$10 Volume Xill, Number 5

January 1992 February

3 H

o

o
R o I R

1 e, - ¥ _.1_'?:
g 8 .-!:..:'; g e T o #:-'
- e

s
. i i
ban i TR ER ity i o
':.h.-':"' T S i = i k| s e o]
P o S : : |
i .y

i

=

Foen T ks
] ;r'_f-?'_:g;_?‘;*.“‘“-1

;i

s

" SR
Ny TR o D]
& ol -
RS

o

SILICON COMPOSERS INC
Announcing the SC/FOX 1032 Board for FAST Forth 1/O

6.299 +.00, -.012

o200 000OOGS 00000 OGOGOGS
qj RS232 QE Tining PAL]
.......... d.........

RS232

..:.:0‘..0...........

[i
: e . l2v
i(s E‘
m

00000000 OGSC..... L]
arallel B&;t%ﬂ Decode PAL .o
[XXX TR N Y X l..‘.‘.’.‘ L X]

aw e w

S00000000 e *e .

(Emmlle(Bg‘t% oo 3

eseseeveee . o0 N
LR

. +

o

e

]

2

n

(.4
(3
: [4 0000006000000 06006000900000000000000000
.0...0...0....0............................0.... .
USA I

M SC/FOX IUGEj 1991 Siicon Composers, Inc Palo Alto, CA

SC/FOX 1032 Board Features Fast Data-Dispersion Program Example
The 1032 is a plug-on daughter board for either The program, SEND below, reads 1K blocks from a SCSI
the SBC32 stand-alone or PCS32 PC plug-in drive and transmits them out one of the 1032 board'’s four
single board computers. RS232 serial ports at 230K Baud. SEND uses only 1032
5 MB/sec SCSI Port. facilities. Disk read speed is limited by SCSI drive speed.

Attach up to 7 SCSI Devices.

4 RS232 Serial Ports, up to 230K baud.

16-bit Bidirectional-Parailel Port, may be

used as two 8-bit ports.

2 programmable counter/ftimers.

Prototyping area on board.

All bus signal brought out to pads.

Full Interrupt Support.

Two 50-pin user application connectors.

No jumpers, totally software configurabie.
Driver software source included.

Singie +5 Volt low-power operation.

Full ground and power plane.

4 Layer, Eurocard-size: 100mm x 160mm.
User manual and interface schematics included.
Low chip count (8 ICs) for maximum reliability.
Test routines for SCS|, parallel, and serial
ports supplied in source code form.

Plug together up to 6 1032 Boards in a stack.

For additional product and pricing information, please contact us at:
SILICON COMPOSERS INC 208 California Avenue, Palo Ao, CA 94306 (415) 322-8763

2 Forth Dimensions

ComiEmis

Features |

6 Yerk Comes to the PC
Rick Grehan

In many ways, the Apple Macintosh begs for object-oriented development tools; they were
provided by Yerkes Forth (originally marketed as Neon). The fortuitous fallout for users of the
PC and its segmented memory architecture is this first-place entry in the FD object-oriented
Forth contest. The author, technical director of BYTE Labs, provides an implementation that
is complete enough to let you explore OOF to your heart’s content.

23 Object-Oriented Forth
Roger Bicknell

Object-oriented programming relies on data abstraction, information hiding, dynamic
binding, and inheritance—and only a little work brings it to Forth. This allows one to focus on
objects and actions, without concern about internal implementation details. The intent here is
to reduce maintenance and increase productivity. The author, a Canadian electrical engineer,
provides an implementation compatible with Forth-83 that incorporates the use of vocabularies.

33 Simple Object-Oriented Forth
Clive Maynard

Forth already has the tools to create a simple object-oriented programming environment.
This article, code, and clear examples teach the concepts involved by focusing on the use of
defining and compiling words to create a syntax, rather than concentrating on performance.
'This educational approach is enjoyed by computer-engineering students in Australia, where the
author is a senior lecturer. Instance variables are not discussed here and only single inheritance
is supported; adding those and, perhaps, vectored method access, will fulfill your entrance
requirements to the universe of object-oriented programming.

Departrments
4 Editorial Objets d’Art
5 Letters........................ Marketing vs. Objectivity & Public-Domain Glut, We Must Not

Do Nothing, Forth on a Bathroom Scale—No Lightweight, The
Atari Lesson, QuikFind Addendum.

17 Forth Author Recognition Program

19 Bestof GEnie What is this language, Forth?

27 Advertisers Index

28 reSource Listings Updates to on-line Forth connections

Forth Dimensions 3 January 1992 February

Edlitekial
Objets d’Art

bject-oriented pro-
O gramming has been

slow to excite the col-
lective imagination of the
Forth community. It’s hard to
say why, because OOP and
Forth techniques seem very
congruous; each sheds light
on the other and suggests
further refinements. Maybe
Forth programmers wholook
at OOP do so supefficially,
seeing the easy parallels but
not the depth; or maybe we
unconsciously remember our
schoolteachers’ prohibitions
against passing messages in
a class...

This issue shows object-
oriented Forth from several
angles: we are pleased to
present the winners of FD's
object-oriented Forth contest.
They are Rick Grehan, Roger
Bicknell, and Clive Maynard.
Their names are listed in
order here, and our referees
were hard pressed to deter-
mine the final standings.
Different and more-or-less-
complete approaches to
implementing OOF are rep-
resented. There is some in-
evitable overlap in the tuto-
rial sections, but each article
contains its own particular
insights.

How you view and use
Forth will determine which
of the code in this issue you
will choose for experimenta-
tion. Look past the surface,
into the deeper implications
of object-oriented Forth, and
let us know what you find
there. We were unable to
publish all of the good mate-
rial submitted to this contest,

January 1992 February

so we hope to present more
in the future, along with the
results of your own OOF
explorations!

Due to the amount of
material generated by the
above-mentioned articles,
along with a lengthy and
revealing excerpt from the
on-line ANS Forth debate
(“Best of GEnie”), our usual
“reSource Listings” have been
postponed. A few updates
are included, though, and
the entire listings will reap-
pear soon.

Finally, welcome to the
new year, traditionally a
season of fresh beginnings.
(Time to back up your data

and reformat that hard disk.)
FD is exploring upgrade
options for coming issues,
including more items about
Forth-based solutions in ac-
tion, Forth news, press re-
leases and articles from
vendors and developers, and
a switch to wider text col-
umns. Along with, of course,
the fine technical fare FD
readers expect.

But this magazine does
not operate in a vacuum.
(Do I repeat myself?) New
articles and departments
come when someone is in-
spired (or convinced) to write
them. Press releases can get
published only if businesses
mail them. And developers’
work gets known after they
tell their peers about it. So
take advantage of your citi-
zenship in our virtual com-
munity. You mighteven give
an FD subscription (.e.,
membership in the Forth
Interest Group) to your boss,
company library, or co-
worker. As one of our letter
writers says this month, “We
must not do nothing.” That
would, after all, be doubly
negative.

—~Marlin Ouverson
Editor

dpANS Forth Released for Public Review

The Draft Proposed ANS Programming Language Forth
entered its official public review period in October. Copies
of the proposed standard may differ from development
versions (i.e., the “BASIS” documents), and can be purchased
from Global Engineering Documents, Inc., 2805 McGaw
Avenue, Irvine, California 92714. Ask for document #X3.215-
199x. From within the United States and Canada, call 800-
854-7179; from other countries, call 714-261-1455. The U.S.
price was to be $50 per copy; for international orders, $65 per

copy.

The public-review period extends from October 18,
1991 through February 25, 1992. Please send all com-
ments to X3 Secretariat/CBEMA, Attention: Lynn Barra, 311
First Street N.W., Suite 500, Washington D.C. 20001-2178.
Send a copy of your comments to American National
Standards Institute, Attention: BSR Center, 11 West 42nd
Street, New York, New York 10036.

Changes from Forth-83 include removal of ambiguities
and restrictions, numerous optional language extensions,
optional extensions for floating-point math, string handling,
programming tools, additions to facilitate porting programs
across disparate CPUs, and an optional interface between
Forth and operating systems like UNIX, VMS, OS-2, and MS-DOS.

Forth Dimensions
Volume XIll, Number 5
January 1992 February

Published by the
Forth Interest Group

Editor
Marlin Ouverson

Circulation/Order Desk
Anna Brereton

Fortk Dimensions welcomes
editorial material, letters to the
editor, and comments from its
readers. No responsibility is as-
sumed for accuracy of submis-
sions.

Subscription to Forth Dimen-
sionsis included with membership
in the Forth Interest Group at $40
per year ($52 overseas air). For
membership, change of address,
and to submit items for publication,
the address is: Forth Interest Group,
P.O. Box 8231, San Jose, California
95155. Administrative offices and
advertising sales: 805-946-2272.
Fax: 408-286-8988

Copyright © 1992 by Forth In-
terest Group, Inc. The material
contained in this periodical (but
not the code) is copyrighted by the
individual authors of the articles
and by Forth Interest Group, Inc.,
respectively. Any reproduction or
use of this periodical as it is com-
piled or the articles, except repro-
ductions for non-commercial pur-
poses, without the written per-
mission of Forth Interest Group,
Inc. is a violation of the Copyright
Laws. Any code bearinga copyright
notice, however, can be used only
with permission of the copyright
holder.

The Forth Interest Group
The Forth Interest Group is the
association of programmers, man-
agers, and engineers who create
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that
will advance the general state of
the art. FIG provides a climate of
intellectual exchange and benefits
intended to assist each of its mem-
bers. Publications, conferences,
seminars, telecommunications, and
area chapter meetings are among
its activities.

“Forth Dimensions (ISSN 0884-
0822) is published bimonthly for
$40/46/52 per year by the Forth
Interest Group, 1330 S. Bascom
Ave,, Suite D, San Jose, CA 95128.
Second-class postage paid at San
Jose, CA. POSTMASTER: Send ad-
dress changesto Forth Dimensions,
P.O.Box 8231, San Jose, CA 95155.”

Forth Dimensions

We want to hear from you!

Marketing vs. Objectivity
& Public-Domain Glut

I agree with many of the
points mentioned in “Sing-
apore Slingshot Targets FIG
Issues” (etters, FD XIII/4). 1
do not see anything wrong
with self-serving articles by
Forth vendors. 1 certainly
bope that FD readers are
mature enough not to need
to be “protected” from mar-
keting hype. Many success-
ful and well-respected trade
journals are full of articles
touting particular vendors’
products. So long as the
company affiliation of the
author is identified, I have
no problem distinguishing
an “objective” article from a
“marketing” article, and I read
both kinds with interest.

I'take issue with Mr. Tse’s
point number 19, in which
he suggests another “model”
system. In my opinion, the
last thing the Forth commu-
nity needs is Yet Another
Public-Domain Forth. There
are way too many public-
domain Forths already, and
creating another one will
further erode the ability of
the few Forth vendors that
are left to make a living. The
Forth community mneeds
profitable vendors, because
profits result in money that
can be spent on advertising
and marketing. Forth des-
Dperately needs visibility, and
like it or not, visibility results
from dollars spent on mar-
keting.

Furthermore, it is ex-
tremely unlikely that the ex-
isting Forth vendors who

Forth Dimensions

Feititelrs

Letters to the Editor—and to your fellow readers—are always welcome.
Respond to articles, describe your latest projects, ask for input, advise
the Forth community, or simply share a recent insight. Code is also
welcome, but is optional. Letters may be edited for clarity and length.

have managed to stay in
business for several years
would switch to the pro-
posed “super-duper” Forth
system.

Forth to the Future,

Mitch Bradley

Bradley Forthware

P.O. Box 44

Mountain View, CA 94040

‘We Must Not Do Nothing
Dear Marlin,

Forth is the artist’s lan-
guage. It allows us to tap the
computer’s true potentials
and create things of beauty—
beauty in simplicity, con-
ciseness, elegance, and
speed. Is there anything more
satisfying than creating a
powerful algorithm, which
does exactly what it is sup-
posed to do, using about
half-a-dozen words?

Forth has been around
for two decades now, and
many brilliant contributions
have been made by the Forth
community. Yet, despite the
sustained efforts of many,
there has been no wide-
spread recognition and use
of Forth.

Many explanations can
be found for this. However,
it does no good to speculate,
feel sorry for ourselves, orbe
righteously indignant, if this
doesn’t lead to improved
conditions.

Judging by recent FD ar-
ticles, such as last issue’s
President’s Letter (“I Have a
Dream™) and Mr. Tse’s letter
for the editor (“Singapore
Slingshot...”), I believe that
Forth is an idea whose time
has come. These letters ex-

5

press a desire to change
things for the better. I think
that most of us share that
sentiment.

The difference between
Forth fading into obscurity
and Forth becoming the
foremost innovative force in
the computer industry lies in
what we, as individual FIG
members, do about it. The
one thing we must not do is
nothing.

All of us have unique
talents that we can contrib-
ute to help Forth expand. Let
us, then—each of us—do
something, no matter how
small initially, to get the ball
rolling. By doing so, we will
eventually reap the rewards.
Imagine the satisfaction of
having our children or
grandchildren say, “Wow,
you were one of the guys
who put Forth on the map!”

Peter Verhoeff
P.O. Box 10424
Glendale, California 91209

Forth on a Bathroom
Scale—No Lightweight
Dr. Ting's letter to Mr.
Koopman (FD XIII/3) in-
spired me to share my feel-
ings about Forth and its fu-
ture.
A few years ago, I started
working at a thin-film circuit
startup. The boss like Forth.

conductor wafer, “leared”
from the operator, and
saved the test results to
disk.

* Write the operating soft-
ware, with a graphics in-
terface, for a custom semi-
automated, thin-film sput-
tering machine. Some
amount of artificial intelli- -
gence was used in this
project.

e Computerize a Dektak
film-thickness profiler.
Profiles were drawnin real
time on a CRT, and could
be zoomed in on, saved to
disk, etc. The operator
controlled the machine
with a mouse.

e Starting with a bathroom
scale, built an adhesion
tester that measured film-
to-waferadhesionstrength.
A computer displayed the
adhesion strengths in PSI
and Pascals.

¢ Geta Harris RTX-2000 Forth
engine interfaced to a lig-
uid crystal display and
drawing graphics.

Software development
with Forth was fast. I usually
had something coming to
life in a matter of hours.

Modifications were some-

times made practically in real

time, while the machines
were in production use.

Well, enough of the real-

It was a dream come true.
It was a nightmare.

Make that loved Forth.

Therefore, 1 was dragged

kicking and screaming into

whatturned out to be a really
great language. My only in-
struction came from Mr.

Brodie’s Starting Forth. (1

think Brodie deserves some

kind of award for his contri-
bution to Forth.) L had never
taken a computer course.
In my four years with the
company using Forth (first

F83, and later IMI Forth), 1

managed to:

» From scratch, build an au-
tomated wafer-probing
machine that tested hun-
dreds of points on a semi-

world applications of Forth.
At issue is, why does its
future look somewhat dis-
mal, and what does it need
to succeed?

1. It is reasonably well
marketed.

2. It has a professional
programming environ-
ment (vs. F83).

3. It is available in versions
with a street price under
$100.

When these requirements
are met, people are more
likely to spend the few dol-

(Letters continue on page 13.)

January 1992 February

Yerk Comes to
PC

the

Rick Grehan

Peterborough, New Hampshire

me time ago, I discov-
Sgred a Forth-based, ob-
ject-oriented program-
ming system for the Macin-
tosh called Neon. For what-
ever reason, Neon was dis-
continued. Recently, how-
ever, the language has reap-
peared in the public domain
as “Yerk,” largely due to the
work of Bob Loewenstein at
the Yerkes Observatory
(hence the new name).

I have always been im-
pressed by Yerk’s object-ori-
ented abilities. Though I
continue to work on the
Macintosh, I do enough in
MS-DOS that I began to wish
for something like Yerk on
the PC. So I wrote PCYerk, a

moderately complete dupli-
cation of the Yerk syntax for
the PC. I say “moderately”
because there are some Yerk
capabilities—not counting al
the Mac toolbox routines
Yerk has access to—that
PCYerk does not support.
I've written PCYerk using
Upper Deck Forth, a 16-bit
multisegmented Forth for PCs
running MS-DOS. It’s likely
that someone well-versed in
F-PC could easily port Yerk
to that system. T'll use this de-
scription of PCYerk as a ve-
hicle for introducing you to
some object-oriented concepts.

Objects and Classes
An object is a combina-

Guidelines discourage low-level
manipulation of an object’s
interior, except via messages.

Rick Grehan is a senior editor at BYTE
magazine, where he is the technical
director of BYTE Lab. He first encoun-
tered Forthover sevenyears ago when
developing a music synthesizer con-
trol system builtaround aKIM-1. Since
then, he has used Forth on 68000
systems (including the Macintosh), the
Apple Ui, and the IBM PC. He has also
doneextensive work on the SC32 stack-
based processor. Rick has a B.S. de-
gree in physics and applied math-
ematics, and an M.S. degree in math-
ematics/computer science.

January 1992 February

tion of code and data that
your program can treat as an
indivisible entity. The code
associated with an object is
really a collection of routines
that manipulate that object’s
data and allow that object to
interact with other objects in
the program, /O devices,
and other parts of the sys-
tem.

A class is a kind of tem-
plate for an object. The class
definition describes the me-
chanics of offspring objects,
and consists of two main
pieces: the methods (what
objects know how to do)

and the instance variables
(an object’s local data).

When you create an ob-
ject, we say that the object
has been instantiated: the
class template has forged
something real (as real as
any piece of code can get).
Once you have instantiated
an object, you can make
that object do things by
sending it messages. For-
mally, a message is com-
posed of two parts: a selector
and some attendant data.
The selector is an ID num-
ber that the object uses to
determine which method to
execute. In PCYerk, there’s
little difference between
message and selector. The
message is the selector; any
data is passed on the pa-
rameter stack.

In PCYerk, the defining
word for a class is :class.
Listing One shows the source
code fora simple class called
integer. Notice that the
class definition is bracketed
by :classand ;class (Il
explain the other parts of the
definition later). These two
words serve to encapsulate
the class definition.

Instance Variables

As I mentioned, instance
variables define the local
storage associated with an
object. If you look again at
Listing One, you'll see that
objectsof the class integer
possess a single instance var-
iable: localdata. The word
ivar expects a value ontop

of the stack that indicates the
number of bytes to be allo-
cated by the current instance
variable—whose name ivar
parses fromthe input stream.
Whenever you create an
object of type integer, the
system knows toallocate two
bytes of variable space.

Instance variable names
last only as long as the class
definition. In other words,
upon execution of the code
in Listing One, the symbolic
name localdata is dis-
carded (the word ;class
does this).

Messages and Methods

Objects of class integer
understand two messages,
get : andput :. Fachofthese
messages corresponds to a
method of the same name. I
can create an object of type
integerandstorea 12init
with:

integer myint

\ Create the object
12 put: myint

\ Send a put: message

As you've probably
guessed, I can retrieve the
contents of myint using the
get : message. The only way
a program can legitimately
manipulate the instance data
of myint is via get: and
put :.1say “legitimately” here
because a clever Forth pro-
grammer can manipulate
anything. Object-oriented
programming guidelines,
however, discourage low-
level manipulation of an
object’s interior except by
that object’s messages.

Sometimes you need an
object to automatically ex-
ecute 2 method when that
object is instantiated. A good
example would be an array
class whose initialization
method allocates space for
the array, then stores in an
instance variable the num-
ber of members allocated to
that array.

The PCYerk syntax for
setting an initialization
method is shown in Listing
Two, where I've defined a

Forth Dimensions

Listing One. Source
code for a simple class.

:class integer
2 ivar localdata

:m get: (-—n)
localdata @
;m

:m put: (n--)
localdata !

;s

;class

method called clear:,
which stores a zero in the
local data. You must place
the <<init-method word
prior to ;class.

" Listing Two also shows
the use of the self word.
This allows an object to ref-
erence itself in a method
definition. It’s as if the
clear: method were say-
ing: “Okay, object, here’s a
zero on the stack. Now send
aput : messagetoyourself.”

Inheritance

Inheritance is one of ob-
ject-oriented programming’s
big buzzwords. The concept
is simple enough: you start
with simple classes and build
on those to create classes
that are incrementally more
complex and specialized.
Each new dlass within an
inheritance chain carries all
the knowledge (i.e., meth-
ods and instance variables)
its ancestors carry.

Forexample, supposeI've
defined a class called
ldarray that allows you to
create a one-dimensional
array. Objects of this class
would have methods to allo-
cate array space, store a value
to an index location, and
retrieve a value from an in-
dex location,

Next, I define a class called
$ptr_array that manipu-
lates an array of string point-
ers. I want this new class to
know how to manipulate a
one-dimensional array
(something ldarray can
do), but it should also be
able to print a string. Inshort,
I want objects of the

Forth Dimensions

Listing Two.
Initialization and self-
referencing.

:m clear: (—--)
0 put: self
;m

clear <<init-method

$ptr_arrayclasstoinherit
the abilities of the 1darray
class, then add some string-
handling capabilities.

PCYerk provides inherit-
ance via the <super word.
Usage goes like this:

:class
$ptr_array
<super ldarray

which defines a new class
$ptr_array whose super-
class is the class 1darray.

The <super word does
a number of things. First, it
stores a link in the class-
definition header. This link
points to the class-definition
header of the superclass.
‘Whenever an object receives
a message, that object first
searches its class’'s methods
list. If it can’t find the method
corresponding to the mes-
sage, the system follows the
superclass link and searches
the superclass’s methods list.
This process continues until
eitherthe method is found or
all classes on the chain have
been searched. Such are the
mechanics of methods in-
heritance. (Notice that, since
the search takes place for
local methods first, an object
can redefine an inherited
method.)

Next, <super initializes
the class’s instance variable
space accumulator with the
amount stored in the
superclass’s. In other words,
a class inherits the instance
variable space requirements
of its superclass.

Finally, <super sets the
class’s initial method to the
initial method of the super-
class. The class inherits its
superclass’s initial method.
As described above, you can
override that initial method
with the <<init-method

word.

Inheritance is the basis
for polymorphism, yet an-
other piece of object-oriented
jargon. Polymorphism means
that different offspring of a
given superclass respond to
the same message selector
differently. I might define a
subclass of integer called
integer_array. An in-
teger objectwould respond
to the get : message by re-
trieving the value in the single
instance variable. Meanwhile,
an object of class
integer_array would re-
spond to the same message
by retrieving an index value
from the stack and fetching
the appropriate array ele-
ment. Same message selec-
tor, different action.

Binding

Binding is the process of
taking a message’s selector
and determining the execut-
able address (i.e., the
method) associated with that
selector. Of course, the
method depends on the ob-
ject class you're sending the

message to. There are two
kinds of binding: early bind-
ing and late binding.
You've already seen early
binding; it looks like this:

get: my_integer

which retrieves the contents
of my integer. The sys-
tem knows the message
(get:) and the object
(my_integer) and can,
therefore, locate the execu-
tion address of the method
corresponding to the mes-
sage at compile time.
(Internally, when the
system encounters a mes-
sage selector name, it places
a 16-bit ID number on a
special stack called the
method stack, or mstack
for short. When it encoun-
ters an object name, the
system places the object’s
address on another special
stack, the object stack—
ostack—and transfers
control to the word exec-
ob3j, which pops the mstack
and performs the binding.
While the method executes,

CONSULTANTS

<|B<R, a national consulting firm,
has Forth assignments in the Denver area.
If you are looking for a change,
and the Rocky Mountains appeal to you,
please give us a call
or send your resume to:
<B<R
Recruiter
4100 E. Mississippi Ave., Suite 1710
Denver, CO 80222
(303) 691-2273

January 1992 February

instance variables can re-
solve their addresses by cal-
culating offsets from the
object address on the
ostack.)

late binding is also re-
ferred to as deferred bind-
ing. In simple terms, it means
the system doesn’t know
what object you're going to
send a message to. Hence,
the system can’t bind the
message to an execution
address at compile time.

Here’s an example of
PCYerk’s late binding:

get: { integerobj @ }

Here, I'm assuming that
the variable integerobj
holds an object’s address. At
compile time, there’s no way
the system can know what
objeawillbein integerobj
when the program executes.
The system must, therefore,
determine the execution ad-
dress of get : at run time.

The words to handle late
binding are { and }. (Yerk
used { and], butthose words
were already taken in UD
Forth.) The curly brackets
should immediately follow
the message, and may en-
close any Forth expression
that yields an object’s ad-
dress.

Of course, late binding
yields code that runs more
slowly than code using early
binding. This is because late
binding defers until run time
processing that would have
been performed at compile
time.

late binding lets you—
with only minor additional
programming—bypass one
of PCYerk’s deficiencies:
namely, that you define all
instance variables using the
ivar word. You cannot use
an object as an instance vari-
able. Suppose you've defined
a class called 1darray that
lets you build one-dimen-
sional array objects, and a
class called polygon that
builds polygon objects. It
would be nice to have a
ldarray object as one of
the instance variables of the

January 1992 February

Figure One. Class header structure. —I

Tokens
Segment

>

ly

IVAR space

Variable
Segment

sse|)

class pointer

previ

methods pointer

: | ©
start selector class pointer | &
) 0
instance Q
variables
next
method pointer
selector 5
@
=1 -4
method code 513
B*g
a
Listing Three. Building a headeriess object.
:class polygon <super object
2 ivar “vertex list
\ Allocate space for vertex list
:m init: (n --)
2% \ 2 coordinates per vertex entry
here dup “vertex list ! ['] ldarray >body @
instantiate
;M
init: <<init-method
i ->vertex: (yxi--)
2% \ Index * 2 for x and y coordinates
tuck \ Get a second copy of the index
to: { ~vertex list @ } \ Store x
1+ \ Advance index to next slot
to: { ~vertex list @ } \ Store y
;m
;class

Forth Dimensions

Listing Four. PCYerk source code. J

PCYerk

Object-oriented extensions to Forth

a la Yerk (once, NEON)

Written for Upper Deck Forth, version 2.0
R. E. Grehan

T PPl el ey

Sorry, I can't stand "then"
endif [compile] then ; immediate
\ % K % J Kk Kk k Kk Kk k ok kk
\ ** STORAGE **
\ %k Kk Kk Kk kK Kk k ok kk
34 Svariable tstring \ Used in parsing names

\ Method stack

20 constant METH_STACK SIZE

create mstack
METH_STACK_SIZE allot

\ Objects stack

20 constant OBJ_STACK_S IZE

create ostack
OBJ_STACK_SIZE allot

\ Instance variable names segment

variable ivar_seg \ Segment

20 constant IVAR _SEG_SIZE \ Segment size in paragraphs
variable ivar next \ Offset to next free loc.

\ Methods names segment
variable methname_seg

100 constant METHNAME SEG_SIZE
variable methname_next
variable curr meth#

variable my meth#

Segment

Segment size in paragraphs
Offset to next free slot
Current method #

P i

\ Class definitions

variable curr_class_ off \ Offset to current class
variable curr_meth_tail \ Current method tail

\ AAKAKXAAAKAAKA XA XA A Ak kA kA khkAkk*k

\ ** METHOD AND OBJECT STACKS **

\ Akkhkhkkkhkhkhkkhkkkhkhkkhkhkkhkhkhkkhkkkkkk

\ NOTE: Neither stack do any bounds checking (for speed's

\ sake). If bounds checking is added, the stack manipulation
\ words should be written in machine language.

\ Initialize the method stack...stores selector ids

: mstack-init
mstack dup !

(==

\ Push top word onto method stack
: mpush (n--)
mstack @ 2+ !
2 mstack +!

\ Save item
\ Increment

~

\ Copy top of mstack to dstack
: mstack->dstack (-—- n)
mstack @ @

(Listing continues.)

Method # about to be defined

Forth Dimensions 9

polygon class. Then you
could store the polygon’s
vertex list into the one-di-
mensional array object.

It turns out you can do
this by defining one of the
polygon’s instance variables
to be a pointer to an object of
class 1darray. Essentially,
you build a headerless ob-
ject; that is, one that does not
have a head in the Forth
dictionary. The word in-
stantiate will build such
a headerless object. All in-
stantiate needs on the
stack is a starting address in
the variable region (where
the new object will go) and
a pointer to the class defini-
tion. The code showing this
technique is in Listing Three
(which presumes thatyou've
defined the 1darray class
already).

Notice that I've defined
init: to multiply the num-
ber of vertex entries by two,
since the vertex list will carry
an x and y coordinate for
each vertex. The next line
stores the address of the next
free location in the variable
segment into
“vertex_list, which be-
comes a pointer to our one-
dimensional array. I thenuse
['] to retrieve the code ad-
dress of the 1darray class,
then fetch the address of that
class definition. The in-
stantiate word actually
creates the array. Keep in
mind that, when instan-
tiate executes, the
ldarray object's initial
method—which allocates the
memory space—will be ex-
ecuted.

Now we can store an x
and y coordinate into the
ldarray object using a
method called to:, which
we've presumably already
defined for the ldarray
class. You can extend this idea
as far as youd like to go,
creating pointers toobjects with
pointers to objects, and so on.

Nuts and Bolts
Refer to Listing Four, the
complete source for PCYerk.
The heart of PCYerk is

January 1992 February

:class. The :class word
uses a nested create ..
does> structure—the kind
that makes my head hurt
whenever 1 have to think
about it. At compile time,
:classbuildsa class header
structure as shown in Figure
One.

I have to take a moment
here to describe something
of the structure of UD Forth,
Being on the IBM PC, UD
Forth has a segmented archi-
tecture. Executable code re-
sides in the code segment,
variables are stored in the
variables segment, threading
pointers are kept in the to-
kens segment, and names
are kept in the headers seg-
ment. Names built using
Forth’s create word return
a pointer to a parameter field
in the variables segment,
hence the class pointer in
that segment for a class defi-
nition.

The first field in the
header—ivar space—tells
the system how much space
to set aside for instance vari-
ables when an object is cre-
ated. The second field is the
head of a linked list that
connects all the methods for
a particular class. Next comes
the superclass pointer field,
which is set by the <super
word, and which provides
the means by which a class
inherits methods from its su-
perclass. The last word of the
class header is the start selec-
tor; itidentifies which method
will be automatically ex-
ecuted when you create an
object.

Objects carry execution
addresses defined by the
code following the second
does>in :class. Whenyou
send an object a message,
the system follows the pointer
to the class header, then
searches down the methods
listchain (as described above)
to determine what code to
execute. Notice that the code
for a method is absolutely
headerless; a method doesn't
even possess code field ad-
dresses. A special word—
(domethod)—executes a

January 1992 February

(PCYerk Listing Four, continued.)

\ Pop top word from method stack
: mMpop { - n)
mstack->dstack
-2 mstack +!

\ Fetch
\ Decrement

\ Initialize the object stack
: ostack-init (—-)
ostack dup !

~.

Push top word onto object stack
opush (n ~--)

ostack @ 2+ !

2 ostack +!

e

\ Save item
\ Increment

\ Copy top of ostack to dstack
: ostack->dstack (-- n)
ostack @ @

\ Pop top word from object stack

opop { ——n)
ostack->dstack \ Fetch
-2 ostack +! \ Decrement
\ Dup top of object stack
: odup (——)
ostack->dstack \ Fetch top
opush \ and push

\ Drop top of object stack

odrop (-—-)
opop drop
\ Clear both stacks.
\ Use this if something aborts and you don't want the
\ stacks growing forever.
: clear-o&mstacks
ostack~init
mstack-init
\ % e Kk Kk %k %k Kk ok kKoK ok ok ok ok ok ok ok ok ok ok ok
\ ** TEMPORARY SEGMENTS *xx
\ % & J dk Kk % %k %k k% ok Kk ok ok ko Kk k ok ok ke ok ke ok
\ The method names and instance variable names are kept in
\ temporary segments. These segments are allocated
\ from DOS. When you're done defining things and
\ its time to make an executable, just free those
\ segments. (The word ‘'end-objects', defined later,
\ does all that.
\ Compare two counted strings. segl addrl, seg2 addr2 point to
\ segment and addresses of two strings with preceding count
\ bytes. Returns 0 if equal, else nonzero

ccompl (segl addrl seg2 addr2 -- n)
\ First check byte counts
countl >r 2swap countl r@ =

10 Forth Dimensions

~a

w o

~.

O

~.

Pl P P e

.
’

if r> compl
else 4drop r>drop 1
endif

\ Show mismatch

Advance to next item past the current counted string.
seg:addr points to counted string. Takes into account
trailing integer.

nextstr (seg addr -- seg addr')

countl + 2+

Search one of the temporary segments.
segl:addrl points to string to search for
seg2 is temporary segment to search

max is maximum current offset in segment.

n is returned associated integer; -1 means
the string was not located.

search-tseg (segl addrl seg2 max -- n)

dup \ Anything to look for?
if
>r \ Save max
0 \ Start search at zero
begin
2over 2over \ Dup seg/address
ccompl \ Look for match
0=
if 2swap r> 3drop \ Clear stack
countl + @1 \ Fetch value
exit
endif
nextstr \ Advance to next string
dup r@ >= \ Topped out?
until
r>drop \ Clear return stack
endif
4drop \ Clear stack
-1 \ Show error
* %
** Instance variable segment handling
* %

The ivar segment is a temporary region where the system
keeps a list of the current class definition's instance
variables. Each entry is composed of a length byte, the
name, and a 2-byte value that indicates that instance
variable's offset into an instance of the class

Allocate space for the IVAR segment.

Place the segment
in global variable ivar-seg

alloc-ivar_seg (--)

IVAR SEG_SIZE alloc

error \ Fetch error
if abort"™ Ivar allocation error"

endif

ivar_seg ! \ Save pointer

Clear the ivar segment
clear-ivar _seg (--)
0 ivar_next !

(Listing continues.)

\ Lengths match...try comparison

Forth Dimensions 11

method by mimicking the
run-time action of the colon
word. You pass (dometh-
od) the starting address of
the method code and it
handles the rest.

PCYerk does not create
standard Forth headers (4 la
create) for instance vari-
ables and methods. In the
case of instance varables,
you want their names to dis-
appear after the class defini-
tion. For method names, you
don’t want their names tak-
ing up header space, since
they are instantly resolved to
two-byte selector ID num-
bers.

PCYerk allocates two
memory blocks (using the
UDForthword alloc, which
provides access to the DOS
function for allocating a
memory segment): one to
hold instance variable names,
the other to hold method
names. Each name stored in
one of these blocks is associ-
ated with an integer.

In the case of instance
variables, the associated in-
teger carries that instance
variable’s offset into the
object’s local data space. At
compile time, when the sys-
tem encounters an instance
variable, it looks up the
variable’s offset and com-
piles that as a literal, fol-
lowed by the word (ivar).
Atruntime, (ivar) takesthe
offset from the stack and
resolves that offset to an ad-
dress.

In the case of methods,
the associated integer is the
selector ID number. When
you define a new method's
name, the systemincrements
an internal counter and the
incremented value becomes
that method’s ID number.
This ensures a unique ID
number for each method.
(Yerkused a hashing method
to generate such ID num-
bers.1chose a separate route,
since the code for handling
instance variable names and
method names was so simi-
lar.)

But wait. If the system
puts method names and in-

January 1992 February

stance variable names in
these alternate segments,
how does Forth find those
names during compilation?
You have to patch inter-
pret.

InUDForth, interpret
first tries to find the word in
the dictionary. If that fails,
interpret tries to parse
the word as a number. If the
number conversion routine
can’t digest it, interpret
executes do-undefined
(which prints out the offend-
ing word and executes
quit.)I overwrite the call to
do-undefined to point to
<interp-patch>. The
<interp-patch> word
(see Listing Four) looks first
in the method segment, then
in the instance variable seg-
ment. If <interp-patch>
finds the word in either seg-
ment, it takes appropriate
action. Of course, <interp-
patch> ultimately falls
through into do-unde-
fined.

You have to execute
start-objects before you
begin defining any classes.
The start-objectsword
allocates and initializes the
instance variable and method
names segments, then
patches interpret and
clears the methods and ob-
jects stacks. Finally, when
you're ready to create a stan-
dalone application, execute
end-objects. This
repatches interpret toput
it back the way it was, and
releases the allocated
memory blocks (which are
unnecessary in the run-time
code.)

January 1992 February

(PCYerk Listing Four, continued.)

\ Given that addr points to a counted string that represents
\ an instance variable name, return the associated offset.
\ If you can't find that variable, return a -1.

search-ivar (addr -- n)

vars swap \ String is in vars segment
ivar_seg @ \ Search through ivars segment
ivar_next @ \ Max. to look for in ivar segment
search-tseg \ Search a temp. segment

addr points to a counted string that represents an instance
variable name. n is the offset to attach to that instance
variable. BAdd this name %o the 1list.

add-ivar (n addr --)

dup c@ >r

vars swap

ivar_seg @ ivar_next @

$!1

ivar seg @ ivar next @ r@ + 1+ !'1
r> 3 + ivar_next +!

.

Save byte count

Source address
Destination

Copy the string in
Store associated value
Advance next

Pl

* %

\
\ ** Methods name segment handling

\ k%

\ The methods segment looks a lot like the IVARS segment.
\ it holds the list of methods defined within the system.
\ Associated with each method name is a unique 2-byte

\ id.

\ Allocate space for the method name segment
: alloc-methname_seg (==
METHNAME SEG_SIZE alloc

error \ Fetch error
if abort" Methname allocation error"

endif

methname seg ! \ Save pointer

\ Clear the method segment
: clear-methname_seg (—)
0 methname next !

~

\ Search for a method in the methods segment. Return -1 if

\ not found. Else return method #

: methname-find (addr -- n)
vars swap \ String is in vars segment
methname seg @ \ Search through ivars segment
methname_next @ \ Max. to look for in ivar segment
search-tseg \ Search a temp. segment

\ Add a new method to methods segment. Associate n with that
\ method as the method's id

add-methname (n addr --)
dup c@ >r \ Save byte count
vars swap \ Source address
methname_seg @ methname next @ \ Destination
s \ Copy the string in
methname_seg €@ methname next @ xr@ + 1+ !1

\ Store associated value

12 Forth Dimensions

~e

r> 3 + methname next +! \ Advance next

\ % % Kk % K %k Kk Kk k Kk Kk kk kX
\ ** METHODS **
\ * % %k k Kk %k k k kkkkkkk
\ Methods are kept on singly-linked list. That list is anchored
\ in the class definition structure defined below. Each entry
\ on a method list looks like this:
\ Token segment
\ [link to next 1
\ [Method id #]
\ [...tokens]
\ Attach a new method to tail. addr on top of stack is assumed
\ to be pointer into token segment
: new-method-tail (addr --)
\ See if we are first method added. If so, attach to parent.
curr_meth tail @ ?2dup 0=
if dup \ Copy ourselves
curr class_off @ 2+
't
else over swap 't \ Fix link
endif
curr_meth tail ! \ We are new tail
\ (>super)
\ This routine looks 'up the chain' to an object's super object
\ Used when searching for methods to execute.
\ addrl is the current object's address in the token seg.
\ addr2 is the super object's address or 0 if none found
: (>super) (addrl -- addr2)
4 + @t \ Fetch the super object address
\ (domethod)
\ Following code word vectors execution to a method.
\ Assumes that the value on top of the stack is offset
\ into token space for the method.
code (domethod) (off --)
bp dec \ Make room on return stack
bp dec
si 0 [bp] mov \ Push IP
bx si mov \ Get method address in IP
bx pop \ Pop stack
next \ Take off!
end-code
\ domethod
\ Calls (domethod) and clears the object stack.
\ Off is the address of the method code.
: domethod (off -=)
(domethod)
odrop
\ (methid->addr)
\ Given a method id, this finds that method‘'s address in the
\ token segment. addrl is the address of the object (in the
\ token segment) whose method
\ list we'll search. addr2 is the method address, or 0 if the
\ method wasn't found.

(Listing continues.)

Forth Dimensions

13

(Letters, from page 5.)
lars to at least give it a spin.
Hobbyists will buy it. Small
companies will try it. The
word gets around.

At this time, the low-cost
versions of Forth are not at
all well marketed—if you
could say they’re marketed
at all. I have not used F-PC
yet, but [assume it fixes the
awful programming envi-
ronment of F83. How can we
expect people accustomed
to the pleasant Microsoft
Quick-x environments to
accept F83? The slick, pro-
fessional Forth versions are
just too expensive to be-
come popular.

The same two solutions
keep popping into mind: ei-
ther Microsoft QuickForth or
Borlund TurboForth. The
successes of the Quick/Turbo
BASIC, C, and Pascal pack-
ages speak for themselves.

Atthistime, lamleaming
C. I don't know if there’s
something wrong with me,
or if it's due to my Forth
experience, butI'm certainly
verydisappointed with the C
language. Compared to
Forth, C seems like a giant
step backward. So why
bother? To the “profession-
als” in the personnel depart-
ments, C is a recognizable
“hot” buzzword on a resume,
while Forth just looks like
you can't spell.

Finally, I hope the FIG
dues increase to $40 will not
be the death blow—but it
just might. It shouldn’t cost
$6.67 per issue to publish
Forth Dimensions. Maybe it's
time for a major re-thinking
of the structure of the group.

Sincerely,

Steve J. Noll

1288 Winford Avenue
Ventura, California 93004

The Atari Lesson
Dear Editor:

I notice two alarming
trends in my latest issue of
ED. 1) circulation has drop-
ped from an average 1934 to
1750, and 2) a vendor is
complaining about lack of
support/hostile publication

(Letters continue on next page.)
January 1992 February

rules. (Jim Callahan, Harvard
Softworks; FD XII1/4).

I believe 1) and 2) above
are related.Without aggres-
sive marketing (of both Forth
products and FD itself), all
previous creative efforts will
wither on the vine. The 240
million people in this coun-
try have a lot of demands on
their time. If Forth doesn’t
appear worth the effort,
people won't invest the time
to find out it is. Look at the
success of the C program-
ming community. As a dab-
bler in both languages, I can
vouch that there is no short-
age of public relations on the
C side

Therefore, I implore you
and your staff to listen to
these vendor complaintsand
take action. How aboutsome
articles comparing the vari-
ous hardware Forths (Silicon
Composers, etc.). How about
articles comparing the ad-
vantages and disadvantages
of the various software Forths
(polyFORTH, HS/Forth,
MMS-Forth, etc.). How about
inviting the vendors to de-
clare the advantages of their
systems in article form (they
would probably be willing
to pay for the opportunity. ...).

Failure to take action will
lead to suffering what I call
the Atari lesson. In 1985,
when I bought the computer
I'm typing this letter on, the
personal computer industry
was just taking off. The Apple
II was showing its age, the
overpriced/underpowered
IBM XT was carving a large
market share, and the AT
had just appeared. Probably
the most popular computer
was the very limited Com-
modore 64. The most in-
triguing computer out was
the Apple Macintosh—a user-
friendly machine which cost
over $2000 (with student dis-
count) for the 256 Kbyte
standard. Into this maelstrom
jumped a recently reorga-
nized Atari with the ST. A
window/mouse-driven ma-
chine with a big colorscreen
and 512 Kbyte, all for less
than $1000. It was a dream

January 1992 February

(PCYerk Listing Four, continued.)

~

.

~.

o« T

(methid->addr) (addrl n -- addr2)

swap 2+ \ Advance to method pointer
begin
et \ Fetch pointer
dup
while
dup>r \ Save copy
2+ @t \ Fetch id number
over = \ Match?
if drop \ Clear method id #
> 4+ \ Point to code
exit
endif
> \ Ready for next loop
repeat
2drop O \ Show failure

find-method-code

Expects a method id # atop the method stack and an object
pointer atop ostack. Locates the method code and

leaves it on dstack. In so doing, the method stack is popped.

find-method-code (-— code)
mpop \ Get method id
ostack->dstack \ Fetch the object
@ \ Address in token seg
begin
2dup swap (methid->addr) \ Get address
2?dup \ Didja find it?
if -rot 2drop \ Clear the stack
exit \ Bug out
endif
(>super) \ Not found...go to super object
?dup \ Any super object??
0=
until

clear-o&mstacks
abort" Method not found"®

\ Clear the stacks

Define a method. This word doesn't do a create...it
loads the method name in the method segment (unless
its already there), then compiles the code at the
end of the object definition. The code is linked to
the preceding method for that object.
:m
\ We must be defining a class
curr_class_off @ 0=
if clear-o&mstacks

abort™ Method def. ouside class"
endif

\ We are the new method tail...so fix the link
\ code.

here-t new-method-tail

0 ,t

\ See if the method is in the method seg.
\ return the method #...if not, add
\ assign a number.

If it is,
this method in and

blword \ Parse the name
tstring $! \ Put it in tstring
tstring methname-find \ Look for the method
dup -1 = \ Found?
14 Forth Dimensions

come true. It was a night-

if drop \ Clear stack mare. The aggressive mar-
curr_meth# @ dup \ Fetch current method ID #| keting of IBM and Apple
tstring add-methname \ Add method to the class soon gobbled up the whole

1 curr_meth# +! \ Bump current method ID # | market. Software sources

endif dried up. With money from
huge sales, Apple and IBM

\ Store method # fof ;m and set aside space in token seg improved their machines,
my meth# ! leaving Atari in 2 non-com-
0 .,t petitive position. Now they
make PC clones to stay alive.

\ Now go ahead and compile the method code. Does this sound familiar,
[compile]] Forth programmers? How

; many of you use C profes-
sionally and Forth on the

\ End of method definition side? In 1985, the Atari ST
: ;m delivered not only the best
\ Store the method # so the system can find it bang for the buck, but (to
my meth# @ me) it was the all-around
curr_meth tail @ 2+ !t best computer available—
speed, memory, display, in-

compile unnest \ Do a semicolon terface, etc. Now [envy '486
[compile] [\ Set interpret state EISA machines with MS-DOS

; immediate 5.0 and Windows. There is a

deadly parallel here to what

N Rkkkkok ok ok ko ok ok ok K ok ok ok ok ko kK has happened in the Forth
\ ** INSTANCE VARIABLES ** community. The secret: to
\ ko kkok ok ok ok ok ok ok k ok k ok kR ke ok cut costs, Atari didn’t invest
\ Define an instance variable. in marketing, resulting in a
\ Used in the form: product nobody heard of.
\ n ivar <name> In last issue’s editorial,
\ n indicates # of bytes for this instance variable. guest Horace O. Simmons
: ivar (n --) recommended that Forth
blword \ Parse the name users promote Forth in non-
tstring $! \ Put it in tstring Forth journals. That’s an ex-
cellentidea. How about pro-
\ See if ivar already exists moting it in our own?
tstring search-ivar -1 <>
if abort" Ivar already defined" John H. Lee, Lt. USN
endif QuikFind Addendum
Dear Editor,
\ Fetch current offset--add it and ivar to ivar space While browsing through
curr _class_off @ dup @t dup my article (“QuikFind String
tstring add-ivar Search,” FDXI11/4), I noticed

a couple of errors and

\ Update ivar space for next offset (heaven forbid) an error in

rot + the code listing. Here is a list

swap 't of corrections:
! 1. Page 21, hash algorithms
\ This code does the actual instance variable processing. flgure. Captions_reads,
\ When he executes, he expects the offset of an instanceA.f[er e?ch X,,OR’ Fhe
\ variable on the data stack. He also expects an object bits in e 12dex, which
\ address (in variable segment) on the ostack. should be ‘..."_Xfterea'ch
\ The returned addr is the offset to the instance variable. XOR, tPe bits in the in-
: (do-ivar) (off -- addr) dex..”

ostack->dstack \ Get object address 2. Page 23, definition of HASH

2+ \ Skip pointer to token seg reads:

+ \ Add offset D177 (magic seed)
; SWAP

COUNT 1F AND
\ Kkkkkkkkhkkdkkkkk

\ ** CLASSES *x but should read as:

\ Kkkkkkkkkkkhkhk (Listing continues.) COUNT 1F AND

Forth Dimensions 15 January 1992 February

D177 (magic seed)
SWAP

3. Page 24, fig-Forth to
botForth definitions,
reads:

: ENDIF (sys ——)

0 \ LITERAL
\ DO ; IMMEDIATE

but should read:
: ENDIF (sys --)

\ THEN ; IMMEDIATE
: FOR (sys --)

0 \ LITERAL

\ DO ; IMMEDIATE

Also, there is no defini-
tion for @+ It can be ex-
tracted from the definition
for C@+. In a fig-Forth sys-
tem, I believe the equivalent
for RECURS IVE would be to
SMUDGE the latest definition,
since SMUDGE merely
toggles a bit. In my definition
of : (colon), I preceded
RECURSIVE witha \ since it
is an immediate word in
botForth.

Since writing this article, I
have another another word,
DICTIONARY, which creates
an instance of a hash table.
This allows multiple hash
tables to be created. Also,
the hash tables are dynamic.
They initially occupy no RAM
but, as entries are added to
them, they grow geometri-
cally to accommodate the
number of entries. EMPTY
empties the table and returns
the used memory.

Another addition I have
found very useful is the word
ADJUNCT. This works just
like QUIKFIND except it re-
tumns an entry in a parallel
table where additional infor-
mation may be stored about
the string. Thus, you can
associate a string with a block
of code, another string, or
whatever.

If there is interest, I could
publish the updated version
of QuikFind. Right now, I am
using it to build a translator
which allows phrase defini-
tions in Forth, instead of just
words. Hopefully, more on
that later.

Rob Chapman

January 1992 February

(PCYerk Listing Four, continued,)

\ exec-obj
\ This fellow expects an object pointer (in vars segment) atop
\ the object stack and a method # atop the methods stack.
\ Executes an object's method
: exec-obj (--)
\ Find the method's executable code
find-method-code
domethod
\ instantiate
\ addrl is current pointer in var seg
\ addr2 is object's token pointer
\ Stores that pointer in the
\ variable segment, then allocates ivars space.
: instantiate (addrl addr2 --)
dup \ Make copies of token pointer
dup , \ Store token pointer in var seg
@t \ Fetch ivar space
allot \ Allocate variable storage
6 + @t \ Fetch startup method
dup -1 <> \ Anything there?
if mpush \ Push method
opush \ Push object
exec-obj \ Execute stuff
else
2drop \ Drop -1 and object pointer
endif
\ xx
\ ** Class definition
\ k%
\ The contents of a defined class are:
\ Token segment: Vars segment:
\ [Ivars space]<---[token ptr]
\ [Meth list]
\ [Super ptr]
\ [start meth]
\ [..tokens]
\ Note that the code following does> can do a @ and
\ retrieve the offset into token space for the class
\ definition structure.
\
\ Once instantiated, an object looks like this:
\ Token segment: Vars segment:
\ [(:;code) 1 [token ptr] <<<< To parent class
\ [here-c] [...ivars]
\ [..tokens]
: :class

0 curr_meth_tail ! \ No methods yet
clear-ivar_ seg \ No instance variables
Create \ Build the name field
here-t dup curr_class off ! \ Set current class
. \ Build pointer in vars segq.
0 ,t \ Size of ivars region
0 ,t \ Pointer to list of methods
0 ,t \ Pointer to superclass
-1 ,t \ Initial method
does>
Q \ Fetch token pointer
here swap \ Get current object pointer
create \ Make a header
instantiate \ Instantiate the object
16 Forth Dimensions

~e

. o

~

e

T

immediate \ Make the object immediate
does>
opush \ Get object ptr. on ostack
state@
if \ We are compiling
compile (1lit) \ Compile obj ptr. as literal
ostack->dstack \ Get object pointer
't \ There's the pointer
compile opush \ Compile an object push
compile (1lit) \ Another literal is
\ method code pointer
find-method-code \ Get method's code pointer
et \ Compile that
compile domethod \ Code to execute method
odrop \ Don't need object anymore
else \ We are interpreting
exec-obj \ Execute the object
endif
Complete a class definition
;class
clear-ivar_seg \ No ivars segment
0 curr_class_off ! \ No current class

Special word that returns current object so object

can send a message to itself. Use 'self' inside

the methods definitions to refer to the current object.
self { ——)

compile (1lit)

curr_class_off opush \ Get current object
find-method-code \ Locate method code
,t \ Store as literal
compile odup \ Dup object

compile domethod \ Execute method
odrop \ Clear object stack
immediate

Define a class's super class.

A class will inherit instance variable space, methods, and
startup methods from the super class. A class can override
methods and startup methods.

<super

\ Find the object and resolve code address to token address
blword find 0=

if abort" Super object not found"

endif

>body @ dup

\ Store token address into super pointer of current class
curr_class_off @ 4 +

't

\ Copy
dup @t
\ Copy
6 + @t

ivars into local ivars
curr_class_off @ !t
initial method

curr class_off @ 6 + !t

Define initialization method.
This routine expects a method id on the top of the method

stack. It stores that method id as the object's startup
method.

(Listing continues.)

Forth Dimensions

17

Altention Forth Authors!

Author
Recognition
Program

~ Torecognize and reward
authors of Forth-related ar-
ticles, the Forth Interest
Group (FIG) has adopted
the following Author Recog-
nition Program.

Articles

The author of any Forth-
related article published in a
periodical or in the proceed-
ings of a non-Forth confer-
ence is awarded one year’s
membership in the Forth
Interest Group, subject to
these conditions:

a. The membership
awarded is for the
membership year fol-
lowing the one during
which the article was
published.

b. Only one membership
per personis awarded
in any year, regard-
less of the number of
articles the person
published in thatyear.

c¢. The article’s length
must be one page or
more in the magazine
in which it appeared.

d. The author must sub-
mit the printed article
(photocopies are ac-
cepted) to the Forth
Interest Group, in-
cluding identification
of the magazine and
issue in which it ap-
peared, within sixty
days of publication.
In return, the author
will be sent a coupon
good for the follow-
ing year’s member-
ship.

e. If the original article
was published in a
language other than
English, the article
must be accompanied

(Continues on next page.)

January 1992 February

by an Engish transla-
tion or summary.

Letters to the Editor

Letters to the editor are,
in effect, short articles, and
so deserve recognition. The
author of a Forth-related letter
to an editor published in any
magazine except Forth Di-
mensions is awarded $10
credit toward FIG member-
ship dues, subject to these
conditions:

a. The creditappliesonly

to membership dues
for the membership
year following the one
inwhich the letter was
published.

. The maximum award
in any year to one
person will not ex-
ceed the full cost of
the FIG membership
dues for the following
year.

. The author must sub-
mit to the Forth Inter-
est Group a photo-
copy of the printed
letter, including iden-
tification of the
magazine andissue in
which it appeared,
within sixty days of
publication. A coupon
worth $10 toward the
following year’s
membership will then
be sent to the author.
. If the original letter
was published in a
language other than
English, the letter must
be accompanied by
an English translation
Or summary.

January 1992 February

(PCYerk Listing Four, continued.)

~e

v P il

.

(LR P P i

<<init-method (-=-))

mpop
curr_class off @ 6 +
't
% Kk K Kk de Kk Kk ok vk Kk k ke ok ok gk ok ok ok ok
** DEFERRED BINDING **
% %k K K Kk Kk k Kk Kk k Kk kk k Kk Kk ok kok ok ok Kk
Deferred binding allow you to specify the object at runtime,
rather than at compile time.
{ Starts deferred binding. He assumes there's a method # on
top of the method stack. He copies that as a literal into
inline code (along with an mpush).
{
stated@
if \ We are compiling
compile (lit) \ Compile literal
mpop ,t \ Get method #
compile mpush \ Compile mpush code
endif \ Interpreting--do nothing
immediate

} Concludes a deferred method. He assumes there will be

(at runtime) a method # on top of the method stack and an
object pointer atop the data stack. He pushes the object
pointer onto the object stack, finds the method, and executes
it.

}

opush \ Push object pointer
exec-obj \ Execute it

J % K % %k Kk %k %k ok K Kk Kk gk %k ok ok ok ok k ok ok

** PATCHES AND MISC. **

% Kk % % % %k %k %k ok Kk Kk Kk Kk Kk Kk ok ok ok k ok kK

Following code is the patch to interpret.

Allows system to recognize methods and instance variables.
NOTE: When we get here, literal? has left 2 zeros on stack.
For uniformity's sake...we pass them on along.
<interp-patch>

2drop \ Clear stack

\ See if the item in question is a method. If so, leave the
\ method id # on the method stack

here methname-find dup

-1 <>

if mpush exit \ Push the method #

else drop

endif

\ Not a method -- see if it's an ivar

here search-ivar dup

-1 <>

if ?comp \ GOTTA be compiling
compile (lit) \ Compile ivar value
't
compile (do-ivar) \ Compile ivar handler
exit

else drop

endif

(Listing continues on page 21.)

18 Forth Dimensions

Gary Smith

Yes, there isan ANS Forth
in the process of being
drafted. Yes, the Technical
Committee has labored long
and hard in its collective at-
tempt to meet the conflicting
demands of minimalist ver-
sus maximalist, desktop user
versus embedded-system
implementor. Yes, many
compromises have been ar-
rived at and many ambigu-
ities removed from the BA-
SIS as it winds ever closer to
becoming not only X3J14
BASIS.xxx, but the final draft
proposal manifest we all look
forward to. [See dDANS Forth
announcement, page 4.

As was pointed out in my
last column—via exchanges
gleaned from GEnie Forth
RoundTable Category 10,
Topic 25—several questions
are still being debated. In
this issue, we examine dis-
cussions in Category 10,
Topic 12, “X3J14 Holding
Pattern,” to discoverthateven
the question, “What exactly
is this language, Forth?” is
subject to heated discussion.
Maybe, when the dust has
settled, we will discover the
ultimate truth that Forthisan
attitude and has nothing to
do with standardization.

Read on...

Category 10: Forth
Standards
From: Doug Philips
Re: Architecture and Imple-
mentation

John Wavrik writes:
“The ANSI team has ap-

Forth Dimensions

News from the Forth RoundTable

[Best of GlEsmnie
What is this language, Forth?

Little Rock, Arkansas

parently not only invented
a new language, but also
a new concept in com-
puter science: a language
that manipulates data
structures in a functional
way but does not allow
us to know what the data
structures are. Sure
doesn’t sound like a good
idea, does it? Certainly
isn’t a tested idea, is it?”

Oh, come on now, X3J14
didn’t do this first, X3J11 did
it, and they probably weren’t
even the first! How big is an
integer (cell)? Implementa-
tion defined, guaranteed to
be at least 7 bits. How big is
a long (2cell)? Implementa-
tion defined, guaranteed to
be at least mbits and m2n.
T'will admit that one needs to
know something about the
size of things (not structure!),
sothat, say, " foobar ! will
work (or not). Do I need to
know anything about whata

'-execution-token really is?
No. All I need to know is the
set of operators that take one
(or more) as arguments and
the setthat can produce them.
Ibelieve the technical term is
“abstractdata type.” Canyou
do arithmetic on a '-execu-
tion-token? Yes, but it will
not be portable. As the stan-
dard is concerned with port-
ability, it will not allow such
action in a conforming pro-
gram.

“If one is to limit the ex-.

tensibility of Forth and
rely upon vendor-sup-

plied standard operators,
then a great number of
them must be supplied in
the hopes of meeting as
many needs as possible.
Words like COMP ILE, and
START: become ex-
tremely important as an
attempt to rescue some of
the functionality of classi-
cal Forth. Even then, one
typically finds that the
supplied operators donot
doexactly whatis needed.
Sounds exactly like the
trap that most conven-
tional languages have
fallen into, doesn’tit? And
Forth did have a viable
solution, didn't it? And
the ANSI team is propos-
ing a language that ig-

This is very important, 1
will agree.

“I mention this word be-
cause it is one in which
deviant implementations
have already appeared.
There have been a host of
messages in this
newsgroup pointing out
that some of my examples
using START: do not
work on other trial imple-
mentations. All I can say
is that I consulted the
author before imple-
menting mine. Inciden-
tally, I don't think this will
be unusual—I think that
as more implementations
of the proposed ANSI
Forth appear, more de-
viations will appear. It is
almost an inevitable con-
sequence of trying to
specify operators while
being fuzzy about what
they operate on.”

Funny, I thought that was
just the natural result of us-
ing English. And of the fact
that any group, having con-
centrated on something for
as long as any of the ANSI
Technical Committees [TCs]
do, will come to an under-
standing that is not always
transcribed in the first pass
or two. In fact, ANSI takes

Useful things that can’t be
done demonstrate weakness
in the standard...

nores this solution, isn't it”

Straw argument. If Forth
had already had viable and
portablesolutions, there would
be no “hard work” to doing
an ANSI standard. (Nor, per-
haps, aneedtodoone atall)

“Not only is it not easy to
tell, without extensive
testing, whether suffi-
ciently many operators
have been added—but
there is the very real
problem of making sure
that they have been
specified clearly.”

19

into account that it may not
get completely darified until
after the standard is adopted.
At that point, an official “re-
quest for interpretation” can
be submitted. I'm not totally
up on my procedure here,
but the answer is probably
binding on the standard
(could someone from the TC
spell this out in painstaking
detail for me, please?). Yes, it
would be better if that never
had to be done. Better still is
a plan to handle corrections.

“It’s a bit like a car trip: if
a wrong turn was taken

January 1992 February

somewhere, should we
just say ‘It's history, we
can't change it’; or do we
do what most sensible
people do: get back on
the right road?”

“I think that it is a truly
unwise strategy for the
ANSI team to propose a
new language and then
use strong arm tactics to
get its acceptance rushed
through. It will do a great
deal of harm for the sur-
vival of Forth to accept a
badstandard—-andIdon’t
think anyone should re-
gard it as ‘fate’ that we
must do so.”

Indeed. Make up your
mind. How can ANSI “get
back on the right road” if it is
charged with codifying ex-
isting practice (wrong turns)?
As soon as it does, it takes a
turn never before taken. As
far as “rushing,” they haven’t
even gotten to the first public
review yet! What we've seen
so far is a rather open win-
dow into what has before
been a closed process. (It is
said that those who like sau-
sages and politics should not
watch either being made.
The same could be said for
standards.)

—Doug

From: John Wavrik
Re: X3J14 Holding Pattern
Here

Greg Bailey writes,

*With all due respect, 1
find myself disappointed
with Dr. Wavrik’s posting
of 19 Aug. 91 entitled,
‘General Response to E.
Rather and G. Bailey.’ As
carefully as I read it, I do
not see that it is germane
to most of the points in
my posting of 16 Aug.”

I hope that by now Mr.
Bailey has had a chance to
read the more specific re-
sponse to his Aug. 16 post-
ing, which I posted a few
days ago. It does take some
time for messages to travel
from UseNet to GEnie—and

January 1992 February

I think we'd all benefit by
having a chance to read,
think about, and make care-
ful responses. Generally, I
find that it isn't a good idea
for me to post an immediate
response (o a controversial
topic—it seems better tothink
things over and edit my first
draft. I apologize for the de-
lay of a day or two in re-
sponding.

‘I was hoping that Dr.
Wavrik would admit to
the existence of tradeoffs
and to the fact that the
work of X3J14 has eco-
nomic implications be-
yond the performance of
Forth in popularity con-
tests.”

Here, asin other placesin
his messages, Mr. Bailey has
a tendency to put words in
my mouthwhichI have never
spoken (and which corre-
spond to thoughts I am not
thinking). There is no
“popularity contest” involved
here—just hard, economic
reality. My living for the past
ten years, at least, has been
directly connected with my
use of Forthasa tool. I intend
to keep using Forth to make
my living, My interest in a
good standard for Forth is
very definitely connected
with my livelihood. Accep-
tance of Forth in universities,
colleges, and many parts of
industry will depend on
whether a good standard—
guaranteeing both powerand
portability-—is produced.

“Therefore, I ask again. If
some particular single one
of Chuck’s implementa-
tions is ‘brilliance’ and
‘genius,’ then what of all
his others that differed,
most notably the Novix
chip (stacks not part of
addressable memory,
memory cell-addressed,
‘reducing architectural
features to the lowest
common denominator’
(Chuck has, in my expe-
rience, always advocated
assumption of only posi-
tive divisors in signed di-
vision), and so on.”

20

I did answer comments
along this line in my specific
response to Mr. Bailey. In
sum, Charles Moore is work-
ing in a special environment,
His interest is in hardware
applications, and his work
does not require portability.
He can assume only positive
divisors in addition, for ex-
ample, because that is all
that occur in his work. Oth-
ers of us work in environ-
ments in which portability is
very important (and in which
negative divisors do occun).

“I submit that Chuck’s
particular genius has al-
ways lain in his uniquely
clear insight about the
simplest solution to the
most challenging part of
any problem. I further
submit thatI've never seen
any evidence that a single
architecture/implemen-
tation frozen for all time
was anywhere on Chuck’s
agenda. Is this ‘disso-
nance’ so disturbing to
Dr. Wavrik that he feels
he must ‘correct’ it by
attributing to Chuck the
notion that the immuta-
bility of the architecture is
more important than the
solution of problems?”

Here again, Mr. Bailey
seems intent on putting
words in my mouth. I per-
ceive no dissonance, nor am
I correcting Charles Moore. I
agree with Greg Bailey that
Chuck’s gift is coming up
with good simple solutions
to problems. Given the na-
ture of Chuck’s work, he
would want to experiment
with very low-level changes
to his systems. Others of us
are solving very different
types of problems.

Suppose the problem is
to produce a language thatis
tremendously powerful and
flexible, yet will allow code
to run correctly on many
platforms. What would be
the simplest possible solu-
tion to that problem?

I think if you will look
back at allT have written, you
will find that T have only (and

consistently for the past sev-
eral years) made the follow-
ing observation: It could well
be that the simplest solution
istoagree onthe architecture
of an abstract machine (per-
haps, if necessary, making
separate but overlapping
standards for a few different
types of architecture).

“Dr. Wavrik, I ask that
you re-read my earlier
posting, compare it with
your reply, and see if you
don’t agree with me that
your posting has frustrat-
ingly little to do with the
issues raised.”

No, I think the specific
reply I gave you addresses
the issues quite well. The re-
posting of the “Architecture
vs. Implementation™ paper
was only intended toeliminate
some apparent confusion.

“Forth is not the result of
slavish pursuit of ‘sym-
metry,” and portable
power of the sort your
paper seems 1o assert is
essential.”

Again, words are being
putin my mouth. I said noth-
ing about symmetry—al-
though I do think that slavish
pursuit of simplicity might
be worth trying,

“Do you seriously pro-
pose that your definition
of power (portable hack-
ing) be given absolute
precedence over other
definitions of power
(practical usefulness for
demanding applications,
for example) that have
characterized most of the
dramatic successes of
Forth thatI am aware of?”

Again, words are being
put in my mouth. Portable
hacking is not my definition
of power. Power, for me, is
the ability to accomplish dif-
ficult things without fighting
the language. Forth is the
only language I've ever used
where 1 feel that I can con-
ceive of what needs to be
done, and Forth will allow
me to do it. Most languages

Forth Dimensions

(PCYerk Listing Four, continued from page 18.)

00

\ Look like literal?

\ Let do-undefined handle things

do-undefined

~

: patch-interpret
['] <interp-patch>

Following code patches interpret.
allocated methods and variable segments

['] interpret >body 40 + !t

\ Put interpret back the way it was.

: unpatch-interpret
['] do-undefined

['] interpret >body 40 +

any obijects.

o T

start-objects
alloc-ivar_seg
clear-ivar_seg
alloc-methname_seg
clear-methname_seg
1 curr_meth# !
patch-interpret
clear-o&mstacks

\ Clean things up

: end-objects
unpatch-interpret
ivar_seg @ free

methname_seg @ free

’

't

Initialize the system.

One you've included [i.e.,
execute "start-objects" before you can begin defining
When you're done defining and calling all
your objects [i.e., you're about to make an executable],
execute “end-objects™.

loaded] this code,

Do it AFTER you've

you must

\ Allocate ivars segment

\ Allocate method name segment

s

Start method #'s
Fix interpret
Initialize the stacks

\ Put interpret back
\ Ditch ivars segment

\ Ditch method name segment

(End listing. Next issue contains code for basic & storage classes, byte & word arrays, strings, & string arrays.)

require me to fight them to
shape their rigid features to
match the problem (and
sometimes they are so un-
suitable that I can't realisti-
cally do the task).

Power in Forth comes, in
great measure, from the user’s
ability to understand how
the system works—and be-
ing able to harness that un-
derstanding.

We are both in agree-
ment that power has some-
thing to do with practical
usefulness for demanding
applications—my demand-
ing applications as well as
your demanding applica-
tions.

“You may feel, for ex-
ample, that performance

Forth Dimensions

is no longer relevant, as
you have posted.”

Again, words are being
put in my mouth. WhatIsaid
is thatlanguage performance
is no longer measured en-
tirely in terms of execution
speed.

I regard Forth as a “high
performance language” inmy
area because it facilitates the
development and modifica-
tion of programs. I can still
get dose to the speed of
compiled code by heavy use
of assembly language (which
I do when a system has be-
come stabilized)}—but, really,
high-level Forth running on
amicrocomputer is no match
in speed for the output of a
good C compiler. It would

21

be foolish to give up the
attributes which make Forth
ahigh performance language
(in terms of ease of develop-
ment, power, flexibility) to
achieve marginal gains in
execution speed.

Hang around a university
for a2 while—people don't
talk about how to write
clever, tight code these days.
The problem is writing and
maintaining large programs
that do powerful things and
run correctly.

John J Wavrik
jiwavrik@ucsd.edu

Dept of Math C-012
University of California, San
Diego

La Jolla, CA 92093

From: Elizabeth Rather

J. Wavrik writes:

“Both Greg Bailey's and
Elizabeth Rather’s com-
ments illustrate the fact
that there are also people
in the Forth community
for whom reusability of
code is not important—
and who alter their sys-
tems down to the lowest
level for each new appli-
cation.”

John, you're seriously
distorting the point of Greg’s
and my remarks. We are
challenging your continuing
assertion that there is such a
thing as “traditional” Forth
from which the world has
been deviating and which
ANS Forth is deprecating,
Our discussion of deviations
from the earliest days to the
present is intended to point
outthat there has never been
such a golden age, and that
your nostalgia for it is, there-
fore, inappropriate.

Greg and I and the entire
committee are extremely
concerned with portability
of application code, as well
as “programmer portability”
(the ability of programmers
to move from one system to
another, preserving both
sanity and competence
without massive new leaming
curves). Why else doyou think
we have invested so heavily
in the standards effort?

We hope and believe that
the steps we are taking will
improve Forth in both these
respects.

“Production of code has
become an extremely
expensive affair—TI think
it is more typical these
days to find people who
can'taffordtothrow away
the kind of time and effort
needed just for a mar-
ginal gain in execution
speed—and I think you
can find as many of them
in industry as in
academia.”

Once again, you are mis-
taken if you think we dis-
agree. Our objective in de-

January 1992 February

articipate!

ACM SIGForth ‘92 Forth Language Workshop

March 5-7, Kansas City, Missouri
In conjunction with the ACM Computer Science Conference, ACM SIGCSE Computer
Science Education Conference and ACM SIGAPP Symposium on Applied Computing

Charles Moore

the inventor of Forth, speaks on his creation

Other sessions include:
A Crash Course in Forth
Software Project Management
Panel: "From the Classroom to the Real World"
Panel: "Comments on dpANS Forth"
and many more...

Some of the speakers include Lawrence Forsley of the Forth Institute, Richard
Haskell of Qakland University, Mike Wong of IBM, Paul Snow of Software
Construction Company, Frank DiMeo of Villanova University, and Dan Yanoff
of Keithly Asyst.

Refereed papers are accepted until January 1. Unrefereed paper abstracts
requested by February 15 with the final paper at the conference.

Special Tutorials
on Wednesday March 4

"ShBoom: Damn Fast and Dirt Cheap”
100+ Mhz stack-based RISC Microprocessor

"Sun Microsystems: Open Boot"
The coming standard in portable Forth based firmware

Reg fees for the workshop are $150/$170 (before/after 1/31) for ACM or SIGForth members;
$190/$210 for Non-Membars; $50 for students and $75 for One-Day Only reg (before or after
1/31). Reg fees for the Special Tutorials are each $50 with the workshop and $60 without.
Discount hotel rooms at $48 & up per room (up to 4 guests) available before 1/31 by mail only. To
register or for hotel/room sharing info contact Dr. Leonard Morgenstern, 304 Rheem Blvd., Moraga,
CA 94556, (510) 376-5241. Payment accepted by check, Visa, MasterCard or American Express.

Hosted By:

For paper submission
information contact:

To assist in conference organization
or for special presentations contact:

Digalog Program Chair Conference Chair
. Dr. Paul Frenger George Shaw
Shaw Laboratories p o, ox 820506 Shaw Laboratories Limited
Nanotronics Inc. Houston, TX 77282-0506 PO Box 3471
Keithley Asyst (713) 589-9040 Hayward, CA 94540-3471

GEnie: P.FRENGER (510) 276-5953, 276-6050 fax
GEnie: G.SHAW1 compuserve: 70413,2005

email:george_shaw@mts.cc. wayne.edu

Sponsored by the ACM Special Interest Group on Forth

January 1992 February 22

scribing Forth behaviorally
rather than by constraining
implementation choices is to
permit implementors to pro-
vide an internally optimized
(and hence fast) system
whose surface, as presented
to the application program,
offers a very high degree of
portability due to its con-
formance to rigorously de-
fined behaviors.

“A major factor, however,
is that people who do not
need portability also do
not need a standard.”

How do you reconcile
this with your continuing
assertions that the members
of the TC don’t care about
portability? Do you contend
that these people have spent
tens of thousands of dollars
and a lot of their billable
hours over a period of years
to do something they don't
need or want?

The disagreement be-
tween you and the commit-
tee is not over who wants
portability, but how port-
ability is achieved. We be-
lieve it can most usefully be
achieved by defining the
behavior of Forth words, and
you'd prefer to see their
implementation standard-
ized. This is a simple dis-
agreement, which is okay,
but the discussion will be
advanced most usefully if
you direct your comments to
that rather than spurious as-
sertions about mythical tra-
ditions and the motives of
the TC members.

“Simplicity, comprehen-
sibility, being supplied
with source code, ability
to reproduce the system
are among the things I
lump under the heading
‘glass box.” If anyone un-
dertakes to write a stan-
dard for Forth, these are
exactly the qualities which
need to be made por-
table.”

Simplicity and compre-
hensibility sound great. No
argument.

(GEnie continued on page 28.)
Forth Dimensions

ForTH-83

Roger Bicknell

nthe beginning, there was
/ programming. Now, the

programming was form-
less and unstructured—
darkness was over the sur-
face of the design problem.

Then came structured
programming—a disciplined
coding style and a logical
analysis technique which
emphasized the nature of
the coupling between code
modules and the design
reasons behind the creation
of the code modules. Creat-
ing a routine out of code that
just happened to be per-
formed at the same time
(temporal cohesion) was out.
Creating one routine out of
code that did a couple of
closely related things (ogi-
cal cohesion) was out—it
necessitated passing control
flags between routines (called
control coupling, oddly
enough). There was (once
again?) the dawning realiza-

tion that a routine should do
one thing and only one thing
(and do it well). However,
there was more to be discov-
ered.

If a careful study of pro-
cedures proved beneficial,
then what about a close look
at the nature and form of the
data being operated upon
by those newly-structured
routines? Thus, someone
coined the phrase object
oriented, probably in con-
trast to the prevailing proce-
dure-oriented programming
of the time.

Enter Analysis of Data

Data canbe keptin atomic
types like variables, con-
stants, and literals; or in
molecular groupings, such
as named records and in-
dexed arrays. Many early
computer languages pro-
vided a small selection of
atomic data types and ex-

Information hiding is the back-
bone of code security, reliable
re-entrancy, and data abstraction

Roger Bicknell is an electrical engi-
neer who has programmed in Forth as
a hobby since 1982. He enjoys the
simplicity and interactivity of the lan-
guage, and uses it to experiment with
language design. He says, "Some
people gamble, | program... Yes, |
know it's 4:00 a.m., but I've just got to
tweak this one last word..." Roger
welcomes feedback at 315 Devoy
Street, New Westminster, BC, Canada
V3L 4E8 or at R.BICKNELL.2 on GEnie.

Forth Dimensions

pected you to use records,
for example, to simulate any
different types of data you
might fancy. The ability to
abstract data, or to create a
new data type, is an essential
feature of an object-oriented
language implementation.
But it is not simply for the
prettiness of being able to
refer 10 a new data type like
COMPLEX (say, made up of

23

Object-Onented
Forth

New Westminster, British Columbia, Canada

twofloat-type variables called
REAL and IMAGINARY) that
data abstraction isimportant.
A procedure’s code is neces-
sarily specific aboutwhattype
of data it operates upon. The
code of + (plus) assumes an
integer data type, and F+ (f-
plus) assumes a floating-point
data type. These cannot be
swapped (or even duped—
else your employment may
be over). Thus, it only makes
sense to group the definition
of a data type with each and
every procedure that will
operate upon it—making for
easier maintenance. When a
data type’s definition and its
associated procedures are
grouped into one module,
further de-coupling between
modules can be realized. For
example, a stack can be
implemented using an in-
dexed array, or a buffer and
an offset. Allowing any other
module to know the imple-
mentation details is not nec-
essary and could allow di-
rectaccess to elements within
the stack structure. This di-
rect access is a potential
problem for the future, if
ever the implementation of
stack structure is changed.
“What they don’t know can’t
hurt you.” Of course, it is
important to keep in mind
that considerations like
maintenance are far more
complex and important fora
large multi-programmer
project than for a lone-wolf,
one-nighter program. You
needn’t hide anything from

yourself, but you should
protect your code from what
those other crazy, reckless,
undisciplined hacks might
do.

Itis possible to de-couple
to the extent of not even
allowing direct reference to
a data type’s routines. In-
stead, a message is sent over
to that module asking for a
procedure to be enacted.
Thus, even the data type’s
procedures could be modi-
fied (which might be neces-
sary if the details of the data
change), and still it would
not affect any other module.
The intent here is to provide
robust code by limiting side
effects of changes, and to
provide reusable code by
de-coupling it from as much
as possible.

The intent of object-ori-
ented programming is to
extend the ideas of struc-
tured programming to in-
clude techniques dealing
with data which enhance
reliability and which mini-
mize the maintenance of a
software projectby reducing
the amount of modifications
necessitated by a change.

Glossary

In the object-oriented
vernacular, a data structure
is called an object or an in-
stance of a class. The class
contains the information
necessary to construct an
instance, as well as all the
routines that operate on its
data type. The internal ob-
jects that make up an in-
stance (like fields within a
record) are called instance
variables. An object is sent a
message, which specifies
what to do, but not how to
do it. The object then finds
the method, the word that
performs the correct action;
this is called binding the
message to the object. There
are two forms: earlybinding
and late (or dynamic) bind-
ing. Early binding is done at
compile time and dynamic
binding is done at run time.
The ability of one dass to
gain access to another class’s

January 1992 February

methods is called inberit-
ance.

Defining an
Object-Oriented
Language

An object-oriented pro-
gramming language can be
described as having at least
four features: data abstrac-
tion, information hiding, dy-
namic binding, and inherit-
ance.

Data abstraction is the
ability to create new data
types. Of course, common
Forth already has this. The
CREATE DOES> team is all
that is required to invent any
new data type. For example,
while standard Forth does
notspecify array-type data, it
isa simple task to implement
such.

Information hiding is the
backbone behind code se-
curity, reliable re-entrancy,
and data abstraction. Infor-
mation hiding is necessary in
order to provide more than
one context in which to in-
terpret a name. Local vari-
ables are an example of in-
formation hiding, because
they are unavailable to any
routines other than the one
in which they are defined. Of
course, one way to hide
things in Forth is to put them
into a separate vocabulary.
The most obvious reason to
hide a word in Forth is to be
able to have more than one
word with the same name,
but the concept of informa-
tion hiding goes a little deeper
than that. One important tool
in providing code security
and reducing interdepen-
dencies between software
modules is hiding details of
implementation. As in the
example given above,
whether a stack uses an off-
set to point into a buffer or
uses an index into an array
should not be known or
exploited by other software
modules—because if this
implementation should ever
change, the exploitive code
will probably break. Thus,
information hiding is required
if one is to provide reliable,

January 1992 February

Figure One. Extending common Forth to OOF.

\ oofinitl.fth

910808 rwb

only forth also definitions

4 constant cell \ cell is #bytes in stack width

: cell+ cell + ;
: cell- cell - ;
: cells cell * ;
: struct: \ (-~ offset)
(VI
:field \ (offset /field -- offset')
create
over , +
does> \ ('struct pfa -- 'field)
Q@ + ;
;struct \ (/struct --)
constant ;

cr .(oofinitl loaded) cr

modifiable code modules.

Dynamic binding is sim-
ply the ability to decide upon
the appropriate method of
implementing an action at
run time rather than at com-
pile time. This can become
important when an object’s
class is unknown at compile
time. This feature has been
exploited in the definitions
of PUSH and POP in the
STACK class code. (See Fig-
ure Eight, page 30.) Also, a
stack canbe made out of any
new class of object, and PUSH
cannot know ahead of time
the new method’s CFA for
storing the object in the stack.
Dynamic binding is not al-
ways necessary, but when it
is needed, it is indispens-
able.

If a new object class is
very similar to an existing
class, it may be economical
for the new class touse some
of the other’s methods, rather
than rewriting them. ‘This is
the concept of inheritance—
allowing a newly defined
class to inherit some (or alD)
of the methods of an existing
class. Inheritance allows the
creation of a new class by
merely defining the differ-

File-loading sequence.—|

\ oof.fth
: task ;

fload
fload
fload
fload
fload
fload
fload
fload

oofinitl.fth
oofclass.fth
oofmssag.fth
oofobjec.fth
oofprima.fth
ocofcmplx.fth
oofarray.fth
oofstac2.fth

cr .

oof loaded) cr

910729 rwb

24

ence between the new class
and a previously defined
class—thus, a lot of code can
be reused and time saved.

Commenting Style

I'should first comment on
my commenting and nam-
ing style. Consider the com-
ment for the word CLASS:
in Figure Two. The <name>
token appearing before the
stack comment refers to the
input stream argument that
CLASS: requires. Also, I like
to preface a stack comment
entry with ' (tick), / (for-
ward-slash), or ~ (caret). Tuse

tick to mean “address of,”
forward-slash to mean “size
of,” and caret to mean “con-
tains the address of.” Thus
' /body in the stack com-
ment means “the address of
the size of body.” Also note
thatIlike to preface STRUCT :
fields with + (plus). I just do.
Forgive me.

Code Description
Figure One defines some
words, additions to common
Forth, that are used in the
definition of object-oriented
Forth (OOF). CELL is set to
the width of Forth's stack—

Forth Dimensions

Figure Two. Object class words. |

\ oofclass.fth

struct:

#threads cells

910729 rwb

only forth also definitions

#vocs cells constant /context

+context context /context cmove ;

:field +threads

/context :field +context
cell :field +/body
;struct /class
: >context \ ('class --) MACRO to select object's context.

to four bytes. Adjust yours
accordingly. A simple meth-
od for grouping data into
named records is provided
by the three words STRUCT :,
:FIELD, and ; STRUCT.
Common Forth contains
the seeds of an object-ori-
ented language. CREATE
DOES> provides the ability
to abstract data and create
new data types. Vocabular-
ies can provide privacy, as
well as inheritance. Thus,

Forth Dimensions

HERIT, METHODS, END,
MESSAGE, OBJECT, OB-
JECTS, :VAR, and :VARS.

Figure Two provides
definitions of object class
words. I have implemented
a CLASS as a hybrid of
STRUCT: and VOCABU-
LARY—which reflects the
twofold nature of a class: to
provide the internal data
structure of its type, and to
house the data’s routines,
See Figure Seven (page 29)
for a good example of how

: class: \ <name> (-- '/body offset)
vocabulary
last @ name> >body >user \ (== ‘body)
/context cell+ ualloc drop \ allocate space for
\ rest of body
('body) dup context ! \ setup class to be
\ both context..
context over +context /context
\ (-- 'body ‘cxt 'c.cxt /cxt)
cmove definitions \ (-- 'body) ..and current vocabs.
+/body dup off 0 \ (-- '"/body offset)
does> (pfa —-)
>user >context ;
: END N (=-)
only forth also definitions ;
;jclass \ ("/body offset --)
END swap !
: METHODS definitions ;
cr .(oofclass.fth loaded) cr
my Forthmacs (by Mitch Bra- | only ten new words needbe | these words are used. (In
dley) for the Atari ST is a 32- | used to program in OOF: | Forthmacs, the parameter
bit Forth, so my CELL is set | CLASS:, ;CLASS, IN- | field of a vocabulary is kept

inthe userarea. So, while the
general idea is to build a
vocabulary with two extra
fields—the +context fieldand
the +/body field—these must
be allocated in the user area
for Forthmacs.)

MESSAGE is defined in
Figute Three. A message
merely records its name as a
string within its body, and
then tries to find it in the
context vocabulary (CLASS)
at run time. (This is an ex-

ample of late binding.) Note

25

that all messages are pref-
aced with a < (less-than)
character. This is done so
that the message and the
method will notbe confused.
The < is stripped off before
being compiled within the
message with the SWAP 1+
SWAP 1- code.

Figure Four contains
words which construct in-
stance OBJECTs and in-
stance VARiables. An in-
stance contains two fields: its
class pointer and its body.
An instance OBJECT's body
contains its instance variables.
An instance VARiable’s body
contains its offset within its
parent OBJECT.

Figure Five (pg. 28) con-
tains the initial bootstrapped
object class, called PRIMARY.
I decided that PRIMARY
methods should just go in
the FORTH vocabulary, so that
PRIMARY would not have to
be INHERITed byeachclass;
thus, the phrase PRIMARY
METHODS has been com-
mented out. The only real
need for 2 PRIMARY class is
for indirect reference to the
object on top of the stack.
This data must be a declared
class. PRIMARY is declared
just for this situation. Other
than that, its “object-ness”
may be ignored and it canbe
treated just like a Forth vari-
able or structure field.

Figure Six (page 28) is a
simple example of building
new classes. Note that the
methods’ code is very Forth-
ish: the implicit stack opera-
tors (DUP, SWAP, TUCK, etc.)
are still needed, parameters
are still passed on the stack,
and RPN syntax is still used—
thus, OOF blends well with
common Forth, It is not nec-
essary for 2COMPLEX to ex-
plicitly INHERIT from the
COMPLEX class in order for
the methods (like @@) to pass
the <@@ message along. In
this case, the instance vari-
able X will accept the <@@
message and interpret it cor-
rectly. mberitance becomes
an issue when a class that is
a specialization of another
class, wishes to use some of

January 1992 February

the other class's methods.
Forexample, if one had both
AUTOMOBILE class and
CHEVY class, there may be
AUTOMOBILE methods that
are applicable to the CHEVY
class objects. By simply stat-
ing AUTOMOBILE INHERIT
before defining CHEVY class,
it inherits all the methods of
AUTOMOBILE. I used this
feature to provide STACK
objects with the <LENGTH
operator, by inheriting it from
the ARRAY class.

Figure Seven (page 29) is
an example of defining an
ARRAY class of objects. The
#EL instance variable con-
tains the number of elements
inthearray. The “\EL-CLASS
variable points to the class of
the array’s elements. Con-
sider the INDEX method: the
last thing that must be done,
after deriving the address of
the indexed element within
the array, is to switch the
class context to that of the
elements so subsequent
messages will be bound to
the correct instance type (and,
thus, the correct method will
be executed). The words
OBJECTS and :VARS in
Figure Four assume that the
first two instance variables
within a group-type object
(like ARRAYS, STACKS,
MATRICES, QUEUES, etc.) will
be #EL and “EL~CLASS,
respectively.

Figure Eight (page 30)
gives an example of IN-
HERITinga class—as STACK
is a specialization (and
superset) of ARRAY class.
Note that the class context
must be switched to that of
the stack’s elements just be-
fore the message is sent to
fetch or store the element
objectinbothPUSHand POP.

One kludge I wanted to
avoid in defining grouped
objects (like ARRAYs and
STACKs) was the need to
predetermine the size of the
body in the class definition.
This would either cause all
the ARRAYs (or STACKS) to
have the same number of
elements, or else necessitate
a new defining word for cre-

January 1992 February

Figure Three. Defining MESSAGE.

\ oofmssag.fth

: >in@ (==) \ macro to save input stream pointer.
in~file @ ftell ;

: >in! (--) \ macro to set input stream pointer.
in-file @ fseek ;

: MESSAGE \ <name> (--)
>ing@

create create message

>in!

bl word count

swap 1+ swap 1- ",

910729 rwb

\ remember input stream location.

\
\ put input stream pointer back.

\ grab <name> and compile string in
\ pfa of message.

does> (pfa == 2?2)
find
if
execute
else
abort"™ method unknown"
then

cr .{(oofmssag.fth loaded) cr

\ effect method of action.

ating objects for each new
group-type class. Consider
the following instantiation of
a COMPLEX STACK.

STACK OBJECT FRED
23 COMPLEX OBJECTS

Thus, FRED is defined as
the object at the head of the
group of elements, with the
defining word OBJECT. Then
23 complex-type objects
were allotted. OBJECTS is
capable of patching the pre-
viously created word (in this
case, FRED) with the num-
ber of elements allotted into
FRED’s #EL instance vari-
able.

The benefit of an object-
oriented implementation’s
security can be seen by com-
paring the code of Figure
Eight with that of Figure Nine
(page 31). Both are imple-
mentations of stack-type data,
but are radically different.
Note that code using STACK
would not break if STACK
were changed—due to be-
ing forced to use only pro-
cedures within the STACK
class’s code-definition mod-
ule.

26

Conclusion

If an object-oriented pro-
gramming language is de-
fined by the characteristics
of data abstraction, informa-
tion hiding, dynamic bind-
ing, and inheritance, only a
little needs to be added to
Forthtomake itso. Inkeeping
with an RPN syntax, the
process of binding a message
is shared between the object
and the message words. It
may appear that this respon-
sibility could have been
wholly shifted to the mes-
sage word, but only because
thisisalate-bindingexample.
Because late binding has an
associated run-time penalty
(finding the correct method
to execute), early binding is
usually used except when
late binding is required. It
would take about two more
words, and about five min-
utes of coding, to convertthe
given code to early binding
(really?). This will be left as
an exercise to the reader.
(Oh! I've always wanted to
say that) Maybe I will up-
date the code in an upcom-
ing article... Also, one could

optimize the code associ-
ated with the first instance
variable reference. Because
it has an offset of zero within
the parent objedt, it is waste-
ful at run time to add the
offset.

Object-oriented Forth, as
presented, is upwardly com-
patible with common Forth
(Forth-83, specifically); thus,
they can be intermixed at
will. Programming in OOF
promotes grouping all of a
data class’s routines, just be-
low the declaration of the
innerlayout of the class. Also,
it allows one to focus on
objects and actions without
constant regard to internal
implementation details (one
definition of PUSH works for
any kind of STACK).

An object orientation is
simply the coding disciplines
specific to the expression of
data, and which are comple-
mentary to those for proce-
dures. The intent is to reduce
maintenance by minimizing
modifications caused by a
change, and to increase pro-
ductivity by enhancing reus-
ability of existing code.

Forth Dimensions

Figure Four. Words to create objects and instance variables.

\ ocofobjec.fth 910730 rwb
: +objects \ ('body -- ‘'objects) MACRO
dup cell- @ \ (-- 'body 'el-class)
+/body @ + ;
: /body \ (-- /body)
context @ +/body @ ;
: do-object \ (/body --)
allot
does>
dup @ >context \ select object's context.
cell+ \ (== 'body)
: object \ <name> (--) Create instance of class.
create context @ , /body do-object ;
: objects \ (n --) Create n instances of class.
/body over \ (=— n /body n)
last @ name> >body cell+ \ (-- n /body n 'body)
context @ over cell+ \ (== n /body n ‘#el 'elclass “elclass)

o \ (== n /body)
* do-object ;

: do-var \ (offset /body -- offset')
over , +
does> (pfa -- 'body)
dup @ >context
cell+ @ + \ (~- 'var)
: :var \ <name> (offset -- offset') Create instance variable.
create context @ , /body do-var ;
: :vars \ (offset n -~ offset') Create n instance variables.
/body over \ { -- offset n /body n)
last @ name> >body cell+ \ (-- offset n /body n 'body)
context @ over cell+ \ (-- offset n /body n '#el 'elclas “elclass)
P \ (-- offset n /body)
* do-var ;

cr .(oofobjec.fth loaded) cr

Advertisers
Index

ACM oo 22

Forth Interest Group 44
Harvard Softworks.......... 41

Miller Microcomputer
Serices......................27
Next Generation , e
Systems........ccccu.. 42 Syl GRYCTOGUOTE HELPER. OTHELLO! BRERK
Silicon Composers...........2
Forth Dimensions 27

January 1992 February

On-Line
Resource

Updates

Two out-of-date items
mistakenly crept into last
issue’s “reSource Listings.”
These are the Wetware Forth
conference (under Unix
BBS'’s) and the Cave (under
non-Forth-specific BBS's with
extensive Forth libraries).
Please disregard both.

In France, the Forth BBS
JEDI has ceased operating.
Try Serveur Forth, which
claims news, services for new
programmers, Forth teaching
material, and a file library. It
supports up to 19200 baud,
depending on access method
(for full details about high-
speed, Minitel, or alternate-
carrier access, contact sysop
MarcPetremann, REM Corp.,
17 rue de la Lancette, F-75012
Paris, France). From within
France via modem, call the
following. (From Germany,
add the telephone prefix 00
33. From other countries, use
the prefix 33.)

141081175

300 baud (8N1) or

1200/75 E71

or:

(O41081111

1200 to 9600 baud (8N1)

The Programmer’s Cor-
ner BBS in Maryland has a
Forth message area and a
Forth file area. Call 401-596-
1180 or 401-995-3744.

Additional non-Forth-
specific BBS’s with extensive
Forth libraries:

e PDS*SIG
San Jose, CA
408-270-0250
SprintNet node casjo
StarLink node 6450

® Programmer’s Corner
Baltimore/Columbia, MD
301-596-1180 or
301-995-3744
SprintNet node dcwas
StarLink node 2262

(Note: PC-Pursuit is now
SprintNet.)

January 1992 February

Figure Five. The initial, "bootstrapped” class.

\ oofprima.fth 910723 rwb
MESSAGE <@@
MESSAGE <!!
MESSAGE <??

MESSAGE <init

class: PRIMARY
cell+ \ bootstrap size of class
;class

\ PRIMARY METHODS
: @@ \ |
e ;

'‘body —-- primary)

H \ (primary 'body --)

22 \ ('body --)
?
: init \ ('body --)
off ;
END

cr .(oofprima.fth loaded) cr

Figure Six. Building new classes.

\ ocofcmplx.fth 910728 rwb

only forth also definitions

\ MESSAGE <@@
\ MESSAGE <!!
\ MESSAGE <??
\ MESSAGE <init

¢class: COMPLEX
PRIMARY :var real
PRIMARY :var imag
;class

COMPLEX METHODS

: @@ \
dup real @

‘body -- real imag)
swap imag @ ;

H \ (real imag 'body --)

tuck imag ! real ! ;
2? \ ('body --)

dup imag ? real ? ;

: init \ ('body --)
dup imag off real off ;

END

class: 2COMPLEX
COMPLEX :var x
COMPLEX :var y

;class

2COMPLEX METHODS

(Figure continues.)

28

(GEnie from page 22.)

Regarding “being sup-
plied with source code,” two
comments:

(@) Forth, Inc. supplies
complete source code under
license with all polyFORTHs,
along with the ability to re-
produce the system, as we
believe these are important
entitlements to those of our
customers who do want to
optimize their applications
in the knowledge that they
will be fairly transportable
across polyFORTHSs on other
platforms, but harder to port
to other Forths. Making this
choice is their prerogative.

However, as you your-
self point out, there are other
people for whom the need
for portability is paramount.
The standard, also as you
pointout, is forthose people.
If the TC mandates that all
conforming implementations
not only follow a particular
modelbutsupply source and
regeneration capability, the
result will be fewconforming
implementations, and me-
diocre performance onthose
that do conform. It’s hard to
see how this benefits any-
one.
This is why the TC be-
lieves the better way to facili-
tate portability is by stan-
dardizing behavior.

(b) The reality of the
marketplace is that most of
Forth, Inc.’s competitors do
not supply source and re-
generation capability, and
they are nonetheless suc-
cessful in their respective
markets. This supports the
conclusion that there are very
many Forth programmers
who don't find these things
essential to their work.

In summary, I personally
agree with you as to the
value of source and regen-
eration capability, but em-
phatically do not agree that
they should be mandated in
a standard.

“Since when are the two
previous standards for
Forth ‘some particular
model?

Greg was only trying des-

Forth Dimensions

perately to understand what
on earth you do mean in
invoking “traditional Forth,”
as you keep doing.
“I use ‘Forth’ to refer to
the language as described
in the books cited most
often as references:
Starting Forth and
Thinking Forth by Leo
Brodie, and Fonth: A Text
and Reference by Kelly
and Spies.”

Atlast, a workable defini-
tion! However, these fine
books all make it very clear
that, although they discuss
such things as dictionary
structure for pedagogic pur-
poses, implementations do
vary. Primarily, they define
Forth behaviorally, just as
ANS Forth does. I quote from
Kelly & Spies (pg. 305-6):

“The Forth standards
wisely make no attempt
to define how the lan-
guage works internally.
The point of the stan-
dards is to promote a
functional compatibility of
programs, not to stifle
original ways of adapting
Forth to new hardware.”

Couldn’t have said it bet-
ter myself.

“Several of the languages
I have used... are de-
scribed as ‘functional’
languages.. . Eachrofthese
languages is described in
terms of a set of opera-
tors. In each case, how-
ever, the operators act on
a specific data type or
types... It is meaningless
to have operators that do
not operate on anything!

“The ANSI Team has ap-
parently notonly invented
a new language, but also
a new concept in com-
puter science: a language
that manipulates data
structures in a functional
way, but does not allow
us to know what the data
structures are. Sure
doesn’tsound like a good
idea, does it? Certainly

Forth Dimensions

(Figure Six, continued.)

: Q@ \ ('body -—- xy)
dup >r x <@@
r> y <@@ ;
' \ { x y 'body --)
dup >r y <!
r> x <!t ;
22 \ ('body =--)
dup >r y <272
r> x <27 ;
init \ ('body --)
dup >r vy <init
r> x <init ;
END

\ Example: 2COMPLEX OBJECT 2understand?
\ .. oh gosh NO! :%)

cr .(oofcmplx.fth loaded) cr

Figure Seven. Defining an array class. 1

\ oofarray.fth 910723 rwb

MESSAGE <index
MESSAGE <length

class: ARRAY
PRIMARY :var #el
PRIMARY :var “el-class
;class

ARRAY METHODS

'/el-body \ ('body -- '/el-body) MACRO
~el-class @ +/body :
: index \ { i 'body -- 'objects[i])
tuck “el-class @ dup >r \ (== 'body i 'el-class)
+/body @ * \ (-- 'body offset)
swap +objects + \ (== 'body[i])

r> >context ;

length \ { 'body -—- n)
dup '/el-body @
swap #el @ * ;
END

cr .(oofarray.fth loaded) cr

isn't a tested idea, is it?” | Forth pays a great deal of

Can'toffhand think of any attention to describing data
languages that describe how types, at least as clearly as C,
their data structures are ar. | CC talsoexplicitly describes

di let al (Section 5.4 in BASIS, 3.4 in
fanged in memory, et aone dpANS-2) the regions of

e ey aargedin, | memory that are addres
seem toexpect of Forth. ANS able by a standard program.
29

Most high-level languages
don’tletyou address memory
at all. C sort of does, via
‘pointers,” but pointers are
still a lot more abstract than
Forth’s addresses.

“...an attempt to rescue
some of the functionality

January 1992 February

of classical Forth... And

Forth did have a viable

solution, didn't it? And

the ANSI team is propos-
ing a language that ignores
this solution, isn't it”

We'd sure apprediate it if
you'd share this “viable solu-
tion” with us, John. And
pleasebe specific, ratherthan
vaguely alluding to “classical
Forth,” so we can consider
your proposed language for
incorporation.

We believe ANS Forth is
extensible, and would very
much like to know exactly
what you feel is compro-
mised. As you seem to have
a high regard for precise lan-
guage, we'll be grateful if
you'd offer us some as an
example.

Your discussion of
START: would be helpful,
exceptthatMitchhas already
told you that we agreed there
was a problem with
BASIS15’s definition and
fixed it. We'll look forward
to seeing whether you agree
that it is fixed in dpANS-2.
There are probably alot more
areas in which clarity can be
improved, and appreciate
people pointing out other
specific instances.

“I think it is a truly unwise
strategy forthe ANSIteam
to propose a new lan-
guageand thenuse strong
arm tactics to get its ac-
ceptance rushed through.”

We have no intention of
doing so, and couldn't if we
did. The public review pro-
cess is deliberately lengthy,
in order to ensure as much
feedback as possible.

“It will do a great deal of
harm for the survival of
Forth to accept a bad
standard—and I don’t
think anyone should re-
gard it as fate that we
must do so.”

We heartily agree. We
look forward to hearing from
lots of people in the public
review process.

January 1992 February

Figure Eight. Code for the stack class.

\ oofstack.fth

\ MESSAGE <@@

\ MESSAGE <init
MESSAGE <push
MESSAGE <pop

ARRAY also

STACK
PRIMARY
PRIMARY
PRIMARY

class:

;class

STACK METHODS

910723 rwb

:var #el
:var
svar

~“el-class
~“tos

: push \ { obj 'body --)
dup “tos @ swap \ { =- obj 'tos 'body)
'"/el-body @ negate \ (-- obj 'tos 'body -/body)
over “~tos \ (-- obj 'tos 'body -/body “tos)
+! \ (== obj 'tos 'body)
~el-class @ >context <!! ;
: pop \ ('"body -~ obj)
dup “tos >r \ (~- 'body)
dup '/el-body @ >r \ (== 'body)
dup “tos @ \ (== 'body 'tos)
swap “el-class @ >context <@@ \ (== obj)
> > +! ;
: init \ ('body --)
dup “tos >r \ (-— 'body)
dup +objects >r \ (~— 'body)
dup '/el-body @ >r \ (== 'body)
#el @ > * \ (-- length)
r> + \ { =— 'bos)
> ' ;
: @e \ ('body -- obj)
dup “tos @ \ (-—— 'body 'tos)
swap “el-class @ >context <@Q@ ; \ (-- obj)
END
cr .(oofstack.fth loaded) cr
From: Steve Geller the implementation. This is | onwhether ANSForthshould

I used to use Forth, but
got tired of my boss blaming
all the software bugs on Forth
¢he's a Fortran and BASIC
enthusiast). I now write most
of my software in C and
assembler.

The non-portability of
Forth has annoyed me, be-
cause I work on a variety of
environments: PC, Unix,
VAX, Mac, and some em-
bedded stuff. The chief an-
noyance was when a word
with the same name did dif-
ferent things depending on

30

the main reason for stan-
dardization, in my view.

I think much of the
squabble I read here will
fade away once a standard is
clearly defined—and widely
implemented. I may well take
another look at Forth when
ANS Forth appears. Isure do
like the consistency of C
implementations; most of the
problems I've hit were with
small differences (orjust plain
bugs) in run-time library
implementations.

Some argument centers

codify existing practice or
define abetterlanguage. The
first idea seems rather reac-
tionary. The present imple-
mentations are not going to
disappear when ANS Forth
appears; there will be a period
of transition. If the standard
is well defined, it will be
accepted in the marketplace
and everyone will be better
for it. Variant Forths will be
around forever. There are
always “extensions” to any
standard. F83 was full of
extensions to the 83 stan-

Forth Dimensions

Figure Nine.]

\ OOFNEWST.FTH 910818 rwb
\ MESSAGE <@@
\ MESSAGE <init
MESSAGE <push
MESSAGE <pop
ARRAY also
class: STACK
PRIMARY :var #el
PRIMARY :var “el-class
PRIMARY :var head
;class
STACK METHODS
: element-context \ ('body --)
~“el-class @ >context ;
'obj \ ('body -- 'obj)
dup +objects swap \ (-- 'objects 'body)
dup #el @ over head @ \ (-- 'objects 'body #el head)
- swap '/el-body @ \ (-- 'objects head' el-/body)
* 4 H
s full? \ (‘body -- £)
dup head @ swap #el @ = ;
: empty? \ ('body -- £)
head @ 0= ;
: push \ (obj 'body --)
\ check not full
\ incr head
\ set element context
\ store obj
dup full? not \ (-- obj 'body ~f)
if
1 over head +! \ (== obj 'body)
dup 'obj
swap element-context \ (—— obj ‘body)
<t
else
abort" Stack Full!"
then ;
¢ pop \ { 'body -- obj)
\ check not empty
\ set element context
\ fetch obj
\ decr head ptr
dup empty? not \ { == ‘body ~f)
if
dup >r -1 >r \ defer til after obj fetch.
dup 'obj
swap element-context
<ee \ (-- obj)
r> r> head +!
else
abort™ Stack Empty!"
then ;
(Figure continues.)
Forth Dimensions 31

dard, and became a de facto
standard itself.

The question is really
whether the ANS standard
will be an attractive proposi-
tion to users and implement-
ors. I should think it might
be, given the background
and caliber of people work-
ing on the committee. I am
goingtotrytoobtaina dpANS
document whenever it be-
comes available to the gen-
eral public.

From: John Wavrik
Subject: Traditional Forth

Elizabeth Rather writes,
“Traditional Forth, for
example, allows the user
to know and make use of
knowledge of what is
‘compiled’ (or, more ac-
curately, assembled)—
and to exercise total con-
trol over the process.

“Hogwash! Whaton easth
is this ‘traditional Forth,’
and what did it ‘compile
or assemble”? Did it as-
sembile the same thing on
26502 as it did on a PDP-
11? If so, how did it run?
And if not, how could the
user ‘know and make use
of that knowledge in a
transportable fashion?”

To describe what I call
traditional Forth, perhaps it
would be wise to repeat the
major texts I have used in
teaching Forth (I am not go-
ing back to Kitt Peak Primer
and the various manuals,
Forth Dimensions articles,
etc. that I used to actually
learn the language—just the
printed works that I feel de-
scribe what I am calling tra-
ditional Forth):

1. Starting Forth by Leo
Brodie (published by
Forth, Incit)

2. Thinking Forth by leo
Brodie

3. Fonth: A Text and Refer-
ence by Kelly & Spies

I should also list the sys-
tems I have used over the
years, all of which have been
reasonably consistent with
the description of Forth given

January 1992 February

(Figure Nine, continued.)

: ee \ ('body -- obj)
\ check not empty
\ set element context
\ fetch obj
dup empty? not \ { == 'body ~f)
if
dup ‘obj
swap element-context
<ee \ (-- obj)
else
abort" Stack Empty!"
then ;
: init \ ('body --)
head off ;
END
in these books: out, knowledge of the exact | word executes. We can eas-
addresses is not needed to | ily imitate this guide to skip
Mﬁ%ggﬁh (tf;)vro’I\E:zsr_séi;gns) exercise control. Only the | over embedded data of any
MMS.-Forth for IBM.AT fact that the components are | size, and put any informa-
MVP-Forth for DEC Rainbow of the form described above | tion about it on the stack—
MVP-Forth for IBM-AT (together with a few extra | perhaps just the starting ad-
MVP-Forth for Apple I details about how the pro- | dress.
Kitt Peak V. AX-Fg rIZh cessor acts when executing (I should mention that an
F83 for IBMAT the code). important aspect of Forth in
Guy Kelly Forth for IBM-AT Let’s examine how this | my work is the ability to

1 also use F-PC, which is
moderately consistent.

I should mention that I
have found it not too difficult
to interchange code between
these systems—so my own
experience has been with
Forth as a fairly portable lan-
guage.

As for what these systems
assembled, and how use is
made of it:

In each of these systems
(see also the texts), the body
of a dictionary entry consists
generally of a sequence of
addresses of component
words. Embedded data is
preceded by a “handler”
word. Control flow is
achieved by the inclusion of
branching words (only a
conditional “branch on zero,”
traditionally called ?BRANCH
or 0BRANCH, and an uncon-
ditional BRANCH are
needed) and special words
to handle the DO ... LOOP
construct.

This information consti-
tutes the machine language
for the abstract processor on
which all these versions of
Forth are built. As it turns

January 1992 February

knowledge isused tosolve a
simple (but somewhat
amazing) problem: the intro-
duction of a new data type
into the Forth system. Forth
is remarkable in that new
data types can be introduced
seamlessly. One aspect of
this is the production of ap-
propriate handlers for a new
data type.

Traditional Forth comes
with only one data type: the
integer (possibly also double-
precision integers). The han-
dler embedded in code for
the integer data type is tra-
ditionally called LIT. When
LIT executes, it puts on the
stack theintegerimmediately
following it in the dictionary
body, and then it moves the
instruction pointer past that
integer. Here is the definition
that works on all the systems
mentioned above:

: LIT
R> DUP CELL
+ >R @ ;

We are using here the fact
that all of these systems in-
crement the instruction
pointer and store it on the
return stack when a new

32

seamlessly integrate into a
Forth system new and un-
usual data types—some sys-
tems have as many as seven
new types, each with appro-
priate mechanisms for stor-
age management, appropri-
ate handlers, operators, etc.)

The basic control struc-
tures are defined in the same
way in all of these systems.
For example:

: IF
COMPILE ?BRANCH
HERE 0 ,
; IMMEDIATE

: THEN
HERE SWAP !
; IMMEDIATE

(Compiler security has been
ignored. 1 believe all the
above systems use the abso-
lute address rather than a
displacement—but the
change is not a major one.)

With this information, one
can produce any conceiv-
able control structure on any
of these systems by laying
down and resolving the ap-
propriate branch instructions,
(To be sure, some such
structures, like the Eaker case

statement, can be synthe-
sized using standard control
constructs—although with
reduced efficiency.)

In brief, the user has both
knowledge of and control
over what is assembled. The
standard language provides
words (like the control flow
words) that introduce vari-
ants into the normal succes-
sion of addresses constitut-
ing the machine language of
the abstract machine—but
access is there for the user to
do something different. In
effect, the user has as much
control over the process of
translating a high-level lan-
guage into “object code” as
does the writer of a compiler
fora conventional language.
The user has the tools to
make a high-level language
look like anything he
wishes—because he has
complete control over the
process of compilation. And
he can do it portably if he
uses “traditional Forth.”

This is a remarkable and
somewhat subversive idea:
thata user should have power
normally reserved to spe-
cialists. I wouldn’t dismiss it
as hogwash if I were you!

From: John Wavrik
Re: Disenfranchised

Mitch Bradley writes,
“Where Dr. Wavrik has
been specific rather than
philosophical (e.g., user-
defined control struc-
tures), the committee has
attempted to deal with
the issues. It would have
saved me a lot of time if
the specific issues had
been presented in the
form of proposals; then 1
wouldn’t have had to do
the work of writing the
proposals.”

In the interest of histori-
cal accuracy, Mitch Bradley
had a proposal he wanted to
submit in this area. He con-
sulted me and a few other
people. T gave him my im-
pression of his proposal, but
he submitted it anyway. I do

(GEnie continued on page 38.)

Forth Dimensions

C.A. Maynard

orth is 2 minimalist lan-

guage, by which we

mean that the core of
the language provides facili-
ties from which the user/
programmer can build his
own working environment.
It has also been described as
a syntax-directed language
because, if you can define a
syntax which will best ex-
press your needs, Forth will
allow you to create a func-
tional equivalent suitable for
programmer use.

The latest thing in pro-
gramming tools is the use of
the object-oriented approach,
where data and operations
upon that data are all part of
the same “object.” This is
often refered to as encapsu-

Simple O
O'rie’:rted

Wilson, West Australia

lation and results in im-
proved data security, as only
those operations which have
been designed to work with
the object’s data structure
will be executed, and there is
no direct access to the data
itself. The user of an object
need have no knowledge of
the details of data storage or
even details of the appli-
cable methods. He/she just
needs to know the valid op-
erations and any parameter-
passing requirements which
may be necessary to operate
upon the object.

The user also needs to
know the terminology which
fits the use of these tech-
niques. There are several
variants on the object-ori-

To hide complex methods, we
can set up a new vocabulary.

Clive Maynard is a senior lecturer in
the Department of Computer Engi-
neering at Curtin University of Tech-
nology, Western Australia, where this
article’s contents are used as part of
students’ Forth instruction. He also
runs Wave-onic Associates, a systems-
design consultancy. He teaches real-
time systems using Forth on PCs and
on the Motorola 68HC 11, and is a co-
author of The Art of Lisp Programming
(Springer-Verlag, 1990). Clive has
developed a number of embedded
systems for industrial application.
Currentinterests include the develop-
ment of practical, analytical tools for
predicting real-time scheduler perfor-
mance in embedded systems; as well
as real-time systems and Al.

Forth Dimensions

ented theme, but the follow-
ingis adequate for our needs.

A class definition speci-
fies the data structures
needed, any initialization,
and the operations which
may be performed upon the
class.

An instance is a particu-
lar object of a specific dass,
and has built the data struc-
tures defined in the class
definition.

A methodis an operation
which can be performed
upon an object.

Inberitance allows the
user to minimize the addi-

33

ect-

5

rth

tional programming neces-
sary to handle a new varia-
tion on an object. If the
methods defined for the an-
cestor object are valid, the
objectwill simply obtain them
via the inheritance chain. If
there is the need for a different
definition of 2 method for a
new class, that may be in-
cluded in the new class and
will only work for the new
class of object and its
decendents. This ability is
called polymorphism.

Overloading is the ability
to have more than one defi-
nition of the same method,
and ensuring that the correct
one is applied to a particular
object.

Forth has the facilities to
create a very simple but ef-
fective object-oriented pro-
gramming environment. The
following discussion and
development will not pro-
duce the fastest object-ori-
ented implementation in
Forth, but will introduce the
direct application of defin-
ing and compiling words to
establishan appropriate syn-
tax.
The first requirement,
then, is to propose an appro-
priate syntax to represent the
object dass. (See Figure One.)

By analogy with cook-
ing, one should consider that
this syntax provides the
recipe to create new objects
but that one must use the
recipe to make an object
(i.e., create an instance) be-
fore one can use it.

This syntax must provide
the compiler with all the in-
formation needed to con-
structthe object. The method
names must be available for
use by any class definition,
and so will have tobe defined
before use.

It will also be necessary
to provide syntactic delimit-
ers between the method
name and the method, and
also to separate this from the
following method name.
These methods may result
from short in-line definitions
or may need to access pre-
defined and hidden method
definitions. Appropriate de-
limiter pairs which have been
selected are: :: and ;; for
in-line definitions, M : andM;
for predefined methods.

Note for understanding
the following code

1. The operations are made
independent of 16-bit or
32-bit Forth implementa-
tions by using the constant
WSIZE which returns the
number of bytes assigned
to storage of an integer
variable. This technique
reduces the efficiency of
definitions but ensures
portability, which is a
reasonable compromise.

2. Hidden methods must be
passed the address of the
beginning of data within
the object itself, and this
is shown in the stack
comments as “addr” on
top of the stack.

3. The stack comments for
the methods indicate the
parameters needed when
applying the method and/
or the results produced
by the method.

4. The classmustinherit from
another class or NULL,

Putting this together for
an example class which
consists of a point defined by
its x,y coordinates and a va-
riety of useful (and not-so-
useful) methods, [refer to
Figure Twol.

To create an instance of
this class called PT we sim-
ply execute:

10 15 POINT PT
January 1992 February

This particular example
has been designed to initial-
ize the x and y coordinates to
10 and 15, respectively, so
the most likely operations to
follow are similar to those
given in Figure Three.

The syntax is, of course,
typical RPN where the pa-
rameters are put on the stack
first, then the message or
method selector. Finally the
operation is performed by
the object itself, which is just
what object-oriented pro-
gramming is all about.

Examples of inheritance,
polymorphism, and over-
loading can easily be devel-
oped by extending from a
Point class to a Rectangle
class, and further to a Square
class. To simplify the discus-
sion, we will use a rectangle
oriented parallel to the xand
y axes, which can be defined
by its two opposite corners:
upper left (uD) and lower
right Q). (See Figure Four.)

Creating the object be-
comes simply:

40 18 6 10 RECTANGLE
RECT

The rectangle object con-
tains two points, and it is
appropriate that the designer
of the new dlass can operate
on these hidden or anony-
mous objects as if they were
separate. To obtain the up-
per left and lower right cor-
ner values for the rectangle,
we have used the structure
GETXY IN PT, giving us ac-
cess to the point methods
needed. We could have used
the GETXYM word from the
(METHODS) vocabulary,
becauseitis designed to work
with a POINT object. This is
only possible because we
have not made our Point
methods totally hidden to
other classes. If we took ad-
vantage of the EXCISE facility
included with UR/FORTH,
we could not cheat by ac-
cessing the hidden methods.

The programmer may
want to use a particular class
‘method which is appropri-
ate for his anonymous (.e.,
unnamed) objects within a

January 1992 February

Figure One. Syntax to represent object class.

new class, and there has to
be a valid syntax to access
the method. In this case, the

CLASS <name>

DATA
g:at?lag;';u;uérg m;?géﬁi ﬂlls_ \ Data structure and
ods need to be obtained. \ initialization
The use of IN is to bypass METHODS
the local data structure ad- <methodnamel> <methodl>
dress inside PT in favor of <methodname2> .. <method2>
that provided on the stack. | INHERIT

<ancestor> or NULL
\ Where NULL means
\ no ancestor class
ENDCLASS

Syntactically, this has exactly
the same effect as INHERIT
but may be used to access
any object matching the
hidden data structure. 7his

Figure Two. Defining the point class.

METHODNAME GETX
METHODNAME PUTX
METHODNAME GETXY
METHODNAME SWAPXY

METHODNAME GETY
METHODNAME PUTY
METHODNAME PUTXY
METHODNAME GRIPE \ Used as failing method

\ The following are useful general method names providing
\ for instance initialization and class recognition for the user.
METHODNAME BUILD METHODNAME ASTEXT
\ The following are hidden methods.

\ These words will not be visible within the Forth dictionary
METHOD: GETXYM (addr -- x y)

DUP WSIZE + @ SWAP @ METHOD;
METHOD: PUTXYM (x y addr --)

DUP >R ! R> WSIZE + ! METHOD ;
METHOD: SWAPXYM (addr --)

DUP @ OVER WSIZE + @

2 PICK ! SWAP WSIZE + ! METHOD;

CLASS POINT (xy --)

DATA

R , \ Initialize x y to the values on the stack
METHODS
\ Inline functions
PUTX (x --) WSIZE + ! H
GETX (-- x) WSIZE + @ ;;
PUTY (y —--) N R ¥
GETY (-- y) HE B
ASTEXT (-- string”) " Point" ;;
\ Hidden functions defined earlier
GETXY (-- xy) M: GETXYM M;
PUTXY (x y --) M: PUTXYM M;
SWAPXY (—-) M: SWAPXYM M;
BUILD (x y --) M: PUTXYM M; \ An alias for PUTXY here.
INHERIT

NULL
ENDCLASS

34 Forth Dimensions

;igure Three. Using the point class. J

GETXY PT . . 15 10 ok \ Note the order printed!
SWAPXY PT ok
GETXY PT . . 10 15 ok

ASTEXT PT COUNT TYPE
22 7 BUILD PT ok
GETXY PT . . 17 22 ok

Point ok

Figure Four. Defining a rectangle class.

METHODNAME PUTHEIGHT
METHODNAME PUTWIDTH
METHODNAME UPPERLEFT

METHODNAME GETHEIGHT
METHODNAME GETWIDTH
METHODNAME LOWERRIGHT

METHOD: PUTHEIGHTM (h addr --)
DUP @ ROT + \ The new lower right -> ylr
SWAP WSIZE 2* + !

METHOD;

METHOD: PUTWIDTHM (w addr --)
DUP WSIZE + @ ROT + \ The new xlr
SWAP WSIZE 3 * + !

METHOD ;
METHOD: GETHEIGHTM (addr -- h)
DUP WSIZE 2* + @ SWAP @ -
METHOD ;
METHOD: GETWIDTHM (addr -- w)
DUP WSIZE 3 * + @ SWAP WSIZE + @ -
METHOD ;

CLASS RECTANGLE (xlr ylr xul yul --)
\ Rectangle aligned to the x y axes

DATA
' + \ Upper left POINT yul xul
' + \ Lower right POINT ylr xlr
METHODS
PUTWIDTH (w —=) M: PUTWIDTHM M;
GETWIDTH (-- w) M: GETWIDTHM M;
PUTHEIGHT (h --) M: PUTHEIGHTM M;
GETHEIGHT (-- h) M: GETHEIGHTM M;
UPPERLEFT (-- x vy) : GETXY IN PT ;;
LOWERRIGHT (-- x y) :: WSIZE 2* + GETXY IN PT ;;
ASTEXT (-- string”) :: " Rectangle” ;;
BUILD (xlr ylr xul yul --) :: DUP >R PUTXY IN PT
R> WSIZE 2* +
PUTXY 1IN PT ;;
INHERIT
PT \ NOTE: Instance of POINT needed, not the class.
ENDCLASS
Forth Dimensions 35

may only be used within a
class definition, as it is only
within the class definition
that there is knowledge of the
internal data structures to
allowtheprogrammeraccess.
Now forthe SQUARE class,
defined in Figure Five. Pro-
ducing a new square:
5 12 13 SQUARE FRED

We now have a single
inheritance chain of classes
to experiment with! [See Fig-
ure Six.]

Creating the
Object Syntax

The use of defining and
compiling words in Forth
provides the programmer
with the ability to produce
new language constructs, and
is the core of the syntax-
generation process.

To generate the syntax,
some preliminary functions
will prove useful later. Dur-
ing creation of a specific
syntax, these will be speci-
fied as the need arises; but
here we will separate them
from the detailed discussion
of the syntax itself.

To generate distinct
method names, it is only a
matter of making a func-
tional equivalent to a vari-
able without using the stor-
age. In many systems where
the dictionary and vocabu-
lary coexist, simple name
creation would be enough;
but to be completely gen-
eral, we will define them as
follows.

: METHODNAME
CREATE 0 , ;

To hide the more com-
plex methods from the nor-
mal programming environ-
ment, we can set up a new
vocabulary into which all of
these definitions can be
placed.

VOCABULARY (METHODS)

If we wished to interac-
tively open this vocabulary
for the storage of 2 new
definition and then return to
the normal FORTH vocabu-
lary, we would enter the
sequence:

January 1992 February

(METHODS) DEFINITIONS
: ..content of new word..;
FORTH DEFINITIONS

This simple sequence may
be directly converted to
compiler words as follows.

: METHOD:
[COMPIIE] (METHODS)
[COMPILE] DEFINITICNS
[COMPIIE]

; IMMEDIATE

: METHOD;
[COMPILE]
[COMPTIE] FORTH
[COMPILE] DEFINITIONS
; IMMEDIATE

where each immediate word
used for the interactive se-
quenceiseffectively deferred
by the use of [COMPILE]
until the execution of
METHOD: and METHOD;.
Normal colon definitions may
be deferred by using COM~
PILE.

NULL is a word to indi-
cate that a search through
the inheritance chain has
been unsuccessful, and
should simply return a mes-
sage to this effect and stop
execution.

: NULL (flag --)
ABORT"
No method available "

’

The structure of defining
words in Forth provides the
basis for combining data and
execution functions within
one object. The basic form
for a defining word is:

: <object>
CREATE
.. storage set up ...
DOES>
.. run-time operations

To match our object syn-
tax to the appropriate Forth
structure, the programmer
builds a definition—based
on the core words of the
language—which will do
what is needed, as in Figure
Seven.

This may be demon-
strated by expanding on the
POINT example. To provide
the facility for anonymous
January 1992 February

Figure Five. Defining a square class.

METHOD: SIDEM (s addr --)

\ Store in both height and width

2DUP PUTHEIGHT IN RECT PUTWIDTH IN RECT

METHOD;
CLASS SQUARE (side x y --)
\ A square is a rectangle with height =
DATA
2pvup , , \ Upper left

2 PICK + , + ,

\ Lower right

width

\ Using same data structure as before

METHODS

PUTWIDTH (w ——) M: SIDEM M;

PUTHEIGHT (h —-) M: SIDEM M;

ASTEXT (-- string”) " Square" ;:;

BUILD (side x y --) DUP >R PUTXY IN PT

R> SIDEM ;:

INHERIT

RECT
ENDCLASS

Figure Six. Playing with classes.

ASTEXT FRED COUNT TYPE Square ok
GRIPE FRED

GETX FRED 12 OK
LOWERRIGHT FRED 18 17 ok
6 9 10 BUILD FRED ok
UPPERLEFT FRED . . 10 9 ok

GETWIDTH FRED . 6

"FRED" No method available ok

Figure Seven. An object as a Forth defining word.

<object>
CREATE
(build the instance data structure)
DOES>
CASE
methodl OF do.methodl ENDOF
method2 OF do.method2 ENDOF

inheritance
ENDCASE

access, we need the addi-
tional concept: a2 method
having a TRUE value indi-
cates that its execution has

tax is simply matching the
two forms and defining the
necessary compiling words
to handle the operations. [See

been entered through inher- | Figure Nine.]

itance or deferral, and that ‘The above constructs take
only itsmethods arerequired, | less than one page of code,
not the data structure. [See | yet provide all the function-
Figure Eight] ality discussed at the begin-

The process of configur-
ing our object-oriented syn-

ning of this document.

36

Extending the Example:
Text Window on a PC

We have developed our
syntax and object creation
methods, through an ex-
ample sequence, froma Point
to a Rectangle to a Square. A
text window is an example
of arectangle with additional
attributes:

Forth Dimensions

Figure Eight. Dropping data address during method inheritance.

: POINT (xy ——)
CREATE

r r

ENDCASE

.
r

DOES>(method dataaddr

| method dataaddr true dataaddr2 --)
\ Check if execution is entered through inheritance process
\ and drop the address provided by DOES> if it is.

OVER TRUE = IF 2DROP THEN SWAP
CASE
GETY OF @ ENDOF \ etc.
SWAPXY OF (METHODS) SWAPXYM FORTH ENDOF

\ Switch vocabularies to find the right word
SWAP TRUE NULL TRUE

\ Deal with inheritance and stack requirements of ENDCASE

Figure Nine. Defining the required compiling worda

: CLASS [COMPILE] ; IMMEDIATE

: DATA COMPILE CREATE ; IMMEDIATE

: METHODS
COMPILE DOES> COMPILE OVER COMPILE TRUE
COMPILE = [COMPILE] IF COMPILE Z2DROP
[COMPILE] THEN COMPILE SWAP [COMPILE] CASE

; IMMEDIATE

\ The following two are really deferred aliases

HH [COMPILE] OF ; IMMEDIATE

HH [COMPILE] ENDOF ; IMMEDIATE

M: [COMPILE] OF {COMPILE] (METHODS)
; IMMEDIATE

M; [COMPILE] FORTH [COMPILE] ENDOF
; IMMEDIATE

\ IN is required to access an anonymous ocbject within a new class
\ which, in practice, operates exactly the same as inheritance.

Forth Dimensions

IN COMPILE SWAP COMPILE TRUE ; IMMEDIATE
: INHERIT COMPILE SWAP COMPILE TRUE ; IMMEDIATE
: ENDCLASS
COMPILE TRUE [COMPILE] ENDCASE [COMPILE] ;

; IMMEDIATE
1. The rectangle may be dis- | use the operating system The user will still be able

played. commands of the IBM-PC, | to apply any methods asso-
2. The contents may be | butthese commands should | ciated with a rectangle objea

cleared. not be visible to the user of | to the text window, as well
3. Text may be placed any- | the window. All such de- | asthe new methods specific

where within the window. | tailed operations should be | tothetext window itself. The
4. Current text should be | confined to the hidden vo- | following code is derived

scrollable in the window. | cabulary. The user should | from the UR-FORTH access

Tocreate such a window expect to see a text window | to IBM-PC internals, and

' | object characterized by the | demonstrates whatis needed

we would expect tohave 10 | o0 4y Figure Ten, to create the new facilities for

37

our object, and also the abil-
ity to keep such details from
the normal programmer.

Most of the code in Fig-
ure Eleven is derived from a
demonstration example by
Ray Duncan of LMI, but takes
advantage of our predefined
objects by building on the
POINT facilities.

We may now complete
our definition of a text win-
dow object (see Figure
Twelve, page 40).

Efficlency & Generality

The approach we have
used above to create an ob-
ject-oriented syntax leads to
a direct implementation of
the requirements, but does
notlead to fastexecution. By
eliminating the use of in-line
definitions and by complet-
ing all definitions within the
hidden vocabulary, it is
possible to use vectored ex-
ecution techniques for
method access, which re-
sults in very fast chaining
through the inheritance list.

The remaining limitation
of this implementation is that
it only supports single in-
heritance, by whichwe mean
that there is a path of inher-
itance from any particular
classtoa class which inherits
NULL, and failure to find the
method within this search
halts the process. A more
general solution would be to
have multiple inheritance for
a class and allow the search
to try to find the requested
method by searching through
a specified set of class chains
until it finds the appropriate
method. From the user’s
syntax requirements, this can
be accomplished by simply
introducing a list of inherit-
ances to replace the single
instance discussed above.
From an implementation
viewpoint, this is not such a
simple task—but a very good
analysis-and-programming
exercise.

January 1992 February

(GEnie from page 32.)
notendorse, and never have
endorsed, the approach that
has been taken in this area
by the ANSI team. I felt that,
in this case, an attempt was
made, pro forma, to consult
me. Ithank Mitch Bradley for
at least making an effort to
hear different opinions be-
fore taking ... action.

From: Greg Bailey

In reply to John Wavrik’s
recent postings regarding the
discussion that has followed
his “disenfranchised” post-
ing:
First, I should like to
apologize to Dr. Wavrik for
having misunderstood his
intentions in re-posting his
architecture article. It was
dated 19 Aug., appeared on
GEnie 20 Aug,, and, givenits
wording (“this may be the
best general response”), it
seemed to me that this was
the totality of his response.
Since a more specific re-
sponse appeared on GEnie
five days later, I dearly mis-
understood his intent.

Second, I should like to
apologize to Dr. Wavrik if 1
have put any words into his
mouth. On the other hand, it
is difficult to discuss the po-
sitions taken by another
without restating them
somewhere along the line;
and since obviously such
restatements are not in the
other party’s words, it would
seem that the same could be
said of any rebuttal delivered
by anyone. However, if my
restatement of what John
appearsto be saying is grossly
at conflict with his meaning,
I am glad to be shown what
the meaning really is. In fair-
ness, however, one major
reason for replying to John’s
postings is that he is articu-
late and seems to me to have
put many words into the
mouths of the TC.

For example, John has
drawn the following errone-
ous interpretations of just
several recently made points:

“GB’s... comments illus-
trate the fact that there are
also people in the Forth

January 1992 February

Figure Ten. User-level view of window code.]

METHODNAME CLEAR
METHODNAME SCROLLUP
METHODNAME >XY

CLASS WINDOW (xlr ylr xul yul --)
DATA

14 r 4 7

\ Rectangle

METHODNAME DISPLAY
METHODNAME SCROLLDOWN

\ Plus additional attributes internal to window operations

METHODS
CLEAR M . M;
DRAW M: ... M;
SCROLLUP M: ... M;
SCROLLDOWN M: ... M;
>XY (x y --) \ Move cursor to x y
\ within the window
M: ... M;
ASTEXT M: . M;
BUILD M: . M;
INHERIT
RECT
ENDCLASS

Figure Eleven. Details derived from LMI demo.

HEX
METHOD: WPARQ@ (addr -- dx cx bx)

\ Fetch parameters for an IBM-PC video I/O call

DUP >R LOWERRIGHT IN RECT 100 * +
\ dx from ul
R@ UPPERLEFT IN RECT 100 * +

\ cx from 1lr

R> WSIZE 4 * + @

\ bx from the attribute variable
METHOD;

METHOD: W-ATTRIB (attrib addr --)
\ Change the initializing attribute
SWAP 100 * SWAP WSIZE 4 * + !

METHOD;
METHOD: W-EXEC (dx ¢x bx ax --)
\ Execute the window function
regAX ! regBX ! regCX ! regDX ! INT86
METHOD;
METHOD: W-CLEAR \ Initialize the window
WPARQ@ 0600 W-EXEC
METHOD;
METHOD: W-UP \ Scroll the window up
WPARG 0601 W-EXEC
METHOD;
METHOD: W-DOWN \ Scroll the window down
WPARQR 0701 W-EXEC
METHOD; (Figure continues.)
38 Forth Dimensions

(Figure Eleven, continued.)

METHOD: W-GOTOXY

METHOD;

METHOD: W-HOME

METHOD;

METHOD: W-LLC (

METHOD;

METHOD: W~-BORDER

(x y addr --)

\ Cursor addressing within the window
UPPERLEFT IN RECT D+ GOTOXY

addr --)

addr --)
\ Move the cursor to the lower left corner of window
WSIZE + DUP @

SWAP WSIZE +

(addr --)

\ Move cursor to the window home position, upper left
UPPERLEFT IN RECT GOTOXY

@ GOTOXY

\ Draw a border around the window using IBM character set
DUP >R UPPERLEFT IN RECT R> LOWERRIGHT IN RECT
\ The window parameters are now on the stack

usability of code is not
important....” “Forth has
acquired an unfortunate
reputation as being highly
non-portable, and GB’s
comments serve to rein-
force this impression.”
“...throw away time and
effort needed just for a
marginal gain in execu-
tion speed....” “His[GB’s]
work does not require
portability...” “No stan-
dard is needed for people
who plan to ignore it any-
how...” “...ER and GB’s
responses add unfortu-
nate confirmation to the
suspicion that the ANSI
team is writing a new
language whichthey plan
to pass off as Forth.” “The

Forth Dimensions

by people who do not
place much value on
portability—and Greg
Bailey says as much.”

These and many similar
passages from recent
postings of John's serve to
create, by repetition, the er-
roneous impression that
members of the TC, includ-
ing myself, have little or no
interest in portability or reus-
ability of code and are doing
grievous harm to what john
sees as Forth, In fact, this is
an erroneous interpretation
of at least my position, and I
presume that the root of the
problem is that at least until
the semantic issue 1 men-
tioned on 16 August is clari-
fied, John will continue to

39

OVER 1+ 4 PICK
DO \ Do two sides
I 3 PICK 1- GOTOXY 0C4 EMIT
I OVER 1+ GOTOXY 0C4 EMIT
LOOP
DUP 1+ 3 PICK
DO \ Do the other sides
OVER 1+ I GOTOXY O0B3 EMIT
3 PICK 1- I GOTOXY O0B3 EMIT
LOOP
OVER 1+ 3 PICK 1- GOTOXY (0BF EMIT (urc)
3 PICK 1- OVER 1+ GOTOXY 0C0 EMIT (1llc)
1+ SWAP 1+ SWAP GOTOXY OD9 EMIT (lrc)
1- SWwaP 1- SWAP GOTOXY ODA EMIT (ulc)
METHOD;
DECIMAL
community for whom re- ANSI team is dominated | misunderstand the motives

and actions of the TC.
Simply stated, ggain, my
understanding of John
Wavrik's position is that to
him Forth means (and I pre-
sume he believes it was in-
tended to mean) a static,
openimplementation model.
For example, he considers
that Forth includes a word
spelled DOCOL that, when
executed, returns a value that
can be passed to , (comma)
with specific and well-de-
fined meaning having to do
with the creation of abody of
executable code. He also
believes that Forth includes
words spelled ?BRANCH and
OBRANCH that are, and [
gather must be, used in
implementing control-flow

words. He feels likewise
about the existence, and
likewise about a method of
implementation that should
be guaranteed to work, for
LIT. John, am I misstating
your position here at all? I
don’t think I misunderstand
you. What I have heard you
say before is that you don’t
really care what it is, but
whatever it turns out to be
you want it all (ie., you
really strongly desire a stan-
dard that prescribes an
implementation—whether
you draw the “architectural”
boundary there or not—at
least completely enough that
you know and can manipu-
late the executable text of a
colon definition; that you
know and can manipulaie
the structure of the dictio-
nary; and so on). My under-
standing of your position is
thatalaudable standard could
be formed by taking virtually
anygood implementation of
Forth, documenting the
whole thing, and saying that
standard Forth must be
implemented in this way on
all computers.

Before I reply in detail to
your postings, I think it would
be useful to refine with you
the above paragraph as
needed, so that what we
have is a concise but accu-
rate statement of where you
draw the line.

At the same time, so that
we canall calibrate your sen-
sitivity to the performance
one may expect of an ap-
Dlication written in Forth, 1
would like to know what
you meanby “marginal gains
in speed.” For example, is a
10x performance improve-
ment on a given CPU mar-
ginal toyou? Readers of these
postings might erroneously
conceive, for example, that
the architecture-independent
definition of Forth we have
tried to write in the dpANS
was undertaken for no other
reason than to permit imple-
mentations that shave a few
percent off execution speed.
Nothing could be farther from
the truth.

January 1992 February

I still feel that we are
debating semantics and
would like, if possible, to
partition the argument into
two issues: (1) the merits of
architecture independence
vs. prescribed implementa-
tion methods, and (2) spe-
cific things you would like to
do in a portable way but feel
itis impossible to do in terms
of the dpANS. If possible, it
would also help if items in
this latter category were
identified as to their portable
feasibility in terms of Forth-
79 or Forth-83.

As a final point for this
posting, my several anec-
dotes about Chuck Moore
were not intended to de-
value portability or reusability
of code. Iwasinstead tossing
them out because it seemed
to me that John considered it
self-evident that Forth was
conceived to be what he
wants it to be. This strack me
as curious since, for as long
as I have been participating
(since the end of 1975), the
inventor of Forth and those
who have worked with him
have comtinually been de-
veloping its architecture to
increase the breadth of its
applicability. Obviously, this
development could have
been armrested at any point to
produce a frozen model that
I believe would have the
properties John seeks. This
does not mean that our ap-
plications lack practical
portability or reusability. It
does, however, mean that,
to the extent that those appli-
cations exploited the pro-
cessor or the characteristics
of the implementation, they
would need attention when
dusted off.

From: Greg Bailey

John Wavrik writes on 25
Aug. 91 that Mitch’s account
of events with user-defined
control structures failed to
mention that John does not
endorse, nor has he ever
endorsed, the approach that
has been taken in this area
by the ANSI team.

It would be enlightening
for John to amplify on this

January 1992 February

Figure Twelve. Completed definition of text window object.

HEX
CLASS WINDOW (xlr ylr xul yul --)
DATA
' ’ \ ul POINT
, , \ 1lr POINT or RECTANGLE
700 , \ Additional attribute internal to window operations
METHODS
CLEAR M: DUP W-CLEAR W-HOME M;
DRAW M: DUP W-BORDER DUP W-CLEAR W-HOME M;
SCROLLUP M: DUP W-UP W-LLC M;
SCROLLDOWN M: DUP W-DOWN W-HOME M;
>XY (x vy -—) \ Move cursor to position x y in window
M: W-GOTOXY M;

ATTRIBUTE (attr

-)

M: W-ATTRIB M;
" Text Window" ;;

ASTEXT

BUILD (xlr ylr xul yul

DUP

700 R> WSIZE 4

INHERIT
RECT

ENDCLASS

DECIMAL

==)

>R BUILD IN RECT
\ Reuse the previous definition

* o+ gy

\ Change window attribute value

\ Add default attribute

The following demonstrates use of the text window objects:

30 10 5 5 WINDOW W1

70 15 40 7 WINDOW W2

70 23 10 21 WINDOW W3
WDEMO

CLS DRAW W1

0 1 >XY W3
0 BEGIN 1+

SCROLLUP W1
SCROLLDOWN W2 ."

DRAW W2 DRAW W3
\ Window W3 now active for text entry.
." We will scroll the left window up"

." Line # "

Line # "

?TERMINAL UNTIL DROP

CLEAR W3
0 0 GOTOXY

DUP

." and the right window down."™

DUP

." The demonstration is finished.™

negative opinion by stating
his reasons. It would also be
useful if John were to illus-
trate these reasons with some
examples of things that can’t
be done portably in terms of
the operators included inthe
dpANS.

Useful things that can’tbe
done are valid demonstra-
tions of weakness in the
standard, and will always be
interesting to the TC. How-
ever, the general methods
documented in the dpANS

40

(specifically of postponing
members of the basic con-
trol-flow wordset) were cho-
senbecause they dowork on
the majority of systems; in-
deed, the major differences
between these systems had
to do with manipulation of
items on the compile-time
control-flow stack, and these
differences have been ad-
dressed with operators to
manipulate them. Con-
versely, “justusing ?BRANCH
and 0BRANCH” will notwork

on many systems, because
many systems lack these
words. Indeed, some, such
as the Novix and Harris chips,
and microcoded or native
code implementations, have
no place for those words. On
the other hand, [COMPILE]
IF or POSTPONE IF doesin
fact cover the bases in such
cases.

The TC believes that the
ability of a Forth program-
mer o compose control

(Continues on page 42.)

Forth Dimensions

HARVARD SOFTWORKS
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

MEET THAT DEADLINE {11!

* Use subroutine libraries written for
other languages! More efficiently!

¢ Combine raw power of extensible
languages with convenience of
carefully implemented functions!

¢ Yes, it is faster than optimized C!

¢ Compile 40,000 lines per minute!

¢ Stay totally interactive, even while
compiling!

¢ Program at any level of abstraction
from machine code thru application
specific language with equal ease
and efficiency!

¢ Alter routines without recompiling!

¢ Use source code for 2500 functions!

¢ Use data structures, control
structures, and interface protocols
from any other language!

¢ Implement borrowed feature, often
more efficiently than in the source!

¢ Use an architecture that supports
small programs or full megabyte
ones with a single version!

¢ Forget chaotic syntax requirements!

¢ Outperform good programmers
stuck using conventional languages!
(But only until they also switch.)

HS/FORTH with FOOPS - The only
full multiple inheritance
interactive object oriented
language under MSDOS!

Seeing is believing, OOL’s really are
incredible at simplifying important
parts of any significant program. So
naturally the theoreticians drive the
idea into the ground trying to bend all
tasks to their noble mold. Add on
OOL’s provide a better solution, but
only Forth allows the add on to blend
in as an integral part of the language
and only HS/FORTH provides true
multiple inheritance & membership.

Lets define classes BODY, ARM, and
ROBOT, with methods MOVE and
RAISE. The ROBOT class inherits:

INHERIT> BODY

HAS> ARM RightArm

HAS> ARM LeftArm
If Simon, Alvin, and Theodore are
robots we could control them with:
Alvin ’s RightArm RAISE or;
+5 -10 Simon MOVE or:
+5 +20 FOR-ALL ROBOT MOVE

The painful OOL learning curve
disappears when you don’t have to
force the world into a hierarchy.

Forth Dimensions

WAKE UP!!!

Forth is no longer a language that
tempts programmers with ‘"great
expectations”, then frustrates them
with the need to reinvent simple tools
expected in any commercial language.

HS/FORTH Meets Your Needs!

Don’t judge Forth by public domain
products or ones from vendors
primarily interested in consulting -
they profit from not providing needed
tools! Public domain versions are
cheap - if your time is worthless.
Useful in learning Forth’s basics, they
fail to show its true potential. Not to
mention being s-1-0-w.

We don’t shortchange you with
promises, We provide implemented
functions to help you complete your
application quickly. And we ask you
not to shortchange us by trying to
save a few bucks using inadequate
public domain or pirate versions. We
worked hard coming up with the ideas
that you now see sprouting up in other
Forths. We won’t throw in the towel,
but the drain on resources delays the
introduction of even better tools. Don’t
kid yourself, you are not just another
drop in the bucket, your personal
decision really does matter. In return,
we’ll provide you with the best tools
money can buy.

The only limit with Forth is your
own imagination!

You can’t add extensibility to fossilized
compilers. You are at the mercy of
that language’s vendor. You can easily
add features from other languages to
HS/FORTH. And using our automatic
optimizer or learning a very little bit
of assembly language makes your
addition zip along as well as in the
parent language.

Speaking of assembly language,
learning it in a supportive Forth
environment turns the learning curve
into a light speed escalator. People
who failed previous attempts to use
assembly language, conquer it in a few
hours or days using HS/FORTH.

WINTER SALE >>>

41

HS/FORTH runs under MSDOS or
PCDOS, or from ROM. Each level includes
all features of lower ones. Level upgrades:
$25. plus price difference between levels.
Source code is in ordinary ASCII text files.

HS/FORTH supports megabyte and larger
programs & data, and runs as fast as 64k
limited Forths, even without automatic
optimization -- which accelerates to near
assembler language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminate
headers without recompiling. Compile 79
and 83 Standard plus F83 programs.

PERSONAL LEVEL $299.
NEW! Fast direct to video memory text
& scaled/clipped/windowed graphics in bit
blit windows, mono, cga, ega, vga, all
ellipsoids, splines, bezier curves, arcs,
turtles; lightning fast pattern drawing even
with irregular boundaries; powerful
parsing, formatting, file and device I/O;
DOS shells; interrupt handlers;

call high level Forth from interrupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file search paths; format to strings.
software floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4 words,
1.4 dimension var arrays; automatic
optimizer for machine code speed.

PROFESSIONAL LEVEL $399.
hardware floating point - data structures
for all data types from simple thru
complex 4D var arrays - operations
complete thru complex hyperbolics;
turnkey, seal; interactive dynamic linker
for foreign subroutine libraries; round
robin & interrupt driven multitaskers;
dynamic string manager; file blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $499.
Metacompiler: DOS/ROM/direct/indirect;
threaded systems start at 200 bytes,
Forth cores from 2 kbytes;

C data structures & struct+ compiler;
TurboWindow-C MetaGraphics library,
200 graphic/window functions, PostScript
style line attributes & fonts, viewports.

ONLINE GLOSSARY $ 45.

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

FOOPS+ with multiple inheritance $ 79.

TOOLS & TOYS DISK $79.

286FORTH or 386FORTH $299.

16 Megabyte physical address space or
gigabyte virtual for programs and data;
DOS & BIOS fully and freely available;
32 bit address/operand range with 386.
ROMULUS HS/FORTH from ROM $ 99.

Shipping/system: US: $7. Canada: $19.
foreign: $49. We accept MC, VISA, & AmEx

Free Online Glossary plus Tools & Toys
Disk with all systems.

Free 286FORTH (also for 386) with all
Professional and Production level systems.

January 1992 February

[

NGS FORTH

A FAST FORTH,
OPTIMIZED FOR THE IBM
PERSONAL COMPUTER AND
MS-DOS COMPATIBLES.

S8TANDARD FEATURES
INCLUDE:

©79 STANDARD
eDIRECT I/O ACCESS

.FULL ACCESS TO MS-DOS
FILES AND FUNCTIONS

OENVIRONMENT SAVE
& LOAD

eMULTI-SEGMENTED FOR
LARGE APPLICATIONS

OEXTENDED ADDRESSING

eMEMORY ALIOCATION
CONFIGURABLE ON-LINE

@AUTO ILOAD SCREEN BOOT
OLINE & SCREEN EDITORS

®oDECOMPITER AND
DEBUGGING AIDS

#8088 ASSEMBLER
OGRAPHICS & SOUND
ONGS ENHANCEMENTS
®DETAILED MANUAL
®INEXPENSIVE UPGRADES
ONGS USER NEWSLETTER

A COMPLETE FORTH
DEVELOPMENT SYSTEM.

PRICES START AT §70

NEWe-HP-150 & HP-110
VERSIONS AVAILABLE

=
a

NEXT GENERATION BYSTEMS
P.0.BOX 2987

8ANTA CLARA, CA.
(408) 241~5909

95055

January 1992 February

(GEnse, from page 40.)

structures in terms of the dpANS is vastly
superior to that provided by either Forth-
79 or Forth-83. Please note that the
xBRANCH words were not required and,
indeed, were not particularly encour-
aged, nor were they anywhere near
universally supported; and that there
was no practically portable way for
users to implement control structures
without depending on intimate knowl-
edge of the intermediate database used
by each system. Anyone with evidence
to contradict this belief is encouraged to
demonstrate problems during the re-
view period.

From: Elizabeth Rather
To: John Wavrik
Re: “Traditional Forth”

Thank you for your very clear dis-
course defining what you mean by that
term. I would like to urge you, however,
to try to find a better adjective than
“traditional,” because thatimplies a heri-
tage, ancestry, and universality that re-
ally isn't justified. For example, the
xBRANCH words you mention were in-
troduced in Forth-83 as an experimental
wordset (by Kim Harris, I believe), and
systems that maintained an allegiance to
Forth-79 would not have used them. So
you might say that “some” or even
“many” implementations work that way,
but prior to Forth-83, nosystems worked
that way that I am aware of; and it was
not, by any means, universally adopted
afterwards. You may feel that this is
unnecessary quibbling over an adjec-
tive, but it is an adjective that has value
judgements associated with it, too, and
inappropriate use of it introduces heat
into what should be a logical discussion.

Along the same lines, use of “as-
sembling” to describe laying down
material for the Forth engine to process
obfuscates more than it enlightens, be-
cause it directs the reader’s thoughts to
machine code. That was what I was
“hogwash-ing” at.

Now, I'll leave it to Mitch to tell you
how to write portable literals in ANS
Forth, because he does that sort of thing

. sowell, and concentrate on the principles.

The TC considered including the
xBRANCH words, but left them out be-
cause those of us who were familiar with
a lot of systems (Martin Tracy, in par-
ticular) were able to show that, in fact,
they had notbeen implemented widely,
for some pretty good technical reasons.
Instead, we provided POSTPONE and
liberalized the use of structure words,
and finally introduced some lower-level
words (SO, STILL,etc.) inthe TOOLKIT
wordset. Wil Baden was the principal

42

architect of our approach to handling
this, and although we've fine-tuned his
work somewhat, we think he did a great
job. The result is that you have a great
deal more power and flexibility by
using phrases such as POSTPONE ELSE
(for an unconditional forward branch)
than with the other words, because it is
required and simple to implement,
whereas the BRANCH tools were in vio-
lation of so many implementations that
there is no general expectation that it
can be there.

In fact, a number of us on the TC like
to use such techniques as you describe,
and believe that ANS Forth offers greatly
improved power and flexibility in these
areas while additionally taking steps to
improve portability of these techniques
onto direct-compilation systems, Forth
chips, and 32-bit systems. I guarantee
you that your strategies wouldn't have
worked on any of these! So the net
result is not only more programmer
power, but greater portability.

From: L. Zettel

Pardon me while I pick a few nits.
Now that we are agreeing, for the time
being, that “traditional Forth” is the
Forth described by Brodie and by Kelly
& Spies, I thought it would be enlight-
ening to look up LIT in the indices of
these books. Very interesting. Kelly &
Spies (p. 320) give the definition:

: LITERAL
STATE @
IF COMPILE LIT
, THEN ; IMMEDIATE

Brodie, second edition offers

: LITERAL (n —-—-—)
COMPILE (LITERAL)
, ; IMMEDIATE

Significantly (to my mind), neither
offers a definition of LIT or (LIT-
ERAL).

From: John Wavrik
Re: X3]14 Holding Pattern Here

Elizabeth Rather writes,

“The disagreementbetween you and
the committee is not ‘who wants
portability’ but how portability is
achieved. We believe it can most
usefully be achieved by defining the
behavior of Forth words, and you'd
prefer to see their implementation
standardized.”

Actually, the disagreement hinges
more on what Forth is capable of
doing—or how powerful and flexible
the language should be.

Forth Dimensions

This is probably the main
source of disagreement. It
might stem from a difference
in view of what the Forth
language is, has been, or
could become. It might stem
from a willingness to trade
away capabilities of Forth to
achieve harmony among
vendors. It might stem from
a disagreement about what it
should be possible to do
portably.

My claim is that Forth has
traditionally been alanguage
whichallows the usertobuild
major language features.
(There is a Forth literature
discussing variant methods
for doing local variables,
exception handling, adding
object orientation, etc.) Forth
has been a toolkit for build-
ing application-oriented lan-
guages. The ANSI team is
heading in the direction of
including some important
features (local variables, ex-
ception handling, etc.) but
removing the ability to build
such things.

There are several other
points of disagreement—
most notably those having to
do with clarity of definitions
and simplicity of action.
Words whose meanings can
be interpreted differently by
different implementors are
useless for portable pro-
gramming. The best tools
available should be used to
make the actions clear. Empty
abstraction should be
avoided—the actions of
words should be as simple
as possible. There are impor-
tant aspects of the character
of traditional Forth (simplic-
ity, access, comprehensibil-
ity, etc.) that should be pre-
served.

There is no disagreement
at all about describing Forth
words in terms of their be-
bavior. This is how Forth
words have always been
described. (On mostsystems,
the lowest-level words have
always been implemented
in machine language, so it
has never been possible to
standardize their implemen-
tation.)

Forth Dimensions

In this regard, I should
mention that clarity of a de-
scription of behavior is im-
proved immensely if a glos-
sary entry is accompanied
by a sample definition. Inthe
Golden Days of Forth, this
was a way we old-timers
found helpful to convey the
intended behavior of a word.
I realize that the young folk
have extreme prejudices
against doing sensible things
like this, so I'll just keep my
mouth shut and rock on the
porch here, looking through
my old copies of BYTE
magazine and generally
basking in nostalgia!

“Can’t offhand think of
any languages that de-
scribe how their data
structures are arranged in
memory, let along how
their code is arranged in
memory, which is what
you seem to expect of
Forth. ANS Forth pays a
great deal of attention to
describing data types, at
leastas clearlyas C, etc. It
also explicitly describes
(Section 5.4 in BASIS, 3.4
in dpANS-2) the regions
of memory that are ad-
dressable by a standard
program. Most high-level
languages don't let you
address memory at all. C
sort of does, via ‘point-
ers,’but pointers are still a
lot more abstract than
Forth’s addresses.”

Conventional languages
allow data structures only to
be created by a limited set of
mechanisms built into the
language—and then impose
further limitations on the sta-
tus of these structures thow
they can be passed to func-
tions, how operators may act
on them, etc.). This is one of
the reasons for using Forth.

Obviously, someone
must decide how a data
structure is arranged in
memory, how it is accessed,
etc. In conventional lan-
guages, it is the designer of
the language. In Forth, it can
be the user (who is, in a real
sense, the designer of lan-

43

guages).

Ireally have neverunder-
stood arguments which pick
some limitations that make
other languages inflexible
and use that to suggest that
Forth should be equally in-
flexible.

From: John Wavrik
Subject: Nostalgia??2t1???

Elizabeth Rather writes,
“Our discussion of devia-
tions from the earliest days
to the present is intended
to point out that there has
neverbeensuchagolden
age, and that your nostal-
gia for it is, therefore, in-
appropriate.”

Somehow, I feel like Iam
in the middle of the novel
1984, in which the establish-
ment had newspapers re-
written to show that certain
events neverhappened. Here
is what I remember:

When I became involved
with Forth, most computer
magazines had regular ar-
ticles on the language. BYTE
magazine devoted at least
one full issue to Forth (per-
haps more). Some magazines
had a Forth column. My first
course on Forth was taught
(by request) to 30 faculty and
staff members—including

_representatives from the

seemed magically to run on
others—and there was a
healthy exchange of appli-
cations and ideas. Magazine
ads offered a variety of utili-
ties (good editors, decompil-
ers, etc.). You didn't have to
justify your choice of Forth.
1 am really trying to be a
good citizen—so I am trying
to believe with all my might
that this never happened (but
if it didn’t, then why do I
have on the wall of my office
a poster of the BYTE maga-
zine cover featuring Forth?).
We are losing sight of the
purpose of introducing this.
The way Forth is described
in the most popular texts
was quite common—which
is why the texts described it
as they did. One must re-
member that, if one is writ-
ing a general textbook for a
language (rather than a
manual for a particular dia-
lect), it is best to stick to
common practice. I have
chosen the name Traditional
Forth for this language be-
cause it is the form in which
Forth was realized in a great
many systems, from the ear-
liest times to the present.
Please note that there is
nothing in the previous
paragraphs that says there
were no variant systems.
There is nothing in the previ-

ANSI is headed toward
including some important
features, but removing the
ability to build such things...

computer center, who
wanted to be able to support
the hot new language. Forth
was the official language of
astronomy, and the Center
for Astrophysics and Space
Studies (CASS) was one of
the main groups using it at
UCSD. Several people at
Scripps Institute of Ocean-
ography also used the lan-
guage. I regularly received
requests about where to ob-
tain an implementation of
the language. Applications
written for one platform

ous paragraphs that casts
aspersions on the use of a
non-standard system for cer-
tain applications. There is
nothing in the previous
paragraphs that says that
everything that has been
done in the past in an at-
tempt to standardize Forth
was done perfectly.

Tdon'tregard as nostalgia
an effort to call attention to
some extremely strong and
positive things that were
going on with the Forth lan-
guage at that time.

January 1992 February

Contributions from the Forth Community

We are beginning to assemble a great collection of Forth code in machine-readable form.
If you need a good Forth, it is probably here.

Minimum-requirement Forths:
The kitchen-sink Forths:
Complete starters:
Object-oriented Forths:
Macintosh Forths:

IBM Forths:

Atari Forth:

8051 Forths:

Graphic and floating-point Forths:

Forth tutorials:

Applications:

Great demos from St. Petersburg:

PocketForth, PYGMY, eForth

F-PC, BBL

F83, Kforth, ForST

Yerkes, MOPS

Yerkes, MOPS, PocketForth

PYGMY, F-PC, BBL, F83, Kforth, eForth
ForST

8051 ROMmable Forth, eForth

Yerkes, MOPS, F-PC, Kforth

The Forth Course, F-PC Teach
Forth List Handler, Forth Spreadsheet,
Automatic Structure Charts, A Simple Inference Engine,

The Math Toolbox

AstroForth and AstroOKO

(See the Mail Order Form inside for more complete descriptions)

Yet to come:

» Collections of tools and techniques are being assembled that cover communications, hardware
drivers, data analysis, and more math and numerical recipes.

Things we need or which are not currently available in machine-readable form:
+ Original listings of fig-Forth for any machine on disk. We do not currently have them.
» We can use many more applications and application ideas that include source code.
+ Code from the authors of FORML papers and past Forth Dimensions articles.

Send submissions to: FIG, ¢/o Publications Committee, P.O Box 8231, San Jose, CA 95155

Forth Interest Group
P.O.Box 8231
San Jose, CA 95155

Second Class
Postage Paid at
San Jose, CA

