$10 Volume XIV, Number 1 May 1992 June

SC32 Debugging Tools
Object-Oriented Forth
Curly Control Structure Set (i)

Working with CREATE ... DOES>

SILICON COMPOSERS INC

Announcing the SC/FOX DRAMIO32 Board

ni e DRAM e ttis Loy e e PO BOORNOERT SRl

.ﬁ:::::::::::::::::::: :: l ID3§ !h:::::::::ooootooo0000000!49.
ﬂ ’-.... e [XN EEEEDN]:.... [E R N E NN EN] .'ﬁ‘
:: :: mg&]ﬁm&] sesessevesns m@ U6 DECODE | yoevoeevoee |[ofes
ee| leefimoce Heee oo oo [Cien XEEX) oo |[ojee
oo [s0je0scccccnee oo ee brizw WO EXS oo |lefoe
b ':Iﬁ U3 RS232] %o RT e — **1=e ug scst oo [[ofes
oo :o Heeosscsecs ‘.U5 QUA so | g e e |[olee
oe [0elp0000voncee e e eedee oo |[ofoe
. e LN] LN LN] L] L L] mnie e
oo [o[W U4 RS232] ecsesssvenee - TE R rreinm
secer 7N OO RO (AR NN NN NN] *> v \eoco-oc.o elo e
e veevccsce secessasss ss0000000 meee ele e
"DE Ulo PaRA |15 ULl PARB [} U7 HIPAR e
:: evecvseesceciNoecsscssessee bnocscecess eevccscscseccsece |eee
.o Ul2 D24 .o oo |[ifee
e ° He0000000000000060000000000O0OCBC0RTS a e oo |[ejoe
(i oo o—pf| i3 te e
.o U3 D8 e eU16 DRAMCtl oo ||ofe o
papd e ee [[ofoe
e ™ HO 000000000080 0CO00CFO0CO0COCROCROCIROCIRTOEIOITOITOTES & a e oo |[ofee
ve oe oo |loe]n]
:: U4 D16 (Esereninesds iy
:: [] HOe 0 0000000000000t oossttsssnnsce ’!_. . . ’m..{:;j.

.o Y3 LEs
o[x uis Do
Peg J6 | o He000000000000000000000000000S8 ') Ho.ooto-ooo_ol ®

ZoSC/TTX DRAHID32 (<) 1992 Sticon Conposers, Inc Palo Alta CA UsA ——s=228220 8 gy

SC/FOX DRAMIO32 Board (actual size)

The DRAMIO32 is a plug-on daughter board which
attaches directly to either the SBC32 stand-alone or
PCS32 PC plug-in single board computers.

Up to 16 MB on-board DRAM.

5 MB/sec SCSI controller supports up to 7 SCSI
devices.

16-bit bidirectional parallel port, may be configured as
two 8-bit ports.

4 Serial ports, configurable as 4 RS232 or 2 RS232
and 2 RS422.

Each serial port is separately programmable in 33
standard baud rates up to 230K baud.

4 input handshaking and 6 output control lines.

7 general purpose latched TTL level output lines.

11 general purpose TTL level input lines with
interrupts available on either transition.

2 programmable counter/timers, may use internal or
external event trigger and/or time base.

Wristwatch chip keeps correct time and date (battery
included) with or without system power.

24 bytes of keep-alive CMOS RAM, powered by
wristwatch battery.

Source code driver software and test routines for
SCSI, paraliel and serial ports, DRAM, timers, CMOS
RAM and wristwatch chip included.

Interrupts available for all I/O devices.

No jumpers, totally software configurable.

Hardware support for fast parallel to SCSI transfer.
Multiple boards may be stacked in one system.

Two 50-pin user application connectors.

Single +5 Volt low-power operation.

Full power and ground planes.

Input for external +5 volt supply to keep DRAM data
in case of loss of main power.

6 layer, Eurocard-size: 100mm x 160mm.

User manual and interface schematics included.

See application article in this issue.
For additional product and pricing information, please contact us at:

SILICON COMPOSERS INC 208 California Avenue, Palo Alto, CA 94306 (415) 322-8763

May 1992 June

2

Forth Dimensions

Forth Dimensions

Features } . SN Ew . g
6 A Single-Step Debugger Rick Grehan
& Other tools for the SC32
The technical director of BY'TE Labs produced a “massive amount of code” on Silicon
Composers’ PCS32 system. Here he shares the debugger he wrote to speed development.

12 Designing Software-Controlled Devices Carol Goldsmith
The Sales Manager of The Saelig Company explains Forth's advantages when doing product
development, and describes the use of two on-board-Forth controllers offered by that firm. |

|

14 JForth—32-bit Forth for the Amiga Phil Burk
The co-author of JForth advocates big Forth for big microcomputer systems, and his company’s
Forth offers such an alternative applications-development environment. Also discussed is |
HMSL, the “hierarchical music specification language” extension.

16 Object-Oriented Forth Markus Dahm
From a European group that develops workstations for medical imaging comes this

| description of their Forth. The principles and benefits of its object-oriented design are
discussed, including performance considerations.
[

23 The Curly Control Structure Set Kourtis Giorgio
Searching for a set of control structures with good performance, ease of use, generalization,]
flexibility, and teachability without sacrificing too much historical continuity? The code,
examples, and text given here conclude the discussion begun in our last issue.

35 Working with Create ... Does> Leonard Morgenstern
This word pair trips up many who are learning Forth. The basics of writing a new defining
word are demonstrated for the hesitant, more-advanced uses for the bold, and a caution is
given to the over-confident. |

- - - age |

42 Space Application of SC32 Forth Chip Silicon Composers |
Developing, acquiring data from, and controlling a suborbital solar telescope via a system |
configured around Silicon Composers’ SC32 Forth RISC chip. Using a single on-board |
computer reduces complexity and development time. |

N]
Deparrmeng\
e e S S S .
4 Editorial New in FD, call for tutorials, time of renewal, i
5 Letters No commerce, no Forth; ideal time for an ‘end run’; ten Forth
commandments.
27 Advertisers Index
38-39 Fast Forthward Promoting trade, product watch, vendor spotlight.
40-41 reSource Listings Revised and expanded “On-line Resources”™—extensive listings
for RIME network Forth access to appear soon.
43 On the Back Burner ...Demonslraling competency.

3 May 1992 June

Editoekiall

So What's New?

Welcome to a new vol-
ume-year of Forth Dimen-
sions. To commemorate this
new beginning, we have
been preparing—in con-
junction with our talented
and dedicated contributors—
an infusion of fresh material.

“On the Back Bumer,” a
new department, is engineer
Russell Harris’ forum for
hardware-software projects
that readers can build and
program. ltsintent, apartfrom
the enjoymentand education
inherent in building pro-
grammable devices that
work, is to offer proof (e.g.,
Lo prospective employersand
project managers) that Forth
and the programmer can get
the job done. (The clever
“gizmo” from the World’s
Fastest Programmer contest
several years ago is but one
example of the genre.)
Russell’s first installment,
“Demonstrating Compe-
tency,” explains the raison
d'etre for the department,
and invites ideas and sub-
missions from readers—the
success of this undenaking
will rely greatly on the re-
sponse and participation of
you, the reader.

“Fast Forthward” is an-
other new feature o appear
regularly. It offers space for
product news and an-
nouncements, short profiles
of Forth companies, and es-
says about what makes a
Forth business/programmer
successful and about the
nature of Forth. This synergy
of Forth users, vendors, and
developers should helpus to
to collaborate more closely,
to communicate about Forth
more effectively with the rest

May 1992 June

of the world, and to focus
special attention on the things
Forth does well.

We are doing our best to
encourage Forthvendors and
developers to participate in
ED in other ways, too. Add-
ing to the valued presence of
our advenisers, this issue
welcomes editorial contri-
butions from three busi-
nesses. A number of readers
requested this kind of per-
spective in FD, and the Forth-
business community has re-
sponded well. We look for-
ward to hearing from other
companies about their Forth
products and their experi-
ences in the commercial
world. If your firm would
like to participate, getintouch
with me soon to discuss the
options. And remember to
send us your press releases
about upgrades, new prod-
ucts, and your company’s
background. Our readers
want to hear from you!

Tutorials Wanted!

Some things bear repeat-
ing, like the basics of CRE-
ATE DOES>. Leonard
Morgenstemn's article in this
issue tackles that perennial
nightmare of Forth neo-
phytes. If someone once
helped you by explaining a
particularly thomy topic, why
not return that favor for the
up-and-coming generation of
Forth programmers?

Trecently gota phone call
from a gentleman in the
Midwest; he appreciates
Forth over other languages,
but hasn't yet achieved the
degree of proficiency re-
quired to benefit from many
of FD’s intcrmediate and
advanced articles. Would we

ever, he asked, be publish-
ing more tutorials? I told him
the truth: we'd love to, but
they are too rarely seen
crossing the editor’s desk.

Please consider this a call
for tutorials. Perhaps a topic
springs to your mind even
now—chances are, some of
our readers need to hear
about it. And a FIG Chapter
looking for a group project
should consider putting its
collective genius to work
developinga list of such likely
topics and jointly developing
a series of short, wrilten tu-
torials with succinct coded
examples.

As many of you have
noted over the years, there is
a dearth of Forth learning
resources. Won'tyou helpto
relieve this need? After all,
Forth’s success will ultimately
depend on new people
learning to use it. (And if you
know of any Forth classes
and workshops, let us know
so we can add them to our
“reSource Listings.”)

Have You
Renewed Lately?

As a final note, check to
be sure you have renewed
your FIG membership re-
cently. This issue may have
been sent as a courtesy even
if your membership expired
with the last issue. We value
your continued participation
and are looking forward to
an exciting year ahead. So,
please, don't let thisissue be
your last...

—Marlin Quverson
Editor

P.S. See our call for papers
and conlest announcement
on page 22!

Forth Dimensions |
Volume XIV, Number 1 |
May-June 1982

Fublished by the
Forlh Interest Group

Editor
Marlin Ouverson

Circulation/Order Desk
Anna Brerelon

Forth Dimensions welcomes
editorial material, letters to the
cditor, and comments from its
readers. No responsibility is as-
sumed for accuracy of submissions.

Subscription to Forth Dimen-
sions is included with membership
in the Forth Interest Group at $40
per year ($52 overseas air). For
membership, change of address,
and to submit itemns for publication,
the address is: Forth Interest Group,
P.O. Box 8231, San Jose, California
95155. Administrative offices: 408-
277-0668. Fax: 408-286-8988

Copyright © 1992 by Forth In-
terest Group, Inc. The material
contained in this periodical (but
not the code) is copyrighted by the
individual authors of the articles
and by Forth Interest Group, Inc.,
respectively. Any reproduction or
use of this periodical as it is com-
piled or the articles, except repro-
ductions for non-commercial pur-
poses, without the written per-
mission of Forth Interest Group,
Inc. is a violation of the Copyright
Laws. Any code bearing a copyright
notice, however, can be used only
with permission of the copyright
holder.

The Forth Interest Group
The Forth Interest Group is the
association of programmers, man-
agers, and engincers who creale
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that
will advance the general state of
the art. FIG provides a climate of
intellectual exchange and benefits
intended to assist each of its mem-
bers. Publications, conferences,
seminars, telecommunications, and
area chapter meetings are among
its activities.

"Forth Dimensions (ISSN 0884-
0822) is published bimonthly for
$40/46/52 per year by the Forth
Interest Group, 1330 5. Bascom
Ave,, Suite D, San Jose, CA 95128.
Second-class postage paid at San
Jose, CA. POSTMASTER: Send ad-
dress changesto Forth Dimensions,
P.O.Box 8231, San Jose, CA 95155."

Forth Dimensions

[Letiers

Letters to the Editor—and to your fellow readers—are always welcome.
Respond to articles, describe your latest projects, ask for input, advise
the Forth community, or simply share a recent insight. Code is also
welcome, bul is optional. Letters may be edited for clarity and fength.
We want to hear from you!

No Commerce, No Forth
Dear Editor,

] Ifthere is no commercial Forth, no commercial hype, and
no commercials, there is no Forth. [would like to hear about
the activities of the firms who use Forth for their livelihood
or who provide Forth development systems for a fee. If such
firms succeed, Forth will also; if FIG's aim is to promote Forth,
then it must promote those who use it. Forth Dimensions is
a bit of a bore, lots of articles on ideas that have little to do

with commercial reality.
Charles Esson
Cvs
11 Park Street, Bacchus Marsh
Victoria 3340, Australia

Ideal Time for an ‘End Run’
Dear Marlin,
Forth does what no other language can do. It allows the
uscr to map his or her working environment to a computer
in a direct and consistent fashion. This allows the user to

10 Forth Commandments
by Tom Napier ® North Wales, PA

change them if thine application demandeth.
2. He who changeth these commandments shall not do so lightly,
and shall document the change in his program.
Thoushalt putthine applicationinto words, and these words shall
be thy program.

| 3.

1. These commandments are not carved in stone; thou mayst |

| 4. The lord Moore has given thee many of
the words of thy program, and the re-
mainder shalt thou create.

5. Thou shalt use no word in thy program
before that word has been defined.

6. Thy parameters shall precede thine op-
erations, and thine operations shall
remove their parameters fromthe stack.

7. Thou shalt be sparing in thy use of the
return stack and shall at all times keep it
balanced, lest thy program depart for
the land of thy fathers.

8. There shallbe nogoto foundinthy code.
Thy program shall use if-else-endif,
counted loops, repeat-while, and re-
peat-until.

9. If thine application needeth a structure
or adata type which does notexist, thou
maystcreate anewstructure or datatype.

i 10. Thou shalt tell thy fellow programmers

what new structures and data types
thou hast created, that the wheel shall

[not too often be invented.

Forth Dimensions

Boul

-§138, 9'am - 8 pm) -

solve problems using familiar models and lerms.

This is of litle or no value to professional programmers.
They prefer C and C++ because they recognize this language
no matter what the environment or problem. That is why they
do not and will not use Forth. However, using familiar terms
in a familiar environment is very valuable to everyone else.
Therefore, I propose that the Forth community doan end run
around other programmers.

This maneuver would have two stages. In the first stage,
using ANS Forth, we build a graphic, and possibly object-
based Forth. Instead of using graphics to hide the machinery
of Forth, we use the graphic interface to make the simple
Forth machinery visible, accessible, and understandable.
Users will be able to assemble small Forth pieces into their
own applications and will learn to modify their environment
as they get more comfortable. This environment is ported to
Macs, DOS, O8/2, and Unix machines, allowing the user to
operale in the same way and with the same environment on
all of the operaling systems.

The second stage builds on the first stage, using the Forth
chips now available to build expandable Forth computers
that run this environment quickly and more efficiently than
existing machines can run it. Since Forth lends itself to
multitasking and multiprocessing, a basic unit with one Forth
chip could be bumped to, say, four or eight chips as more
power became necessary. The additional chips would be-
have as coprocessors or as dedicated I/O devices. They could
be both, since they can be switched from one type of task to
another by changing the software they run.

Now is an ideal time to pursue this approach. The new
wave of consumer clectronics provides a lot of opportunities
to make inroads into the non-programming world. The
multimedia devices that are being introduced this year
require simple, easy to use, low-memory methods of pro-
gramming. Sounds like Forth 1o me.

So let’s get started. I've been playing around with ways to
do what I've proposed and I'm eager 1o take it further.
Remember, “the Future stans tomorrow.”

Regards,

Mark Martino

170-11th Avenue

Seattle, Washington 98112

mn'm'oam%s
i SMM.,LER P

7 bdn Tnod jhes,
e s

e

mous MHSFDHTH GoNlnu- ;

§ in mgh« "F rlhf mm that -
S mmnog aayi orth is nguags

4 THIHTY DAY FHEE OFFER — Free MMSPDRTH |

* GAMES DISK worth $30.95, with purchase of MMSFORTH
System. CRYPTOQUOTE HELPER. OTHELLO, BREAK-

= FORTH and others. o

n@uumosm _

May 1992 June

A Single-Step

Debugger

and Other Tools for the SC32 Processor |

Rick Grehan
Peterborough, New Hampshire

The SC32 is a 32-bit, stack-based processor designed
specifically for executing high-level, Forth-like languages. It
can directly execute two gigabytes of code memory and 16
Gb of data memory. Good descriptions of the SC32 can be
found in the March-April 1990 issue of Forth Dimensions
(“SC32: A 32-Bit Forth Engine” by John Hayes) and in Philip
J. Koopman Jr.’s book Stack Compuuters, The New Wave(1989,
Ellish Horwood Ltd., Chichester, West Sussex, England).

Silicon Composers’ SC/FOX parallel coprocessing system
(PCS32) offers an SC32 on a PC XT/AT-compalible plug-in
card. The PCS32 runs the SC32 at 10 MHz, achieving
execution speeds of 10 to 15 MIPS. Thanks to the SC32’s
pipelined design, the system can execute an instruction per
clock cycle. Furthermore, since multiple Forth primitives can
be combined into a single SC32 instruction, a PCS32 oper-
ating with a 10 MHz clock can hit “burst” execution speeds
of up to 50 MIPS.

On the software side, the PCS32 is supported by Silicon
Composers’ SC/Forth32, a Forth-83-compliant system with
32-bit extensions added to harness the capabilities of the
SC32. The PCS32 uses the host PC as an elaborate 1/O server,
the host PC gives the PC32 disk storage, keyboard, and video
1/0.

Working on a recent project, I produced a massive
amount of code on the PCS32 system. As the number of
words and their interactions grew, it became obvious to me
that some sort of debugger would speed the development
process. In spite of all my Forth coding abilities, bugs
inevitably crept into my work and the system would crash
during a testing cycle. A debugger would help me home in
on the crash site more rapidly. Unfortunately, SC/Forth32
included no debugger. I had to build one. (The source code
for the debugger is shown in Listing One.)

Requirements

My needs were notextravagant; I didn’t require breakpoints
or multi-step executions. I simply wanted a way to single-
step through a word’s component instructions and watch the
stack effects. 1 also needed to be able to exit to Forth to check
the states of variables.

I'wanted the debugger to display, at each instruction step,
the name of the word it was about to execute. In some sense,

May 1992 June

you could say that the SC32 supports subroutine-threaded
Forth; the SC32's “call” instruction (which works much like
any other CPU’s subroutine call) does the nesting job of the
inner interpreter. This meant the debugger had to extract the |
call’s destination address—which pointed to the body of the
word being called—and “back up” to the name field address.
This is handled by the word HISNAME in Listing One.

Debugger Internals

The main debugging loop is within the word DLOOP (see
Listing One). DLOOP is simply a large BEGIN ... AGAIN
structure that endlessly fetches instructions and executes
them in a controlled fashion. The only way out of DLOOP is |
when the debugger executes the final instruction of whatever
word is being debugged. Execution of the final instruction
will inevitably cause the return stack to be popped, which has |
the effect of exiting DLOOP and the debugger.

While I have some complaints about the SC32’s cell-based
architecture (it makes string handling a nightmare), itbecame
a real blessing as [struggled to build the debugger. Unlike
processors wilth instructions of varying length, the SC32’s
instructions are all 32 bits (one cell) long.

The SC32 instruction types fall into eight categories (see
Figure One on page 11). The top three bits of an instruction
determine its type. It turns out that it was sufficient to have
the debugger treat instructions as though they fell into one
of four categories: call, unconditional branch, conditional
branch, and everything else. Although the debugger handles
several different instruction types identically, the system will
nonetheless tell the user what the instruction type is.

Call

To handle call instructions, the debugger first fetches the
instruction that would ordinarily execute. It masks out the
upper three bits, leaving the destination address in that
instruction’s lower 29 bits. 'This value is placed on the
parameter stack, and the debugger can simply use the Forth
word EXECUTE Lo go where the call would have gone.

The debugger keeps track of where it is inside a word
being debugged via the global variable HISIP (short for “his
instruction pointer”). HISIP serves as a simulated instruction
pointer; upon each loop through the debugger, the system

Forth Dimensions

Listing One. Single-step debugger.

**)
** Single-step debugger for SC/Forth32)
** Copyright, 1991)

— e e

** Rick Grehan)
** Hancock, NH)
* ok)

i |

(** Storage

{ *%)

VARIABLE HISIP (His instruction pointer)
VARIABLE HISFLAG { His FL bit)

VARIABLE HERELCC (Location for inline execution)
CREATE NUMBUF 4 ALLOT (Buffer for number input)

HEX
6008242C uCODE GFLAG (Put FL on stack)

(** INSTRUCTION TYPES **)
00000000 CONSTANT ISCALL
20000000 CONSTANT ISBRAN
40000000 CONSTANT IS?BRAN Conditional branch)
60000000 CONSTANT ISALUS ALU/shift)

{ gall 1)
(
(
(
80000000 CONSTANT ISLOAD (Load)
(
(
(

Unconditional branch)

A0000000 CONSTANT ISSTORE Store)
C0000000 CONSTANT ISLAL Load addr low)
E0000000 CONSTANT ISLAH Load addr high)

DECIMAL

{; A=k

{ ** Improved dump)

¢ **)

(Dump 16 bytes in hex starting at byte address baddr)

16HEXBYTES (baddr --)
DUP 8 HEX .R DECIMAL ." : "
16 0 DO
I OVER + C@ 2 HEX .R DECIMAL
SPACE
LOOP
DROP ;

({ Dump 16 bytes in ascii starting at byte address baddr)
: 16ASCIIBYTES (baddr --)
16 0 DO
I OVER + C@
127 AND
DUP 32 <
IF DROP ASCII
THEN
EMIT
LOOP
DROP ;

(Printable?)

(Super byte dump from byte address baddr)
: SDUMP (baddr n ==)
CR
BEGIN
OVER 16HEXBYTES 4 SPACES
OVER 16ASCIIBYTES CR

16 - DUP
0>
WHILE
Forth Dimensions 7

uses the address stored in
HISIP to determine the lo-
cation of the next instruc-
tion.
Consequently, the portion
of the debugger handling
call instructions increments
HISIP by one beforeexiting,

Unconditional Branch

The debugger takes care
of unconditional branch in-
structions by simply mask-
ing out the high three bits of
the instruction, thereby
leaving only the jump’s des-
tination address. The un-
conditional branch handler
then places this address in
HISTIP and passes back to
the start of the loop.

Conditional Branch

On the SC32, a condi-
tional branch instruction will
take the branch if the FL bit
is setto zero. This is a proces-
sor flag that can be modified
by ALU shift instructions.
Consequently, for the
debugger to know whether
a conditional branch should
be taken or stepped over, it
has to simulate the setting of
the processor's FL bil.

I accomplished this by
creating a machine-code in-
struction called GFLAG (for
“get flag”) that places the
contents of the FL bit on the
parameter stack. After the
debugger executes any in-
struction in the target code
that may affect FL, it calls
GFLAG and stores the pa-
rameler stack in the variable
HISFLAG.

So, when the debugger
encounters a conditional
branch, it simply examines
the contents of HISFLAG. If
HISFLAG is zero, Lhe
debugger treats the instruc-
tion as an unconditional
branch and the branch is
taken. Otherwise, the
debugger merely increments
HISIP by one to skip to the
next instruction.

May 1992 June

Everything Else

The debugger executes
all other instructions—arith-
metic/logical, shift, and load/
store—as is. It does this by
fetchingthe instrudtion pointed
toby HISIP and placing that
instruction in-line. The fol-
lowing is the SC/Forth32 code
fragment for doing this:
VARIABLE HERELOC
IFETCH HERELOC @ !
(Put the instruction
(in-line)
[HERE HERELOC !
(Set HERELOCC)

0,1
(Make room in the
(dictionary)

The word IFETCH re-
trieves the instruction pointed
to by HISIP. The debugger
stores that instruction at the
address stored in HERELOC.
As you can see by the code
between [and], HERELOC
is set lo point to an initially
empty cell within the debug-
ger's stream of execution.
Simply put, the debugger
patches itself on the fly, the
palch being the instruction
fetched from the location
given by HISIP.

Finally, after the in-line
instruction has executed, the
debugger uses the GFLAG
word mentioned earlier to
save the state of the FL bit.

User Input
While you’re in the
debugger, the system gives
you the option of entering a
varicty of single-character
commands at each execution
step. These commands are:

F Allows the user (o lem-
porarily suspend the debug-
ger and go lo Forth. This
command simply calls the
SC/Forth32 word INTER-
PRET. The debugger defines

anadditional word, RESUME, |

May 1992 June

SWAP 16 + SWAP
REPEAT
2DROP ;

**)

** Debugger)

——

**)
HEX
(Fetch his next instruction)
+ IFETCH (== n)

HISIP @ @ ;

(Mask out Jjump address for calls and branches)
: JADDR ({ =—— n)
IFETCH 1FFFFFFF AND ;

(Mask out instruction type)
ITYPE { ==)
IFETCH E0000000 AND ;

e

DECIMAL
(Safely print the stack. This won’t bomb if the stack
(has undeflowed.)
: SSTACK
DEPTH 0<
IF ." Underflow "
ELSE -8
THEN ;

(Given the byte address of a name field, print it)

SHONAME { baddr --)
DUP C@ 127 AND (Get count)
?DUP (Anything there?)
IF

0 DO

1+ DUP C@ 127 AND EMIT

LOOP

SPACE
THEN
DROP ;

({ Given the cell addr. of a code field, do your best to locate)
(the associated name field and print it. Works in most cases.)

: HISNAME (addr --)
BYTE (Convert to byte address)
Q (Start a counter)
BEGIN
SWAP 1- DUP C@ 127 AND (Fetch a character)
DUP 32 <> (Null?)
iF 32 < (Printable?)
IF DUP C@ 127 AND (Fetch it again)
2PICK = (Equal to our count?)
IF SWAP DROP
SHONAME (We got it!)
EXIT (Go home)
THEN
THEN
SWAP 1+ (Increment counter)
ELSE DROP SWAP (Don't increment)
THEN
DUP 33 = (Name can’t be this big)
UNTIL
2DROP;
8 Forth Dimensions

(Display the current instruction type)

SHOTYPE

ITYPE

SELECT
CASE ISCALL = OF ." CALL: "™ BREAK
CASE ISBRAN = OF ." BRANCH: " BREAK
CASE IS?BRAN = OF ." 2?BRANCH: " BREAK
CASE ISALUS = OF ." ALU/SH: " BREAK
CASE ISLOAD = OF ." LOAD: " BREAK
CASE ISSTORE = OF ." STORE: " BREAK
CASE ISLAL = OQF ." LAL: " BREAK
CASE ISLAH = QOF ." LAH: " BREAK

NOCASE BREAK

Get a hexadecimal number from the keyboard)
NUMIN ({ =—— n)

0 NUMBUF ! Clear receiving buffer)
NUMBUF BYTE 10 EXPECT User inputs number here)
BASE @ HEX Set base to hexadecimal)

NUMBUF BYTE 1- NUMBER
2DROP SWAP BASE ! ;

Convert)
Restore base)

P~

Exit to forth from debugger)
TOFORTH (--)

." TO FORTH " CR

INTERPRET

." BACK TO DEBUG " CR ;

Return to the debugger)
RESUME R> DROP ;

Get user input at each debugger step)
USERIN
BEGIN

0

KEY

SELECT

CASE ASCII F = OF (Shell out to Forth)

TOFORTH BREAK

CASE ASCII Q = OF (Abort)
1 ABORT" ** ABORTED! " BREAK
CASE ASCII I = OF (Display current instruction)
BASE @ IFETCH ." (" HEX
. BASE ! .")" CR BREAK
CASE ASCII D = QF (Dump)
." ADDR:" NUMIN (Address)
." LEN:"™ NUMIN (Number of bytes)
SDUMP BREAK
NOCASE DROP 1 BREAK (Anything else continues)
UNTIL

Main debugger loop)

DLOOP

BEGIN
SHOTYPE Show instruction type)
ITYPE Fetch it and select)

ISCALL = IF
JADDR HISNAME

*% CALL **)

e S e

Show word’s name if possible)

that returns the user to the
debugger where he left off,
Currenty, these words make
noattempt lo save and restore
the parameter and return
stacks. IU's up to you to make
sure the stacks are in the
same stale when you execute
RESUME as when you left the
debugger.

I Displays in hexadeci-
mal the instruction the
debuggeris abouttoexecule.
[found this handy for ALU/
shift instructions, since the
debugger simply announces
them as “ALU/SH.” With the
I command, you can disas-
semble an instruction whose
operation you are unsure of
(provided you have the
manual of SC32 instruction
formats handy).

D Provides quick access
to a memory dump. The de-
bugger will prompt you for
the starting cell address and

| the number of cells to dump.

Q Executes an ABORT,

| quitting the debugger and

returning to Forth.

Entering any other charac-
ter at the execution steps will
cause the debuggerto proceed
with the next instruction,

Problems and
Improvements
Recognizing SC/Forth
Primitives

Since the SC32 was de-
signed from the ground up
to execute Forth (and thanks
to the optimization of the
SC/Forth32 compiler), some
of the more complex Forth
primitives are compiled into
a series of obtuse SC32 in-
structions. For example, if
youencounterthe Forthword
DOinthe debugger, you won't
see a call to the location of

SSTACK Show the stack) DO, you'll see a series of SC32
USERIN Get user input) instructions that load the re-
JADDR Get call’s destination address) | wrn stack with initial and ter-
EXECUTE Execute the word) minal loop index values.
1 HISIP +! Bump instruction pointer) (Acally, the values loaded on
Forth Dimensions 9 May 1992 June

the returnstack are not the initial
and final loopvalues. Theeffea
is the same, however.)

Step Into

In its current incarnation,
the debugger handles call
instructions using the SC/
Forth32 word EXECUTE.
Consequently, there is no
way 1o “nest down” a level
and step into a word. In
order for the debugger to
perform that feat, you would
have to add code that kept
the variable HISIP properly
tracking the instruction
pointer of the debugged
code. The debugger would
also have to take over the
responsibility of managing
the return stack. Specifically,
whenever the debugger en-
countered a call instruction,
it would push the
incremented value of HISIP
onto the return stack, extract
the destination address from
the instruction, and store that
address into HISIP.

Handling a return from
subroutine is more diffi-
cult, since the SC32 actually
embeds the return operation
in ALU/shift or load/store
instructions. Bit 28 of such
instructions is called the
“next” bit. If it is set, it loads
the top value on the return
stack into the instruction
pointer. Bits 16 through 19
are called the “stack” bits:
They determine whether the
parameter and return stacks
are pushed or popped. If the
next bit is set and the stack
bits specify that the return
stack is to be popped, the
effect is a return operation.

So, for the debugger to
manage a return, it would
have to watch fora set “next”
bitwithin ALU/shiftand load/
store instructions. Whenever
it sees a set bit, it would mask
the bit out, transfer the top of
the return stack into HISIP,
and execute the modified
instruction.
May 1992 June

ELSE
ITYPE
ISBRAN = IF (** UNCOND. BRANCH **)
SSTACK (Show the stack)
USERIN (Get user input)
JADDR (Get jump address)
HISIP ! (New instr. pointer)
ELSE
ITYPE
IS?BRAN = IF (** COND. BRANCH **)
SSTACK ({ Show the stack)
USERIN (Get user input)
HISFLAG @ ({ Get his FL bit)
IF
1 HISIP +! ({ Branch not taken)
ELSE
JADDR (Branch taken)
HISIP !
THEN
ELSE (** ALL OTHERS **)
SSTACK { Show the stack)
USERIN (Get user input)
IFETCH HERELOC @ ! (Put instr. inline)
[HERE HERELOC ! Q0 ,]
GFLAG HISFLAG ! (Save flag after operation)
1 HISIP +! { Incr. his address)
THEN THEN THEN
CR
AGAIN ;

The outermost word. To unleash the
simply enter DEBUG <wordname>)
DEBUG

BL WORD CELL FIND NOT

debugger on a word,)

e

Is word in dictionary?)

(

IF ."™ ** NOT FOUND **" CR QUIT (Bail out if not)

ELSE HISIP ! (Set instr. pointer if so)
." WORD AT:"™ HISIP @ HEX . (Show word’s body address)
DECIMAL CR
DLOOP (Enter the loop)

THEN ;

Listing Two. Execution trace.

TRACE
RE@ 1- (Back up to code field)
HISNAME CR ; (Display name)
: >>TRACE
['] TRACE , (Compile TRACE into dictionary)
[COMPILE]] (Make colon happy)
: TRACEON
['] >>TRACE
{*1 =
8 + (Address where] was)
! : (Overwrite it)
TRACEQFF
(*11
[TE 3
8+ 1 (Put] back where he was)

10 Forth Dimensions

Finally, you would want to add an additional user-input choice
that would allow the user to select whether the debugger stepped
into the called word, or executed it as a whole, as it does now.

Last Calls To Jumps

SC/Forth32 is an optimizing compiler. Among otherthings,
this means that the compiler is intelligent enough to recog-
nize that if the last instruction in the definition of a word is a call
instruction, that call can be converted to an unconditional jump.
This saves retumn stack space, as well as reducing some execution
time that would ordinarily be unnecessarily consumed moving
addresses between the retum stack and the instruction pointer.

From the debugger’s point of view, the jump instruction
isjusta jump; there’s no indication that this was a call optimized
into a jump. If you single-step into this situation, it will appear
that you have nested down into a word, and in some severe
cases this nesting can go on for several levels as you repeatedly
encounter the last instruction of each word. Ultimately, of course,
you will encounter a Forth primitive and pop out the end.

Trace
As a final tool, I built a simple execution trace facility.
based the execution trace words on the trace commands

Figure One. SC32 instruction types. —‘
Instruction Top 3 bits of

found in old, reliable, interpreted BASIC. To refresh your
memory, executing TRACEON in BASIC would cause the
system Lo display the number of the current line BASIC was
execuling. This was handy for localing exactly where the
system either did a belly-flop or hung in an infinite loop. 1
wanted a similar construct for my Forth work. [wanted words
to tell me when they were about to execulte, and [wanted to
be able o wrn this behavior on and off. As in BASIC, this
would make it easier to pinpoint where the program died.

My solution was a pair of words—TRACEON and
TRACEQOFF—thal you could use as brackets. That is, words
compiled after TRACEON would display their names when
execuled. TRACEOFF would disable tracing; subsequent
words would act normally. T was satisfied to have only colon
words be affected by TRACEON and TRACEOFF. (I could have
extended the trace word to cover defining words, but I didn't
need that particular feature.)

Trace Operation
TRACEON works by patching the : (colon) word. The last
word in SC/Forth32’s definition of : is], which puts Forth
inthe compiling state. The SC32 instruction thatcalls] is located
eight cells into the definition
of :. TRACEON overwrites that

location with a call to the
word >>TRACE.

Type instruction Description

Call 000 The SC32 places the return address on the return stack,
and jumps to the localion given by the instruction’s
remaining 29 bits.

Branch 001 Same as a call instruction, only the SC32 doesn’t
place anything on the return stack.

Conditional 010 If the SC32’s FL flag is zero, this instruction performs

branch a branch. Otherwise, the processor proceeds to the
next instruction.

ALU/shift 011 Execules a variety of arithmetic, logical, and shift
operations, depending on the remaining 29 bits.

Load 100 Adds an offset (encoded in the lower 16 bits of the
instruction) to the contents of a designated source
register. The contents of the resulting address are
loaded into a designated destination register,

Store 101 Adds an offset (encoded in the lower 16 bits of the
instruction) to the contents of a designated source
register. The contents of a designated destination
register are stored at that address.

Load address 110 Adds an offset (encoded in the lower 16 bits of the

low instruction) to the contents of a designated source
register. ‘The result is placed in a designated
destination register.

Load address 111 Adds an offset (encoded in the lower 16 bits of the

high instruction) to the contents of a designated source

register gfler shifting that offset to the left 16 bits. The
result is placed in a designated destinatlion register.

So, after you execule
TRACEON, whenever : ex-
ecutes, it calls >>TRACE as
its last instruction. >>TRACE
will compile the word TRACE
into the dictionary. Hence,
TRACE becomes the first
word executed by whatever
word : has just defined.
>>TRACEthen executes] so
that the compiler enters the
proper state at the end of :.
(A side-effect is that words
compiled after TRACEON are
one cell longer than they
would ordinarily be.)

Now, whenever the co-
lon-defined word executes,
it immediately calls TRACE.
TRACE fetches the return
address from the return stack
and decrements that address
by one cell. The resulting
cell address points to the
body of the calling word,
and TRACE can unleash
HISNAME (described above)
to print the name field.

TRACEOFF simply un-
patches :, overwriting the
call to >>TRACE with a call
to]. The source tothe TRACE
systemisshownin Listing Two.

Forth Dimensions

11

May 1992 June

Designing Software-
Controlled Devices

Carol Goldsmith
Victor, New York

When software is involved in product development, the
step of integrating hardwarc and software is fraught with
difficulty. Sophisticated development systems, emulators,
and logic analyzers exist to help the debugging process. In
the conventional approach to embedded system design, a
PC is used to write, cross-compile, link, and load code into
emulation memory on the target system. One iteration of
the laborious and oft-repeated edit, compile, link, and load
cycle can easily take ten or 15 minutes for a complex
project. This sequence must be enacted for one error in one
line of code or many. The agony really begins if the errors
are interactive with the hardware—the correction of one
exposes another. System debugging is often done via an in-
circuitemulator (another expense) that provides breakpoints
and other software debugging support. Ever wonder why
project managers go gray at an early age?

Forth to the Rescue...
The solution—familiar to most readers of this magazine
butlargely unknown to most designers—is Lo include Forth

Embedded control is a place
where Forth can make a
significant impact and become
more widely known.

on the controller card, giving users the ability to deal with
code on a word-by-word, or line-by-line basis interactively
with the target system. Forth's primary benefit for the
developer is that it eliminates the middle-man, Both a
language and a programming environment, Forth can be
developed and executed directly on the target system, so
there is no need for the traditional cross-development
system required by C orassembler. Forth is interpretive and
highly interactive, giving developers the ability to proto-
type applications swiftly. It offers the designer the unique
opportunity to write, test, and run software in real time and
avoid the time-consuming steps of the edit, compile, test,
debug loop for each single modification. On-board Forth
offers in one entity a real-time programming language, an
operating system, and 2 development environment. The

May 1992 June

natural extensibility of Forth leads to application-specific
words thatare self-documenling as they are used. Engineers
using Forth can design words to suit their specific work,
Embedded control is definitely a place where Forth can
make a significant impact and become more widely
known.

Compilation occurs one word at a time on the target
system itself. Each Forth word can be tested as soon as it
is enlered; if it does not produce the desired result, you can
quickly change the word and recompile. This encourages
thorough testing of each piece of code as it is written. In
contrast, C and assembler have long edit, compile (or
assemble), link, and load cycles that make it difficult to test
fragments of code. Debugging can't start until most of the
framework is in place. Incremental testing speeds project
development, because there is a higher probability that the
design will work the first time.

Not at all Tedious...

Two economical and easy-to-use controllers which
offer extensive on-board Forth are the TDS2020 and the
TDS9092 from The Saelig Company (Victor, NY). Well-
known in Europe, and becoming recognized in the U.S.A.
and Canada, these boards from Triangle Digital Services
Ltd. of London (U.K.) have been sold worldwide in their
thousands. Both of these nearly-pin-compatible 4" x 3"
boards provide a complete Forth design environment—the
TDS2020 operating at 20 MHz comes complete with eight
channels of A/D, and the slower and cheaper TDS9092
runs at 1 MHz, more suited to simpler control situations.
The TDS2020 is a powerful CMOS controller card, based on
the Hitachi 16-bit H8/532 microprocessor, and runs at
about 3 MIPS. It has 16 Kbytes of Forth as well as a full
symbolic assembler, eight channels of ten-bit A/D, three
channels of D/A, serial R$232 and 12C protocols, too. There
is 45K for program storage, and up to 512 K NVRAM space
on-board, as well as timers, interrupts, and 33 /O lines.

Lite Programming
Programming is accomplished by downloading suitable
words from the PC software provided with the boards. The
TDS2020 starter pack includes lots of utility routines to

Forth Dimensions

| make life easier for the designer. Included are serial input/
output, timer, LCD/keyboard driver, memory test, and
many other routines. Also available are string-handling
routines, trig functions, graphics LCD display, interrupt-
driven serial 1/O, and round-robin multitasking.

Embed the TDS2020 in a product, talk to it from a PC-
compatible down an RS-232 se-z! line, debugging each
segment as you go, and the final code can be stored in
NVRAM, with no need for PROM burning. You have very
fast development time with no need {or in-circuitemulators
or test stubs for developing fault-free code. ‘The application
also runs at full speed, and the full resources of the
developmentenvironment are available foruse in debugging
the application. In the Forth environment, any portion of
the code can be exercised at full speed, and breakpoints
can be introduced for snapshots, or single stepping.

“Advantage TDS”

When you have developed your product using the
TDS2020 or TDS9092 and are now manufacturing it, that is
not the end of the story for Forth. It can be used for repair
’ and maintenance because the language is on-board. A
| connector can be built into the product which gives serial

access to the TDS board in your instrument. With a PC or
| hand-held terminal, you can now gain access to the system.
The command ctrl-C allows you to break oul of your
program and individually exercise all the procedures that
make up the software. For instance, you can drive the

printer, LCD, keyboard, or A/D routine o determine fault
conditions. On-board Forth is very useful during design
and debugging, bul the ability to access individual software
procedures in a finished product is invaluable. This also
saves writing lots of “service routines,” ofien requested by
| servicing departments, and frequently some oplions get
forgotten, requiring new routines to be written. With on-
board Forth, it’s all there anyway.

|
' Thanks for the Memory...
The TDS2020CM is a useful module which sandwiches
I on top of the TDS2020 and allows storage of up to 8 Mbytes
of non-volatile data on industry-standard JEIDA/PCMCIA
J card memory, including Flash types. In an application, this
| removable card can be brought back to base from field data
collections and read in another TDS2020 or by a PC with
| a card memory drive. Mcanwhile, the datalogger is storing
information on a new card. Datalogging for over a year on
a single 9-voll battery is possible, since the TDS2020 only
draws 300 pa in standby mode. A complete datalogging
program is included with TDS2020 starter pack. In addition
to standard fig-Forth, 200 words are supplied with the
TDS2020 for simplifying tasks such as data-logging, key-
pad and LCD control, stepper-motor driving, interrupt
control, etc. The TDS2020 starter pack is $499 and the
TDS9092 starter pack is $249, in stock [rom The Saelig
Company (716-425-3753; fax 716-425-3835).

Carol Goldsmith is the Sales Manager for The Saelig Company,

20MHz Forth Controller
16-bit 1P, 8ch 10-bit A/D, 3ch 8-bit D/A

TDS2020

CONTROLLER
AND DATA-LOGGER

4" x 3" board uses Hitachi
16-bit H8/532 CMOS uP.
Screams along at 3MIPS, but runs on 30ma,

On-
board FORTH and assembler - no need for in-circuit

emulation! Up to 512K NVRAM, 45K PROM. Attach
keyboard, Icd, 12C peripherals. Built-in interrupts,
multi-tasking, watchdog timer, editor and assembler.
33 I/0 lines, two RS-232 ports. 6 - 16 volts 300uA
data-logging: on-chip 8-ch 10-bit A/D, 6 ch D/A.
Date/time clock -- low-power mode lasis over a year
on 9v battery ! ots of ready-made software
solutions free. Program with PC. Many in use world-
wide for machine control, data-logging, inspection,
factory automation, robotics, remote monitoring, etc.

Specials: -40°+85°C; or 1 MHz - full functions - 4ma!!

STARTER PACK $499 Sale-or-return.
CALL NOW FOR DETAILS !

e~ Saelig Company

FEuropean Technology

tel: (716) 425-3753
fax: (716) 425-3835

? making a DATALOGGER ?

2020C

CONTROLLER
& DATA-LOGGER

- 8ch 10-bit 20 MHz 3 MIPS

Store data on 4M JEIDA cards.

+ Easy-use keyboard / Icd.

33 x I/0, 2 x RS-232 ports.

« 300uA data-logging!

» Lots of ready-made software
solutions free. Program with PC.

CALL FOR DETAILS ! $369 (25's)
Saelig Company

tel: (716) 425 3753
fax: (716) 425 3835

B
~o°a$6

QO
=

Forth Dimensions

May 1992 June

JForth

A 32-bit, Subroutine-Threaded

Forth for the Amiga

Phil Burk
San Rafael, California

JForth falls into the category of “big Forths.” We at Delta
Research believe that Forth development systems should
offer the same facilities that C programmers enjoy. While
minimal Forths are perfect for small embedded systems,
they are inappropriate on larger computer systems. We feel
that one of the reasons Forth has not sold as well on large
systems is because many Forths adhere to a minimalist
philosophy. We feel that Forths for large systems should
have all of the file I/O routines, memory allocation, floating
point, complex data structures, and other tools that are
standard in competing languages. We applaud the ANS
standardization efforts that include these facilities.

One of the areas that Forth does not usually compare
well with C is in the generation of small executable images.
We, therefore, added Clone which can generale standa-
lone images as small as 3K. Clone starts at the top word
inan application and disassembles its 68000 machine code,
then disassembles all the words called by that word, and
so on. It then reconstructs an image without headers and
with only the words and data needed by the application.

We wanted JForth programmers
to be able to call

Amiga system libraries

as easily as C programmers.

It also performs some optimizations made possible by the
smaller image, such as converting absolute subroutine calls
to PC relative. An executable image is then written to disk
with an icon. Clone-able programs have a few restrictions
related to storing addresses in variables at compile time.
These are easily handled, however, by using run-time
initialization, or by using DEFER for vectored execution.

We wanted JForth programmers to be able to call Amiga
system libraries as easily as C programmers. To call Amiga
system routines, JForth uses a simple CALL by name syntax
that automatically builds code to move parameters from
the data stack to the appropriate 68000 registers.

Since the Amiga relies heavily on passing structures, we

Phil Burk is a co-author of JForth and HMSL. His current interests include
eleclronic music, animation, and 56000-based digital signal processing.

May 1992 June

implemented a C-like structure facility that automatically
handles variously sized structure members. Thus, one can
fetch a signed byte member or a 32-bit-long member using
the same S@ word. Signed versus unsigned members and
address relocation is also handled. Here is an example
structure definition plus some code to access it:

\ Define structure template
:STRUCT FQO

LONG FOO_SIZE

APTR FOO_BUFFER

LONG FOO_INDEX

SHORT FOO_SCRATCH
; STRUCT

\ create a FOO structure
FOO MY-FCQO
TEST.FOQO (-- index scratch)
MY-FQO S@ FOO_”INDEX
MY-FOO S@ FOO SCRATCH

If we use the JForth disassembler to examine TEST . FOO
we will see that it built the following code:

BSR.L MY-FOO

MOVE.L $8(A4,D7.L),D7

BSR.L MY-FQOO

MOVE.W $C(A4,D7.L),D7

EXT.L D7 \ sign extend
RTS

Notice that it used MOVE . L for the /ong member, and
MOVE . W and a sign extension for the short member. The
top of the Forth data stack is cached in D7, so the results
of the fetches are left there. A4 is a register that points to
the base of the Forth dictionary and allows us to build
relocatable code.

JForth provides other tools, including a Source-Level
Debugger with single step and multiple breakpoints. The
debugger also works with cloned images. A code perfor-

Forth Dimensions

Forth Dimensions

mance analyzer in JForth will periodically interrupt an
execuling program and gather statistics on where it is
spending its time. JForth also provides local variables that
use the following style:

: TYPE/2 { addr cnt -- }
CNT 2/ -> CNT
ADDR CNT TYPE

A new feature of JForth is support for IFF ANIM and
ANIMBrush files. This utility lets you load animation
images from other programs (o create animated displays.
The output of the Amiga can be plugged directly into a VCR
for simple home video.

These, and other fealures, combine to create a powerful
Forth-based application development environment that
offers a real alternative for commercial developers.

HMSL
Hierarchical Music Specification Language
HMSL is an extension to Forth that provides MIDI
support, and object-oriented compositional tools. The
object classes include Shapes which are a general purpose
array of N-dimensional points. The data can represent a
melody, a tuning, a trajectory, or any user-defined parameter. |
Another class, called Players, schedules the conversion of |
Shape data into musical or other forms of output. Jobs |

schedule user-written functions for repeated execution.
Collections can contain Players, Jobs, or other Collections,
and allow you to create a complex hierarchy of music
objects.

HMSL supports standard MIDI files. Thus, you can use
HMSL to algorithmically create sequences for use with
other commercial music programs. An event bu/fferprovides
low-level scheduling of MIDI events and supports a lext-
based Score Entry System. Here is an example of a simple
score:

1/4 C3 F¥ 1/8 20 /\ AABAA
1/2 _mf CHORD{ E4 G B }CHORD

HMSL provides a toolbox for building interactive screens
out of control grid objects like check boxes and faders.

The Amiga version of HMSL uses JForth. The Macintosh
version has its own built-in Forth. HIMSL pieces are
generally portable between the Amiga and Macintosh
Versions.

A number of the other features of JForth and TIMSL are
mentioned in the accompanying advertisement, so I won't
list them here. If you are interested in JForth or HMSL, give
us a call and we can direct you to a discount retailer.

Tap the Power of Your AMIGA ®

a 32 bit Subroutine Threaded Forth
+ generates small, royalty free applications
« complete Amiga DOS 2.0 toolbox support
« simple IFF, ILBM and ANIM tools
« source level debugger with breakpoints
» object oriented dialect, ODE
» hashed dictionary for fast compilation
« local variables for more readable code
» integrated, file-based, text editor
» ARexx support for inter-application I/O
* FYG standard floating point support
« Profile - code performance analyser
» global, register-based optimiser
« integrated assembler and disassembler
« numerous examples and tutorials in manuals

JForth was created by Delta Research:
serving Amiga developers since 1986.

Specification
Language

Experimental music for Macintosh and Amiga
HMSL is an object oriented extension to Forth with:
« extensive MIDI toolbox, MIDI File support
« tools for building your own user interfaces
» Markov chains, 1/F noise, graphical shape editor
+ hierarchical scheduler for playing abstract data
« tools for complex algorithmic composition
« support for Amiga local sound and samples
» complete source code provided with manual

If your music is too unusual to create using
traditional music applications, write your own
using the tools HMSL provides. HMSL is being
used in hundreds of studios and colleges worldwide
by some of the today's most creative composers.
HMSL was developed by Frog Peak Music.

Hierarchical
Music

Find out more about JForth or HMSL by calling or writing: PO Box 151051, San Rafael, CA
Amiga is a registered trademark of Commodore Business Machines

94915-1051 USA (415) 461-1442

15

May 1992 June

Object-Oriented Forth

Markus Dahm
Aachen, Germany

At the Institute for Measurement Techniques at the
University of Technology RWTH Aachen, we have used
Forth since 1987. Our interdisciplinary workgroup has
developed medical image workstations. We have wrilten a
lot of software including memory management, image-
processing algorithms, fibre optics network coupling, and a
graphical user interface in our proprictary 32-bit Forth. The
psychologists in our workgroup conduct experiments con-
cerning the software- and hardware-ergonomical aspects of
the design and functionality of the workstations using the
prototype image workstation,

Some of the student laboratory work in image processing
is done in Forth, which is picked up by the students usually
within half an hour. Within this short amount of time, they
learn enough to program image-processing algorithms.

So, for various reasons, the ease of understanding and
gelling access to a complex system is of high priority for us.
For this purpose, our existing 32-bit Forth did not provide
enough programming support and transparency, so we
conceived a new and object-oriented Forth.

Within one-half hour,
students learn enough Forth
to program image-processing
algorithms.

The work was funded by the German Ministry for
Research and Technology, grant no. BMFT/AuT-01HK577-
03, as part of the DIBA-project. Thanks to Maria Irene dos
Reis Lourengo-Kaierle for her work on the implementation.

An Object-Oriented Forth

The paradigm of object orientation has been around for
quite a while but has recently received a lot of attention. Apart
from the hype—it was even called the “silver bullet” to shoot
all programming troubles—itis a real advance for programmers
in terms of structure, clarity, readability and, thus, useability
of both the programming approach and the program code.

Forth's advantages are Lhe interactivity of the interpreted
language and the extensibility which allows the language to
be fitted to a special application, which make it suited for
non-expert users. Moreover, it enables you to lest everything
May 1992 June

16

easily and directly via the keyboard, which makes debugging
easy. Forth supports—almost forces—the method of factoring,
which greatly enhances the clarity of programs and thus the
programmer’s productivity and content.

Our main interest is to work with a programming
language that supports fast and easy understanding and
debugging, and thus allows rapid prototyping of user
interfaces by both engincers and, on a higher level, by
psychologists.

OOF strives Lo achieve this by combining the best of both
worlds by extending Forth following the paradigm of object
orientation in a strict sense. It provides all its amenities, such
as securily, inheritance, and late binding. This is achieved by
strictly adhering to the concepts of data encapsulation, strong
typing, and message passing rather than direct procedure
calls. The system still has a small kerel that performs
everything from interpreting to compiling the source code in
a simple but smart fashion. |

The principles of OOF and their consequences are best |
explained by examples. The use of OOF is therefore l
described step by step, from simple definitions of objects to
the creation and extension of classes and methods, explaining |

the nomenclature and buzzwords of object-oriented lan-
guages en passant.

|
Here’s How |
Everything in OOF is an object. Every object is an object |

of some class (e.g., integer or character); it consists of a data
field and a set of methods to manipulate the data. For |
example, when you want to creale an integer object start 1
or two character objects c1 and c2, you wrile: |
l

integer : start ;

character : ¢l , c2 ;

This shows one of the basic syntax elements, the colon
declaration, which in Forth only declares words. According
to one of my favorite guidelines, simplification by generali-
zation, the colon is used in OOF as the general method of
declaration. It can be applied to any class that is known in
the system in order to create objects (or instances) of this
class. If you want to declare more than one object of the same
class, the names of the objects separated by commas form a

list of objects to be declared, terminated by a semicolon.
Forth Dimensions

[Figure One. Deflmng an instance method. |

i -> bits/pixel pixels * s !;

Figure Two. UsinE'i-nEiﬂE ual instance mﬂe“!hads._]

3.11". . 31ze
((image i ; =-- integer : s ; || integer pixels ;))
i =-> xdim i -> ydim * pixels !

S, RN ——|

object subclass state ;
state iim : keypressed ((state s ;
" A key was pressed" print ;
idle , input ;
iim : keypressed ({(state : s ;
" Idle state: key" print

state
idle

’

| Aclually, the comma is exactly the same method as the colon.
I In some cases, the colon method needs some more paramelers;
e.g., when defining a string, you want to give the maximum
number of charactes in the string:
30 string : textl ;
If, as a more elaborate example, you want to handle
| images in your system, you define the new class image. You
do not want to invent the methods anew for creation,
deletion, or debugging methods of objects every time you
define a new class. So you let image inberit all these prop-
erties by declaring image a subclass of object, the most
basic class of all classes, which already provides these
properties:

|
l
|
|
|

object subclass image ;

image is now defined as an object of the class subclass
and, at this moment, has exactly the same properties as the
class object. The subclass image is now going to be
extended in order to fulfill the purpose we defined it for. For
every image, you need to know, for example, its dimension
| in x and y and how many bits are in a pixel. These data are
partof every object of the class image, i.e., thatis an instance
of image. Thus, we have to define instance variables (i.e.,
{ instance objects, but “instance variables” in the typical
nomenclature of object-oriented languages; in OOF it is
abbreviated as “TV") of image:

image IV integer : bits/pixel ;
image IV integer : xdim , ydim ;

When you wanttodeclare two new images iml and im2,
you write:

image iml , im2 ;
using the general colon declaration. Now you have two
image objects, each containing one set of the above-defined
instance variables. In order to achieve the desired security
and consistency, the instance variables of any object may

only be modified by the methods that have been declared for

Forth Dimensions

-=))

\ define default-reaction
\ define states for state-machine
-—))

\ define individual reaction

\ define class state

.
|
|
|
il

its class, the instance methods (abbreviated as “im”). No
method defined for any other class may alter, or even read,
these instance variables. One method for the class image
might, forexample, compute the size of animage in bits. You
can deline this method as in Figure One.

Sosizeisdefinedasan object of class im. What is known
as the stack comment (==) in Forth, has evolved to a full
declaration of input and output parameters as well as local
variables in OOF: ((-= ||)).

The parameters are defined in the same way as any object:
by the colon dedaration. The method size can refer to the
object that was passed to it on TOS as 1, the object that is to
be passed as the result can be referred to as s, and pixels
is a local object. It goes without saying that you can define
as many of these temporary objects (here: s, i, and pixels)
as you like. Their scope is only within the definition of this
method, they cannot be accessed from outside the method.
They make possible clear and readable programming without
stack juggling, and they ensure that only the values declared
are popped off the stack and only the values declared are
pushed onto the stack as results. This is performed auto-
matically when entering and exiting the method according to
these declarations, thus enhancing security.

The instance variables xdim, ydim andbits/pixel of
the image object i are accessed by the method ->, which
may only be called inside an instance method for that
particular class (here: image). This is called data encapsu-
lation and ensures that these operations can only be
performed on object data that you have explicitly allowed
and defined to do so, again enhancing program security.

Note that, in order to push the value of, for example,
pixels onto the stack, there is no method @ involved (and
thus cannot be forgotten any more). Every object lays itself
onto the stack when invoked. The low-level difference
between the object’s value and its location is no longer
visible—there are only objects.

Making Passes
The above-defined method size for the dass images
can now be applied to the previously declared image-object
iml by:

iml size

17 May 1992 June

l?igure Three. Using shallow obj'ec!s._

A .

active ;
< -

state

idle active

\ creates the shallow state-object "active"
\ makes the shallow state-object "active" act
\ as if it were the state-object "idle"

idle iim : keypressed ((state 8 §o==7)}
" Idle state:
input active <- ;

key, entering input state " print
\ now make "input"™ the active state

Figure Five. Using the Do ... Loop. 1'

im : looptest
((integer : from , to ; —-- || integer
from run ! to 1 + end !

end run do
run print

loop ;

end ,
\ set limit and index variables

\ print the index value

))

run ;

Non-object-oriented languages, such as Forth, call methods
directly: they compile the address of the code to be executed.
OOF instead sends a message to the object on top of the stack
CTOS). In its essence, a message is the name of a method to
be called. When a message is passed to the object 0 on TOS,
a method of that name is searched at run time in the list of
all methods available for objects of 0’s class. When it is found,
the method is executed; if not, an error method is called. This
ensures that only valid code meant for objects of the given
class is run.

This mechanism also makes it possible to have the same
message sent to objects of different classes, where different
methods of the same name are calied. This property is called
polypmorphism. 1t saves inventing new names (e.g.,
prinl_integer, print_string, etc.) for the same function (print
an object) applied to objects of different classes. In particular,
it enables you to send the same messages that can be sent to
objects of class C, to objects of all subclasses of C that in-
herited the methods from C.

Methods for Individuals

Instance methods of a class have the same effect on every
object of that class, which is very desirable for consistency.
But sometimes you want to have different objects of the same
class to react differently to the same message. This is very
useful when you want to program, for example, a finite state
machine. There are a number of states the machine can enter
and a number of possible events that can occur. This can be
implemented by modelling each state as an object of class
state, where each object is supposed Lo react specifically
to 2 message, such as “a key was pressed.” This behaviour
could be achieved by means of a reaction table, but there is
a more elegant way which is an evolution of the concept of
message passing. OOF provides you withindividual instance
methods(1iim). A default iimfor all instances (objects) of the
class is defined when the class is dedared. For every
individual object, a specific iim can now be declared which
May 1992 June

18

will be the individual response to still the same message.
OOF code for this example might look like in Figure Two.

Shallow Objects

In almost every language, there is the notion of pointers.
A pointer is not an object itself but keeps only a reference to
an object. In Forth, every address can be interpreted as a
pointer to a data field. The syntax for dealing with pointers
can become very confusing (just think of C pointer puzzles)
and error prone. I abandoned the idea of a class pointer for
these reasons. Instead, Smalltalk inspired me to define
shallow objects. They are disguised as normal objects of a
class, but only bear a reference to another object. They be-
have exactly as if they were the objects they keep the reference
to;, you do not have to worry about their shallow nature. An
example is a shallow object of class state (see above) that
represents the aclive state of the slate machine. It is created
and handled as shown in Figure Three.

Now, in order Lo send the message keypressed lo the
momentarily aclive state, you write:

active keypressed

which, at this point, sends the message keypressed to the
state object id1e. Note that you need not perform some sort
of pointer-indirection-operation, the shallow object act ive
automatically pushes the referenced state-object idle onto
the stack. The iim keypressed of idle now can be ex-
tended, as shown in Figure Four,

Looping
The control structures are quite the same as in Forth. The
do ... leave ... loop, however, was modified: it still takes
limit and index as parameters, but they must be given in the
form oflocal integer variables. This offers you the opportunity
to name the “functions” that access Lthe index and limit of the
loop (the former 1 and 3j) the way you like (and spares the

implementation to clobber the return stack with looping
Forth Dimensions

Figure sﬁ. Header of an obi_e;:t.-

name name of object, terminated by 0, followed by a count-byte
link object number of next object in list, e.g., vocabulary, etc.
time object number of next object in list of all objects

owner object number of owner-object, e.g., owner of instance object
module object number of moduie-object = vocabulary + source file
module-offset] offset in source file

flags e.g., shallow/deep object, private/public, allocated/deleted
size body size of object

class object number of the class the object belongs to

self object number of the object itself

body object number of the object that holds the object’s body
offset offset within the body

example, the body of an
image object is shown in
Figure Seven.

Objects may not be ac-
cessed direclly by an ad-
| dress, only via (16-bit) object
numbers (somelimes called
handles). An object number
can be converted into a
memory address via the
Object Table, an array that
holds the memory address
of every object that exists in
the system. The address of
an object is determined by
using the object number as
an index into the Object

information). The example in Figure Five shows how to use
this feature.

Implementation

OOF is not implemented by extending an existing Forth.
Itis not based on clever use of vocabularies and create ...
does> constructs. I did start defining it that way, since it is
the first and obvious way to any Forth programmer. But it
soon turned out that, if I used a standard Forth as a basis to
program OOF, the underlying Forth would either not be in
use any more when running OOF or it would induce
| intolerable speed penalties. So the variety of new concepls
forced an entirely new kernel for OOF. In the process, some
wrinkles in Forth were ironed out by strictly adhering to the
paradigm of object orientation. As with any Forth, the kernel
consists of some assembler primitives for arithmetic, I/0, and
special kernel functions—comprising the virtual machine
(VM) of OOF—and the lion’s share of the kernel is written
in QOF iwself. This QOF source code is translated by a
metacompiler into the kemel’s threaded code.

To make porting as fast and easy as possible, C source
versions of all VM functions exist. Existing programs (e.g.,
image-processing libraries) written in C or other languages
can easily be linked to OOF. The metacompiler itself is
written in C as well. So, in order to port OOF to another host,
all you need for the beginning is a C compiler for that
machine.

In the following sections, I will describe in detail the
structure of objects, the concept of object storage, and the

objects, the stack, and the execution of secondaries.

Handle with Care

Each object consists of a header and a body. The structure
of the header is shown in Figure Six. It contains various
information about the context and nature of an object, as well
as information for debugging and the source of the definition
of the object. The body of the object that contains its data is
located anywhere else in memory, in a contiguous memory
block. The body of a compound object that is built of instance
objects consists of the bodies of its instance objects. As an
Forth Dimensions

Table. Thus, it is possible to

relocate an object without having to change every reference
to this object; only the entry in the Object Table must be
updated. This is very important in an object-oriented system,
where objects are constantly created and deleted at run time,
causing the need for garbage collection and relocation of
objects.

Every object has a unique object number. The corre-
sponding address from the Object Table points to the header
of the object, and the nature and state of the object can now
be deduced. However, since the body of the object can be
stored anywhere else in memory, we need more information
in the object’s description: a further object number gives the
address of the memory block where the body is located. An
offset within the block must be added to this address to arrive
at the complete body address of the object. This process is
shown in Figure Eight. Thus, a complete description of an
object consists of a reference to the header and a reference
to the body of the object.

This concept has great impact on the format of stack
entries. It makes sense to push onto the parameter stack not
only an address, as in Forth, but a complete object descriptor.
In order to speed up message passing, the object number of
the class of the object is added. When primitive arithmetic or
logical functions are executed, it would cause an enormous
overhead when a new object would have to be created each
time a result is returned. So, in the stack entry, there is a
value field that can hold the result of operations on basic
classes, such as integer, character, or even float. The com-

| plete format of a stack entry on the parameter stack is shown
consequences concerning access by the virtual machine of |

in Figure Nine.
Because the description of an object is divided into a
reference o the header and a reference to the body, one

Figure Seven. Body of an image ol:)j_eal|

19

offsets

+0
+4 body of instance-object bits/pixel

+8 body of instance-object xdim
body of instance-object ydim

May 1992 June

Figure Eight. Accessing the body of an object. | -

header can be used to de-
scribe many bodies. This is
the case for instance objects.
E.g., every time an image
object is created, its body
contains the bodies of its
three instance objects: bits/
pixel, xdim, and ydim
(Figure Seven). Bul a new
header is created only for the
new image object—there is
no need to creale a new
header for each instance

object number of body
= index in object table

object-table = array of memory addresses

start of block

object. The one header that
was built during the definition of the class image for each
instance object, describes the nature of the instance objects
completely. OUT and LOCAL objects of a secondary are
reated similarily: every time a secondary is entered, only
space for the bodies of these objects is allocated on the
paramelter stack, no new header is created. So, in most cases,
no new header is constructed for new objects, This saves
considerable amounts of both time and memory space.

Additionally, it turns out, access to the body of an object
is accelerated a great deal because there is only one
mechanism to arrive at the body address. No testing of flags
or considering of special circumstances at run time—which
takes longer than it takes to actually access the Object
Table—are necessary. The latter is especially important for
the primitives, which should be as fast and efficient as
possible.

Once again, the principle of simplification by generaliza-
tion proves useful. Here, it saves space and time when
crealing new objects, and simplifies and, therefore, speeds
up access to the body of an object. The next paragraph
describes how the appropriate stack entries are composed
according to the special nature of each object.

The Virtual Machine

The virtual machine (VM) of OOF consists of a number
of Body Evaluation Codes (BECs), the inner interpreter, the
primitives, internal registers, and the available RAM. It is the
machine-dependent part of an OOF system.

A BEC is a piece of assembler code that performs a basic
function, such as pushing an object descriptor onto the stack,
sending a message to the object on TOS, and calling or
returning from a secondary. They are the counterparts of
Forth's CFA primitives.

The inner interpreter works similar to most Forths’ inner
interpreters: a regisler of the virtual machine called OOFPC
points inside the body of a secondary, where the next entry
shall be interpreted. Each entry in a secondary consists of the
object number of a BEC followed by parameters for the BEC.
In order to speed up the interpretation, OOF compiles
references 1o the codes that evaluate the entries of the body,
directly into the body rather than just storing a reference 10
the object. Everything that is known at compile time about
an object tobe compiled is stored as the appropriate BEC and
the necessary parameters; so that, at run time, a BEC does not

May 1992 June

Figure Nine. Format of a stack entryJ

self

| class body | olfset | value (64 bil) I

object numbers short

[|
object descriptor

[
20

| execution is sped up a great deal.

have to test flags or search for its parameters somewhere else.

Since lots of kilobytes of memory are no big deal anymore,

space is no problem in most development systems. OOF
makes incremental development and compilation possible,
so compilation speed is not critical. The emphasis in the
design of OOF’s kemel is on execution speed, which is
always a critical issue in object-oriented systems. So, in OOF
compilation takes a bit longer and the code size grows, but

One by one, each entry of a secondary is evaluated by
calling the BEC that the OOFPC points to. At the end of every
BEC, the OQFPC is set (o the next entry, the processor jumps
back to the inner interpreter, and the next entry in the body
of the secondary is evaluated.

The execution of a secondary shall now be explained in
detail. When a secondary is entered, the VM registers
SDELTA, SFRAME, and OOFPC, and the object number of the
secondary are saved on the return stack. Then SFRAME is set
below the first input parameter within the parameler stack;
now the stack frame starts with the stack entries of the input
objeccts for the secondary. SDELTA is calculated as SFRAME
— SBOTTOM (bottom of stack), and space for the bodies of the
OUT and LOCAL objects is reserved on the stack by
decrementing TOS. After OOFPC is set to the first entry in the
body, the innerinterpreteris ready to interpret the secondary.
Figure Eleven shows the contents of the parameter stack at
that time.

To explain the functions of the BECs, the evaluation of a
sample part of the secondary that was called when the
message size was sent to the global image object im1, shall
now be traced. Figure Ten shows both a sample of the body
of the method size and the appropriate contents of the
parameter stack after the execution of each BEC.

Forth Dimensions

Figure Ten. Boc]y_of_a secondary and paran;n_e_t_er stack dEri_ng execution (extractfrom
the method size sent to the global object im1).

BEC IN takes the offset parameter as an offset into the
stack frame and copies the stack entry at that location to TOS,
effectively pushing the current input parameter iml onto the
parameter stack. This is an example of the behaviour of
shallow objects: they do not appear on the stack themselves,
only the object they refer to.

BEC IV manipulates the stack entry on TOS as follows:
itaddsthe offsettothe of fset on TOS, replaces class with
integer, and self with bits/pixel. The body cbject
remains the same, as explained above. Now the instance
object bits/pixel of the input object is on TOS.

In order to push pixels onto the stack, BEC LOCAL
creates a new stack entry. Then it takes the parameler offset
as an offset into the stack frame, subtracts it from the contents
of the VM register SDELTA (equal to the stack frame — bottom
of stack) and places the result as the of £set into the new
stack entry. The pseudo-object SBOTTOM (bottom of pa-
rameler stack) becomes the new body, class is sct to
integer, and self is set to pixels.

The parameter of BEC IM is a token that represents the
message *. The message is sent to the object on TOS, which
is now pixels. In the list of instance methods of the class
of the object on TOS (here: integer), a method is searched
that matches this token. In order to speed up the search, this
list is 32-fold hashed. When the method is found, it is called;
if not, an error message that is guaranteed to be understood
by all objects—since it is defined in the kernel—is sent to the
object.

The primitive for integer multiplication takes the two
integer objects off the stack and pushes an integer object with
Forth Dimensions

class self body offset value
BEC IN i [image | im1 [im1 o | |
offset = 0
BEC IV > [_inﬁgcr] bits/pixel | im1 [4 | I
offset = 4 bits/pixel
inleger
bits/pixel
BEC LOCAL | pixels integer | bits/pixel | im1 4 I
offset = 20 integer pixels SBOTTOM SDELTA—Z{.)-
integer
pixels
BEC IM » integer]immediate [SBOTTOM [SDELTA-32] product |
.
BEC OUT s integer | immediate SBOTTOM [SDELTA-32 product I
offset = 16 integer| s SBOTTOM | SDELTA-16
integer
s
BECIM !
!
BEC EXIT ;

the product in the value field of the stack entry. Self is set
to the pseudo-object-number immediate, indicating thatthere
is no valid header available for this object.

The OUT object s is pushed by BEC OUT the same way
pixels was pushed.

The resultof the multiplication isstored in s by the method
that was found when BEC IM sent the message ! o s.

Finally, the secondary sizeisexited by BECEXIT, which
cleans the parameter stack by setting TOS to SFRAME, ef-
fectively freeing the space of OUT and LOCAL bodies in the
stack frame and taking the IN objects off the stack. Then it
pushes the OUT objects (here: s) onto the stack, restores the
VM registers SFRAME, SDELTA, and OOFPC from the return
stack, and resumes where size was called.

Experiences with OOF
and Future Work

OOF was utilized to write a toolbox for graphical user
interfaces for image workstations. Since the OOF kernel will
be finished real soon now, we still have to gain experience
about how the system behaves in terms of speed. However,
early experiences about the impact on the style, clarity, and
ease of writing programs in OOF are promising.

A very important lesson is that the way you tackle
problems changes when using OOF. You no longer think
about some data structure in the beginning and then write
lots of code manipulating it independently. After having
analysed your problem, you try to build a hierarchy of classes
that can represent the solution. Here you use the well-known
techniques of factoring and decomposition, which are

May 1992 June

| Figure Eleven. Parameter stack at entry of secondary size. |

|
SBOTTOM= bottom of stack

not reachable by size [

SFRAME-= stackframe ————————3»
stackentries of INPUT objects

tackle problems differently
butstill in the good ol Forth
| style of writing and testing
small chunks of code incre-
mentally and interactively. It |
supports the programmer by

SDELTA

providing the integral order-

reserved space on stack l

ing mechnisms of object-ori-
ented languages and by

TOS = top of stack >

free stackspace ‘

already recognised good style in Forth and elsewhere. Data
structures and methods working on the data are tighty
coupled now. When you write a function in OOF, first you
have to consider to which object you will be sending a
message o do the job.

Since OOF does a lot for you in terms of factoring or
deciding what to do in special cases, which is done by
inheritance, polymorphism, and message passing, code
tends to be tighter and more to the point. You have more
control over what is going on in your program and you don’t
get lost in an unordered heap of data and words. Last but not
least, it is more fun!

Some words concerning standards: we have worked with
more-or-less standard Forths and were less than happy with
the environments and the support for non-trivial programs
wrilten by more than one engincer. OOF might not be
suitable for tiny target applications or not fastenough forreal-

time applications (which s still to be decided, there isenough |

room for optimization). However, OOF points out how to | Email SEGDACTHS 1 BITNET |

adding security—by means
of strong type checking and
local parameters—to the ad-
vantages of Forth. Thus, OOF
| could show a way lowards a

modernized, extended, sup-
portive Forth living side by side with the current standard,
minimalistic, compact Forth.

The future will see an OOF system running all described
features, with optimized code for the kemel, more dasses,
ported versions on hosts such as PCs, Macs, and Unix
machines, and a full debugging environment to make life even
casicr. We will run laboratory work for image processing and
protoyping of medical image workstations using OOF. Any
comments, annolations or additions are welcome, Stay ned.

We hope our work will not be misused for military purposes.
We will not take part in any military projects.

Markus Dahm received his Dipl. Ing. {electrical engineering) in 1987 at RWTH
Aachen, University of Technology, Aachen, Germany; abd his M.Sc. (Compulter
Science) in 1988 at Imperial College, London, UK. He has been a research
assistant since 1989 al Lehrstuhl fuer MeBlechnik, RWTH Aachen, DIBA-project,
working on user interfaces for medical imaging workslations. He can reached at
the following:

Lehrstuhl fuer Messtechnik, RWTH Aachen, Templergraben 55, D-5100
Aachen, Germany. Phone: +241 - B0 78 64. Fax: +241-807871.

“This theme applies equally to projects requiring multiple
programmers, and to applications or systems consisting of
large amounts of code and/or of significant complexity.”
("Editorial,” FD XIlI/6) Papers will be refereed.

Mail a hard copy and a diskette (Macintosh 800K or PC
preferred) to the:

Forth Interest Group
P.O. Box 8231 » San Jose, California 95155

$ Contest Announcement $

| Call for Papers!

Forth Dimensions is sponsoring a contest for articles about
i “Forth on a Grand Scale”
' Write about large-scale Forth applications, systems, or ...

Cash awards to authors:
1st place: $500 |
2nd place: $250
3rd place: $100

Deadline for contest entries is August 3, 1992.

. |

May 1992 June

22

Forth Dimensions

FIG
MAIL ORDER FORM

HOW TO USE THIS FORM: Please enter your order on the back page of this form and send with your payment to the Forth Interest Group.
Most items list three different price categorics: USA, Canada, and Mexico / Other countries via surface mail / Other countries via air mail
Note: Where only two prices are listed, surface mail is not available.

“Were Sure You Wanted Toc Know...”

Forth Dimensions, Article Reference _ 151-8%4/5
An index of Forth articles, by keyword, from Forth Dimensions
Volumes 1-12 (1978-91).

FORML, Article Reference 152 - $4/5
An index of Forth articles by keyword, author, and date from the
FORMIL. Conference Procecdings (1980-89).

FORTH DIMENSIONS BACK VOLUMES

A volume consists of the six issues from the volume year (May—April)

Volume 1 Forth Dimensions (1979-80) 101 - $15/16/18
Introduction to FIG, threaded code, TO variables. fig-Forth.

Volume 2 Forth Dimensions (1980-81) 102 - $15/16/18
Recursion, file naming, Towers of Hanoi, CASE contest, input
number wordset, 2nd FORML report, FORGET, VIEW.
Vol 3 Fonh Di ions (1981-82) 103 - $15/16/18
FForth-79 Standard, Stacks, HEX, database, music, memory man-
agement, high-level interrupts, string stack, BASIC compiler,
recursion, 8080 assembler.

Volume4 Fonh Dimensions (1982-83) 104 - $15/16/18
Fixed-point trig., fixed-point square root, fractional arithmetic,
CORDIC algorithm, interrupis, stepper-motor control, source-
screen documentation tools, recursion, recursive decompiler, file
systems, quick text formatier, ROMmable Forth, indexer, Forth-

83 Standard, teaching Forth, algebraic expression evaluator.

5 Forh Di ions (1983-84) 105 - $15/16/18
Computer graphics, 3D animation, double-precision math words,
overlays, recursive sort, a simple multi-tasker, metacompilation,
voice output, number utility, menu-driven software, vocabulary
tutorial, vectorerd execution, data acquisition, fixed-point
logarithms, Quicksort, fixed-point square root.

Volume 6 Forth Dimensions (1984-85) 106 - $15/16/18
Interactive editors, anonymous variables, list handling, integer
solutions, control structures, debugging techniques, recursion,
semiphores, simple 1/O words, Quicksort, high-level packet
communications, China FORML.

Volume 7 Forth Dimensions (1985-86) 107 - $20/22125
Generic sort, Forth spreadsheet, control structures, psucdo-
inlerrupts, number editing, Atari Forth, pretty printing, code
modules, universal stack word, polynomial evaluation, F83
strings.

8 Forh Di ions (1956-87) 108 - 520722125
Tnterrupt-driven serial input, data-base functions, TI 99/A,
XMODEM, on-line documentation, dual-CFAs, random
numbers, armays, file query, Baicher's sort, screenless Forth,
classes in Forth, Bresenham line-drawing algorithm, unsigned
division, DOS file [JO.

Volume 9 Forth Dimensions (1987-88) 109 - $20/22/25
Fractal landscapes, stack error checking, perpetual date routines,
headless compiler, execution security, ANS-Forth meeting,
computer-aided instruction, local variables, transcendental func-
tions, education, relocatable Forth for 68000,

|

Volume 10 Forth Dimensions (1988-89) 110 - $20/22/25
dBase file access, string handling, local variables, data structures,
object-oriented Forth, lincar automata, standalone applications,

8250 drivers, serial data compression.

Volume 11 Forth Dimensions (1989-90) 111 - $20/22/25
Local variables, graphic filling algorithms, 80286 extended
memory, experl systems, quatemion rotation calculation,
multiprocessor Forth, double-entry bookkeeping, binary table
search, phase-angle differential analyzer, sort contest.

Volume 12 Torth Dimensions (1990-91) 112 - §20/22/25
Floored division, stack variables, embedded control, Atan Forth,
optimizing compiler, dynamic memory allocation, smart RAM,
extended-precision math, interrupt handling, neural nets, Soviet
Forth, arrays, metacompilation.

FORML CONFERENCE PROCEEDINGS

FORML (Forth Modification Laboratory) is an educational
forum for sharing and discussing new or unproven proposals
intended to benefit Forth, and is an educational forum for discus-
sion of the technical aspects of applications in Forth. Pmoecdinﬁs
are a compilation of the papers and abstracts presented at the
annual conference. FORML is part of the Forth Interest Group.

1980 FORML PROCEEDINGS 310 - $30/31/40
Address binding, dynamic memory allocation, local variables,
concurrency, binary absolute & relocatable loader, LISP, how to
manage Forth projects, n-level file system, documenting Forth,

Forth structures, Forth strings.

1981 FORML PROCEEDINGS 311 - $45/48/55
CODE-less Forth machine, quadruple-precision arithmetic,
overlays, executable vocabula.r{ stack, data typing in Forth,
vectored data structures, using Forth in a classroom, pyramid
files, BASIC, LOGO, automatic cueing language formulumedia,
NEXOS—a ROM-based multitasking operating system.

1982 FORML PROCEEDINGS 312 - $30/31/40
Rockwell Forth processor, virtual execution, 32-bit Forth, ONLY
for vocabularies, non-IMMEDIATE looping words, number-
input wordset, 1/O vectoring, recursive data structures, program-
mable-logic compiler.

1983 FORML PROCEEDINGS 313 - $30/32/40
Non-Von Neuman machines, Forth instruction set, Chinese
Forth, F83, compiler & interpreter co-routines, log & exponential
function, rational arithmetic, transcendental functions in
variable-precision Forth, portable file-system interface, Forth
coding conventions, expert systems.

1984 FORML PROCEEDINGS 314 - 330/33/40
expert sy , € quent ning inference engine,
Zen floating point, portable graphics wordset, 32-bit Forth,

1PT71B Forth, NEON—object-onented programming, decom-
piler design, arrays and stack vanables.

1985 FORML PROCEEDINGS
Threaded binary trees, natural language parsing, small leamin,
expert system, LISP, LOGO in Forth, log interpreter, BN
parser in Forth, formal rules for phrasing, Forth coding
conventions, fast high-level floating point, Forth component
library, Forth & aruficial intelligence, electrical network
analysis, event-driven multitasking.

1986 FORML PROCEEDINGS 316 - $30/32/40
Threading techniques, Prolog, VLSI Forth microprocessor,
nulura]—Ianiuagc interface, expert system shell, inference engine,
multiple-inhentance system, automatic programming environ-
ment.

315 - $3032/40

1987 FORML PROCEEDINGS 317 - 340/43/50
Includes papers from '87 euroFORML Conference. 32-bit Forth,
neural networks, control structures, Al, gpl.umn.ng compilers,
hypertext, field and record st . CAD o« d language,
object-oriented lists, trainable neural nets, expert systems.

1988 FORML PROCEEDINGS . 318 - $24/25/34
!lluman intctl'acci;d stmpicw r;bonc:h kem‘;l:rMOI;EIi. Forl:h,
anguage lopics, hardware, Wil's workings ing's philosophy,
Fori‘; hganmm applications, ANS Forth scssim,gfutm of %nh
in Al applications.

1988 AUSTRALIAN PROCEEDINGS . 380-824/25/34
Proceedings from the first Australian Forth Symposium, held

May 1988 at the University of Technology in Sydney. Subjects

incﬁlde training, parallel processing, programmable conLru[]Jcrs,

Prolog, simulations, and applications.

1989 FORML PROCEEDINGS 319 - 340/43/50
Includes papers from '89 euroFORML. Pascal to Forth,
extensible optimizer forcompiling, 3D measurement with object-
oriented Forth, CRC polynomials, F-PC, Harris C cross-
compiler, modular approach to robotic control, RTX recompiler
for on-line maintenance, modules, trainable neural nets.

1990 FORML PROCEEDINGS

320 - 340/43/50
in € ations monitor, 6805 development.

3-key kcyboarj. documentation techniques, object-oricnted

programming, simplest Forth decompiler, error recovery, stack

operations, process control event management, control structure

analysis, systems design course, group theory using Forth.

BOOKS ABOUT FORTH

ALL ABOUT FORTH, 3rd ed., June 1990, Glen B. Haydon 201 - $90/92/105
Annotated glossary of most Forth words in common usage,
including Forth-79, Forth-83, F-PC, MV P-Forth. Implementation
examples in high-level Forth and/or 8086/88 assembler. Useful
commentary given for cach entry.

THE COMPLETE FORTH, Alan Winfield 210 - $14/15/19
A comprehensive introduction, including preblems with answers
(Forth-79).

e¢FORTH IMPLEMENTATION GUIDE, C.H. Ting 215 - $25/26/35
eForth is the name of a Forth model designed 1o be portable to a
large number of the newer, more erful processors available
now and becoming available in the near future. (w/disk)

F83 SOURCE, Henry Laxen & Michael Perry 217 -$20/21/30
A complete listing of F83, including source and shadow screens.
Includes introduction on getting started.

FORTH: A TEXT AND REFERENCE
Mahlon G. Kelly & Nicholas Spies

219 - $31/32/41

A textbook approach to Forth, with hensive refi es 1o
MMS-FORTH and the *79 and *83 Forth standards.
THE FORTH COURSE, Richard E. Haskell 225 - $25126/35

Thissetof 11 lessons, called the Forth Course, is designed lomake
it easy for you to leam Fonth. The material was developed over
several years of teaching Forth as pan of a senior/graduate course
in design of embedded software computer systems at Oakland
University in Rochester, Michigan. (w/disk)

FORTH ENCYCLOPEDIA, Mitch Derick & Linda Baker 220 - $30/32/40
A detailed look at each fig-Forth instruction.
FORTH NOTEBOOK, Dr. C.H. Ting 232 - $25126/35

examples and applications. Great leaming aid. poly-
FORTH is the dialect used. Some conversion advice is included.
Code is well documented.

FORTH NOTEBOOK 11, Dr. C.H. Ting 232a - 525126/35
Collection of rescarch papers on various topics, such as image
processing, parallel processing, and miscellaneous applications.

INSIDE F-83, Dr. C.H. Ting 235 - $25/26/35
Invaluable for those using F-83.

LIBRARY OF FORTH ROUTINES AND UTILITIES,
ames D. Terry 237 - 323125(35
Comprehensive collection of professional quality computer code
for Forth; offers routines that can be put to use in almost any Forth
application, including expert systems and natural-language
interfaces.

| OBJECT ORIENTED FORTH, Dick Pountain 242 - 528/29/34
Implementation of data structures. First book 10 make object-

oriented programming available to users of even very small home
computers.

STACK COMPUTERS, THE NEW WAVE
Philip J. Koopman, Jr. (hardcover only)
Presents an altemative to Complex Instruction Set CnrnEulm
(CISC) and Reduced Instruction Set Computers (RISC) by
showing the strengths and weaknesses of stack machines (hard-
cover only).

STARTING FORTH (2nd ed.), Leo Brodie 245 - 829730138
In this edition of Starting Forth—the most popular and complete
introduction to Forth—syntax has been expanded to include the
Forth-83 Standard.

TOOLBOOK OF FORTH, V1 26T - 823725035
(Dr.Dobb’s) Edited by Marlin Ouverson
Expanded and revised versions of the best Forth articles collected
in the pages of Dr.Dobb's Journal.
TOOLBOOK, V1 with DISK (MS-DOS) 267a - $40/42/50

TOOLBOOK OF FORTH, V2, (Dr. Dobb's) 268 - $30/32/40
Complete anthology of FORTH programminmg techniques and
developments, picks up where V.1 left off. Topics include prog
ramming windows, cxtended control structures, design of a Fnrlh

target compiler, and more.
TOOLBOOK, V2 with DISK (MS-DOS) 268a - $46/48/56

WRITE YOUR OWN PROGRAMMING LANGUAGE USING C++,
‘P]':ama.nSmilh —_ . 270 -%15/16/18
15 book 1s about an application language. More speuﬁcaﬂ%r, i
1s about how to write your own custom application language. The m
book contains the tools necessary to begin the process and a
) lel impl ion. [Guess what language!]

244 - 362/65/12

Includes disk with E'un‘;')lulclsourcc.

REFERENCE

FORTH-83 STANDARD 305 - $15/16/18
Authoritative description of Forth-83 Standard. For reference, not
instruction.

SYSTEMS GUIDE TO fig-FORTH 308 - $25/28/30
C.H. 'l‘inﬁ (2nd ed., 1989)
How's and why’s of the fig-Forth Model by Bill Ragsdale, intemal
structure of fig-Forth system.

BIBLIOGRAPHY OF FORTH REFERENCES 340 - $18/19725
rd ed., January 1987)
er 1900 references 1o Forth articles throughout computer liter-
ature.

F-PC USERS MANUAL (2nd ed., V3.5) 350 - 820021727
Users manual 1o the public-domain Forth system optimized for
IBM PC/XT/AT computers. A fat, fast system with many tools.

F-PC TECHNICAL REFERENCE MANUAL 351 - $30/32/40
A must if you need to know the inner workings of F-PC.

MORE ON FORTH ENGINES

Volume 10 January 1989 810 - 515/16/18
| RTX :}mu from 1988 Rochester Forth Conference, object-
oriented cmForth, lesser Forth engines.
Volume 11 July 1989 811 - $15/16/18
RTX supplement 1o Footsteps in an Empty Valley, SC32, 32-bit
Fonth engine, RTX interrupts utility.
990 812 - $15/16/18

VYolume 12 A%l;ln.ll
ShBoom Chip architecture and instructions, Neural Computing
Module NCM3232, pigForth, binary radix sort on 80286, 68010,
and R'TX2000.

Volume 13 October 1990 813 - 515/16/18
PALs of the RTX2000 Mini-BEE, EBForth, AZForth, RTX-
2101, 8086 eForth, 8051 eForth.

Volume 14 814 - $15/16/18
RTX Pocket-Scope, eForth for muP20, ShBoom, eForth for CP/
M & 780, XMODEM for eFonh.

Volume 15 815 - $15/16/18

Moore: New CAD System for Chip Design, A portrait of the P20;
Rible: QS1 Forth Processor, QS2, RISCing it all; P20 eFonh
Software Simulator/Debugger.
MISCELLANEOUS
T-SHIRT “May the Forth Be With You” 601 - $12/13/15
ﬁwgcmfy size: Small, Medium, Large, Extra-Large on orderform)
ite design on a dark blue shin.
POSTER (BYTE cover) 602 - 55/6/7
FORTH-8 HANDY REFERENCE CARD 683 - free

DISKS: Contributions from the Forth Community

The “Contributions from the Forth Community” disk library contains
author-submitted donations, generally including source, for a varicty
of computers & disk formats. Each file is determined by the author as
public domain, shareware, or use with some restrictions. This libra
does not contain “For Sale” applications. To submit your own contri-
butions, send them to the FIG Publications Commiliee.

Prices: Each item below comes on one or more disks, indicated in
parentheses after the item number. The price of your order is $6/9 per
disk, or $25/37 for any five disks.
FLOAT4th.BLK V1.4 Robert L. Smith CO01 - (1)
Software floating-point for fig-, poly-, 79-Std., 83-Std.
Forths. 1EEE short 32-bit, four standard functions, square
root and log. IBM.

Games in Forth Co02 - (1)
Misc. games, Go, TETRA, Life... Source. IBM
A Forth Spreadsheet V2, Craig Lindley Co03 - (1)

This model spreadshect first appeared in Forth Dimensions
VII, 1-2. Those issucs contain gce)cs & source. IBM

Automatic Structure Charts V3, Kim Harris C004 - (1)
Tools for analysis of large Forth programs, first presented at
FORML conference. Full source; docs incl. in 19%5 FORML
Proceedings. IBM

A Simple Inference Engine V4, Martin Tracy C005 - (1)
ased on inf. engine in Winston & Hom's book on LISP,
takes you from pattern variables 1o complete unification
algorithm, with runninélcommcmary on Forth philosophy &
style. Incl. source. IB?

The Math Box V6, Nathaniel Grossman CO06 - (1)
Routines by foremost math author in Forth. Extended double-
precision arithmetic, complete 32-bit fixed-point math, &
auto-ranging text. Incl. graphics. Utilities for rapid

ynomial evaluation, contunued fractions & Monte Carlo
actorization. Incl. source & docs. IBM

AstroForth & AstroOKO Demos, [R. Agumirsian CO07 - (1)
AstroForth is the 83-Std. Russian version of Forth. Incl.
window interface, full-screen editor, dynamic assembler &
a great demo. AstroOKO, an astronavigation system in
AstroForth, calculates sky position of several objects from
different earth positions. Demos only. IBM

Forth List Handler V1, Martin Tracy CO08 - (1)
List primitives extend Forth to provide a flexible, high-
environment for AL Incl. ELISA and Winston &
Hom's micro-LISP as examples. Incl. source & docs. IBM

8051 Embedded Forth, William Payne C050 - (4)
8051 ROMmable Forth operating system. 8086-t0-8051
target compiler. Incl. source. Docs are in the book Embedded
Caontroller Forth for the 8051 Family. IBM

F83 V2.01, Mike Perry & Henry Laxen C100-(1)

The newest version, poried to a variety of machines. Editor,
assembler, decompiler, metacompiler. Source and shadow
screens. Manual available separately (items 217 & 235).
Base for other IF83 applications.]B&, &3.

F-PC V3.53, Tom Zimmer C200 - (5)
A full Forth system with pull-down menus, sequential files, editor,
forward assembler, metacompiler, floating point. Complete

source and help files. Manual for V3.5 available separately (items
350 & 351). Base for other F-PC applications. If:q hard disk.
1BM, 83.

F-PC TEACH V3.5, Lessons 0-7 Jack Brown C201a-(2)

Forth classroom on disk. First seven lessons on leaming Forth,
from Jack Brown of B.C. Institute of Technology. 1BM, F-PC.

VP-Planner Float for F-PC, V1.01 Jack Brown C202 - (1)
Software floating-point engine behind the VP-Planner
spreadsheet. 80-bit %nporary-ma!) routines with transcendental

unctions, number support, veclors 10 SUpport numeric co-
processor overlay & user NAN checking. IBM?%'-PC,

F-PC Graphics V4.2f, Mark Smiley C2(3a - (3)
The latest versions of new graphics routines, including CGA,
EGA, and VGA supppon, with numerous improvements over
tlaaﬁiur versions created or supported by Mark Smiley. IBM, F-

o

PocketForth V1.4, Chris Heilman C300-(1)
Smallest complete Forth for the Mac. Access toall Mac functions,
files, graphics, floating gﬂinl, macros, create standalone
applications and DAs, Based on fig & Starting Forth. Incl. source
and manual. MAC

Yerkes Forth V3.6 C350 - (2)
Complete object-oriented Forth for the Mac. Object access to all
Mac functions, files, graqh.ics. floating point, macros, create
standalone applicalims. ncl. source, tulorial, assembler &
manual. MAC, System 7.01 Compatable.

JLISP V1.0, Nick Didkovsky C401 - (1)
LISP interpreter invoked from Amiga JForth. The nucleus of the
interpreter is the result of Mantin Tracy's work. Extended 1o allow
the LISP interpreter to link to and execute JFonth words. It can
communicate with JForth's ODE (Object-Development
Environment). AMIGA, 83.

l’ygmx V1.3, Frank Sergeant C500 - (1)
lean, fast Forth with full source code. Incl. full-screen editor,
assembler and metacompiler. Up to 15 files open at a time. IBM.

KForth, Guy Kelly C600 - (3)
A full Forth srslun with windows, mouse, drawing and modem

packages. Incl. source & docs. IBM, 83.

ForST, John Redmond C700 - (1)
Forth for the Atari ST. Incl. source & docs. Atari ST.

Mops V2.0, Michael Hore C710-(1)

Close cousinto Yerkesand Neon. Very fast, compiles subroutine-
threaded & natve code. Object oriented. Uses FF-P co-processor
if present. Full access to Mactoolbox & system. Supports System
7 E'c.g,. AppleEvents). Incl. assembler, docs & source. MAC

BBL & Abundance, Roedy Green C800 - (4)
BBL public-domain, 32-bit Forth with extensive support of DOS,
meticulously opumized for execution speed. Abundance is a

blic-domain database language written in BBL. Req. hard disk.
nel. source & docs. IBM HD hard disk reequired

ACM - SIGFORTH

The ACM SIGForth Newsletter is published (grl‘.lancrly by the
Association of Computing Machinery, Inc. SIGForth’s focus is
on the development and refinement of concepts, methods, and
techniques needed by Forth professionals.

Volume 1 Spring 1989 900 - $6/119
F-PC, glossary uulity, Euroforth, SIGForth '89 Workshop
summary (real“time software engineering), Intel 80x8x.

Volume 1 Summer 1989 901 - $6/79
Metacompiler in cmForth, Forth exception handler, string case
statement for UF/Forth.

Volume 1, #3 Fall 1989 902 - $6/7/9
1802 simulator, tutorial on multiple threaded vocabularies.

Yolume 1, #4 Winter 1989 903 - S6/79
Stack frames, duals: an altemative 1o variables, PocketForth.
Volume 2, #2 December 1990 004 - 86/79

BNF Parser, abstracts 1990 Rochester conf., F-PC Teach.

Volume 2, #3 905 - 36/19
Tethered Forth model, abstracts 1990 SIGForth conf.

Volume 2, #4 906 - 36/19
Target-meta-cross-: an engineer's viewpoint, single-instruction
compuler.

Volume 3, #1 Summer 91 907 - 56/19

Co-routines and recursion for tree balancing, convenient number

handling.

Volume 3, Fall '91 908 - 36/19
PostscriptIssue, What is Postscript?, Forth in Postscript, Review:
PS-Tutor.

1989 SIGForth Workshop Proceedings
Sofiware engineering, multitasking, interrupt-driven syslems,
object-oriented Forth, error recovery and control, virtual memory
support, signal processing.

931 - S20/21/26

MEMBERSHIP IN THE FORTH INTEREST GROUP

The Forth Interest Group (FIG) is a world-wide, non-profit, member-
supported organization with over 1,500 members and 40 chapters. Your
membership includes a subscription to the bi-monthly magazine Forth Dimensions.
FIG also offers its members an on-line data base, a large selection of Forth
literature and other services.

Cost is $40.00 per year for U.S.A. & Canada surface mail; $46.00 Canada
air mail; all other countries $52.00 per year. No sales tax, handling fec, or
discount on membership.

When you join, your first issue will arrive in four to six weeks; subsequent
issues will be mailed to you every other month as they are published—six issues
inall. You will also receive a membership card and number which entitles you
10 & 10% discount on publications from FIG. Your member number will be

required to receive the discount, so keep it handy.

Dues are not deductible as a charitable contribution for U.S. federal income
1ax purposes, but may be deductibic as a business expense where applicable.

FORTH INTEREST GROUP
P.O.BOX 8231 SAN JOSE, CALIFORNIA 95155

408-277-0668 408-286-8988 (FAX)

Name OFFICE USE ONLY
Company By Date Type
Sireet Shipped by Date
City ups USPS XRDS
State/Prov. Zip Wt Amt.
BO By Date
Country
Wit. Amt.
Daytime phone
Item # Title Qty. Unit Price Total
*"MEMBERSHIP ﬁ BELC
Sub-Total
[J CHECK ENCLOSED (Payable to: Forth Interest Group) e
10% Member Discount
O visa [0 MasterCard Member #
Sub-Total
Card Number
**Sales Tax (CA only)
Expiration Date
_ Mail Order Handling Fee $3.00
Signature _—
(§15.00 minimum on all VISA/MasterCard orders) *Membership in the Forth Interest Group
[ONew [JRenewal $40/46/52
* Enclosed is $40/46/52 for 1 full year's dues.
This includes 534/40/46 for Forth Dimensions.

PAYMENT MUST ACCOMPANY ALL ORDERS

MAIL ORDERS
Send to:

Forth interest Group
P.O. Box 8231

San Jose, CA 95155
U.S.A.

PHONE ORDERS
Call 408-277-0668
to place credit card
orders or for cust-
omer sarvice,

Hours: Mon.-Frl.,
9am-5p.m.PST.

PRICES

All orders must be prepald. Prices are
subject to change without notice. Credit
card orders will ba sent and billed at cur-
rent prices. $15 minimum on charge or-
ders. Checks mus! ba in U.S. dollars,
drawn onal.S. bank. A$10charge will be
added for returned checks.

POSTAGE &
HANDUNG
Prices include
shipping. The
$3.00 handling
fee is required
with all orders.

SHIPPING TIME
Books in stock are shipped

“* CALIFORNIA SALES TAX BY COUNTY
7.5%: Sonoma; 7.75%: Fresno, Imperial, Inyo,
within savon days of receipt of Mad A Orange, Ri

e, Sacra-

the order. Please allow 4-6
weeks lor out-of-stock books
(deliveries In most cases will be
much sooner).

7.25%: other counties.

mento, San Benito, Santa Barbara, San Barnar-
dino, and San Joaquin; 8.25%: Alameda, Contra
Cosla, Los Angeles, San Diego, San Mateo,
San Francisco, Santa Clara, and Santa Cruz;

XIv-1

‘ Part Two oF Two

Structure

Kourtis Giorgio

| Genoa, Italy
!

[Continued from the previous issue...]
Create avery large table. The available memory could consist
of a non-integer part of cells. Nevertheless, the definitions
work correctly and do not corrupl unavailable memory (this
depends on the choice #times:=diff/step).
MaxAvailableChunk (addr size)
constant LogosSize constant Logos
: LogosInit

Logos LogosSize Cell SIZE

LOCP{ I off LOOP} ;

: LogoBackSearch (logo -— false | addr true)
Logos LogosSize cell SIZE BACK
LOOP {
dup I @
WHEN {
drop I true
WHEN }
| }COMPLETED{ drop false
| LOOP} ;

Simple examples
10 19 3 End LOOP{ I LOOP}
| types (19-10)/+3 = three numbers. These are: 10 13 16.

‘19 10 -3 End LOOP{ I . LOOP}
| types (10-19)/-3 = three numbers. These are: 19 16 13.

| 10 20 3 LOOP{ I . LOOP}
‘ types (20-10)/+3 = three numbers. These are: 10 13 16.

20 10 -3 LOOP{ I . LOOP}
| types (10-20)/-3 = three numbers. These are: 20 17 14.

| Subtle exercise

| What gets typed by this phrase:
10 20 3 END BACK LOOP{ I . LOOP}
(Solution—the same numbers, but in reverse order, as
10 20 3 END LOOP{ I . LOOP}. Thatis, 16 13 10.)

Implementation Preliminaries
IU's possible to implement the above set of control-flow
words in at least two different ways. First is by using the usual
Forth Dimensions

The Curly Control
Set

words like BRANCH, TBRANCH, FBRANCH, and similar tech-
niques.

Additonally, an excellent idea appeared in the artidle,
“LEAVEable DO LOOPs: a return stack approach” by George
Lyons (FORMI Proceedings 1952, page 132). It is a pity that
sucha good idea hasn’tbeen considered much in subsequent
works. Briefly, that idea consists of compiling after the
beginning of the control structure a pointer to the end of the
control structure (and to other relevant points, like } LEAVING {,
ete). Afterwards, al run time, when we enter a control
structure we have to push the address of the beginning onto
the return stack, along with other things like the index and
step values, where applicable. Then any word, without need
of pointers compiled later, can jump to the beginning of the
control structure or, by using the pointer compiled at the
beginning, can jump to the end or o other relevant points.

The above solution, a little more refined, is very powerful
and provides really new possibilities, like the words AGAINS
and LEAVES. 1 LEAVES is like LEAVE, 2 LEAVES leaves two
levels of nested control structures, 3 LEAVES leaves three
levels, etc. The concept of what is structured and what is not
is cleaned up and some clarity is achieved.

Pascal, C, and standard Forth do not offer such possibili-
ties. Besides (although the code isn’t actually provided), it is
possible to defined “named” control structures like LEAVE-
TO and AGAIN-TOQ. So the sequence ABORT-CS AGAIN-TO
would mean ABORT, while COLD-CS AGAIN-TO would mean
COLD-START. Additionally, OUTMOST-CS LEAVE-TO would
mean BYE.

For efficiency purposes when programming in machine
| language for typical processors like 68xxx and 80x86 and
using assembler control structures, it may be necessary to use
the usual xBRANCH words, providing a less powerful set of
control structures (but probably more than enough for
assembler needs).

Forth processors, on the other hand, are easily adaptable
to variations of the more powerful solution, sometimes with
gains in efficiency.

In this article, 1 provide two implementations. One is a
68xxx implementation of the more powerful solution for
Forth control structures. Because the code presented must be
readable by people using other processors, pseudo-assem-
bler code is given where appropriate. So if you are interested

May 1992 June

23

in the precise implementation but do not know the 68xxx,
please don’t panic. (I found I am able to read 80x86
assembler easily without knowing the processor.)

Due to lack of time, I have been unable to present code
for the less powerful solution. For a preview, please refer to
the code provided in the article “Stack Variables (FD XI1/1).
Sorry!

Implementation Explanation
The generic control structure has the following format:

xxxx{ MainCode }ppppl{ someCodel
}pppp2{ someCode2
}ppppN{ someCodeN
KXXX}

xxxx may be any one of CONTROL, REPEAT, CASE, FOR,

TIMES, LOOP, and RECOVERABLY while ppppl, pppp2, etc.

can be any one of LEAVING, COMPLETED, ONERROR, elc.

Not every ppppX is applicable to every xxx=x.

So only some combinations are valid. Actually, the
maximum number of pppp’s is two (LEAVING and COM-
PLETED together or LEAVING and ONERROR together).

The position of reference points (pppp’s) must be re-
corded at the beginning of the control structure, along with
the position of the end of the structure.

The control structures CONTROL, REPEAT, CASE, and FOR
can only use LEAVING, while TIMES and LOOP can also use
COMPLETED. The RECOVERABLY structure can use LEAV-
ING and ONERROR.

So with CONTROL, REPEAT, CASE, and FOR two pointers
are necessary—one for the oplional LEAVING point (if the
LEAVING point doesn’t exist, a-1is stored in the pointer) and
another for the end of the control structure. See Figure Two
to understand the compilation effects of CONTROL, REPEAT,
CASE, and FOR.

In TIMES and LOOP, three pointers are necessary—one
for the leaving point, one to the end of the control structure,
and one to the completed point (see Figure Three).

Upon entering a control structure, a “control-structure
return-stack frame” is generaled. A processor register CSF
(control structure framer) is reserved to point to the actual
frame, allowing access to index values from secondaries
called within the control structure or, more generally, while
using the return stack. The control-structure return-stack
frame is composed of both necessary and optional items, the
latter depending on the control structure. See Figure Four for
a description of the retumn stack frame in various cases.

The exactactions we have to take upon entering a control
structure are:

1. Depending on the number of extra values needed (index,
step, and backcounter; or index only; or nothing), we
have to adjust the return stack pointer to reserve space for
them.

2. We have to push onto the retumn stack the address
(absolute or relative) of the routine that will deallocate the
return stack and/or other resources related to the control
structure.

3. We have to advance the instruction pointer to skip over the

May 1992 June

24

pointers compiled after the beginning of the control
structure and let it point to the first word after the
beginning,

4. We have to push the old contents of the CSF register onto
the return stack.

5. We have to push the contents of the adjusted IP Lo mark
the address of the beginning of the control structure.

6. Having completed the control structure stack frame, we
have to store into CSF the contents of the RP register,
letting CSF point to the new control structure frame.

On the other side, leaving the control structure involves
the following actions:

1. Using the CSF register, recall the saved value of the TP
pointing o the beginning of the control structure.

2. Fetch the pointer compiled at the beginning of the control
structure that points to the end.

3. Set the IP register to point to the first word after the end
of the control structure.

4. Use the address pushed onto the return stack that points
to the deallocating routine, and jump to that routine.
Standard cases are handled by three very similar routines
that deallocate the space used into the return stack, along
with the space occupied for extra data like the index, step,
and backcounter. Other control structures may have
much more complicated un-framing actions. (lhe flex-
ibility provided by pushing an address of an un-framing
routine, rather than a number of cells to deallocate, is
absolutely necessary for other control structures like
RECOVERABLY, TRACK, and LOCALS.)

Rationale for
Name and Notation Choices

The need to extend the set of control structures has been
described in many previous articles, What I'll describe here
are the choices peculiar to the set of control structures
proposed in this article.

The idea of using the same name atthe beginning andend
of a control structure simplifies both the choice of names
when inventing control structures and their memorization by
the user when learning new ones.

I could have chosen, as in other languages, to write
REPEAT { ... } or REPEAT begin ... end without using a
REPEAT before the closing bracket. While this is possible
with very slight modifications to the presented code, I found
that readability and compile-time error checking are greatly
enhanced by specifying what is beginning and what is
ending, instead of asking the programmer to stack this in his
brain. If you try to program in C or Pascal, you'll soon realize
what I mean.

Thereisn'tany real reason for selecting { and } foropening
and closing symbols instead of (and), or [and], or <and
>. The motivations are mainly aesthetical or practical ones
depending on the keyboard used: American, French, Italian,
Swedish, etc,

The choice to write xxxx{ ... xxxx) instead of xxxx (

}xxxx, Or [(XXXX ... XXXX}, Of [XXxX ... }xxxx
depends on the fact that the word xxxx { could be written
Forth Dimensions

as xxxx CSbegin and that xxxx} could be written as xxxx
CSend.
In fact, I am uncenain of which to select:

TIMES{ .. TIMES}
TIMES { .. TIMES }
TIMES{ .. }

TIMES { .. }

Actually, the provided code allows TIMES{ ... TIMES}
butalso, while discouraged, TIMES { ... } and, similarly, WHEN {
... WHEN} as well as WHEN{ ... } (useable for very short
WHENS).

So the { and } signs are read as “begin” and “end,” while
the spelling used is postfix.

When you indent vertically, in my opinion
TIMES {

TIMES }

reads better than
TIMES {
}TIMES

Furthermore, locating the braces at the end of each word
helps indicate that the beginning of the control structure is
really outside the structure, so that in a loop it is only
executed once. Likewise, it helps indicate that the word
compiled at the end of the control structure is inside the
control structure, so it is executed repeatedly.

About the name choices, 1 haven’t found anything better
for CONTROL (any ideas?). REPEAT and CASE are needed to
maintain historical continuity. FOR has been borrowed from
the C language, where it allows for the test of any condition
and the execution of any operation. The name FOR conflicts
with the established use of FOR NEXT, but I don’t think that
is clear, either. (Wouldn't it be more appropriate as COUNT
BACK or FOR PREVIQUS, etc.?) Nevertheless, if someone has
a better name to propose, it is welcome.

TIMES is obvious, and reads well. WHILE has the same
meaning as before (and gains more flexibility). WHEN is short
and could be renamed as ? LEAVE for clarity—but once used,
it is a good name.

In particular, I think WHEN{ ... WHEN} read very well.
}COMPLETED{ is long and would be cearer if named
}ONCOMPLETION{, but I don’t like Lyping so much.
} LEAVING{ means “while leaving...” and sometimes, but
not always, could be named }ELSE{.

Name choices depend mainly on personal taste, and the
discussion could go on forever without being really construc-
lve—so here it ends.

_ IF ELSE THEN
Forth’s main control structure hasn't been changed for
several reasons:

Efficiency.

Code simplification (if the IF THEN structure generated a
return stack frame, a LEAVE embedded in it would have
the effect of leaving IF THEN instead of the outer control
structure).

Presumed psychological resistance from individuals (myself

Forth Dimensions

included) to so radical a change.

The main reason for leaving IF THEN unchanged is the
efficiency preserved. Nevertheless, many complaints have
been raised about its counter-intuitive syntax. While any
syntax becomes intuitive once it is learned, the time needed
to memorize a syntax depends on its relationship to previous
use (usually spoken language). New names for IF THEN that
follow the presented syntax guidelines are THEN { and THEN },
with the word IF acting like an optional comment word that
doesn’t compile anything. So we could write:

IF 3 X @ > THEN{ .. THEN}
which is equivalent to

3 X @ > THEN{ .. THEN}
equivalent to the classic

3 X @ > IF . THEN}

The syntax shown is probably more teachable than the
old one. But I resisted the templation to rename it, because
my goal wasn't to offer new names for old words but to offer
new possibilities in a coherent, unitary frame.

Future Directons
Ialready have some ideas of how to expand the presented
control structure sel, but I am still experimenting with these
extensions. When they become more stable, I will present
them. Meanwhile, here are some ideas to think about.

RECOVERABLY
RECOVERABLY {
code.to.execute
JONERROR{ error.handler
RECOVERABLY }
(See provided code for more elucidations.)

MULTILOOP

((start0 step0 startl stepl .. startN stepN))
#times
MULTILOOP{ ..
MULTILCOP }
Iterate a loop that takes a variable number of starts and steps
and, atany iteration, moves all the indices together, each with
its own step. The loop must be exccuted #times.

I0 I1 I2 etc.

TRACK

Every word that allocates a resource (e.g., files, memory,
windows, hardware, etc.) must place into a stack variable or
onto the stack an identifier for the allocated object and for the
deallocating routine. Leaving the TRACK structure for any
reason must have the effect of deallocating, in addition to the
return stack, all the resources allotted within the above
structure.

The LEAVE action may be executed as the result of a
LEAVE, WHEN, WHILE, or similar word, or due to an error that
happened inside a word called directly or indirectly within
the TRACK structure. (Pay attention to the implementation of
LEAVES and ERROR)

May 1992 June

Articles on Control Structures

Forth Dimensions

1 No. 3 “D-Charts,” Kim Harris.

1 No. 5 Case statement contest.

1 No. 5 “Forth-85 Case Statement,” Richard B. Main.

2 No. 2 "A Generalized LOOP Construct for Forth,” Bruce

Komusin (multiple WHILEs).

2 No. 3 Case contest

2 No. 3 “The Kiu Peak GODO Construct,” David Kilbridge.

2 No. 4 “Case Statement,” Bob Giles (letter).

2 No. 4 “The CASE, SEL, and COND Structures,” Peter H.

Helmers.

3 No. 1 "Compiler Security,” George W, Shaw.

3 No. 3 “Multiple "WHILE’ Solution,” Julian Hayden (letter).

Vol. 3 No. 6 "Cases Continued,” John J. Cassady.

Vol. 3 No. 6 “Eaker’s CASE for 8080," John J. Cassady.

Vol. 3 No. 6 “Generalized CASE Structure in Forth,” Edgar H. Jr. Fey.

Vol. 3 No. 6 “CASE as a Defining Word,” Dan Lemer.

Vol. 3 No. 6 “Faker’s CASE Augmented,” Alfred J. Monroe.

Vol. 3 No. 6 “Transportable Control Structures with Compiler
Security,” Marc Perkel (LEAVE discussion).

Vol. 4 No. 3 “Forth-83 DO LOOP,” Robert L. Smith.

Vol. 4 No. 3 “Forth-79-compatible LEAVE for Forth-83 DO LOOPs,”
Klaxon Suralis.

Vol. 5 No. 3 “Yet Ancther Case Statement,” Marc Perkel (letter).

Vol. 5 No. 3 “RPN Blues—Revisited,” Horst G. Kroker.

Vol. 5§ No. 3 “Forth-83 Standard,” Robert L. Smith.

Vol. 5 No. 3 “Forth-83: a Minority View."

Vol. 5 No. 4 “TForth-83 Loop Structure,” Bill Stoddard.

Vol. 5 No. 5 *Within WITHIN,” Gary Nemeth.

Vol. 5 No. 5 "A More General CASE,” Martin Schaaf (letter).

Vol. 5 No. 5 “Just One Exit in Case,” Ed Schmauch (letter).

Vol. 5 No. 6 “Do...When...Loop Construct,” R.W. Gray.

Vol. 5 No. 6 “DO...LOOP 83 Caution,” Nicholas Pappas.

Vol. 6 No. 1"Parnas’ it,..ti Structure,” Kurt W. Luoto (subcases COR
CAND).

Vol. 6 No. 1 “More on WITHIN,” Rich Leggit (letter).

Vol. 6 No. 2 “Forth Control Structures,” David W. Harralson.

Vol. 6 No. 4 “ANDIF and ANDWHILE,” Wendall C. Gates.

Vol. 6 No. 6 “Enhanced DO LOOP,” Michael Hore (fallthrough).

Vol. 6 No. 6 “Techniques Tutorial: YACS," Henry Laxen.

Vol. 7 No. 1 “YACS, part two,” Henry Laxen.

Vol. 7 No. 1 “Another Forth-83 LEAVE,” John Hayes.

Vol. 7 No. 3 “Improved Forth-83 DO LOOP,” Dennis Feucht.

Vol. 8 No. 4 “Second Take: Multiple Leaves by Relay,” Richard
Miller (letter).

Vol. 8 No. 5 “Ultimate Case Statement,” Wil Baden.

Vol. 12 No. 2 “Interactive Control Structures,” John R. Hayes.

Vol.
Vol.
Vol.
Vol.

Vol.
Vol.
Vol.
Vol.

Vol.
Vol,

FORML Proceedings

1981 “Unravel and Abort. Improved Error Handling for Forth,”
David Boulton.

1981 “A Generalized Forth Looping Structure,” Robert Berkey
(COUNTS RANGE).

1981 “Comprehensible Control Structures,” Howard Jr. Goodell
(new syntax).

1982 “Non-Immediate Looping Words.”

1982 “LEAVEable DO LOOPs: a Return Stack Approach,” George
Lyons.

1983 “Modemn Control Logic,” Wil Baden.

1983 “Error Trapping, a Mechanism for Resuming Execution at a
Higher Level,” Klaus Schleisiek.

1982 "Proposed Extensions to Standard Loop Structures,” Kim
Harris and Michael McNeil.

1983 “User-Specified Error Recovery in Forth,” Don Colburn.

1984 "Doubling the Speed of Indefinite Loops,” Michael McNeil.

1984 "An Improvement Proposal for DO +LOOP Structure,” John
Bowling.

1984 "Yet Another CASE,” John Rible.

1984 “Error Trapping and Local Variables,” Klaus Schleisiek.

1985 “Interpretive Logic,” Wil Baden.

1985 “Improvements in Error Handling,” Loring Cramer.

1985 “Error Handling Using Standard Compiler Directives,” Frans
Cornelis (definition of QUIT).

1985 “Extending Forth’s Control Structures into the Language
Requirements of the 90’s,” David W. Harralson.

1986 “Charting, Fscaping, Hacking, Leaping Forth,” Wil Baden.

1986 “Extended Forth Control Structures for the Languages Re-
quirements of the 1990's,” David W. Harralson.

1987 “Loops and Conditionals in LaForth,” Robert L. Smith.

1987 “Interpreting Control Structures the Right Way,” Mitch Bra-
dley.

1987 “Forth Control Structures for the Language Requirements of
the 1990’s,” David Harralson.

1988 “GOTO: A Proposal,” C.H. Ting.

1989 “Have Dot-if Dot-else Dot-then,” Klaus Schleisiek-Kern.

1989 Control-Flow Words from Basis 9," Wil Baden.

1989 “Pattern-Matching in Forth,” Brad Rodriguez (interaction
between control structures and pattern matching).

Kochester Forth Conference Proceedings
1981 “Transportable Control Structures,” Kim Harris.
1982“The Importance of the Routine QUIT,” Hans Nieuwenhuijzen.
1982 "Techniques Working Group,” Ricks Joosten.
1984 “Hello, a Reptil I AM,” Israel Urieli.
1985 “REvised REcursive AND? 'REPTIL :IS” Israel Urieli.
1985 “Exception Handling in Forth,” Clifton Guy and Terry
Rayburn.
1986 “Do-Loop Exit Address in Return Stack and ?leave.”
1988-89 not available to author
1990 "Non-Local Exits and Stacks Implemented as Trees,” RJ.
Brown (abstract).
1990 “Cryptic Constructs,” Rob Spruit.

Dr. Dobb’s Journal
9/83 “Non-deterministic Control Words in Forth,” Louis L. Odette.
1/84 "Non-determinism Revisited,” Kurt W. Luoto.
11/86 “Extended Control Structures,” Wil Baden (letter),

Miscellaneous Sources

“Adding GOSUB to Forth,” Michael Ham, Computer Language 4/
86.

“A Fast and Versatile Control System Using High-Level Program-
ming,” I Ohel. Motorcon 81 Conf.

“Extensibility with Forth,” Kim R. Harris. Proceedings of the West
Coast Computer Faire (date n/a).

“Data Structures Issue,” James Basile. Journal of Forth Application
and Research Vol. 2 No. 1.

May 1992 June

Forth Dimensions

Figure Seven,
xxEX{ SomeCodel WHEN
SomeCode?2 WHILE
SomeCode3 WHEN{ SomeCode5 WHEN} .
SomeCoded WHILE{ SomeCodet WHILE} |
SomeCode’7 }LEAVING{ CodeTolInsert =xxxx}
Figure Eight.
xxxx | SomeCodel WHEN { CodeToInsert WHEN }
SomeCode?2 WHILE { CodeToInsert WHILE}
SomeCode3 WHEN { SomeCodeb WHEN }
SomeCode4d WHILE { SomeCodeb WHILE}
SomeCode7 xxxx}

Such an error, besides resuming execution at the level of
the first error handler above the TRACK structure, will also
have the automatic effect of deallocating the resources
allotted within that structure without leaving open files,
unused memory, etc. In addition, if the TRACK} word is
reached, resources still left intact will be deallocated auto-
matically.

LOCALS

The locals solutions can be viewed at the internal of the
control structure frame. The syntax could be:
(x1lo)
L{ ABC —-- .. code .. L}

Conclusions

I hope to have shown that the presented control structure
set is easy to use and learn, powerful, expandable, uniform,
and unifying. More work has to be done onthe RECOVERABLY
and TRACK structures, and on the pattern-matching problem
that is related to control structures. Is anybody willing to
implement the above structure set for the 8086 processor on
another system (F-PC, for example) and to present the
developed code? Does anybody have any new control
structure?

Has anybody encountered inconsistencies in the above
set of words? I would be very glad to discuss the positive and
negative issues of this wordset and any problems that remain
unresolved.

Speculating on the structure of Forth engines, [believe I
have found ways to render these control structures “pipeline-
able” and as efficient (or more so, due to pipelines) as normal
branch words. If fact, variations of the above scheme are
easily adaptable on some Forth engines to run as fast as their
| branch equivalents. For structures like BEGIN WHILE RE-
PEAT in particular, pushing the address of the beginning of
the structure onto the return stack means that, without
compiling offsets, the code is relocatable automatically while
given the efficiency of subroutine return (or better program
counter load from the top of the return stack); and we are able
with “slight” processor modifications to execute an AGAIN
concurrently with some other data stack manipulation.

Forth Dimensions

Does anyone have the ability to do benchmarks of various
solutions? Are modifications needed to achieve maximum
performance?

How does this wordset compare to other solutions in
Forth or, more generally, to the control structures of other
languages? Are there ideas to borrow from other languages?

If, as is the case, flexibility and freedom are the best
characteristics of Forth, let’s use them to our best advantage.

And to conclude our story:

AUTHOR
(lired, observing the reader)
Do you like all this?

READER
(thinking)
Hmm! Have you got the code for this?

AUTHOR
(serious)
Sure, on the following pages!. (Becoming impatient) But
tell me, do you like it?

READER
(smiling)
Let me try, my friend. I'll iy the code and tell you.

AUTHOR
(thinking silently)
...Forthersare neversatisfied. .. very, very strange people. ..

ADVERTISERS INDEX

Delta Researchcccoecvvvviieevvinnnenn. 15
Forth Dimensionsccocceeevvvvennccn. 22
The Forth Instituteccccocvveevvineninnnn.. 44
Miller Microcomputer Services5
The Saelig Companyc.ccoverieenienn. 13
SlCON COMPOSBIE swiunaommisisvii 2

27 May 1992 June

When the size is unspecified default is long.

B> W> L> mean respectivelly "byte move," "word move," "long move,"

The assembler chooses always best form for instruction.

That means that add, may compile

addg (add general) addg (add quick) addi (add immediate)

and move may compile moveg (move general) movegq (move quick to data reg)
or movel (move immediate). For address registers , size is ininfluent

so a long immediate move may be compiled as word immediate move

and a long adda (add to address register) may be compiled as word
immediate adda (if the immediate value is small enough).

Pl Al S S S S

: CodeAddrOf ("mame'InputStream — Pfa) ' cfa [compile] literal ;

immediate
Observe figure S to understand to
what make reference the above words.
CSF 1) means in forth pseudocode:
"CSF @ +"

macro: CSbegining CSF () macros
macro: 01dCSF CsF 1) macros
macra: releaser CSF 1) macro;
macro: Index CsF I) macros

Pl i

macro: Step
macro: Counter

CSF 1) macro; \ Step and counter are used by the
CsF 1) macro; \ loop structure.
csF

R BBE

macro: 0ldeErrorCSE
macro: 01dSP

1) macro; \ OldErrorCSF and 01dSP are used
CSF 1) macro; \ by the recoverably structure.

5 R

variable lastErrorCSF lastErrorCSF off \ Contains the value of the CSF of the
\ last RECOVERABLY structure.

Set the instruction pointer to point to the

begining of the control structure while

reseting the return stack to be as when the

control structure was entered. This is necessary

to allow an AGAIN beeing executed by a

secondary called within the control structure.

without filling the RetStack with unnecessary addresses.

macro: IPbeg>end, -2 1P 1) IP w. add, macro;

\ fAssuming the Instruction Pointer (IP) points to the begining of the control

\ structure make it point after the end of the control structure (figure 3)

macro: IPtoBegining,
CSbegining IP 1>
CSF RP 12
macro;

Pl P R P S

macro: unframe, (#of_extra_cells onRS —)

01dCsF CsF 1> \ Restore the old contents of the CSF register
cells @A + ## RP add, \ while freeing from the return stack the space |
macro; \ used for the control structure.

create releasers

code Punframe @ unframe, rts, end-code \ Unframe a return stack frame
code lunframe 1 unframe, rts, end—code \ where the space occuplied by
code 3unframe 3 unframe, rts, end-code \ extra values (index step ecc)
Ni1s of @ , 1 or 3 cells.
code RECOVERABLYrelease \ More elaborate behaviour to
LastErrorCSF Apcl) al lea, N unframe a recoverably control
oldErrorCsF a@ () 1> \ structure frame.
3 unframe,
rts, end-code
\ code otherReleasers ... end-code
macro: frame, (releaserAddr #extra cells onRS #of compiled pointers)
>r (#extra cells onRS) cells ## RP w. sub, \ Reserve space on RetStack for Extra cells
{ releaserfddr) releasers - ## w. rpush, \ push offset of unframing routine.
r> (#of_compiled_pointers) 2x ## IP w. add, \ Make the IF point to the first word
\ after the control structure start.
CSF rpush, IP rpush, RP CSF 1>

macro; \ push old CSF push start IP addr set new CSF

May 1992 June 28 Forth Dimensions

macro: ResourcesfRSrelease, \ execute the unframing routine
releasers Apcl) AD lea, \ Load AQ with the base addr of unframing routines.
releaser A w. add, \ Add the unframing routine offset to the base addr.
AB () Jsr, \ Jump subroutine to the routine.

macraoj

code LEAVE IPtoBegining, IPbegrend, ResourceséfRSrelease, next, end—code
\ move IP to begining. Move it to end . Execute unframing routine.

code fromBegininglLeave IPbeg>end, ResourceséRSrelease, next, end—code
\ special case more efficient LEAVE

\ Beeing at the begining of the control structure we want to jump to
N\ the LEAVING COMPLETED or similar points if they exist.
\ Other wise LEAVE the control structure directly.
macro: fromBegNEXTtoReferencefoint, (offset_of_pointer_to_ref.point —)
(offset = -2,-4,-6) IP 1) d@ w> \ offset IP @ + w@ d@ w!
@<, CodefAddrOf fromBeginingLeave CCabranch, \ No code provided for LEAVING
\ or COMPLETED. LEAVE out directly.
d@ IP w. add, \ move to the reference point: d@ we IP +!

next, \ and continue execution.
macro;
macro: fromBegNEXTtoleaving, -4 fromBegNEXTtoReferencePoint, macro;
macro: fromBeghEXTtoCompleted, -6 fromBeghNEXTtoReferencePoint, macro;
macro: fromBeghNEXTToDnError, -6 fromBegNEXTtoReferencePoint, macro;

\ Beeing at the begining of a control structure go to a specific reference point.

code NegError error'", #times is negative" end-code
\ from assembly issue an error message.

macro: NoNegativeTimes, <, CodeAddrOf NegError CCabranch, macro;
N if the condition code flags signal a negative value issue an error message.

macro: OnlyPositive, NoNegativeTimes, @=, if, next, then, macro;
\ If the Cond Code flags signal a negative number issue an error ,
N If a they signal a @ number stop here without doing nothing else.

code LEAVES (#timesToleave —)
dl pop, OnlyPositive, \ continue only if the #times is positive
dl wtimes<, IPtoBegining, IPbeg>end, Resources&RSrelease, wtimes>,
\ Unframe the return stack for #timesTolLeave times.

next,
end—code
code AGARIN (—) IPtoBegining, next, end—code \ Continue from the begining
\ of the control structure.
code AGAINS (#timesToAgain —) \ Resume execution from the begining of the|
dl pop, OnlyPositive, 1 ## di sub, \ n—th ocuter control structure.
dl wtimes<, Resourcesi&RSrelease, wtimes>, \ 50 n—1 control structure frames
IPtoBegining, next, \ must be unframed.
end-code
code (SIMPLE{) (—) \ It gets compiled by CONTROL{ or REFEAT{ .

CodenddrOf Bunframe (releaser) @ (extra values) 2 (#pointers) frame,
next, \ when we enter CONTROL or REPEAT we have only to make a control structure frame.
end—code

Forth Dimensions 29 May 1992 June

code (INDEXED{) (value —) \ It gets compiled by FOR{ or CASE{ .
CodeAddrOf lunframe (releaser) 1 (extra value) 2 (#pointers) frame,
index pop, \ when we enter FOR and CASE besides making a control structure frame
next, \ reserving space for the index we have to set the initial index value.
end—code

macro: 7Completed, (——) @<, if, fromBegNEXTtoCompleted, then, next, macro;
\ if the backcounter is negative the loop must go to the COMPLETED clause or
\ if COMPLETED doesn't exist it must LEAVE the control structure.
code (TIMES{)
Codefddrof lunframe (releaser) 1 (extra value) 3 (#pointers) frame,
index pop, NonegativeTimes, \ issue error if negative #times.
1 ## index sub, Completed, \ predecrement the backCounter and if it is

end—code \ @ go to COMPLETED (of leave if COMPLETED is absent)
code (TIMES})
IFPtoBegining, \ set the IP to the begining of the control structure.
1 ## index sub, 7Completed, \ decrement the backCouunter and if exausted go
end—code \ to COMPLETED (or leave if COMLETED doesn't exist)

code (LOOP{} (begining #times step —)
CodefdddrOf 3unframe (releaser) 3 (extra values) 3 (#pointers) frame,
step pop, counter pop, NoNegativeTimes, index pop,
1 ## counter sub, Tompleted,
end—code
\ make the control structure retwn stack frame reserving space for 3 extra
\ values. Set the step value set the backCounter value (checking that it isn’'t negative)
\ set the index starting value, predecrement the backcounter value

code (LOOPY)

IPtoBegining, step d@ L> d® index add, \ go to the control structure start.

1 ## counter sub, “Completed, \ Add the step to the index , decrement
end—code \ the backCounter check it ecc.

code (RECOVERABLY{) (—)

CodeAddrOf RECOVERABLYRelease (releaser) 3 (extra values) 3 (pointers) frame,
lastErrorCSF Apcl) AB lea, \ Save the old value of the variable oldErrorCSF

82 () oldErrorCsE 1> \ on the return stack as an extra value.

SP oldSP 1> \ Save the Stack pointer position on the RetStack.

CSF A () 1> \ Set the new value of the oldErrorCSF point to the actual
index clr, next, \ return stack frame. Set the initial value of the index
end—code \ to @ . The index counts the #times an error occured until

\ now.

code ERROR

repeat<, lasteErrorCSF Apcl) CSF cmp, <>, while, \ Unwind the return stack to

ResourcesifRSrelease, repeat>, \ reach the more recently

1 ## index add, IPtoBegining, fromBegNEXTtoOnerror, \ set error handler and

end—code \ start executing the
\ ONERROR clause.

code 7ERROR (flag —) \ Do Error if the flag is

d@ pop, B<>, CodefddrOf ERROR CCabranch, next, \ true.
end—code
code ErrorPropagate \ BackPropagate the error to

Resources8RSrelease, always, CodefddrOf ERROR CCaBranch,\ the previous error handler.
end—code

code StackMark { —) SP oldSP L> next, end-code

code StackRestore (—) 01dSP SP L> next, end—code \ reset the stack to the level
\ it had when the error handler
\ had been set.

May 1992 June 30 Forth Dimensions

code WHEN (flag —)
d@ pop, @<>, if, IPtoBegining, fromBeghEXTtoleaving, then, next,

code WHILE (flag —)
d@ pop, @=, 1f, IPtoBegining, fromBeghEXTtolLeaving, then, next,
end-code \ same as ''@= WHEN"

macro: Zenter, (condition —)
if, 2 # IP add, next, then, \ " 2 ## IP add, " compiles addq,
IP)+ IP w. add, next,
macro; \ a word pair beginner (like WHEN{) has to decide 1f the code between
\ the word pair has to be executed or skipped. If the condition is true
\ we execute the code between the word pair.

code (WHEN() (flag —) d@ pop, @<>, Zenter, end-code
code (WHILE{) (flag —) d@ pop, @=, 7?enter, end-code
code (OF{) { number_ to compare_against_index)

dd@ pop, index d@ cmp, =, “enter, \ execute the pair code if the index
end—code \ equals the stack argument.
\ Forth definition of WITHIN is:

N o1 WITHIN (value lower upper) aver — >R — R> UK 3

N That means: result = (Up—low) U< (value—low)

\ If you design numbers on a circle in a counterclockwise manner

N\ value is WITHIN lower and upper IF AND ONMLY IF starting from lower
\ and moving on the circle in a counterclockwise manner you find Value
\ strictly before then Upper.

\ (the starting position must be checked first).

N So lower=0 wvalue=10 upper=23 1is okay

\ lower=23 value=23 upper=30 is okay

\ lower=10 value=30 upper=30 1sn’'t okay

\ lower=30 value=-1@0 upper=—-1 1is okay

\ lower=34 value=—3@ upper=30 is okay

N lower=2 value=—4 upper=0 isn’'t okay

code (WITHIN{) (lower upper) (d@:=lower, dl:=index, dZ2:=upper)
index di 1> d2 pop, (upper) d@ pop, (lower)
dd dl sub, dB@ d2 sub, \ subtract lower from both index and upper.
dl d2 U<, compare, 7enter,
\ above line 1is equivalent to: dl d2 cmp, CC, 7enter,
\ That means in forth pseudocode : dil @ d2 @ - U< Zenter,

end—code
N The rawlN is used as subroutine (the code is unneficient but doesn’t matter).
code rawIN (numl num2 ... numN N —) \ subject on d@ result on dl.

a@ pop, \ keep in a@ the return address.
@ ## dl 1> d2 pop, (d2 contains the counter)
\ Loop on register d2. If at start d2 is @ the Loop isn' t done.

d2 wtimes<, \ d2 @ times<
SP)+ d@ cmp, \NSPREReEdJB @ - 4 5P +!
@=, if, -1 ## dl L> then, \ @= if -1 d1 ! then
wtimes>, \ times>
a@ () imp, \ return from subroutine.
end-code
code backIN (numl num2 ... numN N subject — flag \\ group subject — flag)
d@ pop, CodefddrOf rawIN Absr, dl push, next,
end—code
Forth Dimensions 31

end—code \ 1f the flag is true go to the LEAVING clause or if it doesn’'t exist LEAVE Lhe CS

May 1992 June

: IN { subject numl num2 ... numN N — flag) (subject group — flag)
dup 1+ pick backIN nip ; \ Doing ROLL would have been unefficienti.

code (IN{) (numl NnumZ ... numN N —)
index d@ 1> CodefddrOf rawIN Absr, dl tst, @<>, Zenter,
end—code
\ To use IN{ IN} ecc consider to define ({ and)).
\ They may be defined as
\ Svariable OldDepth
N : (((—) depth OldDepth push ;
Xowm)y =1 depth OldDepth pop — 3
\ or if you aren’'t familiar with Stack Variables as described in FD XII number 1
\ you may use this alternative definition (that allows for nested ((and)) :
\ VARIABLE OLDDEPTH
N : ({ (— %) OldDepth @ depth oldDepth ' ;
N2)) (xnln2 oo PN—nNn1ln2 ... N N)
\ depth olddepth @ — dup 1+ roll OldDepth ! ; \ "1 ROLL" means SWaP
code 1 { — IndexValue) index push, next, end-code
code TO-1 (newvalue -—) index pop, next, end-code
code STEP (valueTloAdd —) N "STEP" or "+70-1"

d@ pop, d@ index add, next, end-code \ add to the index a value
code J { — IndexValue)
oldCsF a@ 1> \ reference the old Control structure frame
@4 a@ I) push, \ Attention no information localisation.
next, \ Value @A is that of the "index," macro.
\ Better but unefficient definition is:
\ CSF a@ 1> O0ldCSF CSF 1> index, push, a@ CSF 1> next,

end-code

\ Full compile time error checking is provided.
\ AN easy syntax is provided to construct new control structures.
structure{ BegStructure
cell: >BegToken \ the words >begToken >BegStarter
cell: >BegStarter cell: >BegkEnder \ >BegEnder are equivalent to:
cell: >Beg#pointers cell: >BegApplicableMids \ @ CELLS + 1 CELLS + 2 CELLS + ecc
structure}
the above structure is tied to structure beginer words like CASE{ TIMES{ ecc.
the field >BegToken contains the token of CASE{ or TIMES{ or what is the case.
the field >BegStarter contains the token of the word to compile at the structure
begining ((SIMPLE{) (INDEXED} (TIMES{)). See figures 3 and 4.
The field >BegbEnder contains the token to compile at the control structure end
(words like LEAVE AGAIN (TIMES}) (LOOP}))
The field >Beg#Pointers contains the # of pointers to reference points to
compile at the control structure begining.
The field >BegApplicableMids is a bit Array that specifies wich clauses
like LEAVING COMPLETED ONERROR ecc are applicable to the considered control structure.

Pl S S S S S A A

structure{ mid}{Structure
cell: >midMask cell: >midPointerOffset cell: >midEnder
structure}
\ The above structure is related to the clause words (like }LEAVING{ }COMPLETED{ ecc)
\ the >midMask field contains a bit array with the bit associated to the clause
\ word on. The field midPointerOffset specifies the offset (—4 for LEAVING
\ and -6 for COMPLETED) of the pointer at the begining of the control structure.
\ See figure 3 and 4

variable Beg variable CSbegining variable ender

\ Tree variables to hold the token of the start word of the last

\ control structure under construction, the address of the begining of the
\ control structure and the token of the word to compile at the end of the
\ control structure (like LEAVE AGAIN (TIMES}) ecc) .

May 1992 June 32 Forth Dimensions

BeghAddr (— addr) Beg @ >body ;3 \ Give the address of the Begstructure associated
\ with the last control structure.

Keep&! (NewValue addr — OldValue) dup @ >r ! r> ;3 \ Store a new value into a variable
\ holding the old one on the stack.
ofspoints (offset of pointer addr to point) \ Set the pointer compiled at the start
CSbegining @ — swap CSbegining @ + w! 3 \ of the control structure to point to
\ the specified address.

.

: ofspoints? (offset_of_pointer —— flag) \ Does the specified pointer point
CSbegining @ + w@ -1 <> s \ already somewhere?
: CSbegin (BegToken —) \ given the token of the control structure beginner
>body >r
r@ >BegToken @ Beg KEEP&! \ set the Beg variable accordingly
r@ >BegStarter @ token, \ compile the associated starting word
r@ >Beg#pointers @ @ DOold -1 w, LOOPold \ set to -1 the initial pointers
here CSbegining KEEP&! \ set the CSbegining var to point here.
r@ >BegEnder @ ender KEEP&! \ set the ender variable.
r> drop ;
: Csend (—) ender @ token, \ Compile the ender token
-2 (end_of_structure) here ofsPoints \ make the pointer to end point point to the end. |
ender ! CSbegining ' Beg ! 3 \ Restor the old values of the 3 variables.
: cells, (values .. values #HcellsToCompile —) \ compile a certain number of cells.
here swap cells allot here cell- DOold Iold ! -—-cell +L00Pold ;

The use of the subsequent word 1s like:

create CONTROL{ * CONTROL{ -~ (SIMPLE{() " LEAVE Mids{ ° JLEAVING{ Mids} Begls
Begls (dataToFillBegStructure)

5 cells, immediate does> Zcomp >Begloken @ CSbegin -

compile the 5 structure parameters declare immediate the structure beginer

\ previously created, and declare it to DO the code after does>

" o s

~

: enderls (correspondingBeg — // "name" -IS-)
create , immediate does> Zcomp @ Beg @ <> Zabort" Ender doesn t maches Beg" CSend ;
\ declare a control structure ender word associated to the beginner.

: 3 Zcomp CSend 3 immediate \ Generic ending word to be used with any
\ control structure start or leaving pair.

Clause words (as ILEAVING{ and }COMPLETED{) have a certain bit number associated.
When we define a CLAJSE word we must “allot” the next free bit number for the clause.
When executed a clause during compilation it must check that we are into compile
state, check that the CLAUSE 1s applicable to the actual control structure,

check that it hasn’'t been already used , 1t must compile the ender token set

by the control structure beginner, it must set the associated pointer compiled at
the control structure begining point to HERE and fimally it must set it's own ender.

variable midFreeMask 1 midFreeMask !

: midy{Is (midPointerUffset midender //15 "name")

create midFreeMask @ dup , 2% midFreeMask ! 2 cells, immediate does> (addr)

Zcomp \ check compilation state.

dup >midmask @ begaddr >BegApplicableMids @ and \ is it applicable to this CS 7
@= 7Zabort" midEnderBeginer isn’'t applicable to that control structure”

dup >midPointerOffset @ ofsPoints? Zabort” mid}{ already applied."
ender @ token,

dup >midpointerOffset @ here ofsPoints \ set the pointer point here

dup >midender @ ender ! \ set new ender

drop j;

Forth Dimensions 33 May 1992 June

-4 (midpointerOffset)
-6 (midpointerOffset)
—& (midpointerOffset)

" LEAVE (midender)
" LEAVE (midender)
" ERRORPROPAGATE (midender)

mid}{Is JILEAVING{
mid}{Is COMPLETED{
midi{ls }ONERROR{

Mids{ (— @) @ ;

Mids} (@nln2 ... nN —) 1 @ (#pointers(at_least one) applicableMask)
BEGINold rot dup WHILEold >body >midMask @ or swap 1+ swap REPEATold drop ;
Mids{ ... Mids} is used to construct the mask of the control structure applicable

~

-~

Clause words.

© WITHIN{ Enderls WITHIN}

create CONTROL{ ~ CONTROL{ ' (SIMPLE() " LEAVE Mids({ JLEAVING{ Mids} Begls
* CONTROL{ Enderls CONTROL}

create REPEAT(" REPEAT((SIMPLE() " AGAIN Mids{ ° JLEAVING{ Mids} Begls
" REPEAT{ Enderls REFPEAT}

create CASE(CASE((INDEXED{) ' LEAVE Mids{ JLEAVING{ Mids} Begls
* CASE{ E&Enderls CASE}

create FOR{ * FOR{ (INDEXED{) AGAIN Mids{ MILEAVING{ Mids} Begls
" FOR{ Enderls FOR}

create TIMES{ TIMES((TIMES{) (TIMES})

Mids{ ' ILEAVING{ ‘ 3COMPLETED{ Mids} Begls TIMES{ Enderls TIMES}

create LOOP(tLOooP((LOOP{) (LOOP})

Mids{ JLEAVING{ JCOMPLETED{ Mids} Begls " LOOP{ Enderls LOOP}

create RECOVERABLY(' RECOVERABLY{ (RECOVERABLY{) ~ LEAVE

Mids{ FLEAVING{ YONERROR{ Mids} Begls " RECOVERABLY} EnderIs RECOVERABLY}
create WHEN{ WHEN((WHEN({) ° LEAVE Mids{ Mids} Begls

" WHEN{ EnderlIs WHEN)}

create WHILE{ " WHILE({ (WHILE() " LEAVE Mids{ Mids} Begls

" WHILE{ Enderls WHILE}

create ON{ ©OON((ONC) LEAVE Mids{ Mids}; Begls

" ON{ Enderls ON}

create IN{ IN(©O(ING) " LEAVE Mids{ Mids} Begls

" IN{ Enderls IN}

create WITHIN{ © WITHING (WITHINC) " LEAVE Mids{ Mids} Begls

May 1992 June

34

Forth Dimensions

TuroriaL

Leonard Morgenstern
Moraga, California

It has been well said that programs are not written in
Forth, Rather, Forth is extended to make a new language
specifically designed for the application at hand. An
important part of this process is the defining word, by which
one can combine a dala structure with an action, and create
| multiple instances that differ only in detail. One thinks of
a cookie-cutter: all the cookies are the same shape but have
different-colored icing.

The Basics

Defining words are based on the Forth construct
CREATE ... DOES>. Beginners quickly learn to apply the
method mechanically, using two familiar steps: 1) Start a
colon definition, write CREATE, and follow by the actions
that lay down data or allot RAM. 2) Write DOES> and follow
by the action to be performed on the body of the word, the
address of which has been put on the stack by DOES>.
(Experienced programmers will please forgive certain
oversimplifications.) Although the CREATE ... DOES> pair
is easy Lo use at this basic level, understanding the details
is hard because there are no fewer than three phases of
action. Words compiled in one are executed in another.

A simple example is 3CONSTANT, which creates the six-
byte analog of CONSTANT. (Screen One) It has two stack
diagrams; the first for creating an instance, and the second
for executing it. The first phase is in effect when 3CON-
STANT is defined (Line One). It is a colon definition and
works in the usual way; that is, : sets up a header, after
which the CFA’s of ordinary Forth words are compiled, and
immediate words such as DOES> are executed. The pro-
cess is ended by the semicolon.

In the second phase (Line Three), 3CONSTANT creates
an instance named 3F00. The CFA’s that were compiled in
the first phase are now execuled one at a time, as follows:
CREATE picks up the next word in the input stream, which
is 3F00, and makes a header from it. The commas lay
down the top three words [rom the stack; they become the
body. DOES> stops the action and sets the CFA of 3F00 1o
execute the Forth words that follow it at Point A. These are
not executed until phase three, in which 3F00 is executed
(Line Four); the address of its body is put on the stack, and
i the Forth words at Point A are executed, moving three

Forth Dimensions

35

Working with
Create ... Does>

Forth words from the dictionary to the stack.

Using ;CODE

Just as it is possible to substitute assembler for high-
level Forth by starting an ordinary definition with CODE
instead of :, one can do the same for defining words by
substituting ; CODE for DOES>. In the alternate definition
on Screen One, 3CONSTANT is rewrillen in this way. ; CODE
is followed directly by the necessary assembler words, and
the definition is terminated by NEXT and END-CODE with
no semicolon (Line Five).

As another example (Screen Two), we construct number-
machines. The real ones look like rubber stamps, but print
sequence numbers. Their Forth equivalent simply puts the
next number on the stack. Note that commands can
precede CREATE. We can specify that the machines reside
in a vocabulary named #MACHINES. We could make all of
them immediate by writing IMMEDIATE just before DOES>.

What CREATE Does

In the Forth-83 Standard, CREATE will “define a word
that returns the address of the next available user memory
location.” Hence, if we write CREATE FOO and then ex-
ecute FOO, an address is returned. Most existing Forths (fig-
Forth is the important exception) follow this rule, as does
the ANSI draft standard. Differences derive from the fact
that each implementation interprets “the next available
memory location” in its own way. For example, in F83 the
dictionary is confined to a 64K space, and the address
returned by FOO immediately follows the CFA. In F-PC,
header and body are in separate spaces called the head
segment and the code segment respectively, and FOO
returns an address in the latter. The ANSI draft standard
adds specifications as to alignment. The casual user need
not be concerned with these details because words that
allot memory, such as , (comma), C, and ALLOT itself,
automatically do so in the proper place, namely, at the first
available memory location.

It is worthwhile 1o comment here that one should not
use 2+ 1o go from the code field to the body of a word. It
will work in F83, but may not in other versions. Porting
from one Forth to another is never easy, and a shortcut of

May 1992 June

this kind merely aggravates the problem. The correct word
is >BODY.

CREATE can stand alone, either inside or outside a
colon definition, without an associated DOES>, and is so
used when the word to be created merely returns the
address of its body, for example, variables and non-
indexed arrays. Thus, we can wrile CREATE FOO and
follow it with 0 ,. When FOO is executed, the address of
the zero will be returned, so the action is the same as a
variable. Or, we can use the predefined VARIABLE which
is defined as

: VARIABLE CREATE 0 , ;

and wrile VARIABLE F0O. The first method is preferred
when only one instance is wanted, as it avoids the
overhead entailed in writing a defining word, while the
second is better when multiple instances are (or might be)
needed.

What DOES> Does
DOES> is immediate, and is executed during phase one
of a definition. It lays down the word (;CODE) and some
assembler instructions. Therefore, if you decompile a Forth
word that includes DOES>, you will see (;CODE), fol-

lowed by the possibly undecompilable assembler in- |

structions. These will be followed by the address tokens of
the Forth words that are to be executed in phase three.

(; CODE) is actually executed in phase two. It sels the
CFA of the most-recently created header to point to the
assembler instructions. At this point, we can clarify the
imprecise statements made in earlier paragraphs. As a kind
of shorthand, it is convenient to attribute to DOES> actions
that are actually executed by (;CODE). We also say that
DOES> makes the CFA of the word being defined point to
the Forth words that follow DOES>, when it actually points
to certain assembler instructions that precede them.

Don’t confuse ;CODE and (;CODE). The latter is a
“primitive” laid down by both DOES> and ;CODE. It is
conventional in Forth to name a primitive by enclosing in
parentheses the name of the word that compiles it. Other
examples include (LIT), (™), (.™), etc.

Separating CREATE and DOES>

CREATE ... DOES> are nearly always seen together, but
unlike the halves of a pair of scissors, they can be useful
when separated. Itis not well known that DOES> can stand
alone although it cannot be employed outside a colon
definition. When a word that contains DOES> is executed,
regardless of whether it is part of a defining word or not,
the CFA of the last-created header is set to execute the Forth
words that follow DOES>. Screen Three shows how o
define an indexed array with 125 eight-bit elements by
using an “external” DOES>,

This trick is not often used because it is not often useful,
although Laxen and Perry did employ it in F83. It makes it
possible to define words in groups, for example, pairs that
vary slightly in spelling, or words with the same name in

May 1992 June

different vocabularies. This can be done in Forths (for
example F83 and F-PC) that factor CREATE into two parts,
one to get a string from the input stream, and the other to
create a new word from it. In F83, for example, CREATE is
defined as follows:

: CREATE BL WORD ?UPPERCASE "CREATE ;

BL WORD gets the string and places it at HERE, leaving
its address on the stack. 2UPPERCASE converts it to
capitals if the variable CAPS is set, and "CREATE (a --)
uses the result to form a new word.

Suppose that we are wriling an adventure game in
which we want compass directions to have two different
actions. In the GAME vocabulary, NORTH will move the
adventurer, while in the FORTH vocabulary, the same word
with anappended # will act as a constant and put a number
on the stack. With conventional methods, each direction
would need two defining words, one for NORTH and the
other for NORTH#. Screen Four shows how a single defining
word, DIRECTION, can create the two at the same time.

The first step is to factor out the DOES> action of all but
one of the words to be created. This is necessary because
the run-time action of (;CODE) which is laid down by
DOES> is to exit from the word that it is in, after setting the
CFA in the most recently laid-down header. In ourexample,
the game-word action is factored out into MOVE, which
fetches the direction number from the body, and moves the
adventurer. The defining word DIRECTION gets a string
from the input stream, converts it Lo upper case, and places
itin the buffer DBUF (Linc One). In Line Two, the resulting
string is used to creatc NORTH in the GAME vocabulary. DUP,
lays down its parameter field, and MOVE executes DOES>
to set the action. Lines Four and Five append a # to the |
string in DBUF, and Line Six uses the modified string to
create NORTH# and set its action with DOES>.

Nested Defining Words

Seasoned Forth programmers know that defining words
can create defining words, which in turn can create other |
defining words. The nesting can, in theory, be continued
indefinitely. Suppose that we want to define colors as a
series of arbitrary constants, numbered 0, 1, 2, etc., and that
we also need shapes and other altributes defined in a
similar way. We proceed as on Screen Five. Here ATTRIBUTE
defines a word that contains the CREATE ... DOES>
sequence, and is therefore another defining word. This
idea is not merely a clever trick; it is the basis of most object-
oriented Forth systems.

RED, BLUE, and GREEN are effectively constants with
the values 0, 1, and 2, and ROUND, SQUARE, and OVAL are
constants with the same series of values. I leave it to the
reader to work out the detailed actions of the various
words.

Some Random Thoughts

Why is there a right angle-bracket in DOES>? It origi-
nated with certain early Forths, where CREATE laid down

Forth Dimensions

a header whose code-field
contained a pointer to the
next byte in memory instead
of an execution token. To
set up a defining-word, it
was necessary to follow
CREATE by the pair,
<BUILDS ... DOES>. The
Forth-83 Standard changed
the action of CREATE, so thal
<BUILDS was no longer
| needed, but did not change

the original action and
- spelling of DOES>.

The action of defining
words ranges from simple
to complex. Simplest are
those that lack DOES>. Atthe
opposite pole are highly
specialized words, for ex-
ample, 1MT and 1AMTI, used
by the F-PC assembler to
generate 80x86 commands.
Beginners, carried away by
a sense of power and free-
dom, often create too many
defining words. Although
there is little cost in memory
or execution speed, doing
this can result in hard-to-
read source files. Most pro-
grams need only the built-
in set of defining words and
a few novelties.

Conclusion

The easy formation of
defining words is one of the
features that makes Forth
powerful and enjoyable. At
the basiclevel, the technique
| is easy to learn and apply,
but programs are always
better-written when a pro-
grammer is aware of what is
going on, A deeper under-
standing is also required to
creale specialized exten-
sions, which, though not
often needed, can be very
useful.

Leonard Morgenstem is a relired pa-
lhologist and computer hobbyist. His
interesl in Forth goes back over len
years. Currently, he is a sysop of the
Forth RoundTable on GEnie. His son,
David Morgenstern, is also an author
on compuler-related subjects.

Forth Dimensions

SCREEN 1
3CONSTANT (n3 n2 nl ——) (—— n3 n2 nl) { Line 1)
CREATE , , .,
DOES> (Point A) DUP 4 + @ SWAP 2@ ; (Line 2)
1 2 3 3CONSTANT 3F0O (Line 3)
3FCO .S (Forth will display 1 2 3) (Line 4)

\ Alternate definition of 3CONSTANT using ;CODE
: 3CONSTANT (n3 n2 nl --) (== n3 n2 nl)
CREATE , , ,

;CODE (Point A)

PUSH 0 [BX]

POP BX PUSH 4 [BX]
NEXT END-CODE

PUSH 2 [BX]
(Line 5)

SCREEN 2

: NUMBER-MACHINE (--) (
CREATE 0 ,
DOES> DUP @ 1 ROT +! ;

it n)

\ First alternate definition uses ;CODE
NUMBER-MACHINE (--) (-— n)
CREATE 0 ,
;CODE POP BX MOV AX, 0 [BX] INC 0 [BX] 1PUSH END-CODE
\ Second alternate definition puts all number machines in
\ a special vocabulary
VOCABULARY #MACHINES
: NUMBER-MACHINE (--) (-— n)
ALSO #MACHINES DEFINITIONS CREATE 0 ,

DOES> DUP @ 1 ROT +! ;

PREVIOUS DEFINITIONS

SCREEN 3

: MAKE-8 (i -— a) swap 8 * + ;

CREATE INDEX1 1000 ALLOT MAKE-8 \ 125 8-bit elements

SCREEN 4

VOCABULARY GAME

CREATE DBUF 33 ALLOT
MOVE DOES> @
DIRECTION (

\ Player’s vocabulary

\ A buffer to hold the name
(Write game action here) ;

i ==)

BL WORD ?UPPERCASE COUNT DBUF PLACE (Line 1)
GAME DEFINITIONS DBUF "CREATE DUP , MOVE (Line 2)
FORTH DEFINITIONS (Line 3)
ASCII > DBUF COUNT + C! (Line 4)
DBUF C@ 1+ DBUF C! (Line 5)
DBUF "CREATE , DQES> @ ; (Line 6)
0 DIRECTION NORTH \ Create game word NORTH and constant NORTH#

3 DIRECTION EAST
test [forth] north [newstuff] north [forth 1 ;
SCREEN 5
\ Nested defining words
: ATTRIBUTE CREATE 0 ,
DOES> CREATE DUP @ 1 ROT +! ,
DOES> @ ;

ATTRIBUTE COLOR
COLOR RED
SHAPE ROUND

ATTRIBUTE SHAPE
COLOR BLUE COLOR GREEN
SHAPE SQUARE SHAPE OVAL

37 May 1992 June

A Forum for Exploring Forth Issues and Promoting Forth

[Fastt [FORTIHwalre] |

In volume 13 of Forth Dimensions, many FIG members
requested more promotion of Forth. Here and elsewhere, we
should tout the advantages of Forth. Every cause has
benefitted from promotion at times. I think you'll agree that
the promotion of Forth and FIG should extend 1o several
areas.

One area is the promotion of trade or commerce. For-
profit activity is ultimately what has kept us fed, clothed, and
sheltered. At some point in the development of an industry,
commerce alsospawns “trade magazines” directed at fostering
better-informed trade amongst the producers and consumers
in a particular industry. Often user groups are born because
of the widespread sale of one product.

Unfortunately for Forth, the trade magazines do not serve
Forth adequately (although they seek an occasional Forth
article). Worse, the number of people who are buying and
selling Forth-based goods and services is probably too few
to fund a Forth-dedicated trade magazine. Nevertheless, FIG
can help promote trade by making sure vendor names and
product information somehow appear in the pages of Forth
Dimensions. I hope we will be hearing from Forth vendors

FIG can help promote trade by
making sure vendor names and
product information appear in
the pages of Forth Dimensions.

in “Fast FORTHward,” not as a means for them to provide
product-specific information, but as a way for them to help
promote Forth generally. Beyond that, the Board of Directors
of the Forth Interest Group wants to try to maximize the
advertising space sold (up to postal limits for this type of
journal). FIG intends to play its part to promote trade.

(I hope that other parts of the magazine may soon feature
articles about various Forth products in hardware, firmware,
or software. We have taken steps to help ensure that this
takes place appropriately. Such articles should serve the
higher purpose of educating our readers about important
programming techniques, about practical ways to develop
successful applications, and so forth.)

Professional societies and standards efforts can promote
Forth in ways that would be difficult for individual vendors.

May 1992 June

They can help ensure that consumers of a product or service
are getting the best that can be made available. The ACM and
ANSI organizations are well known for their service in such
areas. Thanks to the dedicated efforts of Forth vendors and
enterprising Forth activists, Forth contingents have been
installed in each of those organizations, ACM SigFORTH and
ANSI X3J14. I expect “Fast FORTHward” to offer essays
describing standards and “open systems,” and how they
should be able to benefit everyone in our industry, consum-
ers as well as producers of Forth products.

(One related activity that FIG has supported is the China
Forth Examination projecl. It helped China determine the
level of competency of Forth programmers and it brought
guaranteed employment to the top performers on the test
Dr. C.H. Ting will be translating portions of this test into
English so that we are better able to appreciate il.)

Publicity is another area of promotion that can help
further a cause. It also takes many forms. For FIG purposes,
publicity should help create visibility for Forth in as much of
the trade and general media as possible. Another way FIG |
can help publicize Forth is to make sure educational
materials arc readily available to anyone who is curious
about Forth. I promise to use “Fast FORTHward” as a forum
to publish analytical essays regarding the nature of Forth.
Such explorations can help educate newcomers—and they
can hold the interest of the Forth pros, too. T will quote
liberally (or reprint where appropriate) the materials from
vendors, standards committees, Forth books, articles, and
just aboul any source that can help shed light on this thing
we call Forth, If Forth is a philosophy besides a language,
then words must be found to express it adequately.

A valuable marketing exercise is to consider a markel-
place without regard to existing products. What does a
market composed of software and hardware developers
need? Once that is known, perhaps we can state how Forth |
uniquely meels those needs. A market study should show
how one’s own product has a place among existing products
serving the same customer base. Along these lines, “Fast
FORTHward" invites the diverse customer base for Forth,
including laboratory researchers and mechanical engincers,
to write about Lheir ideal Forth system.

The type of short articles, letters, or essays that I expect
to appear here should help foster communication among the
Forth user, developer, and vendor communities. As your

Forth Dimensions

newly appointed FIG Publicity Director, I also need review-
crs who can help me determine what Forth-promotional
messages should be offered to promote Forth and FIG. If you
have the interest and/or background to help develop and
review such materials, please contact me, in care of the FIG
office. If you wish to write material for this department, send
your ideas or finished work to me by way of Marlin
Ouverson. [Forth Interest Group, P.O. Bax 8231, San jose,
California 95155/

Please do your part to help Forth and FIG by renewing
your membership immediately and, if possible, help me
support our worthwhile cause by considering how you
might contribute to this department. (If you received this
issue as a complimentary gift, I hope you will see that Forth
Dimensions is becoming a more broadly informative
magazine, with more potential benefit for everyone involved.)

—Mike Elola

[Precduect Watelh

May 1991

Orion Instruments revealed a trade-up program for
converting from the Unilab/UDL microprocessor
emulator-analyzer 1o a more powerful UniLab 8620
microprocessor emulator-analyzer. (The discount offer
ended September 30, 1991.)

July 1991
BDS Software announced CF83, a 1983 Standard Forth
for the Radio Shack Color Computer running RS-DOS.

September 1991
Paladin Software announced DataScope™ Version 2.0,

Vender é@@@ﬂﬁ@&bﬁ

Paladin Software, Inc.

Started in 1982, this software consulting firm wrote
custom software for a wide variety of industries, providing
systems and applications software in projects ranging from
HVAC 1o real-time space lelemetry and scrial protocol
implementations. Recently, the company released
DataScope™ version 2.0, the latest in a family of PC-based
| software products thatlets PCs replace much more expensive
communication debuggers and serial-line monitors.

Version 1.0 of DataScope was brought out in 1991.
Version 1.4 is available as shareware (on CompuServe,
FIDONET, EXEC-PC, and other bulletin boards as well as
from the company itself—see “Product Watch”).

Version 2.0 of DataScope features an SAA CUA-compliant
(Systems Application Architecture and Common User Ac-
cess) user interface option. It includes user-alierable
multitasking window displays and a “Windows-like” pull-
down menu interface. It also provides search tools that can
find data that is ordinarily an invisible part of a transmission.

Since 1982, Paladin Software, Inc. has written a number
of software applications for a variety of clients, including
General Motors (Saturn plant HVAC cluster-interlink pro-
tocol), Eastman Kodak (T88 Densitometer), McDonnell
Douglas Electrophoresis Operation in Space Ground Data
Systems, Lockheed, ITT (Power Systems SUPERVISOR),
and Federal Express (X.PC protocol and Astra Label System
for the Super Tracker).

The company’s founder is James Dewey. He has
implemented X.PC, SECS-1I, DDCMP and a variety of other
protocols, primarily for applications involving single-chip
microcomputers. He has programmed in PL1, PLC7, ASYST,
polyFORTH, and Fortran, as well as various assembly
languages. Before founding Paladin Software, Inc. he
worked as an Electrical Engineer and was a senior pro-
grammer with Forth, Inc. He holds degrees in Electrical
Engineering and Psychology from Cornell University.

Forth Dimensions

a serial-line monitor and protocol analyzer sporting a
windowed GUI and requiring MS-DOS 2.1 or higher
running on a PC.

September 1991

Forth, Inc. announced the chipFORTH 68332 Software
Development System, whichincludes one-year telephone
suppor, uses an MS-DOS PC host, and includes a 68332
board set known as the Motorola Evaluation Kit (EVK).

October 1991

Forth, Inc. announced a new release of EXPRESS Event
Management and Control System™, a process-control
software package.

Companies Mentioned
BDS Software

P.O. Box 485

Glenview, Illinois 60025-0485
Phone: 708-998-1656

Forth, Inc.

111 N. Sepulveda Blvd.

Manhattan Beach, California 90266-6847
Phone: 310-372-8493

Fax: 310-318-7310

Orion Instruments

180 Independence Dr.,
Menlo Park, California 94025
Phone: 415-327-8800

Fax: 415-327-9881

Paladin Sofiware, Inc.

3945 Kenosha Avenue

San Diego, California 92117
Phone: 619-490-0368

Fax: 619-490-0177

May 1992 June

39

On-Line Resourceﬁ

ForthNet

ForthNet is a virtual Forth network that links designated
message bases of several bulletin boards and information services
in an attempt to provide greater distribution of Forth-related info.

ForthNet is provided courtesy of the SysOps of its various links,
who shunt appropriate messages in a manual or semi-manual
manner. The current branches of ForthNet include UseNet's
comp.lang.forth, BitNet’s FIGI-L, the bulletin board systems RCFB,
ACFB, LMI BBS, Grapevine, and FIG’s RoundTable on GEnie.
(Information on modem-accessible systems is included below.)

The various branches of ForthNet do not have the same rules
of appropriate postings or etiquette. Many bulletin board posts are
very chatty and contain some personal information, and some also
contain blatant commercial advertising. Most comp.lang.forth
posts are not like that. ForthNet messages that are ported into
comp.lang forth from the rest of the ForthNet all originate on
GEnie, which is a kind of de facto ForthNet message hub. All such
messages are ported to comp.lang.forth with a from-line of the form:
From: ForthNet@willett.pgh.pa.us ...

Most messages ported to comp.lang.forth also contain some
trailer information as to where they actually originated, if it was not
on GEnie.

There is no e-mail link between the various branches of
ForthNet. If you need to get a message through to someone on
another branch, please either make your message general enough
to be of interest 1o the whole net, or contact said person by phone,
U.S. Mail, or some other means. Thoughtful message authors place
a few lines at the end of their messages describing how to contact
them (electronically or otherwise).

Phone information for the dial-in services mentioned above:

RCFB (Real-Time Control Forth Board)
SysOp: Jack Woehr
Location: Denver, Colorado, USA

303-278-0364
SprintNet node coden

ACFB

(Australia Connection Forth Board) 03-809-1787 in Australia
SysOp: Lance Collins 61-3-809-1787 International
Location: Melboume, Victoria, AUSTRALIA

213-306-3530
SprintNet node calan

LMI BBS (Laboratory Microsystems, Inc.)
SysOp: Ray Duncan
Location: Marina del Ray, California, USA

Grapevine (Grapevine RIME hub)
SysOp: Jim Wenzel
Location: Little Rock, Arkansas, USA

501-753-8121 to register
501-753-6858 thereaiter

GEnie (General Electric Network for

Information Service)

SysOps: Dennis Ruffer (D.RUFFER)
Leonard Morgenstermn (NMORGENSTERN)
Gary Smith (GARY-S)

Location: Forth RoundTable—type M710 or FORTH

Forth Libraries
There are several repositories of Forth programs, sources,
executables, and so on. These various repositories are notidentical
copies of the same things. Material is available on an as-isbasis due
to the charity of the people involved in maintaining the libraries.
There are several ways to access Forth libraries:

800-638-9636 for info.

FIP
Note: You can only use FTP if you are on an Internet site which
supports FTP (some sites may restrict centain classes of users). If
you have any questions about this, contact your system administrator

for information. Your system administrator should always be your
first resort if you have any dilficulties or questions about using FTP.
For MS-DOS-related files, there are currently two sites from
which you can anonymously FTP Forth-related materials:
WSMR-SIMTEL20.ARMY .MIL (Simtel20 for short)
WUARCHIVE.WUSTL.EDU (Wuarchive for short)

Wuarchive maintains a “mirror” of the material available on
Simtel20. Simtel20 has a limited amount of material, most of it
binaries for MS-DOS computers. The Forth files on Simtel20 are in
directory PD1:<MSDOS.FORTH>. The Forth files on Wuarchive are
in directory /mirror/msdos/forth. For detailed information on how
use FTP and the Simtel20 archive (it is too much to include here),
see the text files in:

PD1:<MSDOS.STARTER>SIMTELZ0.INF or
/mirrors/starter/simtel 20.inf

An FTP site containing a mirror of the FIG library on GEnie is
“under construction” and will be announced when it is ready.

FIGI-L Gateway
For those who have access to BITNET/CSNet but not Usenet,
comp.lang.forth is echoed in FIGI-L. The maintainer of the
Internet/BITNET gateway since first quarter 1992 is as follows:

internet: pl@Isi.usp.br (PREFERRED)
uunet: uunetlvme131!pl
hepnet: psanchez@uspif1.hepnet

Pedro Luis Prospero Sanchez
University of Sao Paulo

Dept. of Electronic Engineering
phone: (055)(11)211-4574
home: (055)(11)914-9756

fax: (055)(11)815-4272

Modem

For those desiring to use (or stuck with) modems, the dial-in
systems listed above also have Forth libraries.

Note: 1l you are unable to access SIMTEL20 via Internet FTP or
through one of the BITNET/EARN file servers, most SIMTEL20 MS-
DOS files, including the PC- network at 313-885-3956. DDC has
multiple lines which support 300/1200/2400/9600/14400 bps
(HST/V.32/V.42/V.42bis/MNP5). This is a subscription system with
an average hourly cost of 17 cents. I is also accessible on Telenet
via PC Pursuit, and on Tymnet via StarLink outdial. New files
uploaded to SIMTEL20 are usually available on DDC within 24
hours.

Information provided by:

Keith Petersen Maintainer of SIMTEL20's MSDOS,

MISC & CP/M archives [IP address 26.2.0.74)

Internet: wBsdz@WSMR-SIMTEL20.Army . Mil or
wBsdz@vela.acs.oakland.edu
Uucp: uunet!'wsmr-simtel20.army mil'wB8sdz
BITNET: wBsdz@OAKLAND

This list was compiled 20 February 1992. While every attempt
was made to produce an accurate list, errors are always
possible. Sites are also subject to mechanical problems or
SysOp burnout. Please report any discrepancies, additions, or
deletions to the following:

Gary Smith uunet!dditlirark!glsrkigars

P. O. Drawer 7680 nuucp %ddi1@uunet. UU.NET
Little Rock,AR 72217 GEnie Forth RT & Unix RT SysOp
U.SA. ph: 501-227-7817

fax: 501-228-9374
8-5 Central, M—-F

May 1992 June

Forth Dimensions

! E-Mail

[For those with e-mail-only access, there is not much. For now,
posts from ForthNet ported into comp.lang.forth sometimes adver-
tise files being available on GEnie. Those messages also contain
information on how to get UU encoded e-mail copies of the same
files. There is an automated e-mail service. The entire FIG library
on GEnie is available via e-mail, but no master index or catalog is
yet available. The file FILES.ARC contains a fairly recent list of the
files on GEnie, and files added since then are only documented for
comp.lang forth readers by way of the “Files On-line” messages
ported through ForthNet.

If you have any questions about ForthNet/comp.lang.forth or
any information to add/delete or correct in this message, or any
suggestions on formalting or prescntation, please contaat either
Doug Philips or Gary Smith (preferably both, but one is okay) via
the following addresses:

e Internet: dwp@uwillett.pgh.pa.us

or dditlirark!gars@uunet.uu.net
® Usenet: ...!luunet!ddit!lrark'gars
[or..luunet!willett.pgh.pa.us'dwp
| * GEnie: GARY-S or D.PHILIPS3
¢ ForthNet: Grapevine, Gary Smith

leave mail in Main Conference (0)

| Tocommunicate with the following, setyour modem and commu-
| nication software to 300/1200/2400 baud with eight bits, no parity,
and one stop bit, unless noted otherwise. GEnie requires local
, echo (half duplex).

', GEnie*
For information, call 800-638-9636
» Forth RoundTable (ForthNet*)
Call GEnie local node, then
type M710 or FORTH
SysOps:
Dennis Ruffer (D.RUFFER)
Leonard Morgenstern (NMORGENSTERN)
Gary Smith (GARY-S)
Elliott Chapin (ELLIOTT.C)

BIX (Byte Information eXchange)

For Information, call 800-227-2983

* Forth Conference
Access BIX via TymNet, then type j forth
Type FORTH at the : prompt
SysOp: Phil Wasson

CompuServe
For Information, call B00-848-8390
» Creative Solutions Conf.
Type ! Go FORTH
SysOps: Don Colbum, Zach Zacharia, Ward McFarland, Greg
| Guerin, John Baxter, John Jeppson

« Computer Language Magazine
Type ! Go CLM
SysOps: Jim Kyle, Jeff Brenton, Chip Rabinowitz, Regina Star
Ridley

The WELL (Unix BBS with PicoSpan frontend)
« Forth conference
Access WELL via CPN (CompuServe Packet Net)
orvia SprintNet node: casfa
or 415-332-6106
Forth Fairwitness: Jack Woehr (jax)
Type ! j forth

Citadel Network - two sites

* Undermind (UseNet/Citadel bridge)
Allanta, GA
404-521-0445

|
|
L

*GEnieis the repository of the Forth Interest Group’s
official Forth Library.

* Interface (formerly Nite Owl)
SysOp: Bob Lee
Napa, CA
707-823-3052

Non-Forth-specific BBS’s
with extensive Forth libraries:
« DataBit

Alexandria, VA

703-719-9648

SprintNet node dewas

+ Programmer's Comer
Baltimore/Columbia, MD
301-596-1180 or
301-995-3744
SprintNet node dewas

* PDS*SIG
San Jose, CA
408-270-0250
SprintNet node casjo

International Forth BBS’s
See Melbourne Australia in ForthNet node list above

» Serveur Forth
Paris, France
From Germany add prefix 0033
From other countries add 33
(1)4108 1175
300 baud (8N1) or
1200/75 E71 or
(1)4108 11 11
1200 to 9600 baud (8N1)
For details about high-speed,
Minitel, or altemate carrier
contact: SysOp Marc Petremann
17 rue de la Lancelte
Paris, France F-75012

* SweFIG
Per Alm Sweden
46-8-71-35751

* NEXUS Servicios de Informacion, S.L.
Travesera de Dalt, 104-106
Entlo. 4-5
08024 Barcelona, Spain
+ 34 32103355 (voice)
+ 34 32147262 (data)

* Max BBS (ForthNet")
United Kingdom
0905 754157
SysOp: Jon Brooks

* Sky Port (ForthNet*)
United Kingdom
44-1-294-1006
SysOp: Andy Brimson

s Art of Programming
Mission, British Columbia, Canada
604-826-9663
SysOp: Kenneth O'Heskin

* The Forth Board
Vancouver, British Columbia, Canada
604-681 3257
Forth-BC Computer Society

U'NI-net/US

* The Monument Board (U'NI-net/RIME ForthNet bridge)

Monument, CO
Jerry Shifrin (ForthNel charter founder)
719-488-9470

Forth Dimensions

41

S—

May 1992 June

A Space Application for the SC32 Forth Chip
by Silicon Composers, Inc.

Overview

Applications requiring real-time control and high-speed
data acquisition can take advantage of systems solutions that
combine these features into one small package. Fast and easy
software development is especially important to generate control
programs that can be easily tested with application hardware to
shorten development schedules. What follows is an example of a
space application involving solar astronomy that meets this profile.

Sun spots, flares, and granularity are solar phenomena of
interest to scientists since a good theory of solar dynamics must
take them into account. The granularity of the sun is caused by
convection cells, which appear over the entire surface of the sun.
To some extent, the sun’s surface is similar to a pot of boiling
oatmeal with the bubbles of catmeal paralleling the convection cells
on the sun. Although convection cells are about the size of the
state of Texas, high resolution visual imaging of individual cells
from earth-based solar telescopes is difficult to achieve because of
the distortion due to the earth’s atmosphere.

Solar telescopes operating from suborbital flights have the
advantage of being above the atmosphere, which allows them to
acquire high resolution images that show more detail of convection-
cell dynamics. For this type of mission, using a single on-board
computer to control subsystems and data services can reduce
system design complexity and development time. This single
embedded computer can perform tasks such as telescope pointing,
optics filter control and experiment scquencing as well as image
acquisition, data storage, and down-link communications.

Hardware

A good embedded system for this type of application is
the SBC32 single board computer (using the SC32 Forth RISC
chip) and the DRAMIO32 board. Together, these provide a large
solid-state memory space, high-performance [/O, and a
microprocessor with plenty of horsepower and flexibility suitable for
a wide variety of tasks, ranging from real time control to high speed
data compression. The system software resides in 128KB of on-
board shadow EPROM, which is loaded on power up into on board
zero wait state SRAM (maximum of 512KB).

The DRAMIO32 Board is designed for use in applications
requiring high-speed data acquisition or control capabilities. The
DRAMIO32 has up to 16 MB of DRAM, a 16-bit bidirectional
parallel port, 4 serial ports, SCSI port, 2 timer/counters, wristwatch
chip and CMOS RAM.

For the solar telescope application, the DRAMIO32’s four
serial ports are used to acquire control data from and send servo-
control commands to the telescope pointing, optics filtering and
control, and mirror adjustment subsystems. The observation light
beam is reflected to the telescope’s CCID camera via servo control
using parallel handshake bits and a counter/ftimer on the
DRAMIO32 board. Solar-image snapshots are initiated at pre-
programmed times. Solar-image data is read from the 16-bit
parallel port and written into 16 MB of on-board battery-backed
DRAM. Once the rocket telescope payload is recovered, mission
data can be transferred from the DRAM to a second
SBC32/DRAMIO32 system or other system by way of the
DRAMIO32’s ports. Alternatively, image data can be down-linked
from the DRAM to a GSE (Ground Support Equipment) station.

Up to 48 MB additional DRAM can be added with the
DRAMEXP plug-on board. A 64MB system can hold 1,024 gray-
scale (uncompressed) 64KB images formatted as 256x256 8-bit
pixels. An application specific image compression routine can be
used to increase storage capacity.

SC32 technology can also be used in the GSE station.
Data from the rocket telescope can be down-linked to a PC based

May 1992 June

GSE system using the PCS32 (Parallel Co-processor System32), a PC
plug-in coprocessor board which uses the SC32 chip and supports the

DRAMIO32.

Data from the down-link is routed through the

DRAMIQ32 parallel port and sent out the on-board SCSI port to
high-speed SCSI devices, such as optical disk, tape, or hard drive,
without going through the PC. Once on the SCSI drive, data can be
accessed by any SCSI based system for analysis.

Software
During project development, the SBC32/DRAMIO32 flight
hardware can serve as a development system by connecting it Lo a
host terminal or PC for 1/O services. When developing applications
such as instrument control, programming in Forth on 32-bit Forth
hardware with high-speed 1/O is a major advantage over other

development methods.

Creating software in high-level interactive Forth significantly
speeds up development, while running the application on a 32-bit
Forth chip provides high resolution and performance. High-speed
I/O permits real-time signal filtering, data compression and encryption
as data is acquired or transferred. The code is tested and then placed |
in on-board EPROM for the space mission.

Sample Program

The following code fragment shows how straightforward it
is to use this board set. ?UBW returns a flag showing that the next
CCD data is available on the parallel port. Direct manipulation of the
hardware is possible, such as %PARRD @ to read memory mapped
parallel port data. CCD data is collected 16 bits at a time and placed
in 32-bit wide 0-ws SRAM, where it is processed at high speed before
being stored in slower DRAM. Access to drivers is shown in the call
to SCSIWR which takes {block number, address, number of blocks}
to write large chunks of data to a SCSI device. COMPRESS-
IMAGE compresses and copies completed images to DRAM, and
updates pointers. A list of snapshot times in an experiment sequence
is loaded into EPROM or RAM before the rocket is launched. After
each image is collected, RELOAD-TIMER sets the time until the
next picture. After the solar imaging phase is complete, additional
data is collected until memory is full. This data is then unloaded to
a SCSI device after payload recovery.

Code example -- SBC32 ROCKET data collection

CREATE PIC 32768 ALLOT
HERE CONSTANT ENDPIC
VARIABLE NEXTIMG

: COLLECT-IMAGE (--)
ENDPIC PIC DO

BEGIN 7UBW UNTIL
%PARRD @ I!LOOP ;

: RELOAD-TIMER (-)
NEXTIMG @ @ 256 /MOD
%CTURI ! %CTLR1 !

1 NEXTIMG +! ;

: ROCKET (-)
INIT-COLLECT
BEGIN ?MORE WHILE
POSITION-CAMERA

?TIMEAPIC IF
COLLECT-IMAGE
COMPRESS-IMAGE
RELOAD-TIMER
THEN REPEAT

COLLECT-REENTRY ;

: EARTH (block# --)

DRAM 16384 SCSIWR ;

42

(allocate pic SRAM buffer)
(and mark end)

(pointer to image time array)
(CCD parallel -> SRAM)

(FOR size of picture DO)

(wait for CCD word ready)
(copy parallel to SRAM)

(get time till next image)
(set hardware timer reg)

(advance picture pointer)
(Turnkey task for launch)
(Set pointers,timer)

(Outer Space loop ...)

(adjust camera if needed)
(time for nth picture?)

(CCD image into SRAM)
(compress, move to DRAM)
(wakeup call for next pic)
(... rest of images)

(more until reach earth)

(Save data on SCSI drive)
(16K blocks = 16MB!)

Forth Dimensions

On 7HE [BAcK [BuRNER

‘Demonstra ting

Competency

Conducted by Russell L. Harris
Houston, Texas

Perhaps the most basic problem facing a Forth program-
mer is that of obtaining, from a client unfamiliar with Forth,
authorization to use Forth on a particular contract. The
situation has been exacerbated in recent years by the

| unquestioning and near-universal acceptance of C along

with the methodology of object-oricnted programming. A
secondary problem is that of convincing the client that the
programmer has the expertise to successfully complete the
assignment. The following paragraphs present one approach
to surmounting these barriers,

Better vs. Safe
Programming assignments and contracts are not always
won by the most talented programmer or by the one having
the best tools and expertise. The factors which typically
weigh most heavily in the choice of a programmer are the

do so in 2 manner which will profoundly impress his client.

A demonstration may take any of several forms. One
could, for example, quole statistics, studies, or respected
authorities regarding the matter in question. However, one
of the more effective means of demonstrating the efficacy of
a product or a technique is through the use of apparatus. In
the first place, apparatus—be it basically mechanical, electri-
cal, or virtual (i.e., a screen image) in nature—almost always
draws attention. In the second place, apparatus provides a
concrete example of lechnique. Finally, functioning appara-
tus proves capability.

Compulerized apparatus programmed in Forth can attract
and hold the atention of a dlient, thereby affording the
programmer opportunity to demonstrate his own effective-
ness and the effectiveness of Forth. Source listings which
exhibit orderly arrangement, functional grouping, and intui-
tive names can dispel qualms regarding code maintainability.
The overall appearance of the demonstration is perhaps the
best indication to a client of the programmer’s ability to bring
to completion on schedule the project under consideration.
Altention o detail is vital. Confidence in the programmer’s
reliability can be severely eroded by poor workmanship, by
program bugs or quirks (no matler how minor), and by
source code which is abstruse.

The apparatus nced not relate to the project under
consideration. It should perform an obvious function of
some complexity. Ideally, it should allow demonstration of

| the manner in which the interactiveness of Forth facilitates

language in which he programs and his previous perfor- |

mance. The factor typically of greatest import in the selection
of a programming language is code maintainability. Predict-
ability of completion date is a factor which influences
selection of both language and programmer.

Clients tend to view code maintainability as a function of
the language in which the program is written, and the measure
of maintainability as the relative abundance of programmers
claiming proficiency with the language in question. They
appear o give litle, if any, consideration 1o the relationship
between programming technique and maintainability.

Clients frequently value predictability of completion date
over minimization of programming time. A program may be
only one element in a complex system involving many
components and the services of many vendors. With the
interdependency of schedules, a missed deadline may have

' consequences which greatly outweigh the expenditure for

programming, Likewise, once a budget has been authorized
and a schedule has been set, the programmer may receive
litde, ifany, reward for early completion. From the standpoint
of the dlient, the best insurance against a missed deadline is
to select a programmer and a language, both of which he
personally knows to have produced serviceable code within
reasonable time on a project of complexity comparable to
that of the project at hand.

Shock Therapy, or Back to Reality

Something more than a resume listing past projects is
required if the Forth programmer is to overcome the
contemporary mind-set of C and object-oriented program-
ming and bring his client back into a state of objectivity
regarding Forth. He must convincingly demonstrate the
capabilities of Forth, the maintainability of programs written
in Forth, and his mastery of the art of programming; and he must

Forth Dimensions

43

the development cycle.

Effective Yet Practical Mechanisms

A demonstration mechanism, for maximum effective-
ness, should be clegant, functional, and attractive; yet
practicality usually demands that it be both simple and
economical to construct. Ideally, the complexity of the
mechanism (including the electronics) should be no greater
than necessary to support the programming demonstration,
so that the mechanism spotlights the code rather than
overshadowing it.

Although demonstration apparatus frequently has no
intrinsic usefulness, it should be possible to devise a number
of useful mechanisms which are simple enough to be
practical in this role.

A Clearinghouse

This is the first appearance of what is intended to be a
regular Forth Dimensions column serving as a clearinghouse
for the exchange of ideas and technical assistance regarding
computerized apparatus for demonstration or other purposes.

The continuation of this undertaking will depend largely
upon reader response. What 1, as editor of this column, hope
o receive is a variely of submissions, ranging from verbal
descriptions and concepiual sketches to dimensioned draw-
ings, schematics, source code, and photos of working
devices, together with suggestions, criticism, and feedback
regarding specific devices and the column in general.

Material for publication may be sent directly 1o me at 8609
Cedardale Drive, Houston, Texas 77055. I can be contacted
by phone at 713-461-1618 during normal business hours and
on most evenings, or on GEnie (RUSSELL.H).

Russell L. | larris is & censuling engineer working wilh embodded systens i lhe
lields of instrumentalion and machine control. He programs in polyForth, types on
a Dvorak keyboard, and keeps his wristwalch sel lo Greenwich time,

May 1992 June

1992 Rochester Forth Conference on

Call for Papers

There is a call for papers
on all aspects of Forth tech-
nology, its application and
implementation, but espe-
cially as relates to biomedical
applications. Other sessions
include standards and em-
bedded languages including
C, Mumps, ANS X3/J14 Forth,
and Open Boot.

Please submit 100 word
abstracts by May 15th and
papers by June 1st. Limit of 5
pages, 10 point size. Call for
longer papers.

Registration
$450. Attendees

$300. Full Time Students

$200. Spouse
Rooms

$150. Single, 4 nights
$125, Double per/person

Biomedical Applications
June 17 - 20th, 1992
University of Rochester

Invited Speakers The Conference
Dr. C.H. Ting, Applied «Forth seminars,
Biosystems, Inc. beginner through
Human Genome an advanced
Agtomaﬂ(i?r emeand «FIG Demonstration of

state-of the-art-

Dr. Steven Lewis, commercial Forths
Aerospace Corporation «ASYST seminar
Rhinosoft: Design of A -Stack computers
Biomedical Product oForth in the post-USSR

*Poster sessions
Mr. Jack Woehr, Vesta +Working Groups
Technology *ANS Forth Standard

ANS Forth as a Component ~ *Vendor Exhibits

of Advanced Programming ~ *Forth vs. Cvs. C++

Environments «Obj. orient. technology
+Real time systems

For More Information:

Lawrence P. G. Forsley
Conference Chairman

Forth Institute

70 EiImwood Avenue

Rochester, NY 14611 USA
(716)-235-0168 (716)-328-6426 fax

EMail: Genie................L.Forsley
Take advantage of lower registration Compuserve....72050.2111
fees this year! Internet.............72050.2111@compuserve.com
g%rgzuxl I%}%gll.eSt Group [Second Clgss |
San Jose, CA 95155 [Postage Paid at ‘

San Jose, CA

