

SILICON COMPOSERS INC

Announcing the SCIFOX I032 Board for FAST Forth I10

-OX K)32 Board Feah*es Fast Wispe r skn Program Example
H The 1032 Is a p l u ~ a daughter board for either The program, SEND below, reads 1 K blocks from a SCSl

the SBC32 land-alone or PCS32 PC plug-in drive and transmits them out one of the 1032 board's four
single board computers. RS232 serlal ports at 230K Baud. SEND uses only 1032

H 5 MBIsec SCSl Port. facilities. Disk read speed is limited by SCSl drive speed.
H Attach up to 7 SCSl Devkes.
H 4RS232SerialP~,upt0230Kbaud.
H 16-bit Bidirectional-Paralid Port, may be

used 68 tWO &bit ports.
H 2 programmable counter/timers.
H Pratotyping area on board.
r All bus signal brought out to pads.
H Full lnterrup Support.
H Two 50-pin user application connectors.
H No jumpers, totally software codigurable.
H Driver software source included.
H Single +5 VoU kw-pmver operation.

Full ground end power plane.
H 4 Layer, Ewocard-size: 1OOmm x 1601~1.
H User manual and Interface schematics Included.
H Low chip count (8 ICs) for maxknum reliaMlUy.
H Test routines for SCSI, parW, and serial

ports supplied in source code form.
Phrg together up to 6 1032 Boards in a stack.

For additionel produd and pricing I ~ m i o n , please contad us at:
SKJCON COMPOSERS INC 208 Caliiomig Averue, Pab Ato, CA 94306 (415) 3224763

2 Forth Dimensions

Features

6 Forth Systems Comparisons
Guy M. Kelly
Award-winning paper dissecting and comparing nineteen Forths, including commercial,
shareware, and public-domain systems. Provides detailed testing information, analysis of how
to compare different Forths, discussion of critical non-performance-related factors, and timing
results. Won the "Public Setvice" award at the 1991 FORML Conference.

22 The Curly Control Structure Set
Kourtis Giorgio
After an in-depth review of all the literature on Forth control structures, and following two years
of development and testing, the author proposes a new set of control structures fo; you to uy
out. In search of performance, ease of use, generalization, flexibility, and teachability without
sacrificing too much in terms of historical continuity? Think it can't be done, at least not better?
Or just want to brush up on how control structures work? Open your mind and sharpen your
wits.. .Part one of two.

38 A FORML Thanksgiving
Richard Molen
The annual Forth Modification Laboratory-FORML-is a long-standing Forth tradition. Join
those who gathered on California's Monterey peninsula to discuss new proposals, Forth
hardware, emulators, embedded systems, and the usual (and unusual) wide-ranging fare.

39 PCYirk Classes
Rick Grehan
Last issue's winner of the "Object-Oriented Forth" contest returns with supplemental code. Here
you will find the Forth foundations of basic classes, storage classes, byte and word arrays,
strings, and string arrays. Use this or another object-oriented Forth to explore the symbiosis of
traditional Forth and classical object-style programming.

Departments (
4 Editorial Coming attractions, call for conte$t papers, about this issue.

31 New FIG
Board Members Mike Elola, Nicholas Solntseff, Jack Woehr

I 32 Best of GEnie Dearth of feedback on ANS Forth; how minimal can Forth get?

36 Volume XI1 lndexThe complete subject index to Forth Dimensions contents pub-
lished from May 1990 - April 1991.

37 Advertisers lndex

resource Listings Sources of informatio about FIG ANS Forth class on-line
Forth connections, an8 FIG chaptkrs will retuin in ti%! next issue. /

Forth Dimensions 3 March 1992 April

Volume XIII, Number 6
MarchApril 1992

Forth Dimensions I

New Conte$t for Forth Authors!

With this issue, many of
you will be due to renew
your membership in the Forth
Interest Group. This is a year
to do so promptly and to
make a g& membership or
two for the office, a co-work-
er, or friend-here are a few
things to look for in coming
issues of Forlh Dimemiom

A West-coast group of
Forth adepts is producing a
series of articles applying
Forth to hands-on, hardware-
software projects that you
can do-a laboratory for
increasing your Forth profi-
ciency at the workbench.
Vendors and developers will
have more opportunities to
contribute technical and in-
dustry information in ways
that will show what they are
doing successfully and where
Forth is excelling in real-
world application. And we
have scheduled tutorials
about traditional tools like
CREATE DOES> as well as
the control structures that
will be introduced in ANS
Forth. More than ever we
believe that, from beginner
to expert, every Forth user
and project manager will
want to receive the vital in-
formation that will be ap-
pearing here.

Reader participation has
always been a key element
of this publication. Your
contributions a~ the lifeblood
of our pages, dramatically
helping to chart our direction.
We not only welcome your
own articles and letters to
the editor, we need them.

March 1992 April

FD can now announce
the third in a series of con-
tests for Forth authors. The
fust called for entries about
Forth hardware, and the
winners were published in
our issue W6. More recently,
the winners of our object-
oriented Forth contest ap-
peared in issue XIV5. Draw-
ing on feedback from Forth
vendors, the theme of our
current contest is Forth in
large-scale applications.

This is our fitrst call for
papers about T o m ON A
GRAND SCALE" This theme
applies equally to projects
requiring multiple program-
mers, and to applications or
systems consisting of large
amounts of code andlor of
significant complexity. Pa-
pers will be refereed. To
encourage entries, the author
of the winning article will
receive $500, the second-
place $250, and the third-
place $100. Articles will be
evaluated for publicationeven
if they do not win a cash prize.

You need not have been
personally involved in the
subject of your entry, just
write about it in sufficient
technical detail, and address
the particular challenges that
were faced and describe how
(or whether!) they were
overcome. Chances are, if
you think a subject might fit
the theme of this contest, the
judges will be anxious to
include it in their evalua-
tions-~~ get started soon.
i%e deadline for contest en-
Mes isAugust3,1992. Mail a
hard copy and a diskette
(Macintosh 800K or PC pre-

ferred) to the Forth Interest
Group, P.O. Box 8231, San
Jose, California 95155; or mail
the hard copy and upload an
ASCII version to MARLIN.0
on GEnie's e-mail service with
an attached note describing
the file and compression/
archive format, if any. We all
look forward to receiving
your contribution!

*

At the other end of the
scale we have minimal Forths.
How small can you get and
still have a language? What
are the fewest required words
in Forth? That is the on-line
discussion excerpted in "The
Best of GEnien this month.
Elsewhere in this issue, you
will find supplemental code
to the object-oriented Forth
"PCYerk" by Rick Grehan,
and a meaty discussion of
control structures by Kourtis
Giorgio that will be con-
cluded in the next issue. Fi-
nally, Guy Kelly shares his
FORML paper with FD
readers. It is a significant
piece of work that shows
what goes into evaluating
Forth systems, and we thank
him for allowing us to pub-
lish it here. It demonstrates
the difficulty of doing head-
to-head product compari-
sons, and is the first substan-
tial attempt we know of to
do so thoroughly and objec-
tively. Pay special heed to
his warning that benchmark
excellence alone does not
mean that any single system
will be the right one every
purpose!

-Marlin Ot.mmon
Editor

Published by the
Forth Interest Group

Editor
Marlin Owerson

Circulation/Order Desk
Anna Brereton

Forth Dimensions welcomes
editorial material, letters to the
editor, and comments from its
readers. No responsibility is as-
sumed for accuracy of submissions.

Subscription to Forth Dimen-
sionsis included withmembership
in the Forth Interest Group at $40
per year ($52 overseas air); student
rate available. For membership,
change of address, and to submit
items for publication, the address
is: Forth Interest Group, P.O. Box
8231, San Jose, California 95155.
Administrative offices and adver-
tising sales: 408-277-0668, Fax: 40%
286-8988

Copyright Q 1992 by Folth In-
terest Group, Inc. The material
contained in this periodical (but
not the code) is copyrighted by the
individual authors of the artides
and by Forth Interest Group, Inc.,
respectively. Any reproduction or
use of this periodical as it is com-
piled or the articles, except repre
ductions for non-commercial pur-
poses, without the written per-
mission of Forth Interest Group,
Inc. is a violation of the Copyright
Iaws. Any code bearing a copyright
notice, however, can be used only
with permission of the copyright
holder.

The Forth Interest Group
The Forth Interest Group is the
association of programmers, man-
agers, and engineers who create
pracfical, Forth-based solutions to
real-world needs. Many research
hardware uad software designs that
will advance the general state of
the art. FIG provides a dimate of
intellectual exchange and benefns
intended to assist each of its mem-
bers. Publications, conferences,
seminars, telecommunications, and
area chapter meetings are among
its aaivities.

"Forth Dimensions OSSN 0884-
0822) is published b i n t h l y for
$40/46/52 per year by the Forth
Interest Group, 1330 S. Bascom
Ave., Suite D, San Jose, CA 95128.
Second-dass postage paid at San
Jose, CA. POSTMASTER: Send ad-
dress changes to Forth Dimensions,
P.O.Box8231, SanJose,CA95155."

Forth Dirnensior

HARVARD S O F T W O R K S
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

MEET THAT DEADLINE ! ! !

Use subroutine libraries written for
other languages! More efficiently!
Combine raw power of extensible
languages with convenience of
carefully implemented functions!
Yes, it is faster than optimized C!
Compile 40,000 lines per minute!
Stay totally interactive, even while
compiling!
Program a t any level of abstraction
from machine code thru application
specific language with equal ease
and efficiency!
Alter routines without recompiling!
Use source code for 2500 functions!
Use data structures, control
structures, and interface protocols
from any other language!
Implement borrowed feature, aften
more efficiently than in the source!
Use an architecture that s u ~ ~ o r t s

.A

small programs or full megabyte
ones with a single version!
Forget chaotic syntax requirements!
Outperform good programmers
stuck using conventional languages!
(But only until they also switch.)

HS/FORTH with FOOPS -The only
ful l multiple inheritance
interactive object oriented
language under MSDOS!

Seeing is believing, OOL's really are
incredible a t simplifying important
parts of any significant program. So
naturally the theoreticians drive the
idea into the ground trying to bend all
tasks to their noble mold. Add on
OOL's provide a better solution, but
only Forth allows the add on to blend
in as an integral part of the language
and only HSIFORTH provides true
multiple inheritance 6 membership.

Lets define classes BODY, ARM, and
ROBOT, with methods MOVE and
RAISE. The ROBOT class inherits:

INHERIT, BODY
HAS> ARM RightAnn
HAS> ARM LeftArm

If Simon, Alvin, and Theodore are
robots we could control them with:
Alvin 's RightAnn RAISE or:
+5 -10 Simon MOVE or:
+5 +20 FOR-ALL ROBOT MOVE

WAKE UP ! ! !

Forth is no longer a language that
tempts programmers with "great
expectations", then frustrates them
with the need to reinvent simple tools
expected in any commercial language.

HS/FORTH Meets Your Needs!

Don't judge Forth by public domain
products or ones from vendors
primarily interested in consulting -
they profit from not providing needed
tools! Public domain versions are
cheap - if your time is worthless.
Usehl in learning Forth's basics, they
fail to show its true potential. Not to
mention being s-1-o-w.

We don't shortchange you with
promises. We provide implemented
functions to help you complete your
application quickly. And we ask you
not to shortchange us by trying to
save a few bucks using inadequate
public domain or pirate versions. We
worked hard coming up with the ideas
that you now see sprouting up in other
~ o r t h s . We won't throw in the towel,
but the drain on resources delays the
introduction of even better tools. Don't
kid yourself, you are not just another
drop in the bucket, your personal
decision really does matter. In return,
well provide you with the best tools
money can buy.

The only limit with Forth i a your
own imagination!

You can't add extensibility to fossilized
compilers. You are at the mercy of
that language's vendor. You can easily
add features from other languages to
HS/FORTH. And using our automatic
optimizer or learning a very little bit
of assembly language makes your
addition zip along as well as in the
parent language.

Speaking of assembly language,
learning i t in a supportive Forth
environment turns the learning curve
into a light speed escalator. People
who failed previous attempts to use
assembly language, conquer i t in a few
hours or days using HSIFORTH.

HWFORTH runs under MSDOS or
PCDOS, or from ROM. Each level includes
all features of lower ones. Level upgrades:
$25. plus price difference between levels.
Source code is in ordinary ASCII text files.

HSlFORTH supports megabyte and larger
programs & data, and runs as fast as 64k
limited Forths, even without automatic
optimization -- which accelerates to near
assembler language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminate
headers without recompiling. Compile 79
and 83 Standard plus F83 programs.

PERSONAL LEVEL $299.
NEW! Fast direct t o video memory text
& scaled/clipped/windowed graphics in bit
blit windows, mono, cga, ega, vga, all
ellipsoids, splines, bezier curves, arcs,
turtles; lightning fast pattern drawing even
with irregular boundaries; powerful
parsing, formatting, file and device 110;
DOS shells; interrupt handlers;
call high level Forth from interrupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file search paths; format to strings.
software floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4 words,
1..4 dimension var arrays; automatic
optimizer for machine code speed.

PROFESSIONAL LEVEL $399.
hardware floating point - data structures
for all data types from simple thru
complex 4D var arrays - operations
complete thru complex hyperbolics;
turnkey, seal; interactive dynamic linker
for foreign subroutine libraries; round
robin & interrupt driven multitaskers;
dynamic string manager; file blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $499.
Metacompiler: DOS/ROM/dired/indired;
threaded systems start at 200 bytes,
Forth cores from 2 kbytes;
C data structures & struck+ compiler;
Turbowindow-C MetaGraphics library,
200 graphidwindow functions, PostSrript
style line attributes & fonts, viewports.

ONLINE GLOSSARY $ 45.

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

FOOPS+ with multiple inheritance $79.
TOOLS & TOYS DISK $ 79.
286FORTH or 386FORTH $299.

16 Megabyte physical address space or
gigabyte virtual for programs and data;
DOS & BIOS fully and freely available;
32 bit addresdoperand range with 386.

ROMULUS HS/FORTH from ROM $99.

Shippinglsystem: US: $7. Canada: $19.
foreign: $49. We accept MC, VISA, & AmEx

The painful OOL learning curve Free Online Glossary plus Tools & Toys
disappears when you don't have to WINTER SALE >>> Disk with all systems.

force the world into a hierarchy. Free 286FORTH (also for 386) with all
Pmfe~sional and Production level system.

Forth Dimensions 5 March 1992 April

Forth Systems
Comparisons
Guy M. Kelly I
La Jolla, California

Code fragments and benchmarks for several of the
Forths for the PC are outlined to illustrate various tradeoffs
and their effect on performance.

The following list represents some of the Forths I have
been able to study. They span a wide range of imple-
mentation tradeoffs and provide some insight into the
results of these tradeoffs.

Forth Model Author(s) Status
BBL 83 Green public
eForth X3J14 Muench & Ting public
F83 83 Laxen & Perry public
F-PC 83 Zimmer & Smith public
F i Click & Snow share
HS/FORTH Callahan commercial
KForth experimental Kelly copyrighted
LaFORTH experimental Smith & Stuart copyrighted
MMSFORTH 79 Miller et al. commercial
MW-FORTH 79 Haydon public
PC-Forth 83 Kelly public
PMFORTH fig Moreton commercial
polyFORTH 83 Moore et al. commercial
pygmy cmFORTH Sergeant copyrighted
riFORTH cmFORTH Illyes copyrighted
UniForth 83 Hendon? share
Upper Deck 83 Graves commercial
URRORTH 83 Duncan & W~Iton commercial
ZEN X3J14 Tracy copyrighted

'Includes overlays to convert to fig, 79, or 83 standard.

Some of these Forths are available in different packages
including public, share, or commercial versions. The
version tested had the status indicated. The non-commercial
versions are typically available at no charge, the commercial
versions are typically copyrighted. The model does not
imply compatibility.

These Forths cover a range of categories and complexi-
ties, as Table One illustrates.

Theauthor presented this paper at the 1991 FORML Conference.
Those who were unable to attend that event can order the
complete proceedings from the Forth Interest Group.

Segment Models
Assuming four logical segments (not including the

stacks), there are 15 different models. The following lists
these models and indicates their use by each of the Forths
studied.

C+L+D+H e, F83, La, MMS, MVP, PC, pygmy, ri, Uni
C+L+H D polyFORTH
C+L D+H PM, ZEN
C L+D H BBL, HS/FORTH, UR/FORTH
C+D L H F-PC
C L D H KForth, Upper Deck

Not found:
C L+D+H
L C+D+H
H C+L+D
C+D L+H
C+H L+D
C L D+H
C D L+H
L D C+H
D H C+L

mcriptions
Brief descriptions of most of the Forths tested are

included at the end of this paper (all assembly code is in
a common format).

Benchmarks
While studying the various threading, stack, and seg-

menting methods it seemed that a set of simple benchmarks
could help in evaluating the performance trade-offs. The
benchmarks arrived at are specifically aimed at the attributes
studied and do not necessarily correlate with real appli-
cations.

Threading
There are two aspects of threading in Forth to be

evaluated. The efficiency of incrementing the Forth in-
struction-pointer and the efficiency of nesting (and
unnesting).

March 1992 April 6 Forth Dimensions

The following threading benchmarks were used:

\ E m p t y loop: Emg&y = XX
: X (--) 3 0 , 0 0 0 0 DO LOOP ;
: XX (-- 5 0 DO X LOOP ;

\ T h r e a d i n g : Thread = YY - XX
CODE NC (--) NEXT, END-CODE
: Y (--)

3 0 , 0 0 0 0 DO NC NC NC NC NC NC LOOP ;
: YY (-- 5 0 DO Y LOOP ;

\ N e s t i n g l : Nestl = ZZ - XX
: N: (- -) ;

: z (--)
3 0 , 0 0 0 0 DO N: N: N: N: N: N: LOOP ;

: ZZ (--) 5 0 DO Z LOOP ;

\ ~ e s t i n g 2 : Nest2 = WW - XX
: W 1 ; : W2 W l ; : W 3 w2 ; : w4 w3 ;
: w 5 w4 ; : W6 W 5 ;
W (--) 3 0 , 0 0 0 0 DO W6 LOOP ;
: WW (-- 1 5 0 DO W LOOP ;

The two nesting benchmarks should be equivalent but
can be very different depending upon any optimization
applied.

I ~ a b ~ e One. I

Top-of-Stack Location
\ P r i m i t i v e s : Prims = QQ - XX
\ E x e r c i s e : variable c o n s t a n t @ ! + DUP
\ SWAP OVER DROP

VARIABLE LOC
1 0 CONSTANT TEN

: N U L L (- - I
TEN DUP LOC SWAP OVER ! @ + DROP ;

: Q (--) 3 0 , 0 0 0 0 DO NULL LOOP ;

: QQ (-- 5 0 DO Q LOOP ;

Other Benchmarks
To satisfy the curious, the "standardn Sieve benchmark

and a simple interpreting-time benchmark are included.

\ S i e v e : Sieve = 1 0 0 do DO-PRIME loop

8 1 9 0 CONSTANT S I Z E
CREATE FLAGS S I Z E ALLOT

: DO-PRIME (--) FLAGS S I Z E 1 F I L L
0 S I Z E 0 DO FLAGS I + C@

I F I DUP + 3 + DUP I +
BEGIN DUP S I Z E <
WHILE 0 OVER FLAGS + C ! OVER +
REPEAT

THEN
LOOP . ;

Forth
BBL
eForth
F83
F-PC
Fifth
HS/FORTH
KForth
LaFORTH
MMSFORTH
MVP-FORTH
PC-Forth
PMFORTH
polyFORTH
Pygmy
riFORTH

1 UniForth
Upper Deck
UR/FORTH
ZEN

Threading
direct
direct
indirect
direct
subroutine?
indirect
direct
direct
indirect
indirect
indirect
direct
indirect
direct
subroutine
indirect
direct
direct
direct

Stack
in reg
on stack
on stack
on stack
?
in reg
in reg
in reg
on stack
on stack
on stack
on stack
on stack
in reg
in reg
on stack
in reg
in reg
in reg

Segments2
N=C,m(L+D),neH,S+B
I (sep. heads)
1
3=C+D+S,mL,H
?
N=n*C,n*(L+D),nbH,S
5=C,L,D,H,S
2(2nd for text files)
l(non-DOS), 2=C+L+D,H
1
1
2=C+L,D+H+S
N=ne(C+L+H),(D+S),n*D
1
1
1
5=C,L,D,H,S
4=C,L+D,H,S
2=C+L,D+H+S

1. Width given as: stack-widthhoken-width; os indicates token is an offset into the code segment, pp indicates token
is a 16-bit paragraph address.

2. code, List, Qata, Bead, and Stack; m(L) indicates one meg. of paragraph space for tokens; n*(L+D) or n*H indicates
n 64K segments for lists+data or heads.

I I I

Forth Dimensions 7 March 1992 April

Interpret-time benchmark.

\ I n t e r p r e t - t i m e : LXK& (tests: WORD, NUMBER, and FIND e t c .)

99 DROP 9 9 DROP
9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 99 DROP 9 9 DROP
9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 99 DROP 9 9 DROP
9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 99 DROP 9 9 DROP

9 9 DROP 9 9 DROP 99 DROP 9 9 DROP 99 DROP
9 9 DROP 9 9 DROP 9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 9 9 DROP 9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 99 DROP 9 9 DROP 9 9 DROP 99 DROP
9 9 DROP 9 9 DROP 9 9 DROP 99 DROP 9 9 DROP
9 9 DROP 99 DROP 9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 9 9 DROP 9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 9 9 DROP 9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 9 9 DROP 9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 9 9 DROP 9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 9 9 DROP 9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 9 9 DROP 9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 9 9 DROP 9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 9 9 DROP 9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 9 9 DROP 9 9 DROP 9 9 DROP 9 9 DROP
9 9 DROP 9 9 DROP 9 9 DROP 9 9 DROP

Note: Loads is strongly influenced by the search method and, in many Forths, by the
number of words in the dictionary.

~ e ~ u l t s I I

This effect was noticed using PC-Forth and only investi-
gated for PC-Forth and PCRORTH (a now discontinued
product from LMI, which resisted attempts to force code or
list addresses to non-word boundaries). A 4.77 MHz 8088

Initial testing was done on a 20 MHz '386; however, if
the code or list addresses were moved from non-word to
word boundaries, the times were significantly improved.

did not exhibit this behavior and was used to obtain the
results listed in Tables Two and Three.

The benchmarks arrived at
are specifically aimed at

Table Two. I
Forth
BBL
eForth
F83
F-PC
Fifth
HS/FORTH
KForth
LaFORTH
MMSFORTH
MVP-FORTH
PC-Forth
PMFORTH
polyFORTH
pygmy
riFORTH
UniForth
Upper Deck
UR/FORTH
ZEN

the attributes studied
and do not necessarily

correlate with
real applications.

Type
D-R-L
D-S
I-S-J

D-S-P
S-?
I-R
D-R
D-R
I-S

I-S-J
I-S
D-S
I-S
D-R
S-R
I-S

D-R
D-R
D-R

Thread
5.9

15.1
11.0

9.8
5.8
5.8
10.0
19.8
10.0
9.6
9.9
5.9
9.6
10.7
5.9
5.8
6.8

Prims
33.1

41.5
30.3
70.4
28.5
21.6
26.9
33.4
50.8
32.7
39.8
31.5
23.5
9.6
33.3
23.8
24.3
27.4

Sieve
49.0

68.1
44.9
97.2
48.8
36.2
36.3
55.6

54.8
70.?
52.9
39.7
34.8

39.8
38.2
44.6

Loads
4.3

3.8
0.9

0.7
21.9
0.5
0.5
8.5
8.4
15.1
1.0
4.7
6.8
2.7
0.5
0.5
4.4

I All times in seconds, all measurements on a 4.77 MHz 8088 PC. I I
I I I

March 1992 April 8 Forth Dimensions

Forth
riFORTH
Fifth
KForth
LaFORTH
URIFORTH
pygmy
Upper Deck
ZEN
HS/FORTH
polyFORTH
PC-Forth
UniForth
MMSFORTH
BBL
eForth
F83
PMFORTH
F-PC
MVP-FORTH

I

Type'
S-R
S-?-?
D-R
D-R
D-R
D-R
D-R
D-R
I-R
I-S
I-S
I-S
I-S

D-R-L
D-S
I-S-J
D-S

D-S-P
I-S-J

Table Three.
I

Thread
9.6

5.8
5.8
5.8
5.9
5.9
6.8
9.8
9.9
10.0
10.7
10.0
5.9
--

15.1
9.6
11.0
19.8

Prims
9.6
70.4
21.6
26.9
24.3
23.5
23.8
27.4
28.5
31.5
32.7
33.3
33.4
33.1

41.5
39.8
30.3
50.8

Sieve
34.8
97.2
36.2
36.3
38.2
39.7
39.8
4.6
48.8
52.9
54.8

55.6
49.0

68.1
70

44.9

Loads
6.8

21.9
0.5
0.5
4.7
0.5
4.4
0.7
1 .o
8.4
2.7
0.5
4.3
-- -

3.8
15.1
0.9
8.5

Sorted by nesting time.
1. Type: Indirect, Direct, or Subroutine threading,

stack-top in Begister, or on Stack,
1-meg. Usts, 1-meg. lists on Earagraphs, lump to NEXT.

T h i n g
In general the results were as follows (fastest to

slowest):
subroutine threading; top-of-stack in register,
direct threading; topof-stack in register,
indirect threading; top-of-stack in register,

To obtain the maximum

indirect threading; topof-stack in memory,
direct threading; topof-stack in memory.1

advantage from Forth,
one should understand

the rationale for its structure

1. Expected to be third, not last (PMFORTH was the only
example).

and its inherent strengths
and weaknesses.

"1&bitW Threading Nesting Primitives Sieve
Subroutine 10 5/10 10 35
Direct 6-07 25-34 22-27 36-45
Indirect 10 34-37 28-33 48-56
I (J M P N E X T) 15-20 43-53 42-50 68

"1 &bit paragraphsn
F-PC @if) 11 46 30 45

"38bit"
BBL a i r) 06 4 1 33 49
Fifth (Sub) -- 2 1 70 97

Forth Dimensions 9 March 1992 April

Opthimtion
Two of the Forths allowed optimization of user speci-

fied words. The results obtained using the optimizers are
shown in Table Four.

Comments
Several aspects of these Forths make direct comparison

difficult. Most of them do not automatically optimize their
code nor do they directly span multiple segments. How-
ever, riFORTH does automatic optimization; polyFORTH
has multiple C+L+H spaces; BBL, F-PC, and Fifth have up
to one meg. of list space; F83 and MVP-FORTH have a
central NEXT; MVP-FORTH and PMFORTH have inefficient
versions of NEXT; KForth does high-level parsing; eForth
interprets files via a serial link; and LaFORTH uses a 64K
text buffer.

Further Tests
Because of the differences mentioned above, a test-set

of five different versions of Forth were produced. They
were all derived from riFORTH (a subroutine-threaded
Forth available in a minimum number of screens). The
versions (including riFORTH) were:

Name
threadlna

SR-S Subroutine
D-R-M Direct
D-SM Direct
I-R-M Indirect
I-S-M Indirect
D-R-S Direct

Model
@~-of-sta& searnenWi~@
in Register Single (riFORTH)
in Register Mu1 tiple
on Stack Multiple

in Register Mu1 tiple
on Stack Multiple

in Register Single

The versions were optimized for speed at the expense
of size. All models used an in-line NEXT and in-line nest,
LIT, etc., where possible. The benchmark results (sorted
by nesting time) are given in Table Five.

Note that for riFORTH, Nest2 is almost twice as fast as
Nestl while Thread and Nestl take the same time. This is
because riFORTH is subroutine-threaded and has built-in
optimization. Referring to the nesting benchmarks, the
'coden no-op NC, and the "colonn no-ops : N and wl all
compile as return instructions. However, W2 is compiled as
a jump to wl, w3 as a jump to W2, etc., thus doing five jumps
and a return inside the w loop instead of six call-return
pairs. Also note that the P r im are executed much faster for
riFORTH than the other versions (because riFORTH drops
adjacent XCHG BP, S I pairs from "code macrosn as it
compiles them into the list field of a colon definition), while
the Sieve (which uses a high-level DO LOOP) is only slightly
faster.

The apparent anomaly among the other versions is D-
R-S, the only one of the five that is not multi-segment. It
nests more slowly but does Pr im and Sieve faster than D-
S-M because nest, LIT, and VARIABLE cannot be as highly
optimized for speed.

Table Four. Results using optimizers. I
I

Forth Type Empty Thread Nest1 Nest2 Prims Sieve Loads
HS/FORTH I-R 5.5 9.8 34.2 33.8 28.5 48.4 0.7
optimized 3.2 0.0 0.0 0.0 5.2 12.9 0.7

UWORTH D-R 3.0 5.8 31.9 32.0 24.3 38.2 0.5
optimized 0.8 12.9 23.1 23.1 6.3 7.5 0.5

Table Five. Performance of test-set versions of Forth. I
Name Empty Thread Nest1
S-R-S 13.1 9.6 9.6
D-R-M 2.9 5.8 25.8
D-S-M 2.9 5.8 25.8
D-R-S 2.9 5.8 31.9
I-R-M 3.6 10.0 33.8
I-S-M 3.6 10.0 33.8

Nest2 Prims Sieve
5.4 9.6 34.8
25.8 21.5 36.2
25.8 25.1 42.3
32.3 23.4 37.9
33.5 28.8 47.7
33.5 32.1 53.2

I 1 I
March 1992 April 10 Forth Dimensions

The fo l lowing lists the versions o f NEXT, nest, E X I T ,
literal, CONSTANT, VARIABLE, @, !, and + used i n these
mode l s .

Code Fragments

E X I T MOV S I , [B P l see D-R-M see D-R-M see D-R-M see D-R-M
I N C BP <-- <-- <-- <--
I N C BP
NEXT

nest --- see D-R-M see D-R-M see D-R-M JMP nest
DEC BP <-- <-- <-- DEC BP
DEC BP DEC BP
MOV [B P] , S I MOV [B P I , S I
MOV S I, addr ADD A X , 3
NEXT MOV S I , A X

NEXT

NEXT LODSW see D-R-M LODSW LOD SW see D-R-M
JMF'AX <-- XCHG AX,DX XCHG AX,BX (LODSW

JMP [DX] JMF' [BXI JMP AX)

CON PUSH BX see D-R-M see D-R-M see D-R-M see D-R-M
MOV BX, # <-- <-- <-- <--
NEXT

VAR see CON A see CON A see CON A see CON * ADD A X , 3
PUSH BX
XCHG AX, BX
NEXT

L I T see CON A MOV BX, # LODSW LODSW LODSW
PUSH BX PUSH BX PUSH AX PUSH BX
NEXT XCHG AX, BX NEXT XCHG AX, BX

NEXT NEXT

@ E S : POP BX
MOV BX, [BX] E S :
NEXT PUSH [BX]

NEXT

I E S : POP BX

POP [BX] E S :
POP BX POP [BX]
NEXT NEXT

+ POP AX POP BX
ADD BX,AX POP AX
NEXT ADD BX,AX

PUSH BX
NEXT

E S : POP BX
MOV BX, [BX] E S :
NEXT PUSH [BX]

NEXT

E S : POP BX
POP [BX] E S :
POP BX POP [BX]
NEXT NEXT

POP AX POP BX
ADD BX,AX POP AX
NEXT ADD BX, AX

PUSH BX
NEXT

E S :
MOV BX, [BX
NEXT

E S :
POP [BX]
POP BX
NEXT

POP AX
ADD BX, AX
NEXT

Forth Dimensions 11 March 1992 April

observations
Ignoring the various anomalies, the spread in perfor-

mance among the Forths for most benchmarks is about a
factor of two (about a factor of 1.5 among the test-set
versions.) This seems a small gain considering both the
efforts that have gone into the various implementations and
the resulting lack of internal consistency from one imple-
mentation to the next. (It was, however, easier to handle
these inconsistencies when writing the various versions of
the benchmarks than to handle the inconsistencies among
different assemblers supplied with the various Forths.)

specifics
The data for the D-R-M, D-S-M, I-R-M, and I-S-M versions

yields the following ratios:

Indirect/Direct = 1.7: 1 (ratio of times for Thread)
IndirectjDirect = 1.3:l (ratio of times for Nest1 or Nest2)
Indirect/Direct = 1.3:l (ratio of times for Prims or Sieve)

StackIReg (Dir) = 1.2: 1 (ratio of times for Prims or Sieve)
Stackaeg and) = 1.1:l (ratio of times for Prims or Sieve)

I-S-M/D-R-M = 1.5: 1 (ratio of times for Prims or Sieve)

D-R-S/D-R-M = 1.1 : 1 (ratio of times for Prims or Sieve)

These ratios indicate that changing from indirect-thread-
ing to direct-threading in the multi-segment version provides
about a 30% speed-up, while changing from top-of-stack on
the stack to top-of-stack in a register provides about a 10%
speed-up. Changing both provides about a 50% speed-up.

The segment model affects performance in the case
shown above by about 510% because the D-R-S version
does not permit the best possible optimization of the Forth
virtual machine for speed (as shown by the code fragments
on the preceding page).

A more significant reason for segmentation is that it
provides separation of the components of a Forth word and
can provide more memory in which to program. For
example, separating the headers from the rest of the words
can provide more program space or can make an application
smaller and much harder to disassemble.

Another reason for segmentation is that more and more
operating systems restrict the use of data and code in the
same memory "hunk." These systems normally restrict read-
write access to data structures in the code hunk, making an
application either use separate hunks for code and data or
use the operating system to overcome such restrictions (with
possible performance penalties).

opinions
Selecting one Forth over another for a typical gain of 50%

in performance may be the wrong reason to make the choice.
Changing from an 8088 to a faster member of the family,
changing an algorithm, or using the optimizers available with
several of the Forths can result in gains of from three to more
than 30.

The following considerations would seem at least as
important:

quality and completeness of the implementation,
availability and appropriateness of additional modules,
availability and quality of support including documenta-
tion,
transportability of source and ease of use,
application-size supported.

Notice that price is not in the above list. If you are going
to use the Forth for a commercial application, even the
highest priced commercial Forth is inexpensive if it has
features that are important to your application and will allow
you to finish your project si&~cantly faster than you
otherwise would.

A particular consideration these days is the size of the
application supported. Most commercial applications are big
and growing bigger, especially those that have to run under
most of the current graphical user interfaces. The typical
single-segment Forth, even with overlays, is hard pressed to
support the bloated programs that seem to be required.
even embedded systems are getting larger, although mini-
mizing their size is still very important)

Most of the Forths reviewed do not easily support large
programs and among those that do, there are a variety of
trade-offs that need to be considered Some of the Forths that
seem to support large programs have limitations on the space
available for code andlor data, others do not. Some require
significantly more memory for a given application than
others. The segmentation information and the code-fragments
presented for the Forths provide some insight as to the
advantages and limitations of the various Forths.

Another consideration that is becoming more important,
at least in the PC world, is the ease with which foreign
libraries and facilities @LLs, OLE, etc.) can be accommo-
dated. Most of the Forths reviewed have no built-in capability,
a few do. If this is an important consideration, one should
investigate the support for interfacing to other programs and
libraries that may be available.

Most of the Forths reviewed claim to support multitasking.
If this is an important feature, be warned that the support
provided is usually minimal. Further, almost none of these
Forths provide useful multiuser support.

Forth
For those wishing to evaluate Forth, important consider-

ations include ease of use (including DOS interface and
available editors), standardization, and adherence to avail-
able Forth texts.

Another consideration that is important when consider-
ing a Forth is whether you are going to approach it as a black
box, or whether you are interested in understanding its
internal structure. To obtain the maximum advantage from
Forth, one should understand both the rational for its
structure and its inherent strengths and weaknesses. This
requires at least some understanding of the internal5 of the
version being used and becomes more important as an
application becomes more complex. The Forths reviewed

March 1992 April 12 Forth Dimensions

range from simple to very complex and the documentation
of their structure ranges from nonexistent to well detailed.

Further, some provide complete source code and some
do not (although you can usually obtain it for a fee). At the
most advanced level, those that supply source provide it
either as native Forth code with a metacompiler or as
assembly code for use with a standard assembler. Be warned,
most metacompilers are diff~cult to master at best and you
usually require some understanding of them to follow the
accompanying Forth source.

Finally, remember.. . Forth can never (well, hardly ever)
be too small or too fast-especially for all those big and slow
applications.

Forth Assemblers (an aside)
How to move the contents of memory (pointed to by the

contents of register BX) into a register (AX in this case):

MOV AX, [BX]
AX, [BX] MOV
AX [BX] MOV.
[BX] AX MOV
[BX] AX MOV,
[BX] AX LDA,

3) 0 MOV,
3) 0 LDA

opcode destination source
destination source opcode
same order, trailing period
source destination opcode
same order, trailing comma
same order, different opco&
same order, different register "names"
same order, different opcode

and there are probably more (and you haven't seen how to
index yet!).

The code fragments are all given in a standard format. This
does not reflect the flavor of the assembler mnemonics of the
various Forths studied (as hinted at above) but does make it
easier to understand and compare the examples.

How to open a file and load a program in the various Forths.
I

Forth
BBL

Case Method
screen-file CACHE-NAME 30 EXPECT <cr> BBLBENCH <cr>

0 CACHE-NAME 8 + ! <cr>
OPEN-CACHE 1 LOAD <cr>
(my old version did not have USING)

((eForth text-lines via serial channel I
I I F83 screen-file OPEN F83BENCH. 1 LOAD <cr> 1
1 1 F-PC text-file FLOAD BENCH <cr> I
I I Fifth text-file L SIEVE.FIV <cr> C <cr> 1
1 I HS/FORTH text-file FLOAD HSFBENCH <cr> I

text-file LA LA.HI <cr> (from DOS) LT RUN <cr>
BT MT TEXT LABENCHAZ BT OPEN . (handle)
BT s i z e handle READ TP + ! <cr>
0 LT DROP TP @ XC! LT RUN <cr>
(couldn't find a better way - must be one?)

I I MMSFORTH screens 400 LOAD <cr> (non-DOS, see MMSBENCH) 1
screens 342 (o r 171) LOAD <cr> (seeMVPBENCH) I
~ ~ e e n - f i l e INCLUDE PCBENCH <cr> or
text-file INCLUDE PCBNECH <cr>

I I pMFoRTH

screen-file OPEN B : PBENCH <c r>
(in PMfile) 1 SFLOAD <cr>

screen-file CHART PCBENCH 1201 LOAD <CK> or
1 LOADUSING PCBENCH <cr>

screen-file NAMEZ : PYGBENCH <cr>
600 PYGBENCH 2 UNIT <cr>
2 OPEN 1 LOAD <cr>

SCfeen-file RIFORTH RIBENCH <cr> (from DOS)
2 LOAD <cr> (screens start from 1)

~Cfeen-file UNIFORTH UNIBENCH <c r> (from DOS)
1 LOAD <cr>

text-file CAPS ON RELOAD BENCH <cr>

1 UR/FORTH reen en-file ASM USING LMIBENCH. 1 LOAD <cr>

ZEN text-file INCLUDE ZENBENCH. <cr>

Forth Dimensions 13 March 1992 April

Sements (max. size each);
Code(64K) Lists+data(l meg.)
Stack+Block(64K)

Wis t e r use;
AX = W SI = IP
BX = tos(1sw) DI = 0 (lit)
CX = tos(msw) BP = RP
DX = - SP = SP

BBL
~eads(n .64~) Vl? 1 W2U86 Green

public1
Written by Roedy Green

CS = code to use as the tool for rewrit-
DS = lists+data (seg/off of) ingAbun&nce(avast&ta-
ES = lists+data (32 bit addr) baseprogramandapp]ica-
SS = stacks tion). Source code for BBL is

Next
LODSW
JMPAX

MOV ES,CX
MOV CX, ES : [BX+2 I
MOV BX, ES : [BX]
NEXT

ant (~ n - Ilne)
PUSH BX
PUSH CX
MOV BX, # (lsw)
MOV CX, # (msw)
NEXT

N c s U h k w x L u t e r ~ Unnest
XCHG SP, BP XCHG SP, BP
PUSH SI POP DS
PUSH DS POP SI
XCHG SP, BP XCHG SP, BP
MOV DX, xxxgf a (seg) NEXT
MOV SI,xxxgfa(offset)
MOV DS,DX
NEXT

1 -
MOV ES,CX MOV DS, xxxgfa (seg)
POP ES : [BX+21 MOV AX, xxxgf a (off)
POP ES: [BX] JMP DOCOL
POP CX
POP BX DOCOL: XCHG SP,BP
NEXT PUSH SI

PUSH DS
XCHG SP, BP
MOV DS,DX
MOV S1,AX
NEXT

+ -
PUSH BX POP DX
PUSH CX POP AX
MOV CX, X X X ~ ~ a (seg) ADD BX, AX
MOVBX,xxxgfa(off) ADCCX,DX
NEXT NEXT

in assembler.
A direct-threaded 32-bit

implementation with the top-
of-stack in a register. A mul-
tiple-segment model which
interprets from screen files.

Notes: compiled tokens are
offsets into the code seg-
ment.
1. Not for military use.

Segments (max. size each);
Code+Lists+Data+Heads+Stack+Blocks(64K)

eForth
VI . 0 7/27/W, Muench et al.

Register use;
A X = -
BX = -
CX = -
DX = -

LOD SW
JMP AX

ld
POP BX
PUSH [BX]
NEXT -
not implemented

March 1992 April

public
SI = IP CS = all segments eForth has been proposed
DI = - DS = CS as the successor to fig-FORTH
BP = RP ES = CS for porting to current micro-
SP = SP SS = CS processors, is available in

Nest Unnest
several implementations, and

NOP CALL NEST is tailored toward transport-
ability, ROMrnability, anduse

XCHG SP, BP XCHG SP, BP in embedded controllers.
PUSH SI POP SI Source code is usually in
XCHG SP, BP XCHG SI, BP assembler.
POP SI NEXT
NEXT

A direct-threaded 16-bit
implementation with the top-

I Taiteral of-stack on the stack. It has
POP BX LODSW separated heads in a single
POP [BX] PUSH AX common segment and usu-
NEXT NEXT ally interprets source code

le - + from a host serial link when
NOP CALL NEST : + UM+ DROP ; used in embedded controllers.

doVAR

: doVar R> ; Notes: All variables are user variables, UP is in memory, FOR
NEXT loop instead of DO LOOP, CATCH and THROW are used
in error recovery.

14 Forth Dimensions

public
Written by Henry Laxen

and Mike Perry to provide a
working model of an 83
Standard Forth. Releasedwith
many enhancements over fig-
FORTH and available for
8080/280, 8086 family, and
68000 series rniaoproces-
sors. Includes fullsourcecode
and metacompiler in DOS
sueen files.

An indirect-threaded 16-
bit implementation with the
topof-stack on the stack. A
single-segment model which
interprets from screen files.

Next
LODSW
MOV BX, AX
JMP [BXI

(a
POP BX
PUSH [BX]
JMP NEXT

Constant
INC BX
INC BX
MOV AX, [BXI

I JMP APUSH

Nest
INC BX
INC BX
DEC BP
DEC BP
MOV [BP],SI
MOV S1,BX
JMP NEXT

POP BX
POP [BXI
JMP NEXT

INC BX
INC BX
PUSH BX
JMP NEXT

CS = all
DS = CS
ES = CS
SS = CS

Unnest
MOV SI, [BPI
INC BP
INC BP
JME' NEXT

J m
LOD SW
JMP APUSH

+ -
POP BX
POP AX
ADD AX, BX
JMP APUSH

F-PC Segments (max. size each);
~3.50 I W ~ , zimtner6 Co&+Data+Stack+Blocks(64K) Heads(64K) Lis td l meg.)

Smith Register use;
public A X = W

A massive effort (and BX = -
implementation) by Tom cx = -
Zimmer and Robert L. Smith DX = -
(with support from a variety
of other persons and groups).
Many enhancements over
F83 and a large set of con-
uibuted add-ons by other
programmers. Has a very

LODSW ES :
W A X

complete text-editor and
hyper-text-like source-code
and documentation browser.
Very big and very complete,
includes full source code and
metacompiler.

A direct (segment)
threaded 16-bit implementa-
tion with the topof-stack on @-------

the stack. A multiple-segment POP BX
PUSH [BX] model which interprets from NEXT

text files.

SI = IP CS j code+data+blocks
DI = - DS 3 CS
BP = RP ES = Lists
SP = SP SS = CS

Nest
JMP NEST

NEST: XCHG SP,BP XCHG SI, BP
PUSH ES POP SI
PUSH SI POP ES
XCHG SP, BP XCHG S I, BP
MOV DI,AX NEXT
MOV AX, [DI+3]
ADD AX, #seg
MOV ESIAX
SUB S1,SI
NEXT

1

POP BX
POP [BX]
NEXT

Liter&
LODSW ES :
JMP APUSH

(lonstant Notes: colon definitions start JMP doCON
le

CALL doVAR
on paragraph boundaries.

MOV BX, AX doVAR: POP BX
PUSH [BX+3] MOV AX, [BX]
NEXT PUSH BX

NEXT

POP BX
POP AX
ADD AX,BX
JMP APUSH

Forth Dimensions 15 March 1992 April

ents Cmax. size each);
Code(n*64K) Lists+Data(n*64K) Heads(ne64K) Stack(64K)

Register use;
A x = -

BX = tos
CX = -
DX = -

Next
LODSW
XCHG DI,Ax
JMP ID11

(a
MOV BX, [BX]
NEXT

-
PUSH BX
MOV BX, [DI+2]
NEXT

SI = IP CS = code
DI = W DS = lists+data
BP = RP ES = heads/misc
SP = SP SS = stacks

Nest Unnest
INC BP MOV SI, [BPI
INC BP DEC BP
MOV [BP],SI DEC BP
LEA SI, [DI+2] NEXT
NEXT

1

POP AX
MOV [BX] ,AX
POP BX
NEXT

PUSH BX
MOV BX, [SI]
INC SI
INC SI
NEXT

1 e - +
PUSH BX POP AX
LEA BX, [DI+2] ADD BX, AX
NEXT NEXT

HS/FORTH
V4.24 &/9/91,

Hanlard SoJhoorks
 commercial^

A very complete com-
mercial implementation of
Forth for the 8086 family of
microcomputers. One of the
few Forths in this review that
provides compatibility with
the DOS linker. Source code
and metacompilers available.
Multiple Forth segments in a
single DOS allocation.

An indirect-threaded 16-
bit implementation with the
topof-stack in a register. A
multiple-segment model
which interprets from text or
screen files.

1. The above information is
presented with the gen-
erous permission of Jim
Callahan of Harvard
Softworks.

Segments (max. size each);
Code(64K) Lists(64K) Data(64K) Heads(64K)
Stacks(64K) Tool(64K) Video(64K) Msgs(1K)

Register use;
A X = W
BX = tos
CX = -
DX = -

Next
LOD SW
JMPAx

SI = IP CS = code
DI = - DS = lists
BP = RP ES = data
SP = SP SS = stacks

Nest
DEC BP
DEC BP
MOV [BP],SI
MOV S1,pfa
NEXT

P > 1

MOV BX, ES : [BX] POP ES : [BX]
NEXT POP BX

NEXT

Constant le
PUSH BX PUSH BX
MOV BX, value MOV BX, addr
NEXT NEXT

Unnest
MOV SI, [BPI
INC BP
INC BP
NEXT

Literal
PUSH BX
MOV BX,value
NEXT

+ -
POP AX
ADD BX, AX
NEXT

KForth
V0.9 9/2&/91, Kelly

copyrighted
Currently an experimen-

tal model to investigate vari-
ous aspects of threading and
segmentation. Current ver-
sion is fast ("in-line") direct-
threaded, multi-segment (in
multiple DOS segments).

A direct-threaded 16-bit
implementation with the top
of-stack in a register. A mul-
tiple-segment model which
interprets from screen files.

Notes: Colon-word PFA's,
literals, constants, and vari-
able addresses are compiled
"in-linen in the code seg-
ment.

March 1992 April Forth Dimensions

LaFORTH
V4.0 9?#87, Shrart & Smith

copyrighted
Experimental version by

LaFarr Stuart and Robert L.
Smith. Has some very inter-
esting features (including
calling Forth from Forth and
interpreting a word-at-a-time
instead of a line-at-a-time).
Source code is in assembler.

A direct-threaded 16-bit
implementation with the top-
of-stack on the stack. Asingle-
segment model with an extra
segment for interpreting text
files.

Notes: the return stack is in
the ES segment and grows
"up."

Sesments (max. size each);
Code+Lists+Data+Heads+Stack(64K) Text(64K)
Renister use;
A X = W
EX = -
CX = -
DX = -
Next

LOD SW
JME' AX

L
POP BX
PUSH [EX]
NEXT

Constant
CALL @

Nest
JMP NEST

NEST: ADD AX, 3
XCHG AX,SI
STOSW
NEXT
1

POP EX
POP AX
MOV [EX] ,AX
NEXT

CALL @

SUB DI,2
MOV S1,ES: [DI]
NEXT

Literal
LODSW
PUSH AX
NEXT

+ -
POP AX
POP BX
ADD AX, EX
PUSH AX
NEXT

MMSFORTH
V2.4 93W85,

Miller Microcomputer Svcs.
commercial1

Commercial version of
Forth includes advanced full-
screen editor, many utilities.
Options include database,
word-processor, general
ledger, expert system, and
advanced utilities. Source-
code is in screen files in DOS
version and in direct blocks
(screens) in self-booting ver-
sion (which supports more
efficient Forth disk formats
such as 1K sector size). Most
source-code is supplied, full
source-code and metacom-
piler are available.

Indirect-threaded, 16-bit
implementation, topof-stack
on stack, single-segment

Sements (max. size each);
Code+Lists+Data+Heads+Stack+Blocks(64K) (non-DOS version)

Renister use;
A x = -
EX = W
CX = -
DX = -

Next
LOD SW
XCHG AX, EX
JMP [EX]

[a
POP BX
PUSH [BX]
NEXT

SI = IP CS = all
DI = - DS = CS
BP = RP ES = CS
SS = SP SS = CS

Nest
DEC BP
DEC BP
MOV SI, [BPI
INC BX
INC BX
MOV S1,BX
NEXT

POP BX
POP [BX]
NEXT

Unnest
MOV SI, [BPI
INC BP
INC BP
NEXT

model (DOS version uses a
Constant separate Heads segment). * + -

Interprets from direct blocks
* POP AX

(DOS version uses screen- POP DX

files.) ADD AX,DX
PUSH AX
NEXT

Note: Non-DOS version of MMSFORTH was used in Excalibur's SAVVY, DOS version in
Lindberg System's OMNITERM-2 and Ashton-Tate's RAPIDFILE.

High-level words, source code provided.
1. The above information is presented with the generous permission of A. Richard (Dick)

Miller of Miller Microcomputer Services.

Forth Dimensions 17 March 1992 April

Wister use;
AX = -
BX = -
CX = -
DX = W

Next
MOV AX, [SI]
INC SI
INC SI
MOV BX, AX
MOV DX,AX
INC DX
JMP [BX]

(a
POP BX
MOV AX, [BX]
JMP APUSH

Constant

SI = IP CS = all
DI = - DS = CS
BP = RP ES = -
SP = SP SS = CS

Nest
INC DX
DEC BP
DEC BP
MOV [BP],SI
MOV S1,DX
JMP NEXT

1

POP BX
POP AX
MOV [BX] ,AX
JMP NEXT

Unnest
MOV SI, [BPI
INC BP
INC BP
JMP NEXT

MVP-FORTH
V1.0405.03 5/17/85, M W

public
One of the first 79-Stan-

dard Forths. Based on the
fig-FORTH 8086 implemen-
tation model. Source code in
direct blocks (screens).

An indirect-threaded, 16-
bit implementation with the
topof-stack on the stack. A
single-segment model which
interprets from direct blocks
(screens).

Notes: NEXT and NEST seem
Jniter&l to be a direct translation of
MOV AX, [SII the fig-FORTH 8080 assembly
INC SI code. Central NEXT.
INC SI
JMP APUSH

+ -
POP AX
POP BX
ADD AX, BX
JMP APUSH

Segments (max. size eachk
Code+~ists+Data+Heads+Stack+Blocks(64K)

Register use;
A X = -

BX = W
CX = -
DX = -

Next
LODSW
XCHG AX, BX
JMP [BXI

P
POP BX
PUSH [BX]
NEXT

Constant
INC BX
INC BX
PUSH [BX]
NEXT

Nest
DEC BP
DEC BP
MOV [BP],SI
INC SI
INC SI
MOV S1,BX
NEXT

1

POP BX
POP [BX]
NEXT

INC BX
INC BX
PUSH BX
NEXT

CS = all
DS = CS
ES = CS
SS = CS

Unnest
MOV SI, [BPI
INC BP
INC BP
NEXT

Li te rd
LOD SW
PUSH AX
NEXT

+ -
POP AX
POP DX
ADD DX,AX
PUSH DX
NEXT

PC-Forth
V1.56 9/09/87, Kelly

public
Written expressly for

teaching purposes. Includes
1 1 1 source code and a simple,
interactive metacompiler
(which does not require
mixing meta-commands in
with the Forth source code).
Also includes a very power-
ful screen editor (with over-
lay capability for use with
other Fotths), as well as many
utilities. Available in bothself-
booting and DOS versions.

An indirect-threaded 16-
bit implementation with the
topof-stack on the stack. A
single-segment model which
interprets from screens (di-
rect or file) or text files.

March 1992 April Forth Dimensions

plyFORTH
pF8GS/MSD, mRlH Inc. Code+Lits+Heads(n*64K) Data+Stack+Blocks(64K) Extended-data(M)

cornmia l l
The mother of all Forths & U k U S G

(well, almost) by FORTH, AX = ' S I = I P C S = code+lists+heads
Inc. Complete source code BX = D I = W D S = d a t a + s t a c k s
with metacompiler, EGAI CX = ' B P = RP E S = -
VGA graphics, data-base, DX ' - S P = S P SS = DS

floating point, m e n editor,
debugger and other support.
Full multi-user capability buii
in at the kernel level. Source
code and shadow screens in
screen files.

Indirect-threaded. 16-bit

Next
C S : LODSW
XCHG M I D I
JMP [D I I

implementation, top-&-stack g
on stack, multiple-segment pop D I
model. Interprets fromscreen PUSH [DI 1
files. A 32-bit 386 protected- NEXT
mode version is also available.

Constant
MOV C S : D I , [D I + 2]
PUSH [D I]
NEXT

Nest
XCHG S P B P
PUSH S I
XCHG S P B P
LEA C E L L S I , [D I]
NEXT

P O P D I
POP [D I]
NEXT

le
MOV C S : D I , [D I + 2]
PUSH [D I]
NEXT

Unnest
XCHG S P B P
P O P S I
XCHG SP B P
NEXT

C S : LODSW
PUSH AX
NEXT

+ -
P O P DX
P O P AX
ADD AX,DX

Note: the reported benchmarks were done on pF86/MSD (which is a single-segment version PUSH AX

dated 1/20/87). The newer, multi-segment version detailed above should produce the same NEXT

or only slightly different times.
1. The above information is presented with the generous permission of Elizabeth Rather of

FORTH, Inc.

~ P Y Sements (max. size each);
V1.3 10/#90, Ssageant Code+~ists+Data+~eads+Stack+Blocks(64K)

copyrighted
Based on the Chuck ki&terUseL

Moore cmFORTH model. AX = S I = I P C S = all

The source code and the BX = D I = - D S = C S

metacompiler are in screen CX = - B P = RP E S = C S

file.
DX = - S S = S P SS = C S

A direct-threaded 16-bit
implementation with the
topof-stack in a register. A
single-segment model
which interprets from screen
files.

Forth Dimensions

Next Nest
JMP NEST

LODSW NEST: XCHG S P , B P
JMP AX PUSH S I

XCHG S P , B P
ADD A X , 3
MOV S I , A X
NEXT

P
MOV BX, [BX]
NEXT

1

P O P AX
MOV [BX] ,AX
P O P BX
NEXT

t (i n l i n e) - l e
JMP d o V A R

PUSH BX doVAR: PUSH BX
MOV BX, value ADD AX, 3
NEXT MOV BX, AX

NEXT

19

XCHG S P , B P
P O P S I
XCHG S I , B P
NEXT

1
PUSH BX
LODSW
MOV BX, AX
NEXT

P O P AX
ADD BX,AX
NEXT

March 1992 April

Segments (max. size each); riFORTH
Code+~ists+Data+~eads+Stack+Blocks(64K) VI? 190, n&es

copvnghted
Register A minimalist Forth; fast
A X = - SI = S P C S = a l l IP = IP and efficient. Full source
EX = t o s DI = - D S = C S code and metacompiler in
CX = - B P = - E S = C S about 15 screens. Does some
DX = - S S = RP S S = C S optimization. Interesting!

A subroutine-threaded,

Next Nest
CALL xxx

Unnest
RET

P I Litera l
(XCHG S P , S I) * (XCHG S P , S I) * (XCHG S P , S I) *

MOV EX, [E X] P O P [BX] PUSH EX
(XCHG S P , S I) * P O P BX MOVE EX, va lue

(XCHG S P , S I) * (XCHG S P , S I) * - le - +
(XCHG S P , S I) * (XCHG S P , S I) * (XCHG S P , S I) *

PUSH EX PUSH EX P O P AX
MOV EX, value MOV B X , a d d r ADD EX,=
(XCHG S P , S I) * (XCHG S P , S I) * (XCHG S P , S I) *

When these words are compiled in-line, these instructions may be eliminated.
Illyes, Robert F., "A Tiny and Very Fast Subroutine-threaded Forth", Ptr>ceedings of the 1990
Rochester Fotth C o n f a e , page 76, The Fotth Institute.

16-bit implementation with
the top-of-stack in a register.
Asingle-segment model which
interprets from screen files.

riFORTH Copyright Robert
F. Illyes, 1 W . My thanks to
Robert Illyes for publishing
the source code for riFORTH.
The availability of a com-
plete subroutine-threaded
Forth, in only 12 screens,
made it possible to clone the
five merent versions used in
this saldy.

Segments (max. size each); Upper Deck
Code(64K) Lists(64K) Data(64K) Heads(64K) Stacks(64K) V2.0 1/2@9l,

Re~ister use;
A X = W
EX = t o s
CX = -
DX = -
Next

LOD S W
JMP AX

S I = I P C S = code
D I = W1 DS = l ists
B P = RP E S = data
SS = S P SS = s t a c k s

Nest
MOV D 1 , p f a
JMP NEST

N E S T : DEC B P
DEC B P
MOV [B P] , S I
MOV S 1 , D I
NEXT

P 1

MOV E S :EX, [EX] P O P E S : [EX]
NEXT P O P EX

NEXT

Constant le
MOV D I, addr
JMP d o V A R

PUSH EX d o V A R : PUSH EX
MOVE EX, va lue MOV B X , D I
NEXT NEXT

MOV S I , [B P I
I N C B P
I N C B P
NEXT

PUSH BX
MOV EX, [S I]
I N C S I
I N C S I
NEXT

POP AX
ADD EX, AX
NEXT

l@per Deck Systems
commercial1

An inexpensive, power-
ful cornrnercial version of
Forth which uses multiple
DOS segments. It includes a
very nice resident text-edi-
tor.

A direct-threaded 16-bit
implementation with the t o p
of-stack in a register. A mul-
tiple-segment model which
interprets from text files.

Notes: When case sensitive,
all supplied words are lower
case.

1. The above information is
presented with the gen-
erous permission of Peter
Graves of Upper Deck

March 1992 April Forth Dimensions

UR/FORTH Sements (max. size each); I V1.13/11/90. LMI Code(64K) Lists+Data(64K) Heads(64K) ~tacks(64I02
commercial1

UWFORTH is one of the
few Forths in this review that
is compatible with the DOS
linker. It is well supported,
with many extensions and a
very good screen-oriented
editor. Most source code is
provided in screen files.
Complete source is available.

A direct-threaded 16-bit
implementation with the top-
of-stack in a register. A mul-
tiple DOSsegment model
which interprets from screen
or text files. Also available in
OS/2 l.x, 386 32-bit pro-
tected mo&, and Windows
implementations (which are
compatible, at Forth language
level, with the DOS version).

b i s t e r use;
A X = W
BX = tos
CX = -
DX = -

CS = code
DS = lists+data
ES = -
SS = stacks

Unnest Next Nest
MOV D1,pfa
JMP NEST

NEST: XCHG SP,BP
PUSH SI
XCHG SP, BP
MOV S1,DI
NEXT

MOV SI, [BPI
INC BP
INC BP

LOD SW
JM!? AX

NEXT

(a
MOV BX, [BX]
NEXT

I

POP [BX]
POP BX
NEXT

T~iteral
PUSH BX
LODSW
MOV BX, AX
NEXT

Constant
MOV DI, value
JMF' doCON

PUSH BX
MOV BX,DI
NEXT

le
MOV DI , addr
JMP doVAR

doVAR: PUSH BX
MOV BX,DI
NEXT

POP AX
ADD BX, AX
NEXT

Note: supports binary over-
lays.

1. The above information is presented with the generous permission of
Ray Duncan of Laboratory Microsystems, Inc.

2. Segment model for version tested, varies with implementation.

ZEN Segments (max. size each);
~ 1 . 5 ~ 4/2/91, T,-~,-- Code+~ists(64K) Data+Heads+Stack(64K)

c o w g h t Register use;
Currently (Sept. 1991) AX = w SI = IP CS = code+lists

ZEN is the only Forth in this Bx = to3 DI = - DS = data+heads+stacks
CX = -
DX = -
Next

review that is tracking the
X3J14 basis document. It
has fully ROMmable assem-
bler source code and an
interface to one of the stan-
dard programmers text edi-
tors.

A direct-threaded 16-bit
implementation with the
top-of-stack in a register. A
multiple-segment model
which interprets from screen
or text files.

Nest
CALL NEST

LODSW CS :
J M P A X

NEST: DEC BP
DEC BP
MOV [BP],SI
POP SI
NEXT

MOV [SI] ,BP
INC BP
INC BP
NEXT

[a
MOV BX, [BX]
NEXT

1

POP [BX]
POP BX
NEXT

LOD SW
PUSH BX
MOV BX, AX
NEXT

Constant
JM!? doCON

le
JMF' doVAR

+ -
POP AX
ADD BX,AX
NEXT See variable doVAR: PUSH BX

ADD AX, 3
XCHG AX, BX
MOV BX,CS: [BX]
NEXT I

Forth Dimensions March 1992 April

PART ONE

The Curly Control
Structure Set
Kourtis Giorgio

Genoa, Italy

AUTHOR
(smiling)

Hi! I've got a new proposal on a new complete set of
control structures.

READER
(annoyed)

Another proposal? Do you know that this is the 134th
Forth proposal on extensions, expansions, additions, etc., to
control structures?

AUTHOR
Oess smilingly)

Yes, but mine.. .

READER
(smiling)

Oh, yes! Sure, yours is bemr, includes as subcases all
previous proposals, is original, has support for errors, is
coherent, etc.

AUTHOR
(happy)

Exactly!

READER
(serious>

You know that the same thing has been claimed by 59
other articles?

AUTHOR
(aggressive)

Yes, I know, I have read every article. Many are very
interesting and have been important for me. I copied
everydung that could be copied, I took every good idea that
has appeared, I tried to unify solutions, I attempted to solve
all the problems I was aware of,* I tried to render uniform the
proposed set of words, I s a d ~ c e d strict historical continuity
to improve teachability while avoiding conflicts among old
and new syntaxes. And I have used them for more than two
years, =fining them until they wee stable enough

except the interabivity of control-flow words.

READER
(very dubious)

Hmm ... okay, I'll listen to you, but I hope you'll have
something new to tell me.

AUTHOR
(happy and enthusiastic)

Oh, thank you! I'll present six control structures that you
can add at will. Here are some simple rules to follow:

Every control structure has a name, a beginning, and an
end. The beginning is set by the word name { while the end
is set by the word name 1. E.g.,

CASE{ CASE)
LOOP{ LOOP]

The beginning of a control structure may accept some
value on the stack, e.g.,

5 TIMES { ... TIMES)

The end of the control structure, when reached, may jump
out of the control structure, or can jump unconditionally or
conditionally to the beginning of the control structure (more
precisely, to the word immediately after the beginnins,.

CONTROL) and CASE) jump out, REPEAT) and FOR)
jump unconditionally to the beginning, while TIMES) and
LOOP 1 jump conditionally to the beginning or out of the
control structure.

With the exception of CONTROL and REPEAT, the other
control structures dispose of an index (like a DO LOOP in
standard Forth). That index (usually named I) has a different
meaning among control structures. (In the CASE control
structure, for example, I contains the subject of our research.)

As shown in Figure One-a, when inside a control
structure, we can use some control-flow words that jump
conditionally or unconditionally beyond the end of the
control structure m e LEAVE, WHEN, and WHILE) or can jump
to the word immediately after the beginning of the control
Structure (like AGAIN and ?AGAIN).

March 1992 April 22 Forth Dimensions

I Figure Onea. I
These control-flow words

can be used any number of
times in any combination,
and also can be used in
secondaries called from
within the control structur+
allowing, for example, WHILE
to be defined as
: WHILE (f l a g --)

O= WHEN ;

Depending on the irnple-
mentation, this feature may
be available or not While
not often used, it is a rarely
available but interesting fea-
ture that can provide new
prassibilities.

Looking again at Figure
One-a, we see that apart from
LEAVE, WHEN, WHILE,
AGAIN, and ?AGAIN, there
are words that must be used
in pairs:
WHEN{ (f l a g --)

WHEN) (--)

LEAVE

WHEN WHILE ,--------------
false

XXXX{ . . . (flag) WHEN 7 . . . XXXX) XXXX{ . . . (flag);~IL~ .. . XXXX) v
A .

p~ -1. 1 true 4
AGAIN ?AGAIN

WHEN{ WHEN)

rn XXXX{ . . . (flag) WHEN{ . . . WHEN} . . . XXXX)
I
I

false A L - - - - - - - - - - - - - l

WHILE) (--)

WHILE{ (f l a g -- 1

In brief, if xxxx is any
control structure,
xxxx { ... WHEN { somecode
WHEN) ... xxxx)

I WHILE{ WHILE) I

is equivalent to

XXXX{ ... (flag) WHILE{ ... WHILE) . . . XXXX} v

true

xxxxt I F somecode LEAVE, THEN ... xxxx)
I

and, similarly,
xxxx(WHILE(somecode WHILE) ... xxxx)

is equivalent to
xxxx(... O= I F somecode LEAVE THEN ... xxxx)

L
By using a WHEN pair, we not only can test a condition to

decide if the control structure must be left, we can also plaoe
between WHEN { and WHEN) the code that must be executed
just before leaving the control structure. This way, any leave-
test point can be equipped with its own, specific preexit
code.

Using WHEN is, thus, the equivalent of writing WHEN (and
WHEN 1 with no code between them.

To illustrate figuratively, let's say that:

xxxx{ WHEN{ aomeThing WHEN) xxxx)

may be informally written as

xxxx { WHEN xxxx)

LsomeThing

Other pairs of words that we can use inside an indexed
control structure are:

OF{ (value --)

OF1 (- - I

WITHIN{ (lower upper --)

W I T H I N) (-- 1

I N ((~ 1 x 2 ... x N N - -)

I N) (- - I
These pairs make explicit reference to the index and are

mainly used in the internals of a CASE struclure (though it
may be used in any indexed control structure). Look at Figure
One-b for a definition of their workings.

Inside indexed control structures, three words are s u p
plied to reference the index and its value:
I (-- indexvalue)

Leaves on the stack the value of the index.

Forth Dimensions 23 March 1992 April

TO-I (newvalue --)

Stores into the index a new
value.

STEP (valueToAdd--)

Adds to the index a value
(stepping it). S T E P is
equivalent to I + TO-I.

Descript3on of
Curly Control Structures

Given the previous
framework, now I am going
to illustrate briefly the use of
each of these control struc-
tures and how they work.
Later, we will see some ex-
amples.

CONTROL((--)

CONTROL} (--)

(X) OF(... OF] is equivalent to
(X) l =WHEN(... WHEN)

IIII{ ... (x) OF{ ... OF) 1111)

WITHIN if lower 5 I < upper
(lower upper) WITHIN(... WITHIN)
is equivalent to

1111(... (lower upper (lower upper) I -rot WITHIN WHEN(. . . WHEN)

IN
i f I=X1 or I=X2 or ...
or I=X(n-1) or I-Xn

(X lX2 ... Xnn) IN(... 1N)islike:
(X I X2 ... Xn n)

1111{ ... (XI x2 ... xn n) IN{ ... I over -roll IN WHEN(... WHEN]
I

: - - - - 5!th,ee!?!s_e_ - - - -,

The word CONTROL { marks the beginning of the control
structure. The word CONTROL 1 marks the end. They may be
used as label points when jumping via words like WHEN, WHILE,
AGAIN, ?AGAIN, and word pairs like WHEN { . . . WHEN}, etc.

ANDIF structures are easily implementable with these
ingredients. The word CONTROL), if reached, exits the
control structure.

REPEAT { (-- 1
REPEAT) (-- 1

Equivalent to-but much more flexible than-the usual
BEGIN UNTIL or BEGIN WHILE REPEAT structures. Any
number of WHILES or WHENs may be used inside this
structure, dong with the pairs WHEN { WHEN I , etc.

CASE((KeyValue --)

CASE) (--)

Comparable to Eaker's CASE structure. CASE { takes a
number from the stack (the subject of our research) and puts
it into the index, where it can be retrieved by
I (-- KeyValue)

Afterwards, by means of pairs like OF { . . . OF 1, W I T H I N { . . .
W I T H I N I , I N I . . . I N 1, and others yet to be invented, and
alsoby using WHEN(... WHEN} orWHILE{ ... WHILE), we
can select and perform the desired action. If the CASE) word
is reached, the control structure is left.

be handled explicitly4ecking and incrementingldec-
rementing at the beginning or end of the loop, depending on
the desired behavior. If FOR } is reached, the loop is repeated.

TIMES{ (#times --)

TIMES) (--)

Similar to the 0 DO . . . LOOP construct. Takes a number
from the stack (there exists an error condition if the number
is negative) and puts it into the index.
a) Before evety iteration, the value of the index is checked.

If I contains 0, the control structure is left and execution
continues after TIMES 1. Otherwise, I is decremented
and execution continues after TIMES {, beginning an
iteration. If and when TIMES } is reached, the process
is repeated from point a) (pre-incrementing model).

LOOP{ (S t a r t #times s t e p --)

LOOP} (--)

Start speafies the initial value of the index, #times
specifies the maximum number of times the loop must be
done (it couldend prematurely due to words like LEAVE, WHEN,
and WHILE).

If #times is negative, there is an error condition. Step and
#times are put on the return stack, and start is put into the

I index (also on the return stack).

March 1992 April 24 Forth Dimensions

FOR((i n i t i a l v a l u e --)

FOR) (-- 1
General-purpm looping construct (unlike a FOR.. . NEXT

&finite loop). FOR { takes a number from the stack and puts
it into the index. Afterwards, the index may be manipulated
by words like I, TO-I, and STEP. The loop-termination
condition must be handled explicitly using WHILE or WHEN.

This is an imitation of the C language's FOR construct. The
desired model of loop @re-increment, pre-decrement, post-
increment, post-decrement, fmed or variable step, etc.) , must

a) Before every iteration, the #times is checked. If it is 0,
the control structure is left and execution proceeds after
LOOP 1 . If #times is not 0, it is decremented and an
iteration begins.
If and when LOOP 1 is reached, the step is added to the
index, then the process is repeated from point a).

Thus,
(beginning)

(times)

5 (s t e p
LOOP{ I . LOOP 1

types 10 15 20 25, while

20 (beginning)

4 (t i m e s)
-3 (s t e p)

LOOP { I . LOOP)
types 20 17 14 11

Along with the loop structure are furnished the four
parameter-mowing words END, END], SIZE, and BACK.
These words allow you to specify, in many different ways,
the order and the set of values that must be spanned by the
index during the loop.

Examples and Test Sultes
The above set of control-flow words has been presented

by figures and somewhat by words. Examples are important
for two reasons:

Clarify obscure or dubious points.
Given the fact that only the constructing elements have
been shown, provide some interesting combinations of
them. (Some, probably, haven't even been explored yet.)

COrnOL
Example: Test whether the three variables A, B, and C contain
0. (The so-called ANDIF construct.)

ASCII A ASCII Z [I
WITHIN{ ." an upper-case letter" WITHIN)
ASCII a ASCII z [I
WITHIN{ ." a lower-case letter" WITHIN)

\ The word [I means simply 1t

ASCII t ASCII - ASCII *
ASCII / ASCII * 5

\ 5 s p e c i f i e s t h a t +, -, *, /, and A a r e 5
IN{ .I1 an a r i t hme t i c operator" IN)

ASCII (ASCII [ASCII { 3
IN{ ." an opening paren thes i s" IN)
ASCII) ASCII] ASCII) 3
IN{ ." a c lo s ing parenthesis" IN)

BL OF{ ." SPACE char" OF)
0 OF{ ." NULL char" OF)

ASCII 0 ASCII 9 [I
WITHIN{ ." a decimal d i g i t " WITHIN)
[HEX 1 80 100
WITHIN{
." a graphical charac te r . One of those " c r
."withcodebetween128includedand256excluded"
WITHIN)

I100>= 1 0 < OR
WHEN{ ." outs ide t h e cha rac t e r range" WHEN)

March 1992 April

: ABC - a l l z e r o ?
CONTROL{ A @ O= WHILE

B @ O= WHILE
C @ O= WHILE

." A,B,C conta in 0" CONTROL) ;

REPEAT
Example One: Traverse a list until a 0 list terminator is found.
(addr --) REPEAT{
DUP @ WHILE REPEAT) (lastAddr)

or, equivalently:
(addr --) REPEAT{
DUP @ O= WHEN @ REPEAT)

Example Two: Given the address of a null-terminated string,
leave the address of the first space or the EndAddr (if no
spaces are found).
(addr --) REPEAT{
DUP C@ ?DUP
WHILE BL = WHEN 1t REPEAT)

C4SE
Example One: Take a character code from the stack and
quahfy it.
: ?WhatCharItIs? (char --)

CASE{ (pop char from stack and put in to index)
." The cha rac t e r with code" I . . II is 11

Forth Dimensions

I -20 AND
WHILE{ ." a con t ro l character1' WHILE)

\ -20 = not (11111B)

." unclass i f ied"
CASE 1
(CASE) i f reached leaves t he control s t ructure)
;

Note: The two words ((and)) may be defined to count
the elements of a set of numbers. So, instead of writing
ASCII (ASCII [ASCII { 3

we can write
((ASCII (ASCII [ASCII {))

and this is much better. See the provided code for their
definitions.

Example Two: Special use of the case structure which allows
for subcases. Pairs used inside the outermost WITHIN, if'
entered, leave the CASE structure and execution continues
after CASE) (just like external pairs).

: DISASSEMBLE (i n s t --)

CASE {
0000 4000 WITHIN{
I MoveInst WITHIN)

25

4000 8000 WITHIN{
5000 6000 WITHIN{
I AddInst WITHIN)
6000 7000 WITHIN{
I SubInst WITHIN)

I 1 AND 0- WHEN{
I JsrInst WHEN)
(else) I JmpInst
WITHIN)

I 8000 - 1000 / TO-I
1 OF { ... OF)
...
7 OF { ... OF)

CASE) ResultDisplay ;

FOR
Example: Type the powers of two smaller than 1.000.000

1 FOR(I 1.000.000 < WHILE

I 2* TO-I (or I STEP) FOR)

5 CountBack
types43210

1 CountBack

types0

0 CountBack
doesn't type anything.

-2 CountBack
issues an error message.

-ting
)LEAVING[and)COMPLETED(

While the subset of words discussed above resolves many
problems, until now some are still unresolved. Here I will
present the problems and the solutions to them wing
extensions of the wordset.

me ILEAV7NG Clause
Let's suppose there are three variables VO, vl, and v2 that

contain addresses of strings, and we want to know if at least
two among them are equal. Using the set presented so far,
here is a solution:

I
Exmple: Type the 'On- 1 Figure Two. Compilation effects of CONTROL, REPEAT, FOR, and CASE. I

tents of a null-terminated list. I

(StartAddr --)

FOR{ I WHILE
I CELL+ @ .
I @ TO-I FOR)

Example: Do a loop that
executes at least once (like
DO LOOP). Only for illusua-
tion purposes.
10 FOR{ somecode
5 STEP I 90 <
WHILE FOR)

90 10 DO somecode
5 +LOOP

l7MEs
: DROPS

(X1 X2 ... Xn n --)

TIMES { DROP
TIMES) ;

: MULTIEXECUTE
(token #times --1
TIMES {
DUP EXECUTE
TIMES) DROP ;

: CountBack (from --)
TIMES{ I .
TIMES) ;

CONTROL
-6 -4

CONTROL{ MAIN }LEAVING{ l e g " g CONTROL]
-2 code

CONTROL{ MAIN CONTROL}
-2

code

LEAVE

REPEAT
-6 -4

\ \ A

REPEAT{ MAIN]LEAVING{ Ie:;2 REPEAT}
-7 code

LEAVE (SIMPLE{)

LEAVE

leaving
code

A

Pointerto
toend

Pointerto
LEAVING

\ 4

MAIN
code

(SIMPLE{)

REPEAT{ MAIN REPEAT]
-2 code

MAlN
code

-

Pointer to MAlN LEAVE v(SIMPLE()I--1- 1 toend I code 1 1

- 1

FOR & CASE
CASE and FOR compile similarly to CONTROL and REPEAT, respectively,
but with (SIMPLE) replaced by (INDEXED).

Pointerto
toend

March 1992 April 26 Forth Dimensions

\ \ A 4

leaving
code

A

(SIMPLE{) LEAVE Pointer to
toend

Pointer to
LEAVING

MAlN
code

AGAIN

leaving points. Thus, the code
in Figure Seven is logically
equivalent to that in Figure
Eight.

In other words, suppose
we have a control structure
with a } LEAVING { embed-
ded in it. If we transform atl
unspecialized leaving points
into the corresponding spe-
cialized pair-inserting into
the specialized pair the code
contained between the
ofighd) LEAVING { and the
end of the control structure,
then deleting the code from
1 LEAVING I (inclusive) to the
end of the control structure
(exclusive)--we obtain new
code that is logically equiva-
lent to the original. (Again,
refer to Figures Seven and
Eight)

Another example will
better clarify these concepts.
Suppose we have a null-
terminated string and must
scan it for the first occur-
rence of the character +, -, or

CONTROL{ VO @ V 1 @ $= WHEN{

. I 1 A t least t w o equal" WHEN}
v l @ v 2 @ $= WHEN{

. " A t least t w o equal" WHEN}
V2 @ VO @ $= WHEN{

." A t least t w o equal" WHEN)
." A l l d i f ferent "

CONTROL)

This solution, however, is redundant and wasteful of
space. At the expense of computational time, we could
choose to check all three equalities by ORing them together
at the end and using an I F ELSE THEN control structure.
Here, I'll show a third solution that is neither redundant nor
slow.
CONTROL{ VO @ V 1 @ $= WHEN

V l @ V2 @ $= WHEN
V2 @ V3 @ $= WHEN

." A l l different"
}LEAVING{ ." A t least t w o equa l "

CONTROL }

The previous solution and its meaning may be explained
in more general terms.

Let XXXX be the name of a control structure (CONTROL,
TIMES, etc.). Let's call the pair of words like WHEN I . . . WHEN},

WHILE { . . . WHILE 1, OF { . . . OF 1, etc. as specialized leaving
points, while words like WHEN

Forth Dimensions

. . If such an occurrence is found, we must substitute a space
for it and leave on the stack (SubstitutionAddr+l true);
otherwise, we must leave a (false on the stack. Here is a
solution using 1 LEAVING{:

(S t r i n g A d d r)

FOR{ I C@ WHILE{ fa lse WHILE}
I C@ a sc i i + = WHEN
I C@ a sc i i - = WHEN
I C@ a sc i i . = WHEN 1 STEP
}LEAVING{ b l I C ! I 1+ t r u e

FOR}

Maybe the above would read more clearly if written infor-
mally as:

FOR{ I C@ WHILE{ false WHILE}
I C@ a sc i i + = O R I F
I C@ a s c i i - = O R I F
I C@ asc i i . = O R I F 1 STEP
}ORWHEN{ b l I C! I 1+ t r u e

FOR)

7he ICOMPLEm Clause
A similar problem is encountered in definite loops. A

definite loop like TIMES or LOOP may end for two reasons:
1. Premature end due to "leaversn like WHEN, WHILE, LEAVE,

Figure Three. TIMES and LOOP compilation effects. I
I

and WH I L E are unspeaalized ,

I
or, equivalently:

XXXX[MAlN]LEAVING(Leavlng)COMPLETED(Complcled XXXXj

.R .A -7 code code code

XXXX(MAIN]COMPLETED(Completed)LEAVING(Lcavlng XXXX)

ocode
code code

-6 -4 -2

Polnter to
COMPLETED

7 -

\ main A completed A leavlnq 'p T

Polnter to
LEAVING

XXXX(MAlN JLEAVING(Leavlng XXXX)

-6 -4 -2 code code

XXXXI MAIN X X X X l I

LEAVE (X X X X I)

(X x x x I)

XXXX(MAIN JCOMPLETED(Completed XXXX)

-6 -4 -2 code code

\ maln A leav~nq com~leted
T

Polnter
to End

Polnter to
COMPLETED

\ maln A leav~na
T

-1

(XXXX[)

-6 -4 -2 0 code

(XXXX)) MAlN
code

\ maln A completed
T

(X X X X O

Polnter to
LEAVING

Polnter to
LEAVING

Polnter to
COMPLETED

Polnter
to End

-1

Completed
code

-1 MAIN
code

27 March 1992 April

Polnter
to End

Po~nter
to End

LEAVE (XXXX))

LEAVE

Completed
code

MAlN
code

MAIN
code

leavlng
code

LEAVE

(XXXX))

(XXXX))

leavlng
code

leavlng
code

LEAVE

LEAVE Completed
code

Figure Four. Retum-stack, control-structure frame. I
1

etc.
2. Exhaustion of the number

of looping times speci-
fied.

Depending on the rea-
son why execution left the
loop, different behaviors can
be requested. Let's explain
via example.

Suppose we must search
an editor's text for a specific
character. We want the cur-
sor to move during the search
and, if the charader is found,
have it point to that charac-
ter; otherwise, we want to
reset the cursor to its original
position, not simply leaving
it at the end of the text

Below is a word to do that,
using the new word 1 COM-
PLETED { .

tack-growth direction
large

top of stack IS at left) addresses

Frame generated by (SIMPLE{)

4% d n t s here

m long M long m word 04

Frame generated by (INDEXED{) and (TIMES{)

CS beginning

extra value 0

AcsF pants here

oldCSF

W long 04 long 08 word OA long CE

Frame generated by (LOOP{)

Releaser . . . previous RS data . . .

CS beginning

extra vO extra vl extra v2

4 2 % cants here

m long 04 long 03 word 04 long CE long 12 long 16

Frame generated by (RECOVERABLY{)

INDEX . . . previous RS data . . . oldCSF Releaser

CS beginning

extra extra vl extra v2

INDEX

W long 04 long C-9 wcrd OA long OE long 12 long 16

: CharSearch (char -- t r u e I f a l s e)

cursor @ swap \ keep previous pos i t i on
TextEnd @ cursor @ -

\ # of chars t o end of t e x t
TIMES{ dup (... char char)

NextCharGet (char char t ex t cha r)

\ Move t h e cursor on
\ while furn ish ing t h e
\ pointed char .
= WHEN{ 2drop t r u e WHEN}
}COMPLETED { drop (initialCursorPosition)
Cursor! f a l s e

TIMES) ;

\ Compare with t h e flowchart i n Figure Five.

oldCSF

) LEAVING { and]COMPLETED { can be used together.
The next example is a variation of the previous one. Here we
want to search our text for the first occurrence of (, [, or I .

STEP Releaser

OldSP . . . previous RS data . . . CS beginning

(See the flowchart in Figure Six.)

Backcounter . . . previous RS data . .

I Figure Five. First CharSearch example. I
TIMES 0

oldCSF

dup NextCharGet =

INDEX Releaser

WHEN{ 2drop true WHEN]

OldErrorCSF

]COMPLETED{

drop cursor ! false TIMES]

I }COMPLETED{ Cursor! f a l s e

dup asc i i (= when
dup asc i i [= when
dup a s c i i { = when
drop

: CharSearch
cursor @ \ keep i n i t i a l cursor pos i t i on
textEnd @ cursor @ -
\ c a l c u l a t e # chars t o end of t e x t
TIMES{ charGet

LOOP- Discussion and Examples
Standard Forth offers only one kind of definite loop, with

two variations: DO LOOP and DO +LOOP. The DO LOOP has

\ Restore i n i t i a l cursor pos i t i on .
)LEAVING{ 2drop t r u e

\ Drop i n i t i a l cursor pos i t i on ...
\ ... and cha rac t e r under cursor .

TIMES} ;

March 1992 April 28 Forth Dimensions

~ p ~ -

Figure Six. Using }LEAVING{ with }COMPLETED{.

cursor @
textEnd @ cursor @

I
times<

4
charGet

I
dup ascii (=

dup ascii [=

dup ascii (=

>LEAVING<

drop 2drop true

>COMPLETED<
drop cursor ! fa1 se

'

tried, until now, 10 be both a TIMES loop and a Loop loop.
But when you try to do two things at once, you do them
inefficiently. The drawbacks of the DO LOOP are:

Co~nter-int~itive position of loop Start and end (endstart
instead of start&. This has allowed the D o LOOP to work
as a TIMES loop when used like 0 DO .-. LOOP. Of the
~ositions had been start end, we would have had to write
0 SWAP DO ... LOOP.)
Slow execution when working like TIMES because* in-
stead of deaementing and checking a flag like the TIMES
cotlstrud, the DO LOOP must increment and check against
a limit. dradack, coupled with the appearance of
Forth Processors, has led to the use of FOR NEXT in recent
times.)
Slow execution when working like DO +LOOP because the
step is pushed and popped from the stack atevery iteration
of the loop without any valid reason.

Forth traditionalists could sustain that, in such a manner,
it is possible to use a computed loop step that varies from one
iteration to the next, but we can observe that real life cases

Forth Dimensions

have a constant loop step and, moreover, a much more
flexible loop is furnished by the FOR [. . . FOR } construct, which
allows for any test at any step (or any new computed index
value), and any model of loop pre-increment or post-
decrement, etc.

Establishing the Best
Input Characteristics for Loops

Definite loops are usually used for doing something a
certain number of times, while allowing the index to assume
a predefined set of values. The set of values may be specified
by three out of the following four parameters.

start First index value.
end Last index value (or the value after the last one).

st@ Index step, the constant difference between two
successive index values.

times Total number of different values assumed by the
index during the loop, equal to the number of times
the loop will be executed.

The possible combinations that can be used to specify the
set of values the index will assume are:
start end step
start end #times
start #times step
end #times st@

(The combination endwmessteprn't worthy of discussion.)
Start end step is the combination chosen by Forth and

other languages. Forth uses loops primarily to work on
memory addresses, so startspecifies the fust address we have
to work on, and end is the limit address. In such cases, it is
sometimes useful to speclfy startsizestepinstead, where size
is the size of memory we want to work on (size = end-start).

Start end #times can be used when we want to sample a
function in an interval given by start end with a certain
resolution: #times. This combination would probably have to
be implemented with floating-point numbers-its usefulness
~ t h integers is dubious.

Start #times step is used when we work on an array of
elements ofwhich we know the starting address, the number
of elements, the element size. combination is the
simplest and most efficient to implement. It will be our base
for implementing all other kinds of loops. W e usually know
the number of elements in an array and its first memory
address.) Moreover, speclfying start#timesstepdoesn't allow
room for misunderstanding.

specifying start end raises some subtle points to
consider. Suppose the specified end is st@ aligned with the
given start (as in 1 0 s t a r t 2 0 end 2 step). Do we mean
that the loop must assume the end value, or must it stop at
end-st@ If we want to have the relation between end, start,
and skeexpressedsimply by size = &-start, we must deduce
that the endvalue has to be excluded. Otherwise, the relation
between end, start, and size must be written as size = end -
start +

suppose, on the contrary, that the specified end stq
alignedwith the given start(as in 10 st a r t 2 1 end 2 step).

29 March 1992 April

NGS WRTH
A FAST FORTH,
OPTIMIZED FOR THE IBM
PERSONAL COMHJTER AND
MS-DOS COMPATIBLZS.

STANDARD FEATURES
INCLUDE :

a79 STANDARD

@DIRECT 1/0 ACCESS

m F W U ACCESS TO MS-DOS
FILES AND FUNCl'IONS

I @ENVIRONMENT SAVE
& IDAD

@MULTI-SEGMENTED FOR I LARGE APPLICATIONS I
I @EXTENDED ADDRESSING I

.MEMORY ALUCATION I CONFIGURABLE ON-LINE I
@AUTO LOAD SCREEN BOOT

@LINE 61 SCREEN EDITORS I
@DECOMPILFR AND I DEBUGGING AIDS

OGRAE'HICS & SOUND

mNGS ENHANCEMENTS

@DETAILED MANUAL

@INEXPENSIVE UPGRADES

@NGS USER NEWS-

A COMPLETE FY)RTH
DEVELQF'MENT SYSTEM.

I PRICES START AT $70 I

NEXT GENERATION BYSTEM8
P.O.BOX 2987
6ANTA CLARA, CA. 95055
(408) 241-5909

March 1992 April

Is that an error condition? If not, how many times do we have
to repeat the loop?

Let's compare the choices of BASIC and Forth, and
deduce the relationship between start, end, step, and Mmes.

Considering a positive step, in BASIC we write:
FOR I l l 0 TO 18 STEP 3 : PRINT I : NEXT I

loop i s done 3 t i m e s
FOR I = 1 0 TO 1 9 STEP 3 : PRINT I : NEXT I

loop i s done 4 t i m e s
FOR I = 1 0 TO 2 0 STEP 3 : PRINT I : NEXT I

loop i s done 4 times
FOR I=10 TO 2 1 STEP 3 : PRINT I : NEXT I

loop i s done 4 times
FOR I = 1 0 TO 2 2 STEP 3 : PRINT I : NEXT I

loop is done 5 times

So the relation is Mmes = diff/st@+l where diff:= end - start.
In standard Forth, a DO +LOOP works like:

1 9 1 0 DO I . 3 +LOOP loop is done 3 t i m e s
2 0 1 0 DO I . 3 +LOOP loop i s done 4 times
2 1 1 0 DO I . 3 +LOOP loop i s done 4 times
2 2 1 0 DO I . 3 +LOOP loop is done 4 t i m e s
2 3 1 0 DO I . 3 +LOOP loop is done 5 t i m e s

So the relation is #times = (dl ff- l)/st@ + 1 (check it against
the examples to convince yourself). This relation gets
simplified a s #times = diflwhen the st@ is 1.

We can observe that the Forth formula giving the #times
is more complex than the BASIC formula. Ofwe also consider
negative steps, things get much worse for Forth.)

What I consider the simplest choice is to defme #times : =

d~ff/step.** 'That choice is equivalent to the Forth one for the
case st@ = 1 (most common). Besides, that choice has some
useful consequences when the st@ is not aligned to the start
(see later examples) while maintaining historical continuity
when the end is aligned to the start.

Additional Support Words
for Definite Loops

Keeping the above discussion in mind, let's consider the
various ways we can specify an m y on which we have to work:
S t a d d d m #elements SizeOfilements
S t a d d d m SizeOfA rray SizeOfilements
StartAddm LimitAddm SizeOfllements
\ limit address is the first address not belonging to the array
S t a d d d m LastElementAddm SizeOfilements

So, the generic pattern is S t a d d d m ???SizeOfik?ments.
Thus, let's define three modifiers SIZE, END, and END I that
opemte on three numbers and convert them to the standard
format (start, #times, step):

I (Continued on page 3 7.)

** For subtle-minded readers: The kind of divisionu&ounded toward
negative i n f i i or toward zero-doesn't bother us except for unusual
cases like 10 start 9 end 2 step where, if we round toward negative
infiity, the result of the division is negative and so, correctly, the looping
consuuct issues an error message. If we round toward zero, the loop will
execute zero times without issuing the error message.

30 Forth Dimensions

In lieu of the usual
"President's m, " we offw
the following statements
made by the raeuest members
of the Forth I n t m Group's
BoardofDiraUm. 7heywere
installedlast Nommtwrat the
F0Mum.f-, whmthe
new boa& also held ftsJirst
meeting. 7%e board is now
composed of the following
individuals:

New FIG Board
Members

John Ha4 President
Jack Woehr, Vice-Pmident
Mike Elola, Secretary
Dennis Ruffer, Twasum
David Petty
Nicholas Solntseff
CH. Ung

the faith of our new and
-rngrne--;

Nicholas Solntseff
Dr. Nicholas Solntseff is

of Russian emigre back-

The board welcomes
comments from FIG mem-
bers. John Hall will wium in
the next issue with his
"President's Letter. "

Mike Elola
"I started out my involve-

ment in FIG as secretary of
the business group that meets
once a month to discuss the
operation of FIG. I came to
my first meeting at the request
of Kim Harris, who consid-
ered me a good candidate to
replace him as secretary.
Partly out of respect for him,
I agreed to become part of
the business group.

"I considered my role as
that of an observer for the
first couple of years. Soon I
overcame my initial skepti-
cism with the business team
members and their qualifica-
tions. By now, I have gained
substantial respect for the
leadership skills of the out-

Forth Dimensions

ground and w& born in
Shanghai, China well before
World War 11. He was edu-
cated in Enghsh in Shanghai
and completed his schooling
at Sydney Technical High
School in Sydney, Australia.
Dr. Solntseff auendedsydney
University, where he studied
physicsandobtainedhisB.Sc.
in 1953 and Ph.D. in 1958.
After a period of employment
in England's nuclear engi-
neering industry, he joined
the University of London in
1963. Returning to Australia
in 1367, Dr. Solntseff switched
to Computer Science and
taught at the University of
New South Wales until 1970,
when he moved to McMaster
University (Ontario, Canada)
after a year as Visiting Pro-
fessor at the University of
Colorado.

Dr. Solntseff has been
involved with Forth since
1981, when he implemented
his first fig-Forth on an Ohio
Scientificmicrocomputer.He
has been the convenor ofthe
South Ontario Chapter of the
Forth Interest Group since its
inception early in 1982. Dr.
Solntseffs research interests
include the implementation
of a Forth-like language
called Markov, as well as
interfacingForth withMicro-
soft Windows. For the last
two years, Dr. Solntseff and
his students have been
workingonhuman-interface
techniques inMedica1 Expert
Systems being developed in
the Department of Cliiical
Epidemiology, McMaster
University.

Jack Woehr
Jack WoehrlearnedForth

in 1386, and quit his factory
(Contmued on page 35.)

March 1992 April

going president, Robert
Reiling, as well as the current
president, John Hall. (The
president presides over the
business meetings, and ends
up having to referee some
very delicate clashes during
the long haul.)

"Thisexperience gives me
a background with FIG and
its leaders, so I feel confident
that I can contribute. My
biggest concern for FIG has
not really changed: I have
always been concerned that
our collective FIG energies
might not be applied p r o p
erly to obtain needed goals.
Along with my help, I now
feel that the business group
has made considerable
progress in setting priorities
and focusing its energies. In
the years that I have served,
I have become especially
aware of our limitations.
Understanding and con-
fronting those limitations is a
vital leadership skill. Other-
wise, we caneasily squander
our limited resources, both
in terms of volunteer time
and FIG reserves.

"Although our progress
at learning to work within
our limitations has come
slowly, I am proud about the
decisions we have made so
far. Over the last year, we
have spent considerably less
money for nearly the same
services. More remarkably,
we have not sacrificed the
quality of those services.
(Admittedly, some of the set-
vices have been cut. Others
besides myself have had to
step up our level of volun-
teer work to compensate.)

"No doubt FIG has perse-
vered because of its deter-
mined leaders. I'd like to
continue to serve FIG, now
more than ever since I ex-
pect to be able to enjoy
monitoring FIG'S financial
stabilization, if not recovery.
Innovative ideas from all of
our business team partners
have been essential to help
turn things around. Beyond
specific measures we have
taken, a long soul-searching
period has contributed to our
success. This has helped in-
still similar attitudes in most
of the business team mem-
bers, and increases my abil-
ity and eagerness to serve.

"Still, we cannot yet rest
assured of our future, and I
don't know if we ever will
(this is not necessarily so
bad). I personally feel that
any stability we realize by
small but steady efforts is
more durable than stability
or growth that is, perhaps,
attainable by occasional
concerted efforts involving
greater risks.

"I also hope to moderate
the efforts of others who
would try to vitalize Forth
with some kind of slick mar-
keting shtick. Steve Wozniak
and the Homebrew Com-
puter Club are now much
further away from main-
stream culture than they were
at one time. A g o u p such as
FIG may need to remain in
relative obscurity for the
foreseeable future. Never-
theless, we should position
ourselves comfortably. Act-
ing out of desperation is not
the way to inspire and keep

31

News from the Forth RoundTable

Gary Smith
Little Rock, Arkansas

Discussion regarding the
ANS Forth draft standard
continued hot and heavy as
we entered 1992. On Janu-
ary 16, the special invited
guest in our on-line confer-
ence was Greg Bailey of
Athena Programming and
Technical Subcommittee
chair on the X3J14 Technical
Committee. Greg's topic was
"The Costs and Benefits of
Adopting ANS Forth." If you
were not present at Greg's
guest conference and have
not yet captured the tran-
script, I highly recommend
doing so.

There will be no further
discussion of the ANS Forth
effort in this column in this
issue because, by the time
you read this, the Technical
Committee will have met in
mid-February to vote. There
may not be that much to
discuss or vote on, because
as late as mid-January the
committee had received zero
(that's correct, zilch) com-
ment. If you had specific
comments or objections and
failed to submit them, you
have only yourself to blame.
The opportunity was cer-
tainly there. I doubt if any
standards effort has ever been
so open to scrutiny.

So, are there any other
hot buttons? You bet! Lots of
them. Object-oriented pro-
gramming and embedded
systems still enjoy lively ex-
changes, but maybe one of
the honest topics on GEnie
and ForthNet is minimal Forth

kernels that also perfom
Witness the topic opened by
fellow sysop Elliott Chapin
on January 1,1992. This ex-
cerpt, taken on January 17,
only runs for 2 1/2 weeks
and I already know of at least
two outstanding replies.

If you aren't participating
in the guest conferenes and
in these discussions, you are
missing out on a lot of the
fun associated with being a
Forther. Consider joining us
soon.

Topic 26: Minimal Forth
How small can a working

Forth be? Why try?
The minimal-Forth ques-

tion has started up again;
small wordsets are more than
an intellectual exercise. Some
processors are very small.
Small kernels ease porting.

From: Ralf E. Stranzenbach
Subject: List of Forth words?
Hi,

I'm searching for a list of
Forth words that is raquired
to be implemented in assem-
bly language to create a
reasonable, but very small in
size, Forth environment.

Is there anyone who has
assembled a list containing
those primitives and, possi-
bly, the implementation of
the "higher-level words?"
Happy New Year,
-Ralf

From: Milan Merhar
Subject: Minimum Forth en-
vironments

Reply to two recent posts:
"I have a (small) 6809
system in order to learn
some assembly. Just for
fun (D I want to write a
(small) Forth environ-
ment. What is about the
minimum set of Forth
words as a starter. Thus,
using this minimum, I
write the other words in
Forth.
*Regards, Ton 't Lamn

"I'm searching for a list of
Forth words that is ye-

qufwdtobe implemented
in assembly language to
create a reasonable, but
very small in size, Forth
environment.

"Is there anyone who has
assembled a list contain-
ing those primitives and,
possibly, the implemen-
tation of the 'higher-leveI
words'?
" P a l f "

I've sat in on a couple of
informal discussions on this
subject. The general consen-
sus is that about ten words
are sufficient:

Stack ops:
DUP (create a stack element)
DROP (destroy a stack ele-

ment)
SWAP (move stack element)
>R and R> (stack exchange)

Arithme tidogic:
LITERAL (constants, etc.)
NAND (sounds silly, but you

can synthesize anythmg
else out of it!)

than this. For example, + and
* and / would be a lot nicer
ifthey were primitives, rather
than colon definitions made
of tens or hundreds of
primitive ops. Similarly,
words like FIND are very n i e
to have!

A more sensible minimum
set of primitives may be found
in the eForth model; no doubt
an implementation of it is
available for most any CPU

Address-space access:
! and @ (or C ! and C@, ifyou

wish)
P ! and P @ (for I/O space

port access, if your CPU
has such a thing.. .)

Dictionary extension:
CREATE

This is a very sparse list!
Even the rawest bootstrap
system would probably de-
fine a richer set of primitives

you're interested in. Also look
at the current ANS Forth pro-
posal; the Core wordset will
give you a good idea as to
what functions are needed
(although lots of them won't
be primitives in an imple-
mentation such as you de-
scribe).

Discussions of the "an-
gels-on-the-heads-of-pinsn
variety continue as to which
primitivesbelong on the short
list. For example, if you have
R@ you could synthesize DUP.

Rob Chapman once p r o
posed a set of primitives for
a Forth machine that had
two kinds of arithmetic4ogi-
cal ops; the first kind returns
the value of the result, the
second kind returns the re-
sulting carry bits.
Regards, Milan J. Merhar

From: Doug Philips
Subject: Looking for a small
PD-Forth for the 8086
Ralf E. Stranzenbach writes,

"I've heard about a small
Forth named MINI4T41.
Does anyone know
where to get it.?"

I found it in FIG'S on-line
library on GEnie. It is now
available via e-mail from
FNEAS. To get it, send a
message to:
fneas@willett.pgh. pa.us

with the following body:
send MINI4T41 .ARC
path youremail-address-
RELATIVE-to-the-
INTERNET-goes-here

March 1992 April 32 Forth Dimensions

You mustsupply an Internet storage "In other strings I read the BRANCH ?BRANCH (LOOP)
relative e-mail address with Level 2: MVP with a richer 1 w o r d ~ ~ S T ~ O ~ ~ . W h a t i s / (+LOOP)
the path command.
-Doug
Preferred:
dwp@willett.pgh.pa.us

Okay: Ipitt,sei}!wiilett!dwp

Forth Dimensions 33 March 1992 April

From: Nick Janow
Subject Minimal Forth
Elli0t.C writes:

"The minimal-Forth
question has started up
again; small wordsets are
more than an intellectual
exercise. Some p r o c e s o ~ ~
are very small. Small ker-
nels ease porting."

Minima1
be on large

Procmon. If the kernel and
a ~ r o t ~ m - f i t i n t h e ~ ~ ~
it will really scream along.

Ni~Janow@mindlin~.bcbca

From: Andy Valencia
Subject: Looking for a s m d
PD-Forth for the 8086
Doug Philips writes:

"send MINI4T41.ARC.. ."
I was disappointed to find

that there is no source
available for this Forth. If I'm
going to live under an opaque
execution environment, I
usually will go for a richer
one, like F-PC. For a spartan
environment, I at least want
the ability to customire at
any level.
Just my opinion.. .
Andy Valencia

From: RCS
Subject Haydon's levels of
Forth

In Haydon's mag-
num OPUS, AU About Fofl'
(3rd edition), his introduc-
tion (page ix) describes "lev-
els of Forthn:
Level 0: includes the 63 func-

tions Charles Moore has
often listed as the basis of
Forth. They lack any form
of input or output to stor-
age devices.

Level 1: fig with rudimentary

function set
Level 3: F83
Level 4: F-PC
Level 5: The future, 32-bit

everything

Can someone cite where
Moore defined his funda-
mental 63 functions?
Regards, rcs

From: Ton 't Lam CRC
Subject: Min.F0fi andgood
performance

Some time ago I asked
for the minimum Forth sys-
tem. It turned out that nine
words are necessary. How-
ever, the performanceis likely
to be lazy. I can imagine. I
started with EMIT and KEY,
though.

NOW as I go along it a p
peared tobeveryeasy to add
new words in assembly. My
question now is: What Forth
words need to be coded in
assembly to have good per-
formance. (My estimation 30
to 50 will do.)

Now I am asking: How is
a number (officially) com-
piled into a word I.e., how
to distinguish a number from
an execution address.

In other strings I read the
word POSTPONE. What is
this? How is it implemented'
-Ton Lam

From: Bernd Paysan
Subject:Min.Forth andgood
performance
Ton 't Lam CRC writes:

"How is a number (offi-
cially) compiled into a
word. I p , how to &tin-
guish a number from an
execution address.n

In basic words:
: L I T

R> DUp CELL+
>R @ ;

: LITERAL
POSTPONE LIT ,
; IMMEDIATE

this? How is it imple-
mented'"

: COMPILE
R> DUP CELL+
> R @ , ;

If you compile words like
CELLS (DUP +for 16 bits) by
expanding macros, these
words are enough to give
good performance. It is not

: POSTPONE
BL WORD FIND
DUP O=
IF <not found code>

THEN O <
IF COMPILE COMPILE
THEN , ; IMMED IATE

I LE not pan of
ANS Forth and this definition
here is exactly the wrong
thing, because it is rather
tricky and dependent on a
threaded-code Forth. POST-
~ ~ ~ ~ (n i c e w o r c ~ , awfulname)
is not that what a Forth pro-
grammer does with the
things, he doesn't want to do
(first postpone them, and
then wait.. .). It postpones
the compile time behavior,
thus it is COMPILE for non-
immediate words, and
[Corn ILE I for immediate.

"What Forth words need
to be coded in assembly
to have a good perfor-
mance. (My estimation 30
till 50 will do.)"

Arithmetics:
+ - AND OR XOR CELL+
UM* UM/MOD

Stack:
DUP OVER SWAP ROT DROP

Return-Stack:
>R R> EXECUTE

Memory:
@ ! c@ c ! MOVE FILL

Tests:
o= o< < u<

Dictionary
FIND or an appropriate ba-
sic of it

Inner interpreter:
NEXT DOCOL (DOES>

Control flow:

very worthwhile to do much
more. This is exactly in the
range of 30 to 50 words
(some more will not [addl
much, some less will decrease
performance). It may be
worth it to add L I T as a code
word, since literals are used
very often. Some people have

ideas about how to
realize B R A N and
?BRANCH, and they are not
slow:
: BRANCH

R> DUP +

CELL+ >R ;

: ?BRANCH
0= R> SWAP OVER
@ AND + CELL+ >R ;

From: Mike Haas
Subject: Min. Forth andgood
performance
Bernd Paysan writes:

"In basic words:
" : LIT ...
": LITERAL ..."

This did not answer the
question. In fact, the ques-
tion touches on something
that is important to me as the
author of JForth. JForth in-
cludes a standalone-applica-
tion generator called CLONE.
It is uSed thus:
CLONE <wordname>

This creates an entirely
standalone image that in-
cludes only the Forth words
needed by <wordname>. If
<wordname> didn't call
EMIT, then EMIT doesn't get
 CLONE^ into the image. This
leads to very small
executables. (CLo~Eing
NOOP creates a standalone
program of about 3K ... this is
the support necessary to ini-
tialize the environment if ei-
ther doubleclicked from an

icon ortype din tothe Amiga's in an address vs. a literal branching as a primitive. "For this purpose, I've irn-
shell. I number ... a n d h s h d d k I Other amusements 1 p ~ e r n n t e d ~ ~ ~ ~ ~ R A L ? /

When CLONE puts to-
gether the new image, it has
to perform many relocations,
since everything is moved
around relative to the start of
the program (as opposed to
the start of theJForth image).

This means that CLONE
must be able to tell the dif-
ference between a compiled
number and a compiled ud-
dm(as [I might produce).

For this purpose, I've
implemented ALITERAL.

The concept that a com-
piled number must be able
to be differentiated from a
compiled address is not
normally needed in Forth,
but for sophisticated func-
tionality such as CLONE, it is
necessary.

The answer to the above
question is that there is no
standard way of compiling

From: Rob Chapman
Subject: Min. Forth andgood
performance

I once had similar high-
level defmitions for:
: BRANCH (--)

R> @ >R ;
: OBRANCH (n --)

O= R @ CELL -
R - AND R> +
CELL + >R ;

In this case I got faster
branches but slower condi-
tional branches.

OBRANCH and O= repre-
sent the classic chicken-and-
egg syndrome. In the above
definition, we depend on O=
as a primitive. However, if
we wish to d e f i O= in Forth:
: O = (n - - f)

I F -1 ELSE
0 THEN ;

then we need conditional

dredged up from the cellar
[are given in Figure One.]
-Rob

From: E.RATHER [Elizabeth]
Horrors!

From: Mitch Bradley
Subject: Min. Forth andgood
performance
Mike Haas writes,

m e n worth's] CLONE
puts together the new
image, it has to perform
many relocations, since
everything is moved
around relative to the start
of the program (as op-
posed to the start of the
Forth image).

"This means that CLONE
must be able to tell the
difference between a

1 compiled number and a
compiled addm(as [' I , might produce).

My Sun Forth and
Forthmacs systems, which
are fully relocatable and
support an "application
strippern program that does
the same thing as Forth's
CLONE, have the same
problem and solve it in the
same way. My equivalent of
ALITERAL is named (') .

"The answer to the above
question is that there is
no standard way of com-
piling in an address vs. a
literal number.. . and
there should be."

You can do it in ANS
Forth by using POSTPONE
with [' I or by using
something like:
S" ['] FOO" EVALUATE

possibly with a string that is
constructed at run time.
MitchBndky@Eng SunCOM

Figure One. 1
I : EXECUTE (t i c k --) >R ; (n o t t h a t p o r t a b l e though!)

: ROT (a \ b \ c -- b \ c \ a) >R SWAP R> SWAP ;

(==== I n n e r I n t e r p r e t e r s ====)
: (VAR) (-- a d d r) R> ;
: (CONST) (-- n) R> @ ;
: (NEXT) (--) R> R> ?DUP I F 1 - >R @ ELSE CELL + ENDIF >R ;
: L I T (-- n) R> @+ >R ;
: (DO) (l i m i t \ i n d e x --) SWAP R> SWAP >R SWAP >R >R ;
: (LOOP) (--) R> R> 1 + DUP R <

I F >R DUP @ + ELSE R> 2DROP CELL + ENDIF >R ;
: (+LOOP) (n --) R> SWAP DUP R> + SWAP O< OVER R < XOR

I F >R DUP @ + ELSE R> 2DROP CELL + ENDIF >R ;

(==== Comparisons v i a d i v i d e and conquer ====)
: < (n \ m -- f l a g) 2DUP XOR O< I F DROP ELSE - ENDIF O< ;

: > (n \ m -- f l a g) 2DUP XOR O< I F N I P ELSE SWAP - ENDIF O< ;
: U< (n \ m -- f l a g) 2DUP XOR O< I F N I P ELSE - ENDIF O< ;
: U> (n \ m -- f l a g) 2DUP XOR O< I F DROP ELSE SWAP - ENDIF O< ;

For the really esoteric:
(==== Unsigned m u l t i p l i c a t i o n and d i v i s i o n ==== 1
: quot< (n \ q - - q) 2 * O R ;
: rem<m (r \ m -- r) 0< 1 AND SWAP 2 * OR ;
: d i v ? (n \ r -- n \ ?rn- \ f) OVER - DUP O<

I F OVER + 0 ELSE 1 ENDIF ;
: /MOD (m \ n -- r \ q) SWAP 0 OVER rem<m SWAP 2 * (n \ r \ m / q)

F FOR >R d i v ? SWAP R rem<m SWAP R> quo t< NEXT
>R d i v ? >R N I P R> R> quo t< ;

: / (n \ m -- q u o t) /MOD N I P ;
: MOD (n \ m -- r e m) /MOD DROP ;

: * (n \ m -- nm*) (uns igned) 0 SWAP
F FOR DUP >R O< I F OVER + ENDIF 2 * R> 2* NEXT
O < I F + ELSE N I P ENDIF ;

March 1992 April 34 Forth Dimensions

(Continued from page 31 .)

If you stay,
and if you bring others,

job to become a program- with the paradox of Forth

* -
time. He currently chairs the 1 "These are ominous runes I FIG will continue as your tutor,

mer. He has been steadily
emdoved in Forth since that

Software Collegium at Vesta cast at the feet of Forth.
Technologies, where he has "Yet we believe that our

usage increasing while Forth
market share is declining.

friend, andadvocate.

$ New Contest Announcement $

Call for Papers!
Forth Dimensions is sponsoring

a contest for articles about

"Forth on a Grand Scale"

Write about large-scale Forth
applications, systems, or . . .

f st prire: $500
2nd prize: $250
3rd prize: $100

See editorial in this issue.

been employed since Febru-
ary 1388. (Vesta manufac-
tures single-board comput-
ers for embedded control
with Forth in ROM.) Besides
serving as the Vice President
of FIG, Jack is a Contributing
Editor for EmbeddedS'tm
Programmingrnagazine, the
authorofSeeingForth(0ffete
Enterprises, 1992), frequently
writes Forth articles for Dr.
Dobb's Journal, and is the
author of JAX4TH (the first
dpANS-Forth for the Amiga).

"The Forth community is
a besieged minority. The
Forth Interest Group has

I suffered a decline in recent
years. Old members have ' left the group, and new
members are slow to replace
them. At the same time, Forth
professionals are confronted

Total control
with LMI FORTH"

heterodox model of compu-
tation presents a more holis-
tic approach to the interac-
tion of man and machine
than the path taken by or-
thodox computer scientists.
If our approach still has value,
then the practices and insti-
tutions which have sewedus
are worth the effort taken to
maintain them.

"I have sought and ac-
cepted admission to the
Board of Directors of the
Forth Interest Group in order
to contribute to the presewa-
tion of anorganizationwhich
has proved so useful in the
past decade, an organization
which hopefully shall con-
tinue to render effective ser-
vice in the coming decade.

"The Forth Interest Group
has historically fulfilled two
important roles, that of aid-

h r Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers
For Development:
Interactive Forth43 InterpreterICompilers
for MS-DOS, OSl2, and the 80386

l6-bit and 32-bit implementatiins
Full screen editor and assembler
Uses standard operating System files
500 page manual written in plain English

I Support for graphics,floating point, native code generation

ing newcomers entering
upon the path to Forth pro-
ficiency, and that of a mutual
aid society for Forth pro-
gammers. I know this from
experience. I learned Forth
in the course of many en-
tertaining Saturdays spent at
Wolf and Pruneridge Roads.
Furthermore, each phase of
mysuccessful career inForth
has involved employment
found either at a meeting of
the Forth Interest Group or
via the GEnie Forth Interest
Group RoundTable.

"I call upon all enthusias-
tic exponents of the Forth
approach to urge their Forth
acquaintances to join or to
renew their membenhip in
the Forth Interest Group. EIG
will uy to keep up its end of
the bargain by constantly

For Applications: Forth43 Metacompiler
Unique tabledriven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate states,
and performs conditional compilation
Crosscompiles to 8080, ZBO, 8088,68000,6502,8051,8096,
1802,6303,6809,68HC11,34010, V25, RTX-2000
No license fee or royalty for compiled applications

improving the quality of Forth
Dimensions and by in-
creased attention to the needs
of beginners, to local chap-
ters, and to community ac-
tivities for the promotion and
benefit of Forth.

"It's time to vote with
your feet: if you walk away
from FIG, FIG will become
merely a part of computer
club history like the
Homebrew society. If you
stay, and if you bring others,
FIG will continue as your
tutor, friend, and advocate.
Now it's up to you."

-Jack Woehr
jm@weII. W C P

JAX on GEnie
RCm303-278-03M
FAX. 303-422-9300

Leboremy Micmystems lncorpomied
Ftzst Oifioe Box 10430, Merina &I Rg: C4 90295

Phone Credit Cerd O&fs to: (213) -7412
M: (213) 307-0761

Forth Dimensions 35 March 1992 April

Volume XI1
Index

A subject in& to Forth Dimensions contentspublishedfi-om
May'w-Apnl'9l.PreparedbyMikeElda.

architectures, threading models for Forth
Letter, vol 12, #I , pg 7

arithmetic operations
Extended-Precision Math Made Easy, vol 12, #4, pg 16

arrays
Arrays in Forth, vol 12, #6, pg 13

assembly language
Forth Assembler & Free Use of Labels, vol12, #4, pg 23

bulletin boards
Best of GEnie, vol 12, #5, pg 36

calculator simulation
Pencil-and-Paper Arithmetic, vol 12, #6, pg 22

chapters, Forth lnterest Group
Talking it up in the Outfield, vol 12, #I , pg 32

compiling systems, Forth
Letter, vol 12, #1, pg 7

conferences
FORML XII: Forth in Industry, vol 12, #6, pg 20

control flow directives, text interpreter support of
Interactive Control Structures, vol 12, #2, pg 28
Letter, vol 12, # l , pg 7

deferring compilation, compiler directives for
ForST:A~NativeCodeForth(Part5),vd12,#6,pg16

design, language-driien
Letter, vol 12, #3, pg 5

design philosophy. Forth
Dictionary Structures and Forth, vol 12, #2, pg 26

division, 8086
Reliable 8086 & 80286 Division, vol 12, #4, pg 5

division, floored
Best of GEnie, vol 12, #5, pg 36
Positive-Divisor Floored Division, vol 12, #I, pg 14

dynamic memory management
Best of GEnie, vol 12, #3, pg 37
Dynamic Memory Allocation, vol 12, #3, pg 17
Dynamic Virtual Memory Management, vol12, #3, pg 7
Banking on the R65F11, vol12, #1, pg 23
Stack Variables, vol 12, #I , pg 18

education of Forth programmers
Best of GEnie, vol 12, #6, pg 24
Best of GEnie, vol 12, #4, pg 30

error handling
Letter, vol 12, #5, pg 5
Best of GEnie, vol 12, #3, pg 37

file operations, generic
ForST: A 68000 NativeCode Forth (Part 2), vd12, #3, pg 34

floating point arithmetic
Pencil-and-Paper Arithmetic, vol 12, #6, pg 22
ForST: A 68000 Native-Code Forth (Part 3), vd 12, #4, pg 26

Forth Dimensions magazine
Letter, vol 12, # l , pg 6

Forth Interest Group
President's Letter, vol 12, #6, pg 5
Best of GEnie, vol 12, #5, pg 36
Letter, vol 12, #2, pg 5

Forth leaders
Best of GEnie, vol 12, #6, pg 24

history of Forth
Editorial, vol 12, #4, pg 4

March 1992 April

information services
International GEnie Access, vol 12, #6, pg 26
GEnie for Beginners, vol 12, #5, pg 34

interfacing Forth to operating systems
ForST: A 68000 NativeCcde Forth (Part 2), vd 12, #3, Pg 34

interpreters, special purpose
Forth & the ThreeNumber Problem, vol 12, #4, pg 20

interrupts
Interrupt-Driven Communications, vol 12, #5, pg 18
Forth Interrupt Handling, vol 12, #5, pg 10

local variables
ForST: A 68000 NativeCode Forth (Part 3), vd12, #4, pg 26
Stack Variables, vol 12, #1, pg 18

macros, text interpreter
Interpretation-Macro Techniques, vol 12, #1, pg 11

meetings, annual
Forth Day 1990, vol 12, #6, pg 30

metampiling
Metampilation Made Easy, vol 12, #6, pg 31
Metacompile by Defining Twice, vol 12, #2, pg 31

microprocessors, Forth
Best of GEnie, vol 12, #5, pg 36

music, ear training
Ear Training, vol 12, #5, pg 24

number formatting operations
Upscale Number Input, vol 12, #2, pg 8

number input
Upscale Number Input, vol 12, #2, pg 8

objectariented programming
Best of GEnie, vol 12, #1, pg 28

optimizing compilers
ForST: A 68000 Nativecode Forth (Part 4), vol12, #5, pg 28
ForST: A 68000 Native-Code Forth, vol 12, #2, pg 20
Extensible Optimizing Compiler, vol 12, #2, pg 14

printing of source code, pretty-printers
Letter, vol 12, #3, pg 6

promoting Forth
Best of GEnie, vol 12, #6, pg 24
Embedded Conbol: Palh to Forth Acceptance, KII 12, #I, pg 35

promoting the use of Forth worldwide
Soviet Forth-Info, vol 12, #6, pg 11

reviews and surveys
Best of GEnie, vol 12, #2, pg 36

serial line communication routines
Interrupt-Driven Communications, vol 12, #5, pg 18

sieve-of-primes benchmark
Letter, vol 12, #2, pg 6
Re: Letter, vol 11, #5, pg 6

Letter, vol 12, #2, pg 5
simulations

From Clepsydras to Neural Nets, vol 12, #6, pg 6
stack effects testing

Testing Toolkit, vol 12, #3, pg 31
standards, ANSI

Best of GEnie, vol 12, #6, pg 24
Letters, vol 12, #5, pg 6
Best of GEnie, vol 12, #3, pg 37

target compiling using a hosted target
Interrupt-Driven Communications, vol 12, #5, pg 18
Smart RAM, vol 12, #3, pg 28

tutorials
Metampilation Made Easy, vol 12, #6, pg 31
GEnie for Beginners, vol 12, #5, pg 34
Forth &the Three-Number Problem, vol 12, #4, pg 20

variables, headless
Anonymous Things, vol 12, #I , pg 8

variables, stack
Stack Variables, vol 12, #1, pg 18

vectored execution
ForST: A 68000 NativeGode Forth (Part 5), vol12, #6, pg 16

36 Forth Dimensions

(Continued fmrnpage 30.)

: SIZE (StartAddr Arraysize ElementSize --
-- Start #times step)

dup >R / R> ;

: END (StartAddr LimitAddr ElementSize --
-- Start #times step)

>R OVER - R@ / R> ;

: END] (StartAddr LastAddr ElementSize --
-- start #times step)

END swap 1+ swap ;

\ this last word isn't really felt useful

Moreover, sometimes an array must be scanned in reverse
order, although it's easier to specify the array by its starting
address. Thus, let's define the additional modifter BACK to be
used l~ke
BACK LOOP { . . . LOOP }

This has the effect of reversing the order of the values
assumed by the index in the absence of BACK
: BACK (StartAddr #elements ElementSize --

-- LastAddr #elements ElementSize)

DUP NEGATE >R
OVER 1- *
ROT + SWAP
R> ;

With the above choices and definitions, we have a very
flexible loop construct that accepts various input formats and
greatly simplifies work with arrays.

Obviously, depending on the problem at hand, similar
techniques may be used to extend the patterns accepted by
the loop construct, making it possible to feed the construct
with a format natural to the problem at hand. Moreover, the 1 basic format is very easy to implement, fast to execute, and

precise in meaning.

Examples
Cwate and initialize a table:
100 CONSTANT #LOGOS
29 CONSTANT SIMPLELOGO
CREATE LOGOS #LOGOS CELLS ALLOT

: LOGOSINIT
LOGOS #LOGOS CELL
LOOP {
SIMPLELOGO I !

LOOP) ;

Search our table for a specified value and leave its address if
it is fotcnd.
: logosearch (logo -- false I addr true)

LOGOS #LOGOS CELL
LOOP {
dup I @ =

WHEN {
drop I true

WHEN)
}COMPLETED{ drop false
LOOP) ;

Search in w m e or&:
: 1ogoBackSearch (logo -- false I addr true)
LOGOS #LOGOS CELL BACK
LOOP {
dup I @ =

WHEN {
drop I true

WHEN 1
)COMPLETED(drop false
LOOP) ;

(Code, figures, and artick continue in next issue.)

I I

Forth Dimensions 37 March 7 992 April

A FORML
Thanksgiving
Richard Molen

Huntington Beach, CA

On November 25, 1991,
just over forty dedicated
Forthers flocked to Asilomar
on California's Monterey
peninsula to participate in
the FORML conference. Some
went to exchange ideas,
some went to exchange ad-
dresses, all went to exchange
experiences and to increase
the collective knowledge
base of the Forth community.
This year there was some-
thing for just about everyone.

As we arrived at Asilomar,
the air was cool and clear
with a strong breeze. As we
rushed in (late) to register
and pick up our name badges
and notebooks, we were in-

the trees and a seascape full
of life. In these surroundings,
it was easy to relax and
concenmte on the confer-
ence itself. As soon as we
were registered, the lunch
bell rang and we went to the
cafeteria to eat. I was im-
pressed by the simple el-
egance of the cafeteria. It
wasn't until after we were
seated that I noticed there
weren't any menus. How nice
it was to not worry about
what to eat. "Could there be
a GUI lesson here?" I mused.
I enjoyed my French dip
sandwich, as G w G u m
gave me bits of information
to mentally munch on. He

to be served
The first presentation

came from Mike Em& His
eyes lit up as he described
Homecoming Forth, his
implementation of a mini-
mal Forth system on top of
Apple's Hypercard environ-
ment. Homecoming Forth is
simple, with very nice de-
bugging tools. For example,
a definition's object and
source code are displayed
side-by-side when editing,
encouraging users to see
what is actually compiled.
Mike's paper was quite tasty.

If you have ever crashed
your system by leaving an
unbalanced returnstack, raise
your hand, lower your head,

He s u ~ ~ l i e d the code and I or at least read on. ROIAND

theory for creating and killing
simulated organisms ...

K o w ' s paper describes
and implements return stack
security using a temporary

wine) for this effort.
G w KELLY served up a

very informative entree by
speaking of his efforts to
characterize tradeoffs in
various Forth architectures.
In his paper, he benchmarked
and characterized 19 of the
most common Forths. [See
a W in this ism?.-EdJHe
also documented the se-
quences required to open a
fde and load a program, the
various assembler syntaxes,
and a brief on each of these
Forths. In addition, he fiuther
isolated the effects of thread-
ing, segmenting, and regis-
ter usage by manipulating
each of these components
using riFORTH as a base
system. Guy found only a 2: 1
performance ratio between
the fastest and slowest of
these versions. He concluded
that other considerations of-
ten outweigh this perfor-
mance gain. This certainly
surprised me. His tests and
riFORTH are available on
GEnie.

One of my favorite foods
for thought is metacompila-
tion. Guy dispels the myster-
ies of metacompilation and
offers the metacompiler
which he used for the
benchmarking project. This
metacompiler, also available
on GEnie, is capable of gen-
erating new Forth systems
with various threading and
m e m o r y - s e g m e n t i n g
schemes. Guy's papers are a
must for anyone who wants
to experiment with Forth
architectures. It is easy to see
why G w KELLY won the
"Public Servicen award.
Thank you, Guy.

ANDREW MCKEWAN spiced
up the Motorola 6805 emula-
tor with an optimizing Forth
native-code compiler. This
must be ambrosia for anyone
working with the 6805
emulator. He commented
that after he tossed out the

Forth Dimensions

stack for compile-time
housekeeping. While this
takes a little more cornpile
fime, it is well worth it for

which
users open access to the Forth
environment. In addtion, he
added a Prompt which ds-
plays the top three cells on
the temporary stack when
compiling a definition inter-
actively- This allows a Pro-
W m m r to see what's
Fning as the defmition is
compiling. Roland received
the in with *-" award (a bottle of

tercepted with a big hug by
WE BADEN who makes it a
point to greet everyone at
FORML in this fashion. It's a
nice way to start.

Asilomar is a beautihl
retreat sprinkled with wind-
swept Monterey pine and
cypress trees. Weathered
boardwalks cut through the
struggling vegetation in the
dune restoration project,
leading to a beach of white
sand and deep blue water-
a living picture. Early morn-
ingfmds deer foraging among

March 1992 &ri/ 38

talked about the three-di-
mensional mouse project he
has been working on and
theADSP2105 chip that costs
less than $10.00 apiece.

Adjourning from lunch,
we assembledinMerril1 Hall,
a large rustic building on top
ofa small knoll. ROBERTRF~IG
began the conference by
welcoming us and announc-
ing the agenda. Mm P w
moderated Having enjoyed
a good lunch, I looked for-
ward to the veritable smor-
gasbord of knowledge about

(FoRML, wntinued.)

idea that Forth had to be 16
bits, indirect threaded, and
interpretive, he was able to
make this %bit native code

PCYerk Classes

Rick Grehan

I Peterborough, New Hampshire

system. This useful insight
applies to applications as
well.

FRANK SERGEANT has writ-
ten a three-instmction Forth
for embedded system devel-
opment on a budget. I don't
have room here to elaborate
in &tail-well, only three
words, I guess I do. The only
words needed to start de-

39 March 1992 April

Rick Grehan is a senior editor at BYTE magazine and the technical director of BME Lab. He first encountered Forth over
seven years ago when developing a music synthesizer control system built around a KIM-1. Since then, he has used Forth
on 68000 systems (including the Macintosh), the Apple II, and the IBM PC. He has also done extensive work on the SC32
stack-based processor. Rick has a B.S. degree in physics and applied mathematics, and an M.S. degree in mathematics1
computer science. His workon a PC version of the Yerk implementation won Crst prize in HYs object-oriented Forth contest.

The following code builds on the object-oriented Forth discussed in the last issue of FD.

\ *******************
\ * * BASIC CLASSES **
\ *******************

\ *********
\ ** o b j e c t
\ *********
: c l a s s o b j e c t

0 i v a r dummy \ Used t o g e t o f f s e t t o i v a r a r e a

\ Return add re s s t o o b j e c t ' s i n s t a n t i a i o n i n v a r i a b l e
\ segment. You can use t h i s t o g e t an o b j e c t ' s address
\ and s t o r e it i n a v a r i a b l e f o r d e f e r r e d b inding .
\ E . G . :
\ v a r i a b l e f r ank
\ 12 word-array bob
\ 4 4 f i l l : bob
\ addr: bob f r a n k !
\ 2 g e t : { f r a n k @ 1 . FORTH RESPONDS>> 4 4 ok
\
: m addr : (-- addr)

dummy 2 -
; m

\ Return add re s s t o s t a r t of o b j e c t ' s i v a r s reg ion
:m ivar -addr : (-- addr)

dummy
; m

\ Return t h e l e n g t h of t h e o b j e c t ' s d a t a a r e a
:m l eng th : (- - n)

dummy 2- \ G e t p o i n t e r t o i n s t a n t i a t i o n
@ \ Clas s address i n token segment
@t \ Length

veloping on an embedded
~YStemare X@, X ! , a n d ~ ~ a ~
which fetch, store, and ex-
ecute a routine On the target
system, respectively. Frank
described how he imple-
mented these words in an
MC68HCll chip. Having
used a Cadillac, four-word
variation, I'd have to say that
Frank is right on target.

Anyone who has done
serious development can
appreciate the usefulness of
version control and file com-
parison. WILBADFN presented
~ ~ s t o o ~ , w ~ ~ c h h e ~ a s p o r t e d
many times, over many sys-
tems, over many years. Wil
distributed 20 pages of code
forming the basis of a text-
file-based, source code con-
trol system. His irnplemen-
tation is capable of compar-
ing and collating large files,
and keeps all versions of a
file in a compact format. It is
a useful tool in any language.
I found it interesting that
some of those who used
blocks did not see a need for
such tools. Perhaps the
modularity of blocks, com-
bined with the fact that the
majority of those using blocks
used date stamping, reduces
the need for such tools. Those
interested in reeiving a copy
of this code on disk should
contact Wil.

GUY KEUY called our at-
tention to some of the I tradeoffs of interpreting

source from text fdes. By
adding some intelligence to
parsing words, Guy simpli-
fied the definitions of words
which use them (i.e., (, . (,
. ", \, and LOAD). By using
block buffers, he eliminated
the need for extra text-fde
line buffers, further simplify-
ing the system. His system,
also on GEnie, is simpler and
more capable than a BASIS
17 system would be.

On the educational front,
DR. TIM HENDTUSS of the
Physics Department at the
Swinbume Institute of Tech-
nology in Hawthorn, Aus-
tralia, gave an excellent tes-
timonial to the power of Forth
in education. Tim described
in detail the challenges of
teaching interfaang (hard-
ware) to classes of60 students
with various unrelated back-
grounds and the dramatic
change in their ability to learn
interfacing when Forth was
used His paper also contains
the exercises used to teach
these students to solve simple
instrumentation problems
using both interrupts and
multitasking. People learning
to write interrupt service
routines can really benefit
from Tim's paper. Software
for this paper is available on
GEnie.

A1 buffs and elderly
people should take note of
Dr. Hendtlass's paper on the
development of a distributed,
intelligent system which he
calls Embedded Node Col-
lectives. Each node collects
information, uses an expert
system and, sometimes, a
neural network to digest this
information, and communi-
cates with the outside world
in some fashion. These nodes
have been used in several
systems. The system he cites
is one which helps elderly
people care for themselves.
The neural network-an in-
put into the expert system-

March 1992 April

\ .
\ * * STORAGE CLASSES **
\ .

\ ** ldarray -- 1 dimensional array
\ .
:class ldarray <super object

2 ivar nelems \ # of elements in the array
2 ivar elemsize \ Size of each element in bytes

\ Allocate space for the array.
:m allocate: (n - -)

dup nelems ! \ Store # of elements
elemsize @ * allot \ Set aside space in vars segment

; m

\ Set the elements size
:m setsize: (XI--)

elemsize !
; m

\ Initialize the array.
\ n is # of elements in the array
\ m is the element size
:m init: (n m - -)

setsize: self \ Set the element size
allocate: self \ Allocate memory

; m

\ Return the # of elements
:m Xelems: (- - X I)

nelems @
; m

\ Return length of data area
:m length: (- - n)

length: self \ Header information
#elems: self
elemsize @ * \ Length of data portion
+ \ Add it all

; m

\ Do bounds checking for index
:m idx-check: (i -- i 1

dup 1+ nelems @ > \ Check bounds
if clear-o&mstacks \ Clear the stacks

abort" Array bounds exceeded"
endif

; m

\ Return the address of the array members start
:m array-addr: (-- addr)

elemsize 2+
; m
;class

40 Forth Dimensions

r*********
learns expert a system person's evaluates habits. The its

** byte-array
************* inputs to determine what

action is needed: a gentle
:class byte-array <super ldarray prompting, a phone call for

\ Initialize the array
:m init: (n - -)

1 setsize: self \ Set the element size
allocate: self \ Allocate space

\ Return value at index location
:m get: (i -- val)

idx-check: self \ Check bounds
array-addr: self \ Start of array
+ \ Add index
c @ \ Fetch

\ Set value at index location
:m put: (val i --)

idx-check: self \ Check bounds
array-addr: self \ Start of array
+ \ Add index
c! \ Store

\ Fill the array with value
:m fill: (val --)

array-addr: self \ Get address
#elems: self \ # of elements
rot fill \ Do it

\ Clear the array
:m clear: (--)

0 fill: self

\ Set initialization method

\ ** word-array
\ ************* I :class word-array <super byte-array
\ Initialize the array
:m init: (n - -)

2 setsize: self \ Set the element size
allocate: self \ Allocate space

\ Return value at index location
:m get: (i -- val)

idx-check: self \ Check bounds
2 * \ Index -> offset
array-addr: self \ Start of array
+ \ Add index
@ \ Fetch

help, etc. I don't rhink George
Orwell would have cared
much for this system, but it
certainly canbe instrumental
in helping an elderly person
to be more self sufficient.
Thank you, Tim, not just for
your presentation and soft-
ware, but also for your re-
cent neural network articles
in Forth Dimensions.

Plenty of treats were to
be had for the hardwired
Forthers. BRAD RODRIGUEZ
discussed his PISC-I (Pa-
thetic Instruction Set Com-
puter), which uses 1976 'ITL
technology, has a mere 2100
gates, and implements Forth
in microcode. PISC-1 adds a
whole new dimension to the
phrase "lean and mean."

DR. TING showed us how
we can create our own chip
at the kitchen table by using
the National Security
Agency's public-domain
CMOSN rnauo cell library.
So where's the DIP? Well, Dr.
Ting showed us that, too, by
using the library to create a
40-pin Data Comparator
Chip. With plenty of hand
waving, which he promised
us in his paper, JOHN R ~ L E
discussed his QS2
(Quicksand 2) project pro-
posal for a graduate-level
VLSI design project at the
University of California at
Santa Cmz. It is a 16-bit rni-
croprocessor with classical
RISC features, which has,
among other things, a hard-
ware-based threaded-code
interpreter.

CHUCK MOORE demon-
strated his MuP20 chip emu-
lator software which dis-
played each layer of the chip
in a different color. Using the
seven-button interface, he
scrolled through the chip,

Forth Dimensions 4 1 March 1992 April

\ Set value at index location
:m put: (val i --)

idx-check: self \ Check bounds
2 * \ Index -> offset
array-addr: self \ Start of array
+ \ Add index
! \ Store

displaying layers both indi-
vidually and combined.
Chuck pointed out that, s i n e
the chip can be emulated,
the circuirry is tested and the
making of the chip is anti-
climactic. What caught my
eye was the simplicity of the
user interface. It seemed so
simple I wondered if my
four-year-old daughter could
learn to use i t The emulator
did what he needed-no
more, no less. Trivial deci-
sions which could distract
him (or any user) from his
thinking were all but elimi-
nated Thank you, Chuck.

DR. TING gave the recipe
for primordial soup by speci-
fying the modules needed to
implement the Tieara Com-
puter Organism System. He
also supplied the code and
theory for creating and kill-
ing simulated o@m, with
a challenge to add the muta-
tion-andevolution compo-
nents.

JEFF FOX won the "Pro-
gramming Virtual Hardware"
award with his simulation
(in F-PC) of the MuP20 run-
ning eFORTH. As if running
a simulation of CHUCK MOORE'S
latest chip wouldn't be
enough h, Jeff also simu-
lated (with eFORTH and
DesqView) parallel process-
ingwith the F20, an enhanced
MuP20, using FORTH-
Linda-a bulletin board style
parallel-processor manager.
This must mean that Jeff is
simulating virtual machines
based on the simulation of a
virtual processor, which runs
on a virtual machine (i.e.,
eForth and DesqView). Jeff's
paper describes his efforts in
detail.

Another tasty dish was
DR. TING'S talk about the
Catalyst, his contribution to
the Human Genome
Project--the greatest reverse
engineering project of all
time. The Catalyst is an auto-

\ Fill the array with value
:m fill: (val --

array-addr: self \ Get address
#elems: self \ # of elements
0 do

2dup i 2* + \ Form address
! \ Store value

loop
2drop \ Clear stack

-

\ ** String
\ *********
\ A string object consists of a maximum byte count, byte
\ count, and trailing null byte. The maximum count does
\ NOT include the preceding byte count and trailing null
\ byte.
:class string <super object

1 ivar maxcount
0 ivar thestring

\ Allocate space for the string
\ n is # of bytes to allocate
:m allocate (n - - 1

dup maxcount c ! \ Save in max. count
2 + \ For byte count & null byte
allot

; m

\ Clear the string
:m clear:

0 thestring !
; m

\ Store a string in the string object
\ addr must point to a packed, null-terminated string
:m put: (addr --)

\ see if the string will fit
dup c@ maxcount
>
if clear-o&mstacks

abort" String too long"
endif
thestring $!

; m

March 1992 April 42 Forth Dimensions

\ Copy c o n t e n t s of s t r i n g o b j e c t t o d e s t i n a t i o n add re s s
\ Note usage of Upper Deck F o r t h ' s $! ope ra to r
:m g e t : (addr --)

t h e s t r i n g swap $!

\ Return t h e add re s s of t h e f i r s t c h a r a c t e r of t h e
\ s t r i n g and t h e b y t e count
:m count : (-- addr n)

t h e s t r i n g count
; m

a l l o c a t e : <<init-method

\ ***************
\ ** S t r i n g a r r a y
\ ***************
\ This a r r a y i s a c o l l e c t i o n of p o i n t e r s t o s t r i n g
\ e lements .
: c l a s s s t r i ng -a r r ay <super word-array

\ Al loca t e space f o r t h e a r r a y
\ n = # of e lements
\ m = max. s i z e f o r each s t r i n g element.
:m a l l o c a t e : (m n - -)

dup i n i t : s e l f \ Make space f o r it
[' I s t r i n g >body @ \ Need t h i s t o make s t r i n g
swap
0 do

he re >r \ Save l o c a t i o n
2dup i n s t a n t i a t e \ Make a s t r i n g o b j e c t
r> i p u t : s e l f \ S t o r e addr of o b j e c t

loop
2drop \ Clea r s t a c k

\ Fetch a s t r i n g a t index i. S t o r e i n address addr
\ Lots of "get :" messages he re . The one i n t h e c u r l y
\ bracke t s goes t o an i n t e g e r a r r a y , and f e t c h e s t h e add re s s
\ of a s t r i n g o b j e c t . The g e t o u t s i d e t h e c u r l y b racke t s
\ sends a g e t t o a s t r i n g t y p e .
:m g e t : (i addr --)

swap
g e t : { g e t : s e l f 1 \ Fetch

\ Place a s t r i n g a t element i n index i.
:m p u t : (addr i --)

p u t : { g e t : s e l f)

I a l l o c a t e : <<init-method

nated molecular biology
vorkstation designed to au-
ornate the HGP bottleneck
>f preparing DNA fragments
or analysis. At its core is a
hree-axes robot arm capable
~f delivering liquids to .00 1"
iccuracy. The software runs
In a Macintosh and was
written in polyFORTH using
i simple round-robin tasker.

DENNIS RUFFER spoke last.
kIe pointed out the need for
a common validation suite
For testing whether a Forth
system is compliant. His pa-
per discusses the labeling
and documentation aspects
of this effort. Dennis is look-
ing for people willing to work
with him to develop the suite.
In my opinion, a common
test suite would force inter-
pretation of the standard in
areas where it is unclear and,
in a sense, test the validity of
the standard itself. Dennis
can be contacted at Forth,
Inc.

I could talk about the
wine and cheese parties
(which were fun), the im-
promptu talks (there were
some gems), and the work-
shops (which were lively)
that are the less formal parts
of FORML, but I'm running
out of room. The presenta-
tions were wonderlid and I
look forward to reviewing
many of them in detail, but
what I found to be at least as
inspiring were the people
themselves-their experi-
ence, their personalities, and
their insights. The presenta-
tions willbe publishedshortly
in the conference proceed-
ings, but this dimension of
FORMLwill only be captured
in the minds of those that
attended.

Forth Dimensions 43 March 1992 April

Forth Interest Group
P.O.Box 8231
San Jose, CA 95155

NEW FROM THE FORTH INTEREST GROUP

Second Class
Postage Paid at
San Jose, CA

More on Forth
Engines

C.H. Ting
Editor

Seeing
Forth

Forth in the context of the intellectual
threads of our time.

Jack J. Woehr

More on Forth Engines Seeing Forth
by Jack Woehr

Vol. 14
RTX Pocket-Scope, eForth for muP20, ". . . I would like to share a few obse~ations

ShBoom, eForth for CP/M & 280, XMODEM on Forth and computer science. That is the

for eForth. purposeof this monograph. It is offered in the
hope that it will broaden slightly the stream of
Forth literature, which creek has been running

VO~. 15 a mite shallow of late. Failing that, perhaps
Moore: New CAD System for Chip Design, it will serve the function of acup of warm tea,
A portrait of the P20; Rible: QS1 Forth to make the seeker of Forth literature feel
Processor, QS2, RISCing it all; P20 eForth warmerandalittlemore filled until something
Software SimulatorIDebugger. more nourishing comes along."

$1 5.00 each $25.00

