

SILICON COMPOSERS INC

Announcing the SCIFOX I032 Board for FAST Forth I10

-OX K)32 Board Feah*es Fast Wispe r skn Program Example
H The 1032 Is a p l u ~ a daughter board for either The program, SEND below, reads 1 K blocks from a SCSl

the SBC32 land-alone or PCS32 PC plug-in drive and transmits them out one of the 1032 board's four
single board computers. RS232 serlal ports at 230K Baud. SEND uses only 1032

H 5 MBIsec SCSl Port. facilities. Disk read speed is limited by SCSl drive speed.
H Attach up to 7 SCSl Devkes.
H 4RS232SerialP~,upt0230Kbaud.
H 16-bit Bidirectional-Paralid Port, may be

used 68 tWO &bit ports.
H 2 programmable counter/timers.
H Pratotyping area on board.
r All bus signal brought out to pads.
H Full lnterrup Support.
H Two 50-pin user application connectors.
H No jumpers, totally software codigurable.
H Driver software source included.
H Single +5 VoU kw-pmver operation.

Full ground end power plane.
H 4 Layer, Ewocard-size: 1OOmm x 1601~1.
H User manual and Interface schematics Included.
H Low chip count (8 ICs) for maxknum reliaMlUy.
H Test routines for SCSI, parW, and serial

ports supplied in source code form.
Phrg together up to 6 1032 Boards in a stack.

For additionel produd and pricing I ~ m i o n , please contad us at:
SKJCON COMPOSERS INC 208 Caliiomig Averue, Pab Ato, CA 94306 (415) 3224763

2 Forth Dimensions

Features

6 Yerk Comes to the PC
Rick Grehan

In many ways, the Apple Macintosh begs for object-oriented development tools; they were
provided by Yerkes Forth (originally marketed as Neon). The fortuitous fallout for users of the
PC and its segmented memory architecture is this first-place entry in the FD object-oriented
Forth contest. The author, technical director of BYTE Labs, provides an implementation that
is complete enough to let you explore OOF to your heart's content.

23 Object-Oriented Forth
Roger Bicknell

Object-oriented programming relies on data abstraction, information hiding, dynamic
binding, and inheritance-and only a little work brings it to Forth. This allows one to focus on
objects and actions, without concern about internal implementation details. The intent here is
to reduce maintenance and increase productivity. The author, a Canadian electrical engineer,
provides an implementation compatible with Forth-83 that incorporates the use of vocabularies.

33 Simple Object-Oriented Forth
Clive Maynard

Forth already has the tools to create a simple object-oriented programming environment.
This article, code, and clear examples teach the concepts involved by focusing on the use of
defining and compiling words to create a syntax, rather than concentrating on performance.
This educational approach is enjoyed by computerengineering students in Australia, where the
author is a senior lecturer. Instance variables are not discussed here and only single inheritance
is supported; adding those and, perhaps, vectored method access, will fulfill your entrance
requirements to the universe of object-oriented programming.

Departments 1
.......................... 4 Editorial.. Objets &Art

........................ 5 Letters Marketing vs. Objectivity & Public-Domain Glut, We Must Not
Do Nothing, Forth on a Bathroom Scale-No Lightweight, The
Atari Lesson, QuikFind Addendum.

1 7 Forth Author Recognition Program

............ I 19 Best of GEnie What is this language, Foh7 I
27 Advertisers Index

28 resource Listings Updates to on-line Forth connections

Forth Dimensions 3 January 1992 February

Objets dyArt

and reformat that hard disk.)
FD is exploring upgrade
options for coming issues,
including more items about
Forth-based solutions in ac-
tion, Forth news, press re-
leases and articles from

0 bject-oriented pro-
grarnming has been
slow to excite the col-

lective imagination of the
Forth community. It's hard to
say why, because OOP and
Forth techniques seem very
congruous; each sheds light
on the other and suggests
further refmements. Maybe
Forth programmers who look
at OOP do so superficially,
seeing the easy parallels but
not the depth; or maybe we
unconsciouslyrememberour
schoolteachers' prohibitions
against passing messages in
a class. . .

This issue shows object-
oriented Forth from several
angles: we are pleased to
present the winners of FDs
object-orientedForth contest

vendors and developers, and
a switch to wider text col-
umns. Along with, of course,
the fine technical fare FD
readers expect.

But this magazine does
not operate in a vacuum.
(Do I repeat myself?) New
articles and departments
come when someone is in-
spired (or convinced) to write
them. Press releases can get
published only if businesses
mail them. And developers'
work gets known after they
tell their peers about it. So
take advantage of your citi-
zenship in our virtual com-
munity. You might even give
an FD subscription (i.e.,
membership in the Forth
Interest Group) to your boss,
company library, or co-
worker. As one of our letter
writers says this month, "We
must not do nothing." That
would, after all, be doubly
negative.

-Madin Oumon
Editor

so we hope to present more
in the future, along with the
results of your own OOF
explorations!

Due to the amount of
material generated by the
above-mentioned articles,
along with a lengthy and
revealing excerpt from the
on-line ANS Forth debate
("Best of GEnie") our usual
 source Listingsn have been
postponed. A few updates
are included, though, and
the entire listings will reap
pear soon.

Finally, welcome to the
new year, traditionally a
season of fresh beginnings.
O'ime to back up your data

dpANS Forth Released for Public Review

The Draft Proposed ANS Programming Language Forth
entered its oficial public review period in October. Copies
of the proposed standard may differ from development
versions (i.e., the "BASISn documents), and can be purchased
from Global Engineering Documents, Inc., 2805 McGaw
Avenue, Irvine, California 92714. Ask for document #X3.2 15-
1%. From within the United States and Canada, call 800-
854-7179; from other countries, call 714-261-1455. The U.S.
price was to be $50 per copy; for international orders, $65 per
COPY.

The public-review period extends from October 18,
1991 through February 25,1992 Please send all com-
ments to X3 Secretariat/CBEMA, Attention: Lynn Barra, 31 1
First Street N.W., Suite 500, Washington D.C. 20001-2178.
Send a copy of your comments to American National
Standards Institute, Attention: BSR Center, 11 West 42nd
Street, New York, New York 10036.

Changes from Forth-83 include removal of ambiguities
and restrictions, numerous optional language extensions,
optional extensions for floating-point math, string handling,
programming tools, additions to facilitate porting programs
across disparate CPUs, and an optional interface between
Forth and operating systems like UNIX, VMS, OS2, and MSDOS.

They are Rick Grehan, Roger
Bicknell, and Clive Maynard.
Their names are listed in
order here, and our referees
were hard pressed to deter-
mine the final standings.
Different and more-or-less-
complete approaches to
implementing OOF are rep-
resented. There is some in-
evitable overlap in the tuto-
rial sections, but each article
contains its own particular
insights.

How you view and use
Forth will determine which
of the code in this issue you
will choose for experimenta-
tion. Look past the surface,
into the deeper implications
of object-oriented Forth, and
let us know what you find
there. We were unable to
publish all of the good mate-
rial submitted to this contest,

Forth Dimensions
Volume XIII, Number 5
Januaty 1992 February

Published by the
Forth Interest Group

Editor
Marlin Ouverson

Circulation/Older Desk
Anna Brereton

Forth Dimensions welcomes
editorial material, letters to the
editor, and comments from its
readers. No responsibility is as-
sumed for accuracy of submis-
sions.

Subscription to Forth D i m -
swnsis included with membership
in the Forth Interest Group at $40
per year ($52 overseas air). For
membership, change of address,
and to submit items for publication,
the address is: ForthInterest Group,
P.O. Box 8231, San Jose, California
95155. Administrative offices and
advertising sales: 805-946-2272.
Fax: 408-286-8988

Copyright Q 1992 by Forth In-
terest Group, Inc. The material
contained in this periodical (but
not the code) is copyrighted by the
individual authors of the artides
and by Forth Interest Group, Inc.,
respectively. Any reproduction or
use of this periodical as it is com-
piled or the articles, except repre
ductions for non-commercial pur-
poses, without the written per-
mission of Forth Interest Group,
Inc. is a violation of the Copyright
Laws. Any code bearing a copyright
notice, however, can be used only
with permission of the copyright
holder.

The Forth lnterest Group
The Forth Interest Group is the
association of programmers, man-
agers, and engineers who create
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that
will advance the general state of
the art. FIG provides a climate of
intellectual exchange and beneffis
intended to assist each of its mem-
bers. Publications, conferences,
seminars, telecommunications, and
area chapter meetings are among
its activities.

"Forth Dimensions (ISSN 0884-
0822) is published bimonthly for
$40/46/52 per year by the Forth
Interest Group, 1330 S. Bascom
Ave., Suite D, San Jose, CA 95128.
Second-dass postage paid at San
Jose, CA. POSTMASTER: Send ad-
dress changes to Forth Dimensions,
P.O. Box 8231, SanJose, CA95155."

January 1992 February 4 Forth Dimensions

Letters to the Editor-and to your fellowreaders--are always welcome.
Respond to articles, describe your latest projects, ask for input, advise
the Forth communty, or simply share a recent insight. Code is also
welcome, but is optional. Letters may be edited for clarity and length.
We want to hear from you!

Marketing vs. Objectivity
& Public-Domain Glut

I agree with many of the
points mentioned in "Sing-
apore Slingshot Tarnets FIG

have managed to stay in
business for several years
would switch to the pro-
posed "superduper" Forth
system.

to be uproteckd" from mar-
keting hype. Many success-
ful and well-respected trade

1SSuesn (leiers. FD h / 4) I
do not a n m g wrong
with self-serving articles by
Forth vendors. I certainly
hope that FD readers are
mature enough not to need

journals are hfi of articles
touting particular vendors'
products. So long as the
company affiliation of the
author is identified, I have
no problem distinguishing
an "objjctiven article from a
"marketingn article, and I read
both kinds with interest.

I take issue with Mr. Tse's
point number 19, in which

Firth the Future,
Mit& Bndey

Forthware
P.O. Box 44
Mountain View, CA 94040

he suggests another *modeln
system. In my opinion, the
last thing the Forth commu-
nity needs is Yet Another
Public-Domain Forth. There
are way too many public-
domain Forths already, and
creating another one will
further erode the ability of
the few Forth vendors that
are left to make a living. The
Forth community nee&
profitable vendors, because
profits result in money that
can be spent on advertising
and marketing. Forth &-
peratelyneeds visibility, and
like it or not, visibility results
from dollars spent on mar-
keting.

Furthermore, it is ex-
tremely unlikely that the ex-
isting Forth vendors who

Forth Dimensions

We Must Not Do Nothing
Dear Marlin,

Forth is the artist's lan-
guage. It allows us to tap the
computer's true potentials
and create things ofbeauty-
beauty in simplicity, con-
ciseness, elegance, and
speed. Is there a n w g more
satisfying than creating a
powerfkl algorithm, which
does exactly what it is sup
posed to do, using about
half-adozen words?

press a desire to change
things for the better. I think
that most of us share that
sentiment.

The Merence between
Forth fading into obscurity
and Forth becoming the
foremost innovative force in
the computer industry lies in
what we, as individual FIG
members, do about it. The
one thing we must not do is
nothing.

All of us have unique
talents that we can contrib-
ute to help Forth expand. Let
us, then-each of u s - d o
something, no matter how
small initially, to get the ball
rolling. By doing so, we will
eventually reap the rewards.
Imagine the satisfaction of
having our children or
grandchildren say, "Wow,
you were one of the guys
who put Forth on the map!"

Peter Verhoeff
P.O. Box 10424

I Glendale. California 91209

Forth on a Bathroom
Scale+No Lightweight

Dr. Ting's letter to Mr.
Koopman (FD XIII/3) in-
spired me to share my feel-
ings about Forth and its fu-
ture.

A few years ago, I started
working at a thin-film circuit
startup. The boss like Forth.

conductor wafer, "learned
from the operator, and
saved the test results to
disk.
Write the operating soft-
ware, with a graphics in-
terface, for a custom semi-
automated, thin-film sput-
tering machine. Some
amount of artificial intelli-
gence was used in this
project.
Computerize a Dektak
film-thickness profiler.
Profiles were drawn in real
time on a CRT, and could
be zoomed in on, saved to
disk, etc. The operator
controlled the machine
with a mouse.
Starting with a bathroom
scale, built an adhesion
tester that measured film-
to-wafer adhesion strength.
A computer displayed the
adhesion strengths in PSI
and Pascals.
Get a Harris RTX-2000 Forth
engine interfaced to a liq-
uid crystal display and
drawing graphics.
Software development

with Forth was fast. I usually
had something coming to
life in a matter of hours.
Modifications were some-
times made practically in real
time, while the machines
were in production use.

Well, enough of the real-

Forth has been around
for two decades now, and
many brilliant contributions
have been made by the Forth
community. Yet, despite the
sustained efforts of many,
there has been no wide-
spread recognition and use
of Forth.

Many explanations can
be found for this. However,
it does no good to speculate,
feel sorry for ourselves, or be
righteously indignant, if rhis
doesn't lead to improved
conditions.

Judging by recent FD ar-
tides, such as last issue's
President's Letter ("I Have a
Dreamn) and Mr. Tse's letter
for the editor CSingapore
Slingshot.. ."I, I believe that
Forth is an idea whose time 1 has come. These letters ex-

5 January 1992 February

It was a dream come true.
It Was a nightmare.

Make that loved Forth.
Therefore, I was dragged
kicking and screaming into
what turned out to be a really
great language. My only in-
suuction came from Mr.
Brodie's Startlng Forth. O
think Brodie deserves some
kind of award for his contri-
bution to Forth.) I had never
taken a computer course.

In my four years with the
company using Forth (fmt
F83, and later LMI Forth), I
managed to:

From scratch, build an au-
tomated wafer-probing
machine that tested hun-
h d s of points on a semi-

world applications of Forth.
At issue is, why does its
future look somewhat dis-
mal, and what does it need
to succeed?

1. It is reasonably well
marketed.

2. It has a professional
programming environ-
ment (vs. F83).

3. It is available in versions
with a street price under
$100.

When these requirements
are met, people are more
likely to spend the few dol-

Cm'wmPage 13)

of the stack that indicates the
number of bytes to be allo-
cated by the current instance
variable-whose name i v a r

Yerk Comes to
the PC
Rick Grehan
Peterborough, New Hampshire

and the instance variables
(an object's local data).

When you create an ob-
ject, we say that the object
has been instantiated: the
class template has forged
something real (as real as
any piece of code can get).
Once you have instantiated
an object, you can make
that object do things by
sending it messages. For-
mally, a message is com-
posed of two parts: a selector
and some attendant data.
The selector is an ID num-
ber that the object uses to
determine which method to
execute. In PCYerk, there's
little difference between
message and selector. The
message is the selector; any
data is passed on the pa-
rameter stack.

In PCYerk, the defining
word for a class is : c l a s s .
Listing One shows the source
code for a simple class called
i n t e g e r . Notice that the
class definition is bracketed
by : c l a s s and ; c l a s s (I'll
explain the other parts of the
defdtion later). These two
words serve to encapsulate
the class definition.

me time ago, I discov-
ered a Forth-based, o b S" ject-oriented program-

ming system for the Ma&-
tosh called Neon. For what-
ever reason, Neon was dis-
continued. Recently, how-
ever, the language has reap-

in the public domain
as "Yerk," largely due to the
work of Bob hewenstein at
the Yerkes Observatory
(hence the new name).

I have always been im-
pressed by Yerk's object-ori-
ented abilities. Though I
continue to work on the
Macintosh, I do enough in
MS-DOS that I began to wish
for something like Yerk on
the PC. So I wrote PCYerk, a

Instance Variables
As I mentioned, instance

variables defme the local
storage associated with an
object. If you look again at
Listing One, you'll see that
objects of the class i n t e g e r
pcssess a single instance var-
iable: localdata . The word
i v a r expects a value on top

moderately complete dupli-
cation of the Yerk syntax for
the PC. I say "moderatelyn
because there are some Yerk
ca~abilitie~-notcountingd
the Mac toolbox routines
Yerk has access to-that
PCYerk does not SUPPort-

I've written PCYerk using
Upper Deck Forth, a 16-bit
mulbgmented Forth for
running MS-DOS. It's likely
that someone well-versed in
F-PC could easily port Yerk
to that system I'll use this de-
scription of PCYerk as a Ve-
hide for introducing YOU to
s o m e ~ @ ~ r i ~ ~ n ~

Objects and Classes
An object is a combina-

parses from the input stream.
Whenever you create an
object of type i n t e g e r , the
systemknows to allocate two
bytes of variable space.

Instance variable names
last only as long as the class
defdtion. In other words,
upon execution of the code
in Listing One, the symbolic
name l o c a l d a t a is dis-
carded (the word ; c l a s s
does this).

Messages and Methods
Objects ofclass i n t e g e r

understand two messages,
get : and put : . Each of these
messages corresponds to a
method of the same name. I
can create an object of type
i n t e g e r and store a 12 in it
with:

Guidelines discourage low=level
manipulation of an object's
interior, except via messages.

i n t e g e r myint
\ Crea te t h e o b j e c t
1 2 p u t : myint
\ Send a p u t : message

Rick Grehan is a senior editor at BY7E
magazine, where he is the technical
director of B Y E Lab. He first encoun-
tered Forth over seven year sago when
developing a music synthesizer con-
trol system builtaround a KIM-1. Since
then, he has used Forth on 68000
systems(including theMacintosh), the
Apple II, and the IBM PC. He has also
doneextensive SC32 stack-
based processor. Rick has a B.S. d e
gree in physics and applied math-
ematics, and an M.S. degree in math-
ematicslcomputer science.

As you've probably
guessed, I can retrieve the
contents of myint using the
g e t : message. The only way
a program can legitimately
manipulate the instance data
of myint is via get : and
put : .I say "legitimatelyn here
because a clever Forth pro-

tion of code and data that
your program can treat as an
indivisible entity. The code
associated with an object is
really a collection of routines
that manipulate that object's
data and allow that object to
interact with other objects in
the program, I/O devices,
and other p m of the sys-

A chssis a kindof tem-
plate for an object. The class
definition describes the me-
chanics of offspring objects,
and consists of two main
pieces: the (what
objects know how to do)

grammer can manipulate
anything. Object-oriented
programming guidelines,
however, discourage low-
level manipulation of an
object's interior except by
that object's messages.

Sometimes you need an
object to automatically ex-
ecute a method when that
object is instantiated. A good
example would be an array
class whose initialization
method allocates space for
the array, then stores in an
instance variable the num-
ber of members allocated to
that array.

The PCYerk syntax for
setting an initialization
method is shown in Listing
Two, where I've defined a

January 1992 February Forth Dimensions

Listing One. Source
code for a simple class.

:class integer
2 ivar localdata

:m get: (-- n 1
localdata @

; m

Listing Two.
Initialization and self-
referencing.

which retrieves the contents
of my-integer. The SYs-
tem knows the message
(get :) and the object
(my-integer) and can,
therefore, locate the execu-
tion address of the method
corresponding to the mes-
sage at compile time.

(Internally, when the
system encounters a mes-
sage selector name, it places
a 16-bit ID number on a
special stack called the
method stack, or mstack
for short. When it encoun-
ters an object name, the
system places the object's
address on another special
stack, the object stack-
o st a c k-and transfers
control to the word exec -
ob j, which pops the rnstack
and performs the binding.
While the method executes,

word.
Inheritance is the basis

: put : (--)

localdata !
; m
;class

method called clear : ,
which stores a zero in the
local data. You must place
the <<init-method word
prior to ;class.

Listing Two also shows
the use of the word.
'his allows an object lo ref-
erence itself in a method
definition. It's as if the
clear : method were say-

"Okay, objeq here's a
zero On the stack- Now send
aput : message toymrseE"

Inheritance
Inheritance is One of 0b

jeoriented programming's
big buzzwords. The concept

message to. There are two
kinds of binding: early bind-
ing and late binding.

You've already seen early
binding; it looks like this:

get : my-integer

is simple enough: You stan
w'ths'm~'e'assa""dbU'ld
On lo claws
that are incrementally more
complex and specialized.
Each new class within an
inheritance chain carries all
the knowledge (i.e., meth-

and instance
its ancestors carry.

Forexam~le~suppmel've
defined a class called
ldarray that allows you to
create a one-dimensional
array. Objects of this class
would have methods to aUo-

myspace,stOR a value
to an index location, and
retrieve a value from an in-
dex location.

Nq ldefiiaclasscaUed
$ P ~ ~ - ~ ~ ~ ~ Y that mulipu-
lam an m Y of string point-
ers. I want this new class to
know how to manipulate a
one-dimensional array
(something ldarray can
do), but it should also be
able to print a string. In shoa,
I want objects of the

Forth Dimensions

:m clear: (--)

0 put: self
; m

clear <<ini t -met hod

$ptr-array class toinherit
the abilities of the 1darr-y
class, then add some string-
handling capabilities.

PCYerk provides inherit-
ance via the <super word.
Usage gm like &s:

:class
$pt r-array
<super ldarray

which &fines a flew
$pt r-array who= super-

is the idar ray.
The <super word does

a number of things. ~jrst, it
stores a link in the class-
&fition header. 'Ibis link
pints to the dalasr&finition
header of the =perclass.
Whenever an object receives
a mwage, that fim
searches its class's methods
list. If it can't fmd he method
corresanding to the
s g e , the system fou- the
superclass link and searches
the superclass's list.
This process continues until <IIXR, a national consulting firm,
eitherthe methodis found or
all claws on the chain have
been searched. Such are the
mechanics of methods in-
heritance. (Notice that, since
the search takes place for

please give us a call
methods fKsc an or send your resume to:

can an inherited
method.)

Nen. <super initialim
the dm,s instance variable 4100 E. Mississippi Ave., Suite 1710
space accumulator with the
amount stored in the Denver, CO 80222
superclass's. In other words,
a class inherits the instance
variable space requirements
of its superclass.

Finally, <sup,= sets
initial to the

initial of the super-
class. The class inherits its
superdm,s method

aboMl you on
ovetride that method
with the <<init-mthod

7 January 1992 February

for poZymo@hLm, yet an-
other piece of objj-oriented
jargon Polymorphismmeans
that different offspring of a
given superclass respond to
the Same message selector
differently. I might &fine a
subclass of integer called
integer-array. An in-
teger objectwould respond
to the get : message by re-
trieving the value in the single
~nstancevariable.Meanwhile,
an object of class
integer-array would re-
spond to the same message
by retrieving an index value
from the stack and fetching
the appropriate m y ele-
ment Same message selec-
tor, diRerent action.

Binding
Binding is the process of

taking a message's selector
and determining the execut-
able address (i.e., the
method) associated with that
selector. Of course, the
method depends on the ob-
jed class you're sending the

instance variables can re-
solve their addresses by cal-
culating offsets from the
object address on the
ostack.)

Late binding is also re-
ferred to as deferred bind-
ing. In simple terms, it means
the system doesn't know
what object you're going to
send a message to. Hence,
the system can't bind the
message to an execution
address at compile time.

Here's an example of
PCYerk's late binding:

get: { in tegerobj @)

Here, I'm assuming that
the variable integerob j
holds an object's address. At
compile time, there's no way
the system can know what
objedwillbe in integerob j
when the program executes.
The system must, therefore,
determine the execution ad-
dress of g e t : at run time.

The words to handle late
binding are { and 1. (Yerk
used [and I , but those words
were already taken in UD
Forth) The curly brackets
should immediately follow
the message, and may en-
close any Forth expression
that yields an object's ad-
dress.

Of course, late binding
yields code that runs more
slowly than code using early
binding. This is because late
binding defers until run time
processing that would have
been performed at compile
time.

Late binding lets you-
with only minor additional
programmin~ypass one
of PCYerk's deficiencies:
namely, that you define all
instance variables using the
i v a r word. You cannot use
an object as an instance vari-
able. Suppose you've defined
a class called lda r r ay that
lets you build one-dimen-
sional array objects, and a
class called polygon that
builds polygon objects. It
would be nice to have a
l da r r ay object as one of
the instance variables of the

Figure One. Class header structure. I

Tokens Variable
Segment Segment

d
i7
(I)
f#

0 v c..
(0

5!

Listing Three. Building a headerless object. I
: c l a s s polygon <super object
2 i v a r "vertex-list

\ Allocate space f o r ver tex list
:m i n i t : (n --)

2 * \ 2 coordinates per ver tex e n t r y
here dup "vertex-list ! [' I l da r r ay >body @
i n s t a n t i a t e

;m

i n i t : <<init-method

:m ->vertex: (y x i --)

2 * \ Index * 2 f o r x and y coordinates
tuck \ G e t a second copy of t h e index
to : { ^vertex-l is t @ 1 \ Store x
1+ \ Advance index t o next s l o t
t o : { "vertex-list @ 1 \ Store y

; m

; c l a s s

January 1992 February 8 Forth Dimensions

I Listing Four. PCYerk source code. I
\ PCYerk
\ Object-oriented extensions to Forth
\ a la Yerk (once, NEON)
\ Written for Upper Deck Forth, version 2.0
\ R. E. Grehan

\ Sorry, I can't stand "then"
: endif [compile] then ; immediate

\ *************
\ ** STORAGE **
\ *************
34 $variable tstring \ Used in parsing names

\ Method stack
20 constant METH-STACK-SIZE
create mstack

METH-STACK-SIZE allot

\ Objects stack
20 constant OBJ-STACK-SIZE
create ostack

I OBJ-STACK-SIZE allot

\ Instance variable names segment
variable ivar-seg \ Segment
20 constant IVAR-SEG-SIZE \ Segment size in paragraphs
variable ivar-next \ Offset to next free loc.

\ Methods names segment
variable methname-seg \ Segment
100 constant METHNAME-SEG-SIZE \ Segment size in paragraphs
variable methname-next \ Offset to next free slot
variable curr-meth# \ Current method #
variable my-meth# \ Method # about to be define1

\ Class definitions
variable curr-class-off \ Offset to current class
variable curr-meth-tail \ Current method tail

\ .
\ ** METHOD AND OBJECT STACKS **
\ .
\ NOTE: Neither stack do any bounds checking (for speed's
\ sake). If bounds checking is added, the stack manipulatior

1 \ words should be written in machine language.

\ Initialize the method stack ... stores selector ids
: mstack-init (--)
mstack dup !

\ Push top word onto method stack
: mpush (n - 1
mstack @ 2+ ! \ Save item
2 mstack +! \ Increment

\ Copy top of mstack to dstack
: mstack->dstack (-- n)
mstack @ @

I

(Tisting continues

Forth Dimensions 9

)olygon class. Then you
ould store the polygon's
ertex list into the one-di-
nensional array object.

It turns out you can do
his by defLning one of the
)olygon's instance variables
o be a pointer to an object of
lass Ida rray. Essentially,
leu build a headerless ob-
ect; that is, one that does not
lave a head in the Forth
iictionaly. The word in-
stantiate will build such
L headerless object. All in-
stantiate needs on the
;tack is a starting address in
he variable region (where
he new object will go) and
L pointer to the class defini-
ion. The code showing this
echnique is in Listing Three
:which presumes that you've
lefmed the ldarray class
dready).

Notice that I've defined
init : to multiply the num-
Der of vertex entries by two,
since the vertex list will carry
an x and y coordinate for
each vertex. The next line
stores the address of the next
Free location in the variable
segment into
v̂ertex-list, which be-

comes a pointer to our one-
dimensional array. I then use
[' 1 to retrieve the code ad-
dress of the ldar ray class,
then fetch the address of that
class defmition. The in-
stantiate word actually
creates the array. Keep in
mind that, when instan-
t i a t e executes, the
lda r ra y object's initial
method-which allocates the
memory space-will be ex-
ecuted.

Now we can store an x
and y coordinate into the
ldarray object using a
method called to:, which
we've presumably already
defined for the ldarray
dass. You can extend this idea
as far as you'd like to go,
aeatingpointelsto o b j w i t h
pointers to objects, and so on

Nuts and Bolts
Refer to Listing Four, the

complete source for PCYerk.
The heart of PCYerk is

January 1992 February

:c lass . The : c l a s s word
uses a nested c r e a t e ...
does> s t r u c t u r d e kind
that makes my head hurt
whenever I have to think
about it. At compile time,
: c l a s s buildsaclassheader
structure as shown in Figure
One.

I have to take a moment
here to describe something
of the structure of UD Forth.
Being on the IBM PC, UD
Forth has a segmented archi-
tecture. Executable code re-
sides in the code segment,
variables are stored in the
variables segment, threading
pointers are kept in the to-
kens segment, and names
are kept in the headers seg-
ment. Names built using
Forth's c r e a t e word return
a pointer to a parameter field
in the variables segment,
hence the class pointer in
that segment for a class defi-
nition.

The first field in the
header-ivar space--tells
the system how much space
to set aside for instance vari-
ables when an object is cre-
ated. The second field is the
head of a linked list that
connects all the methods for
a particular class. Next comes
the superclass pointer field,
which is set by the <super
word, and which provides
the means by which a class
inherits methods from its su-
perclass. The last word of the
class header is the start selec-
tor; it identifies which method
will be automatically ex-
ecuted when you create an
object.

Objects carry execution
addresses &fined by the
code following the second
does>in :class. When you
send an object a message,
the system follows the pointer
to the class header, then
searches down the methods
list chain (as descriid above)
to determine what code to
execute. Notice that the code
for a method is absolutely
headerless; a method doesn't
even possess code field ad-
dresses. A special word-
(domethod) -executes a

PCKerk LMng Four, continued.)

\ Pop t o p word from method s t a c k
: mpop (- - X I)

mstack->dstack \ Fetch
-2 mstack +! \ Decrement

\ I n i t i a l i z e t h e o b j e c t s t a c k
: o s t a c k - i n i t (-- 1

os t ack dup !

\ Push t o p word on to o b j e c t s t a c k
: opush (n - -)

o s t ack @ 2+ ! \ Save i t e m
2 o s t ack +! \ Increment

,

\ Copy t o p of o s t ack t o d s t ack
: ostack->dstack (-- n)

os t ack @ @
,

\ Pop t o p word from o b j e c t s t a c k
: opop (- - n)

ostack->dstack
-2 o s t ack +!

,

\ Dup t o p of o b j e c t s t a c k
: odup (--)

ostack->dstack
opush

\ Fetch
\ Decrement

\ Fetch t o p
\ and push

\ Drop t o p of o b j e c t s t a c k
: odrop (--)

opop drop
I

\ Clea r bo th s t a c k s .
\ U s e t h i s i f something a b o r t s and you d o n ' t want t h e
\ s t a c k s growing fo reve r .
: clear-o&mstacks

o s t a c k - i n i t
ms tack- in i t

\ ..
\ ** TEMPORARY SEGMENTS **
\ ..
\ The method names and i n s t a n c e v a r i a b l e names a r e kept i n
\ temporary segments. These segments a r e a l l o c a t e d
\ from DOS. When you ' r e done d e f i n i n g t h i n g s and
\ i t s t i m e t o make an executab le , j u s t f r e e t h o s e
\ segments. (The word ' end-objec ts ' , d e f i n e d l a t e r ,
\ does a l l t h a t .

\ Compare two counted s t r i n g s . s e g l a d d r l , seg2 addr2 p o i n t t o
\ segment and addresses of two s t r i n g s wi th preceding count
\ b y t e s . Returns 0 i f equa l , else nonzero
: ccompl (s e g l a d d r l seg2 addr2 -- n)

\ F i r s t check b y t e counts
c o u n t l >r 2swap c o u n t l r@ =

January 1992 February 10 Forth Dimensions

i f r> compl \ Lengths match ... t r y comparison
else 4drop r>drop 1 \ Show mismatch
end i f

\ Advance t o next i t e m p a s t t h e c u r r e n t counted s t r i n g .
\ seg:addr p o i n t s t o counted s t r i n g . Takes i n t o account
\ t r a i l i n g i n t e g e r .
: n e x t s t r (s e g addr -- s e g add r ')

c o u n t l + 2+

\ Search one of t h e temporary segments.
\ seg1:addr l p o i n t s t o s t r i n g t o s ea rch f o r
\ seg2 i s temporary segment t o s ea rch
\ max i s maximum c u r r e n t o f f s e t i n segment.
\ n i s r e t u r n e d a s s o c i a t e d i n t e g e r ; -1 means
\ t h e s t r i n g was no t l o c a t e d .
: sea rch - t s eg (s e g l a d d r l seg2 max -- n)

dup \ Anything t o look f o r ?
i f

> r \ Save max
0 \ S t a r t s ea rch a t z e ro
begin

2over 2over \ Dup seg /address
ccompl \ Look f o r match
0 =
i f 2swap r> 3drop \ Clea r s t a c k

count1 + @1 \ Fetch va lue
e x i t

end i f
n e x t s t r \ Advance t o next s t r i n g
dup r@ >= \ Topped ou t?

u n t i l
r>drop \ Clea r r e t u r n s t a c k

endi f
4drop \ Clea r s t a c k
- 1 \ Show e r r o r

\ **
\ ** I n s t a n c e v a r i a b l e segment handl ing
\ **
\ The i v a r segment i s a temporary reg ion where t h e system
\ keeps a l i s t of t h e c u r r e n t c l a s s d e f i n i t i o n ' s i n s t a n c e
\ v a r i a b l e s . Each e n t r y i s composed of a l e n g t h by t e , t h e
\ name, and a 2-byte va lue t h a t i n d i c a t e s t h a t i n s t a n c e
\ v a r i a b l e ' s o f f s e t i n t o an i n s t a n c e of t h e c l a s s

\ Al loca t e space f o r t h e IVAR segment. P l ace t h e segment
\ i n g l o b a l v a r i a b l e ivar -seg
: al loc- ivar-seg (--)

IVAR-SEG-SIZE a l l o c
e r r o r \ Fetch e r r o r
i f abo r t " I v a r a l l o c a t i o n e r r o r "
end i f
ivar-seg ! \ Save p o i n t e r

\ Clea r t h e i v a r segment
: clear- ivar-seg (--)
0 ivar-next !

I
(Zisting continues

Forth Dimensions 11

lethod by mimicking the
m-time action of the colon
rord. You pass (dometh-
d) the starting address of
le method code and it
andles the rest.

PCYerk does not create
andard Forth headers (5 la
reate) for instance vari-
bles and methods. In the
ase of instance variables,
ou want their names to dis-
ppear after the class defini-
on. For method names, you
on't want their names tak-
lg up header space, since
ley are instantly resolved to
wo-byte selector ID num-
ers.

PCYerk allocates two
nemory blocks (using the
JDForthwordalloc, which
brovides access to the DOS
unction for allocating a
nemory segment): one to
!old instance variable names,
he other to hold method
lames. Each name stored in
me of these blocks is associ-
~ted with an integer.

In the case of instance
rariables, the associated in-
eger carries that instance
rariable's offset into the
~bject's local data space. At
:ompile time, whenthe sys-
em encounters an instance
rariable, it looks up the
rariable's offset and com-
3iles that as a literal, fol-
owed by the word (i va r) .
4t run time, (i v a r) takes the
~ffset from the stack and
resolves that offset to an ad-
kss.

In the case of methods,
h e associated integer is the
selector ID number. When
you define a new method's
name, the system increments
an internal counter and the
incremented value becomes
that method's ID number.
This ensures a unique ID
number for each method.
(Yerkused a hashing method
to generate such ID num-
bers. I chose a separate route,
since the code for handling
instance variable names and
method names was so simi-
lar.)

But wait. If the system
puts method names and in-

January 1992 February

stance variable names in
these alternate segments,
how does Forth find those
names during compilation?
You have to patch inter-
pret.

InUD Forth, interpret
first tries to find the word in
the dictionary. If that fails,
interpret tries to parse
the word as a number. If the
number conversion routine
can't digest it, interpret
executes do-undef ined
(which prints out the offend-
ing word and executes
quit.) I overwrite the call to
do-undef ined to point to
<interp-patch>. The
<interp-patch> word
(see Listing Four) looks fmt
in the method segment, then
in the instance variable seg-
ment If <interp-patch>
finds the word in either seg-
ment, it takes appropriate
adion. Ofcourse, <interp-
patch> ultimately falls
through into do-unde-
fined
You have to execute

start-ob jects befoe you
begin defining any classes.
The start-ob jectsword
allocates and initializes the
instance variable and method
names segments, then
patches interpret and
clears the methods and ob-
jects stacks. Finally, when
you're ready to create a stan-
dalone application, execute
end-ob jects. This
repatches interpret to put
it back the way it was, and
releases the allocated
memory blocks (which a e
unnecessary in the run-time
code.)

(PCYerk Listing Four, continued.)
I

\ Given that addr points to a counted string that represents
\ an instance variable name, return the associated offset.
\ If you can't find that variable, return a -1.
: search-ivar (addr -- n)
vars swap \ String is in vars segment
ivar-seg @ \ Search through ivars segment
ivar-next @ \ Max. to look for in ivar segment
search-tseg \ Search a temp. segment

I

\ addr points to a counted string that represents an instance
\ variable name. n is the offset to attach to that instance
\ variable. Add this name to the list.
: add-ivar (n addr --)
dup c@ >r \ Save byte count
vars swap \ Source address
ivar-seg @ ivar-next @ \ Destination
$!l \ Copy the string in
ivar-seg @ ivar-next @ r@ + 1+ !1 \ Store associated value
r> 3 + ivar-next +! \ Advance next

\ **
\ ** Methods name segment handling
\ **
\ The methods segment looks a lot like the IVARS segment.
\ it holds the list of methods defined within the svstem. ..
\ Associated with each method name is a unique 2-byte
\ id.

\ Allocate space for the method name segment
: alloc-methname-seg (--)
METHNAME - SEG-SIZE alloc
error \ Fetch error
if abort" Methname allocation error"
endif
methname-seg ! \ Save pointer

\ Clear the method segment
: clear-methname-seg (--)
0 methname-next !

\ Search for a method in the methods segment. Return -1 if
\ not found. Else return method #
: methname-find (addr -- n)
vars swap \ String is in vars segment
methname-seg @ \ Search through ivars segment
methname-next @ \ Max. to look for in ivar segment
search-tseg \ Search a temp. segment

I

\ Add a new method to methods segment. Associate n with that
\ method as the method's id
: add-methname (n addr --)
dup c@ >r \ Save byte count
vars swap \ Source address
methname-seg @ methname-next @ \ Destination
$!l \ Copy the string in
methname-seg @ methname-next @ r@ + 1+ !1

\ Store associated value

January 1992 February 12 Forth Dimensions

I r> 3 + methname-next +! \ Advance next

\ ***************
\ ** METHODS **
\ ***************
\ Methods a r e kept on s ing ly - l i nked l i s t . That l i s t is anchored
\ i n t h e c l a s s d e f i n i t i o n s t r u c t u r e de f ined below. Each e n t r y
\ on a method l i s t looks l i k e t h i s :
\ Token segment
\ [l i n k t o next 1
\ [Method i d # I
\ [... tokens 1

\ Attach a new method t o t a i l . addr on t o p of s t a c k i s assumed
\ t o be p o i n t e r i n t o token segment
: new-method-tail (addr --)

\ See i f w e a r e f i r s t method added. I f so, a t t a c h t o p a r e n t .
curr-meth-tail @ ?dup 0-
i f dup \ Copy ou r se lves

curr-class-off @ 2+
~ !t

over swap ! t \ F i x l i n k
endi f
curr-meth-tail ! ! \ W e a r e new t a i l

\ (>super)
\ This r o u t i n e looks 'up t h e cha in ' t o an o b j e c t ' s super ob j ec t
\ U s e d when sea rch ing f o r methods t o execute .
\ a d d r l i s t h e c u r r e n t o b j e c t ' s address i n t h e token seg .
\ addr2 i s t h e super o b j e c t ' s address o r 0 i f none found
: (>super) (a d d r l -- addr2)

4 + @t \ Fetch t h e supe r o b j e c t address

\ (domethod)
\ Following code word v e c t o r s execut ion t o a method.
\ Assumes t h a t t h e va lue on t o p of t h e s t a c k i s o f f s e t
\ i n t o token space f o r t h e method.
code (domethod) (o f f --)

bp dec \ Make room on r e t u r n s t a c k
bp dec
s i 0 [bp] mov \ Push IP
bx s i mov \ G e t method address i n I P
bx POP \ Pop s t a c k
next \ Take o f f !

end-code

\ domethod
\ C a l l s (domethod) and c l e a r s t h e o b j e c t s t a c k .
\ Off i s t h e add re s s of t h e method code.
: domethod (o f f --)

(domethod)
odrop

\ (methid->addr)
\ Given a method i d , t h i s f i n d s t h a t method's address i n t h e
\ token segment. a d d r l is t h e address of t h e o b j e c t (i n t h e
\ token segment) whose method
\ l is t w e ' l l s e a r ch . addr2 is t h e method address , o r 0 i f t h e
\ method wasn't found.

Girting continues.

Forth Dimensions 13

Ceaers, fm page 5.1
zrs to at least give it a spin.
Iobbyists will buy it. Small
,ompanies will try it. The
vord gets around.

At this time, the low-cost
,ersions of Forth are not at
.I1 well marketed-if you
:ould say they're marketed
~t all. I have not used F-PC
ret, but I assume it fmes the
~wful programming envi-
onment of F83. How can we
xpect people accustomed
o the pleasant Microsoft
&id<-x environments to
lccept F83? The slick, pro-
'essional Forth versions are
ust too expensive to be-
:ome popular.

The same two solutions
ceep popping into mind: ei-
her Microsoft QuickForth or
Borlund TurboForth. The
uccesses of the QuiMurbo
BASIC, C, and Pascal pack-
iges speak for themselves.

At this time, I am learning
Z. I don't know if there's
something wrong with me,
sr if it's due to my Forth
zperience, but I'm certainly
verydisappointed with the C
language. Compared to
Forth, C seems like a giant
step backward. So why
bother? To the "profession-
als" in the personnel depart-
ments, C is a recognizable
'hotn buzzword on a resume,
while Forth just looks like
you can't spell.

Finally, I hope the FIG
dues increase to $40 will not
be the death blow--but it
just might. It shouldn't cost
$6.67 per issue to publish
Forth Dimemiom. Maybe it's
time for a major re-thinking
of the structure of the group.

Sincerely,
Steve J. Noll
1288 Winford Avenue
Ventura, California 93004

The Atari Lesson
Dear Editor:

I notice two alarming
trends in my latest issue of
FD 1) circulation has drop-
ped from an average 1934 to
1750, and 2) a vendor is
complaining about lack of
suppodhostile publication

(zstters continue on nextpage.)
January 1992 February

rules. (Jim Callahan, Harvard
Softworks; FD XIIV4).

I believe 1) and 2) above
are related.Without aggres-
sive marketing (of both Forth
products and FD itself), all
previous creative efforts will
wither on the vine. The 240
million people in this coun-
try have a lot of demands on
their time. If Forth doesn't
appear worth the effort,
people won't invest the time
to find out it is. Look at the
success of the C prograrn-
ming community. As a dab-
bler in both languages, I can
vouch that there is no short-
age of public relations on the
C side.

Therefore, I implore you
and your staff to listen to
these vendor complaints and
take action How about some
articles comparing the vari-
ous hardware Forths (Silicon
Cornpasen, etc.). How about
articles comparing the ad-
vantages and disadvantages
of the various softsaxe Forths
(polyFORTH, HS/Forth,
MMS-Forth, etc.). How about
inviting the vendors to de-
clare the advantages of their
systems in article form (they
would probably be willing
to pay for the opportunity.. .I.

Failure to take action will
lead to suffering what I call
the Atari lesson. In 1985,
when I bought the computer
I'm typing this letter on, the
personal computer industry
was just taking off. 'Ihe Apple
I1 was showing its age, the
overpriced/underpowered
IBM XT was carving a large
market share, and the AT
had just appeared. Probably
the most popular computer
was the very limited Com-
modore 64. The most in-
triguing computer out was
the Apple MacintosLa w r -
friendly machine which cost
over $2000 (with student dis-
count) for the 2% Kbyte
standard. Into this maelstrom
jumped a recently reorga-
nized Atari with the ST. A
window/mouse-driven ma-
chine with a big cdorscreen
and 512 Kbyte, all for less
than $1000. It was a dream

(Pcuerk Listing Four, continued.)
: (methid->addr) (a d d r l n -- addr2)

swap 2+ \ Advance t o method p o i n t e r
beg in

@t \ Fetch p o i n t e r
dup

while
dup>r \ Save copy
2+ @t \ Fetch i d number
over = \ Match?
i f d rop \ Clea r method i d #

r> 4+ \ Po in t t o code
e x i t

end i f
r > \ Ready f o r next loop

r epea t
2drop 0 \ Show f a i l u r e

,

\ find-method-code
\ Expects a method i d # a t o p t h e method s t a c k and an o b j e c t
\ p o i n t e r a t o p os t ack . Locates t h e method code and
\ l e a v e s it on ds t ack . I n s o doing, t h e method s t a c k i s popped.
: find-method-code (-- code)

='POP \ G e t method i d
ostack->dstack \ Fetch t h e o b j e c t
@ \ Address i n token s e g
begin

2dup swap (methid->addr) \ G e t add re s s
? dup \ Didja f i n d i t ?
i f - r o t 2drop \ Clea r t h e s t a c k

e x i t \ Bug o u t
end i f
(>super) \ Not found . . . g o t o supe r o b j e c t
?dup \ Any super o b j e c t ? ?

0-
u n t i l
c lear-o&mstacks \ Clea r t h e s t a c k s
abo r t " Method not found"

I

\ Define a method. This word d o e s n ' t do a c r e a t e ... it
\ l oads t h e method name i n t h e method segment (u n l e s s
\ i t s a l r e a d y t h e r e) , t hen compiles t h e code a t t h e
\ end of t h e o b j e c t d e f i n i t i o n . The code i s l i n k e d t o
\ t h e preceding method f o r t h a t o b j e c t .
: :m

\ W e must be d e f i n i n g a c l a s s
curr-class-off @ 0=
i f c lear-o&mstacks

abo r t " Method d e f . ous ide c l a s s "
end i f

\ W e a r e t h e new method t a i l ... s o f i x t h e l i n k
\ code.
here- t new-method-tail
0 I t

\ See i f t h e method i s i n t h e method seg. I f it is,
\ r e t u r n t h e method # . . . i f no t , add t h i s method i n and
\ a s s i g n a number.
blword \ Par se t h e name
t s t r i n g $! \ Put it i n t s t r i n g
t s t r i n g methname-find \ Look f o r t h e method
dup -1 = \ Found?

January 1992 February 14 Forth Dimensions

\ This code does the actual instance variable processing.
\ When he executes, he expects the offset of an instance
\ variable on the data stack. He also expects an object
\ address (in variable segment) on the ostack.
\ The returned addr is the offset to the instance variable.
: (do-ivar) (off -- addr)
ostack->dstack \ Get object address
2+ \ Skip pointer to token seq
+ \ Add offset

,

\ ***************
\ ** CLASSES **
\ ***************

(Listing continues.)

Forth Dimensions 15

if drop \ Clear stack
curr-metht @ dup \ Fetch current method ID #
tstring add-methname \ Add met hod to the class
1 curr-meth# +! \ Bump current method ID #

endif

\ Store method # for ;m and set aside space in token seg
my-meth# !
0 ,t

\ Now go ahead and compile the method code.
[compile] I

I

\ End of method definition
: ;m

\ Store the method # so the system can find it
my-meth# @
curr-meth-tail @ 2+ !t

compile unnest \ Do a semicolon
[compile] [\ Set interpret state

; immediate

\ * ********~**x******x********
\ ** INSTANCE VARIABLES **
\ ************x******x*~*******
\ Define an instance variable.
\ Used in the form:
\ n ivar <name>
\ n indicates # of bytes for this instance variable.
: ivar (X I - -)
blword \ Parse the name
tstring $! \ Put it in tstring

\ See if ivar already exists
tstring search-ivar -1 <>
if abort" Ivar already defined"
endif

\ Fetch current offset--add it and ivar to ivar space
curr-class-off @ dup @t dup
tstring add-ivar

\ Update ivar space for next offset
I rot +
1 swap !t

1. Page 21, hash algorithms
figure. Captions reads,
"...After each XOR, the
bits in e index," which
should be "". . .After each
XOR, the bits in the in-
dex.. .."

2. Page 23, definition of HASH
reads:

come true. It was a night-
mare. The aggressive mar-
keting of IBM and Apple
soon gobbled up the whole
market. Software sources
dried up. With money from
huge sales, Apple and IBM
improved their machines,
leaving Atari in a non-com-
petitive position. Now they
make PC clones to stay alive.

Does this sound familiar,
Forth programmers? How
many of you use C profes-
sionally and Forth on the
side? In 1985, the Atari ST
delivered not only the best
bang for the buck, but (to
me) it was the all-around
best computer ava i lab le
speed, memory, display, in-
terface, etc. Now I envy '486
EISA machines with MS-DOS
5.0 and Windows. There is a
deadly parallel here to what
has happened in the Forth
community. The secret: to
cut costs, Atari didn't invest
in marketing, resulting in a
product nobody heard of.

In last issue's editorial,
guest Horace 0. Simmons
recommended that Forth
users promote Forth in non-
Forth journals. That's an ex-
cellent idea. How about pro-
moting it in our own7

John H. Lee, Lt. USN

QuikFind Addendum
Dear Editor,

While browsing through
my article ("QuikEind Suing
Search," FDXIII/4), I noticed
a couple of errors and
(heaven forbid) an error in
the code listing. Here is a list
of corrections:

Dl77 (magic seed)

SWAP
COUNT 1F AND

I but should read as:
COUNT 1F AND

January 1992 February

Dl77 (magic seed)
swm
3. Page 24, fig-Forth to

botForth definitions,
reads:

: ENDIF (sys --)
0 \ LITERAL
\ DO ; IMMEDIATE

but should read:
: ENDIF (sys --)

\ THEN ; IMMEDIATE
: FOR (sys --)
0 \ LITERAL
\ DO ; IMMEDIATE

Also, there is no defmi-
tion for @+. It can be ex-
tracted from the definition
for C@+. In a fig-Forth sys-
tem, I believe the equivalent
for RECURSIVE would be to
SMUDGE the latest defmition,
since SMUDGE merely
toggles a bit. In my definition
of : (colon), I preceded
RECURSIVE with a \ since it
is an immediate word in
botForth.

Since writing this article, I
have another another word,
DICTIONARY, which creates
an instance of a hash table.
This allows multiple hash
tables to be mated. Also,
the hash tables are dynamic.
?hey initially occupy no RAM
but, as entries are added to
them, they grow geometri-
cally to accommodate the
number of entries. EMPTY
empties the table and returns
the used memory.

Another addition I have
fopndvery useful is the word
ADJUNCT. This works just
like QUIKFIND except it re-
turns an entry in a parallel
table where additional infor-
mation may be stored about
the string. Thus, you can
associate a string with a block
of code, another string, or
whatever.

If there is interest, I could
publish the updated version
of QuiWind. Right now, I am
using it to build a translator
which ailows phrase defini-
tions in Forth, instead of just
words. Hopefully, more on
that later.

Rob Chapman

January 1992 February

(pmerk Listing Four, continued.)

\ exec-obj
\ This fellow expects an object pointer (in vars segment) atop
\ the object stack and a method X atop the methods stack.
\ Executes an object's method
: exec-obj (--)

\ Find the method's executable code
f ind-method-code
domet hod

\ instantiate
\ addrl is current pointer in var seg
\ addr2 is object's token pointer
\ Stores that pointer in the
\ variable segment, then allocates ivars space.
: instantiate (addrl addr2 --)

dup \ Make copies of token pointer
dup I \ Store token pointer in var seg
@t \ Fetch ivar space
allot \ Allocate variable storage
6 + @t \ Fetch startup method
dup -1 <> \ Anything there?
if mpush \ Push method

opush \ Push object
exec-ob j \ Execute stuff

else
2drop \ Drop -1 and object pointer

endif
,

\ **
\ ** Class definition
\ **
\ The contents of a defined class are:
\ Token segment: Vars segment:
\ [Ivars space I<--- [token ptr]
\ [Meth list 1
\ [Super ptr I
\ [start meth 1
\ [..tokens I
\ Note that the code following does> can do a @ and
\ retrieve the offset into token space for the class
\ definition structure.
\
\ Once instantiated, an object looks like this:
\ Token segment: Vars segment:
\ [(;code) I [token ptr I <<<< To parent class
\ [here-c 1 [. . . ivars 1
\ [. .tokens I
: :class
0 curr-meth-tail ! \ No methods yet
clear-ivar-seg \ No instance variables
create \ Build the name field

here-t dup curr-class-off ! \ Set current class
I \ Build pointer in vars seg.
0 ~t \ Size of ivars region
0 It \ Pointer to list of methods
0 ~t \ Pointer to superclass
-1 ,t \ Initial method

does>
@ \ Fetch token pointer
here swap \ Get current object pointer
create \ Make a header

instantiate \ Instantiate the object

16 Forth Dimensions

does>
opush

Attenbon Forth Authors!

\ Get object ptr. on ostack 1 Recognition
immediate \ Make the object immediate

\ We are compiling

Author

compile (lit) \ Compile obj ptr. as literal
ostack->dstack \ Get object pointer
, t \ There's the pointer
compile opush \ Compile an object push
compile (lit) \ Another literal is

\ method code pointer
find-method-code \ Get method's code pointer
, t \ Compile that
compile domethod \ Code to execute method
odrop \ Don't need object anymore

else \ We are interpreting
exec-ob j \ Execute the object

endif

\ Complete a class definition
: ;class
clear-ivar-seg \ No ivars segment
0 curr-class-off ! \ No current class

,

\ Special word that returns current object so object
\ can send a message to itself. Use 'self' inside
\ the methods definitions to refer to the current object.
: self (-- 1
compile (lit)
curr-class-off opush \ Get current object
find-method-code \ Locate method code
, t \ Store as literal
compile odup \ Dup object
compile domethod \ Execute method
odrop \ Clear object stack

; immediate

\ Define a class's super class.
\ A class will inherit instance variable space, methods, and
\ startup methods from the super class. A class can override
\ methods and startup methods.
: <super

\ Find the object and resolve code address to token address
blword find O=
if abort" Super object not found"
endif
>body @ dup
\ Store token address into super pointer of current class
curr-class-off @ 4 +
!t
\ Copy ivars into local ivars
dup @t curr-class-off @ !t
\ Copy initial method
6 + @t curr-class-off @ 6 + !t

\ Define initialization method.
\ This routine expects a method id on the top of the method
\ stack. It stores that method id as the object's startup
\ method.

-
To recognize and reward

authors of Forth-related ar-
ticles, the Forth Interest
Group (mG) has adopted
the following Author Recog-
nition Program.

Articles
The author of any Forth-

related article published in a
periodical or in the proceed-
ings of a non-Forth confer-
ence is awarded one year's
membership in the Forth
Interest Group, subject to
these conditions:

a. The membership
awarded is for the
membership year fol-
lowing the one during
which the article was
published

b. Only one membership
per person is awarded
in any year, regard-
less of the number of
articles the person
published in that year.

c. The article's length
must be one page or
more in the magazine
in which it appeared.

d. The author must sub-
mit the printed article
(photocopies are ac-
cepted) to the Forth
Interest Group, in-
cluding identification
of the magazine and
issue in which it a p
peared, within sixty
days of publication.
In return, the author
will be sent a coupon
good for the follow-
ing year's member-
ship.

e. If ;he original article
was published in a
language other than
English, the article
must be accompanied

I (Zisting continues.) I (Continues on nextpage.)

Forth Dimensions 17 January 1992 February

by an Engish transla-
tion or summary.

Letters to the Editor
Letters to the editor are,

in effect, short articles, and
so deserve recognition. The
author of a Forth-relatedletter
to an editor published in any
magazine except ForCh Di-
mensions is awarded $10
credit toward FIG member-
ship dues, subject to these
conditions:

a. The mdit applies only
to membership dues
for the membership
year following the one
in which the letter was
published

b. The maximum award
in any year to one
person will not ex-
ceed the full cost of
the FIG membership
dues for the following
year.

c. The author must sub-
mit to the Forth Inter-
est Group a photo-
copy of the printed
letter, including iden-
tification of the
magazine and issue in
which it appeared,
within sixty days of
publication A coupon
worth $10 toward the
following year's
membership will then
be sent to the author.

d. If the original letter
was published in a
language other than
English, the letter must
be accompanied by
an English translation
or summary.

January 1992 February

(Pcyerk Listing Four, continued.)

\ .
\ ** DEFERRED BINDING **
\ ...
\ Deferred b inding al low you t o s p e c i f y t h e o b j e c t a t runtime,
\ r a t h e r t han a t compile t i m e .

\ { S t a r t s d e f e r r e d b inding . H e assumes t h e r e ' s a method # on
\ t o p of t h e method s t a c k . H e cop ie s t h a t a s a l i t e r a l i n t o
\ i n l i n e code (along wi th an mpush) .
: {

s t a t e @
i f \ W e a r e compiling

compile (lit) \ Compile l i t e r a l
mPoP ,t \ G e t method #
compile mpush \ Compile mpush code

end i f \ In te rpre t ing- -do noth ing
; immediate

\) Concludes a d e f e r r e d method. H e assumes t h e r e w i l l be
\ (a t runtime) a method # on t o p of t h e method s t a c k and an
\ o b j e c t p o i n t e r a t o p t h e d a t a s t a c k . H e pushes t h e o b j e c t
\ p o i n t e r on to t h e o b j e c t s t ack , f i n d s t h e method, and executes
\ i t .
: 1

opush \ Push o b j e c t p o i n t e r
exec-ob j \ Execute it

I

\
\ ** PATCHES AND MISC. **
\ .
\ Following code i s t h e pa t ch t o i n t e r p r e t .
\ Allows system t o recognize methods and i n s t a n c e v a r i a b l e s .
\ NOTE: When w e g e t here , l i t e r a l ? has l e f t 2 zeros on s t a c k .
\ For un i fo rmi ty ' s sake. . . w e pa s s them on a long .
: <interp-patch>

2drop \ C l e a r s t a c k
\ See i f t h e i t e m i n ques t i on i s a method. I f so, l e ave t h e
\ method i d # on t h e method s t a c k
he re methname-find dup
-1 <>
i f mpush e x i t \ Push t h e method #
else drop
end i f

\ Not a method -- see i f i t ' s an i v a r
h e r e search- ivar dup
-1 <>
i f ?comp \ GOTTA be compil ing

compile (lit) \ Compile i v a r va lue
, t
compile (do-ivar) \ Compile i v a r handler
e x i t

else drop
end i f

(Zisting continues on page 21 .)

18 Forth Dimensions

I News from the Forth RoundTable

1 What is this language, Forth?

This is very important, I
will agree.

"I mention this word be-
cause it is one in which
deviant implementations
have already appeared.
There have been a host of
messages in this
newsgroup pointing out
that some of my examples

Forth Dimensions 19 January 1992 February

using START : do not
work on other trial irnple-
mentations. ~ 1 1 I can say
is that I consulted the
author before imple-
menting mine. Inciden-
tally, I don't think this will
be unusual-1 think that
as moreimplementations
of the proposed ANSI
Forth appear, more de-
viations will appear. It is
almost an inevitable con-
sequence of to
specify operaton while
beingfUzz~aboutwhat
they operate on-"

Funny, I thought that was
just the natural result of us-
ing English. And of the fact
that any group, having con-
centrated on something for
as long as any of the ANSI
Technical Committees [TCs]
do, will come to an under-
standing that is not always
vans*d in the first pass
or two. In fact, ANSI takes

Gary Smith
Little Rock, Arkansas

Yes, there is an ANS Forth
in the process of being
drafted. Yes, the Technical
Committee has labored long
and hard in its collective at-
tempt to meet the conflicting
demands of minimalist ver-
sus maximalist, desktop user
versusembedded-system
implementor. Yes, many
compromises have been ar-
rived at and many arnbigu-
ities removed from the BA-
SIS as it winds ever closer to

only X3J14
but the

proposal manifest we all look
fonvard to. ISee@ANSFo?th
anMummt page 4J

As was pointed out in my
last columrtviaex*anges
'leaned from GEnie Forth
RoundTable lo#
Topic 25-several questions
are being debated In
this issue, we examine dis-
cussions in Category 10,
Topic 12, WJ14 Holding
Pattern," to discover that even
the question, "What
is this language, Forth?" is
subject to heated discussion
Maybe* when the dust has
settled, we will ciiscover the
ultimate truth that Forth is an
attitude and has nothing to
do with standardization.

Read on.. .

Caresor' lo: 'o*
Standards

From: Doug Philips
Re: Architecture and Imple-
mentation

John Wavrik writes:
"The ANSI team has a p

parently not only invented
a new language, but also
a new concept in com-
puter science: a language
that manipulates data
structures in a functional
way but does not allow
us to know what the data
structures are. Sure
doesn't soundlike a good
idea, does it? Certainly
isn't a tested idea, is it?'

Oh, come on now, X3J14
didn't do this fust, X3J11 did
it, and they probably weren't
even the first! HOW big is an
integer (cell)? Implements-
tion defmed, mranteed to
be at least n bits. How big is
a long (2cell)? Implementa-
tion defmed, guaranteed to
be at least m bits and m 2 n

plied standard operators,
then a great number of
them must besuppliedin
the hopes of meeting as
many needs as possible.
words like COW ILE, and
START : become ex-
tremely important as an
attempttorescuesomeof
the functionality of classi-
cal Forth. Even then, one
typically that the

do not
do exady what
Sounds exactly like the
mp that most conven-
tional languages have
falleninto, doesn'tit?And
Forth did have a
solution, didn't it? And
the is propos-
ing a language that ig-

1 will that one nee& to
know something about the
s i x ofthings (not
sothat,say, ' f oobar ! will
work (or not). Do I need to
know anything about what a
' execution-token really is?
No. 1 need to know is the
set of operators that take one
(or more) as arguments and
the set that can produce them.
I believe the term is
"ahtract data type." Can you
do arithmetic on a
tion-token? Yes, but it will
not be portable. As the stan-
dard is concerned with port-
ability, it will not allow such
action in a conforming pro-
gram.

"If one is to limit the ex-.,
tensibilityofForthand
rely upon vendor-sup-

Useful things that can't be
done demonstrate weakness

in the standard...

nores this solution, isn't it?"

Straw argument If
had had *bk and
wsolutiO*~heredd
be no "hard workn to doing

standard' per-
haps, a need to do one at all.)

"Not only is it not easy to
tell, without extensive
testing, whether suffi-
ciently many operators
have been added--but
there is the very real
problem of making sure
that they have been
'pecified

into account that it may not
get completely clarified until
after the standard is adopted
~t that point, an oficial #re-
quest for interpretation" can
be submitted. I'm not totally
up on my procedure here,
but the answer is probably
binding on the standard
(couldsomeone from the TC
spell this out in painstaking
detail for me, please?). Yes, it
would be better if that never
had to be done. Better still is
a plan to handle corrections.

"It's a bit like a car trip: if
a wrong turn was taken

somewhere, should we
just say 'It's history, we
can't change it'; or do we
do what most sensible
people do: get back on
the right road7

"I think that it is a truly
unwise strategy for the
ANSI team to propose a
new language and then
use strong arm tactics to
get its acceptance rushed
through. It d do a great
deal of harm for the sur-
vival of Forth to accept a
bad standard-and I don't
think anyone should re-
gard it as 'fate' that we
must do so."

Indeed. Make up your
mind How can ANSI "get
back on the right road" if it is
charged with codifying ex-
isting practice (wrongturns)?
As soon as it does, it takes a
turn never before taken. As
far as "rushing," they haven't
even gotten to the fmt public
review yet! What we've seen
so far is a rather open win-
dow into what has before
been a closed process. (It is
said that those who like sau-
sages and politics should not
watch either being made.
The same could be said for
standards.)

From: John Wavrik
Re: mJ14 Holding Pattern
Here

Greg Bailey writes,
With all due ~eSp€!d, I
find myself disappointed
with Dr. Wavrik's posting
of 19 Aug. 91 entitled,
'General Response to E.
Rather and G. Bailey.' As
carefully as I read it, I do
not see that it is germane
to mast of the points in
my posting of 16 Aug."

I hope that by now Mr.
Bailey has had a chance to
read the more speafic re-
sponse to his Aug. 16 post-
ing, which I posted a few
days ago. It does take some
time for messages to travel
from UseNet to GEnie-and

January 1992 February

I think we'd all benefit by
having a chance to read,
think about, and make care-
ful responses. Generally, I
fmd that it isn't a good idea
for me to post an immediate
response to a controversial
topic-it seems betterto think
things over and edit my fmt
draft. I apologize for the de-
lay of a day or two in re-
sponding.

I did answer comments
along this line in my specific
response to Mr. Bailey. In
sum, Charles Moore is work-
ing in a special environment.
His interest is in hardware
applications, and his work
does not require portability.
He can assume only positive
divisors in addition, for ex-
ample, because that is all
that occur in his work. Oth-

"I was hoping that Dr.
Wavrik would admit to
the existence of tradeoffs
and to the fad that the

consistently for the past sev-
eral years) made the follow-
ingobsewation: It could well
be that the simplest solution
is to agree on the architecture
of an abstract machine (per-
haps, if necessary, making
separate but overlapping
standards for a few different
types of architecture).

"Dr. Wavrik, I ask that
you re-read my earlier
posting, compare it with
your reply, and see if you
don't agree with me that
your posting has frustrat-
ingly little to do with the
issues raised"

NG, I think the specific
reply I gave you addresses
the issues quite well. The re-
posting of the "Architecture
vs. Implementation" paper
was only intended to eliminate
some apparent confusion.

"Forth is not the result of
slavish pursuit of 'sym-
metry,' and portable
power of the sort your
paper seems to assert is
essential."

ers of us work in environ-
ments in which portability is
very imporrant (and in which
negative divisors do occur).

work of X3J14 has eco-
nomic implications be-
yond the performance of
Forth in popularity con-
tests."

Here, as in other places in
his messages, Mr. Bailey has
a tendency to put words in
my mouth which I have never
spoken (and which corre-
'pond to I am na
thinking). There is no
"popular~ty contest" involved
here-just hard, economic
rediva living lor the past
ten years, at least, has been
directly cofmected with my
use of Forth as a tool. I intend
to keep using Forth to make
my living. My interest in a
good standard for Forth is
very definitely connected
with my livelihood. Accep-
tance ofForth inuniversities,
colleges, and many parts of
industry will depend on
whether a good standard-
guaranteeingboth power and
portability-is produced

merefore, I ask 'gain' if
some particular single one
of Chuck's implementa-
tions is 'brilliance' and
'genius,' then what of all
his others that differed,
most notably the Novix
chip not part of
addressable memory,
memory cell-ad-d'
'reducing architectural
features to the lowest
common denominator'
(Chuck has, in my expe-
rience, always advocated
assumption of only posi-
tive divisors in signed di-
vision), and so on"

20

Again, words are being
put in my mouth. I said noth-
ing about symmetry-al-
though I do think that slavish
pursuit of simplicity might
be worth trying.

"Do you seriously pro-
pose that your defdtion
of power (portable hack-
ing) be given absolute
precedence over other
definitions of power
(practical usefulness for
demanding applications,
for example) that have
charaderixd mast of the
dramatic successes of
Forth that I am aware of?"

"I submit that Chuck's
particular genius has d-
ways lain in his uniquely
clear insight about the
simplest solution to the
most challenging part of
any problem I further
submit that I've never seen
any evidence that a single
architecture/implemen-
tation frozen for all time - anywhere on Chucks
agenda. Is this 'disso-
nance' so disturbing to
Dr. Wavrik that he feels
he must 'correaZ it by
attriiuting to Chuck the
notion hat the immun-
bility of the architecture is
more important than the
solution of problems?"

Here again, Mr. Bailey
seems intent on putting
words in my mouth. I per-
ceive no dissonance, nor am
I correcting Charles Moore. I
agree with Greg Bailey that
Chuck's gift is coming up
with good simple solutions
to problems. Given the na-
ture of work, he
would want to experiment
with very low-level changes
to his systems. Others of us
are solving very different
types of problems.

Suppose the problem is
to produce a language that is
tremendously powerhl and
flexible, yet will allow code
to mn correctly on many
platforms. What would be
the simplest possible solu-
tion to that problem?

Ithinkifyouwill look
back at all I have written, you
will fmd that I have only (and

Again, words are being
put in my mouth. Portable
hacking is not my definition
of power. Power, for me, is
the ability to accomplish dif-
ficult things without fighting
the language. Forth is the
only language I've ever used
where I feel that I can con-
ceive of what needs to be
done, and Forth will allow
me to do it. Most languages

Forth Dimensions

(PCYerk Listing Four, continued fmmpage 18.)

0 0 \ Look l i k e l i t e r a l ?
\ L e t do-undefined handle t h i n g s
do-undefined

,

\ Following code pa t ches i n t e r p r e t . Do it AFTER you've
\ a l l o c a t e d methods and v a r i a b l e segments
: p a t c h - i n t e r p r e t

['] < in te rp-pa tch>
[I] i n t e r p r e t >body 40 + ! t

\ Put i n t e r p r e t back t h e way it was.
: unpa tch - in t e rp re t

[1 do-undef i n e d
[I i n t e r p r e t >body 40 + ! t

I

\ I n i t i a l i z e t h e system.
\ One you've inc luded [i .e . , loaded1 t h i s code, you must
\ execute " s t a r t - o b j e c t s " be fo re you can begin d e f i n i n g
\ any o b j e c t s . When you ' re done d e f i n i n g and c a l l i n g a l l
\ your o b j e c t s [i . e . , you ' re about t o make an execu tab l e] ,
\ execute "end-ob jects1*.
: s t a r t - o b j e c t s

a l loc- ivar-seg \ Al loca t e i v a r s segment
c lear- ivar-seg
alloc-methname-seg \ Al loca t e method name segment
clear-methname-seg
1 curr-methi ! \ S t a r t method # ' s
p a t c h - i n t e r p r e t \ Fix i n t e r p r e t
c lear-o&mstacks \ I n i t i a l i z e t h e s t a c k s

From: Elizabeth Rather

J. Wavrik writes:
"Both Greg Bailey's and
Elizabeth Rather's com-
ments illustrate the fact
that there are also people
in the Forth community
for whom reusability of
code is not important-
2nd who alter their sys-
tems down to the lowest
level for each new appli-
cation."

John, you're seriously
distorting the point of Greg's
and mv remarks. We are
challenging your continuing
assertion that there is such a
thing as "traditional" Forth
from which the world has
been deviating and whlch
ANS Forth is deprecating.
Our discussion of deviations
from the earliest days to the
present is intended to point
out that there has never been
such a golden age, and that
your nostalgia for it is, there-
fore, inappropriate.

Greg and I and the entire
committee are extremely
concerned with
of application code, as well
as "programmer portability"
(the ability of programmers
to move from one system to
another, preserving both
sanity and competence
without massive new learning
awes). Why else do you think
We have invested so
in the standards effort?'

We hope andbelieve that
the steps we are taking will
improve Forth in both these

"Production of code has
become an extremely
expensive affair-I think
it is more typical these
days to find people who
can't afford to throw away
the kind of time and effort
needed just for a mar-
ginal gain in execution
speed-and I think you
can find as many of them
in industry as in
academia."

Once again, you are rnis-
taken if you think we dis-
agree. Our objective in de-

January 1992 February

\ Clean t h i n g s up
: end-objects

unpa t ch - in t e rp re t \ Put i n t e r p r e t back
ivar-seg @ f r e e \ Ditch i v a r s segment
methname-seg @ f r e e \ Ditch method name segment

,
(End listing. N& i s m contains code for basic Gstorage class=, @byte G word m y s , strings, 6 shing arrays.)

require me to fight them to
shape their rigid features to
match the problem (and
sometimes they are SO un-
suitable that I can't realisti-
cally do the task).

Power in Forth comes, in
great measure, from the user's
ability to understand how
the system works-and be-
ing able to harness that un-
derstanding.

We are both in agree-
ment that power has some-
thing to do with practical
usefulness for demanding
applications-my demand-
ing applications as well as
your demanding applica-
tions.

"You may feel, for ex-
ample, that performance

Forth Dimensions

is no longer relevant, as
you have posted"

Again, words are being
Put in my mouth. What Isaid
is that language
is no longer measured en-
&ly in terms of execution
speed.
I regegyd as a "high

performance languagen in my
area because it facilitates the
development and modifia-

programs I can

gkgfiz i:dEy ~7::
of assembly language (which
I do when a system has be-
comestabilized)--but, really,
high-level Forth running on
a microcomputer is no match
in speed for the output of a
good C compiler. It would

be foolish to give up the
attributes which make ~~~~h
a high performance language
(in terms ofease of&velop-
merit, power, f leu i ry) to
achieve marginal gains in
execution speed.

Hang aroundauniversity
for a while-people don't
talk about how to write
clever, tight code these days.
% problem is writing and
maintaining large
that do powerful things and
run correctly.

John J Wavrik
jjwavrik@ucsd.edu
Dept of Math C-012
University of California, San
Diego
La Jolla, CA 92033

21

,Partic@a te!
ACM SlGForth '92 Forth Language Workshop

March 5-7, Kansas City, Missouri
In conjunction with the ACM Computer Science Conference, ACM SIGCSE Computer
Science Education Conference and ACM SIGAPP Symposium on Applied Computing

Charles Moore
the inventor of Forth, speaks on his creation

Other sessions include:
A Crash Course in Forth

Software Project Management
Panel: "From the Classroom to the Real World"

Panel: "Comments on dpANS Forth"
and many more.. .

Some of the speakers include Lawrence Forsley of the Forth Institute, Richard
Haskell of Oakland University, Mike Wong of IBM, Paul Snow of Software
Construction Company, Frank DiMeo of Villanova University, and Dan Yanoff
of Keithly Asyst.

Refereed papers are accepted until January 1 . Unrefereed paper abstracts
requested by February 15 with the final paper at the conference.

Special Tutorials
on Wednesday March 4

"ShBoom: Damn Fast and Dirt Cheap"
100+ Mhz stack-based RISC Microprocessor

"Sun Microsystems: Open Boot"
The coming standard in portable Forth based firmware

Reg fees for the workshop are $1 501$170 (beforelafter 1131) for ACM or SlGForth members;
$190/$210 for Non-Members; $50 for students and $75 for One-Day Only reg (before or after
1/31). Reg fees for the Special Tutorials are each $50 with the workshop and $ 6 0 without.
Discount hotel rooms at $48 & up per room (up to 4 guests) available before 1 131 by mail only. To
register or for hotellroorn sharing info contact Dr. Leonard Morgenstern, 3 0 4 Rheem Blvd., Moraga,
CA 94556, (510) 376-5241. Payment accepted by check, Visa, Mastercard or American Express.

scribing Forth behaviorally
rather than by constraining
implementation choices is to
permit implementors to pro-
vide an internally optimized
(and hence fast) system
whose surface, as presented
to the application program,
offers a very high degree of
portability due to its con-
formance to rigorously de-
fined behaviors.

*A major factor, however,
is that people who do not
need portability also do
not need a standard."

How do you reconcile
this with your continuing
assettions that the members
of the TC don't care about
portability? Do you contend
that these people have spent
tens of thousands of dollars
and a lot of their billable
hours over a period of years
to do something they don't
need or want?

The disagreement be-
tween you and the cornmit-
tee is not over who wants
portability, but how port-
ability is achieved We be-
lieve it can most usefully be
achieved by defining the
behavior ofiorth words, and
you'd prefer to see their
implementation standard-
ized. This is a simple dis-
agreement, which is okay,
but the discussion will be
advanced most usefully if
you direct your comments to
that rather than spurious as-
sertions about mythlcal tra-

For paper submission To assist in conference organization I Hosted BY: information contact: or for special presentations contact:

Digalog Program Chair Conference Chair
Dr. Paul Frenger George Shaw Shaw Laboratories p.o. ,, 8205% Shaw Laboratories Limited

Nanotronics I ~ c . Houston, TX 77282-0506 PO BOX 3471
Keithley Asyst (713) 589-9040 Hayward, CA 94540-347 1

GEnie: P.FRENGER (5 10) 276-5953,276-6050 fax
GEnie: G. SHAW 1 wmpuserve: 704 13,2005
email:g-e-shawQmts.cc. wayne.edu

1 Sponsored by the ACM Special Interest Group on Forth I
January 1992 February 22

ditions and the motives of
the TC members.

"Simplicity, comprehen-
sibility, being supplied
with source code, ability
to reproduce the system
are among the things I
lump under the heading
'glass box.' If anyone un-
dertakes to write a stan-
dard for Forth, these are
exactly the qualities which
need to be made por-
table."

Simplicity and compre-
hensibility sound great. No
argument.

(CEnie continued on page 28.)
Forth Dimensions

yourself, but you should
protect your code from what
those other crazy, reckless,
undisciplined hacks might

"

/ New Westminster, British Columbia, Canada

O& je c t - Orien t e d
Forth

I n the beginning, there was
programming. Now, the
programming was form-

less and unstructured-
darkness was over the sur-
face of the design problem.

Then came structured
programminpa disciplined
coding style and a logical
analysis technique which
emphasized the nature of
the coupling between code
modules and the design
reasons behind the creation
of the code modules. Creat-
ing a routine out of code that
just happened to be per-

do.
It is possible to de-couple

to the extent of not even
allowing dired reference to
a data type's routines. In-
stead, a message is sent over
to that module asking for a

formed at the same time
(temporal cohesion) was out
Creating one routine out of
code that did a couple of
closely related things Oogi-
cal cohesion) was out-it
necessitated passing control
flags between routines (called
control coupling, oddly
enough). There was (once

, again?) the dawning realiza-

tion that a routine should do
one thing and only one thing
(and do it well). However,
there was more to be discov-
ered.

If a careful study of pro-
cedures proved beneficial,
then what about a close look
at the nature and form of the
data being operated upon
by those newly-structured
routines? Thus, someone
coined the phrase object
o&nW, probably in con-
trast to the prevailing proce-
dure-oriented programming
of the time.

Enter Analysis of Data
Data canbe kept in atomic

types like variables, con-
stants, and literals; or in
molecular groupings, such
as named records and in-
dexed arrays. Many early
computer languages pro-
vided a small selection of
atomic data types and ex-

information hiding is the back=
bone of code security, reliable
re-entrancy, and data abstraction

Roger Bicknell is an electrical engi-
neer who has programmed in Forth as
a hobby since 1982. He enjoys the
simplicity and interactivity of the b-
guage, and uses it to experiment with

(pected you to use records,
1 for example, to simulate any

different 'types of data
might fancy. The ability to
abstract data, or to create a
new data type, is an essential

language &sign. He says, 'Some
people gamble, I program ... Yes, I
know it's 4:00 a.m., but I've just got to
tweak this one last word ..." R o w

procedure to be enacted.
Thus, even the data type's
procedures could be modi-

feature of ah &ject-oriented
language

But it is not sim~lv for the
welcomes feedback at 315 D & O ~
Street. New Westminster, BC, Canada
V3L 4E8 or at R.BICKNELL2 on GEnie.

hed (which might be neces-
sarv if the details of the data

prettiness of beiigdable to
refer a new data type like
COMPLEX (say, made up of

mentation details is not nec-
essary and could allow di-
rect a c e s to elements within
the stack structure. This di-
red access is a potential
problem for the future, if
ever the implementation of
stack structure is changed.
"What they don't know can't
hurt you." Of course, it is
important to keep in mind
that considerations like
maintenance are far more
complex and important for a
large multi-programmer
project than for a lone-wolf,
one-nighter program. You

1 needn't hide anything from

twoflmt-t~~evariablescalled
REAL and IMAGINARY) that
data abstraction is important.
A procedure's code is ~~~-
saril~s~ecificaboutwhatt~~e
of data it operates upon. The
code of + (plus) assumes an
integer data type, and F+ (f-
~lus)assmesafloating-~int
data type. These cannot be
swapped (or even duped--
else Your employment may
be over). Thus, it only makes
sense to group the definition
of a data type with each and
every procedure that will
operateu~onit-makingfor
easier maintenance. When a
data type's definition and its
associated procedures are
grouped into one module,
furtherde-couplingbetween
modules can be realized. For
example, a stack can be
implemented using an in-
dexed array, or a buffer and
an offset. Allowing any other

1 module to know the imple-
jects that make up an in-
stance Oike fields within a
record) are called instance
variables. An object is sent a
message, which specifies
what to do, but not how to
do it. The object then finds
the method the word that
performs the correct action;
this is called binding the
message to the object. There
are two forms: earlybinding
and late (or dynamic) bind-
ing. Early binding is done at
compile time and dynamic
binding is done at run time.
The ability of one class to
gain access to another class's

change), and still it would
not affect any other module.
The intent here is to provide
robust code by limiting side

of changes, and to
provide reusable code by
de-coupling it from as much
as possible.

The intent of object-ori-
ented programming is to
extend the ideas of struc-
tured programming to in-
clude techniques dealing
with data which enhance
reliability and mini-
mize the maintenance of a
software project by reducing
the amount of modifications
necessitated by a change.

Glossary
In the object-oriented

vernacular, a data structure
is called an object or an in-
stance of a class. The class
contains the information
necessary to construct an
instance, as well as all the
routines that operate on its
data type. The internal ob-

Forth Dimensions 23 January 1992 February

Defining an
Object-oriented

language
An object-oriented p r e

grarnming language can be
described as having at least
four features: data abstrac-
tion, information hiding, dy-
namic binding, and inherit-
ance.

Data abstraction is the
abilitv to create new data

methods is called inbetft-
ance.

typei. o f course, common
Forth already has this. The
CREATE DOES> team is all
that is required to invent any
new data type. For example,
while standard Forth does
not specify array-type data, it
is a simple task to implement
such.

Information hiding is the
backbone behind code se-
curity, reliable reentrancy,
and data abstraction. Infor-

Figure One. Extending common Forth to OOF. I
\ oofinitl.fth 910808 rwb

mation hiding is necessary in
order to provide more than
one context in which to in-
terpret a name. Local vari-
ables are an example of in-
formation hiding, because
they are unavailable to any
routines other than the one
in which they are defined Of
course, one way to hide
things in Forth is to put them
into a separate vocabulary.
The most obvious reason to
hide a word in Forth is to be
able to have more than one
word with the same name,
but the concept of informa-
tion hi- goes a little deeper
than that One important tool
in providing code security
and reducing interdepen-
dencies between software
modules is hiding details of
implementation. As in the
example given above,
whether a stack uses an off-
set to point into a buffer or
uses an index into an array
should not be known or
exploited by other software
modules-because if this
implementation should ever
change, the exploitive code
will probably break. Thus,
informationhiding is required
if one is to provide reliable,

only forth also definitions

4 constant cell \ cell is Xbytes in stack width

: cell+ cell + ;
: cell- cell - ;
: cells cell * ;

: struct: \ (-- offset)

0 ;

: :field \ (offset /field -- offset ')
create

over , +
does> \ ('struct pfa -- 'field)

@ + ;

: ;struct \ (/struct --)

constant ;

cr . (oof initl loaded) cr

madifilable code I Fileloading sequence. I
Dynamic bindinn is sim-

ply the ability to deci& upon
the appropriate method of
implementing an action at
run time rather than at com-
pile time. This can become
important when an object's
class is unknown at compile
time. This feature has been
exoloited in the definitions
O ~ ~ P U S H and POP in the
STACK class code. (See Fig-
ure Eight, page 30.) Also, a
stack can be ma& out of any
new class of object, and PUSH
cannot know ahead of time
the new method's CFA for
storing the object in the stack.
Dynamic binding is not al-
ways necessary, but when it
is needed, it is indispens-
mt.1-
dUlC.

If a new object class is
very similar to an existing
class, it may be economical
for the new class to use some
of the other's methods, rather
than rewriting them. This is
the concept of inheritan*
allowing a newly &fined
class to inherit some (or all)
of the methods of an existing
class. Inheritance allows the
creation of a new class by
merely defining the differ-

\ oaf-fth 910729 rwb

: task ;

fload oofinitl.fth
fload oofclass.fth
fload oofmssag.fth
fload oofobjec.fth
fload oofprima.fth
fload oofcmplx.fth
fload oofarray-fth
fload oofstac2.fth

cr . (oof loaded) cr

ence between the new class
and a previously defined
class-thus, a lot of code can
be reused and time saved

Commenting Style
I should first comment on

my commenting and nam-
ing style. Consider the com-
ment for the word CLASS :
in Figure Two. The <name>
token appearing before the
stack comment refers to the
input stream argument that
CLASS : requires. Also, I like
to preface a stack comment
entry with ' (tick), / (for-
ward-slash), or * (caret). Iuse

tick to mean "address of,"
forward-slash to mean "size
of," and caret to mean "con-
tains the address of." Thus
'/body in the stack com-
ment means "the address of
the size of body." Also note
that I like to preface STRUCT :
fields with + (plus). I just do.
Forgive me.

Code Description
Figure One defmes some

words, additions to common
Forth, that are used in the
definition of object-oriented
Forth (OOF). CELL is set to
the width of Forth's stack-

January 1992 February 24 Forth Dimensions

Figure Two. Object class words. I
\ o o f c l a s s . f t h 910729 r w b

only f o r t h a l s o d e f i n i t i o n s

#vocs c e l l s cons t an t /contex t

s t r u c t :
th reads c e l l s : f i e l d + threads
/ con tex t : f i e l d +context
c e l l : f i e l d +/body

; s t r u c t / c l a s s

: >context \ (' c l a s s --) MACROto s e l e c t o b j e c t ' s con tex t .
+context con tex t /contex t cmove ;

: c l a s s : \ <name> (-- ' /body o f f s e t)

vocabulary
l a s t @ name> >body >user \ (-- 'body)

/ contex t c e l l + u a l l o c drop \ a l l o c a t e space f o r
\ rest of body

('body) dup context ! \ s e t u p c l a s s t o be
\ both c o n t e x t . .

contex t over +context /contex t
\ (-- 'body ' cx t ' c . cx t / cx t)

cmove d e f i n i t i o n s \ (-- 'body) . .and c u r r e n t vocabs.
+/body dup o f f 0 \ (-- ' /body o f f s e t)

does> (p f a --)

>user >context ;

: END \ (- - I
1 only f o r t h a l s o d e f i n i t i o n s ;

: ; c l a s s \ (' /body o f f s e t --)

END swap ! ;

1 : METHODS d e f i n i t i o n s ;

cr . (o o f c l a s s . f t h loaded) c r

that all messages are pref-
aced with a < (less-than)
character. This is done so
that the message and the
methodwill notbe confused.
The < is stripped off before
beiig compiled within the
message with the SWAP 1t
SWAP 1- code.

Figure Four contains
words which construct in-
stance OBJECTS and in-
stance VARiables. An in-
stance contains two fields: its
class pointer and its body.
An instance OBJECT'S body
contains its instance variables.
An instance vivtiable's body
contains its offset within its
parent OBJECT.

Figure Five (pg. 28) con-
tains the initial bootstrapped
object class, called PRIMARY.
I decided that PRIMARY
methods should just go in
the FORTH vocabulary, so that
PRIMARY would not have to
be INHERITed by each class;
thus, the phrase PRIMARY
METHODS has been com-
mented out. The only real
need for a PRIMARY class is
for indirect reference to the
object on top of the stack.
This data must be a declared
class. PRIMARY is declared
just for this situation. Other
than that, its "object-ness"
may be ignored and it can be
treated just like a Forth vari-
able or structure field.

Figure Six (page 28) is a
simple example of building
new classes. Note that the
methods' code is very Forth-
ish: the implicit stack opera-

my Forthmacs (by Mitch Bra-
dley) for the Atari ST is a 32-
bit Forth, so my CELL is set
to four bytes. Adjust yours
accordingly. A simple meth-
od for grouping data into
named records is provided
by the b e e words STRUCT : ,
:FIELD, and ; STRUCT.

Common Forth contains
the seeds of an object-ori-
ented language. CREATE
DOES> provides the abiLity
to abstract data and create
new data types. Vocabular-
ies can provide privacy, as
well as inheritance. Thus,

Forth Dimensions 25 January 1992 February

only ten new words need be
used to program in OOF:
CLAS S : , ; CLASS, I N -
HERIT, METHODS, END,
MESSAGE, OBJECT, OB-
JECTS, :VAR, and :VARS.

Figure Two provides
definitions of object dur
words. I have implemented
a CLASS as a hybrid of
STRUCT : and VOCABU-
LARY-which reflects the
twofold nature of a class: to
provide the internal data
structure of its type, and to
house the data's routines.
See Figure Seven (page 29)
for a good example of how

these words are used. (In
Forthmacs, the parameter
Lld of a vocabulary is kept
in the user area. SO, while the
general idea is to build a
vocabulary with two extra
fields-he+contextfieldand
the +/body field-these must
be allocated in the user area
for Forthmacs.)

MESSAGE is defmed in
Figure Three. A message
merely records its name as a
suing within its body, and
then vies to Fid it in the
context vocabulary (CLASS)
at run time. CT~IS is an ex-
ample of late binding.) Note

tors (DUP, SWAP, TUCK, etc.)
srill needed,

are passed on the stack,
andRPNsynmissulluxL
thus, OOF blends with
common Forth. It is not nec-
essary for 2COMPLEX to ex-
pli.tly INHERIT from the
COMPLEX in order for
the (like to pass
the <@ @ message along. In
Ibis the instance vari-
able x will accept the <@@
message and interpret it tor-
rely hhetllancebecomes
an issue when a that is
a specialization of another
class, wishes to use some of

the other class's methods.
For example, if one had both
AUTOMOBILE class and
CHEW class, there may be
AUTOMOBILE methods that
are applicable to the CHEVY
class objects. By simply stat-
ingAUTOMOBILEINHERIT
before defining c ~ ~ w c l a s s ,
it inherits all the methods of
AUTOMOBILE. I used this
feature to provide STACK
objects with the <LENGTH
operator, by inheriting it from
the ARRAY d a ~ ~ .

Figure Seven (page 29) is
an example of defining an
ARRAY class of objects. The
#EL instance variable con-
tains the number of elements
inthe array. The *EL-CLASS
variable points to the class of
the array's elements. Con-
sider the INDEX method the
last thing that must be done,
after deriving the address of
the indexed element within
the array, is to switch the
class context to that of the
elements so subsequent
messages will be bound to
the correct instance type (and,
thus, the correct method will
be executed). The words
OBJECTS and :VARS in
Figure Four assume that the
first two instance variables
within a grouptype object
(like ARRAYS, STACKS,
MATRICES, QUEUES, etc) will
be #EL and "EL-CLASS,
respectively.

Figure Eight (page 30)
gives an example of IN-
HERITing a d ~ a ~ STACK
is a specialization (and
superset) of ARRAY class.
Note that the class context
must be switched to that of
the stack's elements just be-
fore the message is sent to
fetch or store the element
object in both PUSH and POP.

One kludge I wanted to
avoid in defining grouped
objects (like ARRAYS and
STACKS) was the need to
predetermine the size of the
body in the class definition
This would either cause all
the ARRAYS (or STACKS) to
have the same number of
elements, or else necessitate
a new defining word for cre-

January 1992 February

Figure Three. Defining MESSAGE. I
\ oofmssag- f th 910729 rwb

: >in@ (--) \ macro t o save i npu t s t ream p o i n t e r .
i n - f i l e @ f t e l l ;

: > i n ! (--) \ macro t o set inpu t s t ream p o i n t e r .
i n - f i l e @ f s eek ;

: MESSAGE \ <name> (--)

>in@ \ r e m e m b e r i n p u t s t ream l o c a t i o n .
c r e a t e \ c r e a t e message

> i n ! \ put i npu t s t ream p o i n t e r back.
b l word count \ g r a b <name> and compile s t r i n g i n
swap 1+ swap 1- ", \ pfa of message.

does> (pfa -- ?)

f i n d
i f

execute \ e f f e c t method of a c t i o n .
else

abo r t " method unknownw
then

I

c r . (oofmssag. f t h loaded) c r

ating objects for each new
grouptype class. Consider
the following instantiation of
a COMPLEX STACK.

STACK OBJECT FRED
23 COMPLEX OBJECTS

Thus, FRED is defined as
the object at the head of the
group of elements, with the
defining word OBJECT. Then
23 complex-type objects
were allotted OBJECTS is
capable of patching the pre-
viously created word (in this
case, FRED) with the num-
ber of elements allotted into
FRED'S #EL instance vari-
able.

The benefit of an object-
oriented implementation's
security can be seen by com-
paring the code of Figure
Eight with that of Figure Nine
(page 31). Both are imple-
mentations ofstack-type data,
but are radically different.
Note that code using STACK
would not break if STACK
were changed-due to be-
ing forced to use only pro-
cedures within the STACK
class's code-definition mod-
ule.

Conclusion
If an object-oriented pro-

gramrning language is de-
fined by the characteristics
of data abstraction, informa-
tion hiding, dynamic bind-
ing, and inheritance, only a
little needs to be added to
Forth to make it so. In keeping
with an RPN syntax, the
process ofbinding a message
is shared between the object
and the message words. It
may appear that this respon-
sibility could have been
wholly shifted to the mes-
sage word, but only because
this is a late-binding example.
Because late binding has an
associated run-time penalty
(finding the correct method
to execute), early binding is
usually used except when
late binding is required. It
would take about two more
words, and about five min-
utes of coding, to convert the
given code to early binding
(really!). This will be left as
an exercise to the reader.
(Oh! I've always wanted to
say that!) Maybe I will u p
date the code in an upcom-
ing article.. . Also, one could

optimize the code associ-
ated with the fmt instance
variable reference. Because
it has an offset of zero within
the parent object, it is waste-
ful at run time to add the
offset.

Object-oriented Forth, as
presented, is upwardly com-
patible with common Forth
(Forth-83, specifically); thus,
they can be intermixed at
will. Programming in OOF
promotes grouping all of a
data class's routines, just be-
low the declaration of the
inner layout of the class. Also,
it allows one to focus on
objects and actions without
constant regard to internal
implementation details (one
defmition of PUSH works for
any kind of STACK).

An object orientation is
simply the coding disciplines
specific to the expression of
data, and which are comple-
mentary to those for proce-
dures. The intent is to reduce
maintenance by minimizing
modif~cations caused by a
change, and to increase pro-
ductivity by enhancing reus-
ability of existing code.

Forth Dimensions

Figure Four. Words to create objects and instance variables. I
I I \ oofob jec . f t h 910730 rwb I

: +ob jec t s \ ('body -- ' o b j e c t s) MACRO
dup c e l l - @ \ (-- 'body ' e l - c l a s s)
+/body @ + ;

: /body \ (-- /body)
con tex t @ +/body @ ;

: do-object \ (/body --
a l l o t

does>
dup @ >context \ s e l e c t o b j e c t ' s con tex t .
c e l l + \ (-- 'body)

: ob jec t \ <name> (--) Create i n s t ance of c l a s s .
c r e a t e con tex t @ , /body do-object ;

: o b j e c t s \ (n -- Create n i n s t ances of c l a s s .
/body over \ (-- n /body n)
l a s t @ name> >body c e l l + \ (-- n /body n 'body)
context @ over c e l l + \ (-- n /body n ' # e l ' e l c l a s s " e l c l a s s)
! ! \ (-- n /body
* do-object ;

: do-var \ (o f f s e t /body -- o f f s e t ')
over , +

does> (p f a -- 'body)
dup @ >context
c e l l + @ + \ (-- ' v a r)

,

: :var \ <name> (o f f s e t -- o f f s e t ') Create i n s t a n c e v a r i a b l e .
c r e a t e contex t @ , /body do-var ;

: :vars \ (o f f s e t n -- o f f s e t ') Create n i n s t ance v a r i a b l e s .
/body over \ (-- o f f s e t n /body n)
l a s t @ name> >body c e l l + \ (-- o f f s e t n /body n 'body)
con tex t @ over c e l l + \ (-- o f f s e t n /body n ' # e l ' e l c l a s " e l c l a s s)
! ! \ (-- o f f s e t n /body)
* do-var ;

c r . (oofob jec . f th loaded) c r

Advertisers
Index

ACM 22
Ciber 7
Forth Interest Group44

Harvard Softworks 41

Miller Microcomputer
Services..27

Next Generation
...................... Systems 42

Silicon Composers2
Forth Dimensions 27 January 1992 February

On-Line
Resource

Two out-of-date items
mistakenly crept into last
issue's "resource Listings."
These are the Wetware Forth
conference (under Unix
BBS's) and the Cave (under
non-Forth-s@~c BBYs with
extensive Forth libraries).
Please disregard both.

In France, the Forth BBS
JEDI has ceased operating.
Try Serveur Forth, which
claims news, services for new
programmers, Forth teaching
material, and a file liirary. It
supports up to 19200 baud,
depending on a c e s method
(for full details about high-
speed, Minitel, or altemate-
carrier access, contad sysop
MarcPetrerM~, REM Corp.,
17 rue & la Ianette, F-7'5012
Paris, France). From within
France via modem, call the
following. (From Germany,
add the telephone prefm 00
33. From other countries, use
the prefm 33.)

(1)41 08 11 75
300 baud (8N1) or
1200/75 E71
m
(1)41 08 11 11
1200 to 3600 baud (8N1)

The Programmer's Cor-
ner BBS in Maryland has a
Forth message area and a
Forth frle area. Call 401-536-
1180 or 401-335-3744.

Additional non-Forth-
specific BBS's with extensive
Forth libraries:

PDS*SIG
San Jose, CA
408-270-0250
Sprinr.Net node casjo
StarLink node 6450

Programmer's Corner
Baltimore/Columbia, MD
301-596-1180 or
301-995-3744
SprintNet node b a s
StarLink node 2262

(Note: PC-Pursuit is now
SprintNet)

Figure Five. The initial. 'bootstrapped" class. 1
\ oofprima.fth 910723 rwb
MESSAGE <@e
MESSAGE <! !
MESSAGE <??
MESSAGE <init

class: PRIMARY
cell+ \ bootstrap size of class

;class

\ PRIMARY METHODS
: @ @ \ ('body -- primary)

@ ;

: ! ! \ (primary 'body --)
! ;

: ?? \ ('body --)
? ;

: i n i t \ ('body --)
off ;

END

cr . (oofprima. fth loaded) cr

Figure Six. Building new classes. I
\ oofcmplx.fth 910728 rwb

only forth also definitions

\ MESSAGE <@@
\ MESSAGE < ! !
\ MESSAGE <??
\ MESSAGE <init

class : COMPLEX
PRIMARY :var real
PRIMARY :var imag

;class

COMPLEX METHODS

: @ @ \ ('body -- real imag)
dup real @ swap imag @ ;

: ! ! \ (real imag 'body --)
tuck imag ! real ! ;

: ?? \ ('body --)
dup imag ? real ? ;

: init \ ('body --
dup imag off real off ;

END
class : 2COMPLEX

COMPLEX :var x
COMPLEX :var y

;class

2COMPLEX METHODS
figure c0ntinuer.J

(GEniefrompage 22.)
Regarding "being sup-

plied with source code," two
comments:

(a) Forth, Inc. supplies
complete source code under
license with all polyFORTHs,
along with the ability to re-
produce the system, as we
believe these are important
entitlements to those of our
customers who do want to
optimize their applications
in the knowledge that they
will be fairly transportable
across po1yFORTH.s on other
platforms, but harder to port
to other Forths. Making this
choice is their prerogative.

However, as you your-
self point out, there are other
people for whom the need
for portability is paramount.
The standard, also as you
point out, is for those people.
If the TC mandates that all
conforming implementations
not only follow a particular
model but supply source and
regeneration capability, the
result will be faoconforming
implementations, and me-
diocre performance on those
that do conform. It's hard to
see how this benefits any-
one.

This is why the TC be-
lieves the better way to facili-
tate portability is by stan-
dardizing behavior.

(b) The reality of the
marketplace is that most of
Forth, 1nc.b competitors do
not supply source and re-
generation capability, and
they are nonetheless suc-
cessful in their respective
markets. This supports the
conclusion that there are very
many Forth programmers
who don't find these things
essential to their work.

In summary, I personally
agree with you as to the
value of source and regen-
eration capability, but em-
phatically do not agree that
they should be mandated in
a standard.

"Since when are the two
previous standards for
Forth 'some particular
model?

I Greg was only trying des- 1
January 1992 February Forth Dimensions

pemtely to understand what
on earth you do mean in
invoking "traditional Forth,"
as you keep doing.

"I use 'Forth' to refer to
the language as descriid
in the books ated most
often as references:
Starting Forth and
7binking Fotth by Leo
Brodie, and Forth: A T&
and R e f a e by Kelly
and Spies."

At last., a workable & f ~ -
tion! However, these fine
books all make it very dear
that, although they discuss
such things as dictionary
structure for pedagogic pur-
poses, implementations do
vary. Primarily, they define
Forth behaviorally, just as
ANS Forth does. I quote from
Kelly & Spies (pg. 30%):

"The Forth standards
wisely make no attempt
to define how the lan-
guage works internally.
The point of the stan-
dards is to promote a
fundional compatibility of
programs, not to stifle
original ways of adapting
Forth to new hardware."

Couldn't have said it bet-
ter myself.

I "Several of the languages
I have used ... are de-
scribed as 'functional'
languages.. . Eachof these
languages is desaibed in
terms of a set of opera-
tors. In each case, how-
ever, the operators act on
a specific data type or
types. . . It is meaningless
to have operators that do
not operate on anything!

"The ANSI Team has a p
parently not only invented
a new language, but also
a new concept in com-

figure S&, continued.)

: @ @ \ ('body -- x y)
dup >r x <@@

r> y <@@ ;

: ! ! \ (x y 'body --)
dup >r y <!!

r> x < ! ! ;

: ?? \ ('body --)
dup >r y <??

r> x <?? ;

: init \ ('body -- 1
dup >r y <init

r> x <init ;
END

\ Example: 2COMPLEX OBJECT 2understand?
1 \ .. oh gosh NO! :")

1 cr . (oofcmplx. fth loaded) cr

Figure Seven. Defining an array class. I
\ oofarray.fth 910723 rwb

MESSAGE <index
MESSAGE <length

class: ARRAY
PRIMARY :var #el
PRIMARY :var "el-class

;class

ARRAY METHODS

: '/el-body \ ('body -- '/el-body) MACRO
"el-class @ +/body ;

: index \ (i 'body -- 'objects[i])
tuck "el-class @ dup >r \ (-- 'body i 'el-class)
+/body @ * \ (-- 'body offset)
swap +objects + \ (-- 'body[il)
r> >context ;

: length \ ('body -- n)
dup '/el-body @
swap #el @ * ;

END

cr . (oofarray. fth loaded) cr

Forth Dimensions 29 January 1992 February

purersdence:a language isn't a tested idea, is it?" Forth pays a great deal of Most high-level languages that manipulates data
in a functional

MY, but does n a allow
us to know what the data
structures are. Sure
doesn't sound like a good
idea, does it? Certainly

can't think of
l a n ~ g ~ t h a t d ~ c n ' b e how
their data structures are ar-
ranged in memory, let alone
how their code is arranged in
memory, which is what you
seem to expect of Forth ANS

attention to describing data
types, at least as dearly as C,

I t a b e x p b y
(Section 5.4 in BASIS, 3.4 in
dpANS-2) the regions of
memory that are
able by a s.dard

don't let you address memory
at all. C sort of does, via
#pointers,' but pointers are
still a lot more abstract than
Forth's

*. . .an attempt to rescue
some of the fundionality

of classical Forth.. . And
Forth did have a viable
solution, didn't it? And
the ANSI team is propos-
ing a language that ignom
this solution, isn't it"

We'd sure appreciate it if
you'd share this "viable solu-
tion" with us, John. And
please be specific, rather than
vaguely alluding to "classical
F o a " so we can consider
your proposed language for
incorporation.

We believe ANS Forth is
extensible, and would very
much like to know exactly
what you feel is compro-
mised. As you seem to have
a high regard for precise lan-
guage, well be grateful if
you'd offer us some as an
example.

Your discussion of
START : would be helpll,
except that Mitch has already
told you that we agreed there
was a problem with
BASIS 15's definition and
fmed it. Well look forward
to seeing whether y w agree
that it is fixed in dpANS-2.
There are probably a lot more
areas in which clarity can be
improved, and appreciate
people pointing out other
specific instances.

"I think it is a truly unwise
strategy for the ANSI team
to propose a new lan-
guage and then use strong
arm tadics to get its ac-
ceptance rushed throughn

We have no intention of
doing so, and couldn't if we
did. The public review pro-
cess is deliberately lengthy,
in order to ensure as much
feedback as possible.

"It will do a great deal of
harm for the survival of
Forth to accept a bad
standard-and I don't
think anyone should re-
gard it as fate that we
must do so."

We heartily agree. We
look forward to hearing from
lots of people in the public
review process.

Figure Eight. Code for the stack class.

\ o o f s t a c k . f t h 910723 rwb

\ MESSAGE <@@
\ MESSAGE < i n i t
MESSAGE <push
MESSAGE <pop

ARRAY a SO

c l a s s : STACK
PRIMARY :var # e l
PRIMARY :var " e l - c l a s s
PRIMARY :var " to s

; c l a s s

STACK METHODS

: push \ (ob j 'body --)
dup " tos @ swap \ (-- o b j ' t o s 'body)
' /el-body @ negate \ (-- o b j ' t o s 'body -/body)
over " to s \ (-- o b j ' t o s 'body -/body " tos)

+! \ (-- o b j ' t o s 'body)
"e l - c l a s s @ >context < ! ! ;

: POP \ ('body -- o b j)
dup " tos >r \ (-- 'body)
dup ' /el-body @ >r \ (-- 'body)
dup " tos @ \ (-- 'body ' t o s)
swap "e l - c l a s s @ >context <@@ \ (-- o b j
r> r> +! ;

: i n i t \ ('body --)
dup " tos >r \ (-- 'body)
dup +ob jec t s >r \ (-- ' b o d y)
dup ' /el-body @ >r \ (-- 'body)
e l @ r> * \ (-- l eng th)
r> + \ (-- 'bos)
r> ! ;

: @ @ \ ('body -- ob j)
dup " tos @ \ (-- 'body ' t o s)
swap "e l - c l a s s @ >context <@@ ; \ (-- o b j)

END

c r . (o o f s t a c k . f t h loaded) c r

From: Steve Geller
I used to use Forth, but

got tired of my boss blaming
all the software bugs on Forth
(he's a Fortran and BASIC
enthusiast). I nowwrite most
of my software in C and
assembler.

The non-portability of
Forth has annoyed me, be-
cause I work on a variety of
environments: PC, Unix,
VAX, Mac, and some em-
bedded stuff. The chief an-
noyance was when a word
with the same name did dif-
ferent things depending on

the implementation. This is
the main reason for stan-
dardization, in my view.

I think much of the
squabble I read here will
fade away once a standard is
clearly defined-and widely
implemented. I may well take
another look at Forth when
ANS Forth appears. I sure do
like the consistency of C
implementations; most of the
problems I've hit were with
small difference. (or just plain
bugs) in run-time library
implementations.

Some argument centers

on whether ANS Forth should
codify existing practice or
define a better language. The
fmt idea seems rather reac-
tionary. The present imple-
mentations are not going to
disappear when ANS Forth
appears; there will be a period
of transition. If the standard
is well defined, it will be
accepted in the marketplace
and everyone will be better
for it. Variant Forths will be
around forever. There are
always "extensionsn to any
standard. F83 was full of
extensions to the '83 stan-

January 1992 February 30 Forth Dimensions

Figure Nine. I
\ 0OFNEWST.FTH 910818 rwb

\ MESSAGE <@@
\ MESSAGE < i n i t

MESSAGE <push
MESSAGE <pop

ARRAY a 1s0

c l a s s : STACK
PRIMARY : v a r # e l
PRIMARY : va r " e l - c l a s s
PRIMARY : va r head

; c l a s s

STACK METHODS

: element-context \ ('body --)
" e l - c l a s s @ >contex t ;

: ' o b j \ ('body -- ' ob j)
dup + o b j e c t s swap \ (-- ' o b j e c t s 'body)
dup # e l @ over head @ \ (-- ' o b j e c t s 'body # e l head)
- swap ' /e l -body @ \ (-- ' o b j e c t s head' el-/body)
* + ;

: f u l l ? \ ('body -- f)
dup head @ swap # e l @ = ;

: empty? \ ('body -- f)
head @ 0= ;

: push \ (o b j 'body --)
\ check no t f u l l
\ i n c r head
\ set element con tex t
\ s t o r e o b j
dup f u l l ? no t \ (-- o b j 'body -f)
i f

1 over head +! \ (-- o b j 'body)
dup 'ob j

swap element-context \ (-- o b j 'body)
<! !

else
abor t " Stack F u l l ! "

t h e n ;

: POP \ ('body -- o b j)
\ check no t empty
\ set element con tex t
\ f e t c h o b j
\ d e c r head p t r
dup empty? n o t \ (-- 'body -f)
i f

dup >r -1 >r
I

\ d e f e r ti1 a f t e r o b j f e t c h .
dup 'ob j

swap element-context
<@@ \ (-- o b j 1
r> r> head +!

else
abor t " Stack Empty!"

t hen ;

dard, and became a de fmto
standard itself.

The question is really
whether the ANS standard
will be an attractive proposi-
tion to users and implement-
ors. I should think it might
be, given the background
and caliber of people work-
ing on the committee. I am
going to try to obtain a dpANS
document whenever it be-
comes available to the gen-
eral public.

From: John Wavrik
Subject: Traditional Forth

Elizabeth Rather writes,
"Traditional Forth, for
example, allows the user
to know and make use of
knowledge of what is
'compiled' (or, more ac-
curately, assembled)--
and to exercise total con-
trol over the process.

"Hogwash! What on earth
is this 'traditional Forth,'
and what did it 'compile
or assemble'? Did it as-
semble the same thing on
a 6502 as it did on a PDP-
11? If so, how did it run?
And if not, how could the
user 'know and make use
of' that knowledge in a
transportable fashion?'"

To describe what I call
traditional Forth, perhaps it
would be wise to repeat the
major texts I have used in
teaching Forth (I am not go-
ing back to Kitt Peak Primer
and the various manuals,
Forth Dimensions articles,
etc. that I used to actually
learn the languagejust the
printed works that I feel de-
scribe what I am calling tra-
ditional Forth):
1. Starting ForCh by Leo

Brodie (published by
Forth, Inc!!!)

2. minking Forth by Leo
Brodie

3. Forth: A T m and Refer-
ence by Kelly & Spies

I should also list the sys-
tems I have used over the
years, all ofwhich have been
reasonably consistent with
the description of Forth given

Forth Dimensions 3 1 January 1992 February

(Figure Nine, continued.)

: @ @ \ ('body -- o b j)
\ check no t empty
\ set element con tex t
\ f e t c h ob j
dup empty? no t \ (-- 'body -f)
i f

dup ' o b j
swap element-context
<@@ \ (-- o b j 1

else
abor t " Stack Empty! "

then ;

: i n i t \ ('body --)
head o f f ;

END

in these books:

MMSForth for TRS80
Model I (two versions)

MMSForth for IBM-AT
MVP-Forth for DEC Rainbow
MVP-Forth for IBM-AT
MVP-Forth for Apple 11
Kitt Peak VAX-Forth
F83 for IBM-AT
Guy Kelly Foxth for IBM-AT

I also use F-PC, which is
moderately consistent

I should mention that I
have found it not too dficult
to interchange code between
these systems-so my own
experience has been with
Forth as a fairly portable lan-
guage.

As for what these systems
assembled, and how use is
made of it:

In each of these systems
(see also the texts), the body
of a dictionary entry consists
generally of a sequence of
addresses of component
words. Embedded data is
preceded by a *handlern
word. Control flow is
achieved by the inclusion of
branching words (only a
conditional "branch on zero,"
mditionally called ?BRANCH
Or OBRANCH, and an uncon-
ditional B R A N C H are
needed) and special words
to handle the DO .. . LOOP
construd.

This information consti-
tutes the machine language
for the abstract processor on
which all these versions of
Forth are built. As it turns

out, knowledge of the exact
addresses is not needed to
exercise control. Only the
fact that the components are
of the form described above
(together with a few extra
details about how the pro-
cessor acts when executing
the code).

Let's examine how this
knowledge is used to solve a
simple (but somewhat
amazing) problem: the intro-
duction of a new data type
into the Forth system. Forth
is remarkable in that new
data types can be introduced
seamlessly. One aspect of
this is the production of a p
propriate handlers for a new
data type.

Traditional Forth comes
with only one data type: the
integer (possibly also double-
precision integers). The han-
dler embedded in code for
the integer data type is tra-
ditionally called LIT. When
L I T executes, it puts on the
stack the integer immediately
following it in the dictionary
body, and then it moves the
instruction pointer past that
integer. Here is the definition
that works on all the systems
mentioned above:

: L I T
R> DUP CELL
+ > R @ ;

We are using here the fact
that all of these systems in-
crement the instruction
pointer and store it on the
return stack when a new

word executes. We can eas-
ily imitate this guide to skip
over embedded data of any
size, and put any informa-
tion about it on the stack-
perhaps just the starting ad-
dress.
(I should mention that an

important aspect of Forth in
my work is the ability to
seamlessly integrate into a
Forth system new and un-
usual data types-some sys-
tems have as many as seven
new types, each with appro-
priate mechanisms for stor-
age management, appropri-
ate handlers, operators, etc.)

The basic control struc-
tures are defined in the same
way in all of these systems.
For example:

: I F
COMPILE ?BRANCH
HERE 0 ,
; IMMEDIATE

: THEN
HERE SWAP !
; IMMEDIATE

(Compiler security has been
ignored I believe all the
above systems use the abso-
lute address rather than a
displacement-but the
change is not a major one.)

With this information, one
can produce any conceiv-
able control structure on any
of these systems by laying
down and resolving the a p
propriate branch instructions.
U o be sure, some such
structures, like the Eaker case

statement, can be synthe-
sized using standard control
constructs-although with
reduced efficiency.)

In brief, the user has both
knowledge of and control
over what is assembled. The
standard language provides
words (like the control flow
words) that introduce vari-
ants into the normal succes-
sion of addresses constitut-
ing the machine language of
the abstract machine-but
access is there for the user to
do something different In
effect, the user has as much
control over the process of
translating a high-level lan-
guage into "object coden as
does the writer of a compiler
for a conventional language.
The user has the tools to
make a high-level language
look like anything he
wishes-because he has
complete control over the
process of compilation. And
he can do it portably if he
uses "traditional Forth."

This is a remarkable and
somewhat subversive idea:
that a user should have power
normally reserved to spe-
cialists. I wouldn't dismiss it
as hogwash if I were you!

From: John Wavrik
Re: Disenfranchised

Mitch Bradley writes,
"Where Dr. Wavrik has
been specific rather than
philosophical (e.g., user-
defined control struc-
tures), the committee has
attempted to deal with
the issues. It would have
saved me a lot of time if
the specific issues had
been presented in the
form of proposals; then I
wouldn't have had to do
the work of writing the
proposals."

In the interest of histori-
cal accuracy, Mitch Bradley
had a proposal he wanted to
submit in this area. He con-
sulted me and a few other
people. I gave him my im-
pression of his proposal, but
he submitted it anyway. I do

(GEnie continued on page 38.)

January 1992 February 32 Forth Dimensions

Simple Ob 'ect-
Oriented 6orth
C. A. Maynard
Wilson, West Australia

F orth is a minimalist lan-
guage, by which we
mean that the core of

the language provides facili-
ties from which the user/
programmer can build his
own working environment,
It has also been described as
a syntaxdirected language
because, if you can define a
syntax which will best ex-
press your needs, Forth will
allow you to create a func-
tional equivalent suitable for
programmer use.

The latest thing in pro-
gramming tools is the use of
the objj-oriented approach,
where data and operations
upon that data are all part of
the same 'object." This is
often refered to as encapsu-

lation and results in im-
proved data security, as only
those operations which have
been designed to work with
the object's data structure
will be executed, and there is
no direct access to the data
itself. The user of an object
need have no knowledge of
the details of data storage or
even details of the appli-
cable methods. He/she just
needs to know the valid o p
erations and any parameter-
passing requirements which
may be necessary to operate
upon the object.

The user also needs to
know the terminology which
fits the use of these tech-
niques. There are several
variants on the object-ori-

To hide complex methods, we
can set up a new vocabulary.

ented theme, but the follow-
ing is adequate for our needs.

I A c& definition s~eci-
Clive Maynard is a senior lecturer in
the Department of Computer Engi-
neering at Curtin University of ~ ~ ~ h -

runs Wawnic AsscciatBS. asvstems- I

fieS the data struciures
needed, any initialization,

nology, Western Australia, where this
article's contents are used as part of
students' Forth instruction. He also

1 design consultancy. He teaches real- I An instance is a ~articu-

and the operations which
may be performed upon the -, ~

time systems using Forth on PCs and
on the Motorola 68HCl I , and is a c o
author of The Art of Lisp Progamming
(Springer-Verlag. 1990). Clive has

lar object of a spec& class,
and has built the data struc-
tures defined in the class

ment of practical, analytical tods fbr I which can be performed

' developed a number of embedded
systems for industrial application. 1 Current interests include the develop

&fition.
. A nretbOdis an

Forth Dimensions 33

predicting real-time scheduler perfor-
mance in e m ~ ~ d systems; as well
as real-time systems and Al.

tional programming neces-
sary to handle a new varia-
tion on an object, If the
methods defined for the an-
cestor object are valid, the
objectwill simply obtain them
via the inheritance chain. If
there is the need for a different
definition of a method for a
new class, that may be in-
cluded in the new class and
will only work for the new
class of object and its
decendents. This ability is
called polynwqhisrn.

Ouerlaading is the ability
to have more than one defi-
nition of the same method,
and ensuring that the correct
one is applied to a particular
object.

Forth has the facilities to
create a very simple but ef-
fective object-oriented pro-
gramming environment. The
following discussion and
development will not pro-
duce the fastest objea-ori-
ented implementation in
Forth, but will introduce the
direct application of defin-
ing and compiling words to
establish an appropriate syn-
tax.

The first requirement,
then, is to propose an appro-
priate syntax to represent the
object class. (See Figure One.)

By analogy with cook-
ing, one should consider that
this syntax provides the
recipe to create new objeas
but that one must use the
recipe to make an object
(i.e., create an instance) be-
fore one can use it,

upon an object.
Inhetftance allows the

user to minimize the addi-

This syntax must provide
the compiler with all the in-
formation needed to con-
struct the object. The method
names must be available for
use by any class definition,
and so will have to be defined
before use.

It will also be necessary
to provide syntadic delimit-
ers between the method
name and the method, and
also to separate this from the
following method name.
These methods may result
from short in-line definitions
or may need to access pre-
defined and hidden method
definitions. Appropriate de-
limiter pairs which have been
selected are: : : and ; ; for
in-line definitions, M: andM;
for predefined methods.

Note for undentanding
thefillowing code

1. The operations are made
independent of 16-bit or
32-bit Forth implementa-
tions by using the constant
WSIZE which returns the
number of bytes assigned
to storage of an integer
variable. This technique
reduces the efficiency of
definitions but ensures
portability, which is a
reasonable compromise.

2. Hidden methods must be
passed the address of the
beginning of data within
the object itself, and this
is shown in the stack
comments as "addr" on
top of the stack.

3. The stack comments for
the methods indicate the
parameters needed when
applying the method andl
or the results produced
by the method.

4. The class must inherit from
another class or NULL

Putting this together for
an example class which
consists of a point defined by
its x,y coordinates and a va-
riety of useful (and not-so-
useful) methods, [refer to
Figure Two].

To create an instance of
this class called PT we sim-
ply execute:
10 15 POINT PT

January 1992 February

This partimlar example
has been designed to initial-
ize the x and y coordinates to
10 and 15, respectively, so
the most likely operations to
follow are similar to those
given in Figure Three.

The syntax is, of course,
typical RPN where the pa-
rameters are put on the stack
fmt, then the message or
method selector. Finally the
operation is performed by
the object itself, which is just
what object-oriented pro-
gramming is all about

new class, and there has to
be a valid syntax to access
the method In this case, the
data structure address is
available and only the meth-
ods need to be obtained.
The use of IN is to bypass
the local data struaure ad-
dress inside PT in favor of
that provided on the stack.
Syntactically, this has exactly
the same effect a s INHERIT
but may be used to access
any object matching the
hidden data structure. 73is

Figure One. Syntax to represent object class. 1
CLASS <name>
DATA

... \ Data structure and
\ initialization

METHODS
<methodnamel> .. <methodl>
<methodnameZ> .. <methodZ>

INHERIT
<ancestor> or NULL

\ Where NULL means
\ no ancestor class

ENDCLASS
-

-
~ x a r n ~ l e s of inheritance, 1

~olvmomhism. and over- Figure Two. Defining the point class.

ioahing &n easily be devel-
oped by extending from a
Point class to a Rectangle
class, and further to a Square
class. To simp* the discus-
sion, we will use a rectangle
oriented parallel to the x and
y axes, which can be defined
by its two opposite corners:
upper left (ul) and lower
right 0. (See Figure Four.)

METHODNAME GETX METHODNAME GETY
METHODNAME PUTX METHODNAME PUTY
METHODNAME GETXY METHODNAME PUTXY
METHODNAME SWAPXY METHODNAMEGRIPE \ Usedas failingmethod

\ The following are useful general method names providing
\ for instance initialization and class recognition for the user.

METHODNAME BUILD METHODNAME ASTEXT

RECT I METHOD: GETXYM (addr -- x y)

Creating the object be-
comes simply :
40 18 6 10 RE~TAN~LE

DUP WSIZE + @ SWAP @ METHOD;
% rectangle obijct con- I

\ The following are hidden methods.
\ These words will not be visible within the Forth dictionary

tains two &d it is
appropriate that the designer
of the new class can operate
on these hidden or anony-
mous objects as if they were
separate. To obtain the u p
per left and lower right cor-
ner values for the rectangle,
we have used the structure
GETXY IN PT, giving US ac-
cess to the point methods
needed. We could have used,
the GETXYM word from the
(METHODS) vocabulary,
because it is designed to work
with a POINT object. This is
only possible because we
have not made our Point
methods totally hidden to
other classes. If we took ad-
 anta age of the EXCISE facility
included with UWFORTH,
we could not cheat by ac-
cessing the hidden methods.

The programmer may
want to use a particular class
method which is appropri-
ate for his anonymous. (i.e.,
unnamed) objects within a

METHOD: PUTXYM (x y addr --)

DUP >R ! R> WSIZE + ! METHOD ;

METHOD: SWAPXYM (addr --)

DUP @ OVER WSIZE + @
2 PICK ! SWAP WSIZE + ! METHOD ;

CLASS POINT (x y --)

DATA
1 , \ Initialize x y to the values on the stack

METHODS
\ Inline functions
PUTX (x --) :: WSIZE + ! ;;

GETX (-- x) :: WSIZE + @ ;;

PUTY (y --) ! ;;

GETY (-- y) :: @ ;;
ASTEXT (-- strinaA : : " Point" ;; < .

\ Hidden functions defined earlier
GETXY (-- x y) M: GETXYM M;
BUTXY (x y --) M: PUTXYM M;
SWAPXY (--) M: SWAPXYM M;
BUILD (x y --) M: PUTXYM M; \ An alias for PUTXY here
INHERIT

NULL
ENDCLAS S

January 1992 February 34 Forth Dimensions

Figure Three. Using the point class. I
GETXY PT . . 15 10 ok \ Note the order printed!
SWAPXY PT ok
GETXY PT . . 10 15 0k
ASTEXT PT COUNT TYPE Point ok
22 7 BUILD PT ok
GETXY PT . . 7 22 ok

may only be used within a
ckass depnitian, as it is only
within the class definition
that t b m is knowledge of the
internal data stncctures to
allow theprog~ammerac~4~~.

NOW for the SQUARE class,
defined in Figure Five. Pro-
ducing a new square :
5 12 13 SQUARE FRED

We now have a single
Figure Four. Defining a rectangle class. inheritance chain of classes

METHODNAME PUTHEIGHT METHODNAME GETHEIGHT
METHODNAME PUTWIDTH METHODNAME GETWIDTH
METHODNAME UPPERLEFT METHODNAME LOWERRIGHT

METHOD: PUTHEIGHTM (h addr --)

DUP @ ROT + \ The new lower right -> ylr
SWAP WSIZE 2" + !

METHOD ;

METHOD: PUTWIDTHM (w addr --)

DUP WSIZE + @ ROT + \ The new xlr
SWAP WSIZE 3 * + !

METHOD ;

METHOD: GETHEIGHTM (addr -- h 1
DUP WSIZE 2" + @ SWAP @ -

METHOD ;

METHOD: GETWIDTHM (addr -- W

DUP WSIZE 3 * + @ SWAP WSIZE + @ -
METHOD ;

CLASS RECTANGLE (xlr ylr xu1 yul --)

\ Rectangle aligned to the x y axes

DATA
I \ Upper left POINT yul xu1
I I \ Lower right POINT ylr xlr

METHODS
PUTWIDTH (w --) M: PUTWIDTHM M;
GETWIDTH (-- w) M: GETWIDTHM M;
PUTHEIGHT (h --) M: PUTHEIGHTM M;
GETHEIGHT (-- h) M: GETHEIGHTM M;
UPPERLEFT (-- x y) :: GETXY IN PT ;;
LOWERRIGHT (-- x y) :: WSIZE 2* + GETXY IN PT ;;
ASTEXT (-- stringA) :: " Rectangle" ;;
BUILD (xlr ylr xu1 yul --) :: DUP >R PUTXY IN PT

R> WSIZE 2* +
PUTXY IN PT ;;

INHERIT
PT \ NOTE: Instance of POINT needed, not the class.

ENDCLASS

Forth Dimensions 35

to experiment with! [See Fig-
ure Six.]

creating the
Object Syntax

The use of defining and
compiling words in Forth
provides the programmer
with the ability to produce
new language constructs, and
is the core of the syntax-
generation process.

To generate the syntax,
some preliminary functions
will prove useful later. Dur-
ing creation of a specific
syntax, these will be speci-
fied as the need arises; but
here we will separate them
from the detailed discussion
of the syntax itself.

To generate distinct
method names, it is only a
matter of making a func-
tional equivalent to a vari-
able without using the stor-
age. In many systems where
the dictionary and vocabu-
lary coexist, simple name
creation would be enough;
but to be completely gen-
eral, we will define them as
follows.

: METHODNAME
CREATE 0 I ;

To hide the more com-
plex methods from the nor-
mal programming emiron-
men4 we can set up a new
vocabulary into which all of
these definitions can be
placed.

VOCABULARY (METHODS)

If we wished to interac-
tively open this vocabulary
for the storage of a new
defhtion and then return to
the normal FORTH vocabu-
lary, we would enter the
sequence:

January 1992 February

(METHODS) DEFINITIONS
: ... content of new word..;
FORTH DEFINITIONS

Thissimple sequence may
be directly converted to
compiler words as follows.

: METHOD:
[CCMPILE] (METHODS)
[COMPILE] DEFINITIONS
[COMPILE] :

; lM4EDIATE

: METHOD;
[COMPILE] ;
[COMPILE] FORTH
[CaMPILEl DEFINITICPJS

; RWEDIATE

where each immediate word
used for the interactive se-
quence is effectively deferred
by the use of [COMPILE I
until the execution of
METHOD: and METHOD;.
Normal colon defdtions may
be deferred by using COM-
PILE.
NULL is a word to indi-

cate that a search through
the inheritance chain has
been unsuccessful, and
should simply return a mes-
sage to this effect and stop
execution.

: NUU (flag --)
ABORT"
No method available "

t

The structure of defining
words in Forth provides the
basis for combining data and
execution functions within
one object. The basic form
for a defining word is:

: <object>
CREATE
... storage set up ...
DOES>
... run-time operations

,

To match our object syn-
tax to the appropriate Forth
strumre, the pmgrammer
builds a d e f i n t i o d a s e d
on the core words of the
language+-which will do
what is needed, as in Figure
Seven.

This may be demon-
strated '3y expanding on the
POINT example. To provide
the facility for anonymous
January 1992 February

Figure Five. Defining a square class. I
METHOD: SIDEM (s addr --) \ Store in both height and width

2DUP PUTHEIGHT IN RECT PUTWIDTH IN RECT
METHOD;

CLASS SQUARE (side x y --)

\ A square is a rectangle with height = width
DATA

2DUP , , \ Upper left
2 PICK + , + , \ Lower right

\ Using same data structure as before
METHODS

PUTWIDTH (w --) M: SIDEM M;
PUTHEIGHT (h --) M: SIDEM M;
ASTEXT (-- stringn) :: " Square" ;;
BUILD (side x y --) :: DUP >R PUTXY IN PT

R> SIDEM ; ;
INHERIT

RECT
ENDCLASS

Figure Six. Playing with classes.

ASTEXT FRED COUNT TYPE Square ok
GRIPE FRED "FRED" No method available ok
GETX FRED . 12 OK
LOWERRIGHT FRED . . 18 17 ok
6 9 10 BUILD FRED ok
UPPERLEFT FRED . . 10 9 ok
GETWIDTH FRED . 6

Figure Seven. An object as a Forth defining word.

: <object>
CREATE
(build the instance data structure)

DOES >
CASE
method1 OF do.method1 ENDOF
method2 OF do.method2 ENDOF
...
inheritance
ENDCASE

,

Extending the Example:
Text Window on a PC

We have developed our
syntax and object creation
methods, through an ex-
ample sequence, from a Point
to a Rectangle to a Square. A
text window is an example
of a rectangle with additional
attributes.

Forth Dimensions

access, we need the addi-
tional concept: a method
having a TRUE value indi-
cates that its execution has
been entered through inher-
itance or deferral, and that
only its methods are required,
not the data structure. [See
Figure Eight.]

The process of conf~gur-
ing our object-oriented syn-

tax is simply matching the
two forms and defining the
necessary compiling words
to handle the operations. [See
Figure Nine.]

The above constructs take
less than one page of co&,
yet provide all the function-
ality discussed at the begin-
ning of this document.

36

Figure Eight. Dropping data address during method inheritance.

: POINT (x y --)

CREATE

I I

DOES>(method da t aadd r I method da taaddr t r u e dataaddr2 --)

\ Check i f execut ion i s e n t e r e d through i n h e r i t a n c e process
\ and drop t h e add re s s provided by DOES> i f it is.
OVER TRUE = I F 2DROP THEN SWAP
CASE

GETY OF @ ENDOF \ e t c .
...
SWAPXY OF (METHODS) SWAPXYM FORTH ENDOF
\ Switch vocabu la r i e s t o f i n d t h e r i g h t word
SWAP TRUE NULL TRUE
\ Deal wi th i n h e r i t a n c e and s t a c k requirements of ENDCASE

ENDCASE

I

Figure Nine. Defining the required compiling words. 1
: CLASS [COMPILE] : ; IMMEDIATE
: DATA COMPILE CREATE ; IMMEDIATE

: METHODS
COMPILE DOES> COMPILE OVER
COMPILE = [COMPILE] I F
[COMPILE] THEN COMPILE SWAP

; IMMEDIATE

COMPILE TRUE
COMPILE 2DROP
[COMPILE] CASE

\ The fo l lowing two a r e r e a l l y d e f e r r e d a l i a s e s
. ,. . ,. [COMPILE] OF ; IMMEDIATE . . * - ~t [COMPILE] ENDOF ; IMMEDIATE

: M: [COMPILE] OF
; IMMEDIATE

[COMPILE] (METHODS)

our object, and also the abil-
ity to keep such details from
the normal programmer.

Most of the code in Fig-
ure Eleven is derived from a
demonstration example by
Ray Duncan ofLMI, but takes
advantage of our predefined
objects by building on the
POINT facibies.

We may now complete
our def~ t ion of a text win-
dow object (see Figure
Twelve, page 40).

Etildency & G e n d t y
The approach we have

used above to aeate an ob-
ject-oriented syntax leads to
a direct implementation of
the requirements, but does
not lead to fast execution. By
eliminating the use of in-line
definitions and by complet-
ing all definitions within the
hidden vocabulary, it is
possible to use vectored ex-
ecution techniques for
method access, which re-
sults in very fast chaining
through the inheritance list.

The remaining limitation
of this implementation is that
it only supports single in-
heritance, by whichwe mean
that there is a path of inher-
itance from anv articular
class to a class wkih inherits
NULL, and failure to find the
method within this search

1. The rectangle may be dis-
played

2. The contents may be
cleared.

3. Text may be placed any-
where within the window.

4. C m n t text should be
sadable in the window.

: M; [COMPILE] FORTH [COMPILE] ENDOF
; IMMEDIATE

\ I N i s r e q u i r e d t o acces s an anonymous o b j e c t wi th in a new c l a s s
\ which, i n p r a c t i c e , ope ra t e s e x a c t l y t h e same a s i n h e r i t a n c e .
: I N COMPILE SWAP COMPILE TRUE ; IATE
: INHERIT COMPILE SWAP COMPILE TRUE ; IMMEDIATE
: ENDCLASS

COMPILE TRUE [COMPILE] ENDCASE [COMPILE] ;
; IMMEDIATE

To create such a window,
we would expect to have to

halts the process. A more
general solution would be to
have multiple inheritance for
a class and allow the search
to to find the requested
meth*b~~chingthrough
a specified set of class chains
until it finds the appropriate
method. From the user's
syntax requirements, this can
be accomplished by simply
introducing a list of inherit-
ances to re~lace the single

use the operating system
commands of the IBM-PC,
but these commands should
not be visible to the user of
the window. All such de-
tailed operations should be
confined to the hidden vo-
cabulary. The user should
expect to see a text window
object characterized by the

, code in Figure Ten.

The user will still be able
to apply any methods asso-
ciated with a nxtangle object
to the text window, as well
as the new methods specific
to the text window itself. The
following code is derived
from the UR-FORTH access
to IBM-PC internals, and
demonstrates what is needed
to m t e the new facilities for

instance diicussed above.
From an implementation
viewpoint, this is not such a
simple task--but a very good
analysis-and-programming
exercise.

Forth Dimensions 37 January 1992 February

(GEnie/nrm pago 32.)
not endorse, and never have
endorsed, the approach that
has been taken in this area
by the ANSI team. I felt that,
in this case, an attempt was
made, profbmra, to consult
me. I thank Mitch Bradley for
at least making an effort to
hear different opinions be-
fore taking . . . action.

From: Greg Bailey
In reply to John Wavrik's

recent postings regarding the
discussion that has followed
his " d i s e ~ ~ post-
ing:

First, I should like to
apologize to Dr. Wavrik for
having misunderstood his
intentions in re-posting his
architecture article. It was
dated 19 Aug., appeared on
GEnie 20 Aug., and, given its
wording ("this may be the
best general response"), it
seemed to me that this was
the totality of his response.
Since a more specific re-
sponse appeared on GEnie
five days later, I clearly mis-
understood his intent.

Second, I should like to
apologize to Dr. Wavrik if I
have put any words into his
mouth. On the other hand, it
is diffimlt to discuss the po-
sitions taken by another
without restating them
somewhere along the line;
and since obviously such
restatements are not in the
other party's words, it would
seem that the same could be
said of any rebuttal delivered
by anyone. However, if my
restatement of what John
appeats to be saying is grossly
at conflict with his meaning,
I am glad to be shown what
the meaning really is. In fair-
ness, however, one major
reason for replying to John's
postings is that he is articu-
late and seems to me to have
put many words into the
mouths of the TC.

For example, John has
drawn the following errone-
ous interpretations of just
several recently made points:

"GB's.. . comments illus-
trate the faa that there are
also people in the Forth

Figure Ten. User-level view of window code. I
METHODNAME CLEAR METHODNAME DISPLAY
METHODNAME SCROLLUP METHODNAME SCROLLDOWN
METHODNAME >XY

CLASS WINDOW (x l r y l r xu1 y u l --)

DATA
, \ Rectang le

\ P l u s a d d i t i o n a l a t t r i b u t e s i n t e r n a l t o window o p e r a t i o n s
METHODS

CLEAR M: ... M;
DRAW M: ... M;
SCROLLUP M: ... M;
SCROLLDOWN M: ... M;
>XY (x y --) \ Move c u r s o r t o x y

\ w i t h i n t h e window
M: ... M;

ASTEXT M: ... M;
BUILD M: ... M;

I N H E R I T
RECT

ENDCLASS

Figure Eleven. Details derived from LMI demo.

HEX
METHOD: WAR@ (a d d r -- dx c x bx)

\ F e t c h p a r a m e t e r s f o r a n IBM-PC v i d e o 1/0 c a l l
DUP >R LOWERRIGHT I N RECT 100 * +
\ dx from u l
R@ UPPERLEFT I N RECT 100 * +
\ c x from l r
R> WSIZE 4 * + @
\ bx from t h e a t t r i b u t e v a r i a b l e

METHOD ;

METHOD: W-ATTRIB (a t t r i b a d d r --)

\ Change t h e i n i t i a l i z i n g a t t r i b u t e
SWAP 100 * SWAP WSIZE 4 * + !

METHOD;

METHOD: W-EXEC (dx c x bx a x --)

\ Execute t h e window f u n c t i o n
regAX ! r egBX ! regCX ! regDX ! 10 INT86

METHOD ;

METHOD: W-CLEAR \ I n i t i a l i z e t h e window
WPAR@ 0600 W-EXEC

METHOD ;

METHOD: W-UP \ S c r o l l t h e window up
WAR@ 0601 W-EXEC

METHOD ;

METHOD: W-DOWN \ S c r o l l t h e window down
WAR@ 0701 W-EXEC

METHOD ; (Figurs continues.)

January 1992 February 38 Forth Dimensions

pigum Eleoen, continued.)

METHOD: W-GOTOXY (x y a d d r --)

\ C u r s o r a d d r e s s i n g w i t h i n t h e window
UPPERLEFT IN RECT D+ GOTOXY

METHOD ;

METHOD: W-HOME (addr --)

\ Move c u r s o r t o t h e window home p o s i t i o n , u p p e r l e f t
UPPERLEFT IN RECT GOTOXY

METHOD;

METHOD: W-LLC (a d d r --)

\ Move t h e c u r s o r t o t h e l o w e r l e f t c o r n e r o f window
WSIZE + DUP @ SWAP WSIZE + @ GOTOXY

METHOD:

METHOD: W-BORDER (a d d r --)

\ Draw a b o r d e r a r o u n d t h e window u s i n g IBM c h a r a c t e r set
DUP >R UPPERLEFT IN RECT R> LOWERRIGHT IN RECT
\ The window p a r a m e t e r s are now on t h e s t a c k
OVER 1+ 4 PICK
DO \ Do two sides

I 3 PICK 1- GOTOXY OC4 EMIT
I OVER 1+ GOTOXY OC4 EMIT

LOOP
DUP 1+ 3 PICK
DO \ Do t h e o t h e r sides

OVER 1+ I GOTOXY OB3 EMIT
3 PICK 1- I GOTOXY OB3 EMIT

LOOP

Forth Dimensions

OVER 1+ 3 PICK 1- GOTOXY OBF
3 PICK 1- OVER 1+ GOTOXY OCO
1+ SWAP 1+ SWAP GOTOXY
1- SWAP 1- SWAP GOTOXY

METHOD ;
DECIMAL

EMIT (u r c)
EMIT (l l c)
OD9 EMIT (l r c)

ODA EMIT (u l c)

community for whom re-
usability of code is not
important.. .." "Forth has
acquired an unfortunate
reputation as being highly
non-portable, and GB's
comments serve to rein-
force this impression."
". . .throw away time and
effort needed just for a
marginal gain in execu-
tion speed.. .."His [GB'sl
work does not require
portability.. ." "No stan-
dardis needed
who plan to ignore it any-
how ..." "... ER and GB's
responses add unfortu-
nate confimation to the
suspicion that the MI
team is writing a new

'Ian
to pas Off as "*'"

misunderstand the motives
and actions of the TC.

Simply stated, again, my
understanding of John
Wavrik's position is that to
him Forth means (and I pre-
sume he believes it was in-
tended to mean) a static,
open implementation model.
For example, he considers
that Forth includes a word
spelled DOCOL that, when
executed, returns a value that
can be passed to , (comma)
with specific and well-de-
fined meaning having to do
with the creation of a body of
executable code. He also
believes that Forth includes
words spelled ?BRANCH and
OBRANCH that are, and I
gather must be, used in
implementing control-flow

ANSI team is dominated
by people who do not
place much value on
portability-and Greg
Bailey says as much."

These and many similar
passages from recent
postings of John's serve to
create, by repetition, the er-
roneous impression that
members of the TC, includ-
ing myself, have little or no
interest in portability or reus-
ability of code and are doing
grievous harm to what John
sees as Forth. In fact, this is
an erroneous interpretation
of at least my position, and I
Pmume that the '00' of the
problem is that at least until
the semantic issue I men-
tioned on 16 August is dari-
fed, John will continue to

words. He feels likewise
about the existence, and
likewise about a method of
implementation that should
be guaranteed to work, for
LIT. John, am I misstating
your position here at all? I
don't think I misunderstand
you. What I have heard you
say b e f o ~ is that you don't
really care what it is, but
whatever it turns out to be
you want it all (i.e., you
really strongly desire a stan-
dard that prescribes an
implementation-whether
you draw the "architectural"
boundary there or not-at
least completely enough that
you know and can manipu-
late the executable text of a
colon definition; that you
krww and can manipulate
the structure of the dictio-
nary; and so on). My under-
standing of your position is
that a laudable standard could
be formed by taking virtually
anygood implementation of
Forth, documenting the
whole thing, and saying that
standard Forth must be
implemented in this way on
all computers.

Before I reply in detail to
your postings, I think it would
be useful to refine with you
the above paragraph as
needed, so that what we
have is a concise but accu-
rate statement of where you
draw the line.

At the same time, so that
we can all calibrate your sen-
sitivity to the performance
one may expect of an ap-
plication written in Forth, I
would like to know what
you mean by "marginal gains
in speed." For example, is a
lox performance improve-
ment on a given CPU mar-
ginal to you? Readers of these
postings might erroneously
conceive, for example, that
the architecture-independent
definition of Forth we have
tried to write in the dpANS
was undertaken for no other
reason than to permit imple-
mentations that shave a few
percent off execution speed.
Nothing could be farther from
the truth.

I

January 1992 February

I still feel that we are
debating semantics and
would like, if possible, to
partition the argument into
two issues: (1) the merits of
architecture independence
vs. prescribed implementa-
tion methods, and (2) spe-
cific things you would like to
do in a portable way but feel
it is impossible to do in terms
of the dpANS. If possible, it
would also help if items in
this latter category were
identified as to their portable
feasibility in terms of Forth-
79 or Forth-83.

As a final point for this
posting, my several anec-
dotes about Chuck Moore
were not intended to de-
value portability or reusability
of code. I was insteadtossing
them out because it seemed
to me that John considered it
selfevident that Forth was
conceived to be what he
wants it to be. This struck me
as curious since, for as long
as I have been pahcipating
(since the end of 1979, the
inventor of Forth and those
who have worked with him
have continually been de-
veloping its architecture to
increase the breadth of its
applicability. Obviously, this
develo~ment could have

Figure Twelve. Completed definition of text window object. I
HEX
CLASS WINDOW (xlr ylr xu1 yul --)

DATA
I , \ ul POINT

, \ lr POINT or RECTANGLE
700 , \ Additional attribute internal to window operations

METHODS
CLEAR M: DUP W-CLEAR W-HOME M;
DRAW M: DUP W-BORDER DUP W-CLEAR W-HOME M;
SCROLLUP M: DUP W-UP W-LLC M;
SCROLLDOWN M: DUP W-DOWN W-HOME M;
>XY (x y --) \ Move cursor to position x y in window

M: W-GOTOXY M;
ATTRIBUTE (attr --) \ Change window attribute value

M: W-ATTRIB M;
ASTEXT :: " Text Window" ;;
BUILD (xlr ylr xu1 yul --) DUP >R BUILD IN RECT

\ Reuse the previous definition
700 R> WSIZE 4 * + ! ;; \ Adddefault attribute

INHERIT
RECT

ENDCLASS
DECIMAL

The following demonstrates use of the text window objects:

30 10 5 5 WINDOW W1
70 15 40 7 WINDOW W2

1 70 23 10 21 WINDOW W3

: WDEMO
CLS DRAW W1 DRAW W2 DRAW W3
\ Window W3 now active for text entry.

been aks ted at any point to
produce a frozen model that
I believe would have the
properties John seeks. This
does not mean that our a p
plications lack practical
portability or reusability. It
d&, however, mean that,
to the extent that those appli-
cations exploited the pro-
cessor or the characteristics
of the implementation, h y
would need attention when
dusted off.

From: Greg Bailey
Iohn Wavrik writes on 2s

Aug' 91 that Mitch's account
of events with user-defined

faded
mention that does not
endorse, nor has he ever

the approach lhat
has been taken in area
by the ANSI team.

It would be
for John to amplrfy on this
January 1992 February

." We will scroll the left window up"
0 1 >XY W3 ." and the right window down."
0 BEGIN 1+

SCROLLUP W1 ." Line # " DUP .
SCROLLDOWN w2 ." Line # " DUP .

?TERMINAL UNTIL DROP
CLEAR W3 ." The demonstration is finished."
0 0 GOTOXY

,

negative opinion by stating
his reasons. It would also be
useful if John were to illus-
trate these ~ a s o n s with some
examples of things that can't
be done portably in terms of
the operators included in the
dpANS.

Usefulthingsthatcan'tbe
done are valid demonstra-
tions of weakness in the
standard, and will always be
interesting to the TC. How-
ever, the gefxral methods
documented in the dpANS

40 Forth Dimensions

(specifically of postponing
members of the basic con-
trol-flow wordset) were cho-
sen because they dowork on
the majority of systems; in-
deed, the major differences
between these systems had
to do with manipulation of
items on the compile-time
control-flow stack, and these
differences have been ad-
dressed with operators to
manipulate them. Con-
versely, "justusing ?BRANCH
and OBWCH" will notwork

on many systems, because
many systems lack these
words. Indeed, some, such
as the Novix and Harris chips,
and microcoded or native
code implementations, have
no place for those words. o n
the other hand, [COMPILE]
IF or POSTPONE IF does in
fact cover the bases in such
cases.

The TC believes that the
ability of a Forth program-
mer to compose control

(continues onpage 42.)

HARVARD SOFTWORKS
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

/ MEET THAT DEADLINE I I I

Use subroutine libraries written for
other languages! More efficiently!
Combine raw power of extensible
languages with convenience of
carefully implemented functions!
Yes, i t is faster than optimized C!
Compile 40,000 lines per minute!
Stay totally interactive, even while
compiling!
Program a t any level of abstraction
from machine code thru application
specific language with equal ease
and efficiency!
Alter routines without recompiling!
Use source code for 2500 functions!
Use data structures. control
structures, and interface protocols
from any other language!
Implement borrowed feature, often
more efficiently than in the source!
Use an architecture that supports
small programs or full megabyte
ones with a single version!
Forget chaotic syntax requirements!
outperform good programmers
stuck using conventional languages!
(But only until they also switch.)

HWFORTH with FOOPS - The only
full multiple inheritancd
interactive object oriented
language under MSDOS!

Seeing is believing, OOL's really are
incredible a t simplifying important
parts of any significant program. So
naturally the theoreticians drive the
idea into the ground trying to bend all
tasks to their noble mold. Add on
OOL's provide a better solution, but
only Forth allows the add on to blend
in as an integral part of the language
and only HSIFORTH provides true
multiple inheritance & membership.

Lets define classes BODY, ARM, and
ROBOT, with methods MOVE and
RAISE. The ROBOT class inherits:

INHERIT> BODY
HAS> ARM RightArm
HAS> ARM LeftArrn

If Simon, Alvin, and Theodore are
robots we could control them with:
Alvin 's RightAnn RAISE or:
+5 -10 Simon MOVE or:
+5 +20 FOR-ALL ROBOT MOVE

The painful OOL learning curve
disappears when you don't have to
force the world into a hierarchy.

WAKEUP111 HSlFORTH runs under MSDOS or
PCDOS, or from ROM. Each level includes

Forth is no longer a language that
tempts programmers with "great
expectations", then h s t r a t e s them
with the need to reinvent simple tools
expected in any commercial language.

HWFORTH Meets Your Needs!

Don't judge Forth by public domain
products or ones from vendors
primarily interested in consulting -
they profit from not providing needed
tools! Public domain versions are
cheap - if your time is worthless.
Useful in learning Forth's basics, they
fail to show its true ~otential. Not to
mention being s-1-o-w.

We don't shortchange you with
promises. We provide implemented
functions to help you complete your
application quickly. And we ask you
not to shortchange us by trying to
save a few bucks using inadequate
public domain or pirate versions. We
worked hard coming up with the ideas
that you now see sprouting up in other
Forths. We won't throw in the towel,
but the drain on resources delays the
introduction of even better tools. Don't
kid yourself, you are not just another
drop in the bucket, your personal
decision really does matter. In return,
well provide you with the best tools
money can buy.

The only limit with Forth is your
own imagination!

You can't add extensibility to fossilized
compilers. You are a t the mercy of
that language's vendor. You can easily
add features from other languages to
HWFORTH. And using our automatic
optimizer or learning a very little bit
of assembly language makes your
addition zip along as well as in the
parent language.

Speaking of assembly language,
learning it in a supportive Forth
environment turns the learning curve
into a light speed escalator. People
who failed previous attempts to use
assembly language, conquer i t in afew
hours or days using HSE'ORTH.

WINTER SALE >>>

all features of lower ones. Level upgrades:
$25. plus price difference between levels.
Source code is in ordinary ASCII text files.

HSIFORTH supports megabyte and larger
programs & data, and runs as fast as 64k
limited Forths, even without automatic
optimization -- which accelerates to near
assembler language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminate
headers without recompiling. Compile 79
and 83 Standard plus F83 programs.

PERSONAL LEVEL $299.
NEW! Fast direct to video memory text
& scaled/clipped/windowed graphics in bit
blit windows, mono, cga, ega, vga, all
ellipeoids, splines, bezier curves, arcs,
turtles; lightning fast pattern drawing even
with irregular boundaries; powerful
parsing, formatting, file and device 110;
DOS shells; interrupt handlers;
call high level Forth from intenupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file search paths; format to strings.
software floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4 words,
1..4 dimension var arrays; automatic
optimizer for machine code speed.

PROFESSIONAL LEVEL $399.
hardware floating point - data structures
for all data types from simple thru
complex 4D var arrays - operations
complete thru complex hyperbolics;
turnkey, seal; interactive dynamic linker
for foreign subroutine libraries; round
robin & interrupt driven multitaskers;
dynamic string manager; file blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $499.
Metacompiler: DOSIROWdirectlindirect;
threaded systems start at 200 bytes,
Forth cores from 2 kbytes;
C data structures & strud+ compiler;
Turbowindow-C MetaGraphics library,
200 graphidwindow functions, PostScript
style line attributes & fonts, viewports.

ONLINE GLOSSARY $ 45.

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

FOOPS+ with multiple inheritance $79.
TOOLS & TOYS DISK $ 79.
286FORTH or 386FORTH $299.

16 Megabyte physical address space or
gigabyte virtual for programs and data;
DOS & BIOS fully and freely available;
32 bit addreadoperand range with 386.

ROMULUS HS/FORTH from ROM $99.

Shippingkyatem. US: $7. Canada: $19.
foreign: $49. We accept MC, VISA, & AmEx

Free Online Glossary plus Tools & Toys
Disk with all systems.
Free 286FORTH (also for 386) with all
Professional and Production level systems.

Forth Dimensions January 1992 February

NGS FORTH
A FAST m m ,
OPTIMIZED FOR W E IBM
PERSONAL COMHITER AND
MS-IXIS COMPATIBLES.

STANDARD FEATURES
INCLUDE:

a79 STANDARD

indeed, were not particularly encour-
aged, nor were they anywhere near
universally supported; and that there
was no practically portable way for
users to implement control svuctures
without depending on intimate knowl-
edge of the intermediate database used
bv each system. Anvone with evidence
rd contradict this beiief is encouraged to
demonstrate problems during the re-
view period.

I From: Elizabeth Rather

@DIRECT 1/0 ACCESS 1 TO:JOh" wavrik
Re: "Traditional Forth"

@FULL ACCESS TO E-DOS
FILES AND FUNCTIONS

@ENVIRONMENT SAVE
& LOAD

Thank you for your very clear dis-
course defining what you mean by that
term. I would like to urge you, however,
to try to find a better adjective than

I "traditional," because that implies a heri-
@MULTI-SEGMENTED FOR
LARGE APPLICATIONS tage, ancestry, and universality that re-

ally isn't justified. For example, the
@EXTENDED ADDRESSING 1 xBRANCH words you mention were in-

.MEMORY AI;LC)CATION
CONFIGmABLE ON-LINE

.AUTO LOAD SCREEN BOOT

@LINE & SCREEN EDITORS

@DECOMPILER AND
DEBUGGING AIDS

08088 ASSEMBLER

.GRAPHICS & SOUND

@NGS ENHANCEMENTS

@DETAILED MANUAL

@INEXPENSIVE UPGRADES

@NGS USER NEWSUTCEFt

A CrmPLGTE FORTH
DEvEw)PMENT SYSTEM.

PRICES START AT $70

NEW*-150 & -110
VER8ION8 AVAILABLE

troduced in Forth433 as an experimental
wordset (by Kim Harris, I believe), and
systems that maintained an allegiance to
Forth-79 would not have used them. So
you might say that "some" or even
"manyn implementations work that way,
but prior to Forth-83, msystems worked
that way that I am aware of; and it was
not, by any means, universally adopted
afterwards. You may feel that this is
unnecessary quibbling over an adjec-
tive, but it is an adjective that has value
judgements associated with it, too, and
inappropriate use of it introduces heat
into what shouldbe a logical discussion

Along the same lines, use of "as-
sembling" to describe laying down
material for the Forth engine to process
obfuscates more than it enlightens, be-
cause it directs the reader's thoughts to
machine code. That was what I was
"hogwash-ingn a t

Now. I'll leave it to Mitch to tell vou

NEXT GENERATION SYSTEMS
PoOoBOX 2987
SANTA CULRA, CA. 95055
(408) 241-5909

January 1992 February

how to .write portable literals in h S
Forth, because he does that sort of thing
so well, and concentrate on the principles.

The TC considered including the
xBRANCH words, but left them out be-
cause those of us who were familiar with
a lot of systems (Martin Tracy, in par-
ticular) were able to show that, in faa,
they had not been implemented widely,
for some pretty good technical reasons.
Instead, we provided POSTPONE and
liberalized the use of structure words,
and finally introduced some lower-level
words (SO, STILL, e t ~) in the TOOLKIT
wordset Wil Baden was the principal

42

architect of our approach to handling
this, and although we've fine-tuned his
work somewhat, we think he did a great
job. The result is that you have a great
deal more power and flexibility by
using phrases such as POSTPONE ELSE
(for an unconditional forward branch)
than with the other words, because it is
required and simple to implement,
whereas the BRANCH tools were in vio-
lation of so many implementations that
there is no general expectation that it
can be there.

In fact, a number of us on the TC like
to use such techniques as you describe,
andbelieve thatANS Forth offers greatly
improved power and flexibility in these
areas while additionally taking steps to
improve portability of these techniques
onto direct-compilation systems, Forth
chips, and 32-bit systems. I guarantee
you that your strategies wouldn't have
worked on any of these! So the net
result is not only more programmer
power, but greater portability.

From: L. Zettel
Pardon me while I pick a few nits.

Now that we are agreeing, for the time
being, that "traditional Forth" is the
Forth described by Brodie and by Kelly
& Spies, I thought it would be enlight-
ening to look up LIT in the indices of
these books. Very interesting. Kelly &
Spies (p. 320) give the definition:

: LITERAL
STATE @
IF COMPILE LIT
, THEN ; IMMEDIATE
Brodie, second edition offers I

: LITERAL (n --- 1
COMPILE (LITERAL)
, ; IMMEDIATE
Sigmfkantly (to my mind), ner'ther

offers a definition of LIT or (LIT-
ERAL) .
From: John Wavrik
Re: mJ14 Holding Pattern Here

Elizabeth Rather writes,
"The disagreement between you and
the committee is not 'who wants
portability' but how portabiliiy is
achiewd. We believe it can most
usefully be achieved by defining the
behavior of Forth words, and you'd
prefer to see their implementation
standardized."

Actually, the disagreement hinges
more on what Forth is capable of
doing--or how powerful and flexible
the language should be.

Forth Dimensions

This is probably the main
source of disagreement. It
might stem from a difference
in view of what the Forth
language is, has been, or
could become. It might stem
from a willingness to mde
away capabilities of Forth to
achieve harmony among
vendors. It might stem from
a disagreement aboutwhat it
should be possible to do
portably.

My claim is that Forth has
traditionally been a language
which allows the user to build
major language features.
(There is a Forth literature
discussing variant methods
for doing local variables,
exception handling, adding
object orientation, etc.) Forth
has been a toolkit for build-
ing application-oriented lan-
guages. The ANSI team is
heading in the direction of
including some important
features (local variables, ex-
ception handling, etc.) but
moving the ability to build
such things.

There are several other
points of disagreement-
most notably those having to
do with clarity of definitions
and simplicity of action.
Words whose meanings can
be interpreted differently by
different irnplementors are
useless for portable pro-
gramming. The best tools
available should be used to
make the actions clear. Empty
abstraction should be
avoided-the actions of
words should be as simple
as possible. There are irnpor-
tant aspects of the character
of traditional Forth (simplic-
ity, access, comprehensibil-
ity, etc.) that should be pre-
served.

7bm is no disagreement
at aU about describing Fotth
wora3 in teyms of their be-
havior. This is how Forth
words have always been
described (On most systems,
the lowest-level words have
always been implemented
in machine language, so it
has never been possible to
standardize their implemen-
tation.)

Forth Dimensions

In this regard, I should
mention that clarity of a de-
scription of behavior is im-
proved immensely if a glos-
sary entry is accompanied
by a sample definition. In the
Golden Days of Forth, this
was a way we old-timers
found helpful to convey the
intended behavior of a word
I realize that the young folk
have extreme prejudices
against doing sensible things
like this, so I'll just keep my
mouth shut and rock on the
porch here, looking through
my old copies of BY7E
magazine and generally
basking in nostalgia!

wages).
I really have never under-

stood arguments which pick
some limitations that make
other languages inflexible
and use that to suggest that
Forth should be equally in-
flexible.

From: John Wavrik
Subjea: Nostalgia???!!???

Elizabeth Rather writes,
"Our discussion of devia-
tions from the earliest days
to the present is intended
to point out that there has
never been such a golden
age, and that your nostal-
gia for it is, therefore. in-

any languages that de-
scribe how their data
structures are arranged in
memory, let along how
their code is arranged in
memory, which is what
you seem to expect of
Forth. ANS Forth pays a
great deal of attention to
describing data types, at
least as dearly as C, etc. It
also explicitly describes
(Section 5.4 in BASIS, 3.4
in dpANS-2) the regions
of memory that are ad-
dressable by a standard
program. Most high-level
languages don't let you
address memory at all. C
sort of does, via '~oint-

"Can't offhand think of

Somehow, I feel like I am
in the middle of the novel
1984, in which the establish-
ment had newspapers re-
written to show that certain
events never happened. Here
is what I remember:

When I became involved
with Forth, most computer
magazines had regular ar-
ticles on the language. BYTE
magazine devoted at least
one full issue to Forth (per-
haps more). Some magazines
had a Forth column. My fmt
course on Forth was taught
(by request) to 30 faculty and
staff members-including
representatives from the

-
(appropria&."

seemed magically to run on
others-and there was a
healthy exchange of appli-
cations and ideas. Magazine
ads offered a variety of utili-
ties (good editors, decompil-
ers, etc.). You didn't have to
j u s e your choice of Forth.

I am really trying to be a
good citizen-so I am trying
to believe with all my might
that this never happened (but
if it didn't, then why do I
have on the wall of my office
a poster of the BYE maga-
zine cover featuring Forth?).

We are losing sight of the
purpose of introducing this.
The way Forth is described
in the most popular texts
was quite common-which
is why the texts described it
as they did. One must re-
member that, if one is writ-
ing a general textbook for a
language (rather than a
manual for a particular dia-
lect), it is best to stick to
common practice. I have
chosen the name Traditional
Forth for this language be-
cause it is the form in which
Forth was realized in a great
many systems, from the ear-
liest times to the present.

Please note that there is
nothing in the previous
paragraphs that says there
were no variant systems.
There is nothing in the previ-

ers,'but poinkrs are still a
lot more abstract than ANSI is headed toward
Forth's addresses." including some important
Conventional languages

allow data structures only to
features, but removing the

be created by a limited set of I ability to build S U C ~ things ...
mechanisms built into the
languageand then impose
furtherlim~tati~ns on thesta-
tus of these structures (how
they be passed to fUnc-
tion% howoperatorsma~act
On them, etc.1. is one
the ~ a s o n s for using Forth-

Obvious l~ , someone
must decide how a data
structure is arranged in
memory~ how it is accessed, ' etc. In ~ o n ~ e n t i o ~ a l lan-
Wages$ it is the designer
thelanguage-InForth~ itcan
be the (who in a real
sense, the &signer of Ian-

43 January 1992 February

com pu te r center , who
wanted to be able to support
the hot new language. Forth
was the official language of
astronomy, and the Center
for Astrophysia and Space
Studies (CASS) was one of
the main groups using it at
UCSD. Several people at
Scripps Institute of Ocean-
ography also used the lan-
guage. I regularly received
requests about where to ob-
tain an implementation of
the language. Applications
written for one platform

ous paragraphs that casts
aspersions on the use of a
non-standard system for cer-
tain applications. There is
nothing in the previous
paragraphs that says that
everything that has been
done in the past in an at-
tempt to standardize Forth
was done perfectly.

I don't regard as nostalgia
an effort to call attention to
some extremely strong and
positive things that were
going on with the Forth lan-
guage at that time.

Contributions from the Forth Community
We are beginning to assemble a great collection of Forth code in machine-readable form.
If you need a good Forth, it is probably here.

Minimum-requirement Forths: PocketForth, PYGMY, eForth
The kitchen-sink Forths: F-PC, BBL
Complete starters: F83, Kforth, ForST
Object-oriented Forths: Yerkes, MOPS
Macintosh Forths: Yerkes, MOPS, PocketForth
IBM Forths: PYGMY, F-PC, BBL, F83, Kforth, eForth
Atari Forth: ForST
8051 Forths: 8051 ROMmable Forth, eForth
Graphic and floating-point Forths: Yerkes, MOPS, F-PC, Kforth

Forth tutorials: The Forth Course, F-PC Teach

Applications: Forth List Handler, Forth Spreadsheet,
Automatic Structure Charts, A Simple Inference Engine,
The Math Toolbox

Great demos from St. Petersburg: AstroForth and AstroOKO

(See the Mail Order Fom inside for more complete descriptions)

Yet to come:
Collections of tools and techniques are being assembled that cover communications, hardware

drivers, data analysis, and more math and numerical recipes.

Things we need or which are not currently available in machine-readable form:
Original listings of fig-Forth for any machine on disk. We do not currently have them.
We can use many more applications and application ideas that include source code.
Code from the authors of FORML papers and past Forth Dimensions articles.

Send submissions to: FIG, c/o Publications Committee, P.0 Box 8231, San Jose, CA 95155
L

Forth Interest Group
P.O.Box 8231
San Jose, CA 95155

Second Class
Postage Paid at
San Jose, CA

