$10 Volume X1V, Number 2 July 1992 August

Random Disk Records

Structured Pattern Matching

ANS Forth Update

SILICON COMPOSERS INC

Announcing the SC/FOX DRAMIO32 Board

IDRAM EJZ SC38 Lovw -

@ 4 . . sl 100E R esssssnsnsssensessses il
0_0_‘ DO ___IT-;
N T e o ISTEETTTTTN it
*e *e Heeed He e e *e *e laciie *ee e L L .o
LN] *e LR N NN N NN N N *e LN] b s3t-a o *e . e LAL]
[N] *e L L ¥ L] L L L * e LAl 2
oo oo[ﬁ U3 RS232] e (JS QUART®® me US SCSI e [jejee
e *e | EXE NN N NENE N] e *e Yl . LN] LIl
. *e (EEE N NN NN N] .o L L] LN * 0 :..
* e L] LN J LN] L] .o LN] aie e
oo [ofF] U4 RS232] evecsccccece TE 0000 csssee |elee
seSer7tNe0 00O teevcccse - 5 3 XXX X
.0 (EE RN ENNN N] [X N) T W W W W £ 80000000 HeeN LI]
"DE ULo PARA |15 ULl PARB [} U17 HIPAR olo e
(X] [E R EERERENNELR] LIL N]
LIl‘jh........... %".....‘....J [AN EEEERENENENNN)] LILE]
.o Ul2 D24 .o oo |[ale s
L [] [EE N EEENEENEENENEEREENENE NS SEENEEERNENRHNEN®.] . e .9 LEL A
v .——.E (] e [[o|ee
.o U13 D8 ¢ sUl6 DRAMCtL oo |[ofo e
. L e LA
*e [] I E R R RN EENEEEEEEREENEEEENEEREERNENRSENR] . LN * e LA)
v ﬁloo oo [lole]m]
. Ut4 D16 N oeeeeesaass PO
*e
oo] H00 0000000000000 0000000s0O0OOOTS ()
LN]
NE uis 10
PSJG. I EE N ENEEENENENEENEEENEEEEENERNENRH:.LH®] . L R

I EEEEEEEEERR] ..

AnSC/FOX DRAMINS2 (£)1992 Shicon Composerx, Inc Palo Alta, CA USA GHD

SC/FOX DRAMIO32 Board (actual size)

B The DRAMIO32 is a plug-on daughter board which B Wristwatch chip keeps correct time and date (battery
attaches directly to either the SBC32 stand-alone or included) with or without system power.
PCS32 PC plug-in single board computers. B 24 bytes of keep-alive CMOS RAM, powered by
W Up to 16 MB on-board DRAM. wristwatch battery.
B 5 MB/sec SCSI controller supports up to 7 SCSI W Source code driver software and test routines for
devices. SCSI, parallel and serial ports, DRAM, timers, CMOS
W 16-bit bidirectional parallel port, may be configured as RAM and wristwatch chip included.
two 8-bit ports. W Interrupts available for all I/O devices.
B 4 Serial ports, configurable as 4 RS232 or 2 RS232 MW No jumpers, totally software configurable.
and 2 RS422. B Hardware support for fast parallel to SCSI transfer.
M Each serial port is separately programmable in 33 B Multiple boards may be stacked in one system.
standard baud rates up to 230K baud. B Two 50-pin user application connectors.
B 4 input handshaking and 6 output control lines. B Single +5 Volt low-power operation.
B 7 general purpose latched TTL level output lines. M Full power and ground planes.
M 11 general purpose TTL level input lines with W Input for external +5 volt supply to keep DRAM data
interrupts available on either transition. in case of loss of main power.
B 2 programmable counter/timers, may use internal or B 6 layer, Eurocard-size: 100mm x 160mm.
external event trigger and/or time base. B User manual and interface schematics included.

See application article in this issue.
For additional product and pricing information, please contact us at:

SILICON COMPOSERS INC 208 California Avenue, Palo Alto, CA 94306 (415) 322-8763

July 1992 Auqust

2

Forth Dimensions

Fealures |

Contents

6

!
ﬂ10

Interfacing to Extended Memory
Jesus Consuegra

Forth is still known for functioning well in limited-RAM environments, but that constraint
doesn’t have to apply to your MS-DOS workhorse. When this author needed (o process lots of
MIDI data from a synthesizer, he first learned how to bring Microsoft's Extended Memory
Specification into his Forth system.

Random Disk Records

Brian Sutton

Creating a random-access data base program often trips up the over-conlident neophyle
programmer—in any language. A decade of Forth experience taught this chiropractor enough

to implement security features, dynamic file sizing, mixed record sizes, error handling, and
more. Like the author, you could run a business based on this slick application.

Structured Pattern Matching
Ariel Scolnicov

Finally, a sophisticated string-handling wordset for Forth that does more than just accept and
manipulate string input. That is, you can define patterns to describe classes of strings, then use
the scarch engine to find various permutations of pattern combinations. These tools offer all
the string-handling functionality of SNOBOL in a Forth implementation.

China’s National Forth Examination
C.H. Ting, trans.

Test your Forth knowledge, and check your own skills against those expected of Forth
programmers in the People’s Republic of China. This is an English translation of the exam
administered in that country last year.

 Departments |

4
4

8

19
32

35

4142

43

Editorial
ANS Forth Update
Lettorsc.ousviisonisnen Response and Apology, Threading a Memory Waste,

Optimizer Concern Misplaced, I/O Time Dominales
Performance, CREATE..DOES> Lrratum

FIG Financial Statement

Advertisers Index

Fast Forthward Promoting Forth, FIG update, new products
Best of GEnie Forth RoundTable changes, managing data types
reSource Listings FIG, ANS Forth, classes, on-line RIME & Forth.

On the Back Burner .. Sleeping with the Enemy

Forth Dimensions

3 Julv 1992 Auausi

Editoial

Last Chance

There is still time to enter
our contest for articles about
“Forth on a Grand Scale.”
Many peoplestill aren'taware
of large Forth applications,
of Forth componentsin com-
plex systems, of significant
multi-programmer projects,
etc. To improve the general
awareness of how Forth per-
forms in “the big leagucs,”
and to enlighten those who
only know theleanand mean
side of Forth, we are offering
cash awards to the top three
papers we receive on the
subject. See the ad on page
40 of this issue for details—
better do it now, since the
contest deadline is August 3!

Of course, articles re-
ceived after that date will still
be considered for publica-
tion, they just won't qualify
for the prize money.

Speaking of Which...

Forth Dimensionsthrives
best when its readers partici-
pate most. We are constantly
looking for a broad range of
articles: applications, utilities,
tutorials, vendor/developer
interviews and success
stories, examples of Forth
technique, hardware pro-
jects, essays, and letters to
the editor come to mind.
Becausewearesucha widely
distributed and diverse
communily, it is important
foryou to remember that we
areindecd interested in what
you are doing. Not every
articdle should be very ad-
vanced (our “hot thermom-
eter” rating)—many readers
need more moderate fare at
their current stage of Forth
expertise. So don't feel,
because your magnum opus
isn't forthcoming, that you
have nothing 1o contribute.
We want to hear from you!

July 1992 Auagust

Update your Rolodex

Those of you who have
followed the Forth Interest
Group forany length of time
know that, like any organi-
zation, itis always seekingto
improve itsefficiency. As part
of the most recent changes,
please note the new address

and telephone numbers on
our masthead and mail-
order form. The change in
offices will, it is believed,
substantially help consolidate
and coordinate the business
of running this membership
organization.

—Marlin Ouverson

ANS Forth Update
From Elizabeth D. Rather, chairpersomofthecommittee (X3/14)
developing ANS Forth, we received this report dated 3/23/92:

“Ihe four-month public review period for the Draft
Proposed ANS Forth (dpANS) closed February 25, 1992. X3] 14,
the Technical Committee developing ANS Forth, received a
total of 34 official comments and three late comments. Many
of the comments were mul-part, producing a total of over 200
discreteitems. Of the 37 comments, only three were negative.
The others were generally supportive, pointing out unclear
issues, making specific suggestions, and noting typos.

“All the public review comments, as well as a number of
technical proposals, were considered by X3J14 in its 19th
meeting held March 17-21 at Athena Programming near
Portland, Oregon. Reported typos will be fixed, many of the
suggestions were adopted (or alternative solutions were found
for the problems raised), and the document was clarified in
many areas.

“Asrequired by X3 procedures, all commentors will receive
responses drafted and approved by the TC. In addition, the TC
agreed tosend each commentor the complete set of comments
and responses, and a copy of the changes made to the
document.

“The TC was pleased at the amount of time and effort
invested in the comments. Many interesting and valid points
were raised, and the document is much improved. The
improvements are incremental in nature, with no radical
changes in policy or approach (except for the three comments
noted above, extensive revisions were not requested). Several
words weredropped from extension wordsets, and some others
were added (particularly in the Floating Point wordsep). A few
words got more-mnemonic names, descriptions and require-
ments were darified, and more Rationale material was added.

“Therevised dpANS will be released fora two-month public
review soon, probably carly or mid-May. As before, copics will
beavailable from Global Engincering Documents, 2805 McGaw
Avenue, Irvine, California 92714 (800-854-7179, or 714-261-1455
from outside the USA. and Canada). Comments reccived
during this period willbe considered in September. This process
will repeat until the TC detenmines that noadditional substantive
changes need Lo be made, at which time the document will be
forwarded to X3 for processing as an ANS.”

4

Forth Dimensions
Volume XIV, Number 2
July-August 1992

Published by the
Forth Inlerest Group

Editor
Marlin Ouverson

Circulation/Order Desk
Frank Hall

Forth Dimensions welcomes
editorial material, letters to the edi-
tor, and cotnments from its readers.
No responsibility is assumed for
accuracy of submissions.

Subscription to Forth Dimen-
sions is included with membership
in the Forth Interest Group at $40
per year (52 overseas air). For
membership, change of address,
and to submit items for publica-
tion, the address is: Forth Interest
Group, P.O. Box 2154, Oakland,
California 94621. Administrative
offices: 510-89-FORTH. Fax: 510-
535-1295. Ad sales: §05-946-2272.

Copyright ©® 1992 by Forth In-
terest Group, Inc. The material con-
tained in this periodical (but not
the code) is copyrighted by the
individual authors of the articles
and by Forth Interest Group, Inc.,
respectively. Any reproduction or
use of this periodical as it is com-
piled or the articles, except repro-
ductions for non-commercial pur-
poses, without the written permis-
sion of Forth Interest Group, Inc. is
a violation of the Copyright Laws.
Any code bearing a copyright no-
tice, however, can be used only
with permission of the copyright
holder.

The Forth Interest Group

The Forth Interest Group is the
association of programmers, man-
agers, and engincers who create
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that
will advance the general state of
the art. FIG provides a climate of
intellectual exchange and benefits
intended to assist each of its mem-
bers. Publications, conferences,
scminars, telecommunications, and
area chapter meetings are among
its activities.

“Forth Dimensions (ISSN 0884-
0822) is published bimonthly for
$40/46/52 per year by the Forth
Interest Group, 1330 S. Bascom
Ave., Suite D, San Jose, CA 95128.
Second-class postage paid at San
Jose, CA, POSTMASTER: Scnd ad-
dress changesto Forth Dimensions,
P.O.Box 2154, Oakland, CA 94621.”

Forth Dimensions

[Leitiers

Letters to the Editor—and to your fellow readers—are always welcome.
Respond to articles, describe your latest projects, ask for input, advise
the Forth community, or simply share a recent insight. Code is also
welcome, but is optional. Letters may be edited for clarity and length.
We want to hear from you!

Response and Apology

Iercin I hope to apologize for my errors, explain myself
more fully, and suggest some further articles I'd like to see
published.

I would like to apologize to anyone who took comments
in my article in issue X111/2 as a criticism of Jim Callahan’s HS/
FORTH. It was centainly not my intention to imply his Forth
was anything other than a fine product. Although I have not
used it personally, I have never heard a bad word about HS/
FORTH or its author.

My comments were, however, intended (o be a criticism
of a claim in his advertisement. While merely my own
opinion, and others may read his ad differently, 1felt his ad’s
claim of compiling 40,000 lines per minute was almost
meaningless, in that no details were given as to how the
figure was reached. I tricd to illustrate, using some specific
timings on Pygmy, that it makes a hell of a difference whether
you are running on a 4.77 MHz PC or a 33 MHz *386. In his
letter in issue XII/4, he supplied some of those details
(running on a '286, etc.). I think his ad would be stronger by
including the processor and dock speed details but, of
course, that is entirely his business. Indeed, I appreciate his
advertising in Forth Dimensions and thereby helping to
support it. My exceptions to certain parts of his ad should be
kept in perspective.

Jim also suggested Forth Dimensions has an anti-vendor
bias. If it does, I have not been aware of it. It is my belief my
article on Pygmy was published because it was one of the
best available at the time, rather than because Forth Dimen-
sionsis biased against vendors. I would be most happy to see
Forth Dimensions publish an article written by Jim about his
HS/FORTH. And, if I am wrong about the anti-vendor bias,
I would like to see Jim write a letter or article putting forth
his evidence and reasoning.

Iam also struck by another aspect of Jim’s advertisement:
it seems to imply some of HS/FORTH has been pirated by
others and/or that some of his development work has been
stolen or misused. My first reaction is to reject this as a vague
claim given without supporting details. If there are support-
ing details, I think a full reatment of this subject would make
a great article, and I would like to encourage Jim to write it!
Sincerely,

Frank Sergeant
809 W. San Antonio St.
San Marcos, Texas 78666

Threading a Memory Waste
Dear Sir:
I would like to thank Guy Kelly for producing an anticle
reviewing a few aspects of so many Forth systems [F/D X111/
61. Such articles are long overdue in Forth Dimensions and

Forth Dimensions

will prove a great service to anyone interested in Forth.

Iwould, however, like to expand upon a few of the points
covered. The main emphasis of the article was onthe relative
speeds of the various systems and architectures, and is
therefore incomplete without an analysis of the costs asso-
ciated with any speed advantage. True optimization involves
economy in the use of memory, and the avoidance of built-
in limitsto expansion, as well as raw execution performance.
We examined both direct and subroutine threading a decade
ago—and rejected both for reasons that obviously still hold
today. They waste memory for marginal speed improve-
ment, better obtained where needed by local optimization.
When attempts are made to limit the memory waslted, the
inevitable result is unacceptable limits on program space
available and sacrifice of the performance gained.

Direct threading, while marginally faster than indirect (for
very simple programs) uses anywhere from six to 20 extra
bytes for every single colon definition. Paragraph-aligned list
structures such as used by F-PC waste an additional average
of eight bytes per colon definition. Memory and disk space
may be cheap these days, but they are always limited,
especially if you aren’t your only dient.

Speaking of waste, some Forths such as polyFORTH
which claim multi-scgment program space do so by duplicat-
ing the entire base of the application in each segment so that
a three-segment, 172K program has the lower 32K of each of
the three segments identical, wasting 64K of core and disk.
HS/FORTH is multi-segment withoutany duplication or waste.

Clearly, an optimizer that totally eliminates NEXT linkage
where speed is essential will produce code that is faster and
overall more compact than direct threading. We were curious
how the LMI optimizer seemed to give a faster Sieve time than
ours. Mystery solved. They optimize variables and DO LOOP
indices as embedded constants and hope they'll never
change. Works fine for the Sieve, good luck in real life.
Sincerely,

Jim Callahan

Harvard Softworks

P.O. Box 69
Springboro, Ohio 45066

Optimizer Concern Misplaced
Dear Marlin:

Congratulations on publishing the fine article by Guy
Kelly, and thank you for forwarding the copy of Mr.
Callahan’s letter. Fortunately, Mr. Callahan’s concern about
the applicability of our optimizer to real-life situations is
misplaced. The optimizer specifically looks for situations
where DO LOOP indices and other parameters are in fact
conslants, asis the case with the DO LOOP indices in the Sieve
benchmark, and then compiles the values as embedded
literals. When the parameters for a DO LOOP are not
constants—for example, if they are passed into a definition
on the stack or loaded from variables—the optimizer gener-
ates completely different code.

Regards,

Ray Duncan

Laboratory Microsyslems Inc.
12555 W. Jefferson Blvd., Suite 202
Los Angeles, California 90066

(Continued on page 42.)
Julv 1992 Auaust

Form-83

Interfacing to
Extended Memory

Jesus Consuegra
Sitges, Spain

This paper describes a practical approach to interface to
the XMS (Extended Memory Specification), to allow MSDOS
Forth programs to access the memory beyond the artificial
limit of 640 Kbytes that MSDOS can directly handle.

Introduction

Aftermany years digging around and trying many different
Forth dialects, last year I found the Forth environment of my
dreams: UDFORTH, a compact yet powerful implementation
of Forth-83, with some extensions and only one incompat-
ibility. The product is manufactured by a company called
Upper Deck Systems. The product is quite robust, with an
easy interface to the user: it uses standard text files and
includes a full-screen, pull-down-menus text editor that
drops you automatically into an offending error when it
occurs. Although the manual is a litde sparse, a Forth
programmer can easily find his way through this system with
the help of the sample programs included (a reduced version
of the Unix utility grep among them).

This interface was born as a
requirement to hold big streams
of MIDI data from an electronic
musical instrument.

One of the big criticisms of Forthis that one hasto reinvent
the wheel for him/herself any time one wishes to use a
specific tool or feature. The unavailability of compiled code
to link to Forth, and the large number of different Forth
dialects in use has prevented wider use of Forth in commercial
environments.

As an example of how one has to set up their own tools,
I'm going to describe an XMS (Extended Memory Specifica-
tion) interface for MSDOS.

After some wars on expanding or extending memory,
Microsoft decided to establish an unified extended memory
specification for 80286/386/486 class machines running
MSDOS. The availability of big chunks of memory can
dramatically improve the performance of many programs.

This interface was born as a requirement to hold big

July 1992 Auqust

streams of MIDI data from an electronic musical instrument
but, since then, I'veusedit in otherbusiness programs to hold
large arrays of data without the need to first define virtual
disks in memory and then treat the arrays as if they were disk
files.

The first thing a programmer has to do to interface to XMS
is find out where the service routine sits in memory. To do
50, one has to issue an interrupt $2F, that tells if XMS is or is
notinstalled. After that, another call to int $2F with a different
parameter gives back the address of the service routine. Once
the address of XMS is known, calling the different services is
straightforward: just place a specific value at registers AX and
DX and issue a far call to the service routine.

This seems (and is) simple, but at the time of writing the
program, I had no idea about how to issue such a call—even
in machine code.

After some unsuccessful querying on CompuServe (I
have no access to GEnie from Spain), a friend of mine
(Juanma Barranquero, co-sysop of the Forth conference at
NEXUS) and a couple of hours in front of a cold meal, gave
me the clue (and the basics of 808X machine code I needed)
to do it. The result is a two-line sequence of Forth-assembly
instructions:

' xms_address >body # bp mov
es: 0 [bp] far call

with xms_address being a 2variable.

Once this barrier was surpassed, the rest of the interface
came in a worknight. That's the power of Forth!

The code that comes with this paper is a self-explanatory
sample of some of the functions supplied by the XMS driver,
It should be easy to port to other Forth implementations.

Currently I'm working on another interface, this time to
the Birieve Record Manager. And in the queue, a CUA-
compliant, text-only, full-featured windowing interface is
wailing.

With those tools in hand, 1o write business programs in
Forth will be considerably easier. Upper Deck Systems has
promised me a Windows version of UDFORTH. When it
becomes available, I'll stick to Forth for all my programming.

Forth Dimensions

Forth Dimensions

Code of XMSTEST.S |
\ MODULE Xms
\ This module has been written by Jesus Consuegra, who places it in the
\ public domain. Although the author has reasonably checked the code,
\ there are no implicit or explicit warranties that this code does not
\ contain errors or mistakes. The users take all responsibility to check
\ whether it is suitable for their applications. Use of this code is at
\ your own risk. The author will appreciate comments, suggestions and
\ any kind of communication that can improve the wide spread of FORTH.
\
\ Mail address: Jesus Consuegra
A\ C/Enric Morera 36, esc 3, 2-2
\ Edifici Les Neus
\ 08870-SITGES
\ (SPAIN)
A\
\ Bix: jesusc
\ Compuserve: 100014,3112
\ EUNET: jesusc@met. foro.es
TS ———— = S —
N i====m=—=====—===== ==== ============= | \ Tools for managing regs
\ Some stuff to neatly print hex figures e S ==s=ss=s=s=ssoasss=s=ooooo=mss
R e T
: reghAH
(2hex) regAX $ff00 and 8 shr ;
9 > if
ascii A + 10 - : regAl
else regAX $ff and ;
ascii 0 +
then ; : regBH
regBX $£ff00 and 8 shr ;
: 2hex.
dup 0< if regBL
256 + regBX S$ff and ;
then
dup \ s======mssssssssss=ssssss-ssssssssmsses
16 / dup \ print high byte in hex | \ The XMS interface
(2hex) \ = ===== ===
emit
16 mod dup \ print low byte in hex xms? (--- £)
(Zhex) \ Print error message and return a flag
emit ; $4300 '> regAX
$2f int86
4hex. regAL $80 = if
dup 8 shr ." XMS installed " true
2hex. else
Sff and ." XMS not installed. "™ false cr
2hex. then ;
dhex:. 2variable xms address
dup 8 shr
2hex. ." " : get_xms_driver address (---)
Sff and \ regES:reygBX are the address
2hex. ; $4310 !'> reghAX
$2f int86

Julv 1992 Auaust

regES regBX xms_address 2! ;
' Forth interest Group
Show_¥mg_Driver_Address (-=-) Statement of Change in Financial Position
get_xms_driver_ address April 30, 1990 to April 30, 1991
." at address: "
" « 4 . ;
regES 4hex. regBX ." : hex. cr PR Change
ASSETS: + = Increase
\ s======= i = i - = Decrease
. Current Assets:
\ Generic XMS reques Foothill Bank, Money Market 1592538 2486591 8940.53
\ ======== === = Foothill Bank, Checking 636.43 700.14 63.71
Pending Foreign Clearing =102.00 51.67 153.67
Returned Checks Pending 0.00 72.00 72.00
code xms req (—---) FORML, Money Market 15894.11 16916.46 1,022.35
ds push FORML, Checking 1,926.01 1,236.64 -689.37
bx push Total Current Assets: 34,279.93 43,842.82 9,562.89
bp push Inventory:
Inveniory at cost 34,147.53 26,601.17 -7,546.36
Total Inventory: 34,147.53 26,601.17 -7,546.36
' regAX >body # bx mov
W Other Assets:
Bai 0 [bxl am mov Deposit, United Parcel Service 20000 200.00 0.00
' regDX >body # bx mov Second Class Postal Account 15631 192.41 36.10
. mov Accounts Receivable 3,166.20 2,099.00 -1,067.20
e8¢ U [bx] Az me Total Other Assets: 3,522.51 2,491.41 1,031.10
\ Call XMS service TOTAL ASSETS: 71,949.97 72,935.40 985.43
' xms_address >body # bp mov LIABILITIES:
esz 0 [bp] fax call Sales Tax 33.89 35.58 1.69
FD Dues alloc. 1o future months 37,487.30 41,518.51 4,031.21
\ Return values to standard reg$S
TOTAL LIABILITIES: 37,521.19 41,554.09 4,032.90
ax es: ' regAX >body #) mov Financial Reserve: 3442878 3138131 -3,047.47
bx es: ' regBX >body #) mov
dx es: ' regDX >body #) mov
bp pop
bx pop
ds pop
next
end-code
0 value Ermes
: ES! !> Ermes ;
: ApiError (Ercode ---)
case
$80 of $" Function not implemented." ES! endof
$81 of $" VDISK device detected." ES! endof
$82 of $" A20 error." ES$! endof
$8e of $" General Driver error." ES$! endof
$8f of $" Unrecoverable driver error." E$! endof
590 of $" HMA does not exist."” E$! endof
$91 of $" HMA already in use." E$! endof
592 of $" DX is less than /HMAMIN=_" ES$! endof
$593 of $" HMA not allocated." ES$! endof
$94 of $" A20 line is still active." E$! endof
$a0 of $" All extended memory is allocated." ES$! endof
$al of $" All extended memory handles are in use." ES$! endof
$a2 of $" Invalid handle.™ E$! endof
$a3 of 8" Invalid Source Handle." E$! endof

July 1992 Auqust

Forth Dimensions

$a4 of $" Invalid Source offset.” E$! endof

$a5 of $" Invalid Destination handle." ES! endof
$a6 of $" Invalid Destination Offset.” ES! endof
$a7 of $" Invalid length.” E$! endof
$aB8 of $" Invalid overlap in move." E$! endof
$a9 of $" Parity error."” ES! endof
Saa of $" Block not locked.™ E$! endof
Sab of $" Block is locked.™ ES$! endof
Sac of $" Block lock count overflow." ES! endof
Sad of $" Lock failed." ES! endof
Sb0 of $" A smaller UMB is available." ES! endof
$pbl of $" No UMBs available." ES! endof
$b2 of $" Invalid UMB segment number." ES! endof
\
5" Unknown error code." ES!
endcase

" ¥Xms: " Ermes $.

Show_Xms_Version
SEfff !> regDX

0 !> reghAX
xms_req
regA¥X ." Version: " 4hex:. cr then
regBX ." Internal driver revision: " cr
dhex:. cr
regDX 1 = if : Query free Exmem
." HMA does exist." $0800 !> reghAX
else Xms_req
." HMA doesn't exist." regBL 0<> if
then cr ; regBL ApiError
else
Show HMA ." Largest free ext.memory block is "
SEfff !> regDX regAX u. ." Kbytes." cr
$100 !> regAX ." Total free extended memory is "
Xms_req regDX u. ." Kbytes."
regAX 1 = if then
." HMA assigned to the caller." cr ;
$200 !> reghAX
xms_req \ free HMA | : poTest
regAX 1 = if Show_Xms Driver Address
." HMA successfully released" Show Xms Version
else Show_HMA
." Error on releasing HMA" cr Show A20 Line Status
regBL ApiError Query free Exmem ;
then
cr : XmsTest
else cls
regBL ApiError xms? 1if DoTest
then then ;
cr
\ if you have the shareware version only,
Show_A20_Line_ Status \ you have to do a save-exe instead.
$700 !'> reghX
xms_req turnkey XmsTest XMSTEST.EXE
regA¥X 1 = if
." A20 line is physically enabled." | \ End of file
else windowing
regBL ApiError

Forth Dimensions 9 Julv 1992 Auaust

F-PC

Random Disk Records

Brian Sutton
Tampa, Florida

A number of ycars ago, I began writing programs to use
in my chiropractic practice to try to make life a litle easier.
Since my computer was rather limited (it was a TI-99/4a),
Forth was naturally the only available language that offered
even a glimmer of hope of wrming out something useful in
a reasonable length of time.

Ten years and a number of computers later, [think I'm
starting Lo make sorne progress. The random access words
described in this article form the basis of my accounting
program that tracks patient accounts, bills insurance, keeps
the checkbook balanced, and generates profit-and-loss
statements, among other things.

For a while, I putup with many bothersome housekeep-
ing tasks that programs often have to perform, such as
opening all the data files when the program stants, closing
them all upon termination of the program, making sure the
data gets saved out just before the program terminates, etc.
Another major consideration was lack of RAM (32K in the TT
and 64K in CP/M) and how to deal with the large amounts
of data I needed to process.

Thankfully, the F83 buffer system caught my attention
and seemed to be a simple and effective answer 1o my
problems. If the virtual memory concept worked so well for
Forth screens, why not use it for data too?

So these words are basically an adaptation of the Forth
screen buffers, with a few extra features thrown in. The major
ways these tools make programming much easier are:

* The data files are automatically opened when needed. If
the file isn’t used, it isn’t opened.

e As data is entered and the file fills, it is automatically
increased in size to accommodate the new data. You can
specify the size of each increment of file growth—I use the
number of bytes in a cluster on my hard disk (8K). You can
also specify that the program asks your permission before
appending any file.

» The buffers are of the F83, truly-least-recently-used scheme.
This means that if you use four buffers, you can have four
different data addresses in memory without worrying
about accessing an address that suddenly contains a
different piece of data.

* Also, each updated record is saved to disk before the buffer
is re-used for something else. This is real handy here in

July 1992 Auqust

Florida, where power outages are often a daily occurrence
during the rainy scason. The most we ever lose is the last
entry in the journal, if that.
» Unlike the F83 buffers, you can mix records of different
sizes in the buffers. For example, one record might be 256
bytes while another is two. Even though my buffers are
1024 bytes, if a two-byte record is called only two bytes are
read or written.
Each record is referenced just like a variable or an array.
Entering its name returns an address on the stack that you
can use to fetch or store text or values. Substitute the word
ACCOUNT NAME for the Forth word BLOCK to see how this
works. While 10 BLOCK returns the starting address of a
1024-byte Forth screen, 10 ACCOUNT NAME might return
the starting address of the 24-byte name of account number
ten.
* The error-handling routines display which record or file
was being accessed when the error occurred.
* The word FLUSH saves all the records to disk and then
closesall therecord files. This is especially useful if you use
a lot of data files—DOS won't let you have more that 15
open handles (in addition to the console, printer, etc.) per
program, even though the total number of open system
files can be much higher. FCBs can be used to get around
this limit (yuck?) or you can write your own handle table,
butI preferto have my program execute FLUSH every time
it returns o a main menu. This offers additional data
security and solves the simultaneous-open-handles problem.
Since the files are re-opened automatically if they're
needed again, the only tradeoff is maybe a few millisec-
onds spent opening the file.

Definitions
DOS Handle
The number assigned by DOS for use in accessing disk
files, on my system a number from five to 19,

F-PC Handle

The address that contains Zimmer’s 70-byte file path and
name, attribute, and DOS handle. I've added two bytes to
each F-PC handle when defined with the FILE: word to
store a link to the previous file.

Forth Dimensions

Record Control Block (RCB)
An array of six bytes
embedded in the code of
each record definition that
contains the address of the
respective F-PC handle, the
number of bytes in each
record, and the offset into
the file of the first record.

Parent File

The file that contains vour
data for a given record name
or group of records. You can
have either one defined
record per parent file, oryou
may have a group of records
share the same file but oc-
cupying different locations
in that file.

Alternatively, you can
have the records overlap, if
you are so inclined. I do this
in at least one case: the real
records are two bytes, but |
also setup 1024-byte records

Figure One.

file: book.dat

file: price.dat

file: stock.dat

file: account.dat

\ initial parent record

\ offset size file name
0 48 book.dat record: title \ name of the book
0 2 book.dat record: price \ how much $?

\ two bytes will work for this if none of your book prices
\ exceeds $655.35
0 2

stock.dat record: stock \ how many of each book?

0 32 account .dat record: account \ customer name

file: stat.dat

0 2
16 8

stat.dat record: pointers \ misc. pointers, values
stat.dat record: purchases \ cumulative purchases

\ The eight bytes will give me room to track a dollar amount,
\ total # of orders, and the last order date:

that occupy the same data
area for whenIwanttoerase
it all quickly.

4 derive >#orders
6 derive >latest

Some values you may
want to change:

B/BUF Set this to the largest size record you're likely
touse. If you needto enlarge itlater, changing
it won't affect any of your current files.

MAXFILES Themostfilesyou'relikely to everuseinyour
program. This is just used for error trapping.

#BUFS The number of disk buffers you want. More

buffers mean less frequent disk I/0, but also
less securily in case of power interruptions,
DOS seizures, or collee on the keyboard.

In order o set up your records, you will of course need
to know what you intend to call each parent data file. The
word FILE: will then create the structure for you. For
example, executing
FILE: NAMES.DAT

will create the Forth word names . dat and code to support
records using the NAMES . DAT file. You do not have to have
this file on your disk at this point. It will be created (or
truncated, ifalready present) when you exccute ESTABLISH,
i.c.,, NAMES .DAT ESTABLISH.

FILE: createsthe F-PC handle, inserting any spccial path
you might have stored in the RPATH string. This path is only
necessary if you will be operating the program in a different
directory from the data files.

Forth Dimensions

The created file is chained to any previously created ones.
The variable CHAIN containsthe address of the most recently
defined F-PC handle, and from there you can track down all
of them by following the links until you reach zero.

In fact, the word DO-CHAIN is set up to do just that,
executing the vectored CHAIN word for each file. It is used
for closing files, changing paths, and displaying the chain.

The word ?0PEN checks to see if a DOS handle is
assigned. If the field is less than zero, it is assumed that the
file is not open. When the file is closed, the DOS handle field
is set to -1. Before a file is opened, a check is done to see if
there is a drive and path name in the F-PC handle. If not, the
current directory is inserted.

FILE-ERR? displays the name of the file if there is a
problem opening or closing it.

When an error occurs while accessing a record (not
opening or closing a file), ?RERR will display the DOS disk
error code and any read/write error code, along with the
record name (not the file) being accessed.

I'm not going to go into a detailed explanation of the F83
buffer system here, since it is very prevalent and I only
understand it for a few minutes at a time anyway, but I have
changed the file pointer in the buffer descriptor array (the
area around FIRST; RFIRST in this code) so that it points to
the RCB instead of the FCB of the relevant file. That way,
when a read or writc operation is called for, all the needed
data (DOS handle, record length, etc.) is right there for
processing.

Julv 1992 Auaust

When I got hold of F-PC, I thought that maybe Zimmer's
block buffer code might work even better with some minor
adapiations, but I already had this wriiten and the assembly
coded definitions intimidated me. Perhaps someone else can
let me know how to make it fi?

Reading a Record From Disk

When it's time for a record to be read in, here is the
sequence:

MISSING saves out the oldest record (if updated) and
(RBUF) returns the buffer address. REC> reads the data in
by accessing the RCB and calling REC-READ, which moves
the file pointer (via DISKPREP) and attempits to read the
record.

If REC-READ discovers that the proper number of bytes
were not read, and no other error was encountered, (EX-

TEND?) is executed. (EXTEND?) checks to see how many

bytes need to be appended to the fileto incude the requested

record.

If the file needs to be enlarged, one of the following
actions is taken:

¢ IFMONITOR equals zero, the record is read in automati-
cally.

If MONITOR equals -1 (true), a dialog box appears

asking you if you want to append the file the needed

amount. If you select 70, the program aborts.

* IFMONITOR equals 1, the dialog box only appears if the
amount to append exceeds the value you assigned
EXTENT, which is the minimum increment used to
extend files. This would normally happen only if you
are not adding records sequentially (and/or your
parameter stack gets mixed up.)

I recommend that you leave MONITOR on, at least until
you get most of the bugs worked out of your code; it will save
you some debugging time.

After the file is extended, the read operation is re-
performed which places your record in one of the buffers.
Note that records are always extended during read opera-
tions only; you've got to read the record into a buffer before
you have an address to store data. You shouldn’t get any
errors during write operations (even when the disk is full),
unless there is a disk problem.

Accessing the Records
To read in a record, simply place the record number on

the stack and invoke the record name. Supposing you had -

defined a 14-byte record called PHONE#, the phrase
5 PHONE# (-— adr)

would read the fifth record into a buffer, returning the buffer
address. If you modify the data at this address (and execute
UPDATE), it will be saved out when its buffer is needed for
something else.

The word THE is helpful at times. It will return the size as
well as the buffer address of the record specified. For
example,

7 THE PHONE# (== adr ct)

July 1992 Auqust

returns the address and length of the seventh record. If this

were stored in text fermat, you could then execute TYPE.
1T is a vectored word. Initialize it with the CFA of your

record name.

' PHONE# IS IT

would set things up so that subsequent execution of IT
would return the buffer address and byte count of your
phone# record. In that case, these two phrases would
produce the identical result:

3 the phone# (-— adr ct)

3 it (-- adr ct)

Iuse IT mostly for sorting routines; the same routine can
sort a variety of records simply by patching IT.

SI1ZE> returnsthe size of the in-line record name without
actually reading the disk. Usage would be:
size> phone# (-—ct)

The three words THE, IT, and SIZE> are all state smart.
They will, therefore, work the same interactively as they do
inside a definition.

DEL-PATHS is provided to allow you to delete any paths
that might have been prepended to your F-PC handles. This
is in case you want to change data directories. I keep records
from previous years on floppies, and my current year on the
hard drive. When I want to change years, I call this word and
change the logged drive.

Debugging/Information Tools

The word BUFS allows you o see which records are
currently in the buffers. Information listed is the record
number, the record name, and the drive/path/file name. If
the record hasbeenupdated, an asterisk is displayed after the
record number. The records are listed in order of the most
recently accessed—therefore, the last one you see will be
overwritten when the next record is read from the disk.

.CHAIN is provided to show all the defined parent files.
The information displayed here is the DOS handle and the
drive/path/file name. If no drive/path is present, it means
that you have notaccessed that record yet (or have executed
DEL-PATHS). Once a record is opened, the path name
remains—even after being closed.

An Example

Justto giveyou anidea of how this all works, suppose you
were designing program for a mail-order bookstore. You
might set up the files and records shown in Figure One.

At the risk of confusing things, I've combined three
records into one record structure (PURCHASES) to illustrate
how you can cut down on the number of data files, if you so
desire. Grouping the three data structures togetherunder one
record name like this allows you to have an unlimited
number of each. If you had defined them as distinct records
starting at different offsets in the same file, you would run the
risk of notallowing enough space for customer-base growth,
not to mention having to create a large file before you have
any data to enter.

Forth Dimensions

Data structure:

encoded date

double- of last order
precision
$ value # of orders

The way to retrieve the number of orders filled for
customer #15 is to execute:
15 purchases >f#orders @

The alternative way of keeping these all in the same file
would be to decide on a maximum number of customers
(10000 for this example) and do the following:

0 2 stat.dat record: pointers
\ this doesn’t change
6 4 stat.dat record: purchases
\ just the dollar amount now
40006 2 stat.dat record: #orders
60006 2 stat.dat record: latest

The troubleis, I've now limited mysclfto 10,000 customers
and also am starting out with a 60K file before my first order!
This problem doesn't arise, of course, if you don’t combine
records in a file.

If you combine many records, the word ALLOW will help
you save some math. Using it, the above example becomes:
0 2 3 allow stat.dat record: pointers

4 10000 allow stat.dat record: purchases
2 10000 allow stat.dat record: #orders
2 stat.dat record: latest

For keeping track of books and customers, let's create
three records to work with:
labeling pointers \ These are equivalent:
0 label: #accounts
\ : #accounts 0 pointers ;
1 label: #titles
\ : #titles
2 label: #books
\ : #books

1 pointers ;
2 pointers ;

Now to enter some data.
Execute the following to create the necessary files on your
disk:
book.dat establish
price.dat establish
stock.dat establish
account .dat establish
stat .dat establish

\ Zero out your customers and inventory:
#accounts off update
#titles off update

Forth Dimensions

#books off update

\ You could define the following word to
\ add new books:

: titles! (--)

begin cr ." Title: "
#titles @ the title
2dup blank
expect
span @

while update
#titles +dsk

repeat ;

This allows you to enter book names until you press a
<cr> without any entry. You can add the prices later.

To type the name of book #1, enter:
1 the title type <cr>

To see how many titles you have entered:
#titles ? <cr>

Itcouldn’t get much simpler! You can exit F-PC (by typing
BYE), restart it again, and your data will still be there.

The following situations have been carefully tested and
found to exhibit undesirable behavior:

1. Ifany files have been appended, FLUSH must be executed
before terminating F-PC. This is done automatically if you
use BYE, but if DOS seizes up or you crash your program
you’ll most likely end up with lost clusters where your
new records used to be.

2. If you load your program, FORGET part of it, then re-load,
you may wind up with a problem when you execute
FLUSH or ,CHALN, since FORGET doesn’t tell CHAIN
which links were forgotten. To avoid problems here, if
you FORGET any parent files at all, forget them all and
execute CHAIN OFF before re-loading, In fact, it’s prob-
ably a good idea to put CHAIN OFF just beforc your first
FILE: command.

3. Il you do #2(above) without FLUSHing betwcen reloadings,
you'll soon usc up all your DOS handles if you access any
records in between. This is because the original handles
were forgotten before they were closed. You will sud-
denly be unable to open your files.

Note: 'This source codeis available in the FIG software library
on GEnie, file# 2586, RNDMRECS.ZIP.

Julv 1992 Auaust

comment :

Fach named record has a Record Control Block (RCB) associated with it
(not to be confused with an FCB) which contains the following info:

Record Control Block:

1T T 1

|_ L offset into file of first record

of bytes per record

address of FPC file handle

Each file structure consists of an FPC handle with 2 bytes appended to
link to the previous file. This allows all files to be closed at once
using FLUSH.

Zimmer's FPC handle structure:

The HANDLE memory data structure is as shown here.
lbyte 65 bytes 2 bytes 2 bytes 2 bytes
[count] [name....0] [attrib] [handle > -1] [1ink to
addr addr+1l addr+66 addr+68 previous
| | handle in
ATTRIB HNDLE chain]

Address of the array returned by a word
defined with HANDLE.

I've added this part
for the chained parent
files.

The address of this handle is returned by the word >RHANDLE given the address
of the particular Record Control Block.
comment ;

read-write def-rwmode
1024 constant b/buf \ set this to your maximum expected record size
create rpath 64 allot rpath off

\ create record family 91-04-25 brs
variable chain

60 constant maxfiles \ this can be anything you like; a larger number
\ won't use up any more memory. It's just a
\ precaution against the links being messed up.

file: (--) \ usage = FILE: filename.ext
>in @
handle here b/hcb -
chain @ , dup chain !
swap >in !
dup bl word count rot place
rpath prepend.apath drop :

derive (n --) \ run-time: (addr -- addr+n)
create ,
does> @ + ;

July 1992 Auqust 14 Forth Dimensions

comment :
Define a word to convert the address to the value offset by n.
This is in case you want to access just a piece of a record.

comment ;

b/hcb derive >flink (adr -- adr"') \ convert to link address
defer chained (adr --)

: do-chain (--)

chain @ dup
if maxfiles 0
do dup chained
>flink @ dup 0=
?leave
loop
then
abort"™ Error in File chain" ;

(.chain) { adr --)

cr dup >hndle @ dup -1 >
if & .2

else drop ." ==
then

2 spaces

count type ;

: .chain (-—-)
cr cr chain @
if ." Handle Filename"
"

er « S=z======sz===z=z=¢
[*] (.chain) is chained
do-chain
else ." No Files Chained"
then
cr ;

\ access the F-PC handle from the soon-to-be-defined Record Control Block

' @ alias >rhandle (rcb -- adr) \ this points to the F-PC handle
: @rhandle (rcb -- n) \ return the DOS handle

>rhandle >hndle @ ;
: .rname (rcb --)

body> >name .id ; \ type data name

\ Open and Close files

: file-err? (hcb f adr ¢t --) rot \ display name of the DOS FILE
if cr beep \ if there is an error.
type ." in " count type
abort
else 3drop
then ;

7open-err (hcb £ -—-)
" Open error " file-err? ;

?close-err (hchb f -=)
" Close error " file-err? ;

: ?open (rcbhb --) \ ensure that the file is open
dup @rhandle 0< \ is no handle there?
if >rhandle dup hopen ?open-err \ if so, open the file
else drop \ otherwise, nevermind
then ;

Forth Dimensions 15 Julv 1992 Auaust

: rclose (parentadr --) \ close this handle
dup hclose ?close-err ;

: ?rerr (rcb £ --)
disk-error @ or
if cr ." Disk/File error " disk-error ? rwerr ?
.rname abort
else drop
then ;

comment :
?RERR will display the name of the RECORD in the event of an error
during disk access. This helps you to determine the offending calling
process. Compare to FILE-ERR?, above, which just tells you if a problem

occurred during opening or closing.

comment ;
: (roffset) (rec# rcb -- d)
2+ 2@ rot um* rot 0 d+ ;
defer roffset \ deferred in case I want to convert back to my

\ old CP/M format for some reason.
' (roffset) is roffset

locate (rec# rcb --)

tuck roffset rot

dup ?open

>rhandle movepointer ; \ aim at the record

diskprep (dest rec# rcb -- rcb ct dest ct handle-adr)

-rot pluck dup>r locate
r@ 2+ @ tuck
r> >rhandle ; \ prepare all necessary data for disk i/o

\ read/write a record
defer extend? ' 3drop is extend?
: rec-read (dest rec# rcbhb --)
rwerr off
3dup diskprep hread <> \ point and shoot
if rwerr @ ?rerr extend?
else 3drop drop
then ;

rec-write (source rec# rcb --)
diskprep hwrite <> ?rerr ;

\ automatic (or semi) record extension
b/buf 8* constant extent \ the minimum space taken by any file on my disk

7extend-err (hcbhb £ --)
" Append error " file-err? ;

\ dl = new eof
: larger (rec# rcb -- dl d2 £) \ d2 = how much bigger the file should be
dup>r \ f = true if d2 > extent
dup 2+ @ >r \ length
roffset r> 0 d+
2dup extent um/mod drop
negate extent + 0
d+
2dup r> >rhandle endfile d- \ calculate size increase needed
2dup extent 0 d> ; \ is it bigger than EXTENT ?

July 1992 Auqust 16 Forth Dimensions

(extend) (d hcb --) \ extend file by writing a zero at the
dup>r -rot \ last two bytes of the desired file end
2. d- r@ movepointer

['] false >body

2 r> hwrite 2 <> Z?extend-err ;

variable monitor moniteor on \ monitor on = all file extensions verified
\ monitor off = no permission needed .
\ monitor = 1 =~-- only get permission when
\ you need to extend file > one EXTENT

: permission (d hcb --)
savecursor savescr
>attrib4 :
20 5 75 10 box&fill beep
." Is it okay to extend the file" bcr

count type space d. ." bytes? (Y/N) "
key upc '¥Y' <> bcr
>norm

abort" Program aborted”
restscr restcursor ;

: (extend?) (dest rec# rcbh --)
dup >rhandle >r
2dup larger 2 or
monitor @ and
if r@ permission
else 2drop then
r> (extend) diskprep hread <> ?rerr ;

' (extend?) is extend?

\ Basic record access:
\ This stuff is all pretty much straight out of the F83 block buffer system.

4 constant #bufs
#bufs 1+ 8* 2+ constant >rsize
create >bufs (-- adr) >rsize allot #bufs b/buf * allot

>end (-- adr)
>bufs >rsize 2- + ;

buf# (n -- adr)
8* >bufs + ;

>upd (-- adr)
1 buf# 6 + ;

>bufs >rsize + constant rfirst
rfirst #bufs b/buf * + constant rlimit

latest? (n rcb -- recbn f1 | a f f1)
disk-error off

swap 2dup 1 buf# 2@ d=

if 2drop 1 buf# 4 + @ false true
else false

then ;

absent? (n rcb -- a £)
latest? Z?exit false #bufs 1+ 2
do drop 2dup i buf# 2@ d=

if 2drop i leave

else false

then

Forth Dimensions 17 Julv 1992 Auaust

loop 7?dup

if buf# dup >bufs 8 cmove
>r >bufs dup 8 + over r> swap - cmove>
1 buf# 4 + @ false

else >bufs 2! true

then ;

discard (--)
1 >upd ! ;

>prep (adr -- buffer rec# rcb) \ use the buffer pointer to find the
dup 4 + @
swap 2@ swap ; \ necessary addresses/values

: missing (--)
>end 2- @ 0<
if >»end 2- off
>end 8 - >prep rec-write
then
>end 4 - @ >bufs 4 + !
1 >bufs 6 + !
>bufs dup 8 + #bufs 8* cmove> ;

: (rbuf) (n rcb -- adr)
absent?
if missing 1 buf# 4 + @ then ;

rec> { n rcb -- adr)
(rbuf) >upd @ 0>
if 1 buf# dup >prep rec-read
6 + off
then ;
record: (offset, b/rec file--) \ <name> | run = (n -- adr)
create , , ,
does> rec> ;

comment :
When the record is created, the following fields are laid down:

1. The parental file hcb, i.e. which file will store the data

2. How many bytes to allot for each record (since it's random access)
3. How far from the beginning of the file (in bytes) will these records
start?

The Record Control Blocks & buffers keep track of what's going on; all you
need do is call the name, read/write data to the address, and UPDATE as
needed. Just like the F83 screen buffers, each updated record is
automatically saved to disk when it's buffer is needed.

comment ;

: allow (offset rlen #recs -- offset' offset rlen)
>r 2dup r> * + -rot ;

comment :
ALLOW just makes things a little easier when you're defining records.
It's purpose is to calculate the number of bytes to "allow"™ before
starting the next record in the file.

It leaves the next offset on the stack, ready to use for the next record.
comment;

: empty-buffers (--)
rfirst rlimit over - erase
>bufs #bufs 1+ 8* erase
rfirst 1 buf#

#bufs 0
do dup on

July 1992 Auqust 18 Forth Dimensions

4 + 2dup !
swap b/buf +

swap 4 + Advertisers Index
loop
2drop ;
The Computer Journal....................... 25
empty-buffers
FORML Conference 34
save-buffers (--)
1 ok abufs 0 Forth Interest Group.................... 40, 44
do dup @ 1+
if dup 6 + @ 0< Harvard SOftworks............................. 27
if dup >prep rec-write "
o one Lgboratqy Microsystems 20
E hen Miller Microcomputer Services........... 29
+
then Silicon CompoSerscccccuuueen..... 2

loop drop ;

: flush (--)
save-buffers
empty-buffers
["] rclose is chained
do-chain ;

' flush is byefunc

update (--)
>upd on ;

update: (--) \ runtime: (? --)
create ' ,
does> perfocrm update ;

update: dsk! !
update: dsk2! 2!
update: dskc! c!
update: +dsk incr

comment :
the DSK words are just versions of !, 2!, ¢!, etc. which mark the record
as being updated.

comment ;

(size) { —- ct)
>body 2+ @ ;

(it) (n cfa -- adr ct) \ address & count of cfa's nth record
dup (size) \ (cfa=word defined with RECORD:)
>r exXecute r> ;
: it (n =-- adr ct) \ return the address & ct of the Nth record
does> @ (it) ; it \ initialize with: ' MYREC IS IT
the (NAME | n -- adr ct) \ return adr/ct of nth record
state @
if [compile] [']
compile (it)
else ' (it) then ; immediate
size> (NAME | -- ct) \ return the record size without executing it

state @
if [compile] [']
compile (size)
else ' (size) then ; immediate

: label: (n --) \ run: (-- adr) \ define a named record @ record# n
create @> it , ,
does> 2@ execute ;

Forth Dimensions 19 Julv 1992 Auaust

: labeling (NAME | --) \ the record
?exec
P (1] it >is ! :
establish (adr --)

comment :

Truncate (or create) a file.
use this to initialize
EXAMPLE: mystuff.dat establish

comment ;

to LABEL: ex: LABELING MYREC

hcreate abort"™ File creation problem”

It's length is set to zero.
(create) a new file on the disk.

path-len (adr ¢t -- n)
tuck 1- over +

do i c@ "\!
?leave
l_

+loop ;

=1

-path { handle --)
dup count
2dup path-len

Total control
with LM/ FORTH

For Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers

?dup

if 2dup - >r
/string
2 pick place
count + r> erase

else 3drop

then ;

For Development:

Interactive Forth-83 Interpreter/Compilers

for MS-DOS, 0S/2, and the 80386

= 16-bit and 32-bit implementations

* Full screen editor and assembler

* Uses standard operating system files

* 500 page manual written in plain English

* Support for graphics,floating point, native code generation

: del-paths (
flush
['] -path 1is chained
do-chain ;

=)

For Applications: Forth-83 Metacompiler

* Unique table-driven multi-pass Forth compiler

* Compiles compact ROMable or disk-based applications

* Excellent error handling

* Produces headerless code, compiles from intermediate states,
and performs conditional compilation

» Cross-compiles to 8080, Z-80, 8088, 68000, 6502, 8051, 8096,
1802, 6303, 6809, 68HC11,34010, V25, RTX-2000

* No license fee or royalty for compiled applications

¥ [aboratory Microsystems Incorporated
Post Office Box 10430, Marina del Rey, CA 90295
Phone Credit Card Orders to: (213) 306-7412

FAX: (213) 301-0761

\ delete all paths from the chained F-PC

handles

: bufs (--) \ Display which records are in the buffers
1 buf# #bufs 1+ 1
DO CR I 2 SPACES
DUP @ TRUE = \ FFFF=empty buffer
OVER 6 + @ 1 = OR \ waiting to be reread
IF '|I P |
ELSE DUP @ 4 .R SPACE
dup 6 + @

if ascii *
else bl then
emit space
dup 2+ @ dup .rname
30 #out @ - spaces
>rhandle count type
THEN 8 +
LOOP DROP CR ;

\ if updated

July 1992 August 20

Forth Dimensions

F-PC

Matching

Ariel Scolnicov
Mevasseret Zion, Israel

Forth is not generally regarded as a suitable language for
string processing. This is rather strange: Forth is, as we keep
telling ourselves, an extensible language. The problem of
string handling has been addressed elsewhere. However,
handling strings is not the whole issue. True string-process-
ing languages, such as AWK and SNOBOL, not only handle
strings but also provide functions for string matching. These
allow us to match a string against a pattern, a description of
an entire class of strings. I have developed a set of words
allowing the definition of patterns, along with the necessary
routines to match patterns to strings.

At first, I considered using regular expressions for my
patterns. Their main advantage is that they can be compiled
as a finite-state machine, which can then be executed very
quickly. Unfortunately, regular expressions (and finite-state
machines) are extremely limited: while general enough to
describe, say, a floating-point number (as [+-{0-9]+(\.[0-
91+)([Eell0-9]+)?), they are hardly intelligible. Worse, regular
expressions can't “count”: for instance, no regular expression
exists which will match only sirings with balanced braces.
AWK, which uses regular expressions for its patterns, is
limited in this respect.!

SNOBOL providesa far better pattern language. Unfortu-
nately, the rest of SNOBOL is totally unstructured, with a goto
as the only control structure, and a funny way of defining
functions. What I really wanted was the string-pattern-
matching features of SNOBOL. What I ended up writing has
all the functionality of SNOBOL's pattern matcher, with a
uniquely Forth-ish syntax.

Patterns

The pattern matcher is divided between two files:
LOGIC.SEQ provides a very general “search driver,” and
STRMATCH.SEQ provides words to describe pieces of the
string. Building a pattern is very Forth-like: patterns are built
into the dictionary space, and every pattern is described by
its address. Primitive patterns are created without arguments;
logical connectors connect patterns found on the stack. At
the end of a definition, a single address left on the stack
represents the entire pattern. This address may be stored in
a constant.
1. Butto do AWK justice, itis justoneof the impressive array of text-handing teols

in the C/UNIX world. There, string parsing is supported by LEX and YACC.
Forth Dimensions

Structured Pattern

Primitive patterns
m" .. (-— pat)
Builds a pattern which matches the specified string.

anyof" ." { == pat)
Builds a pattern which matches if the current character is in
the specified string.

m' «.', anyof'® .. "
Like the previous two, but can contain the double quote
character.

POS, RPOS (n -- pat)
Build patterns which succeed only if the current position is
n characters from the start (end) of the string.

HEAD, TAIL
Patterns which match the beginning (end) of the string.

Operators
&& (patl pat2 -- pat3)
Builds a pattern which matches patl followed by pat2
(concatenation).
H (patl pat2 -- pat3)
Builds a pattern which tries to match pat1. If the match or any
succeeding match fails, goes back (backtracks) and tries to
maltch pat2 (alternation).

[&
Starts a concatenation chain.

&]
Closes a concatenation chain. All patterns between [& and &]
arelinked with &&. [& abc &] isequivalenttoab ¢ && &&.

[
Starts an alternation chain.

i
1]
Closes analternation chain. All patterns between|} and | Jare

linked with | 1.

Julv 1992 Auaust

CPT (pat —— pat?)
Builds a pattern which optionally matches pat.

e (pat —— !pat)

Builds a pattern which matches anything but pat. If success-
ful, matches the shortest substring which cannot be contin-
ucd to match pat (negation).

MANY (patl -- pat2)

Matches several (possibly 0) copies of pat1. The number of
copics matched is the least neceded to enable the rest of the
pattern to match. Since MANY matches the /east number of
copies, a pattern should be concatenated to it to prevent
MANY matching the null string.

MOST (patl -- pat2)

Like MANY, but matches the maximum number of copies
possible. This can sometimes take a lot of time, so MANY is
generally preferable.

A Few Fxamples
m" abc" m" def" &&
matches “abcdef”

m" abc" m" def” ||
matches “abc” or “def”

[& m" Th"
[I mii eirtl m!l atll m" ere!l I] ml’l !" &]
matches “Their!”, “That”” or “There!”

anyof" 0123456789" many
malches “123”, “0123”, etc., but if unanchored will match
(the null string)

wn

[& m" Good" m" bye" ~~ &]
matches “Goodl” from “Goodly” or “Good ” from “Good
riddance”, but fails to match “Goodbye”

[& m" xy" many m" xyz" &]
matches “xyz", “xyxyz”, “Xyxyxyz", etc.
[& m' xy' most m' xyz' &]

as above

Note the behaviour of MANY in the last example: m" xy"
most seems to avoid matching the final “xy”, so as to enable
m" xyz" to successfully match. This seemingly intelligent
behaviour is characteristic of all the pattem-matching func-
tions which involve a choice (]}, MANY, MOST). What
actually happens is a search between all the different
possibilities. This is explained in further detail in the next
section,

Three special patterns are defined, which are sometimes
useful:

FAIL Fails 1o match, causes a backtrack.
NULL Matches the null string, always succeeds.
July 1992 Auqust

cuT Prevents backtracking behind its use.

CUT “lreezcs” the current state of matching, and doesn’t
let subsequent backtracking change it. It is a powerful tool
for speeding up long matches, but should be used with
extreme caution.

Structuring Patterns
As mentioned before, patterns can be stored as constants.
This allows us to structure our patterns. For example, to
match a series of numbers, use:

anyof" 0123456789" constant digit

digit digit most && constant number

numpber [& m" " m" " many number &] most
constant number-list

Here, a number is defined as at least one digit, and a
number list as at least one number, with successive numbers
separated by atleast one space. This structure makes patterns
more readable. Instead of the unreadable regular expression
for a floating-point number, we write:

[& number m" ." number && opt
anyof" Ee" number && opt &]
constant fp-number

The pattern language described up to here is very useful,
butitisn’t really more powerful than regular expressions. In
order to be able to count, we need recursion: the ability to
call the current pattern, or to forward reference a pattern.

In Forth, this is usually done by using DEFERed words or
variables containing the execution address. At compile time,
code to fetch the value is laid down; at execution time, the
actual address is fetched. The pattern matcher contains
@CALL, which works like PERFORM:

@CALL (v -— pat)
Returns a pattern which will call the pattern stored in variable
v. Always succeeds.

So we can write (using some of the previous definitions):

variable list

number list @call |} constant item
item [& m" "om" w many item &]
many constant items

m" (" items m")" list !

This matches lists, where a list may contain numbers or
further lists, but no null list is permitted.

The remaining three words don't perform any pattern-
matching actions, but instead allow the user's words to be
execuled during the matching operation. Obviously, these
words cannot leave values on the stack, since the pattern
matcher uscs the stack.

Instead, an awxiliarystackis provided, accessed by >AUX
and AUX>. Theauxiliary stack is restored when backtracking,

Forth Dimensions

FIG
MAIL ORDER FORM

Most items list three different price categories:

HOW TO USE THIS FORM: Please enter your order on the back page of this form and send with your payment to the Forth Interest Group.
USA, Canada, and Mexico / Other countries via surface mail / Other countries via air mail
Note: Where only two prices are listed, surface mail is not available.

“Were Sure You Wanted To Know...”

Forih Dimensions, Article Reference 151 - 84/5
ke An index of orth articles, by keyword, from Forth Dimensions
Volumes 1-13 (1978-92).

FORML, Article Reference 152 - $4/5
e An index of Forth articles by keyword, author, and date from the
FORML Conference Proceedings (1980-90).

FORTH DIMENSIONS BACK VOLUMES

A volume consists of the six issues from the volume year (May-April)

Volume 1 Forth Dimensions (1979-80) 101 - 515/16/18
Intreduction to FIG, threaded code, TO variables. fig-Fornh.

Volume 2 Fonh Dimensions (1980-81) 102 - $15/16/18
Recursion, file naming, Towers of Hanoi, CASE contest, input
number wordset, 2nd FORML report, FORGET, VIEW.

Volume 3 Forth Dimensions (1981-82) 103 - $15/16/18
Forth-79 Standard, Stacks, HEX, database, music, memory man-
agement, high-level interrupts, string stack, BASIC compiler,
recursion, 8080 assembler.

Volume 4 Forth Dimensions (1982-83) 104 - $15/16/18
Fixed-point trig., fixed-point square root, fractional arithmetic,
CORDIC algorithm, interrupts, stepper-motor control, source-
screen documentation tools, recursion, recursive decompiler, file
systems, quick text formatter, ROMmable Forth, indexer, Forth-
83 Standard, teaching Forth, algebraic expression evaluator.

Volume 5 Fonh Dimensions (1983—84) 105 - $15/16/18
Computer graphics, 31 animation, double-precision math words,
overlays, recursive sort, a simple multi-tasker, metacompilation,
voice output, number utility, menu-driven software, vocabulary
tutorial, vectorerd exccution, data acquisition, fixed-point
logarithms, Quicksont, fixed-point square root.

Volume 6 Forth Dimensions (1984-85) 106 - $15/16/18
Interactive editors, anonymous variables, list handling, integer
solutions, control structures, debugging techniques, recursion,
semiphores, simple [JO words, Quicksort, high-level packet
communications, China FORML.

Volume 7 TForth Dimensions (1985-86) 107 - 320022125
Generic sort, Forth spreadsheet, control structures, psuedo-
interrupts, number editing, Atari Forth, pretty printing, code
modules, universal stack word, polynomial evaluation, F83
strings.

Volume 8 Ferth Dimensions (1986-87) 108 - 320122125
Interrupt-driven serial input, data-base functions, TI 99/A,
XMODEM, on-line documentation, dual-CFAs, random
numbers, arrays, file query, Batcher's sor, screenless Forh,
classes in Forth, Bresenham line-drawing algorithm, unsigned
division, DOS file 1/O.

Volume 9 Forth Dimensions (1987-88) 109 - 52072225
Fractal landscapes, stack error checking, perpetual date routines,
headless compiler, execution security, ANS-Forth meeting,
computer-aided instruction, local variables, transcendental func-
tions, education, relocatable Forth for 68000,

Yolume 10 Forth Dimensions (1988-89) 110 - $20/22/25
dBase file access, string handling, local variables, data structures,
object-oriented Forth, lincar automata, standalone applications,

8250 drivers, scrial data compression.

Volume 11 Forth Dimensions (1989-90) 111 - $20/22/25
Local variables, graphic filling algorithms, 80286 extended
memory, expert systems, quaternion rotation calculation,
multiprocessor Forth, double-entry bookkeeping, binary table
scarch, phase-angle differential analyzer, sont contest.

Volume 12 Forth Dimensions (1990-91) 112 - $20/22/25
Floored division, stack variables, embedded control, Atari Forth,
optimizing compiler, dynamic memory allocation, smart RAM,
extended-precision math, interrupt handling, neural nets, Soviet
Forth, arrays, metacompilation.

FORML CONFERENCE PROCEEDINGS

FORML (Forth Modification Laboratory) is an educational
forum for sharing and discussing new or unproven proposals
intended to bencfit Forth, and is an educational forum for discus-
sion of the technical aspects of applications in Forth. Proceedings
are a compilation of the papers and abstracts presented at the
annual conference. FORML is pan of the Forth Interest Group.

1980 FORML PROCEEDINGS 310 - $30/31/40
Address binding, dynamic memory allocation, local variables,
concurrency, binary absolute & relocatable loader, LISP, how to
manage Forth projects, n-level file system, documenting Forth,

Forth structures, Forth strings.

1981 FORML PROCEEDINGS 311 - $45/48/55
CODE-less Forth machine, quadruple-precision arithmetic,
overlays, exccutable vocabulary stack, data typing in Forth,
vectored data structures, using Forth in a classroom, pyramid
files, BASIC, LOGO, automatic cueing language for multimedia,
NEX0OS—a ROM-bascd multitasking operating system.

1982 FORML PROCEEDINGS 312 - §30/31/40
Rockwell Forth processor, virtual execution, 32-bit Forth, ONLY
for vocabularies, non-IMMEDIATE looping words, number-
input wordset, 1/O vectoring, recursive data structures, program-
mable-logic compiler.

1983 FORML PROCEEDINGS 313 - $30/32/40
Non-Von Neuman machines, Forth instruction set, Chinese
Forih, 83, compiler & interpreter co-routines, log & exponential
function, rational arithmetic, transcendental functions in
variable-precision Forth, ponable file-system interface, Forth
coding convenlions, expern systems.

1984 FORML PROCEEDINGS 314 - 530/33/40
Forth expent systems, consequent-reasoning inference engine,
Zen floating point, portable graphics wordset, 32-bit Forth
HP71B Forth, NEON—abject-onented programming, decom-
piler design, arrays and stack variables.

1985 FORML PROCEEDINGS 315 - $30/32/40
Threaded binary trees, natural language parsing, small leamnin
expert system, LISP, LOGO in Forth, Prolog interpreter, BNE
parser in Forth, formal rules for phrasin}_;, Forth coding
conventions, fast high-level floating point, Forth component
library, Forth & artificial intclligence, electrical network
analysis, event-driven multitasking.

1986 FORML PROCEEDINGS 316 - $30/32/40
Threading techniques, Prolog, VLSI Forth microprocessor,
natural-language interface, expert sysiem shell, inference engine,
multiple-inheritance system, automatic programming cnviron-
ment.

* - These are your most up-to-date indexes for back issues of Forth Dimensions and the FORML proceedings.

1987 FORML PROCEEDINGS 317 - 540/43/50
Includes papers from 87 curoFORMI. Conference. 32-bit Forth,
neural networks, control structures, Al, optimizing compilers,
hypertext, field and record structures, CAD command language,
ogjccl-oricmcd lists, trainable neural nets, expert systems.

1988 FORML PROCEEDINGS 318 - $24/25/34
Human interfaces, simple robotics kemel, MODUL Forh,
language topics, hardware, Wil's workings & Ting's philosophy,

Forth hardware applications, ANS Forth session, future of Forth
in Al applications.

1988 AUSTRALIAN PROCEEDINGS 380 -324/25/34
Proceedings from the first Australian FForth Symposiom, held

May 1988 at the University of Technology in Sydney. Subjects

incﬂlde training, parallel processing, programmable controllers,

Prolog, simulations, and applications.

1989 FORML PROCEEDINGS 319 - $40/43/50
Includes papers from '89 euroFORML. Pascal 1o Forth,
extensible optimizer for compiling, 3D measurement with object-
oriented Forth, CRC polynomials, F-PC, Harris C cross-
compiler, modular approach to robotic control, RTX recompiler
for on-line maintenance, modules, trainable neural nets.

1990 FORML PROCEEDINGS 320 - $40/43/50
Forth in industry, communications monitor, 6805 development.
3-key keyboard, documentation techniques, object-oriented
programming, simplest Forth decompiler, error recovery, stack
operations, process control event management, control structure
analysis, systems design course, group theory using Forth.

BOOKS ABOUT FORTH

ALL ABOUT FORTH, 3rd ed., June 1990, Glen B. Haydon 201 - $90/92/105
Annotated glossary of most Forth words in common usage,
including Forth-79, Forth-83, F-PC, MVP-Forth. Implementation
examples in high-level Forth and/or 8086/88 assembler. Useful
commentary given for each entry.

THE COMPLETE FORTH, Alan Winficld 210 - 514/15/19
A comprehensive introduction, including problems with answers
(Forth-79).

¢FORTH IMPLEMENTATION GUIDE, C.H. Ting 215 - $25/26/35
eForth is the name of a Forth model designed to be pontable to a
large number of the newer, more powerful processors available
now and becoming available in the near future. (w/disk)

F83 SOURCE, Henry Laxen & Michael Perry 217 - $20/21/30
A complete listing of F83, including source and shadow screens.
Includes introduction on getting started.

FORTH: A TEXT AND REFERENCE
Mahlon G. Kelly & Nicholas Spies
A textbook approach to Forth, with comprehensive refercnces to
MMS-FORTH and the *79 and '83 Forth standards.

THE FORTH COURSE, Richard E. Haskell 225 - 82512635
This setof 11 lessons, called the Forth Course, is designed to make
it easy for you to leamn Forth. The material was developed over
several years of teaching Forth as part of a senior/graduate course
in design of embedded software computer systemns at Oakland
University in Rochester, Michigan. (w/disk)

219 - §31/32/41

FORTH ENCYCLOPEDIA, Mitch Derick & Linda Baker 220 - $30/32/40
A detailed look at each fig-Forth instruction.
FORTH NOTEBOOK, Dr. C.H. Ting 232 - §25/26/35

Good examples and applications. Great leaming aid. poly-
FORTH is the dialect used. Some conversion advice is included.
Code is well documented.

FORTH NOTEBOOK II, Dr. C.H. Ting 232a - $25026/35
Collection of research papers on various topics, such as image
processing, parallel processing, and miscellaneous applications.

F-PC USERS MANUAL (2nd ed., V3.5) 350 - 820721727
Users manual 1o the public-domain Forth system optimized for
IBM PC/XT/AT computers. A fat, fast system with many 1o0ls.

F-PC TECHNICAL REFERENCE MANUAL 351 - $30/32/40
A must if you need 1o know the inner workings of F-PC.
INSIDE F-83, Dr. C.H. Ting 235 - 825126/35

Invaluable for those using F-83.

LIBRARY OF FORTH ROUTINES AND UTILITIES,
James D. Terry 237 - 82325135

Comprehensive collection of professional guality computer code
for Forth; offers routines that can be put to use in almost any Forth
application, including expert systems and natural-language
interfaces.

OBJECT ORIENTED FORTH, Dick Pountain 242 - $28/29/34
Implementation of data structures. First book to make object-
oriented programming available to users of even very small home
computers.

SEEING FORTH, Jack Woehr 243 - §25/26/35
"...1 would like 10 share a few observations on Forth and computer
science. That is the purpose of this monograph. Itis offered in the m
hope that it will broaden slightly the streams of Forth literatwre ..."
SCIENTIFIC FORTH, Julian V. Noble 250 - $50/52/60
Scientific Forth extends the Forth kemel in the direction of
scientific problem solving. It illustrates advanced Forth
programming technigues with non-trivial applications:
computer algebra, roots of equations, differential equations,
function minimization, (unctional represenation of data (IFFT,
polynomials), lincar equations and matrices, numerical
integration/Monte Carlo methods, high-speed real and complex

floating-point arithmetic. (Includes disk with programs and
several utilities)

STACK COMPUTERS, THE NEW WAVE
Philip J. Koopman, Jr. (hardcover only)
Presents an altemative 1o Complex Instruction Set Computers
(CISC) and Reduced Instruction Set Computers (RISC) by
showing the strengths and weaknesses of stack machines (hard-
cover only).

STARTING FORTH (2nd ed.), Leo Brodie 245 - §29/30/38
In this edition of Starting Forth—the most popular and complete
introduction to Forth—syntax has been expanded to include the
Forth-83 Standard.

244 - 562/65(12

WRITE YOUR OWN PROGRAMMING LANGUAGE USING C++,
Normman Smith o .. 270-515/16/18
‘This book is about an application language. More specifically, it
is about how to write your own custom application language. The
book contains the tools necessary 1o begin the process and a
complete sample language implementation. [Guess what language!]

Includes disk with complete source.

ACM - SIGFORTH

The ACM SIGForth Newsletter is published quarterly by the
Association of Computing Machinery, Inc. Slél-‘orth's focus is
on the development and refinement of concepts, methods, and
techniques needed by Forth professionals.

Volume 1 Spring 1989, Summer 1989, #3, #4 910 - $24/26/34
F-PC, glossary utility, Euroforth, SIGForth '89 Workshop
summary (real-time software engincering), Intel 80x8x.
Metacompiler in cmForth, Forth exception handler, string case
statement for UF/Forth. 1802 simulator, tatorial on multiple
threaded vocabularies. Stack frames, duals: an altemative o
variables, PocketForth.

Volume 2 #1, #2, #3, #4 920 - $24/26/34
ACM SIGForth Industry Survey, abstracts 1990 Rochester conf.,
RTX-2000. BNF Parser, abstracts 1990 Rochester conf., F-PC
Teach. Tethered Forth model, abstracts 1990 SIGForth conf.
Target-meta-cross-: an engineer's viewpoint, single-instruction
computer.

Volume 3, #1 Summer '91 908 - $6/7/9
Co-routines and recursion for tree balancing, convenient number

hand]mf.

Volume 3, #2 Fall '91 909 - $6/7/9
Postscript Issue, What is Postscript?, Forth in Postscript, Review:
PS-Tutor.

1989 SIGForth Workshop Proceedings 931 - 820721126
Software engincering, multitasking, interrupt-driven systems,
object-oriented Forth, error recovery and control, virtual memory
support, signal processing.

1990-91 SIGForth Workshop Proceedings 932 - 820/21/26

Teaching computer algebra, stack-based hardware, reconfig-
urable processors, real-lime operating systems, embcedded
control, marketing Forth, development systems, in-flight
monitoring, multi-processors, neural nets, security control, user
interface, algorithms.

DISKS: Contributions from the Forth Community

The “Contributions from the Forth Community” disk library contains
author-submitted donations, generally including source, for a variety
of computers & disk formats. Each ﬁi(e is determined by the author as
public domain, shareware, or usc with some restrictions. This libra
does not contain “For Sale” applications. To submit your own contri-
butions, send them to the FIG Publications Comnittee.

Prices: Each item below comes on one or more disks, indicated in
rentheses after the item number. The price of your order is $6/9 per
disk, or $25/37 for any five disks.

FLOAT4th.BLK V1.4 Roben L. Smith C001 - (1)
Software floating-point for fig-, poly-, 79-Std., 83-Std.
Forths. ICEE short 32-bit, four standard functions, square
root and log. IBM.

Games in Forth Co02 - (1)
Misc. games, Go, TETRA, Life... Source. IBM
A Forth Spreadsheet V2, Craig Lindley C003 - (1)

This model spreadsheet first appeared in Forth Dimensions
VII, 1-2. Those issues contain docs & source. IBM

Automatic Structure Charts V3, Kim Ilarris C004 - (1)
Tools for analysis of large Forth programs, first presented at
FORML conference. FFull source; docs incl. in 1985 FORML
Proceedings. IBM

A Simple Inference Engine V4, Martin Tracy C005 - (1)
ased on inf. engine in Winston & Hom’s book on LISP,
takes you from pattern variables to complete unification
algorithm, with mmlinélcommcmary on Forth philosophy &
style. Incl. source. 1B]

The Math Box V6, Nathaniel Grossman C006 - (1)
Routines by foremostmath author in Forth. Extended double-
precision arithmetic, complete 32-bit fixed-point math, &
auto-ranging text. Incl. graphics. Utilities for rapid

lynomial evaluation, continued fractions & Monte Carlo
actorization. Incl. source & docs. IBM

AstroForth & AstroOKO Demos, LR. Agumirsian C007 - (1)
AstroForth is the 83-5td. Russian version of Forth. Incl.
window interface, full-screen editor, dynamic assembler &
a great demo. AstroOKO, an astronavigalion system in
AstroForth, calculates sky position of several objects from
different earth positions. Demos only. IBM

Forth List Handler V1, Martin Tracy CO08 - (1)
List primitives extend Forth to provide a flexible, high-
speed environment for AL Incl. ELISA and Winston &
Hom's micro-LISP as examples. Incl. source & docs. IBM

8051 Embedded Forth, William Payne C050 - (4)
8051 ROMmable Forth operating system. 8086-10-8051
target compiler. Incl. source. Docs are in the book Embedded
Controller Forth for the 8051 Family, IBM

F83 V2.01, Mike Perry & Henry Laxen C100- (1)

The newest version, ported 10 a variety of machines. Editor,
assembler, decompiler, metacompiler. Source and shadow
screens. Manual available Sepnmlclzl (items 217 & 235).
Base for other F83 applications. 1BM, 83.

F-PC V3.53, Tom Zimmer C200 - (5)
A full Forth system with pull-down menus, sequential files,
editor, forward assembler, metacompiler, floating point.
Complete source and help files. Manual for V3.5 available
scparately (items 350 & 351). Base for other F-PC
applications. Req. hard disk. IBM, 83.

F-PC TEACH V3.5, Lessons 0=7 Jack Brown _ C201a-(2)
Forth classroom on disk. First seven lessons on leamning
Forth, from Jack Brown of B.C. Institute of Technology.
IBM, F-PC.

VP-Planner Float for F-PC, V1.01 Jack Brown C202- (1)
Software floating-point engine behind the VP-Planner
spreadsheet. 80-bit (temporary-real) routines with transcen-
dental functions, number I/O support, vectors to su{)@on
numéric co-processor overlay & user NAN checking. IBM,

F-PC.

F-PC Graphics V4.2f, Mark Smile C203a- (3)
The latest versions of new grapz ics routines, including CGA,
EGA, and VGA supppont, with numerous improvements
over carlier versions created or supported by Mark Smiley.
IBM, F-PC.

PocketForth V1.4, Chns Heilman C300- (1)
Smallest complete Forth for the Mac. Access o all Mac functions,
files, graphics, floating point, macros, create standalone
applicauons and DAs. Based on fig & Starting Forth. Incl. source
and manual. MAC

Yerkes Forth V3.6 C350-(2)
Complete object-oriented Forth for the Mac. Object access to all
Mac functions, files, graphics, floating point, macros, create
standalone applications. Incl. source, tutorial, assembler &
manual. MAC, System 7.01 Compatable.

JLISP V1.0, Nick Didkovsky C401 - (1)
LISP interpreter invoked from Amiga JForth. The nucleus of the
interpreter is the result of Martin Tracy's work. Extended to allow
the LISP interpreter to link 10 and execute JForth words. It can
communicate with JForth’s ODE (Object-Development
Environment). AMIGA, 83.

Pygm‘{ V1.3, Frank Sergeant C500 - (1)
lean, fast Forth with full source code. Incl. full-screen editor,
assembler and metzcompiler. Up 1o 15 files open at a time. IBM.

KForth, Guy Kelly C600 - (3)
A full Forth system with windows, mouse, drawing and modem
packages. Incl. source & docs. IBM, 83.

ForST, John Redmond C700 - (1)
Forth for the Atan ST. Incl. source & docs. Atari ST.
Mops V2.0, Michael Hore CT10-(1)

Close cousin to Yerkes and Neon. Very fast, compiles subroutine-
threaded & native code. Object oriented. Uses F-P co-processor
if present. Full access to Mac toolbox & system. Supports System
7 {e.g., AppleEvents). Incl. assembler, docs & source. MAC

BBL & Abundance, Roedy Green C800 - (4)
BRBL public-domain, 32-bit Forth with extensive support of DOS,
meticulously optimized for execution speed. Abundance is a

blic-domain database language written in BBL. Req. hard disk.
ncl. source & docs. IBM ﬁl) hard disk reequired

A modern language for sclentific computing

v

1 w3op

Mechum Banks Publishing

fig-FORTH ASSEMBLY LANGUAGE SOURCE MORE ON FORTH ENGINES

Listings of fig-Forth for specific CPUs and machines with compiler sccurity and Volume 10 January 1989 . 810 - $15/16/18
variable-length names (see /nstallation Manual, below): - $15/16/18 ““‘F:é ET'J'«:“I 1988FR§;h°““ Forth Conference, object-
1802 §13 . ls\'iarch l]l.:: - 92900 g :1’.? - :"[arch 8 oren orth, fesser Torth engines.
6302 14 - September pple - August Volume 11 July 1989 811 - $15/16/18
6800 215 - May 79 ;,B*‘;'PC g%g - 3“*"“** S;U RTX supplement to Footsteps in an Empty Valley, SC32, 32-bit
6809 516 - June 80 DP-11 - cannary Forth engine, RTX interrupts utility.
8080 517 - September 79 VAX 527 - October 82
8086/88 518 - March 81 Z80 528 - Sepiember 82 Volume 12 Apil 1990 812 - S15/16/18
, ShBoom architecture and instructions, Neural Computing
fig-FORTH INSTALLATION MANUAL 501 - $15/16/18 Module 1\(.. 3232, pigForth, binary radix sort on 80286, 68010,
Glossary model editor—we recommend you purchase this and RTX2000.
manual when purchasing any of the source code listings above.
v 1990 13 - $15/16/18
SYSTEMS GUIDE TO fig X ORTH 308-5252850 VORAY OGOR 000 Vini BEE, EBForth, AZForth, RIX.
G H, Ting (2od ed., 1989) 2101, 8086 eForth, 8051 cForth.
How'sand why's of the i ig-Forth Model by Bill Ragsdale, intemal
stmcture of fig-Forth system. Volume 14 814 - $15/16/18
RTX Pocket-Scope, elforth for muP20, ShBoom, eForth for CP/
M & 780, XMODEM for eForth.
MISCELLANEOUS
T-SHIRT “Vlay the Forth Be With You” 601 - $12/13/15 Volume 15 . . . 815 - 515/16/18
w;clfy size: Small, Medium, Large, Extra-Large on order form) Moore: New CAD System for Ch}g Design, A portrait of the P20;
te design on a dark blue shirt. Rible: QS1 Forth Processor, Q52, RISCing it all; P20 eForth
Software Simulator/Debugger.
POSTER (Oct., 1980 BYTE cover) 602 - $5/6/7
FORTH-83 HANDY REFERENCE CARD 683 - free
FORTH-83 STANDARD 305 - $15/16/18
Authoritative description of Forth-83 Standard. For reference, not
nslretion. DR.DOBB’S JOURNAL
BIBLIOGRAPHY OF FORTH REFERENCES 340 - $18/19725 Annual Forth issue, includes code for various Forth applications.
(3rd ed., January 1987) Sept. 1982 422 - 85/6/7
Over 1900 references to Forth articles throughout computer Sept. 1983 423 - 85/6/1
literature. Sept. 1984 424 - $5/6/7

FORTH INTEREST GROUP
P.0.BOX 2154 OAKLAND,CALIFORNIA 94621 ~ S10-89-FORTH 510-535-1295 (Fax)

Name OFFICE USE ONLY
Company By Date Type.
Street Shipped by Date
. UPS us DS
City — ‘ W, i ™
State/Prov. Zip BO By Date
Country Daytime phone Wi. Amt.
[tem # Title Qty. Unit Price Total
[J CHECK ENCLOSED (Payable to: Forth Interest Group) Sub-Total
[vIsA [MasterCard 10% Member Discount, Member # _ ()
Card Number Expiration Date **Sales Tax (CA only)
Signature Mail Order Handling Fee $3.00
* Mﬂmbcl’.shl n the Forth Interest Grou
*MEMBERSHIP) Rencwal $40/46/52
* Enc]oscd 1s 340/46/52 for 1 full year’s dues.
This includes $36/42/48 for Forth Dimensions.

MEMBERSHIP IN THE FORTH INTEREST GROUP
The Forth Interest Group (FIG) is a world-wide, non-profit, member-supporied organization with over 1,500 members and 40 chapters. Your members hip includes a s ubscription 1o the bi-monthly magaz ne
Forth Dimensions. FIG also offers s members an on-line data base, a large salection of Forth literalure and other services. Cost is 340 per year for U.S.A. & Canada surface; 346 Canada air mail;
all other countries $52 per year. No sales tax, handling fee, or discount on membership.
When you join, your first issue will arrive in four to six weeks; subsequent issues will be mailed to you every other month as they are published—six issues in all. Your membership enlitles youto a 10%
discount on publications from FIG. Dues are not dedudtible as a charitable contribution for U.S. fedaral income tax purposes, but may be deductible as a business expense.

MAIL ORDERS ** CALIFORNIA SALES TAX BY COUNTY
;Oghé‘r;;erza;GIOup PAYMENT MUST ACCOMPANY ALL OHDEHS SHIPPING TIME 7.5%: Sonoma; 7.75%: Fresno, Imperial,

0. 1 . i i Inyo, Madera, Mont L O , Riverside,
Oakland, CA 94621 PRICES - Al orders must be prepaid. Prices are POSTAGE & HANDLING 2'5:;’:&:;;‘3‘;::;?':2%‘“; e ko S e B e
PHONE ORDERS subject to change without notice. Credit card orders Prices include shipping. The the order. Please allow 4—6 Bernardino, ‘San Diegc: and San Joa.quin:
510-89-FORTH Credit card will_be sent and billed al current prices. Checks must s;.m handling lee s required waeks for out-of-stock books 8.25%: Alameda, Contra Costa, Los Angeles
orders, customer service, o in U.S. doliars, drawn on a U.S. bank. A $10 with all orders. (deliveries in most cses will be San Mateo, Santa Clara, and Santa Cruz;
Hours: Mon—Eri, 95 p.m. charge will be added for returned checks. much s coner). 8.5%: San Francisco; 7.25%: ather counties.

X1v-2

allowing it to contain state information.

EXEC ({ cfa -- pat)

Returns a pattern which execcutes the given routine and
matches the null string. The EXECed routine should have no
stack action.

PUSH
A patern which pushes the current position in the string onto
the auxiliary stack, and matches the null string.

SUBSTRING (pat cfa -- pat)

Returns a pattern which performs cfa if pat maiched. The
stack action of the routineshouldbe (adr len --), where
adrand len are the address and length of the substring which
matched the pattern.

AUX> (-—-n)
Pops a value off the auxiliary stack.

>AUX { n ==)
Pushes a value onto the auxiliary stack.

To load the pattern matcher, type:
fload logic fload strmatch

‘Two words are provided to actually perform the match:

PMATCH (adr len pat -- ?len flag)
Attempts to match the string adr, len to pat. If the match
succeeds, returns the length of the match and true. If it fails,
returns false.

PSEARCH

(adr len pat -- false or adr len true)
Attempits to match pat to a substring of adr, len. If a match
isfound, returnsthe address and length of the match and true.
If no match is found, returns false.

The pattern doesn't have to match the entire string. If you
want to force the entire string to be matched, use TAIL at the
end of the pattern.

Figure One. |

As an example of the power of string pattern matching,
EVAL.SEQ contains an expression evaluator. Tt is practically a
direct transladon of the grammar defining arithmelic expres-
sions, Type £load eval, and then eval 2+3*- (6-1).

Design

The design stage for this project was unusually long. T
wrole at least two incorrect versions of the pattern matcher
before I really understood pattern matching. Essentially, a
pattern can be described as a tree: leaf nodes attempt to
match characters in the string, or to perform some other
primitive operation; other nodes concatenate or alternate
patterns. Compilation of a pattern into a tree is straightfor-
ward; the problem is performing the pattern match.

Exccuting leaf nodes is simple: check if the characters at
the current position match the leaf nodes. Concatenation
nodes involve matching first one sub-pattern and, if it
succeeds, the next one.

The tricky bitisalternation: the first sub-pattern should be
executed; if the match or any subsequent match fails, the
second sub-pattern should be tried. What is needed is a way
of storing the current state of the matching process, so that
we'll be able to return to it. Part of the answer is to push the
state onto a special backtrack stack. Whenever a match fails,
pop a state off that stack and continue execution from there.

What constitutes the “current state”? Consider matching
the pattern m" abcd" m" abc" || m" def" &&

to the string “abedef” (see Figure One for the pattern’s
structure). The first four characters are matched, but then m"
def" fails. Backtracking, we match the first three characters.
We now need to match the second half of the root && node.
Obviously, the current position in the string is part of the
state. But the matcher also needs to know where to continue
after the substring is matched.

The stumbling block here is that the current state has a
variable size. Descending the pattern tree is a recursive
process; this means we have to store return information on
a callstack. The current state is the cursor position, along with
the entire call stack.

The matching algorithm follows easily:

Empty call and backtrack stacks.
Push pattern’s root onto call stack.

Structure of

m" abcd" m" abc" || m" def" &&
and-node
r
or-node "def"
"abcd" "abc

While call stack isn't empty:
Pop node off call stack.
Case of node:
AND node:
push 2nd and 1st subtrees onto call stack,
succecd.
OR node:
push 2nd subtree onto call stack,
push current state onto backtrack stack,
replace 2nd subtree on call stack with 1st subtree,
succeed.
leaf node:
match (o string,
succeed or fail accordingly.
If failed:

Forth Dimensions

23 Julv 1992 August

Ifbacktrack stack empty, entire match failed. EXIT.
else pop new state off backtrack stack.

Wend.

Entire match succeeded. EXIT.

To make things clearer, special leaf nodes (CUT, FAIL,
NULL), and the operators ~~, MANY, and MOST weren't
included in the algorithm. ~~ can be simply expressed in
terms of backtrack- and call-stack actions: Push two special
values onto the backtrack and call stacks. Attempt to maich
x. If x failed, the backtrack stack is popped. Thisindicates the
negation succeeded. If x succeeded, the call stack is popped.
This indicates negation failed, so pop all entries on the
backtrack stack, including the special value, and continue
backtracking from there.

Figure Two. I

MANY is defined in terms of NULL, | |, and &&. A circular
reference is used, since repetition is basically recursion. x
MANY is equivalent to “match nothing, or else x followed by
x MANY.” Every failure following x MANY causes backtrack-
ing, which causes another repetition of x to be matched. The
structure of x MANY (and of x MOST) appears in Figure Two.

Implementation

Since a major part of the string-matching algorithm is the
case statement on the various node types, it makes sense to
use data direction to implement it. The first cell (16 bits) of
every pattern tree node points to the execution word for that
routine. The node may have private data following. The stack
action of the execution word is (private -- flag),
where private pointsto the start of private data and flagistrue
if the match succeeded.

For instance, the pattern
m' Hello' returns adr, fill-

Structure of
x MANY and x MOST

X MANY

x MOST

ingdictionary memory above
adrasshownin Figure Three.
Here, <m> is the address of
the execution routine form".
This is followed by the

IJ

NULL

and-node and-node
[[

or-node

counted string to be matched.
The pattern m" abc" m"
def" || setsup memory as
shown in Figure Four (the
detailsof the two subpatterns

NULL are suppressed for clarity).

X X

<} | > is the execution word
for alternation. This word

Figure Three. I

performs the actions of an
OR node, pushing the cur-
rent state onto the backtrack

Block returned by
m' Hello'

adr +2 +3 +4 +5 +6

stack and proceeding with
thefirstoption. The addresses
of the two options are stored
inthe two private data words.

Most of the operators in-

<m> 5

volved in pattern matching
(s&, |}, ~~, NULL, FATL,

elc.) are unrelated to the

private data

representation used for
strings. In fact, they can be

Figure Four.

used in any pattern-match-
ing situation—for instance,
matching lists. Hence, the

Block returned by
m" abc" m" def" I:

adr +2 +4

pattern matcher is logically
separable into two parts: a
“logic engine” (LOGIC.SEQ)
which providesthe indepen-
dent operators and the main

e loop, and a “string matcher”

opltl oplt2

(STRMA'TCH.SEQ) whichan-
chors patterns to the string

mlf abc " m!l

def"

by actually matching
substrings.
The dala-directed ap-

July 1992 Auqust

Forth Dimensions

proach allows us to define the main loop (in LOGIC.SEQ)
before we define the string-matching nodesM™ and ANYOF™
(in STRMATCILSEQ). It also leads Lo cleaner code: the main
loop (DRIVER in LOGIC.SEQ) is defined by just 20 words,
cach operator is defined by two words (run time and compile
time), and new operators arce easily added.

Conclusions

AlthoughIcouldn’t find any literature onthe subject, T'was
able to implement advanced pattern matching by using
standard Forthtechniques: stacks, functional decomposition,
minimal syntax, and separation of compile time from run
time. Two complex designs led to two long, cumbersome,
incorrect, and uncorrectable implementations. The final
design is elegant, uniform, and easy to implement.

Data-directed programming is a very powerful technique
which, in my opinion, isn’t used enough. To use it, specify
a uniform stack action for a class of routines and use their
CFAs as type identifiers; then just EXECUTE your type
identifier. The advantages: a CASE or EXEC : statement (and
its overhead) is eliminated, and new data types can be
installed transparently. DRIVER in LOGIC.SEQ doesn't “know”
aboutany nodetypes; it justknows the stack action. DDP isn't
a substitute for OOP, but it’s still uselul!

Bibliography

I was unable to find a great deal of literature on string
matching (unlike the related subject of parsing, which is very
well established). What I could find, and used, was:
1. Algorithms (2nd ed.) by R. Sedgewick; Addison-Wesley,
1988, pp. 294-. Contains a chapter on matching regular
expressions using finite-state machines.
2. Vanilla SNOBOL4 — Tutorial and Reference Manual by
Mark B. Emmer. Distributed along with Vanilla SNOBOL4 by
Catspaw, Inc. 1987. This is a public-domain implementation
ofthe SNOBOL language with complete documentation. The
documentation also mentions The Macro Implementation of
SNOBOL4 by Ralph Griswold (W. H. Freeman, 1972). | have
been unable to find this book, but the
description seems to indicate that it
covers pattern matching.
3, Any UNIX system has AWK, LEX,
and YACC, together with documenta-
tion. These programs are also avail-
able for the PC in various guises. AWK
is a string-processing language, LEX is
alexical analyzer,and YACCisa parser
generator used for writing compilers.

[Code implementing the ideas in
this article will appear in our next
issue. —Ed.]

Currently doing Nalional Service, Ariel Scolnicov
plans to start studying mathematics and computer
science at Hebrew University next autumn. He
enjoys Forth's abilily to cover new concepts under
auniform syntax. Readers can correspond with him
at P.O. Box 2747, Mevasseret Zion 90805, Israel.

Forth Dimensions

e Trial
Subscription

There are whole other worlds in micro computers
than DOS and Windows. If embedded controllers,
Forth, §100, CP/M or robotics mean anything to you,
then you need to know about The Computer Journal,

Hardware projects with schematics, software
articles with full source code in every issue. And you
can try The Computer Journal without cost or risk!
Call toll free today to start your trial subscription and
pay only if you like it.

Rates: 318[year US; $24/year Foreign. You may
cancel your subscription without cost if you don’t feel The
Computer Journal is for you. Published six times a year.

(800) 4248-TCJ / (908) 755-6186

TQJ

The Computer Journal

The Spirit of the Individual Made This Industry
Socrates Press
PO Box 12
S. Plainfield NJ 07080-0012

LL AEPE NG

— Free MMSFORTH

e
THIRTY-DAY FREE OFFER
GAMES DISK worth $39.95, with purchase of MMSFORTH

System. CRYPTOQUOTE HELPER, OTHELLO, BREAK-

Julv 1992 Auaust

China’s National
Forth Examination

Translated by C.H. Ting
San Mateo, California

Last year, the People’s Republic of China administered ils first—and, as far as we know, the world’s first—national test of
Forth knowledge and expertise. In a buge country where pasitions in industry and academia are earnestly sought by many
candidates, and where the resulls of formal examinations can be decisive factors shaping one’s fulure, this test assumes great
significance in the lives of Forth programmers there. We invite you to measure your oun Forth expertise by taking the same
examination. Those whowould like to bave their answers checked can send themto Dr. Ting at 156 - 14th Avenue, San Mateo,

California 94402,

1991 China National Forth Programmer Examination

Total Time: 180 Minutes, Total Score: 180 points.

All problems are scored according to the Forth-83 Standard. Assume the base to be decimal
unless noted otherwise.

Part One. Computer Fundamentals (36 points)

I. Calculations (Write down only the results.) (6 points)
1. Convert hex 1991 to binary. (2 points)
2. Convert hex ABE to decimal. (2 points)
3. Convert hex BAD to octal. (2 points)
II. Multiple Choices (26 points)
L : Convert a decimal fraction 0.875 to 8 binary digits. (6 points)

Its octal expression is:
A. 0.1100000 B. 1.1110000 C. 1.0100000 D. 0.0110000
Its two's complement is:
A. 1.0010000 B. 0.0100000 C. 1.1100000 D. 0.1100000
Its one's complement is:
A. 0.0011111 B. 1.0100000 C. 1.0001111 D. 0.0111111

2. The logic expression A(1+B) is: (2 points) .
A. A B. 1 C. AB D. &AB

i [A computer has a memory capacity of 64KB. Its address registers must have: (2 points)
A. 15 digits B. 14 digits C. 16 digits D. 17 digits

4. The register which sequences the execution of Forth words is: (2 points)
A. Work register W B. Program counter PC
C. Interpreter pointer I D. Code field address CFA

5. In a CPU, the register which sequences the execution of instructions is: (2 points)
A. Accumulator B. Program counter

C. Internal address register D. Instruction register

6. A stack is a linear list. It is characterized by: (2 points)
A. An end point B. A middle point
C. First-in First-out D. First-in Last-out
i The assembler producing object code for a different computer is called: (2 points)
A. Macro assembler B. General assembler
C. Micro assembler D. Cross assembler

July 1992 Auqust 26 Forth Dimensions

HARVARD SOFTWORKS
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

MEET THAT DEADLINE !!!

¢ Use subroutine libraries written for
other languages! More efficiently!

¢ Combine raw power of extensible
languages with convenience of
carefully implemented functions!

* Faster than optimized C!

* Compile 40,000 lines per minute!
(10 Mhz 286)

¢ Totally interactive, even while
compiling!

¢ Program at any level of abstraction
from machine code thru application
specific language with equal ease
and efficiency!

* Alter routines without recompiling!

¢ Source code for 2500 functions!

¢ Data structures, control structures
and interface protocols from any
other language!

¢ Implement borrowed features, more
efficiently than in the source!

* Anarchitecture that supports small
programs or full megabyte ones
with a single version!

¢ No byzantine syntax requirements!

* Qutperform the best programmers
stuck using conventional languages!
(But only until they also switch.)

HS/FORTH with FOOPS - The only
full multiple inheritance
interactive object oriented
language under MSDOS!

Seeing is believing, OOL’s really are
incredible at simplifying important
parts of any significant program. So
naturally the theoreticians drive the
idea into the ground trying to bend all
tasks to their noble mold. Add on
OOL’s provide a better solution, but
only Forth allows the add on to blend
in as an integral part of the language
and only HS/FORTH provides true
multiple inheritance & membership.

Lets define classes BODY, ARM, and
ROBOT, with methods MOVE and
RAISE. The ROBOT class inherits:

INHERIT> BODY

HAS> ARM RightArm

HAS> ARM LeftArm
If Simon, Alvin, and Theodore are
robots we could control them with:
Alvin ’s RightArm RAISE or:
+5 -10 Simon MOVE or:
+5 +20 FOR-ALL ROBOT MOVE
The painful OOL learning curve
disappears when you don’t have to
force the world into a hierarchy.

WAKE UP!!!

Forth need not be a language that
tempts programmers with “great
expectations”, then frustrates them
with the need to reinvent simple tools
expected in any commercial language.

HS/FORTH Meets Your Needs!

Don’t judge Forth by public domain
products or ones from vendors
primarily interested in consulting -
they profit from not providing needed
tools! Public domain versions are
cheap - if your time is worthless.
Useful in learning Forth’s basics, they
fail to show its true potential. Not to
mention being s-1-0-w.

We don’t shortchange you with
promises. We provide implemented
functions to help you complete your
application quickly. And we ask you
not to shortchange us by trying to
save a few bucks using inadequate
public domain or pirate versions. We
worked hard coming up with the ideas
that you now see sprouting up in other
Forths. We won’t throw in the towel,
but the drain on resources delays the
introduction of even better tools that
could otherwise be making your life
easier now! Don’t kid yourself, you are
not just another drop in the bucket,
your personal decision really does
matter. In return, we’ll provide you
with the best tools money can buy.

The only limit with Forth is your
own imagination!

You can’t add extensibility to fossilized
compilers. You are at the mercy of
that language’s vendor. You can easily
add features from other languages to
HS/FORTH. And using our automatic
optimizer or learning a very little bit
of assembly language makes your
addition zip along as well as and often
better than in the parent language.

Speaking of assembler language,
learning it in a supportive Forth
environment virtually eliminates the
learning curve. People who failed
previous attempts to use assembler
language, often conquer it in a few
hours using HS/FORTH. And that
includes people with NO previous
computer experience!

HS/FORTH runs under MSDOS or
PCDOS, or from ROM. Each level includes
all features of lower ones. Level upgrades:
$25. plus price difference between levels.
Source code is in ordinary ASCII text files.

HS/FORTH supports megabyte and larger
programs & data, and runs as [ast as 64k
limited Forths, even without automatic
optimization -- which accelerates to near
assembler language speed. Optimizer,
assembler, and tocls can load transiently.
Resize segments, redefine words, eliminate
headers without recompiling. Compile 79
and 83 Standard plus F83 programs.

PERSONAL LEVEL $299.

NEW! Fast direct to video memory text
& scaled/clipped/windowed graphics in bit
blit windows, mono, cga, ega, vga, all
ellipsoids, splines, bezier curves, ares,
turtles; lightning fast pattern drawing
even with irregular boundaries; powerful
parsing, formatting, file and device 1/O;
DOS shells; interrupt handlers;
call high level Forth from interrupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file search paths; format to strings.
software floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4
words, 1..4 dimension var arrays;
automatic optimizer delivers machine
code speed.

PROFESSIONAL LEVEL $399.
hardware floating point - data structures
for all data types from simple thru
complex 40} var arrays - operations
complete thru complex hyperbolies;
turnkey, seal; interactive dynamic linker
for foreign subroutine libraries; round
robin & interrupt driven multitaskers;
dynamic string manager; file blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $499.
Metacompiler: DOS/ROM/direct/indirect;
threaded systems start at 200 bytes,
Forth cores from 2 kbytes;

C data structures & struct+ compiler;
MetaGraphics TurboWindow-C library,
200 graphic¢/window functions, PostSeript
style line attributes & fonts, viewports.

ONLINE GLOSSARY $ 45.

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

FOOPS+ with multiple inheritance $ 79.
TOOLS & TOYS DISK $179.
286FORTH or 386 FORTH $299.
16 Megabyte physical address space or
gigabyte virtual for programs and data;
DOS & BIOS fully and freely available;
32 bit address/operand range with 386.
ROMULUS HS/FORTH from ROM $ 99.

Shipping/system: US: $9. Canada: $21.
foreign: $49. We accept MC, VISA, & AmEx

8. An operating system improves the of a computer. (2 points)

A. Speed B. Utility of resources
C. Flexibility D. Compatibility
9. In an operating system, which component is responsible for thecontrol of process
execution? (2 points)
A. Main memory manager B. Microprocessor manager
C. Processor manager D. Page memory manager
10. The component contreolling the data in a system is: (2 points)
A. Data manager B. Document manager
C. Indexing system D. Data storage system
11. The most obvious difference between Forth and other computer languages is: (2 points)

A. It has the functions of an operating system.
B. It is an integrated programming environment.
C. It has a dictionary with stack structure.
D. It improves the portability of pregrams.

III. Mark a correct statement with "0O", and an incorrect cne with "X". (4 points)
A. A computer without external components is a 'Bare Computer'.
B. Converting often used software operations to hardware can improve the effi-
ciency of a computing system.

Part Two. Forth Fundamentals (90 points)

T Fill the bklanks (25 points)
1. p P are the three internationally recognized
Forth standards. (3 points)
2 The postfix expression of [(A-B)*C]/(D+E) is
AB-C E / (3 points)
1 To reorder the stack (12 34 --214 3), use:
SWAP SWAP {2 points)
q. Compute the factorial cf n (n —-— n!), with n>1:
: N! DUP ROT ?DO I * -1 +LOOP ; (1 point)
5. Define Y= to compute y= ax2+bx+c, with the stack changes as
shown:
: Y= (xabc-—-y)
>R 2 PICK * >R pop * _ (ax*x)
B> R> + + (2 points)
6. 3DUP (nl n2 n3 -- nl n2 n3 nl n2 n3) is equivalent to
. Each blank can only hold one Forth word. (3 points)
7 Convert a double integer to its absolute:
: DABS (d -- |d])
DUP 0< IF THEN ; (1 point)
8. : TEST 2. 0 - IF 1 ELSE 2 THEN
DUP . = IF 3 . ELSE 4 . THEN ;
Typing TEST <cr> will display {1 point)
9. DECIMAL 16 BASE ! BASE @ . <cr> will display:
(1 point)
10. HEX : NUM DECIMAL 10 HEX 10 + . ; DECIMAL
Type NUM <cr> will display (1 point)
11. 32767 1+ . <cr> will display (1 point)
172 -1 1234 C! 1234 C@ . <cr> will display (1 point})
13, 2VARIABLE XY 3 5 XYy 2!
XY @ . < cr> will display (1 point)
14. 1 NOT . <cr> will display (1 point)
15. HERE . <cr> shows 3000
: TEST 500 CR ;
HERE . <cr> will show (1 point)
16. HERE . <cr> shows 3000
1, 2C, HERE . will show (1 point)

17. Following is the incomplete definition of DO. It compiles (DO) into the dictionary
and leaves HERE and 3 on the stack. Complete definition:

: DO COMPILE (DO) HERE 3 ; (1 point)
o 1 Multiple Choices (25 points)
1: The inventor of Forth is:
A. English B. American C. Swiss D. Japanese

Julv 1992 Auqust 28 Forth Dimensions

10.

11.

r2.

13,

14.

15.

16.

17.

18.

19.

20.

21.

22.

Forth Dimensions

Forth originated in:

A. Chemical industry B. ARutomotive industry
C. Astronomy D. Light manufacturing
The postfix expression of 15/(7-2) is

A. 15 / (7-2) B. 157 / 2 -

c. -721/15 D: 1572 - ¢

: TEST (ABC ." DEF") ;
Type TEST <cr> will display:

A. ABC B. DEF C. ABCDEF D. nothing

In the stack comment (n addr ¢ —- f)

n is for an

A. Integer B. Address C. Character D. Legic flag
f is for an

A. Integer B. Address C. Character D. Logic flag

DECIMAL : TEST 16 HEX 10 * * ;
Type TEST <cr> will display

A. 16 10 B. A 16 C. A 10 D. 10 A

In Forth-83 Standard, the range of ud is:

A. 0 to 65535 B. -32768 to 32767

C. 0 to 4294967295 D. -32768 to 65535

In Forth-83 Standard, the range of addr is:

A. -32768 to 32767 B. -128 to 127

C. -32768 to 65535 D. 0 to 65535

The result of 13 -7 MOD is:

A. 5 B. -5 c. 1 D. =1
0 -1 DABS D. will produce:

A. -1 B. 0 C. 65536 D. 65535
-18 5 / will produce:

A. 4 B. 3 c. -4 D. -3
2 NOT 3 + -1 AND will produce:

A. -1 B. 0 C. 4 D. 1

Reorder the stack (abcd--dcba)

A. ROT ROT ROT ROT

B. SWAP Z2SWAP SWAP 2SWAP

C. SWAP 2SWAP SWAP DUP DROP

D. 2SWAP SWAP 2SWAP SWAP

: TEST CR 31 DO 6 4 DO JO .RI O .R 5 SPACES
LOOP CR LOOP ;

Typing TEST <cr> will display:

A. 14 15 B. 41 51
24 25 42 52
c. 14 15 16 D. 41 51 61
24 25 26 42 52 62
34 35 36 43 53 63
: TEST0 1 5D0 I + -2 +LOOP . ; TEST will produce:
A. 15 B. 14 c. 8 D. 9

: TEST 1000 = IF KEY DROP EXIT
ELSE HEX THEN ;
The total length of this word in the dicticnary is:

A. 33 bytes B. 29 bytes C. 31 bytes D. 35 bytes

VARIABLE XX 4 ALLOT VARIABLE YY O ,

' YY >NAME ' XX >NAME - . <cr> will display:

A. 0O B. 9 Cc. 13 D. 11

CR 3 SPACES 32 EMIT OUT @ 0 .R OUT @ 0 .R <cr> will display:
A. 43 B. 34 C. 45 D. 54

HERE . <cr> shows 5000
HEX 10 ALLOT DECIMAL HERE . <cr> will display:

A. 5016 B. 5000 c. 5010 D. 5020

To compile an immediate word into a colon definition, use:

A. COMPILE B. [COMPILE] C.] D. IMMEDIATE

To create a header for XXX and point DP to the beginning of its parameter field, use:
A. BUILDS> XXX B. CREATE XXX

C. : YYY CREATE XXX ; D. : XXX ;

Define the following word:
: XXX CREATE , DOES> @ ;

29 Julv 1992 Auaust

Execute 176 XXX YYY

A. A new word YYY is compiled to dictionary. Stack has 176.

B. YYY is compiled to dictionary. 176 is put in its parameter field.

C. YYY is compiled to dictionary, 176 is put in its parameter field, and stack has the
parameter field address.

D. No new word is compiled to the dictionary.

23. To compile €4*3 as a literal in a colon definition, use
A. LITERAL 64 3 * B. [LITERAL] 192
C. [64 3 * | LITERAL D. 64 3 *
I1I. Determine Errors (20 points)
1. Define two vocabularies to be used in the subsequent definitions: (10 points)
VOCABULARY XX VOCABULARY Y¥ YY DEFINITIONS
A B C
: C XX DEFINITIONS + DEF :
D E F
4+ GHI XY DEF XX _ABC
G H I J
There are errors, identified by .
2. Define a variable BASEl and use it as the base to display a number n. (10 points)
: TEST (n —-) BASE @ R> VARIABLE BASEL
A B C
BaSE]L @ BASE ! 0. <# & # # # #>
D E F G
IYPE 2R BASE ! ;
H I J
There are errors, identified by
Iv. Stack Analysis (20 points)

Analyze the following program and trace the stack. Use the standard stack notation in the
comment parentheses.

DECIMAL
#IN {(—— n , push the number entered on keyboard on the stack)

0 BEGIN KEY {(nc }
DUP 13 = (ncit)
IF DROP (1)
EXIT
THEN
DUP 8 = (2)
IF EMIT 32 EMIT 8 EMIT
10 / { 3)
ELSE DUP (4)
48 < (5)
OVER { 6)
57 > (7)
OR { a8)
IF DROP 7 EMITSY
ELSE DUP EMIT
48 -~ (9)
SWAP 10
*ot (10)
THEN
THEN

AGAIN ;

Part Three. Program Design (36 points)
s Fill in Forth Words (22 points)
In the following program, fill in the appropriate Forth words in the blank fields, WORDS is
used to inspect the contents of the current vocabulary.
: WORDS HEX CR CR
(find the name field address of the last words in the currentvocabulary)

?DUP IF BEGIN DUP DUP 0
<¥ & ¥ # ¥ 4>
TYPE IF (display a blank character)
(show the name of a word)
ELSE (display "Null") DROP

July 1892 Auqust 30 Forth Dimensions

THEN OUT @ 30 >

IF (start a new line)

ELSE 14 OUT @ OVER MOD -

(display that many blank characters)

THEN

(from name field find the name field address of the next word)
DUP C =

(is there any keyboard activity?)

DUP IF (wait for the key) DROP THEN

(is any one of the two flags true?) =~ UNTIL

ELSE (display "Empty vocabulary")

THEN ;

II. Program Design (14 points)

The equations to draw a circle are:

X= x0 + rC0Sa and Y= y0 + rSINa

where (x0,y0) are the center coordinates, r is the radius, and a is an angle. Assume that we
have a word LINE (x1 yl x2 y2 color —-) which draws a line from (x1,yl) to (x2,y2). Color 0 is the
background color and color 1 is white.

Write a program to draw circles. First compute one point on the circle (x1,yl) as the starting
point. Then compute (x2,y2) and draw a line between these two points. Make (x2,y2) the (x1,yl) of
the next segment. Compute the next peint and draw the next segment. Increment a to compute the
next point. Increase a from 0 to 360 degrees and draw the complete circle.

SIN (deg -- sine*10000) and COS (deg —- cosine*10000) are predefined words which convert
angles to sines and cosines multiplied by 10000 so that they are represented by integers. Avoid integer
overflows in the program. (Note: the coordinates of the end point can be saved as double inte-
gers to initialize the starting coordinates of the next segment).

Define the following words:

X= (x0ra-—-x)

Y= (y0ra--y)

XY= (x0y0 ra -—xy)

CIRCLE (X0 yO r ——)

Define each word separately and write a complete circle drawing program.

Part Four. English (18 points)

L Select the most appropriate words in the list to fill in the blank spaces in the next three
paragraphs. (9 points)
1. Forth is . Because you can add to the language, you can tailor it

to your own needs. Since almost everything in Forth is written in Forth--the text editor, assembler,
etc.--you can access and alter all of it.

24 Forth is . Forth runs much faster than many other high-level
languages. Because the interpretation scheme is so elegant, interpreter overhead is minimal.
Furthermore, Forth includes a built-in assembler for speed-critical routines. As a result, Forth
can run almost as fast as machine code itself.

3. Forth is . Only a small nucleus of code needs to be rewritten to
move the entire language to a new computer. Forth has been implemented or almost every computer developed
to date.

Answers to be selected:

A. fast B. slow C. compact D. powerful

E. extensible F. transportable G. interactive H. structured
I. restrictive

IT. Translate the following paragraphs into Chinese (9 points)

i Forth is a language, an operating system, a set of tools, and a philosophy. It is an
ideal means for thinking because it corresponds to the way our minds work. <Thinking Forth> is thinking
simple, thinking elegant, thinking flexible. It is not restrictive, not complicated, nor over-general.
<Thinking Forth> synthesizes the Forth approach with many principles taught by modern computer science.
(3 points)

2 Business, industry, and education are discovering that Forth is an especially effective
language for producing compact, efficient applications for real-time, real-world tasks.

<Thinking Forth> combines the philosophy behind Forth with thetraditional, disciplined
approaches to software development—--to give you a basis for writing more readable, easier-to-write,
and easier-to-maintain software applications in any language. (3 points)

3. Forth is like the Tao: it is a way, and is realized when followed. Its fragility is
its strength, its simplicity its direction.

Forth Dimensions 31 Julv 1992 Auaust

A Forum for Exploring Forth Issues and Promoting Forth

[Fast [FORTIHwWearre]

Promoting Forth
and Other High-Tech Stuff

To prepare a press “backgrounder” for Forth, I followed
some simple procedural steps. Similar steps may help you to
promote other high-tech products or services. As part of this
exploration, [will be sharing backgrounder excerpts ex-
plaining various advantages of Forth,

"To help generate promotional copy for Forth, my firststep
was to develop a brief list of Forth's advantages. Next, I
investigated which advances could best summarize what
Forth is all about.

The focus then became a few Forth advantages around
which I uied to create stories with promotional messages.
After several stories were compiled, the stories were tied
together as much as possible.

Top on my list of advances was Forth’s extensibility and
scalability. While the ability to extend a language is fre-
quently mentioned, the ability to scale a language is rarely
touted.

A term similar to scalable is open. Openness also charac-
terizes Forth well. To suit the length restrictions of an
advertisement, the following short story was used:

To use this message in
advertising, it must be
made simpler.

As an open language, Forth lets programmers build new
control-flow structures and other compiler-oriented
extensions that closed languages do not.

Another advantage 1 noted was Forth’s usefulness as a
meta-language suitable for creating application-specific lan-
guages.

But Forth'’s linguistic flexibility is not characterized by
merely describing Forth as scalable instead of extensible—
nor by describing Forth as a meta-language. Despite how
deeply Forth programmers appreciate this message, it can't
be deciphered by those who have never used Forth.

Perhaps the difficulty of this Forth concept is due to the
terminology required for its expression. This prompted me

July 1992 Auqust

to take a fresh approach to the telling of this Forth story by
avoiding terms such as grammayr. Here is how it turned out:

In most languages, the declaration of data items or routines
helps enrich the variety of useful expressions that can be
programmed. The appeal of most languages arises due to this
one trait—extensibility in the domain of expressions. It allows
one or more programmers to build layered, modular applica-
tions.

Forth has improved upon the best trait of other languages—
widening expressions until they engulf the Forth language as
a whole: All the elements of the Forth language correspond to
expression constructs, with even fewer syntax rules than is
customary for expressions.

No irreversible Forth grammar or syntax is needed to ensure
that programmers specify routines or variables only in places
where they are permissible. Forth's lack of type-checking
contributes to this freedom.

By eliminating the need to nest expressions within parenthe-
ses, Forth’s postfix notation avoids still other (syntax) con-
straints—those involving correctly paired, and correctly placed,
parentheses within expressions. When expressions are non-
stop as they arc in Forth, the phrases “in an expression” and

‘hested expression” lose all their meaning.

Other languages continue to limit extensibility to the
domain of expressions. Furthermore, the permissible
components of expressions are also limited—just try
placing an IF in the expression portion of a PRINT
statement in BASIC.

Due to its abandonment of left-to-right evaluation,
algebraic notation mandates your use of correctly paired
parentheses as necessary to specify how the result of an
inner expression should be passed to an outer expression.
The order of evaluation proceeds in an inside-out fashion.
For reasons unknown to most Forth programmers, this
notational sequence is considered easier and more readable.
(Nevertheless, microprocessors require the re-ordering of
equivalent machine code to reflect its real execution order.)

Terms such as grammar and semantics lead o more
conventional ways of expressing Forth’s flexibility, but they
also raise the discussion to a higher technical level:

Unlike most languages, Forth provides a measure of linguis-
tic self-determination to its users. Normally, components of

Forth Dimensions

languages are under the strict control of compiler vendors.
Through its support of arbitrary application grammars, Forth
lets the programmer determine the grammar and semantics
suited to a given project. Accordingly, the language for an
application can truly be fitted to the application. This flexibility
has been designed into Forth.

The switch statement of the C programming language is
useful for programming in terms of state machines. While
users of conventional languages other than C have o wait
for the various compiler vendors to adopt this new language
construct, Forth programmers have remained free to add
components such as a switch to virtually every
implementation of Forth that has ever been created.

Because of its length and complexity, this particular Forth
message remains unwiecldy. To use it in an advertisement, it
musl be made simpler still.

Let's continue 1o refine this message regarding Forth's
{lexibility. Perhaps you can share some of your own recipes
for the promotion of Forth. Together, let’s make Forth a
poorly kept secret one day. —Mike Elola

WpVeEendedSpetlight
Forth Interest Group Update

Al a recent planning meeting, the FIG Board of Directors
along with a few volunteers undertook the task of evaluating
where it needs to focus its efforts. Besides a mission
statement, the planners brainstormed to produce a list of
about 40 possible FIG activities that could help fulfill FIG’s
mission. Evaluating those activities took the form of rating
how much each of those activities supported each of the
objectives in the mission statement.

The planners also studied the organizational structure of
FIG, producing an “org” chart to help formalize each of the
roles being performed by various FIG supporters. At the
same time, we identified the need to fill several vacated, or
under-emphasized roles in the organization.

Since then, FIG president John Hall has made several
important appointments: John Rible is the FIG Chapter
Coordinator; Nick Solntseff is the Education Coordinator; and
Mike Elola is the Publicity Director. John may appoint
another volunteer as merchandiser of the FIG mail-order
business.

Nick, John, and Mike are charged with helping educate
Forth programmers, supporting chapters, and promoling
Forth and FIG, respectively.

'The use of “task champions” is making FIG more
responsive Lo new ideas, such as the column you are reading
now. If you wish to help in any of the task areas outlined,
send us a brief description of your interests, listing any
professional skills you have so we can build a talent-pool
database. The FIG office will forward any speciflic comments
or suggeslions you make to the appropriate task champion.

s i /1 g
[Preociue Welialh

April 1992

Orion Instruments announced the PC-basced 8800
emulator/analyzer. It has the speed necded o make it
a real-ime, zero wait-state emulation of Motorola’s
68000 and 68302 microprocessors running at well over
40 MHz. (Support for 80C196, 68332, and 68HCI16 is
planned.) Besides allowing source-level debugging, the
8800 can use the host PC’s 386 protected mode to run
other programs, such as editors and compilers. By
placing such programs in the “User” menu, all such
programs can become an integrated part of the 8800
operaling environment.

Also announced as an option for the 8800 is Clip-
On™ Emulation. It ensures that timing is unaffected by
the emulator.

April 1992

Vesta Technology announced the Vesta SBC332, a
low-cost, high-speed, low-power, single-board com-
puter based on the Motorola MC68332 microcontroller.
A single unit may be obtained free with the purchase of
an SDSI debugger, or with the purchase of
chipFORTH332™ from Vesta Technology. (Forth, Inc. is
responsible for chipFORTH332 and trademarks that
name.)

Several add-on products are available, such as one
to augment the SBC332 with serial /O and A/D as well
as D/A conversion (the MFP332 Multi-Function Periph-
eral).

Also available now in a version for the SBC332 is the
Vesta Standard Edition, a 32-bit subroutine-threaded
Forth.

Companies Mentioned

Orion Instruments

180 Independence Dr.
Menlo Park, California 94025
Fax: 415-327-9881

Phone: 415-327-8800

Vesta Technologies

7100 West 44th Ave., Suite 101
Wheat Ridge, Colorado 80033
Fax: 303-422-9800

Phone: 303-422-8088

Forth Dimensions

33

Julv 1992 Auaust

CALL FOR PAPERS

for the fourteenth annual

FORML CONFERENCE

The original technical conference
for professional Forth programmers, managers, vendors, and users.

Following Thanksgiving
November 27 — November 29, 1992

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean
Pacific Grove, California U.S.A.

Theme: Image display, capture, processing, and analysis

Papers are invited that address relevant issues in the development and use of Forth in image
display, capture, processing, and analysis. Additionally, papers describing successful Forth
project case histories are of particular interest. Papers about other Forth topics are also
welcome.

Mail abstract(s) of approximately 100 words by September 1, 1992 to FORML, P.O. Box
2154, Oakland CA 94621.

Completed papers are due November 1, 1992.

Registration information may be obtained by telephone request to the Forth Interest Group
(510) 893-6784 or by writing to FORML, P.O. Box 2154, Oakland, CA 94621.

The Asilomar Conference Center combines excellent meeting and comfortable living
accommodations with secluded forests on a Pacific Ocean beach. Registration includes use of
conference facilities, deluxe rooms, all meals, and nightly wine and cheese parties.

This conference is sponsored by FORML, an activity of the Forth Interest Group.
Information about membership in the Forth Interest Group may be obtained from the Forth
Interest Group, P.O. Box 2154, Oakland, CA 94621, telephone (510) 893-6784.

July 1992 Auqust 34 Forth Dimensions

News rrom THE GEnie FosmH Rouno TasLe

Blesidaii
GEne

Gary Smith
Little Rock, Arkansas

There will be very little preamble in this edition of ‘on-line’
notes. The contents of the messages speak for themselves. The
Sirst group was pulled from Category 1, Topic 6, “Real-Time
Conferences,” and discusses our disheartening decision lo
terminate the Thursday Figgy Bar. The second is capiured
Jrom Category 10, Topic 24, “ANS TC Magnel for Interpreter”
and features alively exchange on GEnie, and fromthroughoul
FonthNet, regarding a hypothetical use of local/user variables.

Topic 6: Real- Time Conferences
Real-Time Forth Conferencing on this Roundlable

The Thursday night Figgy Bar will cease, except for the
monthly guest appearance after the February 6th session.
Auendance has fallen beyond acceptable levels for more than a
month. If you wish to preserve this on-line chapter meeting and

if you have any opinions this is the time to share them.
—~Gary Smith

From: Dennis Ruffer

Well, we had our final Thursday night Figgy Barlast Thursday
night,andI mustsay, it doesn’tlook like any of you will miss them.
No one but us sysops showed up for the final tribute. In fact, no
one has even bothered to comment, one way or the other, about
this loss. This is disappointing to those of us who have gone out
of our way to make these happen for you. We started these
Thursday night get-togethers for you toshare yourthoughtsabout
Forth projeds you are working on and o hear what others are
doing. The intention was to provide an on-line FIG chapter
meeting for those of you who do not often get the opportunity
to talk with other Forth programmers.

We started with a good core group of people who would
show up frequently. I'dlike lo take this opportunity to thank them
for their time and enthusiasm. They made these conferences
enjoyable and helpedus keep them going for the past two years.
Unfortunately, everyone’s priorities change over time, and this
core group dwindled down to nothing. Most recently, Gary has
been frequently sitting in the RTC completely alone. This is most
disheartening for him, after he has gone to the (sometimes
extraordinary) effort to be there, and few (if anyone) even shows
up. Now, after much discussion, there just is no desire (on any of
our parts) to continue making the effort any more.

This does not mean they will not come back, but you the user
must show us that you want us o do it. We are here for your
benefit, but if you do not choose to take advantage of something

Forth Dirnensions

35

we are doing, we will shift our efforts to something else that you
might find useful. However, this means you must tell us what you
want. If the time was not right, tell us so. If you'd like us to use
the on-line R1C rooms in some other ways, let us know what you
want. If someone out there would like to voluntecrto help us out,
please step forward. We need ideas, and enthusiastic users and
volunteers. Please contribule wherever you can. Otherwise, as
has happened with the Thursday night Figgy Bars, the benelfits
will just disappear.

This brings us (o the guest conferences. Speakers Gary lined
up recently include:

2/20—Paul Thomas of Sun Microsystems and co-author with
prior guest Gary Feierbach of Forth Tools and Applications. Paul’s
topic: “Using CREATE ... DOES>."

3/19—Ron Braithwaite, independent consultant. Ron'stopic:
“Professional Impact of dpANS Forth.”

4/16—len Zettel. Len’s topic: “Is the Forth Community
Missing the Boat?”

However, attendance at these conference have also been
disappointing and very embarrassing for us and the guest
speaker. Not only has Gary spent hours on the phone lining up
these guests, but the guests themselves have taken time out of
their busy schedules to talk to us. Then, when no one shows up,
everyone goes away disappointed. Obviously, under those
conditions, guests rarcly want to come back again, and finding
new guests becomes harder. Again, the enthusiasm is dwindling
and itis questionable how much longer we will continue to have
them. There is, on the other hand, still an opportunity for you to
show us how much these are worth 1o 301 You only have o
showupandjointhe discussion toshow us you care. If these next
three go well, we will schedule more, Otherwise, these too will
become a thing of the past.

ANS Forth Interpreter
ANS Forth Standard for intexpreler. Magnel: Dean Sandersen
From: Sabbagh _
Subject: : Pt+ (ptl \ pt2 —- pt3)
Schmidig@iccgec. decnet.ab.com wriles:
“Hadil G. Sabbagh writes:
“Let’s consider the following problem: a point is represented
on the stack as integers x y z I wish to define ~ ~ »
“Note that a point as defined here consists of three coordi-
nates. Again, note how the problem has changed to points
with two coordinates!’

“Finally, Hadil G. Sabbagh writes:
“...wherc inl, in2, ... are input arguments; 11, 12, ..., are
locals; and out1, out2, ... are output arguments. Thus, we
have
:pt+ { x1 yl x2 y2 -=> %3 y3 }
xl %2 + -> %3
yly2 +->y3 ;
“Now the original poster is convinced that he is solving a

different problem!”

Just going with the flow, Greg. Here is my original problem
(and solution, using locals).
: pt+ { x1 y1 z1 %2 y2 22 —> x3 y3 23 }

x1 x2 + -> x3

vyl y2 + > y3

Julv 1992 Auaust

zl z2 + —> z3 ;

See my previous posting on the locals syntax.
—Hadil

From: Bernd Paysan
Sabbagh writes:
“Just going with the flow, Greg. Here is my original problem
(and solution, using locals).
:pt+ { x1 yl z1 x2 y2 z2 —-> x3 y3 23 }
X1 x2 +—>x3
vl y2 + -> y3
zl 22 + -> 23 ;
“See my previous posting on the locals syntax.
“—Hadil”

I wrote some weeks ago a library for veator arithmetics (not
only addition and subtraction, but dot and cross product and
3d>2d projection). T solved it with an array of six floats (called
temp). This is a dirty solution, but it works well:

CAPS OFF

\ case insensitive: writes faster,
Create temp 6 floats allot DOES>
swap floats + ;

reads better

: temp! 5 FOR i temp f!
NEXT ;

: v+ (ptl pt2 -- pt3)
temp! 3 0 DO 1 temp f@

i3+ temp f@ £+ LOOP ;

(and so on).

IfT had a FP unit, T would use its registers as temporary and
win lots of ime. The temp array is useful for swap, dup, dot, and
coss products, for all the things you do with three-dimensional
vectors. The order of the vedor on stack (x,y,z) or (z,y,x) is only
important for the cross product (left hand or right hand). 1like the

(x y z ==) format because you type it in this order. I suppose
you dothe same, butthentellme onething: How does your Forth
getthelocals inthe right order? Every locals T know turn the order
round and you have C conventions to give parametcss, i.e.;

: GCT (ab --gct) \ has locals

{ba} ... :

—Bernd Paysan

From: Jan Stout
Doug Philips writes:
“Interesting. I have an entirely opposing view. If one is trying
to usc Abstract Data Types (ADTs), then one docsn't want to
seethe ‘exploded’ stack diagramsinthe documentation for the
ADT's primitive operations, If that was done then the DT is
hardly A"

Hm, my view is that the uscr of the ADT shouldn’t see the
definition of the ADT atall. In other languages this is achieved by
a double specification, one on the interface level (that would use
pt1,pt2, etc) and one on the implementation level giving away
the internal representation (i.e., pt1x pt2y).

Applied to Forth, I find the (word) name descriptive enough
for interface level, so the pt1 pt2 wouldn't show up at all....

“I think the read problem is that there is no easy way in Forth

July 1992 Auqust

todeal withsmall strucures passed directly on the stack. Using
anamayinthis case (two orthree dimensions) scems like overkill.
~ However, I'm notat allimpressed with the alternative above.”

TI've come up with the following stack juggling that seems to
call for a factor ust how would we name such a beast?):
: Pt+ (%0 yO x1 vyl —— x v)

>R ROT + R> ROT + ;

Not convinced? Well see how “easily” it's generalized to the
three-dimensional problem:
: Pt+ (%0 yO z0 x1 y1 z1 —— xy z)

>R > 3 ROLL + R> 3 ROLL + R> 3 ROLL + ;

Well that makes 0.04 doesn't it?

From: Doug Philips
Jan Stout writes:
“Doug Philips writes:
“Interesting. I have an entirely opposing view. If one is trying
to use Abstract Data Types (ADTSs), then one doesn’t want to
seethe ‘exploded’ stack diagramsinthe documentation for the
ADT's primitive operations.’
“Hm, my view is that the user of the ADT shouldn't see the
definition of ADT at all. In other languages this isachieved by
a double specification, one on the interface level (that would
useptl,pt2,cic.)andone ontheimplementationlevel giving
away the internal representation (i.e., pt1x pt2y).”

I'm in agreement so far.

“Applied to Forth, I find the (word) name descriptive enough
forinterface level, so the pt 1 pt2 wouldn'tshowupatall...”

Okay. I was considering the “standard practice” of having the
first line of a definition, which usually contains the word's overall
stack diagram, to be a word’s documentation. But I agree, the
documentation shouldn'tdivulgethe details of theimplementation.
Which leads to an interesting question: How do you (if you do)
avoid having to:

a) know how many cells a Pt uses or

b) have to invent a gazillion words Pt>R, R>Pt, PLSWAP,
PtROLL...

“Well seehow ‘easily’i’s generalized tothe three-dimensional
problem:
: Pt+ (%0 y0 20 x1 y1 z1 —— xy 2z)
+ >R >R 3 ROLL + R> 3 ROLL +
R> 3 ROLL + ;

“Well that makes 0.04 doesn't it”

Unfortunately, I dont buy it. The sequence 3 ROLL + doesn't
tell the whole story. The sequence R> 3 ROLL + is a belter can-
didate except for the first usage. How about:

:Pt+ (%0 y0 20 x1 vyl 21 —— xy z)
>R >R >R
R> 3 ROLL + R> 3 ROLL + R> 3 ROLL + ;
And let the compiler optimize out the >R R> pair?

Or perhaps

Forth Dimensions

: (Pt+) COMPILE R> COMPILE 3 COMPILE
ROLL COMPILE + ; IMMEDIATE

: Pt+ (%0 y0 20 x1 vyl 21 — xy z)
>R >R >R (Pt+) (Pt+) (Pt+) ;

But I don't much like that either.
—Doug

From: Lennart Staflin
Bernd Paysan said:
“I'suppose you do the same, but then tell me one thing: How
does your Forth get the locals in the right order?”

With the syntax: LOCALS| a b ¢ |

The following definition would do:

: LOCALS|
\ Compiling: ("11 12 ... 1n <|>" ——)
\ Run time: (x1 %2 ... xn —)

0 (End marker)
BEGIN BRL PARSE-WORD (a #)
OVER C@ [CHAR] | =

UNTIL (0 al #1 a2 #2 ... an #n)
BEGIN DUP WHILE (LOCAL) REPEAT (0)
0 (LOCAL) ; IMMEDIATE

—Lennart Staflin

There’s more to life than books, you know. ..
but not much more. —The Smiths

From: Eric S Johansson
Schmidig@iccgee.decnetab.com writes:
“Instead of locals, another possibility has appeared in the
press. That is a mechanism for specifying before/after stack
picures which cause stack transformation at run time.
Typically it looks something like:
(sn abcdef --- facdbe)
“where the “abedef” is the before picture and the “facdbe” is
the after picture. The two major problems with this technique
are implementation, and notation.’
“When I read about this in FD, it seemed like a workable
scheme, but interpreting strings to effect stack transformation
does not strike me as an elegant (read Forth-like) solution to
the problem.”

Interesting point. Maybe what we are discusing here is really
about the most “Forth-like” way (o handle stack manipulations
whena data element may consist of more than onestack cell Gie,,
a point in three-space or an RGB triplet pixel).

—Fric
Source of the public’s fear of the unknown since 1956.

From: Bernd Paysan
Lennart Staflin writes:
“Bernd Paysan said:

“Isuppose you do the same, but then tell me one thing: How
does your Forth get the locals in the right order?
“With the syntax: LOCALS| a b ¢ |

“Ihe following definition would do:
: LOCALS|
\ Compiling: ("11 12 ... 1ln <|>" -)

\ Run time: (x1 x2 ... xn —)

Forth Dimensions

37

0 (End marker)

BEGIN BL PARSE-WORD (a #)

OVER CR [CHAR] | =
UNTIL (0al #1 a2 #2 ... an #n)
BEGIN DUP WHILE (LOCAL) REPEAT (0)
0 (LoCAL) ; IMMEDIATE

Thanks. Looks genial. I have two problems: First the block or

the TIB may change its location between parsing (think of multi-
programming systems). Second, 1 can't areate headers given a
string (I can, but it is difficul). T found a solution: T stack the
contents of >IN, and everything works well. I have four words
for creating locals: <LOCAL starts the definition, LOCAL: <name>
crealesalocal, LOCAL>endsthe definition and LOCAL ; endsscope
oflocals. Allthese words areimmediate, so they can work without
adding new definitions. So the solution is:
: { POSTPONE <LOCAL -1
(end marker, >IN will never be -1)

BEGIN >IN @ BL WORD 1+

C@ [CHAR] | = UNTIL DROP >IN @ >R

BEGIN DUP 0< 0= WHILE >IN ! POSTPONE

LOCAL: REPEAT DROP

POSTPONE LOCAL> ; IMMEDIATE

} POSTPONE LOCAL; ; IMMEDIATE

c:TEST{AB | A.B .} ;

and
1 2 TEST
gives
12 ok

Hurray!
—Bernd Paysan

From: Jan Stout

Doug Philips writes:
“...question: How do you (if you do) avoid having to:
“a) know how many cells a Pt uses OR
“b) have 10 invent a gazillion words Pt>R, R>Pt, PtSWAP,
PtROLL...
“Unfortunately I don’t buy it. The sequence 3 ROLL + doesn't
tell the whole story. The sequence R> 3 ROLL + is a beller
candidate except for the first usage. How about:
: Pt+ (%0 yO 20 x1 y1 21 —— xy z)
>R>R >R R>3ROLL+ R>3ROLL+ R>
3 ROLL + ;
“And let the compiler optimize out the >R R> pair?”

Sure.

“Or perhaps

“: (Pt+) CQMPILE R> COMPILE 3 COMPILE ROLL
COMPILE + ;
IMMEDIATE"

Why go immediate?

: 3dCoord+ (n0Onl n2 n3 --nl n2 nd)

3 ROLL + ;

Julv 1992 Auaust

“: Pe+ (%0 y0 20 x1 yl z1 —— xy 2z)
>R >R >R (Pt+) (Pt+) (Pt+) ;”

: 3dPt+ (x0 yO vyl ®x1 y1 21 —— xy Z)
>R >R >R R> 3dCoord+ R> 3dCoordt+ R> 3dCoordt ;

“But I don't much like that either.”

Well, I suppose dumpin’ the lot on an array and referencing
the coordinates from there would be more readable/
effident. . .which brings up my following question:

Is the following allowed in the current LOCALs scheme?

: < (nm--72)

IOCALm m - 0< ;

(Thus mixing implicit and explicit parameter passing).

If it were, that would disallow the very efficient implementa-
tion of just keeping the locals on stack till the ; where the upper
stack part would be shified down #locals-used times.

- -—TJan Stout

From: John Wavrik

The discussion about PT+ was intended to raise the issue of
the need forlocal variables—butitalso brings o light the problem
of handling data structures that take multiple cells.

It can be a severe disadvantage to putbulky data structures of
varyingsize directly onthe parameter stack. Notonly canitbe hard
to write the programs required to manipulate the data, but
potentially it requires new sets of stack manipulation words. (If
vectors occupy three cells and integers one cell, the user would
presumably want wordslike VDUP, VSWAP, and mixed operations
like VISWAP, etc. to allow Forth flexibility in implementing
algorithms which involve the new data objects. This would
becomeapparentassoon asanyone wantstouseaword like PT+
to actually do something).

Insome of the systems I've used for mathematics, there are six
ormore data types—each occupying a different number of cells.
It has been found best to have every data object represented by
a single cell on the stack (this representative is usually either an
address, displacement withina segmentsctasideforthe data type,
or index in an array of objects). In this way, data objeds can be
subjected toall the usual Forth stack operations with no difficulty.

The data objeds are equipped with words for accessing their
component parts. Thus, for vectors we would wantaword [] so
that v 2 [] gives either the address of the second component of
v or the second component itself. (If you choose the latter, you
probably will also want a word [] ! to store data.) Chuck Moore
seems o have originated the word TH for the component se-
lector—so v 2 th. There will also be, presumably, words for
arithmetic operations on the coordinates.

A vedtor package canbe constructed in layers—sothat it need
notbejust restricted to integer coordinates. Information about the
coordinate domain is communicated 1o the level that handles
vector operations—so the same code for vector operations can
be used for a variety of different types of coordinates (here is
another reason to make sure that different types of coordinates
do not have different stack sizes).

The simplest way to do this (a better way is described below)
is to have all operations specify the target of their result. Thus, for
example, a vedor addition V+ would have the stack diagram
(v v2 v3 --) ormaybe even (vl v2 v3 —— v3)

July 1992 Auqust

where the vi are “vectors” (i.e., the addresses of 3uples or the
indices in an array of 3 uples) and v3 is intended to be the result
of adding v1 to v2. The code for v+ will be written in terms of
anaddition operation for components. (If preferred, you can write
code forwordslike thiswith free use of ordinary Forth variables—
no recursive calls are involved, so there is no need for local
variables. Forth variables names can be reused—and they have
a scope: they last until they are redefined. There is no harm in
using the same variable names for independent procedures.)

"This approach actually works, butit has the disadvantage that
the syntax for operations is un-Forth-like. We would like V+ to
have the stack diagram (vl v2 —-- v3) where v3is not
named—but just somehow appears. This can be accomplished
by creatinga set of temporary storage locations for each data type
(I've been using 16 locations, and it scems to work just fine). Fach
time an operation is perfformed, the following happens:

1. The storage pool is searched for the next available address.

2. Theoperation s performed with the result stored at thisaddress.

3. The address is put on the stack as the result of the operation—
and it is marked as “unavailable” in the pool.

Once all addresses are marked, and no available address is
found when requested, a mini-garbage collection takes place: the
stack is examined to see which of the 16 addresses are still being
referenced in the stack—all others are unmarked.

This reclamation is very fast—because only 16 addresses are
involved and they are “used” only if found on the stack—so no
big scarch through chains of pointers and variables is required.
It is easily coded in assembly language. (The only caveat about
thisapproachisthatany data of lasting interest which is produced
in one of these temporary locations should be moved to a
permanent home. If a temporary address itself is stored in a
variable, it will be considered available at the next garbage
collection.)

I've used this approach for strings, several basic coefficient-
type objects (like BIGNUM integers and BIGRAT rational num-
bers), compound objeds (like polynomials with BIGIUM coef-
ficients), etc. It works great as long as everything is represented
on the stack using a single cell. It allows you to manipulate
“gizmos” and “gadgets” without constantly being aware of what
they look like, how big they are, and feares of their intemal
representation. SWAP swaps a gizmo with a gadget, an integer
with a string, etc.

(The code forthis storage scheme fortemporaries was written
in Forth-83 using traditional Forth techniques. It takes about four
sareens. It was published in the joumal of Forth Application and
Research—which seemsto be defund. 'm willing to mail people
an electronic copy of the artide if someone can assure me that this
would not violate the JFAR copyright. I've never published in a
journal that went out of business before, so T don’t know the
legalitics involved. Talso have fast versions for 83 and F-PC with
selected words coded in assembly language.)

—John J Wavrik

From: Doug Philips
Jan Stout writes:
“Doug Philips writes:
“Or perhaps

Forth Dimensions

| : (Pt+) COMPILE R> COMPILE 3 COMPILE ROLIL
COMPILE + ;
IMMEDTATE

“Why go immediate?”

I madeitimmediate so that the R> could be part of the + word.
—Doug

From: Doug Philips

John Wavrik writes:

“In some of the systems I've used for mathematics, there are
six or more data types—each occupying a different number
of cells. It has been found best to have every data objea
represented by a single cell on the stack (this representative
isusually either an address, displacement within a segment set
aside for the data type, or index in an array of objects). In this
way data objects can be subjected to all the usual Forth stack
operations with no difficulty.”

I like that approach. I assume that you are not talking about
having a typed stack though?

“Fachtimean operation is performed, the following happens:
“1. The storage pool is searched for the nextavailable address.
“2. The operation is performed with the result stored at this
address.
“3. The address is put on the stack as the result of the
operation—and it is marked as ‘unavailable’ in the pool.
“Once all addresses are marked, and no available address is
found when requested, a mini-garbage collection takes place:
the stack is examined to see which of the 16 addresses are still
being referenced in the stack—all others are unmarked.”

Itakeit, then, thatthere is only onearea of 16items, regardless
of the “type” of those items. .. or are you simplifying for the sake
of discussion? And what happensifall 16are inuse? (I assume that
can happen either because some other stack value “looks like” a
reference to one of those cells, or because too many temporaries
are—accidently’>—being used.)

“T've used this approach for strings, several basic coeflicient
type objects (like BIGNUM integers and BIGRAT rational
numbers), compound objects (like polynomials with BIGNUM
coeffidents), etc. It works great as long as everything is
represented on the stack using a single cell. It allows you to
manipulate “gizmos” and “gadgets” without constantly being
aware of what they look like, how big they are, and features
of their intemal representation. SWAP swaps a gizmo with a
gadget, an integer with a string, ctc.”

Indeed. Butagain, the programmer still hastoknow which cell
on the stack is of what type (I'm not saying thatisa bad thing..).

By the way, Upper Deck Forth uses a very similar scheme for
handling strings. But instead of having explicit slots, usage flags,
etc., their strategy is touse an area of memory as a ring buffer. Just
keepa pointertothe next “free” addressand a countof remaining
bytes. If the new string objedt won't fit in the hole left at the end
of the bulffer, then wrap to the beginning. For a 1K buffer, that
strategy guarantees at least four maximally sized strings simulta-
neously, and often a lot more. But the idea is nearly the same.

Forth Dimensions

39

Upper Deck has the advantage that there is no GC done
whatsoever and it is totally up to the programmer to make sure

that too many live strings are not “in use” at once.
Could you give a more complete referencetothe JEARartide?
—Doug

From: John Wavrik
Concerning a data management scheme for temporaries,
Doug Philips writes:
“Ilike that approach. Iassume that you are not talking about
having a typed stack though?”

The data stack is not typed, although it could be if all the
addresses for a given address occupy one band of the address
space. I generally like the Forth approach of producing differently
named operations foreach data type—ratherthanoverloadingan
operator name and having nun-time overhead based on typing of
operands.

“Fachtimeanoperationis performed, the following happens:
“1. Thestorage pool issearched for the nextavailable address.
“2. 'The operation is performed with the result stored at this
address.
“3. The address is put on the stack as the result of the
operation—and it is marked as ‘unavailable’ in the pool.
“Once all addresses are marked, and no available address is
found when requested, a mini-garbage collection takes place:
the stack is examined to see which of the 16 addresses are still
being referenced in the stack—all others are unmarked.”
“Itake itthen that there is only one area of 16 items, regardless
ofthe type’ of thoseitems. . . orare you simplifying forthe sake
of discussion? And what happensif all 16 are inuse? (I assume
that that can happen either because some other stack value
Jooks like’ a reference to one of those cells, or because oo
many lemporaries are—acddently’—being used).”

Fach data type hasits own setof 16 temporaries. The codethat
manages these is the same for all. A child of the defining word
TEMP-STORAGE installsitself as the current data type. If STRINGS
isone such data type, then STRINGS TEMP returns the address of
the next temporary location for STRINGS. (The word STRINGS
sets the current data type, and TEMP returns the next free address
for the current data type.)

In general, all this is made invisible at the wp level. The
sequence
$" ABC" $" XYzZ" OVER $+ S+
will put the (temporary) address of the string ABCXYZABC on top
of the stack. Here, $" is state smant—but its interpret-time action
is
: $" STRINGS TEMP ASCII " WORD OVER §! ;
where

: $! OVER C@ 1+ CMOVE
while $+ concalenates two strings, puting the result in a
temporary and returning theaddress of thetemporary 1o thestack.

If all 16 temporarics are in use, there is an ABORT. Except for
programming errors, this has not occurred in practice. It is casy
to make up examples where 16 locations could be insufficient Gf
you want to add 20 things, you could put them all on the stack

Julv 1992 August

and then apply addition 19 times—but you can also add as you
g0o). It should be noted that H-P aalculators have only four
locations for temporaries—so 16 is probably too many,

“I've used this approach for strings, several basic coefficient
type objeas (like BIGNUM integers and BIGRAT rational
numbers), compound objedts (like polynomials with BIGNUM
coeffidents), etc. It works great as long as everything is
represented on the stack using a single cell. It allows you 10
manipulate ‘gizmos’ and ‘gadgets’ without constantly being
aware of what they look like, how big they are, and features
of their intemnal representation. SWAP swaps a gizmo with a
gadget, an integer with a string, etc.’

“Indeed. But again, the programmer still has to know which
cell on the stack is of what type (I'm not saying that that is a
bad thing...)”

Yes—ihe programmer still has to know what is on the stack
and its type—but not its size. No additional stack manipulation
words need to be created. The storage management is concealed
in the operation and input words, so becomes transparent for
programming using these operations.

Example: for vectors there is an addition v+ and scalar
mulliplication cV* (applied with scalar on lefo).
abVW -— av + bW

can be produced by
ROT SWAP cV* -ROT cV* W+

itdoesn'tmatter which dimension the vector spaceis, because
the componentsare notbeingstored onthestack. Asa result, most
of the code in a veator space package is independent of the size
of vectors.

“By the way: Upper Deck Forth uses a very similar scheme for
handling strings. But instead of having explicit slots, usage
flags, etc., their strategy is to use an area of memory as a ring
buffer. Justkeepa pointertothenext free’addressanda count
of remaining bytes. If the new string object won't fit in the hole
left at the end of the buffer, then wrap 1o the beginning. For
a 1K buffer thal strategy guarantees at least four maximally
sized strings simultaneously, and often a lot more. But the idea
is nearly the same. The Upper Deck has the advantage that
there is no GC done whatsoever and it is totally up to the
programmer 10 make sure that too many live strings are not
‘in use’ at once.”

In this ring-bufer scheme, I assume that the addresses and
lengths of strings sull in use are tagged somchow, so that if the
pointer circlesthe ringit will notallow the re-use of memory being
used by an adive string. Never having seen the Upper Deck
system, I don't know how it determines if a string is still in active
use.

“Garbage Collection” isacually a bit excessive a term for what
is done. In my method it amounts to searching the stack (and
perhaps somewhere else) to find which strings are no longer
active—it is nowhere ncar what LISP must do Lo redlaim slorage.

“Could you give a more complele reference 10 the JIAR
article?”

“Handling Multiple Data Types in Forth” by John J. Wavrik.
JFAR vol. 6 no. 1 (1990).
—John] Wavrik

July 1992 Auqust

From: Doug Philips

John Wavrik writes:

“The data stack is not typed, although it could be if all the
addresses for a given address fyou meantype, right?/occupy
one band of the address space. 1 generally like the Forth
approach of producing differently named operations for each
data type—ather than overloading an operator name and
having run-time overhead based on typing of operands.”

I agree. However, having a typed stack doesn’l ncecessarily
mean you have to use it to dispatch operators (though thatis a
pretty obviousthingtodowith it). Even giventhe “addressrange’-
typing kind of system you mentioned fails because itassumes that
everything on the stack is a pointer.

“In this ring-buffer scheme, 1 assumc that the addresses and
lengths of surings still in use are tagged somehow, so that il the
pointer circles the ring it will not allow the re-use of memory
being used by an active string. Never having seen the Upper
Deck systern, I don't know how it determines if a string is still
in active use.”

Thereisno check. The premise isthatthe programmer knows
how many maximally lengthed (counted) strings can be tempo-
rary al once, and so must notuse any more than that. I cannot say
that I am philosophically or practically bothered by their choice,
but I probably would have done things differently.

My guess is that the biggest gotcha in cither method is in
keeping (or thinking that you can keep) temporary objects “live”
over calls to non-trivial words.

“Garbage Colledion’ isactually a bit excessive a term for what
is done.”

Indeed. Your method doesn’t have the overwrite hole that the
Upper Deck System’s method does, but then neither method will
catcha copy ofthe temporary pointerinstead of copying the data.

—Doug

P.S. I elided all the stuff that I agreed with (mostly).

Contest Announcement

Forth Dimensions is sponsoring
a contest for articles about

“Forth on a Grand Scale”
Write about large-scale Forth applications, systems, or ..

“This theme applies equally to projects requiring multiple
programmers, and to applications or systems consisting of
large amounts of code and/or of significant complexity.”
(“Editorial,” FD XIl/6) Papers will be refereed.

Mail a hard copy and a diskette (Macintosh 800K or PC
preferred) to the:
Forth Interest Group
P.O. Box 2154 » Oakland, California 94621

Cash awards to authors:

1st place: $500
2nd place: $250
3rd place: $100

Deadline for contest entries is August 3, 1992.

Forth Dimensions

Forth resources & contact information

reSaoure® (LS tines

Please send updates, corrections, additional listings, and suggestions to the Editor.

Forth Interest Group

the administrative offices:

P.O. Box 2154

510-89-FORTH
Fax: 510-535-1295

Board of Directors
John Hall, President

Jack Woehr, Vice-President
Mike Elola, Secretary
Dennis Ruffer, Treasurer
David Petty

Nicholas Solntseff

C.H. Ting

The Forth Interest Group serves both expert and
novice members with its network of chapters, Forth
Dimensions, and confercnces that regularly attract
participants from around the world. For membership
information, or to reserve advertising space, contact

Forth Interest Group

Oakland, California 94621

Founding Direclors
William Ragsdale
Kim Harris

Dave Boulton
Dave Kilbridge
John James

In Recognition

Recognition is offered an-
nually to a person who has
made an outstanding con-
tribution in support of Forth
and the Forth Interest
Group. The individual is
nominated and sclected by
previous recipients of the
“FIGGY.” Fach receives an
engraved award, and is
named on a plaque in the
administrative offices.

1979 William Ragsdale
1980 Kim Iarris

1981 Dave Kilbridge
1982 Roy Martens
1983 John D. Hall
1984 Robert Reiling
1985 Thea Martin
1986 C.H. Ting

1987 Marlin Ouverson
1988 Dennis Ruffer
1989 Jan Shepherd
1990 Gary Smith

1991 Mike Flola

ANS Forth |

The following members of the ANS X3]14 Forth Stan-
dard Committee are available to personally carry your
proposals and concerns to the committee. Pleasc fecl
free 1o call or wrile to them directly:

Gary Belts

Unisyn

301 Main, penthouse #2
Longmont, CO 80501
303-924-9193

Mike Nemeth

CSC

10025 Locust St.
Glenndale, MD 20769
301-286-8313

Andrew Kobziar

NCR

Medical Systems Group
950 Danby Rd.

Ithaca, NY 14850
607-273-5310

Elizabeth D. Rather

FORTII, Inc.

111 N. Sepulveda Blvd.,
suite 300

Manhattan Beach, CA 90266

213-372-8493

Charles Keane
Performance Pkgs., Inc.
515 Fourth Avenue
Watervleit, NY 12189-3703
518-274-4774

George Shaw

Shaw Laboratories

P.O. Box 3471

Hayward, CA 94540-3471
415-276-5953

David C. Petty

Digitel

125 Cambridge Park Dr.
Cambridge, MA 02140-2311

Forth Instruction

Los Angeles—Introductory and intermediate three-day
intensive courses in Forth programming are offered
monthly by Laboratory Microsystems. These hands-on
courses are designed for engineers and programmers
who need to become proficient in Forth in the least
amount of time. Telephone 213-306-7412.

Forth Dimensions

41

Julv 1992 Auaust

(Letters, from page 5.)
1/O Time Dominates Real Performance
Dear Marlin:

I heartily agree with Jim Callahan’s remarks con-
cerning the inadequacy of relying solely on speed
benchmarks when evaluating Forth implementations.
Notonlyisitimportantto look at the full set of tradeoffs
(such as compactness, etc.) as he points out, it is also
important to remember that the aspects of perfor-
mance measured by this set of benchmarks don’t give
an accurate picture of the overall performance of an
application. In most real-world applications, perfor-
mance is overwhelmingly dominated by the time
required for 1/O. A system that offers low-overhead
interrupt handlingand high-speed multitasking such as
polyFORTH can often out-perform other run-time
environments.

However, Callahan’s remarks about polyFORTH
are inaccurate. The multi-segment polyFORTIH uses,
in its minimum configuration, one code arca up Lo 64K
(for machine code, definition pointers, and heads) and
onc data arca up to 64K (for disk buffers, global
variables, and task space, including stacks and user
variables). Between these areas there is no duplica-
tion. Extra memory (up to DOS’ 640K limit) may also
be configured. Typically, such extra memory is used
forlarge data structures, but it may also be configured
for additional code modules. In the latter case only,
routines used by those modules are replicated. The
amount of replicated code is controlled by the pro-
grammer, but rarely exceeds about 21K. The cost of
avoiding this replication would be a substantial speed
penalty imposed on routines in the extra code mod-
ules, as well as extra bytes required for addresses. We
have found it to be an appropriate tradeoff.

In today’s market, substantial PC applications are
generally written for 2 386/486. As noted in Kelly’s
article, we also offer a 32-bit, protected-mode system
which is well suited for large applications, leaving the
16-bit, segmented model as an economical solution for
low-end applications.

Sincerely,

Elizabeth D. Rather, President

Forth, Inc.

111 N. Sepulveda Blvd.

Manbhattan Beach, California 90266-6847

CREATE ... DOES> Erratum

Dear Marlin. Tjust received the new issue of
FDIXIV/1]. I am glad you are are recruiting more
tutorials. I have found an error in my article. In
Screen 3, MAKE-8 reads,
: MAKE-8 (i -- a) SWAP 8 * + ;

It should read

MAKE-8 (i -- a) DOES> SWAP 8 * + ;

—Leonard Morgenstern

July 1992 Auqust

RIME (Relay International Message Exch.) Forth Conf. Echo| |

RIME is a PC-Board-based network similar to FIDO. The Forth Conference
originateson Jim Wenzel’s Grapevine BBS in Little Rock, Arkansas. Messages
carried on RIME Forth Conference are essentially identical to those carried
onthe GEnie Forth RoundTable and on UseNet comp.lang forth newsgroup.

BBS Name
Evergreen BBS
Bob'S Corner Board
Country Lane

The Running Board
AmerlServe

Ground Zero Wildcat BBS

The Holistic BBS
Shy Guy's PCBoard

DFW Programmer's Exchange
The Lunatic Fringe BBS

Ronin

The Round Table BBS

Street Noise! BBS

Baudline 1l

Network East

The Jellicle Cate

The Carousel

Back to Basics

Travel Online
OR.E.

Caslle Rock BBS

D.W.’s Toolbox

The Right Place tm)

The Chair TOO!

PDS-SIG BBS

The Caves

Eds Home

ProPC BBS

PGHSouth PCBoard System

Space BBS
Mental Hospital

Canada Remote Systems

Rose Media
The Grapevine BBS

The GrapeVine Remote Node 11

The Pegasus BBS
Alpine BBS

The Crooked Blade
River Road BBS
IDC BBS

Modem Zone
Channel 1

Capital Connection
Hallucination BBS
No-Frills BBS
Struppi's BBS

The Virginia Connection
The Beltway Bandits BBS
Programmer's Palace

Technet At TUHSST
Carolina Forum
Nezuld's Domain
Aquila BBS

Cloud Nine BBS

The Punkin Duster BBS

Crystal Castle
Moondog
The Icebox BBS

Rocky Mountain Software

Club PC BBS

The Computer Forum BBS

The Godtather

St. Pete Programmer's Exchange

DataBoard][BBS
The Mog-Ur's EMS

Medical Information Systems
The Enchanted Forest BBS

The TREE BBS
Ramwood

The Imperium BBS
PC Rockland BBS
The Pub BBS
Brentwood BBS

Technical Information

O.LEFA1

City
Hopatcong, NJ
Gainesville, FL
Kennenbunk, ME
Bronx, NY

New York, NY
Seal Beach, CA
Lakewood, CA
Lewisville, TX
Dallas, TX

Piano, TX
Waxahachie, TX
Reading, PA
Germantown, MD
Frederick, MD
Rockville, MD
Riverdale, MD
Hollywood, FL
Casper, WY
Lake St. Louis, MO
Middletown, RI
Omaha, NE
Riverdale, GA
Atlanta, GA

San Jose, CA
San Jose, CA
Scolts Valley, CA
Columbia, MD
Pittsburgh, PA
Pittsburgh, PA
Menlo Park, CA
Los Altos, CA
Misssissauga, CN
Willowdale, CN
N. Little Rock, AR
Little Rock, AR
Owensboro, KY
Salem, OR
Monmouth, OR
Sorrento, LA
Alameda, CA
Middletown, OH
Cambridge, MA
Fairfax, VA
Fairfax, VA

Falls Church, VA
Herndon, VA
Reston, VA
Fairfax, VA
Springfield, VA
Alexandria, VA
Charlotte, NC
Northbrook, 1L
Aurora, IL

Katy, TX
Fullerton, CA
Staten Island , NY
Brooklyn, NY
Flushing, NY

Salt Lake City, UT
Smithfield, VA
Virginia Beach, VA
Tampa, FL

St Petersburg, FL
Crowley, TX
Granada Hills, CA
Jacksonville, FL
Gainesville, FL
Ocala, FL
Fairbanks, AK
Middletown, NJ
South Nyack, NY
White Plains, NY
Harrison, NY
Taipei, TW
London, UK

Phone
201-398-2373
205-361-9094
207-499-2756
212-654-1349
212-876-5885
213-430-0079
213-531-3890
214-315-3795
214-398-3112
214-422-2936
214-938-2840
215-678-0818
301-601-8710
301-694-7108
301-738-0000
301-779-5946
305-987-5688
307-235-7043
314-625-4045
401-849-1874
402-572-8247
404-471-6636
404-476-2607
408-241-7276
408-270-4085
408-438-1194
410-730-2917
412-321-6645
412-563-5416
415-323-4193
415-941-5384
416-629-0136
416-733-2285
501-753-8121
501-821-4827
502-684-9855
503-581-0923
503-838-4059
504-675-8792
510-865-7115
513-424-7529
617-354-8873
703-280-5490
703-425-5824
703-538-4634
703-620-2646
703-648-1841
703-764-9297
703-866-4452
703-941-3572
704-563-5857
708-559-0513
708-820-8344
713-859-8195
714-522-3980
718-370-8031
718-692-2498
718B-793-8548
801-963-8721
804-357-0357
804-471-3360
813-289-3314
813-527-5666
817-297-6222
B81B-366-1238
904-221-9425
904-377-2001
904-732-0866
907-456-6375
908-7086-0213
914-353-2157
914-686-8091
914-835-1315

01188622151127
44-81-882-9808

42

Forth Dimensions

[- 7) N\ o [1 e HIEE D
O vz [Back [(BurRNER

Sleepin
with’%heg
Enemy

Conducted by Russell L. Harris
Houston, Texas

The inaugural Back Burner column broached the prob
lem of obtaining authorization of a client or boss to use Forth
on a particular contract. In that column, T proposed demon-
stration apparatus as a possible approach to securing such
authorization. In this column, risking a fusillade of brickbats
and charges of heresy, I wish to suggest another possibility,
that of utilizing a mixture of Forth and C (or whatever the
language to which your {irm or client is committed).

The generalideaisto getyour footinthe doorby agreeing
to do the project in the language specified. Being knowl-
edgeable in Forth, you will inevitably utilize Forth to facilitate
development and testing. This code comprises your primary
salestool. As such, it should be written and commented with
exceptional care. What you are counting on is the intelli-
gence, rationality, and objectivity of the boss or client. Once
vou can show him functional Forth code side by side with
functional code written in C, elc, in the same project, itshould
not be difficult to make your case. If the ploy doesn’'t work,
at least you have employment and another C project under
your belt.

The inconsistency of C is
simply taken for granted and,
at times, even praised as
versatility.

The Carrot on the Stick

Granted, learning C in order to get projects on which you
hope to use Forth may notappear to be a sound proposition.
However, there is another incentive: C is rapidly becoming
the lingua jranca in which program algorithms are pre-
sented. This is particularly true in the realm of digital signal
processing algorithms. Revolting as the thought may be,
familiarity with the rudiments of C may soon become as vital
as [amiliarity with the rudiments of MS-DOS.

Flimilam,
or Malice in Blunderland
C is a complex language which is dillicult 1o master,

I Complexity itself is not the culprit; rather, the difficulty

springs {rom inconsistency.

Forth Dimensions

Cisalanguage of innumerable rules. Moreover, there are
far more exceptions than there are rules: everything seems
tobeaspecial case. When programming in C, one cannot rely
upon logic or intuition to guide him in syntactical construc-
tion or in deducing the behavior of a code segment. One
simply must learn C by rote.

Like something from the pen of Lewis Carroll, C re-
semblcs a child’s game in which the participants make the
rules as they go along, whimsically changing them in order
to thwart one another’s progress. The strange thing is that no
one (other than programmers knowledgeable in assembler
or Forth) seems to think the situation strange, improper,
unnecessary, or inexcusable. The inconsistency of C is
simply taken for granted and, at times, cven praised as
versatility. Indeed, rcading Kernighan & Richic’s The ¢
Programming Lariguage brought to my mind the old adage
of product advertising that goes something like this: “If you
can’t fix it or hide it [referring to a glaring deficiency], tout it
as a feature.”

A Plan of Attack

Needingtolearn the rudiments of C, I acquired, upon the
advice of a colleague, a copy of the second edition of Voss
& Chui’s Turbo C++ Disktitor. Before yvou rush out and buy
a copy, let me warn you that the book contains an irrespon
sible number of formatting and typographical errors, particu-
larly for a second edition, and is in dire need of the services
of a competent editor.

Nevertheless, | found Voss & Chui a useful framework in
which to approach the formidable world of C and object-
oriented programming. The authors take the reader step by
step through construction of a windowing system for the
IBM-PC/MS-DOS cnvironment, definitely a useful goal.

What's in a Name?

As astute readers by now have discerned, there is a
correlation between the name of this column and the
placement thereof within the pages of this publication. The
inspiration I owe to Ed Zern, author of the “Exit, Laughing”
column which occupies the corresponding location in the
outdoors magazine Field & Stream(not to be mistaken forthe
horror magazine, published in Braille and bearing the title
Feel & Scream).

There is, however, a more scrious side to selection of the
tide, and this is in keeping with the kitchen stove analogy. In
most commercial endeavors, the back burner is where in-
housc advances arc made, whereas acuvity on the front
burners meets the payroll and pays the bills. Without
rescarch-and-devclopment projects on the back bumer,
advances in capability are limited 1o tools and techniques
developed by others and madc available on the commercial
market or described in the literature.

Itis my intention that this column serve as inspiration for
back-burner development. Reader interaction is essential, if
the column is to be successful and continue. R.S.V.P.

Russell Harris is a consulting engineer working with embedded systems in the
fields of instrumentation and machine control. He can be reached by phone at
713-461-1618, or al his RUSSELL.H address on GEnie.

Julv 1992 August

NEW FROM THE FORTH INTEREST GROUP

“...FORTH s notusually cn-
countered within the context of
scientific or engineering com-
putation, although mostusers of
personal computers or worksta-
tions have unwittingly experi-
enced it in one form or another.
FORTH has been called ‘onc of
the best-kept secrets in com-
puting”. It lurks unscen in auto-
matic bank teller machines,
computer games, industrial
control devices and robots...

“Some scientists and engi-
neers have gained familianity
with FORTH because it is fast,
compact, and casily debugged;
and because it simplifies inter-
facing microprocessors with
machines and laboratory
equipment...

*...FORTH has the ability
not only to reproduce all the

Mochum Hanke Publishing

Scientific Forth
by Julian V. Noble

functionality of FORTRAN—
using less memory, compiling
much fasterand oftenexecuting
faster also—but to do things
that FORTRAN could not ac-
complish casily orevenat all. ..

“One reason FORTH has not
yetrealizedits potential inscien-
tific computing is that scientists
and programmers tend toreside
in orthogonal communities, so
that no one has until now
troubled to write the necessary
extensions.Oncaimof thisbook
is to provide such extensions in
a form I hope will prove appeal-
ing tocurrent FORTR AN users.

“Since time and chance hap-
pentoeverything,even FORTH,
I have devoled considerable ef-
fort o explaining the algorithms
andideasbehind theseextensions,
as well as theirnuts and bolts..."”

Scientific Forth extends the Forth kernel in the direction of scientific
problem solving. It illustrates advanced Forth programming techniques

with non-trivial applications: computer algebra, roots of cquations,
differential equations, function minimization, functional representation of

data (FFT, polynomials), lincar cquations and matrices, numerical
integration/Monte Carlo methods, high-speed real and complex floating-
point arithmetic. (Includes disk with programs and several utilities.)

$50.00

Forth Interest Group

P.O. Box 2154
Oakland, CA 94621

Second Class
Postage Paid at
San Jose, CA

|

