVER HELP# ! (make the lst screen the current help screen)
BEGIN (1lst last)
.HELP (display the current help screen)
KEY
NEXT-HELP# (convert the key to a possible next screen)
(1st last new) ?2DUP WHILE (while screen# is not zero)
R@ ROT ROT BETWEEN (ie is new scr# in-range?)
R@ HELP# @ - (ie 1s new scr# different from current#?)

AND (1lst last flag) (must be in-range and different)
POP SWAP (1lst last scr# flag)
IF HELP# ! ELSE DROP BEEP THEN (1st last)

|
|
]
|
|
i
| PUSH 2DUP (1lst last 1lst last)
|
|
|
|
|
| REPEAT (1lst last) 2DROP ;

|

|

| showing the links on the bottom line of eachscreen. =
file EPROM.HLP
scr # 3000

|

| Use the PgUp and PgDn keys on the numeric keypad to browse
| sequentially through the help screens.

I

| Some screens have a list of numbered topics. To jump
ldirectly to a topic, press its corresponding number.

Press Esc to get out of HELP and return to the main menu.

|

|

|

| 1. Overview.

| 2. Copyright Notice.

| 3. Index of topics.

| 4. Definitions.

| 5. How to Program an EPROM.
| 00000 03003 03001 03002 03034 03005

|

scr # 3001
The Bare Bones EPROM Programmer

Programs, documentation, and printed circuit board
copyright (c¢) 1992 by Frank Sergeant
809 W. San Antonio Street
San Marcos, Texas 78666

1. Index of topics.
2. Overview.
3. Definitions.

|

|

|

|

|

|

|

| Press Esc to get out of HELP.
|

|

|

|

|03000 03002 03003 03034
|

scr # 3002

Power Supply

Serial Connector
Jumpers

EPROM Types

Buffers

How to Program an EPROM
How to Copy an EPROM
Converting Files
Diagrams

woLoohhs W

.

03000 03026 03014 03013 03004 03017 03005 03041 03008

Forth Dimensions 9

| How to Use the Help Systemj|

| Copyright Notice|

Index of Topics]|

|
|
|
|
|
|
|
|
|
|
|
I

S ——

Figure Three. Excerpts from the Bare Bones EPROM Programmer Help system, L

done by adding a variable to
keep track of the number of
jumps and by pushing the
jumped-from block number
to the return stack. This in-
creascs the flexibility of the
Help system and also its com-
plexity. It may be worth it.
A compromise is (o hard-
code the return path. Since
we may not wish to use
choice zero, we dedicate it
to the return screen. When-
ever Escis pressed, the zero-
choice jump is made, if it
exists. If it does not exist, the
Help system is exited. Thus,
no matter how the user gets
to the current screen, the
back-out path is fixed. If
there are just a few screens
that should return in one of
several different ways, de-
pending on how they were
reached, it would be pos-
sible to duplicate these
screens and give each one a
different return destination.
This is the method I have
used. Figure Two shows the
alternate definitions to do
this and Figure Three shows
part of the Help system text
from the EPROM project.

Conclusion
So, there you have it: an
easy way to add HELP to
your own applications, and
an illustration of the conve-
nience of Forth blocks.

Among other things, the author makes
EPROM programmers alffordable by ev-
eryone. Ifyou areinterestedin the EPROM
Programmer kit, from plans to partial kit
to fully assembled, sendaS A S.E. to him
at809W. San Antonio Street, SanMarcos,
Texas 78666 for a flier.

September 1992 October

(letlers, from page 5.)
A problem that is exercis-

ing me now is how to write a
version which does not need
the number of pages of RAM
to be predetermined, but con-
structs the necessary DOES>
or ;CODE routine for each
new page as itis encountered.
Any suggestions?

Yours sincerely,

Philip S.H. Preston

20 Warren Street

London W1P SDD England

Building on

Monumental Analysis
Dear Sir,

I'm impressed with Guy
Kelly’'s monumental analysis
of the performance of mul-
tiple Forths (#D X1II/6). 1 sus-
pect that his conclusion is right.
There isn’t enough perfor-
mance difference between
Forths to justify using perfor-
mance as a discriminant be-
tween versions.

Guy isto be complimented
on catching the timing impli-
cations of the 80x86 making
byte accesses at odd addresses
and word accesses at even

(Help Engine code, continued.)

addresses. I's documented by |

Intel, but not conspicuously.
And it’s easy to forget.

A couple of points...

1. There are cbvious typos
in Guy’s charts. Zen Sieve
performance lost a digit be-
tween Table Two and Table
Three. riFORTH is shown as
faster when making calls
within a loop than when run-
ning the same loop empty.

Others will build on Guy’s
work. Future workers could
probably use an errata sheet.

2. The Thread and Nest
columns are more meaningful
if the time in the Empty col-
umn is subtracted.

3. There is a risk that Sieve
is not a typical Forth program.
One wonders why the low-
level speed superiority of
riFORTH doesn’t translate to
clearly superior Sieve perfor-

September 1992 October

scr # 3003
|

] The Bare Bones EPROM Programmer is a simple,
|driven system for programming small EPROMs.
| programmer board and software that runs on an MS-DOS type

You must supply the proper voltages and, for heavy
|luse, you will want to plug a zero-insertion-force socket into
The programmer board connects through
|a serial cable to COM1 or COM2 of an MS-DOS computer.
| system allows you to read, erase, verify,
Two jumpers to the right of the EPROM must be set for

The menu system allows you to load

MS-DOS files and to convert to and from
and Motorola S1-89),

| computer.

|the machined-pin socket.

| EFROMs .
| the proper EPROM type.
| from, and to save to,

|various formats (Intel Hex,

|split a file into even and odd bytes.

|
|03001
I

Overview|
menu
It consists of a

A menu

examine, and program

and even to

scr & 3004
|
|

|The Bare Bones EPROM Programmer programs these four types of

| EPROMs :

|

| 2716
| 2764
I 27128
I 27256
|

(2K
(8K
(16K
(32K

X
X
x
=

|These four types will meet the

|Imicrocomputer systems.
|
|
|

8)
8)
8)

8) .

needs of the majority of small

Types of EPROMs|

| 03002
|
scr # 3005
How to Program an EPROM|
1. Turn off power to the board (Vpp first, then Vecc).
2. Set the 2 jumpers on the board for the current EPROM type.
3. Select the EPROM type and programming parameters.
4. Copy the Input File to the File Buffer.
5. Insert the EPROM.
6. Connect power to the board (Vecc first, then Vpp).
7. Re-initialize the board (main menu 23).

8. Verify EPROM is erased.
9. Program and verify EPROM.

03002 03026 03013 03006 03007 03022 03026 03023 03032 03033

scr # 3006

b B =

Set start, end,

with

03005 03004 09999 09999 03010

Select the EPROM type (main menu 1).

Select pulse width (main menu 2).

Select maximum number of pulses (main menu 3).
main menu 4-6 or 7-9.

Select the EPROM type and programming parameters|

|
|
|
|
|
I
|
|
|
i
|
|
|
|

]

10

Forth Dimensions

scr & 3007
Copy the Input File to the File Buffer|

1. Select the Input File (main menu 10).
2. Copy the Input File to the File Buffer (main menu 12).

|
I
|
|
|
|
03005 03023 03017 I
I

|
|
|
|
|
|
|
|
|

scr # 3008
Diagrams|

|
|
| 1. Component (teop) View of Board
| 2. EPROM Socket

| 3. The Power Connector

|

|

|

|

|

|
|
|
I
I
|
|
03002 03009 03011 03012 I
I

scr & 3009

| Component (top) View of Board |
[ETT | TTT = power connector |
[(Gnd, Vce, Vpp) | hhh = 16pin 4049 IC |
	a hhh TOTUTLTITIT,	mmm = 40pim microprocessor IC
	R hhh Mmmmmm (top)	eee = 28pin empty EPROM socket
1 G hhh TUmImInmm eceeee j	R = red LED	
mmnmmm eeeceee j	G = green LED	
(. bed n mmmmmm ecceece	a,b,c,d,f,g,i = resistors	
(mmmmmm r eeeeee k	n = capacitor
	£ mmmmmm r eeeeee k	xtl = ceramic resonator
1 g mmmmmm r eeeeee	SS = 9pin serial connector	
	S8 mmmmmm r eeeeee	rrr = resistor network
]	ss mmmmmm r eeeeee	33 = pgm/Vecc jumper
I	ss do sl (bottom)	kk = All/Vpp jumper
[1		
03008		
[|
scr # 3010

| Set start,
| |
|Main menu 4, 5, |
|decimal) let you specify the starting address, |
|and number of bytes to program. This lets you program just part]|
|of the EPROM if you wish. |
| |
|
|
|
|

end, #|

& 6 (for hex) or main menu 7, 8, & 9 (for

ending address,

|
|
03006
I

scr # 3011

| The EPROM Socket is the 28-pin socket on the right edge of board|
| 1.==\/--.28 1 not 28 |
| 214 127 <--- Here a 28-pin EPROM 2 used 27 |
| 3| |26 fills the entire socket. 3., ~—=\/—.26 |
| 4] 125 4] 125 |
| 5l 124 51 124 |
| 6] 123 Here a 24-pin EPROM ---> 6| 123 |
o711 1 122 fills only the lower 7 122
I8l 11 121 24 pins, leaving 4 8| | 1 121 |
9	120 empty pins at the top 9l I_I 120		
10	129 of the socket 10	119	
11		18 . 11	118
12} 117 12} 117			
I 13]	16 13	116	
14	115 14] 115		
03008			
l_ |

Forth Dimensions 11

mance. Is this a general phe-
nomenon, or is it due to some
feature of Sieve or a correct-
able weakness in iFORTH?

An alternative to measur-
ing Forth performance is to
calculate it on paper. A clear
understanding of the opera-
tion of the Intel Bus Interface
Unit look-ahead queue is
needed, but I recently ran tests
on a 4.77 MHz V-20 which
showed hand-computed val-
ues to be within 10% of actual
measured values Lo direct
threading (4% low) and for the
Laxen and Perry Virtual Ma-
chine (7% low for colon words,
right on for code words). With
more care and some Cross
checking, the results would
probably be better. Hand com-
putation of imes is mucheasicr
than explicit testing.

Sincerely,

Don Kenney

625 Kings Way

Canton, Michigan 48188

The Future of Forth
& the Forth Interest Group
Dear FIG,

Forth s, in my opinion after
careful language comparisons,
the best tool for intelligence
computing: neural network
simulators, natural language
translation software, object-
oriented knowledge bases with
artificial intelligence functions,
multi-media function coordi-
nation, etc.

Here are somesuggestions,
from the point of view of some
Forth users, for how to increase
the relative importance of Forth
in the language market:

Programming language
market situation

The overall distribution
volume is currently declining
forall programming languages,
including C. In the beginning
of computing, close to 100% of
computers sold were used at
(Continued on page 18.)

September 1992 October

HARVARD SOFTWORKS
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

MEET THAT DEADLINE ! !!

* Use subroutine libraries written for
other languages! More efficiently!

¢ Combine raw power of extensible
languages with convenience of
carefully implemented functions!

* Faster than optimized C!

* Compile 40,000 lines per minute!
(10 Mhz 286)

* Totally interactive, even while
compiling!

* Program at any level of abstraction
from machine code thru application
specific language with equal ease
and efficiency!

* Alter routines without recompiling!

* Source code for 2500 functions!

¢ Data structures, control structures
and interface protocols from any
other language!

¢ Implementborrowed features, more
efficiently than in the source!

* An architecture that supports small
programs or full megabyte ones
with a single version!

* No byzantine syntax requirements!

¢ Outperform the best programmers
stuck using conventional languages!
(But only until they also switch.)

HS/FORTH with FOOPS - The only
full multiple inheritance
interactive object oriented
language under MSDOS!

Seeing is believing, OOL’s really are
incredible at simplifying important
parts of any significant program. So
naturally the theoreticians drive the
idea into the ground trying to bend all
tasks to their noble mold. Add on
OOL’s provide a better solution, but
only Forth allows the add on to blend
in as an integral part of the language
-and only HS/FORTH provides true
multiple inheritance & membership.

Lets define classes BODY, ARM, and
ROBOT, with methods MOVE and
RAISE. The ROBOT class inherits:

INHERIT> BODY

HAS> ARM RightArm

HAS> ARM LeftArm
If Simon, Alvin, and Theodore are
robots we could control them with:
Alvin 's RightArm RAISE or:
+5 -10 Simon MOVE or:
+5 +20 FOR-ALL ROBOT MOVE
The painful OOL learning curve
disappears when you don’t have to
force the world into a hierarchy.

WAKE UP!!!

Forth need not be a language that
tempts programmers with ‘“great
expectations”, then frustrates them
with the need to reinvent simple tools
expected in any commercial language.

HS/FORTH Meets Your Needs!

Don’t judge Forth by public domain
products or ones from vendors
primarily interested in consulting -
they profit from not providing needed
tools! Public domain versions are
cheap - if your time is worthless.
Useful in learning Forth’s basics, they
fail to show its true potential. Not to
mention being s-l-o-w.

We don’t shortchange you with
promises. We provide implemented
functions to help you complete your
application quickly. And we ask you
not to shortchange us by trying to
save a few bucks using inadequate
public domain or pirate versions. We
worked hard coming up with the ideas
that you now see sprouting up in other
Forths. We won’t throw in the towel,
but the drain on resources delays the
introduction of even better tools that
could otherwise be making your life
easier now! Don’t kid yourself, you are
not just another drop in the bucket,
your personal decision really does
matter. In return, we'll provide you
with the best tools money can buy.

The only limit with Forth is your
own imagination!

You can’t add extensibility to fossilized
compilers. You are at the mercy of
that language’s vendor. You can easily
add features from other languages to
HS/FORTH. And using our automatic
optimizer or learning a very little bit
of assembly language makes your
addition zip along as well as and often
better than in the parent language.

Speaking of assembler language,
learning it in a supportive Forth
environment virtually eliminates the
learning curve. People who failed
previous attempts to use assembler
language, often conquer it in a few
hours using HS/FORTH. And that
includes people with NO previous
computer experience!

HS/FORTH runs under MSDOS or
PCDOS, or from ROM. Each level includes
all features of lower ones. Level upgrades:
$25. plus price difference between levels.
Source code is in ordinary ASCII text files.

HS/FORTH supports megabyte and larger
programs & data, and runs as fast as 64k
limited Forths, even without aulomatic
optimization -- which accelerates to near
assembler language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminate
headers without recompiling. Compile 79
and 83 Standard plus F83 programs.

PERSONAL LEVEL $299.

NEW! Fast direct to video memory text
& scaled/clipped/windowed graphics in bit
blit windows, mono, cga, ega, vga, all
ellipsoids, splines, bezier curves, arcs,
turtles; lightning fast pattern drawing
even with irregular boundaries; powerful
parsing, formatting, file and device I/O;
DOS shells; interrupt handlers;
call high level Forth from interrupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file search paths; format to strings.
software floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4
words, 1..4 dimension var arrays;
automatic optimizer delivers machine
code speed.

PROFESSIONAL LEVEL $399.
hardware floating point - data structures
for all data types from simple thru
complex 4D var arrays - operations
complete thru complex hyperbolics;
turnkey, seal; interactive dynamic linker
for foreign subroutine libraries; round
robin & interrupt driven multitaskers;
dynamic string manager; file blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $499.
Metacompiler: DOS/ROM/direct/indirect;
threaded systems start at 200 bytes,
Forth cores from 2 kbytes;

C data structures & struct+ compiler;
MetaGraphics TurboWindow-C library,
200 graphic/window functions, PestScript
style line attributes & fonts, viewports.

ONLINE GLOSSARY $ 45.

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

FOOPS+ with multiple inheritance $ 79.
TOOLS & TOYS DISK $79.
286FORTH or 386 FORTH $299,
16 Megabyte physical address space or
gigabyte virtual for programs and data;
DOS & BIOS fully and freely available;
32 bit address/operand range with 386.
ROMULUS HS/FORTH from ROM $ 99.

Shipping/system: US: $9. Canada: $21.
foreign: $49. We accept MC, VISA, & AmEx

Moving FortH, PART ONE

Principles of
Metacompilation

B.J. Rodriguez
Hamilton, Ontario, Canada

A. Introduction

This paper describes the workings of Forth
metacompilers, and one example, the T-Recursive Image
Compiler, in particular.

The paper will focus on:
* how 1o use the Image Compiler
» internal workings of the Image Compiler
» alternative approaches that have been or could be used

In this paper, “metacompiler” shall refer to Forth
metacompilers in general. “Image Compiler” shall refer to

I this particular implementation.

| 1. Why Metacompile?

There are three things a metacompiler can do, that
Forth’s ordinary compiler can't:

a) Re-creation of the Forth kernel. The “nucleus” of
Forth is inviolate once Forth is running. To improve
or alter this nucleus, a metacompiler must be used.

b) Cross-compilation. Ordinary Forth produces code for
the machine on which itis running. To create a Forth
kernel for a different processor, a metacompiler
must be used.

¢) Optimization of embedded applications. The Forth
compiler adds quite a lot of overhead to the kernel.
It is often desirable to dispense with the unneeded
code and data in memory-limited embedded
applications, To compile Forth without this “excess
baggage,” a metacompiler must be used.

2. Objectives of the Image Compiler
The Image Compiler project had three driving goals:

a) To recompile the Forth kernel. The reason for being,
and the ultimate test, of any metacompiler is the
recompilation of a full Forth kernel.

b) To compile an application of any complexity. Many
metacompilers can only compile a Forth kernel,
perhaps with simple extensions. The Image Compiler
should cope with all of the constructs which may
appear in a Forth application; particularly,

Forth Dimensions

13

vocabularies and defining words.

c) Toappearas close to “normal” Forth code as possible.
Many metacompilers require a special syntax or
lexicon, or require explicit patching instructions, in
the source code. The Image Compiler should accept
ordinary Forth source code as far as possible. When
exceptions to this rule are required, they should
resemble “normal” Forth as closely as possible.

B. A Session with the Image Compiler

To give a basic familiarity with the working of the Image
Compiler, this section describes a typical session. The
example used here is the metacompilation, on the IBM PC,
of a new Forth kernel for the Zilog Super8 microprocessor.

First, from DOS, the Forth environment is loaded and
executed. The Image Compiler (currently) uses the file-
based version of real-Forth for the IBM PC:

A:\> RFF
real-FORTH 1.3 2 7 88

The basic real-Forth utilities (editor, 8086 assembler,
etc.) are then loaded from screen three. This is a “master
load screen” which itself will cause many other Forth
screens (o be loaded.

3 LOAD

real-FORTH on MS-DOS
(c) 1978-88 by Charles Curley
6BE7 Bytes (hex) Dictionary space available.
iok

This creates the normal Forth programming environment.
To access the Image Compiler, real-Forth must be directed
to the MS-DOS file which contains its screens:

USING SUPERS8.SCR
iok

This file contains the Image Compiler, a Forth cross-
assembler for the Zilog Super8, and the source code for the

September 1992 October

Super8 Forth kernel. All of the compileraction is pcrformcd
by loading the “Super8 master load screen”™

64 LOAD
..very many messages, as each screen comprising the
image compiler and the Super8 Forth is loaded.

At the conclusion, a copy of the complete Super8 Forth
is stored in the PC’s memory. Since the download utility
supplied by Zilog runs independently under MS-DOS and
requires an Intel format hex file, it is necessary to write this
Super8 Forth image out to an MS-DOS file:

HEX 8000 2000 HEXFILE SUPERS8.HEX

We must, of course, know from prior experience in
setting up the source code, that the Super8 Forth’s origin
is 8000 hex, and that it is less than 2000 hex (8K) bytes long.
(The actual origin and length can be derived from the
Image Compiler, but that only serves to confuse the issue
at the moment.)

real-Forth is exited by invoking the native “monitor”
program (in this case, MS-DOS):

MON
A:\>

Now the Zilog development utilities can be invoked
and the hex file downloaded to the target hardware, as
described in the Zilog documentation.

C. The Working Environment

The computer which will do the work of metacompilation
is the Host machine.

The computer whose Forth we are creating is the Target
machine. The Target machine need not be physically
present or connected to the Host machine.

It is possible that the Host machine is also the intended
Target for the new Forth. One could use the Host's “old”
version of Forth, with a metacompiler, 1o create a “new”
Forth for the same computer.

1. The Host Machine

The Host machine must already have a working version
of Forth, and any programming tools (e.g., editors) that are
desired. It must have enough RAM to load the Image
Compiler and the data structures it builds.

a) memory usage
In addition to space for Forth and the programming
tools, the Host must have enough RAM for the Image
Compiler and the data structures it builds. This
amounts to about six Kbytes, plus roughly 16 bytes
per metacompiled word.

The source code for the Target machine will reside
on the Host’s mass storage, so sufficient disk space

must be available in the Host.

September 1992 October

14

| 2. The Target Machine

The output of the Image Compiler—the binary
“image” of the Target code—may be directed to
either RAM or disk. Their sizes must be adjusted

accordingly. '

b) vocabularies
The Image Compiler will reuse the names of many
words in the Forth kernel. To avoid confusion, these
are placed in a separate Forth vocabulary.

If the application being metacompiled is a new Forth
kernel, the names will be reused yet again. These are
placed in another vocabulary.

Finally, for each vocabulary defined in the Target’s
code, a new vocabulary will be needed in the Host.

The Image Compiler assumes that the Host's Forth
supports an expandable vocabulary tree (as fig-
Forth and real-Forth do).

The Target machine will not run any code during the
metacompilation process. It exists only as an abstraction.
It is possible to metacompile for a processor whose
hardware does not yet exist (although this poses a problem
for testing).

a) memory usage
The Target will have enough RAM 1o run the final,
metacompiled application. If the application is a
new Forth kernel, the memory requirement will
probably be on the order of eight Kbytes.

D. Accessing the Memory Space

The metacompilation will create a binary image of the
Target code. The Host needs to be able to both write and
read this “Target image.”

Figure One illustrates the Host machine’s memory |
space, and the image of the Target memory, for 16-bit Host |
and Target. (Host and Target both address 64K directly.)

1. Use
A new set of operators, analogous to Forth’s memory
reference operators, access the Target image:

T@ (a=--n) |
Given an address in the Target image, returns the cell
(processor word) stored there. Analogous to @. [

b { na==)
Stores the cell value n at address a in the Target image.
Analogous to !.

TC@ {a -——c¢c)
Given an address in the Target image, returns the byte
stored there. Like C@.

Forth Dimensions

Figure One. The target image. |

| NATIVE

S
Host machine Target machine’s I Selects the “native” Forth vocabulary in the Host machine.
|

0000 | Thus, to get the contents of the Target image Dictionary
| Pointer, use HOST HERE and to store a new value use HOST

| DB !,

FEFE

ca T@

ol

TCR
TC!

c, TC,

TC! (lleliagi=="lf)
Stores the byte value cat address a in the Target image. Like
el

T, (n)

Stores the cell value n at the “next” location in the Target
image, as determined by the Target’s diclionary pointer.
Like ,.

TC, i)
Stores the byte value ¢ at the “next” location in the Target
image.

These last lwo operators imply the existence of a
Dictionary Pointer for the Target image, just like the
Dictionary Pointer for the Host’s Forth dictionary.

DP Co==ai)
Returns the storage address of the Targels Dictionary
Pointer.

HERE (-- a)
Returns the contents (current value) of the Target’s Dictio-
nary Pointer.

(The Targel’s Dictionary Pointer words have the same
names as their Host Forth counterparts. They are stored in
a separate vocabulary.)

HOST
Selects the vocabulary containing the Image Compiler, and
all of the words to access the Target image.

Forth Dimensions

15

It may seem strange to say HOST when the Target image
operators are desired, or to say NATIVE as a synonym for
FORTH. The reason will become clear later, when other
uses for the names TARGET and FORTH will be found.

It would have been possible to re-use the names of the
fetch and store operators, since they are defined in a
separate vocabulary. However, “native” and “Target” fetches
and stores are so frequently mixed that the constant
switching of vocabularies would be cumbersome.

2. Implementation

The Target memory references are factored into a small
set of Forth words. This allows different representations of
Target memory to be easily implemented.

a) In Host RAM. The Target image is contained in an
array in the Host's memory. On a 64K machine, this
usually restricts the Target image to 8K or so.

In this (IBM PC) implementation, the Host Forth
occupies a 64K segment, and the Target Image
occupies a different 64K segment. CODE words are
defined to fetch and store to the image segment.
b) On Host disk. The Target image is stored in a
contiguous series of Forth disk “blocks.” This increases
the size of the target image, at the expense of speed.

The Forth virtual memory word BLOCK is used to
build the image fetch and store words. Note that a
cell reference must be built out of byte references,
to avoid problems with cells crossing block.
boundaries.

¢) By remote access to the actual Target system. The
Target machine is equipped with a simple resident
monitor program that allows memory to be examined
and modified over a serial (terminal) port. This is
connecled to the Host machine so that the image
fetch and store operators actually use the Target
memory. This offers the potential for interactive
debugging, at the cost of still more speed and
increased volatility. [11]

3. Issues
a) Byte swapping.
When the Host and Target processors are dissimilar,
it may be the case that the byte ordering they use for
word storage is different. For example, the IBM PC’s
8088 stores 16-bit values in memory as two bytes,
low byte first; while the Zilog Super8 stores 16-bit
values, high byte first. When this occurs, we refer to

September 1992 October

the Targel as being “byle-swapped” relative to the
[Tost.

Byte-swapping can be handled transparently, by
embodying this machine-dependency in the target
memory reference operators. For example, one
version of T@ can be wrilten for a byte-swapped
Target, and another T@ for a Target whose byte

ordering is the same as the Host's. (The byte |

operators, TC!, TC@, and TC, arc unaffected, of
course.)

This does require some discipline on the part of the
programmer, to use the memory reference word
which is appropriate to the data being stored. This
means avoiding programming “tricks” like using T !
to store two byte values in sequence. Such tricks are
rarely portable, anyway.

b) Different word sizes.
Another problem occurs when compiling to a machine
with a larger word size, e.g., creating a 32-bit 68000
Forth on a 16-bit IBM PC Forth. The Host machine
must deal with Target addresses, which of course

require the larger word size. Unfortunately, there is |

not yet an elegant solution for this.

One approach which has been used is to employ the |
Iost's double-precision (double-word) operators to |

manipulate Target data and addresses. This works,
but it requires a lot of work on the part of the

programmer, and it violates the objective of making |

the metacompiled source code look identical to

“normally compiled” source code. And, as any Forth |

programmer can attest, mixing single- and double-
precision operators on the stack is a considerable
headache.

Another solution, which at least preserves the
appearance of the source code, is to restrict the
metacompiler to a 64K segment of the Target space.
A new metacompiler variable is defined, which
represents the high 16 bits of all Target addresses.

Then, all of the memory reference operators add |

these bits to Target addresses. This adds some
complexily to the compiler, since it needs to know
if a value being appended to the dictionary is a
Target address, which requires the addition of the
high bits, or a data value, which does not.

Note that there is no problem when the Target word
size is smaller than the Host's. (This, perhaps, argues
for the use of a 32-bit host for metacompilation.)

E. Cross-Assembling

The most basic metacompiling [unction is cross-assembly.
All Forth kernels and applications must begin with a series
of assembly language “primitives.” Fortunately, the cross-
assembler is the simplest part of a metacompiler, and leads
September 1992 October

16

| Figure Two. Assembly. |

in Host

| : NOP, OFF C, ;
will be used in assembly as:
CODE TEST NOP,

kY
H %

which creates this 5
binary in the dictionary:

Host memory

4 | TEST | link | cfa | FF
|
f to assemble in Target
i NOP, OFF TC,
|
‘ will be used in assembly as:
i CODE TEST NOP,
' which creates this \‘.‘
= binary in the target's _
| dictionary: kY
i_ Target image “
1 4 | TEST | link | cfa | FF

The host must keep a dictionary pointer
for the image!

naturally to the “higher-level” functions.

1. Use

As in normal Forth, the assembler is stored in a separate
| vocabulary, invoked with the word ASSEMBLER.
1 Note, however, that there are now two assemblers
present in the Host computer: the Host's own “native”
asscmbler, probably loaded as part of its Forth package,
and the new cross-assembler for the Target machine. The
| latteris distinguished by making it partof the metacompiler’s
“branch” of the vocabulary “tree.” Thus:

| NATIVE ASSEMBLER
Invokes the Host machine's assembler.,

HOST ASSEMBLER
Invokes the cross assembler, i.¢., the asscmbler which is
“hosting” the metacompilation.

All assemblers are processor specific, so further details
on the use of the assembler are presented elsewhere. [1,2]
Suffice it to say that all of the assembler constructs and

1 operators look exactly the same in the cross-assembler as |

1 they would in a resident assembler for the same CPU.

Forth Dimensions

:'
|
|
1
|
|
|
|
|

2. Implementation

Forth assemblers define a large vocabulary of “opcode
words,” whose function is to compile an opcode and its
operands into memory. [1]

Asimple example is shown in Figure Two. The assembler
word NOP, compiles a NOP opcode, in this case for the
Zilog Super8, into memory. If this were a resident assembler
running on a Super8 system, the word C, would be used
to append the assembler output to the Forth dictionary.

In order to change this to a cross-assembler, it is only
necessary to change C, to TC, . Rather than append o the
Host's dictionary image, the opcode word will append to
the Target’s. (Recall that the Target has its own Dictionary
Pointer.)

Of course, an assembler for the Target processor must
already have been written. Then the following substitutions
can be made:

C, becomes TC,

7 becomes T,

C@ becomes TC@ for accesses o assembled code
@ becomes T@ ! " " " "

C! becomes TC! " 4 i . B

! becomes T! ¢ " " # u
HERE becomes HOST HERE

Note that only certain fetches and stores—those which
access the machine code being assembled—are substituted
with the Target equivalents. Since the assembler itself is still
resident in the Host machine, any fetches and stores to its
data tables or to get parameters stored with defined words,
must use the “native” fetch and store words.

It is becoming quite common for all Forth assemblers to
be written using the “T-prefix” words to access the assembled
image. This makes the assembler “metacompiler ready.”
For resident assembly, it is straightforward to define the
words TC,, T,, etc, as synonyms of their “normal”
counterparts.

3. Issues
a) Assembly structures

Assemblers written in Forth are usually “structured
assemblers,” providing assembly level
IF...THEN...ELSE, BEGIN...UNTIL, and similar
constructs. These are usually implemented by stacking
addresses—either branch destinations, or branch
arguments to be patched—while the structure is
being parsed, and resolving all of these addresses
when the structure is concluded.

Naturally, in a cross-assembly environment, the
addresses being stacked and resolved are Target
addresses, and the branches being patched are in the
Targetmemory space. The author of a cross-assembler
must keep this in mind, and use the appropriate

Target memory operators when defining the structure |

words for the assembler.

Forth Dimensions

b) Labels

Forth assemblers typically discourage the use of
’ labels, for two reasons. First, every definition in a
Forth environment takes up space in the compiled
code; assembler labels are generally meaningless
after the assembly is complete, and would simply
waste dictionary space. Second, all Forth definitions
are appended to a single dictionary, which raises the
interesting problem of how to append a definition
for an assembler label, while still only halfway
through a definition for a CODE word.

Several solutions have been offered for “normal”
Forth environments, including predefined “local”
labels with fixed names, and a second “disposable”
dictionary space.

In the metacompiled environment, however, these
two problems do not arise if the label is defined in
the Host's dictionary. Such a label consumes no
space in the Target, and does not disrupt the half-
formed CODE definition in the Target image. Of
course, the label is only available during the
metacompilation.

Traditionally, labels and equates are defined with
the phrase

EQU name (n --)

Defines an assembler “equate” having the value n.
When name is used during assembly, n is placed on
the stack

To mark a point in the assembler code with a
symbolic label, use
HERE EQU name.

This is exactly equivalent to the line:

name: .equ $
in a “conventional” assembler.

Note the distinction between EQU and CONSTANT in
the Target code. An EQU occupies no space in the
Target, can be used within an assembler definition,
and is only available during metacompilation. A
| CONSTANT is a definition in the Target dictionary,
cannot be created within an assembler definition,
and will still be present when the Target system is
executed

Text and figures continue in the next issue.
l Code begins in next issue.

|
i}

17 September 1992 October

(Letters, from page 11.)
least occasionally for programming. Now fewer than 1% are
used for programming.

This fundamental change of user behavior affects all
programming languages. The frequent version changes in
the C market (e.g., additional prices for minor improve-
ments) are typical of the final phase of a saturated market.

When evaluating all available information, I suppose that
Forth lost ground between 1985 and 1989, relative to other
languages. But I have the impression that since 1989, Forth
has advanced compared to LISP, Prolog, Pascal, and BASIC.,
My impression is mainly based on the boost given to Forth
by powerful shareware versions.

My evaluation includes the European markets, where
Forth now advances compared to other languages. Only C
is doing better—and not because of quality but because of
having been chosen by IBM and for Unix.

Forth power creates
market problems

Forthis notonly a programming language, buta program-
ming language generator and a compiler generator. While
the number of people willing to study a programming
language steadily decreases, the number of people willing to
study the vaster complexity of a compiler generator de-
Creases even more.

But interest in such computing power is essential to the
future of Forth. It is what makes the difference when
comparing Forth to C and Pascal. So a very widespread use
of Forth should not be considered to be the most important
goal. Improving Forth’s compuling power is more important,
so that experienced Forth users will continue to prefer Forth,
will have market access thanks to Forth, and in this way will
be willing to finance the future evolution of Forth.

The increasing complexity of hardware and operating
systems requires Forth to increase in complexity, which may
further reduce its appeal to the occasional user and which
may increase its appeal to the professional user.

Sfig-Forth and
Forth Dimensions

In a time of shrinking software markets, many Forth
programmers live on shrinking budgets. It is important now
to remember from whom we received the most information
and support in the past. Forth is, for many programmers, the
most important tool for open, unlimited, and honest access
to the computer.

This is mainly due to fig-Forth and Forth Dimensions, and
to those doing the work there for so many years. So Forth
programmers should, in these times, try 1o increase their
support for the Forth Interest Group to help compensate for
the Forth programmers who have left the software market.
Especially in this time of reduced budgets, greater tasks have
to be mastered: true 32-bit computing for the PC standard;
Windows; OS/2 version 2 2.0; and the future Power PC.

Itis important, within the limits of their budgets, that Forth
users:

* conlinue (o subscribe to Forth Dimensions
* use the FIG disk library intensively

September 1992 QOctober

i

18

» pay the shareware fees for programs used
* buy from Forth vendors as much as possible

These things are necessary if Forth users want to receive
Forth source code for future hardware and operating system
standards. i

32-bit Forth [

It was always my opinion that it is a decisive error to |
maintain a 16-bit data stack as part of the Forth standard, with |
possibly identical operators for 16- and 32-bit data. This |
might be tolerable in a programming language limiled o |
small application programs, but it creates important practical |
problems for complex systems concepts. When using all the |
power of Forth, this concept simply does not work. In my |
opinion, the only acceptable solution is a 32-bit data stack |
standard with different operators for 16, 64, 128, and perhaps
256 bits (256-bit operators are the key to symbolic process-
ing, string sorting, elc. at “brain speed” on a PC).

16-bit CPUs will tend to disappear during 1992-1993. A
full 32-bit Forth (dictionary and data stack) for 2 gigabytes of
RAM may now become the de factostandard. Let’s hope that
the developers of F83 and F-PC can be encouraged to write
new, 32-bit versions.

(For conversion to a 32-bit data stack, I can furnish the
several lines to modify the interpreter and debugger. The
modification even allows switching arbitrarily during compi-
lation between 16- and 32-bit data stacks, which is useful for
importing unmodified assembler subroutines originally writ-
ten for a 16-bit data stack.)

Portability: PC, Power PC,
Macintosh, Amiga, elc.

fig-Forth started with a high degree of portability (see the
impressive list on the FIG Mail Order Form). Programmers
would like to return to this with a low-priced commercial or
shareware “standard” Forth, including metacompiler and 32
bits, with a completely identical wordset used by versions for
the PC, Macintosh, Amiga, the future Power PC, and other
major hardware.

Such portability is, for many tasks, more important than
the volume of features in a Forth implementation. Some
Forths complying with Forth-83 came close to this approach.
Would it be useful to find all these versions (the ones that are
public domain or shareware) and to include them in the FIG
disk library?

For example, there are F83 implementations for some
680x0 computers. Such implementations should also be
available on PC disk format, to aid those who want to observe
portability issues while writing a program solely for the PC.

The presence of such new library disks could enhance a
growing interest in portability and influence authors of
shareware and commercial Forths.

C interface
Three types of C interfaces are on my wish list:
* A C implementation on top of Forth
* A Forth implementation on top of C

Forth Dimensions

e C subroutines linkable to Forth

The problem is not so much whether this could happen,
but whether it could be included in low-priced versions of
Forth and up to what level of complexity.

Forth is the better programming philosophy; C has more
subroutine libraries. Both together would be the optimum.

Interpreter/parentheses

To make Forth less strange, a formal principle should,
perhaps, be sacrificed: The conventional use of parentheses
for arithmetical expressions should be introduced into all
Forth implementations, perhaps as an optional feature
(switch on/off). This would eliminate the major superficial
reason why most programmers and future programmers
refuse to try Forth.

Commercial Forths

Commercial versions of Forth should be available, in
addition topowerful shareware and public-domain versions.
The problem is that experienced Forth programmers hesitate
to buy commercial Forths because the complete source code
is not available or carries a relatively high price tag. This
means they have to pay for the whole thing before they can
be sure that the whole thing is, in fact, the “whole” thing.

The language market no longer promises windfall profits.
The good side of this is that software source and idea piracy
is no longer a major risk. Perhaps now a new vendor strategy
is possible: to sell commercial Forths with complete source

20MHz Forth Controller
16-bit uP, 8ch 10-bit A/D, 3ch 8-bit D/A

TDS2020 ([F=="25F

CONTROLLER
AND DATA-LOGGER

4" x 3" board uses Hitachi
16-bit H8/532 CMOS uP. ’

Screams along at 3MIPS, but runs on 30ma. On-
board FORTH and assembler - no need for in-circuit
emulation! Up to 512K NVRAM, 45K PROM. Attach
keyboard, lcd, 12C peripherals. Built-in interrupts,
multi-tasking, watchdog timer, editor and assembler.
33 I/0 lines, two RS-232 poris. 6 - 16 volts 300uA
dara-loggfn?: on-chip 8-ch 10-bit A/D, 6 ch D/A.
Dateftime clock -- low-power mode lasts over a year
on 9v battery ! ots of ready-made software
solutions free. Program with PC. Many in use world-
wide for machine control, data-logging, inspection,
factory automation, robotics, remote monitoring, efc.

Specials: -40°+85°C; or 1 MHz - full functions - 4ma!l

STARTER PACK $499 Sale-or-return.
CALL NOW FOR DETAILS !

&) Saelig Company

‘European Technology

tel: (716) 425-3753
fax: (716) 425-3835

code, all for the low price of, perhaps, $100. Vendor revenues
could be derived from specialized programs, guaranteed
instantly compatible with the main system, and with a library
update service for new versions of the main system.

The availability of tools for corporate users might increase
this effect, e.g., network support or data acquisition as
relatively expensive options. A further possibility might be to
apply a low tariff on individual programmers and for
prototyping, but the full commercial tariff on corporate users
requiring hotline support and professional manuals.

Shareware tariff

The success of Forth shareware authors might be im-
proved by observing some user wishes:

Shareware distribution of Forth programs should avoid
complicated registration fee rules. For example, if an accom-
panying floating-point library is not covered by the main
shareware payment, the additional fee should be clearly
stated for the various possible intended uses. Forth program-
mers are relatively honest payers of shareware fees, but if the
payment conditions are not clear, they may simply avoid
integrating that routine into an application. And it may be
difficult to calculate the price of a shareware subroutine
because the programmer may not know all possible future
uses of his new program.

Shareware versions should also avoid including major
features which are not shareware and which therefore
require payment for any commercially redistributed copy.
Programmers will hesitate to begin using such a Forth system

Fast Product Development

A complementary pair, Forth

the Microprocessor is a .

masked 6301 containing Ch'ps

16K byte Forth, Assembler,

I2C bus driver, and a library of functions for

s <, embedded controllers including

__%‘f_f’::- pre-emptive tasks written in

& high level language.

&7 The Gate Array provides extra
parallel ports, keyboard scanning,

watchdog timer, PROM and RAM chip selects

and address decodes including those

for graphics and character LCDs.
You add a RAM and appli- -~ .

cation PROM to complete the “\\; M'
chip set. Use the ready-made ™«
TDS9092 computer for prototypes and

Forth Chips for quantities of 500+ per year.

Call now for technical data and prices
USA/Canada: The Saelig Company

Tel (716) 425 3753 Fax (716) 425 3835
Elsewhere: Triangle Digital Services Ltd

T Tel +44-81-539 0285 Fax +44-81-558-8110

Forth Dimensions

19

September 1992 October

Fr@@! Trial
Subscription

There are whole other worlds in micro computers
than DOS and Windows. If embedded controllers,
Forth, $100, CP/M or robotics mean anything to you,
then you need to know about The Computer Journal.

Hardware projects with schematics, software
articles with full source code in every issue. And you
can try The Computer Journal without cost or risk!
Call toll free today to start your trial subscription and
pay only if you like it.

Rates: $18/year US; $24/year Foreign. You may
cancel your subscription without cost if you don’t feel The
Computer Journal is for you. Published six times a year.

(800) 4248-TCJ / (908) 755-6186
T The Computer Journal

The Spirit of the Individual Made This Industry
Socrates Press
PO Box 12
S. Plainfield NJ 07080-0012

because of potential copyright problems.

FIG disk library

The disk library maintained by the Forth Interest Group
probably is the most important element for the future of
Forth. Remember, at least 60% of Forth users are outside the
United States and have no easy access to relatively complete
Forth libraries on-line in the U.S. Perhaps Forth documents
that were formerly printed could also be distributed on disk
from now on, rather than on paper. This will be efficient
soon, with the standardization of 3.5" magneto-optical disks
holding 128 Mb. For example, back issues of Forth Dimen-
sionsand conference proceedings could be inputin graphics
mode (with a full-page scanner), with program source also
included as ASCII files (thanks to OCR and to authors’ original
source disks).

With changing disk capacities, pricing based on the
number of 360 Kb disks required will soon become obsolete.
In the future, information will either be free or not more than
the cost of the media and duplication expenses.

Forth users must leave these decisions to those doing the
work: the Forth Interest Group. My opinion: it would be in
the best interest of Forth users if FIG were to significantly
increase the volume of its library offerings, forming the most
important Forth library anywhere. This may require that most
library items not be public domain, but distributed exclu-
sively by the Forth Interest Group, in order to pay for the
important work of, for example, scanning former printed

September 1992 October

p
|
l
|
|
|

20

documents into disk files.

Conclusion

I hope my miscellaneous proposals and observations,
from the point of view of an active Forth user, include helpful
items for those whose decisions will affect the future of the
language. P. Kahn (of Borland) chose not to distribute Forth
“because it is not a programming language but a religion.”

Why not? Forth programmers know a higher truth:
businesses live and die, only religions survive for thousands
of years.

Peler Roeser
SOFTEXT
Paris, France

|
|
f
|
|
!
|
|
|
|
|
|
|
!
Pattern Matching Rings True '

Ariel Scolnicov: ‘
Your article, “Structured Pattern Matching” (Forth Di- |
mensions XIV/2) arrived just as I was looking for such a ‘
device—thank you! I had just finished reading a chapter |
that you will want to research yourself in Software Tools |
(Kernighan and Plauger; Addison-Wesley, 1976). It pre- |
sents one of the few public discussions of regular expres- '
sions and pattern matching. The chapter “Text Patterns” '|
shows how to parse and match regular expressions. |
Their “amatch” routine is what you are looking for. But |
they leave unsolved your alternation and concatenation |
operators. I salute you and eagerly await the code. [Printed |
in this issue. —Ed.] With your word synopsis and design |
description, 1 may be able to forge an implementation. |
‘There’s no question in my mind that you have the right |
design, in terms of: |
e state machine ‘
* “parse” lree lf
e action and privale data |
f

]

|

|

|

}

|

[

|

I

|

|

!

|

f

]

i

|

[

i

I'm going to take the time (o study your desi gn' and try
tounderstand its subtleties (MANY, MOST, ...). As a member

| of the technical staff at Bell Labs, I'm among the minority

who advocate Forth. Like yourself, I too can use encour-
agement as I am working to make a copy of ANS Forth
available within the Labs.

Your words will be valuable in that effort, as they go a
long way to implement Unix System Tools functionality.
They allow building replacements for grep and sed (and
awk?).

Much of my tool work is in shell, using these utilities;
I'm trying to convert entirely to Forth. Lack of string-
matching tools of the sort you present has hindered my
work.

Congratulations, and thank you.

Respectfully,

Marty McGowan

24 Herning Avenue

Cranford, New Jersey 07016-1946

Forth Dimensions

MAKE YOUR SMALL COMPUTER

THINK BIG

(We've been daing it since 1977 for IBM PC, XT, AT, PS2,
and TRS-80 models 1, 3, 4 & 4F)

FOR THE OFFICEI‘;- Simplify and speod ynu:uwom

Advertisers Index
Colour Vision Systems... 21
The Computer Journal ..20

with our ¢
and general ledger software. They are easy to use, powerful,
with k print-outs, reasonable site license costs

axacutive-loo
and comfortable, reliable support. Ralph K. Andrist, author/
hi

FOR PROGRAMMERS — Build ms FASTER
and SMALLER with our “Intelligent” MMSFORTH System and
npplloatm modules, plus the famous MMSFORTH continu-
suppart. Most modules ml:luds source code. Ferren
Maclntwe oceanographer, “Forth is the language that
microcomputers were invented to run.”

SOFTWARE MANUFACTURERS — Efficient soft-

lers, ware tools save time and money. MMSFORTH's fexibility,

compaciness and speed have msullml In better products in
leasnmioravndemnqg

dﬂ P g

| | ;‘OT/:LI Con:eca;ence 44 | 3?%5‘3‘”531 S L:%ﬁ ':‘;.i‘.’.’ﬂi'é“?”m%?é%
; orth Interest Group the best we've seen.”

; : centerfold m"’“ T Vi Wi Sysior. DO . vt
1 Harvard Softworks 12

| Miller Microcomputer

|| Services........ 21

|| Saelig Company 19

| | Silicon Composers......... 2 | ’*’*&.‘%ﬁ%ﬂm ?ﬁg;%s

Ashton-Ta ies,
Lockh ‘m:ailemdSpwaDmmn mdmsl-ﬁma

W from $179.95
Needs only 24K compared to 100K for BASIC, C,
Pascal and others. Convert your computer into a Forth virtual
machine with sophisticated Forth editor and related tools. This
can result in 4 to 10 times greater productivity.

Iuhl. m ~ Integrate with System Disk only what

&gmm Development ﬁg
UTII..I‘I'IES Gruphms. 8087 support and other facilities,

and a little more!

THIRTY-DAY FREE OFFER — Free MMSFORTH
GAMES DISK worth $39 95, with purchase of MMSFORTH
System. CRYPTOQUOTE HELPER, OTHELLO., BREAK-
FORTH and others.

Cali for free brochure, technical info or pricing detalls.

P (541 park siest,

Bacchus Marsh,

Victoria, Austraha 3340.
Tel: 6153 673155
Fax: 6153 674480

, The RTI1000 is a Forth based controller providing
| three language levels for program development, and
a real time multitasking/multiuser operating system.

Hardware

| 1. The PC element language is a graphical boolean
| language in which application programs are creat-
ed by linking together library modules. Users may
define their own PC elements if required. The
application program may be represented graphi-
| cally on the VDU and printer as shown below.

| 2. FORTH high level language.
. 3. 68000 machine code assembler.

| AND

000 0 11 000 2 F1
| 000 1 F1 — Documentation
. 000 3 F1
|
500 C
—— 001 5 F1
G|

|
| 00D 1 F1
|

RTI1000 Prog;é;lmable Controller

The RTT1000 is a modular system based on the 6U,
19 inch rack standard built to withstand harsh in-
dustrial environments. Input and output modules are
available for digital, analog and pulse type signals.

® Industrial FORTH technical Manual (245 Pages)
® 68000 Assembler Manual (222 Pages)
® PC Elements User Manual (221 Pages)
® On Line Glossary Supplied In Prom. ‘

Forth Dimensions 21

September 1992 October

F-PC

Structured Pattern
Matching

Ariel Scolnicov
Mevasseret Zion, Israel

This code implementis the ideas discussed in the author’s article, “Structured Pattern Maiching,” which appeared in our
last issue. Ask the Forth Interest Group office about the availability of back issues (see order form, this issue). This code
is also available for downloadmg fmm the Forth software library maintained on GEnie’s Forth RoundTable.

Pattern Matcher Loglc Engme | AS 10/1/92

|
! anew logic-engine
}
The logic engine consists of all universal pattern matching facilities, i.e.

it doesn't have anything to do with the string itself.

Two stacks are used: the call stack is used to store return addresses for
pattern calls; the backtracking stack is used to store the current state at
every backtrack point. UHe define the two stacks to use the same area of

memory, one growing upwards and the other downwards. |f complex patterns are
matched, STRCK-SIZE may need to be increased.
I

1024 constant stack-size
create stack-start stack-size allot
stack-start stack-size + 2- constant stack-end

variable call-sp \ Stack pointer
variable back-sp Y Stack pointer
i init-call \ Initialise call stack
stack-start call-sp ! ;
init-back \ Initialise backtrack stack

| stack-end back-3p ! ;

i 7call (-- flag ; True iff stack empty)
call-sp @ stack-start u<= ;
?back (-- flag ; True iff stack empty)
back-sp @ stack-end u>= ;
?callenpty \ Check if call stack enmpty)
?call abort” CALL stack empty!" ;
?backenpty \ Check if backtrack stack empty)

?back abort" BRACKTRACK stack empty!”

7stacksfull N Check if both stacks full)
call-sp @ back-sp @ u> abort" CALL/BACKTRACK stacks full!" ;

: >call { n -- ; Push to call stack)
?79tacksfull
call-sp @ !
2 call-ap +! ;
call> { -- n ; Pop call stack)
?callenpty
-2 call-ap +!

September 1992 October 22 Forth Dimensions

FIG

MAIL ORDER FORM

Most items list three different price calegories:

HOW TO USE THIS FORM: Picase enter your order on the back page of this form and send with your payment 1o the Forth Interest Group.
USA, Canada, and Mexico / Other countries via surface mail / Other countries via air mail
Note: Where only two prices are listed, surface mail is not available.

“Were Sure You Wanted To Know...”

151 - 84/5
An index of Forth articles, by keyword, from Forth Dimensions
Volumes 1-13 (1978-92).

Forth Dimensions, Article Reference

ik

| ¢)R‘VIL, Arm]l. Reference 152 - 34/5
Ix An index of Forth articles by keyword, author, and date from the
| FORML Conference Proceedings (1980-90).

| FORTH DIMENSIONS BACK VOLUMES

| A volume consists of the six issues from the volume year (May-April)

Volume I Forth Dimensions (1979-80) 101 - $15/16/18
Introduction to FIG, threaded code, TO variables. fig-Forth.

ension

; Lﬁl.
Volume 3 Forth Dimensions (1981-82) 103 - 515/16/18
m Forth-79 Standard, Stacks, HEX, database, music, memory man-

agement, high-level interrupts, string stack, BASIC compiler,
recursion, §080 assembler.

Volume 2 Fonll Dlm 102 - $15/16/18

< conte sk, 1npuT.

report, lORGLI VIEW.

104 -
jgnal arithmetic,
pq lcontrol, source-

\-"olume 4 Forth Dimensions (1982*83)
e decompiler, file

CURDIL a]g(mﬂ'lm intermpts
f screen d ‘. gﬁ Jr
1 systeng b ! T, \"'hnahlc Fonh, indexer, Forth-
eyt

“feaching Forth, algebraic cxpression evaluator.

$15/16/18

Volume 5 Forth Dimensions (1983-84) 105 - $15/16/18
Computer graphics, 3D anlmal.ion, doul?l_e—

Ssign math words,
overlays, recursive ﬁorl asj ﬁt;compi]atim,
voice out e \p'oc.abul.siryr
Lummw on, dal.a acquisition, fixed-point
logarith icksort, fixed-point square root.

106 - $15/16/18

Volume 6 Forth Dimensions (1984-85)

Last PTiN] [nteractive editors, anonymous variables, list handling, intcger

solutions, control structures, debugging techniques, recursion,
semiphores, simple /O words, Quicksorn, high-level packet
communications, China FORML.

Volume 7 Forth Dimensions (1985-86) 107 - $20722/25
[&[] Generic sont, Forth spreadsheet, control structures, psuedo-
interrupts, number editing, Atari Forth, pretty printing, code
modules, universal stack word, polynomial evaluation, F83

SIriJlgs.
Volume 8 Forth Dimensions (1986-87) 108 - $20/22/25
[P R] Lnterrupt-driven serial input, data-base functions, T1 99/A,
XMODEM, on-line documentation, dual-CFAs, random

numbers, arrays, file query, Batcher’s sort, screenless Forth,
classes in Forth, Bresenham line-drawing algorithm, unsigned
division, DOS file [JO.

Volume 9 Forth Dimensions (1987-88) 109 - $20/22/25
T R 1] ractal landscapes, stack error checking, perpetual date routines,
headless cnmpﬂer execution security, ANS-Forth meeting,
computer-aided instruction, local variables, transcendental func-
tions, education, relocatable Forth for 68000.

Volume 10 Forth Dimensions (1988-89) 110 -
dBase file access, string handling, local variables, data structures,
object-oriented Forth, linear automata, standalone applications,
8250 drivers, serial data compression.

Volume 11 Forth Dimensions (1989-90) 111
Local variables, graphic filling algorithms, 80286 extended
memory, expert systems, quaternion rotation calculation,
multiprocessor Forth, double-entry bookkeeping, binary table
search, phase-angle differential analyzer, sont contest.

Volume 12 Forth Dimensions (1990-91) 112
Floored division, stack variables, cmbedded control, Atan Forth,
optimizing compiler, dynamic memory allocation, smart RAM,
extended-precision math, interrupt handling, neural nets, Soviet
Forth, arrays, metacompilation.

| FORML CONFERENCE PROCEEDINGS

| 1985 FORML PROCEEDINGS

1983 FORML PROCEEDINGS

| 1986 FORML PROCEEDINGS

FORML (Forth Modification Laboratory) is an educational
forum for sharing and discussing new or unproven sals
intended to benefit Forth, and is an educational forum for discus-
sion of the technical aspects of applications in Forth. Proceedings
are a compilation of \E:apcrs and abstracts presented at the
annual conference. FORML is part of the Forth Interest Group.

1980 FORML PROCEEDINGS
Address binding, dynamic memory allocation, local variables,
concurrency, binary absolute & relocatable loader, LISP, how to
manage Forth projects, n-level file system, documenting Forth,
Forth structures, Forth strings.

1981 FORML PROCEEDINGS
CODE-less Forth machine, quadruple Emmsmn arithmetic,
overlays, exccutable vocabulary stack, data typing in Forth,
vectored data structures, using Forth in a classroom,
files, BASIC, LOGO, automatic cueing language for multim
NEXOS—a ROM-based multitasking operating system.

1982 FORML PROCEEDINGS
Rockwell Forth processor, virtual execution, 32-bit Forth, O\T.Y
for vocabularies, non-IMMEDIATE 100p1ng words, number-
input wordset, 76} vectoring, recursive data structures, program-
mable-logic wmpﬂer

lpy ramid

edia,

Non-Von Neuman machines, Forth instruction set, Chinese
Forth, F83 compﬂcr&mtcrprctcr co-routines, | &cxponcnual
function, rational _arithmetic, transcendental functions in
variable-precision Forth, ponable file-system interface, Forth
coding conventions, expert systems.

1984 FORML PROCEEDINGS
Forth expert systems, consequent-reasoning inference cngml.
Zen floaling point, portable graphics wordset, 32-bit Forth,
HP71B Forth, NEON—object-onented programming, decom-
piler design, arrays and stack variables.

Threaded binary trees, natural Ianguage parsing, small leamnin

expert system, llbl 'LOG Oln Wl @ alerpreter, BNE

parser m Forth, 'r\' ANk Forth coding

conven g polnt, Forth component

library! mlclhgcmc electrical nctwork
-drlven mululaskmg

analysish

Threading techniques, Prolog, VLSI Forth microprocessor,
natural - lan%uapunlcrfaoc expertsystem shell, inference engine,
multiple-inhentance system, automatic programming environ-
ment.

- 820722725 |

310 - $30/31/40

311 - $45/48/55

312 - $30/31/40

313 - $30/32/40

314 - 530/33/40

315 - §30/32/40

316 - $30/32/40

520022125

m

- 52022725 l

Last 50

Last 100

% - These are your most up-to-date indexes for back issues of Forth Dimensions and the FORML proceedings.
Fax your orders 510-535-1295

-

mh‘mudes papers from '87 euroFORML Conference. 32-bit Forth,

1987 FORMIL PROCEEDINGS 317 - 540/43/50

Tence { i
neural networks, control structures, Al, optimizing compilers, |
hypertext, field and record structures, CAD command language, |
object-oriented lists, trainable neural nets, expert systems. |

|

1988 FORML PROCEEDINGS 318 - 540/43/50
Includes 1988 Australian FORML, Human interfaces, simple

robotics kernel, MODUL Forth, parallel processing, !

rogrammable controllers, Prolog, simulations, languaﬁc topics,

ﬁar ware, Wil's workings & Ting’s philosophy, Forth hardware

applications, ANS Forth session, fulure of Forth in Al

applications. I

1989 FORML PROCEEDINGS 319 - 540/43/50

(WYL) ncludes papers from '89 euroFORMI.. Pascal to Forth, |

extensible optimizer for compiling, 3D measurement with object- |
oriented Forth, CRC polynomials, F-PC, Harris C cross- |
compiler, modular approach to robotic control, RTX recompiler

for on-line maintenance, modules, trainable ncural nets.

1990 FORML PROCEEDINGS 320 - $40/43/50

“orth in industry, communications monitor, 6805 development.

-key keyboard, documentation techniques, object-oriented
programming, simplest Forth decompiler, error recovery, stack
operations, process control event management, control structure
analysis, systems design course, group theory using Forth.

BOOKS ABOUT FORTH

ALL ABOUT FORTH, 3rd ed., June 1990, Glen B. Haydon 201 - $90/92/105
Annotated glossary of most Forth words in common usage,
including Forth-79, Forth-83, F-PC, MVP-Forth. Implementation
examples in high-level Forth and/or 8086/88 assembler. Usclul
commentary given for each entry.

THE COMPLETE FORTH, Alan Winficld 210 - $14/15/19 l
A comprehensive introduction, including problems with answers |
(Forth-79).]

¢FORTH IMPLEMENTATION GUIDE, C.H. Ting 215 - 325126/35 '
cForth is the name of a Forth model designed to be portable to a
large number of the newer, more powerful processors available |
now and becoming available in the near future. (w/disk) [

I'83 SOURCE, Henry Laxen & Michael Perry 217 - 52021730
A complete listing of F83, including source and shadow screens.
Includes introduction on getting started.

FORTH: A TEXT AND REFERENCE
Mahlon G. Kelly & Nicholas Spies
A textbook a[lufmach to Forth, with comprehensive references to
MMS-FORTH and the *79 and "83 Forth standards.

THE FORTH COURSE, Richard E. Haskell 225 - $25/26/35
Thissetof 11 lessons, called the Forth Course, is designed 1o make
it easy for you to lcam Forth. The material was developed over
several years of teaching Forth as part of a senior/graduate course
in design of embedded software computer systems at Oakland |
University in Rochester, Michigan. (w/disk) |

219 - §31/32/41

FORTH ENCYCLOPEDIA, Mitch Denick & Linda Baker
A detailed look at each fig-Forth instruction.

220 - $30/32/40

FORTH NOTEBOOK, Dr. C.H. Ting 232 -825126/35 |
Good examples and applications. Great learning aid. poly- |l
FORTH is the dialect used. Some conversion advice is included. !
Code is well documented.

FORTH NOTEBOOK II, Dr. C.H. Ting 232a - $25/26/35
Collection of research papers on various topics, such as image
processing, parallel processing, and miscellancous applications.

Users manual to the public-domain Forth system optimized for
IBM PC/XT/AT computers. A fat, fast system with many 1ools.

F-PC TECHNICAL REFERENCE MANUAL 351 -830/32/40 |
A must if you need 1o know the inner workings of F-PC. ’

INSIDE F-83, Dr. C.H. Ting 235 - 825126/35
Invaluable for those using F-83.

F-PC USERS MANUAL (2nd cd., V3.5) 350 - 820721727 {

| Volume 1

LIBRARY OF FORTH ROUTINES AND UTILITIES,
James D. Terry 237 - 823/25/35
Comprehensive collection of professional quality computer code
for Forth; offers routines that can be put to use in almost any Forth
application, including expert systems and natural-language
interfaces.

OBJECT ORIENTED FORTH, Dick Pountain 242 - $28/29/34
Implementation of data structures. First book to make object-
oriented programming available to users of even very small home
computers.

SEEING FORTH, Jack Woehr 243 - §25/26/35
"...Iwould like to share a few observations on Forth and computer
science. That is the purpose of this monograph. Itis offered in the
hope that it will broaden slightly the streams of Forth literature ..."

SCIENTIFIC FORTH, Julian V. Noble 250 - $50/52/60
Scientific Forth extends the Forth kemel in the direction of
scientific problem solving. Tt illustrates advanced Forth
programming techniques with non-trivial applications:
computer algebra, roots of equations, differential cquations,
function minimization, functional representation of data (FFT,
poiynomials], linear equations and matrices, numerical
ntegration/Monte Carlo methods, high-speed real and complex
floating-point arithmetic. (Includes disk with programs and
several utilities), IBM

STACK COMPUTERS, THE NEW WAVE
Philip J. Koopman, Jr. (hardcover only)
Presents an alicrnative 1o Complex Instruction Set Compulters
(CISC) and Reduced Instruction Set Computers (RISC) by
showing the strengths and weaknesses of stack machines (hard-
cover only).

STARTING FORTH (2nd ed.), Leo Brodie 245 - $29/30/38
In this edition of Starting Forth—the most popular and complete
introduction to Forth—syntax has been expanded to include the
Forth-83 Standard.

244 - $62/65/12

WRITE YOUR OWN PROGRAMMING LANGUAGE USING C++,
Norman Smith o .. 270 -515/16/18
This book 1s about an application language. More specifically, it
is about how to wrile your own custom application language. The
book contains the wools necessary to begin the process and a
complete sample language implementation. [Guess what language !
Includes disk with complete source.

| ACM - SIGFORTH

The ACM SIGForth Newsletter is published quarterly by the
Association of Computing Machinery, Inc. SIGq["onh‘s focus is
on the development and refinement of concepts, methods, and
techniques needed by Forth professionals.

Spring 1989, Summer 1089, #3, #4 910 - $24/26/34
F-PC, glossary utility, Euroforth, SIGForth "89 Workshop
summary (real-timc software engineering), Intel 80x8x.
Metacompiler in cmForth, Forth exception handler, string case
statement for UF/Forth. 1802 simulator, tutorial on multiple
threaded vocabularies. Stack frames, duals: an altemnative to
variables, PocketForth.

Volume2 #1, #2 #3 #4 920 - $24/26/34
ACM SIGFonh Industry Survey, abstracts 1990 Rochester conf.,
RTX-2000. BNF Parser, abstracts 1990 Rochester conf., F-PC
Teach. Tethered Forth model, abstracts 1990 SIGFonth conf.
Target-meta-cross-: an engineer's viewpoint, single-instruction
computer.

Volume 3, #1 Summer '91 908 - 36/7/9
Co-routines and recursion for tree balancing, convenicnt number

handling.

Volume 3, #3 Fall 91 909 - S6/719
Postscript Issue, Whatis Postscript?, Forth in Postscript, Review:
PS-Tutor.

1989 SIGForth Workshop Proceedings 931 - 520721/26
Software engincering, multitasking, interrupt-driven systems,
object—oriu_mled Forth, error recovery and control, virtual memory
support, signal processing.

1990-91 SIGForth Workshop Proceedings 932 - 820/21/26

Teaching computer algebra, stack-based hardware, reconfig-
urable processors, real-lime operating systems, embedded
control, marketing Forth, development systems, in-flight
monitoring, mulli-processors, neural nets, sccurity control, user
interface, algorithms.

For faster service, fax your orders 510-535-1295

DISKS: Contributions from the Forth Community

The “Contributions from the Forth Community" disk library contains

author-submitted donations, generally including source, for a variety

of computers & disk formats. Each file is determined by the author as

public domain, shareware, or use with some restrictions. This libra

does not contain “For Sale” ?)glicadons. To submit your own coniri-
.

butions, send them lo the FIG Publications Commiltee.

Prices: Each item below comes on one or more disks, indicated in
parentheses after the item number. The price of your order is $6/9 per
disk, or $25/37 for any five disks.
FLOAT4th.BLK V1.4 Robert [.. Smith Co01 - (1)
Software floating-point for fig-, poly-, 79-Std., 83-Sid.
Forths. 1EEL short 32-bit, four standard functions, square
root and log. IBM.

Games in Forth Co02 - (1)
Misc. games, Go, TETRA, Life... Source. IBM
A Forth Spreadsheet V2, Craig Lindley C003 - (1)

‘This model spreadshect first appeared in Forth Dimensions
VII, 1-2. Those issucs contain docs & source. IBM

Automatic Structure Charts V3, Kim Harris Co04 - (1)
Tools for analysis of large Forth programs, first presented at
FORML conference. F:&I source; docsincl. in 1985 FORML
Proceedings. IBM

A Simple Inference Engine V4, Martin Tracy C005 - (1)
Based on inf. engine in Winston & Hom’s hbook on LISP,
takes you from pattern variables to complete unification
algorithm, with unning commentary on Forth philosophy &
style. Incl. source. lBAél

The Math Box V6, Nathaniel Grossman C006 - (1)
Routines by foremostmath author in Forth. Extended double-
precision arithmetic, complete 32-bit fixed-point math, &
auto-ranging text. Incl. graphics. Utiliues for rapid

lynomial evaluation, continued fractions & Monte Carlo
actorization. Incl. source & docs. IBM

AstroForth & AstroOKO Demos, LR. Agumirsian C007 - (1)
AstroForth is the 83-Std. Russian version of Forth. Incl.
window interface, full-screen editor, dynamic assembler &
a great demo. AstroOKO, an astronavigation system in
AstroForth, calculates sky position of several objects from
different earth positions. Demos only. IBM

Forth List Handler V1, Martin Tracy C008 - (1)
List primitives extend Forth to provide a flexible, high-
s (chvimnment for AL Incl. ELISA and Winston &
Hom's micro-LISP as examples. Incl. source & docs. IBM

8051 Embedded Forth, William Payne C050 - (4)
8051 ROMmable Forth operating system. 8086-10-8051
target compiler. Incl. source. Docs are in the book Embedded
Controller Forth for the 8051 Family. IBM

F83 V2.01, Mike Perry & Henry Laxen C100 - (1)

The newest version, d to a variety of machines. Editor,
assembler, decompiler, metacompiler. Source and shadow
screens. Manual available scpamd’e:[(items 217 & 235).
Base for other F83 applications. IBM, 83.

F-PC V3.53, Tom Zimmer C200-(5)
A full Forth system with pull-down menus, sequential files,
editor, forward assembler, metacompiler, floating point.
Complete source and help files. Manual for V3.5 available
scparately (items 350 & 351). Base for other F-PC
applications. Req. hard disk. 1BM, 83.

F-PC TEACH V3.5, Lessons 0=7 Jack Brown C201a - (2)
Forth classroom on disk. First seven lessons on leaming
Forth, from Jack Brown of B.C. Institute of Technology.
IBM, F-PC.

VP-Planner Float for F-PC, V1.01 Jack Brown Cc202-(1)
Software floating-point engine behind the VP-Planner
spreadsheet. 80-bit (temporary-real) routines with transcen-
dental functions, number I/O suppon, vectors to support
E‘u;]éﬁc co-processor overlay & user NAN checking. IBM,

1'-PC Graphics V4.4, Mark Smiley C203a - (3)
Thelatest versions of new graphics routines, including CGA,
EGA, and VGA suppport, with numerous improvements
over earlier versions crealed or supported by Mark Smiley.
IBM, F-PC.

PocketForth V1.4, Chris Heilman C300-(1)
Smallest lete Forth for the Mac. Access toall Mac functons,
files, graphics, floating int, macros, create standalone
applications and DAs. Basej)gn fig & Starting Forth. Incl. source
and manual. MAC

Yerkes Forth V3.6 C350-(2)
Complete object-oriented Forth for the Mac. Object access to all
Mac functions, files, graphics, floating point, macros, create
standalone applications. Incl. source, tutorial, assembler &
manual. MAC, System 7.01 Compatable.

JLISP V1.0, Nick Didkovsky C401 - (1)
LISP interpreter invoked from Amiga JForth. The nucleus of the
interpreter is the result of Martin Tracy’s work. Extended to allow
the LISP interpreter to link to and execute JForth words. It can
communicate with JForth's ODE (Object-Development
Environment). AMIGA, 83.

Pygmx V1.3, Frank Sergeant C500-(1)
lean, fast Forth with full source code. Incl. full-screen editor,
assembler and metacompiler. Up to 15 files open at a time. IBM.

KForth, Guy Kelly C600 - (3)
A full {‘orlh system with windows, mouse, drawing and modem
packages. Incl. source & docs. IBM, 83.

ForST, John Redmond C700-(1)
Forth for the Atari ST. Incl. source & docs. Atari ST.
Mops V2.2NEW, Michacl Hore C710-(1)

Close cousinto Yerkes and Neon. Very fast, compiles subroutine-
threaded & native code. Object oriented. Uses F-P co-processor
if present. Full access to Mactoolbox & system. Supports System
7 (e.g., AppleEvents). Incl. assembler, docs & source. MAC

BBL & Abundance, Roedy Green C800 - (4)
BBL public-domain, 32-bit Forth with extensive supportof DOS,
meticulously optimized for execution speed. Abundance is a

ublic-domain database lan%uagc writtenin BBL. Req. hard disk.
cl. source & docs. IBM HD, hard disk reequire

Going out of
Print !!!

Back issues of Forth Dimensions
FORML Conference Preceedings

If you haven't got a complete set of
FORMLs and Forth Dimensions, you
had better act now. They will not be
reprinted in the future.

See the Forth Dimensions Article
Reference and the FORML Article
Reference for indexed details of
articles that you are looking for.

—

For faster service, fax your orders 510-535-1295

fig-FORTH ASSEMBLY LANGUAGE SOURCE
Listings of fig-Forth for specific CPUs and machines with compiler security and
-§15/16/18

variable-length names (see Installation Manual, below):

6502 514 - September 80 9900 519 - March 81
6809 516 - June 80 Apple Il 521 - August 81
8080 517 - September 79

fig-FORTH INSTALLATION MANUAL 501 - S15/16/18
Glossary model editor—we recommend you purchase this
manual when purchasing any of the source code listings above.

SYSTEMS GUIDE TO fig-FORTH 308 - 525/28/30

C. H. Ting (2nd ed., 1989))
How's sns why's of the fig-Forth Model by Bill Ragsdale, internal
structure of fig-Forth system.

MISCELLANEQUS

I-SHIRT “May the Forth Be With You” 601 - $12/13/15
(Specify size: Small, Medium, Large, Extra-Large on orderform)
W'mte esign on a dark blue shirt.

602 - 35/6/7

683 - free

POSTER (Oct., 1980 BYTE cover)
FORTH-83 HANDY REFERENCE CARD

FORTH-83 STANDARD 305 -315/16/18
Authoritative description of Forth-83 Standard. For reference, not
instruction.

BIBLIOGRAPHY OF FORTH REFERENCES
(3rd ed., January 1987)
Over 1900 references to Forth articles throughout computer
literature.

340 - $18/19/25

MORE ON FORTH ENGINES
Volume 10 January 1989 810 - 515/16/18

RTX reprints from 1988 Rochester Forth Conference, ohject-
oriented amFonh, lesser Forth engines.

Volume 11 July 1989 811 - $15/16/18
RTX supplement 1o Footsteps in an Empty Valley, SC32,32-bit
Forth engine, RTX interrupts utility.

Volume 12 April 1990 812 - $15/16/18
Shi ip architecture and instructions, Neural Cm&zting
Module NCM3232, pigForth, binary radix sort on 80286, 68010,
and RTX2000.

Volume 13 October 1990 813 - $15/16/18
PALs of the RTX2000 Mini-BEE, EBForth, AZForth, RTX-
2101, 8086 eForth, 8051 eForh.

Volume 14 814 - 515/16/18
RTX Pocket-Scope, eForth for mulP20, ShBoom, eForth for CP/
M & Z80, XMODEM for eForth.

Yolume 15 815 - $15/16/18
Moore: New CAD System for Chip Design, A portrait of the P20;
Rible: QS1 Forth Processor, QSE, RISCing it all; P20 eForth
Software Simulator/Dcbugger.

DR. DOBB’S JOURNAL

Annual Forth issue, includes code for various Forth applications.

Sept. 1982 422 - $5/6/1
Sept. 1983 423 -S5/6/7
Sept. 1984 424 -85/6/7

FORTH INTEREST GROUP

P.O.BOX 2154 OAKLAND, CALIFORNIA 94621

510-89-FORTH 510-535-1295 (FAX)

Name = S OFFICE USE ONLY
Company R By Date Type
Street Shipped by Date,
Cit UPS USPS XRDS
o - - Wi Amt.
State/Prov. - S Zip BO By Date
Country Daytimephone — Wi Amt.
email Fax :
Tiem # Title Qty. Unit Price Total
[C] CHECK ENCLOSED (Payable to: Forth Interest Group) : Sub-Total
] visa] MasterCard Expiration Date 10% Member Discount, Member # _______ ()
Card Number **Sales Tax (CA only)
Signature Mail Order Handling Fee $3.00
. *Membership_in the Forth Interest Grou
MEMBERSHIP) Citew L] Renewsl $40/46/52
* Enclosed is $40/46/52 Tor 1 full year's dues.
This includes $36/42/48 for Forth Dir

) MEMBERSHIP IN THE FORTH INTEREST GROUP
The Fonlh Inlenl‘sslGroup(FIG] is a world-wida, non-profit, member-supported organization with ovar 1,500 members and 40 chapters. Your membarshipincludes asubscription tothebi-monthly magazine
Forth Dimensions. FIG also offers its members an on-line data base, a large selection of Forth literature and other services. Cost is $40 per year for U.S.A. & Canada surlace; $46 Canada air mail;

all other countries $52 por year. No sales tax, handling fes, or discount on membearship.

When you join, your first issue will arrive in four to six weeks; subsequent issues will be mailed to you every other month as they are published—six issues in all. 'Your membership entitles you to a 10%
discount on publications from FIG. Dues are not deductible as a charitable contribution for U.S. federal income tax purposes, bul may be deductible as a business expensae.

MAIL ORDERS PAYMENT MUST ACC ** CALIFORMIA SALES TAX BY COUNTY
Eoghar:t:;s;damup T OMPANY ALL ORDERS SHIPPING TIME 7.5%: Sonoma; 7.75%: Fresno, Imperial,

iz 4 . POSTAGE & HANDUNG Books in stock are shipped Inyo, Mad M y, Orange, Riverside,
Oakland, CA 84621 :L?IFESI - A:]I ord:rsl:;:;s: b;_prepgd. ;ns:adarfd Prices include shipping by within seven days of receipt of Sacramento, San Benlto, Santa Barbara, San
PHONE ORDERS bject to change without notice. Credit OTCerS ¢\irface, other methods available the order. Please allow 4-6 Bernardino, San Diego, and San Joaquin;

will be sent and billed al current prices. Checks must
be in U.S. dollars, drawn on a U.S. bank. A $10
charge will be added for returned checks.

510-83-FORTH Credit card
orders, customer service,

Hours: Mon-Fri, 8-5p.m orders.

by special requesl. The $3.00 weeks for out-of-stock books 8.25%: Alameda, Contra Costa, Los Angeles
handling fee is required with all (deliveries in most cases will be San Mateo, Santa Clara, and Santa Cruz;

much sooner). 8.5%: San Francisco; 7.25%: other counties.

For faster service, fax your orders 510-535-1295

XIV-3

call-ap @ @ ;

lcall { n -- ; Change top of call stack)
7callenpty
call-sp @ 2- ! ;

>back { n -- ; Push to backtrack stack)

?stacksfull
back-sp & !
-2 back-sp +!
back> {(-- n ; Pop backtrack stack)
7backempty
2 back-sp +!
back-sp @ @ ;
}

The auxiliary stack is never used by the logic engine or the matching unit.
It is reserved for use by the pattern. It is saved when backtracking.

{

64 constant aux-size \ Small stack

create aux-stack aux-size allot

variable aux-ap \ Stack pointer
init-aux N Initialise stack

aux-stack aux-sp ! ;
init-stacks

init-call init-back init-aux ;

Taux { -- flag ; True iff stack empty)
gqux-sp @ aux-stack u<= ;

Tauxenmpty \ Check if auxiliary stack enmpty
Taux abort” Auxiliary stack empty" ;

Tauxfull %Y Check if auxiliary stack full

gux-3p @ aux-stack agux-size + u>=
abort” Auxiliary stack full® ;

>aux (n -- ; Push to auxiliary stack)
Tauxfull
aux-sp @ !

2 aux-sp +!

’
aux> { -- n ; Pop frem auxiliary stack)
Tauxenpty
-2 aqux-sp +!
aux-3sp @ @

4

)

The state pushed onto the backtrack stack consists of the state variables'
area the call stack and the auxiliary stack. The last two are of variable
size, so we also push the sizes of the two stacks onto the backtrack stack.

{

variable state-adr

variable state-len % Location of state area
: back>cmove (adr len -- ; Pop block from backtrack stack)
tuck back-sp @ 2+ -rot (len back adr len)
cmove { len)
back-sp +! ()
back-sp @ stack-end u> Y Can't use ?backenmpty here
abort" Backtrack stack underflow!" ;
: back>state { -- ; Pop state off backtrack stack)
\ Assumes action address already popped
aux-stack back> { aux-stack aux-3z)

2dup back>cmove \ Pop auxiliary stack

{ aux-stack aux-sz) + aux-sp ! % Restore aux-sp
stack-start back> (stack-stack call-sz)
2dup back>cmove Y Pop call stack

Forth Dimensions 23 Septermnber 1992 October

{ stack-start call-sz) + call-sp ! \ Restore call-sp
state-adr @ state-len @ back>cmove \ Pop state area

back>drops {(-- ; Drop state off backtrack stack)
\ Assumes action address already popped
back> dup { aux-sz aux-sz)
aux-stack + aux-sp ! back-sp +! % Set aux-sp and drop items
back> dup (call-sz call-sz)
stack-start + call-sp ! back-sp +! \ Set call-sp and drop itenms
state-len @ back-sp +! \ Drop state area

back-sp @ stack-end u> abort" Backtrack stack underflow!"

cmove>back { adr len -- ; Push block to backtrack stack)
dup negate back-sp +! 7?stacksfull (adr len)
back-sp @ 2+ swap (adr back len)
cmove ;

: state>back (-- ; Push state to backtrack stack)
state-adr @ state-len @ cmove>back \ Push state area
stack-start call-sp @ over - tuck (call-sz adr call-sz)
cmove>back \ Push call stack
>back Y Push call stack size
aux-stack aux-sp @ over - tuck (aux-sz adr aux-sz)
cmove>back \ Push auxiliary stack
>back Y Push aux stack size
['] back>state >back \ Action address to pop state

}

The driver loop for the logic engine is very sinple: at every step, pop the
next node's address from the call stack. If the call stack is enpty, the
match succeeded. The first cell in a node should be the address of an
execution word for that node. Following the execution address there may be
private data. The stack action of the execution address is {(ADR+2 -- FLAG)
where RADR+2 is the start of private data and FLAG indicates success (TRUE) or
failure (FALSE). If failure is returned, a state is popped off the backtrack
stack and execution continues at that state., |f the backtrack stack is enpty,
the match failed.

{

driver (start-node -- flag)
init-stacks >call \ Only root node on stack
begin
call> dup 2+ swap perfornm \ Fetch and execute node
0= if \ Backtrack?
7back if false exit then X none possible ==> FRAIL
back> execute \ pop state
then
7call until true N\ Until call stack empty

}

Ue can now define the logical connectors (&&, ||), as well as some nmore
special ised operators (FRAIL, NULL, CUT, HAHY, MOST). Since &% and || perforn
far better in right-recursive situations, [& ... &] and [| ... |] build lists
as [correct] right-recursive patterns. If you want patterns built as you
specify them, use %& and |].

{

<&> (private -- flag ; Execution word for AND nodes)
2e swap >call >call true ; \ Push both subtrees

<&> constant '<&>

'

ai || (private -- flag ; Execution word for OR nodes)
2@ swap >call state>back \ Save backtrack point
lfcall true ; \ Leave 1st subtree on call stack

<|> constant '<|>

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
]
!
|
|
|
I
|
|
|
|
l
|
|
|
|
!
|
|
|
|
i
i
MV

September 1992 October 24 Forth Dimensions

binary (exec-adr | op-name -- ; Define binary operator)
create

does> { al a2 cfa -- adr)
here >r % Save node address
@ , swap , , \ Lay down exec-adr, al, a2)
r> (adr)

‘<4&> binary &%
‘<[> binary ||

: (& 0 ; " [& alias [| Y Leave sentinel value
linker (exec-adr -- ; Create a linker word)
create ,
does> {(0 at a2 ... an ¢fa -- ; Link all nodes)
@ >r begin (0 al a2 ... an)
over while Y Uhile more nodes to link
r@ execute %Y Execute linker procedure
repeat (0 al a2 ... an-1
nip r>drop Y Drop 0 and cfa

' & linker &]
I linker |]
)

FAIL, HULL and CUT are patterns which we call when we need. There are no
defining words for these patterns - we build them once only. Hote the use of
CREATE to name a single-node pattern.

{
fnode { exec | name -- ; create 1 node pattern)
create , ;
<fail> (private -- flag)
drop false ; N Always fail,
' < fail> Inode fail
¢ <null> (private -- flag)
drop true ; \ Always succeed
" <null> - lnode null
<cut> (private -- flag)
drop init-back true ; Y Empty backtrack stack
' <cut> Inode cut
}

OPT creates an optional pattern, i.e.

x OPT generates “x HULL |[|".
This means that, if possible, the pattern WUILL be matched. If you want
matching to occur only as a last resort, use "NULL x [[|".

{
opt { patl -- pat2)
HULL | ; W Either match or don't
}
"7 implements search negation -- it matches the least necessary to

"disprove" a given pattern. Hote that this is generaliy quite different fron
logical negation.

Implementation:
x 77 generates a node which, when executed, pushes NEG-ACCEPT onto the
backtrack stack (if x failed, i.e. negation succeeded) and NEG-REJECT
onto the call stack. NEG-ACCEPT pops words off the call stack until
NEG-REJECT {inclusive); NEG-REJECT pops states off the backtrack stack
until HEG-ACCEPT (inclusive), then fails.

{
tounary { exec | name -- ; Create unary pattern definer)
create ,
does> (ncfa -- adr)
here >r @ , , r> ;

Forth Dimensions 25 September 1992 October

[
i variable 'neg-accept variable 'neg-reject |
; I it (private -- true) i
' ‘neg-reject >call \ NEG-REJECT on call stack
i e >call % Hext to execute is x |
| 'neg-accept @ >back % HEG-ACCEPT to backtrack stack
| true ;
: neg-accept (-- ; Drop from CALL until neg-reject inclusive)
begin
call> 'neg-reject =
until

neg-reject (private -- false ; Drop from BACK until neg-accept)
drop begin

back> 'neg-accept @ <> while
back>drops

repeat false

Y Uhile state stacked
\ Drop it

neg-accept 'neg-accept ! ' neg-reject
! unary

}

HANY creates patterns to match several repetitions of a pattern
(possibly none). It performs backtracking, so mn" xy" many a" xyz" && perforns
as expected. Hote that uwsing HANY on
backtrack stack space.

long strings can use up lots of

MOST unlike HANY,

which matches the

but matches as many repetitions as possible,
least number possible.

i

i

|

!

|

|

‘'neg-reject ! i

i

|

|

|

|

|

|

is similar, [
|

|

Implementation is very sinple:

x MANY generates "HULL x y && |[|",

where y is the address of the node created by “||". Getting at y is the
tricky bit. Here we use the (*implementation specific*) fact that the length
of an "&&" node is 6 bytes.
{
many (patl -- pat2 ; Hatches fewest)
here 6 + && null swap || ;
{ patl -- pat2 ; MHatches most)

here 6 + &% null L0
}
For recursive patterns we need some way of forward referencing. This is
provided by @CALL, which inserts the contents of the specified variable into
the call stack. The result is that you can use v @CALL in an early pattern,
and later on set v to a given pattern, getting a forward reference. @CALL can

probably also be used to call a different pattern every time, but this is
probably being too clever.

{
<@call> (private -- flag ; Push contents of variable to call stack)
@ @ >call true ;
' <@ecall> unary ecall
}

to be able to execute a word while matching o pattern. The
word EXEC calls a given word, which should have no stack action., Use the
auxiliary stack if you need temporary storage. Hote that the word is executed
as encountered, and backtracking may cause it to be executed several tines.
However, the auxiliary stack is restored through backtracking, so careful use
of it should make conmplex actions possible. Rlternatively, just store enough
information later on,

It is very useful

data to enable retrieval of

DO HOT use E®EC to call is not re-entrant!.

|
|
|
i
i
|
|
|
i
|
|
|
|
|
I
|
|
|
|
i
i
i
I
i
|
i
!
i : most
I
i
i
|
i
i
|
|
|
|
|
|
|
|
|
|
|
|
i
|
|
i
|
! DRIVER recursively; it
|

!

|
|
]
]
|
|
|
|
1
[
|
i
|
|
|
|
|
|
|
|
|
i
1
i
i
i
|
|

Forth Dimensions

September 1992 October 26

. <exec? { private --
perform true ;
{exec? unary exec

flag

)

; Performn stored routine)

{
}

anew string-pattern-matcher

The state of the string matcher
string. It
faster to store an address
course, we also need to store the
{
variable str-adr
variable str-start

create cursor 4 allot
cursor constant cur-adr
cursor 2+ constant cur-len
cursor state-adr !

}

The cursor

The difference
{
pmatch { adr len pat
-rot atr-len !
dup str-adr ! str-start !
init-cur driver
if cur-adr @ str-adr
else false then
3
psearch (adr
-rot str-len !
dup atr-adr !
begin
init-cur dup driver

if

len pat

str-start !

true exit then
str-len @ while
atr-len decr str-ader
repeat
drop false
'

}

character.,
substring,

However, it
and RNYOF",

is of course possible to store this as an offaet
into the

variable str-len

4 state-len ! N

always points to the current
common manipulations are defined here.

Pattern searches are handled by PSEARCH { adr

nip str-adr @ cur-

It is of course possible to have just one primitive pattern:
is far more efficient to define H",
which matches if
string. N' and ANYOF' are also provided, to allow the doublequotes character

SNOBOL-style string matching using the Logic Engine l AS 10/1/92

is defined by the current position
only, but
string and a remaining length. Of

address and

adr & len of string
True start of string

5\
S
%Y (for PSERRCH).
\

State area

ldentify state arean

character in the string.

{
init-cur N Initialise current position to whole string
str-adr @ cur-adr !
str-len @ cur-len !
’
cur-char {(-- ¢ ; Return current character)
cur-adr @ c@ ;
: aduvance (n -- ; Rdvance cursor by n chars)
dup cur-adr +!
negate cur-len +! ;
ladvance { -- ; RAdvance cursor by 1 char)
} cur-adr incr cur-len decr ;
Pattern matches are handled by PHATCH (adr len pat -- ?len flag J.

-- false | len true)
{(pat adr)
(pat)
{ flag)
@ - true { len true)
{ false)
-- false | adr len true)
(pat adr)
(pat)
{(pat flag)
adr @ over - (adr len)
(adr len true)
Y Until end of string
incr % Advance start
(pat)
{ false)

match 1

the current character is

Forth Dimensions

in the

length of the entire string.

Several

len pat -- ?adr ?len flag).
is of course that PSERRCH advances along the subject string.

which matches a
in the given

27 September 1992 October

to be

{

H

)

{

i

}
| EREC

—

{ adr

isn't very useful

matched substring.
routine on a matched substring.

—

matched. |
{- { al a2 n -- flag ; Strings at al and a2 = for n chars?) l
dup 0¢< if 3drop 0 false exit then \ Exit if n<D
dup>r 0 ?7do { al a2) [
over c@ over c@ <> jf \ Not equal? l
2drop i 1+ false
undo r>drop exit { false) '
then |
1+ swap 1+ % Advance both strings |
loop (a2 at) |
2drop r> true \ Equal for n characters '
|
<m> (private -- flag; Check substring at current position) '
count dup cur-len @ > if { adr len) |
\ Hot enough characters left, match what there is and fail |
drop cur-adr @ cur-len @ (adr cur-adr cur-len) |
$= drop advance false { false) |
else
cur-adr @ swap { len adr cur-adr len) |
$- { len fig) |
swap advance Y Match len characters
then |
|
<anyof> {(private -- f; check if current char is in string) :
cur-char swap { chr private) ‘
count 0 ?do (chr adr) i
2dup ce = if % Character in string? |
ladvance 2drop \ Match it [
true undo exit Y and return true |
then 1+ Y Try next possibility |
loop |
ladvance 2drop false % Ho match [
strpat {(adr len exec -- pat)
here >r \ Save address
, tuck here place 1+ allot \ Store exec and string
ro { pat)
n" ascii " parse ['] <m> strpat ;
anyof" ascii " parse ['] <anyof> strpat ;
m' ascii ' parse ['] <m> strpat ;
anyof' ascii ' parse ['] <anyof> strpat ;

the cursor is in offset n;
v @RPOS are similar,
TRIL are synonyms for 0 POS and 0 RPOS,

except that

<pos> { private --

@ str-start @ + cur-adr @
<rpos?> (private --

@ cur-len @ = ;
{@pos> @ <pos>
{@rpos> @ <rposa>

{pos?> unary pos
{@pos> unary @pos
pos constant head

on

Il
4

len --), where adr and

In addition,

its own,

flag

=

’

flag

(]

0

but

POS and RPOS are used to check the cursor position. n POS succeeds only
n RPOS counts characters from the end.
n

if
v @P0S and
is fetched from the variable v. HEAD and

respectively.

; Cursor at stored position?)

; Cursor at stored position from end?)

{rpos>

%Y Fetch from variable and

\ perform POS or RPOS

unary rpos

{@rpos> unary @rpos
rpos constant tail

if we define PUSH to push the current
cursor position onto the auxiliary stack we can perform an action on a
we define SUBSTRING to perform a specified
The stack action of the routine is

len specify the substring. SUBSTRING

September 1992 October

28

builds [& PUSH pat!l substring-node &], where patl

is the pattern specifying

|
i
|
|
|
|
[
|
|
|
|
[
|
|
|
|
|
|
|
|
|
|
I
I
|
|
|

Forth Dimensions

the substring, and substring-node is a <substring> node with the execution
address stored.

1
l
|
{ H
<push?> (private -- flag ; Push current position to aux stack)]

drop cur-adr @ >aux true ;

create push ' <push> ,

|
<substring> {(private -- flag ; Execute stored routine on) :
aux?> cur-adr @ over - (exec-adr adr len) |
rot perform true Y Perform routine and succeed :
i |
|
substring (patl exec-adr -- pat2) :
here ['] <substring> , swap , { patl <substring>-node) |
&& push swap && { pat2) ;
H |
|
i]

|
Evaluate expressions using the Pattern Matcher j AS 1/1/92

anew evaluator decinal
% Auxiliary stack routines.
P NUm>aux { adr len -- ; Push number to aux stack)
drop 1- 0. rot convert 2drop >aux ;
~aux aux> negate >aux

*factor aux> aux? * >aux ;
/factor aux> aux> swap /[>aux ;
r +tern aux?> aux?> + >aux
t -term Qux?> Qux?> swap - aux ;

v\ Forward reference EXPR and TERH
variable expr

B

anyof" 0123456789"
constant DIGIT

{ A number is a sequence of digits)
digit digit most &% ' num>aux substring
constant HUHN |

{ B factor is a number or a bracketed expression, possibly preceded by a)
{ unary negation operator.

num [& m" (" expr ®call a")" &) ||
constant (FACTOR)
(factor) [& m" -* (factor) ' -aux exec &] ||
constant FACTOR
{ R term is a term nultiplied or divided by a factor, or a factor)
[& factor
[l [& m" *" factor ' *{factor exec 2]
[& n" /" factor ' /factor exec &] |] many
2]

constant TERH

(An expression is an expression plus or minus a term, or a tera)

[& term

[1 [& a" +" term ' +term exec &)
[& m" -" term ' -term exec &] |] nmany

2]
EXPR !
Y He can use expr @ now, because it already has a value
expr @ tail &% constant exp

euval 32 word count exp pmatch if drop aux> . else ." Failed” then ;

Y}
{ 2+3*5 =) eval 2+3*5 cr
(2+43%-4 =) eval 2+3%-4 cr

Forth Dimensions 29 September 1992 October

A Forum for Exploring Forth Issues and Promoting Forth

[Fasit [FOR TR wWearre)

The Changing Marketplace

I was dumbfounded by one of the comments made by
Charles Moore as reported by Jack Wochr (see the accompa-
nying “Press Watch” story). Through their collaboration,
Chuck says that Apple and IBM will both forfeit the future.
Chuck is apparently critical of the complex operating systems
for which these companies have gained a reputation.

What is the trend going to be? Will Forth be positioned to
take advantage of it?

Elizabeth Rather offered a sobering viewpoint when she
said, “...if there is a groundswell of people that are appalled
by bigger-is-better, she hasn’t seen it.”

I am pleased to think that as Forth programmers, we
abhor complexity. Butdespite years of resistance, I have seen
myself migrate to 800K word processors, 1IMb page-layout
and graphics programs, and the like. These are choices that
[made reluctanty, and only as [came to understand my
needs better. (I still use non-WYSIWYG and non-graphical
tools on a daily basis where I work because 1 also understand
how some of my necds cannot be addressed by the available
GUI tools.)

Before I came to Apple, I felt my non-graphical tools were

.we cannot view ourselves as
iconoclasts in perpetual defiance
of the large companies driving
such standardization efforts.

entirely adequate. At Apple, I started alternating between
UNIX-style programs for word processing and GUI word
processors. I found that when T use the non-graphical tools
all day, I would go home with head hurting. That observa-
tion, made repeatedly over a period of about two years, fully
convinced me that I actually do prefer a GUI tool whenever
oneis suitable for my work. As a user, I care less about buying
more RAM memory than I do about a lifetime of headaches.

(In a day’s work session, it's not unusual for me 1o enter
hundreds of commands. The need to run so many com-
mands often is due to the iterative effort required to correctly
specify each element in a complex UNIX command. For
example, 1 often err because some commands count ficlds
starting with one, and others starting with zero.)

Perhaps the ability of the GUI tools to dispense with my

September 1992 October

30

headaches can be explained this way: The operation of the
user interface occupies the visual regions of my brain—
leaving the analytical side of my brain free to think about
what I am trying to accomplish, without encumbrance.

Even though [am able to use the non-graphical tools to
regularly do amazing things, the process of using them is not
itself a joy. The reward comes only when the resull is
achieved, and by that time I am often uncomfortable, tired,
and ready to quit for the day. Why is that?

As human beings we appreciate rich visual simulation.
Accordingly, the GUI is here to stay. The next concern should
be how Forth can be incorporated into the world of user
interface objects, or how it can support such a world.

The interest in programming languages s also about tobe
eclipsed by the architectural initiatives being taken by
companies like Apple and Microsoft. They are hard at work
creating application programming interfaces (APIs) to help
leverage the ability of applications and people to collaborate
more effectively.

Application programming interfaces are being developed
now o route documents and messages in an endpoini-
independent fashion, so destinations such as pagers, fax
machines, and electronic mail services will be as easy to
reach as the local printer.

If you imagine the operating system growing by leaps and
bounds, fear not. Dynamically linked libraries permit users
to maintain trimmer operating systems, For example, you
don't have to extend the system with any library file that
provides unnecessary services. If support of sending mes-
sages to pagers is not needed, remove that extension file from
the appropriate folder (or directory)—or simply avoid buy-
ing unneeded extensions.

Microsoft and Apple have already demonstrated the use
of shared and dynamically linked libraries to extend the
operating system with new features, such as Apple’s support
of QuickTime, a movie/soundtrack type of data. Microsoft
has used dynamic linking to unobtrusively add pen exten-
sions to Windows (see “Windows Meets the Pen” in the June
'92 issue of Byte Magazine). It even allows applications that
are not pen-aware to respond to pen input. (The library is
dynamically linked to the operating system’s input drivers,
enabling pen inputs to be intercepted and processed into
equivalent mouse or keystroke inputs.)

Dynamic linking theoretically supports ad hoc construc-

|
]
|
|
|
|
|
I
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
|
[
|
i
|
|
|
|
|
|
|
|
|
I
|
|
|
|
[
i
|
F
|
|
|
|
|
|
|
i
1
|
]

Forth Dimensions

tion of applications by users. This will offer users the exciting
prospect of being able to use modules from different vendors
cooperatively—as if they were one application. Imagine
taking your favorite spreadsheet, word processor, and page-
layout programs and developing compound documents
where the spreadsheets are maintained by the spreadsheet,
stories are maintained by the word processor, and the page
appearance by the page-layoutl program. You should even
be able to save those modules as a uniquely named
application that runs all the modules when launched—as
though they were one application.

[know I am not the only one who sees these coming
attractions. However, data-interchange standards need to
mature further to allow increased inter-application commu-

nication. Nevertheless, companies such as Apple are pro-
(Continued on page 42.)

— -
[Press Walteln

Hurrah! A couple of Forth-related stories have re-
cently appeared in Midnight Engineering (March/April
issue) and in Dr. Dobbs (June issuc). By the time you are
able to read this, a third article focusing upon Forth will
have appeared in the weekly publication EE Times (see
the July 6 issue).

For those of you who did not see the articles recently
published, here are a few of the highlights. Midnight
Engineering portrayed Charles Moore as an engineer-
entrepreneur, Their article retraces his steps beginning
with the creation of Forth. The article lingers on the topic
of Chuck’s newer Forth chips and the exciting chip-
design software with which he is developing a new
generation of microprocessors.

Dr. Dobbs ran an article by Jack Woehr in which he
recreates a fascinaling dinner conversation between
many of the ANS Forth committec members and Charles
Moore. Besides Jack Woehr and Charles Moore, the cast
features Ray Valdez (an editor at the magazine), Elizabeth
Rather, George Shaw, John Stevenson, and Mitch Brad-
ley. The far-ranging discussion lingers on Chuck’s work
on new microprocessors, and the software he has created
Lo help design and simulate his newest microprocessor.
There is also a short sidebar about ANS Forth.

(As recently as a few years ago, Dr. Dobbs published
a regular Forth column by Martin Tracy. More recently,
Embedded Systems Journal ran a series of columns by
Jack Woehr.)

As ANS TForth is nearing completion, it’s possible to
obtain more Forth coverage in these and other journals.
Take heart Forth authors! Let’s tell more of the stories that
remain Forth folk tales. Stories that need telling include
the use of Forth in space shuttle experiments, the real-
lime programming contest that introduced the much-
admired “gizmo,” the open-boot ROM, Forth simulations
of genetic evolution processes, Forth-programmed de-
vices that help the physically handicapped, the popular-
ity of Forth amongst European scientists and program-
mers, and so forth.

[Precdiuct Waialn

May 1992

AM Research announced the amr451, an integrated
microcontroller development system that uses a PC host for
Forth compilation and interpretation. It targets the associ-
ated arm451 Application System, which has attractive
quantity prices. Besides including the Signetics SC80C451
(which runs 8031, 8051, and 8751 code), both systems have
options for ROM and RAM, RS-485, RS-232, LCD, keypad,
prototyping daughter boards, and A/D converters. To be
able to emulate ROM and break the umbilical connection
to the host, you use TURNKEY to wrile an autoslart vector
to battery-backed RAM in the development system. AM
Research also provides manufacturing and testing services
for products you prototype.

June 1992

Vesta Technology announced a standalone, 18-bit A/D
converter on a business-card-size PC that communicates
through its own RS-232 communications port. The RS-232
line can optionally serve as the physical connection
between up to 32 such (data collecting) units and a master
(listening and polling) node, such as a PC or one of Vesta’s
own single-board computers. A downloadable manual for
this product is available on the Vesta BBS at 303-278-0364.

July 1992

Silicon Composers announced a 12 MIPS, 32-bit data
acquisition system, the DAS32. This system bundles a
daughter board well-equipped with I/O ports (including
SCSD and Forth development software with either one of
two single-board computers based on the SC32 Forth
microprocessor—the SBC32 or the PCS32. The DAS32-SA
is based on the SBC32 computer, which can communicate
with a PC or terminal over a serial line. The DAS32-PC is
based on the PCS32 computer, which plugs directly into a
PC slot.

Companies Mentioned
AM Research

4600 Hidden Oaks Lane
Loomis, California 95650
Phone: 916-652-7472

Silicon Composers

208 California Ave.

Palo Alto, California 94306
Phone: 415-322-8763

Vesta Technologies

7100 W. 44th Ave., Suite 101
Wheat Ridge, Colorado 80033
Fax: 303-422-9800

Phone: 303-422-8088

|
|
|
|
|
|
|

I — S

Forth Dimensions

31

September 1992 October

News from the Forth RoundTable

[Best @F
GlEnlie

Gary Smith
Little Rock, Arkansas

News from the GEnie Forth RoundTable—This issuc’s
column again comes from Category 10, Topic 30 “What
should the Standard include?” where the focus has shifted to
whatactually constitutes system-/model-specific versus imple-
mentation-dependent. If you thought the ANS Forth standard
was all but set, you were mistaken. This discussion helps
disclose some of the mechanics that make a software
standard so difficult to impose on differing hardware and
processor platforms.

Before I share the exchanges with you, I need to take a
moment 1o thank Bob Lee for stepping in to continue
ForthNet ports from Usenet after personal problems forced
me to vacate my position as a Forth RoundTable SysOp and
o abdicate my role as the primary ForthNet bridge to GEnie.
As many of you know, [was instrumental in the creation of
ForthNet and this made stepping aside even more difficult.
Bob, through his generous offer to continue the Usenet-to-
GEnie bridge via his Citadel site, made a painful decision
more palatable. Thanks, Bob.

Those who still wish to reach me, please note my new
signature file:

Gary Smith, P. O. Drawer 7680

Little Rock, Arkansas 72217 U.S.A.
uunet!ddilllrark!glsrklgars
nuucp%ddil@uunet. UU.NET

GEnie Unix SysOp (GARY-S), phone: 501-228-5182
fax:501-228-9374 (0800-1700 GMT-6)

We might be better off

if long-time vendors

tried harder to make their
favorite ideas and best-selling
points standard practice.

What Should the Standard Include?
Implementation Model
From Nick_Janow @ mindlink.bc.ca
British Columbia, Canada

Several people have been saying that dpANS-3 isthe wrong |

approach and that ANSI Forth should be built on a standard
implementation model (or virtual machine). This standard
implementation model would allow a concise definition of

September 1992 October

1
|
|
|
.|
l
!
l
i

32

| Forth, common debugging tools, and other benefits.

While these benefits are valid, the advocates don't
mention the problems with that approach. It limits Forth to
one implementation. It would end experimentation with

vocabulary systems, threading techniques, etc. It would also |

break existing code. It would limit the hardware the compil-
ers could run efficiently on.
I like the concept of a Forth based on a standard

implementation model, and I think a lot of Forthers do, 1oo. |

The benefits are valid. However, 1 expect that each of the
programmers who would like a standard implementation
would want their particular implementation to be the
standard one. One person wants linked lists, another wants
hashed lists; one wants the simplicity of ITD, another wants
the speed of JSR threading. How do we choose the “standard
implementation”?

I'm open to arguments that will prove that the present
dpANS would be worse for Forth than an implementation
standard (taking Forth vendors, commercial developers, and
all other important groups into consideration). The argu-
ments would also have to show that it would be possible to
get agreement on a particular implementation model.

Is anyone willing to propose an implementation standard
(or even part of one) along with arguments as to why it
should be chosen over the other alternatives?

Re: Implementation Model
From mikc @ hal.gnu.ai.mit.edu (/etc/organization)
In article <12990@mindlink.bc.ca>, Nick Janow writes:

Several people have been saying that dpANS-3 is the wrong
approach and that ANSI Forth should be built on a standard
implementation model (or virtual machine). This standard
implementation model would allow a concise definition of
Forth, common debugging tools, and other benefits.

While these benefits are valid, the advocates don’t mention the
problems withthat approach. It limits Forth to one implementation.
It would end experimentation with vocabulary systems, threading
techniques, etc. It would also break existing code. It would limit
the hardware the compilers could run efficiently on.

We've been discussing the problems with that approach
constantly. Less has been said about how the approach taken
by the TC [ANS Technical Commiltee/ would solve these

problems. Standard portable Forth code is very restrictive. If |

there was a large body of code that we all insisted had to run
on every Forth system, that would constrain Forth as much as
having a standard Forth model implementation. Saying that
Basis allows us to write portable code but does not stop us from
experimenting with new techniques makes no sense to me,

Ilike the concept of a Forth based on a standard implementation
model, and [think a lot of Forthers do, too. The benefits are
valid. However, 1 expect that each of the programmers who
would like a standard implementation would want their
particular implementation to be the standard one. One person
wants linked lists, another wants hashed lists; one wants the
simplicity of ITD, another wants the spced of JSR threading.
How do we choose the “standard implementation”?

Some capable experienced Forth programmers don't try

}
1

Forth Dimensions

to make their particular implementation the standard one.
| There is a feeling of possesiveness about Forth systems; good
ideas are kept for the benefit of their author’s business and
to be sold to their customers. If a vendor does make an
attempt to present their particular way of doing things, it
meets with dissaproval from others who do not want to
change their way of doing things. We might be better off if

ideas and best-selling points standard practice.

I'm open to argumenits that will prove that the present dpANS
would be worse for Forth than an implementation standard
(taking Forth vendors, commercial developers, and all other
important groups into consideration). The arguments would
also have to show that it would be possible to get agreement
on a particular implementation model.

The proof is the complaint from those who have large
amounts of code to maintain thatadopting dpANS would put
them out of business. Adopting a particular implementation
model would have a similar bad effect. The standards
committee has spent over four years debaling to reach its
decisions. But this debate was between a relatively few
| people. Every Forth programmer has to make these same
decisions and reach the same conclusions if one person’s
Forth code is to look like another person’s Forth code. So 1
don't think a committee can do much to change or “modern-
ize"” Forth. It should stick to documenting old Forth as it was
years ago. Some incompatible Forth practices might be
resolved by a standards commiltee, but most of these were
introduced by past standards committees.

To those most interested in making Forth “up-to-date,” 1
would like to ask—how do you propose to retrain old Forth
programmers in your new mecthods? The ANSI standard
document is a terrible way to do this. I have been clearly told
that a standard document is not a tutorial. (This is one reason
why standard documents are so badly written.) How are you
going to communicate the reasons for your new decisions?
Ifa standards document is written only for those experienced
in the subject and is not a tutorial, then it can only refer to
materal already widely known, and can't intoduce anything
new.

But I believe a standards document is a tutorial and it
should inroduce new ideas. Portable Forth code is a new
idea. The document then has to be inspected and tested as
a wtorial. This has not been done. Another test that should
have been made is to ask—Are these new words such an
improvement that it is worth changing old code? Will
customers stop using their old systems and change to the new
ANS-compliant ones? Perhaps that test is too difficult for
anything to pass.

Now suppose a new implementation of a modern up-to-
date Forth system was written. Naturally it would have clear
documentation, a tutorial, and complete well-commented
source code. Tt would be given to students to learn on their
own from the material presented. It would be used in
industry when a portable Forth was needed for new projects.
Eventually it would become so well known that program-
mers would change the code written on older systems.

Forth Dimensions

the long-time vendors tried harder 1o make their favorite |

I know there will be great difficulties in producing a better
standards document or a portable Forth implementation. But
doesn't a model implementation have as much chance in
improving Forth as an ANSI standard document?

Is anyone willing to propose an implementation standard (or
even part of one) along with arguments as to why it should be
chosen over the other alternatives?

There have been and will be several people who will
write sample ANSI implementations. It will be much harder
to write the arguments as to why these should be chosen over
other alternatives.

I hope the above will illustrate my concern that we have
too many completely different tasks wrapped up in the
standards effort. An ANSI standard that was just a rehash of
Starting Forth would be perfectly fine with me, but trying to
combine a big list of revised Forth words with the idea that
this is going to show us how to step into the future is not my
idea of what should be done.

“Trash ANS, trash C (and sense, as well)”

From dak @ kaa.informatik.rwth
(Rechnerbetrieb Informatik / RWTH Aachen)

C is a language which should never have become
standardized. There is simply no portable way in C to write
a decompiler for any machine. Also, it is not possible with
today’s C standards to implement debugging facilities which
are portable (at least, not if they have to include disassembly
and use the debug features of the processor). Pascal should
never have been standardized as well. Instead one should
have prescribed a system such as the UCSD p-code as a
standard, togetherwith all the binaries. That way disassemblers,
decompilers, debuggers would have been portable. Who
cares about a speed factor of five? Who cares about improve-
ment or bug fixes?

Those in for performance: we should have standardized
assembly languages long ago. Why develop processors
capable of anything new?

And dear ANS: please standardize Forth in a way that
leaves open only one way of implementing anything,
Prescribe a machine language. Prescribe word sizes. Pre-
scribe ‘hidden features’ (a.k.a. bugs & nuisances). Prescribe
threading. Prescribe everything which might be imple-
mented differently in a more efficient way in the future.
Establish Forth as dead and inflexible, not to be implemented
on any new processor, and as an especially inefficient
language.

Follow the market leader Intel, whose high-performance
chips (P5 to come) are source code compatible with the 8080,
one of the earliest 8-bit processors. Ruin your opcodes!
Hamper your registers! Throw away chip space! Wasle
memory and performance! Prohibit accessing more memory
or performance than you could afford in your youth!

Don't try to describe and preserve the flavor of Forth!
Concentrate on its aftertaste! Its indigestiveness! Its nui-
sances! The color of vomited binaries! Come on!

September 1992 October

From B.RODRIGUEZ2 [Brad]
bradford@maccs.dcss.memaster.ca
Drian:

Briefly, all of my applications used some form of “lazy
evaluation.” I'm not the only one using this; there was a good
article in The Computer Journal #43 (March/April 1990) by
Marla Bartel. One of my examples is the word

& (f£--1£) (t--)
0= IF 0 R> DROP THEN ;

which if entered with “false,” forces 2 word to exit with false
on the stack, but if entered with “true,” simply consumes the
flag and proceeds. This turns out to be a surprisingly uscful
and powerful construct, as you can see from the references
cited in my previous posting. The only way to do this in
dpANS Forth is:

& POSTPONE 0= POSTPONE
IF POSTPONE FALSE POSTPONE EXIT
POSTPONE THEN ; IMMEDIATE

which will typically compile five cells rather than one... and
I use this construct a /ot.

I decided to post my previous comment afier the discus-
sion turned around to stack addressibility. At first I thought
I might need an addressible stack, but upon reflection 1
realized that all I need was the entilement to do R> DROP,
i.c., some recognition that when a high-level definition is
entered, the top of the return stack contains a single-cell
return address.

I seem to be in a position similar to Dr. Wavrik: here’s a
technique I've used for years—and, I should add, which

works in all of the twenty-odd Forths I've used—which is |

being lost in ANS Forth. I have no hope of reinstating this
entitlement. (Sigh.)
“I've used MS-DOS; I can use ANS Forth. But not for this.”

From B.DUNNS [Brian]
B.RODRIGUEZ2 [Brad] writes:

t & (£ — £) (t -——)

0= IF 0 R> DROP THEN ;
which if entered with “false,” forces a word to exit with false
on the stack, but if entered with “true,” simply consumes the
flag and proceeds.

The only way to do this in dpANS Forth is
: & POSTPONE 0= POSTPONE
IF POSTPONE FALSE POSTPONE EXIT
POSTPONE THEN ; IMMEDIATE
which will typically compile five cells rather than one...
and I use this construct a lot.

I see a word called UNLOOP which does almost what
you want, except for do loops. How about proposing a
word UNCALL or UNNEST? If they saw fit to include
UNLOOP, I don't see how they can’t include UNCALL.

And if they don’t, 1 might as well mention the
protostandard category on GEnie, which might one day

September 1992 October

34

look like an ‘ANS fixup category.’

But this is just a patch for one little problem, which is
a symptom of a larger problem, about which you have a
good point. If it were assumed that a call placed a value on
the return stack, and a do loop placed three, you could get
rid of UNLOOP and UNCALL altogether (although I like
them anyhow).

From B.RODRIGUEZ2 [Brad]
bradford@maccs.dcss.memasler.ca
Brian:

UNCALL might work, except for my pattern-matching

package, which is positively ruthless about shuttling val- |

ues—including return addresses—back and forth between
the two stacks.

I'm not the only one playing such games. I've read a paper |

by M.L. Gassanenko of the University of Leningrad describing
his BacFORTH which solves the same problem in a totally
different way—which also requires carnal knowledge of the
return stack. Gassanenko’s paper seems to me to be among
the leading edge of Forth language research; it’s a pity that his
innovative ideas are about to be torpedoed.

By the way, you can’t assume that DO puts three values
on the stack. Some implementations only put two. And I've
been told that the dpANS leaves open the option of an
independent loop stack (4 la STOIC).

I'm aware of the protostandard category on GEnie; I've
been monitoring it, although I haven’t had time to post to
it yet. I fear that you are right: already I'm hearing of TC
members looking forward to the next ANS Forth as the
“fixed-up” standard. Not a real vote of confidence in the
current dpANS.

“I've used MS-DOS; I can use ANS Forth.”

Re: What should the Standard include?
From dwp @ willett.pgh.pa.us
In article
<9206191017.AA11267@netlerash. berkeley.edu>,
Anton Martin Ertl writes:

ANSI Forth’s purpose (more correctly, X3]J14’s purpose) is
(among other conflicting things) to standardize existing practice,
nol create a new language or add things never tried before.

Writing decompilers, debuggers, etc. in Forth is existing
practice. So if you don’t want this capability in ANSI Forth, use
a different argument.

ANS Forth is not aiming at the portability of the Forth
system itself, but the portable use of such a system. The
debuggers, decompilers, etc. are inherently a part of the
Forth system because they depend on system-specific
details (threading vs. native code, access to return stack
and IP, and on and on...). Support for those kinds of tools
would require either a model-based standard, or an
Abstract Data Type interface to the facilities needed. Good
or not (I personally think good), a model-based standard
is not going to happen, at least not this time around. The
Internals mailing list is working on the ADT approach, but
it is not at a standardizable point yel.

i
i
i

Forth Dimensions

1
|
i
|
|

T am not asking for something that I don’t know what it is. I |

pointout that ANS[Forth does not standardize capabilities that
are present in all Forth systems and that could be portable (i.e.,
they are not processor- or OS-dependent.

Addressable stacks are processor-dependent (i.e., not
presentin all Forth systems and not portable). The structure
of the Forth dictionary is implemetation-dependent. The
implementation will depend on the underlying hardware,
therefore the structure of the dictionary is indirectly proces-
sor-dependent. I'm very curious to see what the group
working on internals structure has to say about this, when
they reach a consensus. Again, such a consensus does not
already exist and therefore cannot be standardized.

Addressing the stack has been called bad programming style |

and I agree. But that's no reason to throw it out.

Especially when there are much better reasons. Ad-
dressable stacks are processor-dependent. Requiring them
to be addressable incurs substantial penalties on some
processors, and would require a strong argument to do so.
[have seen no argument for addressable stacks, other than
some hypothetical potentiality.

The disagreement is where to draw the line between language
and implementation. In my opinion dpANS Forth makes the
language part very small, making many Forth programming
techniques implementation-dependent and thus non-portable.

I think it would help to be more precise here. There is |
a difference between notsaying that something isportable, |

and making something non-portable. It seems to me that
the diversity of Forth implementation strategies indicates
that there are many who are not satisfied with the old fig-
Model “traditional Forth” type approach. Just look at what
Forth’s creator has done with the language. If we admit that
he was a visionary in creating Forth (not in one fell swoop,
but with an evolutionary process), then either he has fallen
from the/his way by not sticking with the same model, or
he understands the essence of Forth as not being tied to a
single model. Perhaps he is just a non-conformist who
accidently struck upon a good idea, but since has wan-
dered off to other things?

It seems to me to be unrealistically idealistic to expect
a popular return to a model-based de facto/ANSI standard.
Forth is too individualistic for that. Too many people have
already made their own evaluations of the tradeoffs in
traditional Forth and found other tradeoffs to be more
productive, useful, helpful, etc.

I would very much like to hear what those who are
advocating a model-based approach (and a “traditional”
model at that) to the ANS standard think about why there
has been so much diversity to Forth implementations and
why so many have chosen alternatives to “traditional” Forth.

Re: What should the Standard include?
From dwp @ willett.pgh.pa.us

In article <3789.UUL1.3#5129@willett.pgh.pa.us>, Brad
Rodriguez writes:

Forth Dimensions

35

I'm glad to sce i's not too late for me to post my examples of
what I can’t do in ANS Forth. I have

a) a parser [sigForth newsletter vol.2 no.2|,

b) a pattern matching extension [FORML ‘89 proceedings), and
c) a fast expert system [Rochester ‘90 proceedings],

all of which are reasonably portable, and all of which have
been invalidated by ANS Forth. The latter is particularly
significant to me, as I am using it in my University research.

For those of us without access to those publications,
could you relate the essence of what it is you do that has
been invalidated by dpANS Forth?

Re: What should the Standard include?
From anton @ mips.complang.tuwie
(Institut fuer Computersprachen, Technische Universitaet
Wien)

Inarticle <3815.UUL1.3#5129@willett. pgh.pa.us>, Doug
Philips writes:

In article <9206191017.AA11267@nettlerash.berkeley.edu>,
Anton Martin Ertl writes:

Writing decompilers, debuggers, etc. in Forth is existing practice.

ANS Forth is not aiming at the portability of the Forth system
itself, but the portable wse of such a system. The debuggers,
decompilers, etc. are inherently a part of the Forth system
because they depend on system-specific details (threading vs.
native code, access to return stack and IP, and on and on...).

Who says what's system-specific (a.k.a. implementa-
tion-dependent) and what's not? Hmm, it’s the standard:
What the standard defines is not system-specific, and what
it does not define is system-specific. Therefore: If we add
ways for implementing debuggers, decompilers, etc. to the

| standard (e.g., in an ADT approach or by specifying a

standard model), they are no longer system-specific.

I am not asking for something that | don’t know what it is. |
point out that ANSI Forth does not standardize capabilities that
are present in all Forth systems and that could be portable (i.e.,
they are not processor- or OS-dependent.

Addressable stacks are processor-dependent (i.e., not present
in all Forth systems and not portable).

Implementation-dependent means “not present in all
Forth systems.” Processor-dependent means not
implementable on all processors (e.g., memory > 64K).

The structure of the Forth dictionary is implementation-
dependent. The implementation will depend onthe underlying
hardware, therefore the structure of the dictionary is indirectly
processor-dependent.

You are saying that there are processors that cannot
process linked lists (or hash tables or an ADT for the
dictionary). Don’t make me laugh so hard!

The disagreement is where to draw the line between language

September 1992 October

and implementation. In my opinion dpANS Forth makes the
language part very small, making many Forth programming
techniques implementation-dependent and thus non-portable.

I think it would help to be more precise here. There is a
difference between notsaying that something is portable, and
making something non-portable.

There may be a difference, but it does not matter. If
nothing else happens, anything not covered by the stan-
dard will be non-portable.

[would very much like to hear what those who are advocating
a model-based approach (and a “traditional” model at that) to
the ANS standard think about why there has been so much
diversity to Forth implementations and why so many have
chosen alternatives to “traditional” Forth.

Well, Forth is easy to implement, so many people do it.
And they won't just type in fig-Forth listings, they experi-
ment. They add new features, they make it faster, they
leave out what's inessential (to them), make it compliant to
a new standard document, etc. (Of course, there are also
implementations not derived from fig-Forth.) Some of
those implementations are distributed. Then other people
will use these implementations. Some will know about the
changes (and won't care), and some will not know about
them and may have a hard awakening.

“Some things have to be seen to be believed.

Most things have to be believed to be seen.”

Re: What should the Standard include?
From dwp @ willett.pgh.pa.us

In article <3830.UUL1.3#5129@willett.pgh.pa.us>, Brad
Rodriguez writes:

Brian: UNCALL might work, except for my pattern-matching
package, which is positively ruthless about shuttling values—
including return addresses—back and forth between the two
stacks.

So your & won’t work in those cases either. Perhaps it
would be helpful to know what kinds of things you are
doing with return addresses. Are you just moving them
around? Are you modifying them?

Some systems have words beyond just R>, >R, and R@.
Perhaps what is needed is a portable way to manipulate
return stack “items” which are not data pushed from the
data stack for temporary space. Would having a word, say
R-CELLS, that gives you the number of cells in a return
stack “address/item” be enough? How many of the data
stack words (DUP, SWAP, ROLL, etc.) have you wrilten
return stack equivalents for?

I'm not the only one playing such games. I've read a paper by
M.L. Gassanenko of the University of Leningrad describing his
BacFORTH which solves the same problem in a totally
different way—which also requires carnal knowledge of the
return slack. Gassanenko’s paper seems 1o me to be among
the leading edge of Forth language research; it’s a pity that his
innovative ideas arc about to be torpedoed.

September 1992 October

Really? Is ANSI going to take away the systems he is
using now? Are they going to sabotage/cancel FORMI
conferences? Please be more specific as to how you think
leaving carnal knowledge out of the dpANS will kill
innovation.

By the way, you can’t assume that DO puts three values on the
stack. Some implementations only put two. And I've been told
thatthe dpANS leaves open the option of an independent loop
stack (4 la STOIC).

I would much rather, from a philosophic point of view,
that they had required a completely independent loop
stack. When I first learned Forth I couldn’t believe the
caveat about accessing the return stack across a DO LOOP
boundary... talk about a bad joke! Of course, a separate DO
LOOP stack won't break existing code, as it will only allow
things that weren’t allowed before, and not visa versa... but
I can see why they couldn’t require it.

1 Re: What should the Standard include?

‘ From dwp @ willett.pgh.pa.us

| Inarticle <1992Jul1.075122.19668@email.tuwicn.ac.at>,
| Anton Martin Ertl writes:
I

I

i

Inarticle <3815.UUL1.3#5129@willett.pgh.pa.us>, Doug Philips
writes:

ANS Forth is not aiming at the portability of the Forth system
itself, but the portable wse of such a system. The debuggers,
decompilers, etc. are inherently a part of the Forth system
because they depend on system-specific details (threading vs.
native code, access to return stack and IP, and on and on...).

Who says what's system-specific (a.k.a. implementation-
dependent) and what’s not?

I've already asked “Who gets to say what Forth is?” The
answer [0 your question is not unrelated to the answer to
that question.

So far I haven't seen any answer, except for the “I do”
implicit in every post that says what Forth is (traditional or
not).

Hmm, it's the standard: What the standard defines is not
system-specific, and what it does not define is system-specific.

What the standard defines is not system-specific, and
what it does not define it does not define. That doesn’t
mean that additional portability is impossible, or even
disallowed, it just isn’t required for the ANSI “stamp.”

Therefore: If we add ways for implementing debuggers,
decompilers, etc. to the standard (e.g., in an ADT approach or
by specifying a standard model), they are no longer system-
specific.

Of course. If the internals work now under way had
begun five years ago, and had it been actually implemented
in more than a handful of systems, then perhaps it could
have made it into this standard. As it stands, it won't.

(Continued on page 42.)

36 Forth Dimensions

Forth resources & contact information

reSouree [Listings

Please send updates, corrections, additional listings, and suggestions to the Editor.

————— e —

| Forth Interest Group |

————

| ANS Forth |

| The Forth Interest Group serves both expert and |
| novice members with its network of chapters, Forth |

| Dimensions, and conferences that regularly attract
| participants from around the world. For membership
! information, or to reserve advertising space, contact

! the administrative offices:

Forth Interest Group

P.O. Box 2154

Oakland, California 94621

|

|

]

f 510-89-FORTH
« Fax: 510-535-1295
|

|

|

Board of Directors
I John Hall, President
! Jack Woehr, Vice-President
| Mike Elola, Secretary
! Dennis Ruffer, Treasurer
, David Petty
i Nicholas Solntseff
i C.H. Ting

Founding Directors
William Ragsdale
Kim Harris

Dave Boulton
Dave Kilbridge
John James

ln Recogmtlon f

| Recognition is offered an-
| nually to a person who has
| made an outstanding con-

tribution in support of Forth
| and the Forth Interest
| Group. The individual is
| nominated and selected by
| previous recipients of the
i “FIGGY.” Each reccives an

engraved award, and is
{ named on a plaque in the
| administrative offices.

l
L ket I
|

1979 William Ragsdale
1980 Kim Harris

1981 Dave Kilbridge
1982 Roy Martens
1983 John D. Hall f
1984 Robert Reiling
1985 Thea Martin
1986 C.H. Ting _
1987 Marlin Quverson :
1988 Dennis Ruffer |
1989 Jan Shepherd
1990 Gary Smith
1991 Mike Elola {

Forth Dimensions

| The following members of the ANS X3]J14 Forth Stan-
dard Committee are available to personally carry your
| proposals and concerns to the committee. Please feel

| free to call or write 1o them

|

|

|

|

|

|

|

|

| Gary Beus

| Unisyn

1 301 Main, penthouse #2
| Longmont, CO 80501

| 303-924-9193

|
l
J
|

Mike Nemeth
CSC
10025 Locust St.
Glenndale, MD 20769
301-286-8313

Andrew Kobziar

NCR

Medical Systems Group
950 Danby Rd.

Ithaca, NY 14850
607-273-5310

Elizabeth D. Rather

FORTH, Inc.

111 N. Sepulveda Blvd,,
suite 300

Manhattan Beach, CA 90266

213-372-8493

directly:

Charles Keane
Performance Pkgs., Inc.
515 Fourth Avenue

Watervleit, NY 12189- 3705\

518-274-4774

George Shaw
Shaw Laboratories
P.O. Box 3471

Hayward, CA 94540-3471 |

415-276-5953

David C. Petty

Digitel

125 Cambridge Park Dr.
Cambridge, MA 02140-2311

|
|
|
|
|
|
[
[
|
|
|
|
|
|
|
|
|
|
|
r
|
F
F
n

Forth Instruction

Los Angeles—Introductory and intermediate three-day
intensive courses in Forth programming are offered
monthly by Laboratory Microsystems. These hands-on
courses are designed for engincers and programmers
who need 1o become proficient in Forth in the least
amount of time. Tclcphonc 213-306-7412.

—
|
|
|
|
|
|
|

September 1992 October

F

ForthNet

ForthNet is a virtual Forth network that links designated
message bases of several bulletin boards and information services
in an attempt to provide greater distribution of Forth-related info.

ForthNet is provided courtesy of the SysOps of its various links,
who shunt appropriate messages in a manual or semi-manual
manner. The current branches of ForthNet include UseNet's
comp.lang.forth, BitNet's FIGI-L, the bulletin board systems RCFB,
ACFB, LMI BBS, Grapevine, and FIG’s RoundTable on GEnie.
(Information on modem-accessible systems is included below.)

The various branches of ForthNet do not have the same rules
of appropriate postings or etiquette. Many bulletin board posts are
very chatty and contain some personal information, and some also
contain blatant commercial advertising. Most comp.lang.forth
posts are not like that. ForthNet messages that are ported into
comp.langforth from the rest of the ForthNet all originate on
GEnie, which is a kind of de facto ForthNet message hub. All such
messages are ported to comp.lang.forth with a from-line of the form:
From: ForthNet@willett.pgh.pa.us ...

Most messages ported to comp.lang.forth also contain some
trailer information as to where they actually originated, if it was not
on GEnie.

There is no e-mail link between the various branches of |

ForthNet. If you need to get a message through to someone on
another branch, please either make your message general enough
Lo be of interest to the whole net, or contact said person by phone,
U.S. Mail, or some other means. Thoughtful message authors place
a few lines at the end of their messages describing how to contact
them (electronically or otherwise).

Phone information for the dial-in services mentioned above:
RCFB (Real-Time Control Forth Board)

SysOp: Jack Woehr
Location: Denver, Colorado, USA

303-278-0364

ACFB

(Australia Connection Forth Board) 03-809-1787 in Australia
SysOp: Lance Collins 61-3-809-1787 International
Location: Melbourne, Victoria, AUSTRALIA

213-306-3530
SprintNet node calan

LMI BBS (Laboratory Microsystems, Inc.)
SysOp: Ray Duncan
Location: Marina del Ray. California, USA

Grapevine (Grapevine RIME hub)
SysOp: Jim Wenzel
Location: Little Rock, Arkansas, USA

501-753-8121 to register
501-753-6859 thereafter

GEnie (General Electric Network for

Information Service)

SysOps: Dennis Ruffer (D.RUFFER)
Leonard Morgenstern (NMORGENSTERN)
Gary Smith (GARY-S)

Location: Forth RoundTable—type M710 or FORTH

Forth Libraries
There are several repositories of Forth programs, sources,
executables, and so on. These various repositories are notidentical
copies of the same things. Material is available on an as-isbasis due
to the charity of the people involved in maintaining the libraries.
There are several ways to access Forth libraries:

800-638-9636 for info.

SprintNet node coden |

trator for information. Your system administrator should always be
| your first resort if you have any difficulties or questions about using
FTP.

For MS-DOS-related files, there are currently two sites from
which you can anonymously FTP Forth-related materials:
WSMR-SIMTEL20.ARMY .MIL (Simtel20 for short)
WUARCHIVE.WUSTL.EDU (Wuarchive for short)

Wuarchive maintains a “mirror” of the material available on
Simtel20. Simtel20 has a limited amount of material, most of it
| binaries for MS-DOS computers. The Forth files on Simtel20 are in
directory PD1:<MSDOS.FORTH>. The Forth files on Wuarchive are
in directory /mirror/msdos/forth. For detailed information on how
use FTP and the Simtel20 archive (it is oo much to include here),
| sce the text files in:

PD1:<MSDOS.STARTER>SIMTEL20.INF or
/mirrors/starter/simtel 20.inf

An FIP site containing a mirror of the FIG library on GEnie is
“under construction” and will be announced when it is ready.

FIGI-L Gateway
For those who have access to BITNET/CSNet but not Usenet,
I comp.lang.forth is echoed in FIGI-L. The maintainer of the
i Internet/BITNET gateway since first quarter 1992 is as follows:

internet: pl@lsi.usp.br (PREFERRED)
uunet: uunetivme131!pl
hepnet: psanchez@uspif1.hepnet

Pedro Luis Prospero Sanchez
University of Sao Paulo
Dept. of Electronic Engineering
phone: (055)(11)211-4574
home: (055)(11)914-9756

fax: (055)(11)815-4272

! Modem

For those desiring to use (or stuck with) modems, the dial-in
systems listed above also have Forth libraries,

Note: If you are unable to access SIMTEL20 via Internct FIP or
through one of the BITNET/EARN file servers, most SIMTEL20 MS-
! DOS files, including the PC- network at 313-885-3956. DDC has
| multiple lines which support 300/1200/2400/9600/14400 bps
(HST/V.32/V.42/V 42bis/MNPS). This is a subscription system with
an average hourly cost of 17 cents. It is also accessible on Telenet
via PC Pursuit, and on Tymnet via StarLink outdial. New files
uploaded to SIMTEL20 are usually available on DDC within 24
hours.

Information provided by:

Keith Petersen Maintainer of SIMTEL20's MSDOS,

MISC & CPM archives [IP address 26.2.0.74]

Intemet: w8sdz@WSMR-SIMTEL20.Army.Mil or
wBsdz@vela.acs.oakland.edu

| Uucp: uunet!wsmr-simtel20.army.millw8sdz

| BITNET: w8sdz@OAKLAND

This list was compiled 20 February 1992. While every atternpt

was made to produce an accurate list, errors are always
| possible. Sites are also subject to mechanical problems or
SysOp burnout. Please report any discrepancies, additions, or
deletions to the following:

uunet!ddit!lrarkiglsrk!gars

Gary Smith h
FIP | P. O. Drawer 7680 nuucp %ddi1@uunet. UU.NET
Note: You can only use FTP if you are on an Internet site which | Little Rock,AR 72217 GEnie Forth RT & Unix RT SysOp |
supports FTP (some sites may restrict certain classes of users). If | U.S.A. prione; 801226 5182
you have any questions about this, contact your system adminis- 0 5012259374 ’
(08001700 GMT-6) J
Septermnber 1992 October 38 o Forth D;'me‘n‘s.ib-;rs

———— =

E-Mail

For those with e-mail-only access, there is not much. For now,
posts from ForthNet ported into comp.lang forth sometimes adver-
tise files being available on GEnie. Those messages also contain
information on how to get UU encoded e-mail copies of the same
files. There is an automated e-mail service. The entire FIG library
on GEnie is available via e-mail, but no master index or catalog is
yet available. The file FILES.ARC contains a fairly recent list of the
files on GEnie, and [iles added since then are only documented for
comp.lang.forth readers by way of the “Files On-line” messages
ported through ForthNet.

If you have any questions about ForthNet/comp.lang.forth or
any information to add/delete or correct in this message, or any
suggestions on formatting or presentation, please contact either
Doug Philips or Gary Smith (preferably both, but one is okay) via
the following addresses:

* Internet: dwp@willett.pgh.pa.us

or dditYirark!gars@uunet.uu.net
e Usenet: ...luunet!dditlirark!gars

or ...luunet!willett.pgh.pa.us!dwp
* GEnie: GARY-S or D.PHILIPS3
* ForthNet: Grapevine, Gary Smith

leave mail in Main Conference (0)

To communicate with the following, set your modern and commu-
nication software to 300/1200/2400 baud with eight bits, no parity,
and one slop bit, unless noted otherwise. GEnie requires local
echo (half duplex).

GEnie*
For information, call 800-638-9636
* Forth RoundTable (ForthNet*)
Call GEnie local node, then
type M710 or FORTH
SysOps:
Dennis Ruffer (D.RUFFER)
Leonard Morgenstern (NMORGENSTERN)
Gary Smith (GARY-S)
Elliott Chapin (ELLIOTT.C)

BIX (Byte Information eXchange)

For Information, call 800-227-2983

¢ Forth Conference
Access BiX via TymNet, then type j forth
Type FORTH at the : prompt
SysOp: Phil Wasson

CompuServe

For Information, call 800-848-8990

* Creative Sclutions Conf.
Type L.Go FORTH
SysOps: Don Colbum, Zach Zacharia, Ward McFarland, Greg
Guerin, John Baxter, John Jeppson

« Computer Language Magazine
Type ! Go CLM
SysOps: Jim Kyle, Jeff Brenton, Chip Rabinowitz, Regina Star
Ridley

The WELL (Unix BBS with PicoSpan frontend)
« Forth conference
Access WELL via CPN (CompuServe Packet Net)
orvia SprintNet node: casfa
or 415-332-6106
Forth Fairwitness: Jack Woehr (jax)
Type ! jforth

Citadel Network - two sites

¢ Undermind (UseNet/Citade! bridge)
Allanta, GA
404-521-0445

*GEnie is the repository of the Forth Interest Group's
official Forth Library.

* Interface (formerly Nite Owl)
SysOp: Bob Lee
Napa, CA
707-823-3052

Non-Forth-specific BBS’s
with extensive Forth libraries:
* DataBit

Alexandria, VA

703-719-9648

SprintNet node dcwas

¢ Programmer's Corner
Baltimore/Columbia, MD
301-596-1180 or
301-995-3744
SprintNet node dcwas

* PDS*SIG
San Jose, CA
408-270-0250
SprintNet node casjo

International Forth BBS’s
See Melbourne Australia in ForthNet node list above

* Serveur Forth
Paris, France
From Germany add prefix 0033
From other countries add 33
(1)41081175
300 baud (8N1) or
1200/75 E71 or
(1y4108 11 11
1200 to 9600 baud (8N1)
For details about high-speed,
Minitel, or alternate carrier
contact: SysOp Marc Petremann
17 rue de la Lancette
Paris, France F-75012

* SweFIG
Per Alm Sweden
46-8-71-35751

* NEXUS Servicios de Informacion, S.L.
Travesera de Dalt, 104-106
Entlo. 4-5
08024 Barcelona, Spain
+ 34 3 2103355 (voice)
+ 34 32147262 (data)

* Max BBS (ForthNet*)
United Kingdom
0905 754157
SysOp: Jon Brooks

* Sky Port (ForthNet*)
United Kingdom
44-1-294-1006
SysOp: Andy Brimson

+ Art of Programming
Mission, British Columbia, Canada
604-826-9663
SysOp: Kenneth O'Heskin

* The Forth Board
Vancouver, British Columbia, Canada
604-681 3257
Forth-BC Computer Society

U'NI-net/US
Monument, CO

Jerry Shifrin (ForthNet charter founder}
719-488-9470

Forth Dimensions

* The Monument Board (U'NI-net/RIME ForthNet bridge)

@
i
[
|
|
i
|
|
|
|
i
|
|

39 September 1992 October

[_FiG Chhpters

The Forth Interest Group Chapters listed below are currently
] registered as active with regular meetings. If your chapter
| listing is missing or incorrect, please contact the FIG office’s
Chapter Desk. This listing will be updated regularly in Forth

!f

i

Dimensions. If you would like to begin a FIG Chapter in your '

area, write for a "Chapter Kit and Application.”

Forth Interest Group
P.O. Box 2154

Oakland, California 94621

U.S.A.

| » ALABAMA

L]

Huntsville Chapter
Tom Konantz
(205) 881-6483

* ALASKA

Kodiak Area Chapter
Ric Shepard

Box 1344

Kodiak, Alaska 99615

ARIZONA

Phoenix Chapter

4th Thurs., 7:30 p.m.
Arizona State Univ.
Memorial Union, 2nd floor
Dennis L. Wilson

(602) 381-1146

CALIFORNIA

Los Angeles Chapter
4th Sat., 10 a.m.
Hawthorne Public Library
12700 S. Grevillea Ave.
Phillip Wasson

(213) 649-1428

North Bay Chapter

2nd Sat.

12 noon tutorial, 1 p.m. Forth
2055 Center St., Berkeley
Leonard Morgenstern

(415) 376-5241

Orange County Chapter
4th Wed., 7 p.m.
Fullerton Savings
Huntington Beach

Noshir Jesung (714) 842-3032

Sacramento Chapter
4th Wed., 7 p.m.
1708-59th St., Room A
Bob Nash

(916) 487-2044

San Diego Chapter
Thursdays, 12 Noon
Guy Kelly (619) 454-1307

.

Silicon Valley Chapter
4th Sat., 10 a.m.
Applied Bio Systems
Foster City

John Hall

(415) 535-1294

Stockton Chapter
Doug Dillon (209) 931-2448

COLORADO

Denver Chapter

1st Mon., 7 p.m.

Clifford King (303) 693-3413

FLORIDA

Orlando Chapter
Every other Wed., 8 p.m.
Herman B. Gibson

(305) 855-4790

GEORGIA

Atlanta Chapter

3rd Tues., 7 p.m.

Emprise Corp., Marielta
Don Schrader (404) 428-0811

ILLINOIS

Cache Forth Chapter
QOak Park

Clyde W. Phillips, Jr.
(708) 713-5365

Central Illinois Chapter
Champaign
Robert Illyes (217) 359-6039

INDIANA

Fort Wayne Chapter
2nd Tues., 7 p.m.

I/P Univ. Campus
B71 Neff Hall

Blair MacDermid
(219) 749-2042

L]

IOWA

Central Iowa FIG Chapter
1st Tues., 7:30 p.m.

Iowa State Univ.

214 Comp. Sci.

Rodrick Eldridge

(515) 294-5659

Fairfield FIG Chapter
4th Day, 8:15 p.m.
Gurdy Leete (515) 472-7782

MARYLAND

MDFIG

3rd Wed., 6:30 p.m.
JHU/APL, Bldg. 1
Parsons Auditorium
Mike Nemeth

(301) 262-8140 (eves.)

MASSACHUSETTS
Boston FIG

3rd Wed., 7 p.m.

Bull [IN

300 Concord Rd., Billerica

Gary Chanson -
o Chanson Ry 54971l

MICHIGAN

Detroit/Ann Arbor Arca
Bill Walters

(313) 731-9660

(313) 861-6465 (eves.)

MINNESOTA
MNFIG Chapter
Minneapolis
Fred Olson
(612) 588-9532

MISSOURI

Kansas City Chapter

4th Tues., 7 p.m.

Midwest Research Institute
MAG Conference Center
Linus Orth (913) 236-9189

St. Louis Chapter

1st Tues., 7 p.m.
Thornhill Branch Library
Robert Washam

91 Weis Drive

Ellisville, MO 63011

NEW JERSEY
New Jersey Chapter
Rutgers Univ., Piscataway
Nicholas G. Lordi

(908) 932-2662

NEW MEXICO
Albuquerque Chapter

1Ist Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico

Jon Bryan (505) 298-3292

September 1992 October

40

NEW YORK

Long Island Chapter
3rd Thurs., 7:30 p.m.
Brookhaven National Lab
AGS dept.,

bldg. 911, lab rm. A-202
Irving Montanez

(516) 282-2540

Rochester Chapter
Monroe Comm. College
Bldg. 7, Rm. 102

Frank Lanzafame

(716) 482-3398

OHIO

Columbus FIG Chapter
4th Tues.

Kal-Kan Foods, Inc.
5115 Fisher Road

Terry Webb

(614) 878-7241

Dayton Chapter

2nd Tues. & 4th Wed., 6:30 p.m.

CFC

11 W. Monument Ave, #012 |
Gary Ganger (513) 849-1483 |

PENNSYLVANIA
Villanova Univ. Chapter
1st Mon., 7:30 p.m.
Villanova University
Dennis Clark

(215) 860-0700

TENNESSEE

East Tennessee Chapter
Oak Ridge

3rd Wed., 7 p.m.

Sci. Appl. Int’l. Corp., 8th Fl.
800 Oak Ridge Turnpike
Richard Secrist (615) 483-7242

TEXAS

Austin Chapter
Matt Lawrence
PO Box 180409
Austin, TX 78718

Dallas Chapter

4th Thurs., 7:30 p.m.
Texas Instruments

13500 N. Central Expwy.
Semiconductor Cafeteria
Conference Room A
Warren Bean (214) 480-3115

|

Forth Dimensions

Houston Chapter

3rd Mon., 7:30 p.m.
Houston Arca League of
PC Users (HAL-PC)

1200 Post Oak Rd.
(Galleria area)

Russell Harris

(713) 461-1618

VERMONT

Vermont Chapter
Vergennes

3rd Mon., 7:30 p.m.
Vergennes Union High School
RM 210, Monkton Rd.

Hal Clark (802) 453-4442

VIRGINIA

First Forth of
Hampton Roads
William Edmonds
(804) 898-4099

Potomac FIG

D.C. & Northern Virginia
1st Tues.

Lee Recreation Center
5722 Lee Hwy., Arlington
Joseph Brown

(703) 471-4409

E. Coasl Forth Board
(703) 442-8695

Richmond Forth Group
2nd Wed., 7 p.m.

154 Business School
Univ. of Richmond
Donald A. Full

(804) 739-3623

WISCONSIN

Lake Superior Chapter
2nd Fri., 7:30 p.m.

1219 N. 21st St., Superior
Allen Anway (715) 394-4061

INTERNATIONAL

* AUSTRALIA

Melbourne Chapter

1st Fri., 8 p.m.

Lance Collins

65 Martin Road

Glen Iris, Victoria 3146

03/889-2600

BBS: 61 3 809 1787

Sydney Chapter

2nd Fri., 7 p.m.

John Goodsell Bldg., RM LG19
Univ. of New South Wales
Peter Tregeagle

10 Binda Rd.

Yowie Bay 2228
02/524-7490

Usenet:
tedr@usage.csd.unsw.oz

* BELGIUM

Belgium Chapter
4th Wed., 8 p.m.
Luk Van Loock
Lariksdreef 20
2120 Schoten
03/658-6343

Southern Belgium Chapter
Jean-Marc Bertinchamps
Rue N. Monnom, 2
B-6290 Nalinnes
071/213858

* CANADA
Forth-BC
1st Thurs., 7:30 p.m.
BCIT, 3700 Willingdon Ave.
BBY, Rm. 1A-324
Jack W. Brown
(604) 596-9764 or
(604) 436-0443
BCFB BBS (604) 434-5886

Northern Alberta Chapter
4th Thurs., 7-9:30 p.m.
N. Alta. Inst. of Tech.
Tony Van Muyden

(403) 486-6666 (days)
(403) 962-2203 (eves.)

Southern Ontario Chapter

Quarterly: 1st Sat. of Mar., |

June, and Dec. 2nd Sat. of Sept.
Genl. Sci. Bldg., RM 212
McMaster University

Dr. N. Solntseff

(416) 525-9140 x3443

Forth Dimensions

i
i

* ENGLAND
Forth Interest Group-UK
London
1st Thurs., 7 p.m.
Polytechnic of South Bank
RM 408
Borough Rd.
D.J. Neale
58 Woodland Way
Morden, Surry SM4 4DS

+ FINLAND
FinFIG
Janne Kotiranta
Arkkitehdinkatu 38 ¢ 39
33720 Tampere
+358-31-184246

* GERMANY
Germany FIG Chapter
Heinz Schnitter
Forth-Gesellschaft e.V.
Postfach 1110
D-8044 Unterschleiheim
(49) (89) 317 37 84
Munich Forth Box:
(49) (89) 871 45 48
8N1 300, 1200, 2400 baud
e-mail uucp:
secretary@forthev.UUCP
Internet:
secretary@Admin.FORTH-eV.de

« JAPAN
Japan Chapter
Toshio Inoue
University of Tokyo

A

Dept. of Mineral Devclop-|

ment

Faculty of Engineering
7-3-1 Hongo, Bunkyo-ku
Tokyo 113, Japan
(81)3-3812-2111 ext. 7073

REPUBLIC OF CHINA
R.O.C. Chapter
Ching-Tang Tseng

P.O. Box 28

Longtan, Taoyuan, Taiwan
(03) 4798925

SWEDEN
SweFIG
Per Alm
46/8-929631

e SWITZERLAND
Swiss Chapter
Max Hugelshofer
Industrieberatung
Ziberstrasse 6
8152 Opfikon
01 810 9289

Forth is easy to implement, so
many people do it. And they
don’t just type in fig-Forth
listings, they experiment.

See “Best of GEnig”

* HOLLAND
Holland Chapter
Maurits Wijzenbeek
Nieuwendammerdijk 254
1025 LX Amsterdam
The Netherlands
++(20) 636 2343

* ITALY
FIG Italia
Marco Tausel
Via Gerolamo Forni 48
20161 Milano

SPECIAL GROUPS

¢ Forth Engines Users
Group
John Carpenter
1698 Villa St.
Mountain View, CA 94041
(415) 960-1256 (eves.)

|
|
!
|
i
|
i
i
|
|
i
|
|
|
:
|
|
|
|
|
|
|
|
|
|
i
|
i
|
i
|
|
|
i
i
|
|
i
i
i
|
|
i
i
.r
i
|

September 1992 October

(Fast Forthward, continued from page 31.)

cceding full speed ahead to create such boundary-breaking
standards (see “Apple Event Objects and You” in the May
issuc of develop, Apple’s magazine for developers).

Sometimes complexity is not the obstacle to progress. In
cases like these, the added complexity of implementation
may be of little or no detriment to progress. Rather than ugly
complexity, I see a rich tapestry shaping up that will confer
significant value to many new and existing computer users.
These layers of software can work like agents, interceding on
the behalf of users so that they do not have to deal directly
with tedious supporting technologies such as local networks
and wide-area electronic mail services.

Correct me if I am wrong, but I think these services will
make compulters sell as well as telephones. If the market for
hardware is already saturated, there will still be vast amounts
of software extensions to be sold.

For Forth to be able to get a piece of that market, however,
we cannot continue o view ourselves as iconoclasts in

perpetual defiance of companies large enough to drive such |

standardization efforts. Even our attitudes toward our own
standards, such as Forth-83 and ANS Forth, are too much of
the “necessary evil” sort. Let's make the effort to see the value
of Forth language standards, GUI standards, and operating-
system-extensions standards. (Isn’t it odd how “operating-
system-extensions standards” almost sounds like it came out
of a Forth textbook?)

ANS Forth will certainly be one step in the right direction.
Forth’s ability to support libraries, as well as its ability to take
advantage of C libraries, would be helpful too.

We must realize that the needs of the user dictate what
software will sell. The GUI makes the computer less taxing
and more enjoyable to use. If it makes life more difficult for
the programmer, the consumer couldn’t care less. (Computer
users regularly buy software without giving any thought to
the underlying language used to create it.)

If we fail to grasp that user needs drive sales of products,
we forfeit our chances of any real commercial success. I am
starting to think that some of us have mistaken our own
desires, as developers, for user needs. (Even if Apple and
IBM do forfeit the future, how likely is it that ordinary
computer users will dabble with Forth and discover that it
meets their computing needs better?)

From a marketing perspective, Forth is best able to
compete when short-run or one-of-a-kind products must be
created. Big companies are not interested in the returns
possible from such undenakings. Nevertheless, small but
highly innovative engineering oulfits often take great pride
in designing such short-run, custom products.

But does Forth's ability to compete in small markets
translate into an ability to compete in larger markets? Please
show me that it can—but please do so on the basis of the
customer needs in those larger markets.

Your thoughts about Forth’s markets are valued. Can one
of you be persuaded to write a regular “Forth Developer
Opportunities” column? This magazine is yours to create. [
eagerly await your Fast Forthward essay—whether its focus
is marketing or a technical subject. (For any Forth vendors
amongst you, this request applies doubly.)

—Mike Elola |
42

September 1992 October

(GEnie, continued from page 36.)

Addressable stacks are processor-dependent (i.e., not present
in all Forth systems and not portable).

Implementation-dependent means “not present in all Forth
systems.” Processor-dependent means not implementable on
all processors (e.g., memory > G4K).

(e.g., a Forth processor in silicon that keeps TOS, clc. in
internal registers that have no data bus addresses. Imple-
mentation- vs. processor-dependent are fuzzy distinctions
to make with Forth silicon on the scene.)

The structure of the Forth dictionary is implementation-
dependent. The implementation will depend on the underlying
hardware, therefore the structure of the dictionary is indirectly
processor-dependent.

You are saying that there arc processors that cannot process
linked lists (or hash tables or an ADT for the dictionary). Don't
make me laugh so hard!

Laugh? Go ahead if you need to. There is quite a bit
! more structure to a dictionary than a linked list. I haven't
| seen the results of the internals ADT for the dictionary, but
if itis really an ADT, it doesn’t prescribe the structure of the
dictionary, merely its interface. The structure of the dictio-
nary, on segmented architectures, may be segmented. On
systems light on RAM, the structure might even allow
swapping, so that not all parts of the dictionary entries are
even in memory at the same time. Perhaps you have a
different idea of what structure is?

I think it would help to be more precise here. There is a
difference between notsaying that something is portable, and
making something non-portable.

There may be a difference, but it does not matter. If nothing
else happens, anything not covered by the standard will be
non-portable.

Anything not covered by the standard is not going to be
any more non-portable than it was before. The standard
doesn’t insist that every aspect not covered by it be
implemented incompatibly.

Topatrticipate inthe up-to-the-minute discussion
between on-line Forth users, andto gainaccess

procedure on page 39.

to Forth software libraries, see the GEnie logon |

Forth Dimensions

m Ghe Baclk [Burner

The Fireman
Syndrome

Conducted by Russell L. Harris
Houston, Texas

Returning once more to the vein of the two previous
columns, i.e., to the matter of finding commercial oppor-
tunities for programming in Forth, I offer for your consid-
cration the following thesis: Perhaps we spend too much
time trying to find ways to make ourselves competitive,

when, possessing via Forth a rather unique capability, we |
rcally should be secking a niche in which we have no |
| competition. In like manner, instead of attempting to

| demonstrate the superiority of Forth, it may prove a wiser
| course of action to search out areas in which Forth is simply

indispensable—arcas in which program complexity makes |

| impractical the use of assembler, and in which other

considerations preclude the use of C, Ada, and other high-
level languages.

One Man’s Trash,
Another Man’s Treasure
I remember reading of the outfit which bought up
germanium transistor fabrication lines, one by one, as the
various semiconductor foundries discontinued production
of germanium devices. The company was, with a single

exception, able to purchase at scrap prices every germa- |

nium line in the world; they were outbid on only one sale.
Iaving acquired a virtual monopoly, they now have all the
business they can handle, lor it scems that the demand for
germanium transistors, although not growing, is neverthe-
less quite stable. The stability of the market is the conse-
quence of three factors, the first of which is that germanium
devices have an operating life much shorter than that of
silicon devices (Surprise! Transistors do nofhave an infinite
service life!) and thus require replacement every few years.
The second factor is that a surprisingly large number of

- circuits in current use were designed around germanium

devices, and it is simply not economical to redesign them,
so long as replacement transistors can be had. Finally,
some circuits depend upon the electrical characteristics of
germanium transistors to the extent that there is no

| practical silicon alternative. What a niche!

Pride & Prejudice
In the movie January Man, the hero describes his job as
a [ireman: “Burning building... everyone else runs out...
you run in. Basically, it's 2 maniac’s job.” The fireman is a
valued and respected member of society, for he has a
specialized and vital function at which he is competent.

Forth Dimensions

| Yet, the nature of the work attracts but few.

There is an analogous role in the programming world,
| one which Forth programmers generally are well qualified
| to fill. By aiming at work which is outside the capability or
| inclination of other programmers, it is possible both to
| program in Forth and to earn a respectable living in the
I process. In the words of the old country song, it is a way
| to “have your Kate, and Edith, t0o.”

,l The next time you are with a client, ask where his
' biggest headaches lie, and what tasks his people find most
! onerous. Chances are, you will find that the mindless,

headlong stampede into the abyss of C has left his shop
! devoid of programmers proficient in the areas of real-time
| programming and ROM-based systems. Even those knowl-
| edgeable in assembly coding of embedded systems may be

loath to accept such projects, fearful that a display of
! competence may relegate them forevermore to mundane
] duties, with no hope of return Lo the esoteric realm of C.
| Every such shop is a potential client for a Forth program-
| mer.

If at First You Don’t Succeed...

Inasmuch as I have yet to detect reader feedback from
my first column, T must assume a dearth of interest
| regarding demonstration apparatus. This being the case, a
I shift in emphasis is in order. Accordingly, 1 plan to devole
| the nextand subsequent columns to matiers relating to the
| programming of embedded systems.
| In the course of the upcoming odyssey, we shall take a
| tutorial approach to a number of pertinent topics, delving
| into the morass of metacompilation and attempling to
| divestitofits enigmatic repute. Within the realm of subjects
| to be considered are cross-compilation, both batch and
| interactive, and the creation of new Forth systems via
| assembler code.
| Reader feedback, regarding areas of particular interest
i and areas in which confusion abounds, will aid in charting
I the course of study.

i R.S.V.P.

Russell Harris is a consulting engineer with experience in a variely of fields. He
particularly enjoys working with embedded systems in the fields of instrumenta-
lion and machine control. He can be reached by phone al 713-461-16 18, or athis
RUSSELL.H address on GEnic.

The language market no longer |
| promises windfall profits. '
. The good side of this is that ,
| software source and idea ;.
. piracy is no longer a major risk.
] Perhaps now a new vendor
 strategy is possible... i
i See “Letters” in this :’ssue,_j

—

43 September 1992 October

Fourteenth Annual

FORML CONFERENCE

The original technical conference
for professional Forth programmers, managers, vendors, and users.

Following Thanksgiving, November 27 — November 29, 1992

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean
Pacific Grove, California U.S.A.

Theme: Image display, capture, processing, and analysis

Papers are invited that address relevant issues in the development and use of Forth in image display,
capture, processing, and analysis. Additionally, papers describing successful Forth project case histories
are of particular interest. Papers about other Forth topics are also welcome.

Mail abstract(s) of approximately 100 words by October 1, 1992 to: FORML Conference, Forth Interest
Group, P.O. Box 2154, Oakland, CA 94621

Completed papers are due November 1, 1992.

Conference Registration

Registration fee for conference attendees includes conference registration, coffee breaks, and note-book of
papers submitted, and for everyone rooms Friday and Saturday, all meals including lunch Friday through
lunch Sunday, wine and cheese parties Friday and Saturday nights, and use of Asilomar facilities.
Conference attendee in double room—3$365 « Non-conference guest in same room—3$225 « Children under 18

years old in same room—3$155 « Infants under 2 years old in same room—free « Conference attendee in single
room—>3$465

Complete registration by October 15, 1992 and Forth Interest Group members and their guests are
eligible for a ten percent discount on registration fees.

Register by calling the Forth Interest Group business office at (510) 893-6784 or writing to:

FORML Conference, Forth Interest Group, P.O. Box 2154, Oakland, CA 94621

Forth Interest Group —

P.O. Box 2154 '1 Second Class

Postage Paid at

Oakland, CA 94621 San Jose, CA

-

