

SILICON COMPOSERS INC

Announcing the SCIFOX I032 Board for FAST Forth I10

-OX K)32 Board Feah*es Fast Wispe r skn Program Example
H The 1032 Is a p l u ~ a daughter board for either The program, SEND below, reads 1 K blocks from a SCSl

the SBC32 land-alone or PCS32 PC plug-in drive and transmits them out one of the 1032 board's four
single board computers. RS232 serlal ports at 230K Baud. SEND uses only 1032

H 5 MBIsec SCSl Port. facilities. Disk read speed is limited by SCSl drive speed.
H Attach up to 7 SCSl Devkes.
H 4RS232SerialP~,upt0230Kbaud.
H 16-bit Bidirectional-Paralid Port, may be

used 68 tWO &bit ports.
H 2 programmable counter/timers.
H Pratotyping area on board.
r All bus signal brought out to pads.
H Full lnterrup Support.
H Two 50-pin user application connectors.
H No jumpers, totally software codigurable.
H Driver software source included.
H Single +5 VoU kw-pmver operation.

Full ground end power plane.
H 4 Layer, Ewocard-size: 1OOmm x 1601~1.
H User manual and Interface schematics Included.
H Low chip count (8 ICs) for maxknum reliaMlUy.
H Test routines for SCSI, parW, and serial

ports supplied in source code form.
Phrg together up to 6 1032 Boards in a stack.

For additionel produd and pricing I ~ m i o n , please contad us at:
SKJCON COMPOSERS INC 208 Caliiomig Averue, Pab Ato, CA 94306 (415) 3224763

2 Forth Dimensions

Features

6 Combsort in Forth
Walter J. Rottenkolber

The author develops a blazing Forth routine based on the unbelievable (but true) "Fast,
Easy Sortn from BYE. Who would expect so much from a mere three lines of code? For test
cases, the routines published in FDs own "Challenge of Sortsn were ready and waiting. Who
would have won that challenge, if they had a handy unbreakable Combsort in their hip
pocket? Try it on your machine and see!

New Stack Tools
Peter Verhoeff

Forth is great, but keeping track of the stack and manipulating its contents-especially
when working with string-an tax one's powers of visualization and recall. Follow the
step-by-step process of creating a vastly enhanced and more programmer-friendly way to
represent and juggle stack items with just a few keystrokes. Warning: these routines could
change your programming habits.. .

21 QuikFind String Search
Rob Chapman

Sure, "Forth is fastn-repeat that mantra to yourself while waiting to compile code from
a dictionary of several thousand words. The author tweaked his system a bit, then got hooked
on the potential. His years-long self-study course is described succinctly here, along with the
anticipated results: a fast hash algorithm for dictionary searches that won't turn your modules
into molasses.

Departments I
4 Guest Editorial.. How you can help; publications read by otherForth users.

4 dpANS Forth release announced!

5 Letters Anti-vendor bias; IIe solutions; Singapore slingshot targets
FIG issues.

14 Advertisers Index

26 President's Letter I have a dream.. .

28 Best of GEnie Debating memory management, alignment, etc. in ANS Forth.

32-35 resource ListingsFIG, ANS Forth, classes, on-line connections, FIG chapters.

Forth Dimensions 3 November 1991 December

Forth Dimensions I Volume NII. Number 4 I November 1991 December I
Published by the

Forth Interest Qroup

1 Editor 1
~ a r l i ~ ~ u v e r s o n

Anna Brereton

W e've been talking to
ourselves for too
long, and we needto

talk to the rest of the worM.
Whik I am off setting up
ref- for FD 3 object-otl-
en fedprogramming contest
(we have quite a fm excit-
ing entries), Horace
Simmons offers the follow-
ing important guest edito-
rial.

A FIG c h a p t e r ~ w h o
immigrated to the Sun
Francisco Bay area, Horace
took the initiative to involve
himserf in FIG3 affaits. He
has p d d e d valuabk in-
sight and ideas at quite a
few meetings of FIG3 Busi-
ness Group.

Please take this guest
editorial to heart, discuss it
at your chapter meetings,
and, most of all, act on it!

-Mitor

FIG exists to provide a
structure for Forth pro-
grammers to communicate
with each other about Forth
and with those who wish to
learn more about the lan-
guage. For several years,
FIG has been more suc-
cessful with the dialogue
with its members than it has
been with those outside its
organization. Use of Forth
has continued to grow over
the years, even though the
growth has been outside
the ranks of full-time, pro-
fessional programmers and

November 1991 December

hobbyists. EDNs editor re-
ports that 1W of its 100,000
readers use Forth. Because
FIG'S membership is not that
large, we know that most of
those readers cannot make
use of FIG'S services. We
also know that FIG has not
been reaching them with
information about how to
network with other Forth
programmers. Now, FIG
could spend some of its
revenue to run advertise-
ments in EDNto try to reach
those users. Or, some FIG
member could write an ar-
ticle about one of his projeds
and send it to EDN.

When EDN publishes
that article, the member who
wrote it makes some money.
Assuming that the member
mentioned how Forth was
used and how it contributed
to the success of the project,
Forth users will be reached
and middle-level manage-
ment can be influenced. By
including a footnote men-
tioning FIG, or a biblio-
graphic reference to FIG
@.O.Box 8231, San Jose,
California 951 55, 408-277-
0668, fax 408-286-8988) and,
perhaps, to the vendor of
the Forth package, anyone
reading the article can re-

p- -

dpANS Forth Released
for Public Review!

M a j o r m U e s M e Draft Proposed ANS Programming
Language Forth was to enter its official public review period
in October. Copies of the proposed standard may differ from
development versions (i.e., the "BASISn documents), and can
be purchased from Global Engineering Documents, Inc,
2805 McGaw Avenue, Ifvine, California 92714. Ask for
document xX3.215-1%. From within the United States and
Canada, call 800-854-7173; from other countries, call 714
261-1455. The U.S. price is $50 per copy; for international
orders, the price is $65 per copy. L%b data isfrom a notice
@.ad 9-18-91 on GEnie by the chairman of the BJ14
committee. H o u m q Global Engineering had not received
the document as of 93G91, and thelr@okesrnan informed
FD thatpricing may be subject to changel

The public-review period extends from October 18,1931
through February 25,1992. Please send all comments to X3
Secretariat/CBEMq Att'n: Lynn Barra, 311 First Smet N.W.,
Suite 500, Washington D.C. 20001-2178. Send a copy of all
comments to American National Standards Institute, Att'n:
BSR Center, 11 West 42nd Street, New York, New York

1 10036.
1

4

Forth Dimensions welcomes
editorial material, letters to the
editor, and comments from its
readers. No responsibility is as-
sumed for accuracy of submissions.

Subscription to Forth Dimen-
sionsis inciuded with membership
in the Forth Interest Group at $40
per year ($52 overseas air). For
membership, change of address,
and to submit items for publica-
tion, the address is: Forth Interest
Group, P.O. Box 8231, San Jose,
California 951 55. Administrative
offices: 408-277-0668. Fax: 408286-
8988. Advertising sales: 805-%6-
2272.

Copyright O 1991 by Forth In-
terest Group, Inc. The material
contained in this periodical (but
not the code) is copyrighted by the
individual authors of the uficles
and by Forth Interest Group, Inc.,
respectively. Any reproduction or
use of this periodical as it is com-
piled or the articles, except repro-
ductions for non-commercial pur-
poses, without the written permis-
sion of Foah Interest Group, Inc. is
a violation of the Copyright kws.
Any code bearing a copyright n*
tice, however, can be used only
with permission of the copyright
holder.

The Forth Interest Group
The Forth Interest Group is the
association of programmers, man-
agers, and engineers who create
pradical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that
will advance the general state of
the art. FIG provides a climate of
intellectual exchange and benefits
intended to assist each of its
members. Publications, confer-
ences, seminars, telecom-
munications, and area chapter
meetings are among its aaivitie!.

'Fortb Dimensions (LSSN 0884-
0822) is published bimonthly for
$40/46/52 per year by the Forth
Interest Group, 1330 S. Ebscom
Ave., Suite D, San Jose, CA 95128.
Second-dass postage paid at San
Jose, CA. POSTMASTER: Send
address changes to Forth
Dimensions, P.O. Box 8231, San
Jose, CA 95155."

Forth Dimensions

Forth Dimensions 5 November 1991 December

ceive a pointer to how he or
she can personally benefit.

A hundred of our mem-
bership identified EDNas a
regular trade publication
they read. As each of you in
turn publishes one article,
think of the impact, of the
"mindspace" created among
project managers. mink of
the new users brought to
FIG, made aware of the
extensive library of Forth
materials, introduced to the
FORML conference and the
Rochester conference. Think
of the extra money, the
prestige, the item on your
resume, as you do your part.

EDN is just one of 200
magazines identified in our
member survey. IfEDNis not
your magazine, why not
write for Chemical a n d
EngineeringNaos, or Auto-
motive Engineering, or the
~ o u r n a l of the American
Ceramics Sock&. All you
have to do to help some of
your colleagues is write an
article for your own area of
expertise and submit it for
publication to a journal
which you read. The article
need not and, indeed,
should not be an article
about Forth. Just mention in
it how the software which
enabled your success was
written in Forth. Include,
perhaps, just three or four
lines ofsttaightforwardcode
that might be readable by
those knowledgeable about
your subject, even if they
don't use Forth. If that
doesn't seem feasible, don't
include any code. You are a
successful practitioner in
your field; others will want
to benefit from your experi-
ences and your judgment.

Many examples of this
kind of article abound. The
May/June 1991 issue of
Computers in Physics has an
article entitled "A General
Purpose Interactive Pro-

grammable Laboratory In-
terface System Using the
IEEE-488 Busn by B. D. Hall
of Lausanne, Switzerland. It
is almost five pages of mate-
rial on how to implement a
distributed, interactive in-
strument ~0nu-01 st.mcture
for use in a physics research
lab. while the article is about
controlling instruments, the
message is how adaptive
and effective Forth is for
scientists in the lab.

SensorsMagazine, April,
1991, has a feature article
entitled "Environmental
Control in Three Dimen-
sionsn by EdwardK. Conklin
of Forth, Inc. The article
describes the design re-
quirements, and the hard-
ware required to control
temperature, pressure, and
humidity in the General
Motors subsidiary Saturn
Corporation automotive
manufacturing complex in
Tennessee. Forth and Forth,
Inc. are mentioned several
times in the article, includ-
ing a sidebar on Forth for
industrial control. Readers
are exposed to the strengths
of Forth, without a single
lineofcodebeingpublished

Perhaps you remember
how you came to be intro-
duced to Forth and how, in
the beginning, you relied
on others for help and en-
couragement. Now you are
in a position to repay that
debt-not to the one who
brought you toForth, but to
someone else who is ready
and needs the same help
you did.

--Horace 0. Smmons

Letters to the ~ditor-and toyour fe~~owreaders-are always welcome.
Respond to articles, describe your latest projects, ask for input, advise
the Forth communrty, or simply share a recent insight. Code is also
welcome, but is optional. Letters may be edited for clarity and length.
We ,t to hear from you!

Anti-Vendor Bias?
Dear Sir:

I would like to correct a
misrepresentation of our
product by Frank Sergeant
in "An Introduction to
pygmyForth (FDXII1/2). Mr.
Sergeant insinuates that HS/
FORTH does not compile as
fast as its 40,000 line-per-
minute advertising claim
indicates, and that Pygmy
Forth would be just as fast if
only he would play the same
wicks with his numbers. It is
obvious that his comment
refers to HS/FORTH since
only we make that claim.
Had he been interested in
facts rather than just an
opportunity to promote his
product, he could have
easily asked us for the de-
tails. (A '286, not a '486 as
suggested, no blank lines,
many words per line, 80-
character lines, not little 64-
character ones, twice as fast
as pygmy Forth, both so
much faster than anydung
else it doesn't matter any-
way). I also notice that his
benchmark applies to a
pygmy application in a
pygmy system, the figures
would not necessarily hold
for a large application in a
large system. Ours is for a
large application in a large
system. Our installable/re-
movable hash system has
also been used reliably for
several years now, and will
no doubt be the unac-

knowledged inspiration of
many other "improvedn
Forth systems. Copying
ideas developed by others
may be a form of flattery;
falsely denigrating those
original products to flatter
the copy is pretty low.

It is regrettable that the
anti-vendor, prefreebie bias
of FortbDimemionsallows
such articles to be published.
Such a contentless article by
a n y vendor about his
product would have been
rejected immediately. As a
matter of history, Fortb Di-
mensions doesn't publish
information about any
vendor's product or features
except as paid advertising.
Since other magazines
publish very little on Forth,
this policy effectively pre-
vents the discussion of the
relative merits of vendor
systems, and restricts edito-
rial coverage to consultants
and hobbyists, who often
"inventn features already in
commercial systems. Ad-
vertising, however, comes
in all forms. This article acts
as advertising for Mr.
Sergeant's consulting busi-
ness. Donate a minimal
Forth system free, get free
advertising in Forth Di-
mensions and on the BBS's,
then pick up the bucks
consulting and selling utili-
ties. A popular route with
too many Forth hackers, and

(Continued a page 10.)

Combsort in Forth

Walter J. Rottenkolber
Visalia, California

Now is the time to retire your
bubble sort to the museum of
archaic algorithms!

I n their article, "A Fast,
Easy Sort" (BME, April
1991), Richard Box and

Stephen Lacey describe
how, by adding three lines
of code to the ubiquitous
bubble sort, they created
Combsort, a fm-breathing
monster capable of a
scorching 2600% increase
in sorting speed. This
seemed too good to be true;
it also was the April issue.
But read on.

To test the claims made
of Combsort, I decided to
use the routines published
in "The Challenge of Sortsn
(FD W3). These provide
for an integer array that can

the results.
BUBBLE1 is the Forth

translation of the True BA-
SIC listing that provides the
basis for Combsort. This
version uses a flag
(-SWITCH) to check for the
clean pass that marks the
end of the sort.

Corn1 is the Combsort
derived from BUBBLE 1.

be filled with eight different
patterns of data. A compre-
hensive analysis section is
included, but I had to forego
it, as my computer-a 5
MHz Kaypro 11--doesn't
have a built-in clock. All
times are by the Armstrong
method, i.e., me staring
bleary-eyed at my watch.

The screens provide
Forth code for the data ar-
ray and patterns from the
Challenge. If you have a fast
computer with a built-in
clock, you will be much
happier with the original
test suite, as it automates
the entire sort test and prints
a comprehensive report of

pared. As the sort
 PI^^, the gap -=,
step by step, to one, at which
point the Combsort behaves
like a bubble sort. The ini-
tial gap is calculated by di-
viding the array size by a
"shrink factor," whose value
is 1.3, and converting the
result to an integer. In Forth,
the scaling routine (1 0 13
* /) does the calculation. At
each cycle in the sort, the
gap is narrowed by the same
factor. Cox and Lacey found
the shrink factor by trial and
error. Too small, and the
sort behaves more like a
bubble sort; too large, and
the sort becomes chaotic,
varying in speed unpre-
dictably with minute changes
in array size.

COMB2 is my version of
their optimized Combsortll.
If you take an integer and
divide repeatedly by 1.3, as
in the gap calculation,
eventually the progression
will pass through the values
nine, ten, or 11. Cox and
Lacey determined that the
gap sequence following
nine and ten sorts more
slowly than the sequence
beginning with 1 1. So they
added a switch statement
(they wrote this in C) to trap
the nine and ten gaps and
convert them to gap 1 1.

You will find the QUICK
and BUBBLE2 sort routines

Walter J. Rottenkolber says that Forth
pmvides the same close-to-thesilicon
feel asassembler, butwithout the pain.
EarlV on. he experimented fig
FORTH and other languages, but still

used in the tests in the Chal-
lenge article.

The bubble sort se-
quence proceeds by re-
peatedly sweeping an array
from one end to the other.
Step by step, it compares
two adjacent elements in
the array and, depending
on the outcome, may swap
them. Values moving in the
direction of the sweep can
make several steps toward
their sorted location. How-
ever, values that must move
against the sweep do so
only one step at a time. To
speed up the sort, a way
must be found to gather
these slow values and bring
them rapidly to the head of
the sweep.

The Combsort takes a
direct approach. It simply
inserts a gap between the
elements and then does a
bubble sort. As a result, the
sort starts at both ends of
the array (see Figure One).
This pumps the slow values
from the *wrongn end of the
array to where they belong.
As the gap narrows, the
center of the array is in-
cluded in the sort, but the
leapfrog action of the sort
persists until the gap nar-

, rows to one.
I Only three lines of

make the difference. These
introduce a gap between
the elements to be com-

The sort times are shown
in Figure Two. The sorl
patterns are as follows:

November 1991 December 6 Forth Dimensions

Ramp-ascending values,
already sorted.
Slope-descending values.
Wild-random signed val-
ues.
Shuffle-a Ramp randomly
reordered (no duplicates).
Byte-random eight-bit
values.
Flat-a single randomvalue.
Checker--two random val-
ues placed alternately on
even/odd addresses.
Hump--Gaussian disuibu-
tion of values.

When I fmt ran BUBBLE2
on the Slope data pattern, I
thought my computer died
and went to heaven. After
spending the better part of a
day trying to debug the sort
code and reviewing all about
nested DO.. .LOOPS, I con-
cluded that the sort actually
was working.. .and work-
ing.. . all 2078 seconds of it.
Then BUBBLE^ took a gla-
cial 3150 seconds (that's 52+
minutes, Bubba) to sort the
same pattern. This ended
any notion to test the bubble
sorts further.

The Combsort gave an
amazing account of itself. It
is 7583% faster than the
bubble sort on which it is
based, and an average of
only 54% slower than the
Quicksort. Because of its
design, it spends a some-
what greater time than the
other sorts on data that is
already sorted or of flat
value. I regard this as a
small price to pay for such a
simple high-performance
sort routine.

I found no advantage to
the optimized Combsort. On
my system, it actually ran
about 5% slower than the
simpler version.

All the sort times should
be considered as relative

gap = 8

=
Figure One. Combsort sweeps data from both ends. I

Figure Two. Comparative sort times on test data (on a 5 MHz Kaypro 11).

Sort times (seconds)
Data
pattern COMB^ COMB2 QUICK BUBBLE1 BUBBLE2

Ramp 35 38 13 2
Slope 4 1 42 14 3150 2078
Wild 53 52 22
Shume 52 52 22
Byte 48 50 22
Flat 36 38 22
Checker 37 40 22
Hump 47 47 22

boost the performance by
revising S @ , S ! , COMPARE,
and EXCHANGE. These
words were hampered by
extra code used for the test
programs. In running the
time tests, I left them as-is
because BUBBLE2 and
Quicksort used them. I re-
moved some of these extra
words when cleaning up
the screens for this article,
and discovered that the
times were now cut in half.

To sum up, the Combsort
is real. If you have been
using a bubble sort, now is
the time to retire it to your
museum of archaic algo-
rithms. If you are using a
complex sort because noth-
ing else was fast enough,
check out the Combsort. I'm
quite impressed at what a
clever idea and three lines
of code can do, and you will
be too.

Total control
with LMI FORTH"
fbr Programming P mfessionals:
an expanding family of compatible, high-
perfomance, compilers for microcomputers
For Development:
Interactive Forth43 InterpreterlCompilers
for MS-DOS, OSl2, and the 80386

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
500 page manual written in plain English
Support tor graphics,floating point, native code generation

For Applications: Forth-83 Metacompiler
Unique tabledriven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate states,
and performs conditional compilation
Crosscompiles to 8080,Z-80,8088,68000,6502,8051,8096,
1802,6303,6809,68HC11,34010, V25, RTX-2000
No license fee or royalty for compiled applications

and not absolute. You can
(Gods begins on ns*tprzge.)

Forth Dimensions 7 November 1991 December

0
a \ C-t
1 i s
2 C a r t in Forth
3
4
t Rwt i ~ e s t o Test Sort
6 Frcn Forth Dirwcsiorrs Vol. X I , Nu.3
7 Sept /Dd 1 989
6
9 "The Chal l w ~ e of M s . , p. 24-29

18
1 l
12 Walter 3. Ruttenkolk
13
14
15

f
s \ corbsort Load scwen
1
E 2 a THRU
3
4
5
6
7
8
9

18
11
12
13
14
15

2
0 \ Data W a y and U t i l i t i e s
f : ELLS I a -- a') E* ;
E:c"CEUS l a - - a 1) b 2 * ;
3
4 1024 WNSTCIIJT ITWS
5 CREATE MTR t - a i I T E S CEUS ALUT ;
6
7 : SI I index - n i M L S MTR + @ ;
8 : S! (n index --) CEUS MTR + ! ;
9

18 : WrW)RE t nl r-2 -- -1 1 0 1 1)
11 W O R) 1 W R) U R ;
12
fS:EXC+bWE 1 # 1 # 2 -)
14 i l W P 9 ? W S @ RUTS! SkYIPs! ;
t5

3
WJR07MY9l \ Randopr NunKler &newtor

WRIABLE SEED
: SETUP I -- i 1234 SEED ! ;

: W I - - n)
SEED P 31421 + 6927 + W SEED ! ;

4
UJb7WY91 \ Random Data Pattetm

:HI)CIFr I - -) ITEWSBW I I S! LOClP;
: POPE I - j ITEHS 0 W) ITEWS !- I - I S! Lag ;
: MILD I --) ITEIIS B W RWDUM I S! LUS' ;
: SHUFFLE I - i

IIw IT= 0 DD ITEPtS &HOSE I EXCH6WGE LW ;
:BYTE I - > ITEPlS8WI Z%CHDOSE I S! L W ;
: FL&T I --) RWXM ITEA I W DUP I S! LUM I)W ;
:CHE&KER I -) WlNWPl FWlXM

ITENSBWW I S! w L w mm;
: W I - i ITEKBDQ 2558CKISS I S ! L W ;

5
UJR@?MY91 \ Data sort tes t

: TEST-WTR t --)

\ Checks i f data i s sorted.
WTA P ITEMS f W WT& I CELLS + 8 S i OVER }

W T ' Data has not been sorted."

November 1991 December 8 Forth Dimensions

Uni ted States Postal Service
Statement of Ownership, Management
and Circulation

1) Title of Publication: Forth Dimensions
Publication number: U.S.P.S. 002-191

2) Date of Filing: 9/5/91
3) Frequency of Issue: Bi-Monthly

No. of issues published annually: 6
Annual subscription price: $34/40/46

4) Location of known office of publication:
1330 S. Bascom Ave., Suite D
San Jose, Santa Clara County, California 95128-4502

5) Location of the headquarters or general business offices
of the publisher: Same as above

6) Publisher:
Forth Interest Group, Inc.
P.O. Box 8231
San Jose, California 95155
Editor: Marlin Ouverson
Same as above

7) Owner: Forth Interest Group, Inc.
P.O. Box 8231
San Jose, California 95155

8) Known bondholders, mortgagees, and other security
holders owning or holding 1% or more total amount of
bonds, mortgages, and other securities: none

9) The purpose, function and non-profit status of this
organization and the exempt status for Federal Income
Tax purposes have not changed during the preceding
12 months.

10) Extent and nature of circulation

Avg. # copies/issue Actual #copies of
during preceding of single issue

12 mos. nearest to
filing date

A. Total no. copies printed: 1934
B. Paid/requested circulation:

1. Sales: 13
2. Mail subscription: 1646

C. Total pd/requested circulation: 1659
D. Free distribution by mail, carrier

or other means: samples,
complimentary and other
free copies: 95

E. Total distribution: 1754
F. Copies not distriiuted:

1. Office use, left over,
unaccounted, spoiled after
printing: 180
2. Return from news agent: 0

G. TOTAL: 1934

7
8 \ mf
1
2 WRlMLE -SUITCH WRIW 6dP
3
4 : W f I - -)
5 I T E f f i W ?
6 X61N W @ 1813*/ 1 RRXW!
7 -WITCH DN
B ITER66PB-B
9 W

18 I C S R P @ + S E I S @ rXMWt?E 8(
if IF I I 6#' P + EXCMWE -%ITCH OFF THEN
12 L W
!3 -%ITCH P w 8 f = FH.y) W I L ;
14

11) I certify that the statements made by me above are
correct and complete

/s/ Anna Brereton, Circulation Manager

Forth Dimensions 9 November 1991 December

FORML CONFERENCE
The original technical conference

for professional Forth programmers, managers, vendors, and users.

Following Thanksgiving, November 29-December 1, 199 1

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California U.S .A.

Theme: Simulation and Robotics
Papers are invited that address relevant issues in the development and use of Forth in simulation and
robotics. Virtual realities, robotics, and graphical user interfaces are topics of particular interest. Papers
about other Forth topics are also welcome.
Attendees are invited to enter a robot in a robotics contest where the robot solves a puzzle.

Mail abstract(s) of approximately 100 words to FORML Conference, Forth Interest Group, P.O.
Box 8231, San Jose, CA 95155.

Completed papers are due November 1,199 1.

Conference Registration
Registration fee for conference attendees includes conference registration, coffee breaks, and notebook of papers sub-
mitted, and for everyone rooms Friday and Saturday, all meals including lunch Friday through lunch Sunday, wine and
cheese parties Friday and Saturday nights, and use of Asilomar facilities.

Conference attendee in double room-4350 Non-conference guest in same room-4200 Children under 17 years old
in same room-4140 Infants under 2 years old in same room-free Conference attendee in single room--50
Forth Interest Group members and their guests eligible for ten percent discount on registration fees.

Register by calling the Forth Interest Group business office at (408) 277-0668 or writing to: FORML Conference,
Forth Interest Group, P.O. Box 8231, San Jose, CA 95155.

(Ze#ers, mfnnn 5.1
one more reason that Forth
is not more widely used.
Isn't it time to start inform-
ing your readers about real
Forth systems from real
vendors committed to pro-
viding complete systems?

Sincerely,
Jim Callahan, President
Harvard Softworks
P.O. Box 69
Springboro, Ohio 45066

November 1991 December

running in an 80286-80287.

Sincerely,
Luis de la Cerda Delpin
Universidad de Chile
Casilla 13706
Santiago, Chile

Singapore Slingshot
Targets FIG Issues

Dear Editor,
With reference to the

letter titled "Black-Belt Ex-
haustion & Lean, Mean FIGn
(FD XIIV3), we are truly

Forth Dimensions

IIe Solutions
Dear Editor,

In reply to Keith Brewster
(FD XIII/2), since 1984, I
have used muspeed 11, a
special Forth for the Apple
IIe. It consists of a proces-
sor card (Intel 8231A and
arithmetic chip) and two
diskettes (under DOS 3.3).
Its characteristics: single-
and double-precision math
(16 and 32 bits). All floating-
point operations are 32 bits.

Range: 0,9223367 E+19.
Also, it may use RAM ex-
pansion cards. The card-
and-language system is a
product of Applied
Analytics, Inc. (8910
Brookridge Dr., Upper
Marlboro, Maryland20772).
Also, you may use
GoFORTH under ProDOS
(IIe, IIgs) from Pair Software.
Or MasterForth with floating
point, from MicroMotion.

Today, I prefer F-PC

surprised that FIG currently
has only 2000 members.
Does that include intema-
tional members? We
Forthians must have more
than 2000 members in
business using Forth in one
way or another, so what
went wrong?

The reason, we think,
Harris abandoned its Forth
efforts is obvious: the root is
always money. If it is a hot
product, we should be
seeing the third generation
of it by now.

Let me tell you the story
of how our company got
into Forth. It will explain
my next suggestion on how
to increase the membership
figures and, more impor-
tantly, how to get more re-
sources and attention from
third-party vendors in order
to make money.

My company specializes
in making Eurocard, STD-
bus-type controller boards
and peripherals. Initially, we
used assembly-language
software monitors to run
those boards. We found that
customers had problems
trying to debug such pro-
grams, especially when the
equipment was pre-installed
on site. So we looked around
for a high-level, user-
friendly, and interactive
language that is also small,
fast, and has almost all the
advantages and conve-
nience of a PLC (program-
mable logic controller).

We tried BASIC before
coming to Forth. Since then,
all our products have been
programmed in Forth and
assembler, and it has been
used in a wide variety of
applications, especially
building and machine real-
time automation. The inter-
active, real-time nature of
Forth facilitates tuning on-
the-fly like no other lan-
guage.

In an effort to improve
Forth Dimensions

our programming skills and
knowledge, we tried to buy
all the Forth software and
tools on the market. We
began to realize that, slowly
but surely, Forth tools and
systems are being removed
from vendors' product list-
ings, or else the tools are
outdated. We remember the
times when most major
magazines carried Forth ar-
ticles and advertising.

Without self-sustaining
third-party support (i.e.,
anyone using or promoting
Forth must make money),
Forth will become outdated
due to too little economic
activity.

We have some state-
ments, experiences, and
suggestions to share with
you. Some of them may
already have been thought
of, and we apologize if we
offend anyone by any of the
suggestions or statements.
We would like FD to com-
ment on all the following.

The objective is to rees-
tablish ourselves at least as
a viable, ongoing, bankable
language. (Note: some of
these statements tend to
become self-fulfilling, or
chicken-andegg problems;
some of them may overlap.)

1. We found that through
FD we learn a lot about the
state-of-the-art in Forth, but
nothing that will benefit the
average (majority) user.
Therefore, ordinary mortals
(us) who normally buy
computer magazines just for
the Forth articles, would not
buy FDor join FIG, because
it is of no economic and
immediate educational
value.

2. We (especially compa-
nies) also buy computer
magazines just to see what
are the latest products, tools,
and previews on the mar-
ket, so why not FD

3. We get a little shaky if
11

Forth and its tools begin to
become dated. I.e., who
would want to produce
state-of-the-art products for
a market of a few thousands?

4. We have a very keen
interest in hardware that can
be used by Forth, semicon-
ductors as well as
board-level devices. We do
not see any vendors given
free space, as in EDN or
E k h w z k Design, for a p
plication articles. We would
buy the magazine just for
such an article. Maybe even
ask the vendor to pay a little
for the promotion space.

5. Maybe FDis unable to
do the above because it is a
private magazine. Well,
gentlemen, it is time to open
up. Otherwise, the world
will pass us by and it will be
so sad, especially now that
we already have the lan-
guage o n silicon and
restricted marketing.

6. The day that one of the

majority-supported lan-
guages acquires Forth's
interactive characteristics,
Forth will be dead.

7. Since Forth is good in
real-time and control appli-
cations, include in every
issue of FD one or more
related articles (repeating
every few years, if necessary,
to ensure maximum cover-
age).

8. Anyone who makes
money using Forth will have
no problem buying one
year's subscription to a Forth
magazine, provided the
magazine has some practi-
cal use (to everyone?) at all.

9. FD should use the ex-
ample of major computer
magazines, but with a dif-
ference. Use the charac-
teristics of clannish and
cultist Forthians to cultivate
a readership.

10. Make FD into The
Forth Magazine-attracting
all people by carrying any

-

UTll
A Forth Programming System
For Palmtop Computers
Turn your palmtop computer into a portable software
development system with UTIL, a small and fast im-
plementation of Forth. Optimized for the Atari
Portfolio and Hewlett-Packard 95LX, a PC version of
UTIL is also available.

rn Small kernel of just 8K and entire system of under
24K maximizes space for your data and programs

@ Uses text source files created and modified with your
palmtop editor

i Includes Forth compiler and decompiler, 8086
assembler and disassembler, comprehensive user's
guide with examples and games

a Metacompiler and i860 development kit options
i% Source code available for utility files

UTIL is priced from just $70. To order your copy,
call today.

Essex Marketing Services Inc.
272 Old Farms Road Simsbury CT 06070
Phone (203) 651-8284 Fax (203) 676-9481

November 1991 December

In conjunction with the ACM Computer Science Conference, ACM SIGCSE Computer
Science Education Conference and the ACM SIGAPP Symposium on Applied Computing

FORTH LANGUAGE WORKSHOP
March 5-7, 1992 Kansas City, Missouri
Come share recent work on the Forth language and its use in applications.
Expose the CSC, SIGCSE and SIGAPP conference participants that register for
our conference to Forth through the presented papers and tutorials. Discount
cross-registration with CSC, SIGCSE and SIGAPP is available.
Papers on all aspects of Forth are invited. Here are some ideas:

Forth in Education Development Environments
.ANS Forth Compliance Software Management
Formal Methods Forth Engines
Object Oriented Forth Optimizing Compilers

Refereed Papers: 100 word abstract by December 1, 1991 and a draft paper by January
1, 1992 (max. 15 pages). Advantages of submitting a refereed paper include feedback
from other experts, possible presentation time during the CSC conference overlap track,
other preferential presentation times and preferential proceedings space.

Unrefereed Papers: abstract by February 15, 1992 and a final paper by the conference.

Request an author's kit from the program chair for format information. All submissions
will get presentation time and proceedings space.

Features
Keynote Speaker: Charles Moore, Session on Software Management featuring
Mike Wong of IBM, tutorial Introduction to Forth, Panel Session on "Moving
from the Classroom to the Real World", ANS Forth Roundtable, and other
invited s eakers. A separate half day tutorial on ShBoom, a 100+Mhz stack-
based &bit RISC microprocessor, and Open Boot: Portable Forth-based
Firmware, will also be held.

For paper submission To assist in c o n f m organization
infonnation wntact: or for special presentations wntact:

Hosted By: Program Chair conference chair
Dr. Paul Frenger George Shaw
P.O. Box 820506 Shaw Laboratories Limited

Digalog Houston, TX 77282-0506 PO BOX 3471
(713) 589-9040 Hayward, CA 94540-3471 Shaw Laboratories GEnie: P.FRENGER (5 10) 2765953, 276-6050 fax

Nanotronics Inc. GEnie: G.SHAWI
emai1:george-shaw@mts.cc.w~yne.edu

Program Comminee
Dr. Alan Furman Dr. Nicholas Solntseff
Martin Fraeman John Hayes
Irving Montanez Dr. Harvey Glass

Sponsored by the ACM Special Interest Group on Forth

and all types of articles, as
long as they are related to
Forth.

11. Before FD has the
mass-market clout, encour-
age all types of
advertising-Forth or oth-
erwise-at cost or slightly
higher. This will attract all
vendors (pooling the mar-
ketplace), thus attracting
users.

12. Use cheaper paper, if
possible, because it is the
content that will ultimately
attract the money and,
therefore, ensure survival as
an entity to fight and propa-
gate the Forth art. (No food,
no art.)

13. Do anything possible
to attract mass-market at-
tention, even if we have to
sacrifice some of the purists.

14. Allow vendors to write
about their products and, if
necessary, help them to
present it on paper at cost.

15. Have a reader-service
card, if possible.

16. Help vendors to port
their products to Forth, and
advertise this.

17. Have a service where
hardware vendors can use
FD as a trading house, just
as FDis doing with software
and books by mail order.

18. Start a vendor query
column in which readers
can question vendors.
Vendors whose answers are
published should pay.

19. Write a super-duper,
compact version of Forth-
first one for embedded
systems, because it is easier,
and later a version for disk-
based systems. Include all
the works, trappings, warts,
and porting information, and
give it to all vendors with
the only condition that they
can add to it but not change
it. This will instantly esrab-
lish a world-wide Forth
standard. Do not worry

November 1991 December

(confind onpage 27.) I
For# Dimensions

Tools

Peter Verhoeff
Glendale, California

F orth is a wonderful
programming lan-
guage. After all, what

other language will let you
add new commands by
typing in their definitions,
or execute algorithms by
typing their names?

However, one thing I
have personally had difi-
culty with is keeping track
of what's on the stack and
how to manipulate its con-
tents. For example, in
working with strings it is
not uncommon to have six
items-that is, three string
addresses and three string
lengths-on the stack. To
keep all these in the right
place can be quite a trick.

Since it was time for me
to write another article for
ForCh Di?nensotzs, I decided
to tackle the subject of
simplifying stack rnanipula-
tion and share my findings
with the readers. Perhaps
some useful things would
come to light, which might
make a Forth programmer's
life easier.

B=hvomd
Back in the mid-eighties,

I read something on that
topic in Forth Dimarciions. I
believe the author of that
article created stack words
where, for example, to re-
verse six items on the stack,
you would say something

like

SVV ABCDEF (FEDCBA"

The six letters to the left of
the vertical bar would rep
resent the starting stack
picture and those to the
right the result of the o p
eration.

Since I no longer have
the article, I am not sure
about exactly how this was
done, but I believe that the
stack was f ~ s t unloaded to a
storage area, from which
items would then be pushed
back onto the stack in the
desired sequence.

F h t Approach
The first simplification I

made to the above method
was to replace the string to
the left by a single letter.
The above stack picture thus
became:

where the first letter F, be-
ing the sixth letter of the
alphabet, indicated that
there were six items on the
stack. Using a letter, rather
than a numeral, would allow
26 stack items to be repre-
sented. Later, I created a
separate word to dump the
stack contents, which you
would do once and then
load from the storage area

whenever you needed stack
items.

I created an algorithm
with which to do this and it
performed very well. The
code to do this was simple
and word definitions using
this type of stack notation
looked a lot less cryptic than
the usual definitions with
the DUPS, ROTS, SWAPS, and
SO on. What's more, it was
easy to figure out what was
being done to the stack in a
word definition, by looking
at these new stack words.

A further refinement I
put in was after I realized
that stack items often would

Second Approach
However, I was not quite

happy yet. First, there was
the fact that the stack was
no longer used as a stack,
since its contents were be-
ing dumped to a storage
area, which was somewhat
of a violation of its purpose.
More important, however,
was that the storage space
for the stack data was being
shared by each occurrence
of this "stack string." This
meant that any words be-
tween stack strings poten-
tially would mess up the
data in the storage area if
their own definitions also

Note that there are only three
basic stack operations:
ROLL, PICK, and DROPmm.

be incremented or
decremented. I therefore
wrote some code to recog-
nize the four arithmetic
operators +, -, *, and /, as
well as the numerals 0
through 9 in the stack pic-
ture. Thus, to increment a
string's address by 1 and
reduce its length by 1, you
would say,

(where A = address and B =

length.)

contained stack strings.
When I realized this, I

took a long, hard look at the
purpose of the exercise. I
discovered that there were
really three different pur-
poses:

a. Rearranging the stack
contents, without regard
to the mechanics of how
this was done. This
would be useful in test-
ing and debugging of
algorithms.

Forth Dimensions 13 November 1991 December

b. Finding out the "stack
primitives," such as
DROP, ROT, SWAP, etc.,
that would yield the
specified ending stack
picture from a given
starting stack picture.
This would come in
handy if you wanted to
write new code in the
conventional fashion.

c. Creating new stack words
from existing stack
words, for use in fre-
quently occurring stack
patterns.

All three objectives have
been achieved in the fol-
lowing code. The task was
harder than anticipated, but
I believe it was worth the
effort in creating a useful set
of tools.

The Forth used for the
code below was F83 Version
2.1. It is quite possible that
there is a shorter and more
elegant way of accomplish-
ing the same result. Consider
my efforts as a prototype.

Stack String Examples
Before delving into the

code, let's take a look at
some examples of stack
strings. The simplest one is
A I , which takes the top
item off the stack and DROPS
it. Likewise, B I represents
2DROP, since the B to the
left of the verical bar (I)

Scr # 0 STACKS.BLK
0 \ STACK MANIPULATION, USING STACK STRINGS.
1
2
3 Copyright 1991, by Peter Verhoeff
4
5 P.O. Box 10424
6
7 Glendale, CA 91209
8

Scr # 1 STACKS.BLK
0 \ Load Screen.
1
2 2 16 THRU

Scr # 2 STACKS.BLK
0 \ Primitives and strings.
1
2 CREATE SSO 81 ALLOT \ Text string.
3 CREATE S$1 28 ALLOT \ Starting string (pseudo stack
4 CREATE SS2 28 ALLOT \ Ending string (pseudo stack
5 VARIABLE .FLG VARIABLE LTR \ Display flag, letter variable
6
7 : C+! (S # adr --) \ Increment contents of adr by #
8 TUCK C@ + SWAP C! ;
9
10 : $+$ (S adr len adr-to --) \ Append 1st string to 2nd one
11 >R TUCK R@ COUNT + SWAP CMOVE R> C+! ; \ Update count too
12
13 : $ (S --) \ Enter a string from keyboard
14 BL PARSE-WORD ;

represents AB. B I A does the
same thing as A I, but it as-
sumes that there are two I
items on the stack. By the I I

represented by thk letter to
the left of the vertical bar. If
a stack string starts with the
letter F, you will need at
least six items on the stack
to execute it.

Instead of the vertical

way, it does not matte; how
many items are actually on
the stack, as long as there
are at least as many items as

Forth Interest Group.. .. 36
Haward Softworks .. 25
Laboratory Microsystems .. 7

...................................... Miller Microcomputer Services .3 1
Silicon Composers2

ACM SIG-Forth .. 12
................ Essex Marketing Services.. .'. 1 1

FORML .. 10

November 1991 December 14 Forth Dimensions

S c r # 3 STACKS-BLK
0 \ Genera l purpose words.
1
2 : UC? (S c h a r -- t l f) \ True i f upper c a s e .
3 ASCII A ASCII Z BETWEEN ;
4
5 : LC? (S c h a r -- t I f) \ True i f upper c a s e .
6 ASCII a ASCII z BETWEEN ;
7
8 : OP? (S c h a r -- t l f) \ Check i f a r i t h m e t i c o p e r a t o r .
9 DUP ASCII + = OVER ASCII - = OR

10 OVER ASCII * = OR SWAP ASCII / = OR ;
11
12 : NUM? (S c h a r -- t If) \ Check i f numeric.
1 3 ASCII 0 ASCII 9 BETmEN ;
1 4
1 5

S c r # 4 STACKS-BLK
0 \ More g e n e r a l p u r p o s e words.
I

2 : LC (S c h a r -- c h a r 1) \ Conver t c h a r t o lower c a s e .
3 DUP UC? I F BL + THEN ;
4
5 : -SCAN (S a d r l e n c h a r - a d r l l e n t) \ Reverse s c a n f o r chai
6 -ROT TUCK + 1- SWAP 0 TUCK \ S t a r t a t e n d o f s t r i n g .
7 ?DO DROP 2DUP C@ =

8 I F I 1+ LEAVE ELSE 1- THEN 0
9 LOOP ROT DROP ;

10
11
12
1 3
1 4
1 5

S c r # 5 STACKS.BLK
0 \ Text s t r i n g p r i m i t i v e s .
1
2 : S$l+C (S c h a r --) \ Append c h a r t o o r i g i n s t r i n g
3 S $ l C O U N T + C ! l S $ l C + ! ;
4
5 : S$O+$ (S a d r l e n --) \ Append s t r i n g t o tex t s t r i n g
6 S$O $+$ 1 S$O C+! ; \ P u t a t r a i l i n g s p a c e .
7
8 : S$O+C (S c h a r --) \ Append c h a r t o t e x t s t r i n g .
9 S$O COUNT + C! 2 S$O C+! ; \ P u t a t r a i l i n g s p a c e .

10
11 : S$O+# (S # --) \ Append number t o t e x t s t r i n g
12 ASCII 0 OR S$O+C ; \ S t o r e a s a s c i i numeral .
1 3
1 4 : S t 0 1 (S --) \ I n i t i a l i z e t e x t s t r i n g .
1 5 S$O 8 1 BLANK ASCII : S$O 1+ C! 2 S$O C! ;

I

Forth Dimensions 15

ar, we can use the amper-
and (&), which indicates
lat the starting string is to
e repeated in the ending
tring. Thus, D&AB is the
quivalent of D I ABCDAB, or
.OVER.

Not only is this a shorter
vay of writing the same
hing, it allows you to switch
etween saving or not sav-
ng the original pattern by
hanging a single character.
:or example, D I AB DROPS
tems c and D from the stack
,nd retains A and B (i.e.,
!DROP), whereas D & A B
'ICKS items A and B, leav-
ng the original ABCD intact
~t the bottom (i.e., 20VER.)

How to Use
Stack Strings

I created two different
ligh-level stack-string in-
.erpreters, as shown in
icreen 14. The first one, SM,
s for use within a colon
jefinition. S M does not
:reate a new stack word,
3ut instead executes the
stack string. An example of
$is is given in screen 15.
This screen will be discussed
later, but the thing to observe
here is the format, which is:

The SD command
(screen 14) takes a stack
string and displays its defi-
nition. For example, to see
the definition for D&AB, you
type:

The displayed result will be:

If you wish, you can then
compile this word by typing:

The $ command (screen

November 1991 December

two) takes the typed-in text
string which follows and
puts its address and length
on the stack. If you want to
execute a stack string from
the keyboard, without ana-
lyzing or compiling it, you
can instead type:

Code Example
Screen 15 has an actual

example of a word defini-
tion using stack strings. It
looks for multiple occur-
rences of subsuing $1 within
text string S $0 and replaces
them with the shorter
substring $2. To do this, we
have to keep at least six
items on the stack. Note the
consistent use of the am-
persand in the stack strings
to retain the six bottom
items, except for the F I at
the end, which drops the
six items. The first letter is F
in all but two stack strings,
where a seventh item is
added and thus becomes G.
The stack strings F&BD- and
F & OCED could have been
written as E & A C - and
D& OACB with the same re-
sults, but sticking with the
letter F makes it easier to
understand, since this way
each letter has a consistent
meaning.

The actual use for S R is
to simplify the contents of
the text string (see screen
16). Since the primitives in
the text string are machine
generated, without taking
all the rules into account,
there are certain simplifica-
tions that can be camed
out. For example, SWAP
SWAP can safely be omitted,
since the stack contents
would be the same as before
the SWAPS. This algorithm is
only used in the text string,
since in direct execution this
substitution is unnecessary
and will execute correctly

S c r # 6 STACKS-BLK
0 \ L e t t e r - t o - n u m b e r c o n v e r s i o n and logic f o r operators .
1
2 : SL># (S l t r -- adr l e n) \ F i n d o f f s e t f o r le t ter .
3 S S l C O U N T 3DUP + C ! \ S a v e t h e letter, s a m e count.
4 ROT -SCAN ; \ S e e i f le t ter o c c u r s i n s t r i n g
5
6 : S 2 > 1 (S --) \ 2 i t e m s replaced by 1 r e s u l t .
7 -2 S S 1 C+! \ R e d u c e i t e m count .
8 1 LTR C+! LTR @ S $ l + C ; \ U s e next avai lable le t te r .
9

1 0
11
1 2
13
1 4

S c r # 7 STACKS.BLK
0 \ R o l l i n s t r u c t i o n d e t e r m i n e d by l e t t e r .
1
2 : SROLL (S l t r --) \ S t a c k r o l l per le t ter .
3 UPC DUP SL># DUP \ C h e c k i f v a l i d .
4 I F TUCK OVER 1+ -ROT 1 + CMOVE \ U p d a t e pseudo s t a c k S $ 1 .
5 N I P 1- ?DUP
6 I F .FLG @ \ 0 r o l l = do n o t h i n g
7 I F DUP 1 =

8 IF DROP " SWAP" \ 1 r o l l = s w a p
9 ELSE DUP 2 =

1 0 I F DROP " ROT" \ 2 r o l l = r o t
11 ELSE S$O+# " ROLL" \ S t a n d a r d r o l l
1 2 THEN THEN S$O+$ \ P u t i n t o d i sp lay s t r i n g
13 ELSE ROLL \ E x e c u t e i f d isplay f l a g o f f
1 4 THEN THEN
15 ELSE 2DROP CR EMIT ." i n v a l i d " THEN :

S c r # 8 STACKS.BLK
0 \ P s e u d o s t a c k p i c k and drop.

1 : SDROP (S l t r --) \ R o l l per le t ter a n d drop.
2 SROLL .FLG @ I F " DROP" S$O+$ ELSE DROP THEN -1 S $ 1 C+! ;
3
4 : SPICK (S l t r --) \ P i c k f r o m s tack per letter.
5 DUP SL># DUP \ C h e c k i f va l id .
6 I F N I P 1- .FLG @
7 I F DUP O=
8 I F DROP I' DUP" \ 0 pick = dup
9 ELSE DUP 1 =

1 0 I F DROP " OVER" \ 1 p i c k = over
11 ELSE S$O+# " PICK" \ S t a n d a r d p i c k
12 THEN THEN S$O+$ \ P u t i n t o display s t r i n g
13 ELSE N I P P ICK THEN \ E x e c u t e i f d isplay f l a g of f
1 4 S S 1 C@ 1+ S $ 1 C! \ U p d a t e t h e c o u n t .
15 ELSE 2DROP CR EMIT .I1 i nva l id" THEN ;

November 1991 December 16 Forth Dimensions

-

S c r # 9 STACKS.BLK
0 \ Pseudo s t a c k i n i t i a l i z a t i o n .
1
2 : S15 (S a d r l e n -- a d r ' l e n ') \ Return e f f e c t i v e S$2 s t r i n g .
3 SS2 COUNT 2SWAP 0 OVER \ Setup .
4 I F DROP SWAP COUNT TUCK LC? \ Check i f 1st c h a r lower c a s e .
5 I F 1 3 ROLL 0 \ I f so , check rest of s t r i n g .
6 ?DO DROP COUNT TUCK 3 ROLL - 1 <>
7 IF I 1+ LEAVE THEN 1
8 LOOP \ Loop w h i l e n e x t letter i s n e x t
9 ELSE DROP 0 THEN

10 THEN -ROT 2DROP /STRING ; \ S k i p t h o s e letters.
11
12
1 3
1 4
1 5

S c r # 10 STACKS.BLK
0 \ Pseudo s t a c k i n i t i a l i z a t i o n .
1 : S13 (S --) \ Normalize pseudo s t a c k s .
2 S$1 COUNT TUCK + SWAP 0 \ S e t up.
3 ?DO 1- >R R@ C@ SS2 COUNT
4 2 PICK 3DUP LC SCAN NIP \ Check i f S$1 c h a r l c i n S$2.
5 I F DROP 2DROP ELSE SCAN \ Check if S$1 c h a r u c i n S$2.
6 I F SWAP LC SWAP C! \ If uc, make l c .
7 ELSE DROP SDROP THEN THEN R> \ Drop unused i t e m s .
8 LOOP DROP ;

9
10 : S14 (S -- a d r l e n) \ Return e f f e c t i v e S$2 s t r i n g .
11 SS2 COUNT OVER 0 2SWAP 0
12 ?DO COUNT OP?
1 3 I F LEAVE
1 4 THEN SWAP 1+ SWAP
1 5 LOOP DROP 2- 0 MAX ; \ I f o p e r a t o r , back up two.

S c r # 11 STACKS.BLK
0 \ Pseudo s t a c k i n i t i a l i z a t i o n .
1
2 : S I 1 (S a d r l e n -- a d r ' l e n ') \ P r o c e s s o r i g i n pseudo s t a c k .
3 OVER C@ DUP LTR ! ASCII @ XOR DUP \ G e t # of s t a c k i t e m s .
4 SS1 C! ASCII A SS1 1+ ROT 0 \ S e t up 1st s t r i n g .
5 ?DO 2DUP C! 1 + SWAP 1 + SWAP \ S t o r e let ters i n 1st s t r i n g .
6 LOOP 2DROP 1 /STRING ; \ P r e p a r e f o r 2nd s t r i n g .
7

8 : S12 (S a d r l e n --) \ Do d e s t i n a t i o n pseudo s t a c k .
9 SS2 OFF OVER C@ ASCII & =

10 I F SS1 COUNT SS2 PLACE \ Copy S$1 if s e p a r a t o r = ' & ' .
11 THEN 1 ST RINGS$^ $+$; \ A p p e n d r e s t of o r i g i n a l s t r i n g .
12
1 3 : S I (S a d r l e n -- a d r ' l e n ') \ P r e p a r e pseudo s t a c k s .
1 4 S I ~ S I ~ S13 S14 s15 ;
15

Forth Dimensions 17

without it. With extensive
use of stack strings, more
simplifications may come to
light, which may then be
addedtotheSN1 definition.

Perhaps a better method
would have been to use
tokens instead of string
substitutions, but I decided
against that, since it would
haverequiredconsiderable
rewriting of the code,
without altering the basics.
Please note the leading and
trailing space in both strings.
The SN ' algorithm is fairly
slow in execution, but I
believe that this can be im-
proved considerably by
searching for upper case
only, or other optimization
routines. Of course, com-
piling the stack strings in
screen 15, or replacing them
with the equivalent prirni-
tives would speed things up
too.

Pseudo Stacks
Let's take another look

at screen 14. SM, since it
executes the stack string
directly, checks whether
there are enough items on
the stack and aborts if this is
not the case. SD does not
have that requirement, since
it only creates the definition.

Three internal strings are
used (see screen two). First,
there is the text string S $0,
used by SD, to build a colon
definition of the stack suing.
Next, there is starting string
SS1,whichcontainsarep
resentation of the current
stack picture. Third, there is
theendingsUingS$2,which
contains a representation of
the stack configuration we
wanttoendupwith.Ihave
named these two strings
"pseudo stacks," since they
reflectwhatgoesononthe
stack.

Initialization
Both SD and SM initial-

November 1991 December

November 1991 December 18 Forth Dimensions

that, all the letters will be
made upper case (at least in
the version of Forth I have),
but at that point it no longer
matters, since the word has
already been defined.

Also notice that I ignored
rule number two (the one
that says to skip lower-case
letters at the beginning of
the string). This is because it
doesn't fully apply in the
case of an arithmetic o p
eration: you have to have
both items at the top of the
stack to carry out the o p
eration. S I 4 checks for this.
It looks for an arithmetic
operation and, if found, it
goes back two places and
ends the string right there,
at least as far as S15 is
concerned. Any characters
before that point are in-
spected by SI5, but noth-
ing beyond that point. When

S 13 yet Let's consider^ I AC.
This would translate to ABCD
in S $ 1 and a c in S$2. N u
ticethatBandDdonotoccur
in S $2 and are therefore
not needed. This brings
about the third rule: Any
stack itemin S $1 which does
not occur in S$2 is dropped
before S$2 isprocessed. We
would do ROT 2DROP to
execute D I AC.

Before we get done with
SI3, let's take a look at
S 1 4 . Let's say we want to
type part of a string whose
address and length are on
the stack, but ignoring the
first n characters (stack
picture: adr len n). For this,
you would create the stack
string CIAC+BC-, which
would create ABC in ~ $ 1
and ac+bC- in SS2. Let's
analyze what would h a p
pen:

ize the pseudo stacks. This
is a fairly complex process
(see screens nine through
11.) SI , on screen 11, is the
overall initialization word,
which contains five com-
ponents, S I 1 through S I 5.
s I 1 prepares starting string
S $1; it creates a string of
consecutive letters from the
first letter of the input string.
For example, if that letter is
F, itwill ~ U ~ A B C D E F in S $1.
Next, S12 first checks the
separation character (I or &).

If it is an &, it places a copy
of s $ 1 into S $2. Any other
character here is ignored.
Next, the balance of the
input string is appended.

S I 3 is a little more
complex. Let's use an ex-
ample to illustrate its o p
eration. Let's say that our
input string is F&AB. After
SI 1 and ,512 have ex-
ecuted, S$1 will contain

also, the first occurrence
would be wiped out To
differentiate b e t w e e n ~ o ~ ~ s
and PICKS, we check each
of the characters in s $1. If
the character is found in
S $2, we change the first
occurrence to lower case.
In our above example,
therefore, the ABCDEFAB in
S $2 will be converted to
abcdef AB. Later, whenwe
process S $2, we will do a
ROLL when we encounter a
lower-case character and a
PICK when we find an
upper-case character.

Thus we get:

S$1. bkt
ABCDEF a
BCDEFA
CDEFAB
DEFABC
EFABCD
FABCDE f 5 ROLL

ABCDEF and S$2 will con-
rain ABcDEFAB. h t e r on, in
the main execution part of
SD or SM, we will scan S $2
from left to right and put
each item in turn on the top
of the Stack. Let's go through
that process here.

S$1. Ld& Command
ABCDEF A 5 ROLL
BCDEFA B 5 ROLL
CDEFAB C 5 ROLL
DEFABC D 5 ROLL
EFABCD E 5 ROLL
FABCDE F 5 ROLL
ABCDEF A 5 PICK
ABCDEFA B 5 PICK
ABCDEFAB

you can see that each
operation is either a ROLL
or a PICK. The basic rule is
that a ROLL is executed the
fmt time an item is encoun-
tered in S$2. Any subse-
quent occurrence of that
letter in S $2 will become a
PICK. If it were a ROLL

ABCDEF A 'ICK
rnCDEFA 5 PICK
ABCDEFAB

The above method is
valid, but you have prob-
ably noticed that putting 5
ROLL six tin~es was un-
necessary and that all You
really needed to do was 5
PICK twice. Here we come
to the second rule, which
states that if the first charac-
ter in S $2 is lower case, that
character and any lower-
case letter that follows it-if
it is the next letter in the
alphabet-is to be ignored
in the processing. This is
accomplished in intialization
routine SI5. Thus we get:

s Ld& !&IMHUd
ABCDEF A PICK
ABCDEFA
ABCDEFAB 'ICK

We are not done with

m Command
ABC a 2 ROLL (ROT)
BCA c 1 ROLL (SWAP)

BAC + + (D = A + C)
BD b 1 ROLL (SWAP)

DB C E r r o r ! C no longe r exists!

We should have done 1
P I C K (OVER) instead of 1
ROLL when we encoun-
tered the letter c. That way,
we would still have a C to
use later on. Rather than
writing some complex logic
to handle this, I decided on
a different approach, which
is to allow the user to de-
tide which occurrence to
ROLL by making it lower
case. For example, if you
use c I AC+BC-, you will get
an error; but if you enter
C I AC+Bc- Oast c in lower
case), you won't get the
error. S 1 3 first checks if h e
letter from S $ 1 occurs in
lower case in S$2. If it does,
no further checking is done
on that character. Of course,
if you compile a word like

S I 5 is done, it returns the
entire S $2 string, minus any
leading characters atthestart
of the string that can be
ignored.

String Processing
Let's take a look at SD '

on screen 13. It processes
the modified ~ $ 2 string,
passed on by ~ 1 5 . ~t in-
spects each character, from
left to right, and determines
whether it is a lower-case
letter, upper-case letter,
numeral, arithmetic opera-
tor, or other character. The
. F, variable is set on to
indicate that the results are
to be displayed.

If the character is lower
case, SROLL (see screen
seven) is executed. SROLL

Forth Dimensions 19 November 1991 December

S c r # 1 2 STACKS.BLK
0 \ M a n i p u l a t e per pseudo s tacks .
1
2 : SM' (S i t m s adr l e n -- i t m s ') \ E x e c u t e s t a c k s t r i n g 2 .
3 .FLG OFF 0
4 ?DO COUNT SWAP >R DUP LC?
5 I F SROLL ELSE DUP UC?
6 I F SPICK ELSE DUP A S C I I + =
7 IF DROP + S 2 > 1 ELSE DUP ASCII - =

8 I F DROP - S 2 > 1 ELSE DUP A S C I I * =

9 I F DROP * S 2 > 1 ELSE DUP A S C I I / =

1 0 I F DROP / S 2 > 1 ELSE DUP NUM?
11 I F DUP S $ l + C A S C I I 0 XOR
1 2 ELSE DUP S $ l + C
13 THEN THEN THEN THEN THEN THEN THEN R>
1 4 LOOP DROP ;

15

S c r # 13 STACKS.BLK
0 \ M a n i p u l a t e per pseudo s t a c k s .
1
2 : SD' (S adr l e n --) .FLG ON 0 \ I n t e r p r e t s t r i n g S $ 2 .
3 ?DO COUNT SWAP >R
4 DUP LC? I F SROLL ELSE
5 DUP uC? I F SPICK ELSE \ ~ o l l
6 DUP NUM? I F DUP S$O+C S $ l + C ELSE \ P i c k
7 DUP OP? I F S$O+C S 2 > 1 ELSE \ N u m e r a l
8 DUP " A S C I I " S$O+$ S$O+C S $ l + C \ O p e r a t o r
9 THEN THEN THEN THEN R> \ O t h e r character

1 0 LOOP DROP ;

11
1 2
13
1 4
15

S c r # 1 4 STACKS.BLK
0 \ H i g h level s t a c k m a n i p u l a t i o n w o r d s .
1
2 : SM (S i t m s adr l e n -- i t m s ') \ M a n i p u l a t e s t a c k per s t r ing .
3 OVER C@ A S C I I @ XOR DUP 4 + DEPTH > \ C h e c k t h e s t a c k depth.
4 I F CR . ABORT" s t a c k i t e m s needed" \ S t a c k u n d e r f l o w .
5 ELSE DROP S I SM' THEN ; \ I n i t i a l i z e , t hen e x e c u t e .
6
7 DEFER SN
8
9 : SD (S adr l e n --) \ D e f i n e n e w s t a c k w o r d in SSO.

1 0 S S O I 2DUP S$O+$ S I SD' \ B u i l d d e f i n i t i o n .
11 59 S S O t C S N \ A p p e n d s e m i c o l o n , n o r m a l i z e .
1 2 CR SSO COUNT TYPE ; \ D i s p l a y i t .
13
1 4 : SC (S --) SSO COUNT \ C o m p i l e t e x t s t r i n g S$O.
15 TUCK T I B SWAP CMOVE #TIB ! BLK OFF > I N OFF INTERPRET ;

fust converts the character
on the stack back to upper
case, then executes SL>#
(screen six), which scans
S $ 1 in reverse direction to
locate an occurrence of that
letter. It also appends a copy
of the letter to the end of
S $ 1 , but without incre-
menting the character count.

If the letter is not found
in S $1, an "invalidn mes-
sage is displayed to indicate
that the operation failed. If
the letter is found, SL>#
rehum its position on the
stack (relative to the top)
where the item occurs and
S $ 1 is rearranged to move
the letter from where it oc-
curred to the end of the
string and the number itself
is decremented by one.

Next, w e check the
decremented number. If it
is zero, no action is neces-
sary, since 0 ROLL is in fact
a no-operation. Otherwise,
if . FLG (display flag) is false,
a ROLL is executed to move
the item to the top of the
actual stack. If . FLG is true,
we check the number fur-
ther. If it is a one, we drop
the number and move
"SWAP" to the text string,
since 1 ROLL is equivalent
to SWAP. If it is a two, we
also drop it and move "ROT "

to the text string. If it is any
other number, we convert it
to ASCII, append it to the
text string, followed by a
space and the literal
"ROLL".

Note that this special-
case processing could also
have been done in the top
level SN ' routine, but that
routine had not been writ-
ten at that point.

S P I C K (screen eight)
works similarly to SROLL.
Special case. are 0 PICK
(DUP) and 1 PICK (OVER).
Also note that the character
count of S $ 1 is incremented
toaccountfor theincreased

stack depth.
SDROP, depending on

.FLG, either executes a
DROP Or appends "DROP"
to the text string, and in
both cases decrements the
count of S $ 1 to reflect the
decreased stack depth.

Note that there are only
three basic stack operations:
ROLL, PICK, and DROP. All
others can be broken down
into permutations of those
three.

Let's go back to SD ' on
screen 13. If the character
under consideration is nu-
meric, it is appended to the
text string and to the pseudo
stack S $1. If the character is
an arithmetic operator, it is
appended to the text string
andS2>l isexecuted. S 2 > 1
(screen six) gets the next
letter after the last one that
was used, decrements the
S $ 1 count by two, and then
appends the new letter to
S $ 1 (inmrnenting the count
by one in the process.) The
new letter is used to indicate
that the result of the opera-
tion is a new value. Inter-
estingly, this letter can be
reused later on in S $ 2 and
can be ROLL^^, P ICKed, or
~ ~ o ~ p e d

If the character being
processed in SD ' is neither
a letter, a numeral, or an
operator, it is appended to
the text string as an ASCII
character. This allows for a
little extra flexibility in the
use of stack strings, although
I personally haven't found a
use for it yet.

SM' is, of course, used
by SM. It has a similar pat-
tern to SD ', but is used to
execute, rather than work
with, the text string.

summary
This code works and

should be a useful addition
to the Forth programmer's
tool set. A lot more work

S c r # 15 STACKS.BLK
0 \ S u b s t r i n g s u b s t i t u t i o n i n S$O.
1
2 : SR (S a 1 11 a 2 1 2 --) \ R e p l a c e a l l $ 1 w i t h $ 2 i n S$O.
3 S$O COUNT
4 BEGIN " F&ABEF1' SM SEARCH \ S e a r c h f o r $ 1 i n S$O.
5 IF /STRING \ S t a r t w h e r e $ 1 i s f o u n d .
6 " F&BD-" SM \ C o m p u t e 11 - 1 2 .
7 " G&EG+EFG-I' SM CMOVE \ Move t r a i l i n g p a r t of S$O.
8 " G&EF+G-G" SM BLANK - \ B l a n k end, f i x l e n g t h .
9 " F&OCEDW SM CMOVE \ R e p l a c e w i t h $ 2 , loop.

1 0 ELSE DROP TRUE THEN \ E x i t i f $ 1 no t f o u n d .
11 UNTIL If F I V 1 SM \ C l e a r t h e s t a c k .
1 2 S$O COUNT -TRAILING SWAP 1- C ! ; \ U p d a t e length of S$O.
13
1 4
15

S c r # 1 6 STACKS-BLK
0 \ N o r m a l i z a t i o n of s t a c k c o m m a n d s
1
2 : SN' (S --) \ N o r m a l i z e t ex t s t r i n g .
3 " SWAP SWAP l1

11 11 S R
4 " ROT ROT " l1 -ROT " SR
5 11 I + " 1+ " S R
6 11 2 + I1 I1 2 + " SR
7 11 2 * " I1 2 * 11 S R
8 11 2 / I1 I1 2 * 11 S R

9 SWAP + I 1
11 + 11 S R

1 0 11 SWAP * 11 II * II S R
11 " OVER OVER " l1 2DUP l1 SR
12 l1 3 ROLL 3 ROLL " " 2SWAP " SR
13 " 3 PICK 3 PICK " " 20VER " SR
1 4 I* DROP DROP It l1 2DROP SR ;
15 ' SN' I S SN

can be done on the subject
of stack manipulation, and I
welcome any further sug-
gestions and feedback you
may have.

Articles Needed
Forth Dimensions depends on its readers-
people just like you-to write about their
versions of Forth utilities, interesting
applications of Forth, a recent brainstorm, a
new way of looking at an old problem, and
issues about working in the real-life Forth
world. Or write a tutorial, your ideas to make
Forth and FIG more viable, or a letter that
responds to a recent FD author.

Write to: Editor, Forth Dimensions, P.O. Box
8231, San Jose, California 951 55

November 1991 December Forth Dimensions

String Search
I Rob Chapman 1 Edmonton, Alberta

, j:l Basic principles. In hashed indexing, an index is derived from the content of the
string. The initial hash chops and blends the characters intoa number. This number
is unique for that particular sequence of characters, and it can be used as an index
into a string table. If a collision occurs (two different strings produce the same hash
number), the number is rehashed until it is unique.

Forth Dimensions 21 November 1991 December

T his all started a few years ago compiling
code on a 32-bit fig-FORTH.

The dictionary contained thousands
of words, and compilation often had to be
started from the first file. This took a lot of
time. I used this time to explore alternate
dictionary look-up algorithms. Someone sug-
gested a binary search and, since it is a fairly
straightforward concept, I went ahead and
implemented it. It greatly reduced compile
times, and I was hooked on improving it
further. Most people would say, "Oh yeah,
but hashing would be faster," but they knew
little beyond that. Since I didn't take Computing
Science, I immersed myself in a course of self-
study on hashing. I picked up bits and pieces
from some Forth papers and a few textbooks.
And then the h n began; I evolved my ideas
through Forth.

I tried several schemes of turning strings

Ccownued on page.)

HASH REHASH

(J smng smng ..: index

& index

Hash Algorithms. The hash algorithm XORs each character of
the string with the index. After each XOR, the bits in e index are
rotated left three bits. The rehash algorithm adds the first character
pl US one to the index.

into numbers until I hit upon
one which gave the greatest
amount of unique numbers.
Now that I had a good hash
algorithm, I needed to fmd
the optimal seed I did this
by letting the algorithm run
continuously overnight,
trying out every 16-bit num-
ber. It ran for about 20 hours,
but one magic number stood
out and I integrated it into
the hashing algorithm.

With the primary hash-
ing algorithm settled upon,
I needed an equally good
secondary hashing algo-
rithm to handle collisions.
Since it might be used sev-
eral times, it would have to
be simple and efficient. I
settled upon using the fust
letter of the string to create
secondary hashes.

While I developed the
algorithm, I worked on the
language as well, using many
different factorings and
names.

Once I reached a break-
even point of diminishing
returns (i.e., compile time
was so short that I had no
more time to reduce com-
pile time), I stopped and
thought about it for a couple
of years.

It seemed like something
was missing. The deficien-
cies in the algorithm both-
ered me. After a few gath-
erings with fellow
FLJ~gers,l the deficiencies
were characterized and
some complicated solutions
were available. Since they
were complicated, there
seemed to be too large a
payoff.

Finally, the collection of
everything in the grey mat-
ter spawned a new idea
which simply addressed a
major deficiency. I imple-
mented it and it worked.
Andrew Scott then fine-
tuned it in a few places and
incorporated it into the

A Code Walk-Through
This is QuikFind expressed in botForth. Each section of code is preceded with a

discussion.
The number of locations in the string table should be a prime number to maximize the

number of locations available for rehashing.

(QuikFind: f a s t s t r i n g f i n d e r)

(Rob Chapman Oct. 24, 1990)
HEX

3FD CONSTANT # e n t r i e s
(1021 l o c a t i o n s ; should be a prime number)

DATA s t r i n g - t a b l e # e n t r i e s CELLS ALLOT

BLEND and ASCKEY are the algorithms of HASH and REHASH, respectively. BLEND
pulls the next character out of the character string and exclusive-ORs it with the hash index.
It then rotates all the bits to the left with the most-significant bit becoming the least-
significant bit. This is done for each character in the string to obtain the primary hash index.
The second algorithm, ASCKEY, uses the first character of the string to hop to the next
location in the string table. One is added to the ASCII value of the character to prevent
the null character from causing an endless loop.

(==== 16-bi t r o t a t e l e f t ====)

: ROL (n -- n') DUP 2*
SWAP 8000 AND IF 1 OR ENDIF ;

(==== Hashing a lgor i thms ====)

: BLEND (s t r i n g \ n -- s t r i n g ' \ n ')

>R C@+ SWAP R> XOR ROL ROL ROL ;

: ASCKEY (s t r i n g \ l o c -- s t r i n g \ l o c ')

OVER 1 + C@ 1 + CELLS + ;

Once a location in the string table is hashed to, the strings are compared by MATCH?.
CHARS pulls characters out of the two strings and MATCH? compares them On the first
byte, only the lower six bits are compared. The lower five bits are the count, and the sixth
bit is a smudge bit. If the smudge bit is set, the strings won't match. Two strings of zero
length will produce a match.

(,=== Shor t s t r i n g compare;
f i r s t by te : xx I smudge b i t 1 5 b i t count ====)

:CHARS (a \ a - - a + \ a + \ c \ c)
COUNT >R >R COUNT R 7 SWAP R> ;

: MATCH? (s t r i n g \ name -- f l a g)

CHARS OVER XOR 3F AND >R
1F AND R>
BEGIN O= WHILE

?DUP IF 1 - >R CHARS XOR R> SWAP
ELSE 2DROP YES EXIT ENDIF

REPEAT DROP 2DROP NO ;

USED? and DIFFERENT? are used to interrogate a location in the string table. USED?
returns a uue if the location has something in it other than a zero or "0 st r ingn (0 st r i n g
is used to replace strings which have been removed from the hash table). DIFFERENT?
compares the given string against the one pointed to. A true results if the strings match

1 or if the location is zero.

November 1991 December 22 Forth Dimensions

(==== T a b l e c h e c k s ====)

DATA O s t r i n g 0 ,
(z e r o - l e n g t h - n u l l - s t r i n g f o r r e p l a c i n g deleted e n t r i e s)

: USED? (l o c -- f)

@ DUP I F OSTRING XOR ENDIF ;

: DIFFERENT? (s t r i n g \ l o c -- f)

@ DUP
I F MATCH? O=
ELSE NIP ENDIF ;

HASH, REHASH, BUMP, and LOCATE can be considered as internal messages to the
string table. HASH starts with the magic number Dl77 and blends all the characters into
it. This number is MOD^^ with the size of the hash table to obtain the location index.
REHASH finds the next location, based on the ASCKEY algorithm. BUMP isused by INSERT
to bump an older definition in the table, which happens when a word is redefined.
LOCATE finds a given string in the table or the first zero location.

(==== Messages f o r i m p l i c i t s t r i n g t a b l e ==== 1
(i n t e r n a l :)

: HASH (s t r i n g -- l o c)

Dl77 (magic seed) SWAP
COUNT 1F AND
FOR BLEND NEXT NIP
e n t r i e s MOD
CELLS s t r i n g - t a b l e + ;

: REHASH (s t r i n g \ l o c -- s t r i n g \ l o c ')

ASCKEY
DUP s t r i n g - t a b l e
e n t r i e s CELLS + >

I F # e n t r i e s CELLS - ENDIF ;

: BUMP (s t r i n g \ l o c -- s t r i n g ' \ l o c)

DUP >R DUP @ >R ! R> R> ;

: LOCATE (s t r i n g -- ~ O C)

DUP HASH
BEGIN 2DUP DIFFERENT?
WHILE REHASH REPEAT NIP ;

INSERT, APPEND, DELETE, QUIKFIND, and EMPTY can be considered as externa
messages to the string table. INSERT is used to insert a string into the string table. If i
encounters a twin (i.e., a redefinition), then the string is inserted at that location and thc
twin is inserted after it. APPEND is used to insert a string into the table, as well. It diffec
in the fact that it does not bump definitions. INSERT and APPEND apply link-list func
tionality to the string table. When a string is rehashed, it is like moving to the next linl
in a link list. DELETE removes a string from the table. To maintain rehash lists, it must bc
replaced with another string. If it was replaced with a zero, it would be like truncating :
link list (or several). O s t r i n g is a string that will never occur normally, so it is used a:
the hole fdler. It may be replaced with another string. QUIKF I N D accepts a string and find
a match or zero within the table. EMPTY is used to initialize the string table to all zeroes

(e x t e r n a l :)
: INSERT (s t r i n g --) DUP HASH

BEGIN DUP USED?
I

Forth Dimensions 23

The Final Piece
The major deficiency I

efer to is the ability to de-
ete single strings from the
;wing table. Since this table
eplaces the traditional link
ist, it should provide
zquivalent functionality
:insert, append, and delete).
:n the link list model of a
:orb dictionary, it is easy to
~ d d some new words and
hen remove them (vocabu-
.ary or module scoping). In
my first attempt at the hash
algorithm two years ago, I
;imply reinstalled all the
words into the table when
any words were removed
From the Forth link list. This
iook about half a second
and discouraged the use of
modules for scoping. It
worked, but I wasn't happy.

The solution to this ma-
jor deficiency was to re-
place the string to be re-
moved with an empty string.
Otherwise, if a string was
deleted from the hash table
and replaced with a zero, it
might truncate other hash
paths which bounce through
this location. It's a simple
and obvious idea, once you
discover i t This empty string
is a predefined string with a
zero count byte.

This means there are
three types of locations in
the table: unused, used, and
dirty. The unused locations
contain a zero and indicate
the end of the current re-
hash search path. The used
location contains a pointer
to the word name. The dirty
locations point to the empty
string. When searching for a
string, the empty locations
are skipped over. When
searching for a place to in-
sert a string (or append),
the dirty locations may be
used as well as the unused
locations.

November 1991 December

A Few Measurements
When I did some com-

parisons between search-
ing for words using a link
list or the hash algorithm,
the hash algorithm was any-
where from three to 4'50
times faster. The dictionary
had about 250 words. The
link list algorithm searched
125 words on the average,
while the QuikFind algo-
rithm searched about 1.2
words on the average. Al-
though this is a major
function of compiling, the
compile times won't be de-
creased by such massive
amounts, since there are
other processes involved.

Other Thoughts
The code included in this

paper allows only one string
table to be defined. This is
sufficient for most needs,
but if the ability to create
multiple string tables were
added, the QuikFind algo-
rithm would be available
for other uses. In this case,
the table could be thought
of as an object which re-
ceived the messages IN-
SERT, APPEND, DELETE,
QUIKFIND, and EMPTY.

Rob Chapman is a software engineer
at IDACOM, a division of Hewlett-
Packard. He is currenUy on a mission
to port the simplest Forth (botForth) to
every platform (in the simplest way, of
course).

1. Forth Users Group:
weekly noon-hour rap ses-
sions with Forth as a central
topic.

WHILE 2DUP @ MATCH?
IF BUMP ENDIF

REHASH REPEAT ! ;

: APPEND (string --)

DUP HASH
BEGIN DUP USED?
WHILE REHASH REPEAT ! ;

: DELETE (string --)

LOCATE Ostring SWAP ! ;

: QUICKFIND (string -- entry I 0)

LOCATE @ ;

: EMPTY (--)

string-table
#entries CELLS 0 FILL ;

Here are two examples of how to hook QuikFind into the botForth compiler. INSTALL
runs through the dictionary and installs all the words into the table. The redefinition of
: creates a definition, unsmudges it, inserts it into the string table, and then smudges it.
RECURSIVE unsmudges a word. If a word was smudged and inserted, it would not bump
any previous definitions of the same name.

(==== Sample applic-on ====)

: INSTALL (--)

EMPTY LATEST
BEGIN ?DUP
WHILE @+ APPEND

REPEAT :

: : (- - I
\ : \ RECURSIVE
LATEST INSERT SMUDGE ;

fig-FORTH to botForth
These are a few definitions which should allow the QukFind code to run on fig-FORTH.

: CELL (-- n) 2 ;
: CELLS (n -- m) CELL * ;

: YES (-- f) -1 ;
: N O (- - f) 0 ;

: NIP (n \ m -- m) SWAP DROP ;

: C@+ (a -- c \ a+) DUP C@ SWAP 1 + ;

: \ (--) [COMPILE] [COMPILE] ; IMMEDIATE

: ENDIF (sys --) 0 \ LITERAL \ DO ; IMMEDIATE
: NEXT (sys --) \ LOOP ; IMMEDIATE

: DATA (--) 0 VARIABLE CELL NEGATE ALLOT ;

November 1991 December 24 Forth Dimensions

HARVARD SOFTWORKS
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

MEET THAT DEADLINE ! ! !

Use subroutine libraries written for
other languages! More efficiently!
Combine raw power of extensible
languages with convenience of
carefully implemented functions!
Yes, it is faster than optimized C!
Compile 40,000 lines per minute!
Stay totally interactive, even while
compiling!
Program at any level of abstraction
from machine code thru application
specific language with equal ease
and efficiency!
Alter routines without recompiling!
Use source code for 2500 functions!
Use data structures, control
structures, and interface protocols
from any other language!
Implement borrowed feature, often
more efficiently than in the source!
Use an architecture that supports
small programs or full megabyte
ones with a single version!
Forget chaotic syntax requirements!
Outperform good programmers
stuck using conventional languages!
(But only until they also switch.)

HS/FORTH with FOOPS - The only
full multiple inheritance
interactive object oriented
language under MSDOS!

Seeing is believing, OOL's really are
incredible at simplifying important
parts of any significant program. So
naturally the theoreticians drive the
idea into the ground trying to bend all
tasks to their noble mold. Add on
OOL's provide a better solution, but
only Forth allows the add on to blend
in as an integral part of the language
and only HSIFORTH provides true
multiple inheritance & membership.

Lets define classes BODY, ARM, and
ROBOT, with methods MOVE and
RAISE. The ROBOT class inherits:

INHERIT> BODY
HAS> ARM RightArm
HAS> ARM LeftArm

If Simon, Alvin, and Theodore are
robots we could control them with:
Alvin 's Right- RAISE or:
+5 -10 Simon MOVE or:
+5 +20 FOR-ALL ROBOT MOVE
Now that is a null learning curve!

Forth is no longer a language that
tempts programmers with "great
expectations", then frustrates them
with the need to reinvent simple tools
expected in any commercial language.

HSlFORTa Meets Your Needs!

Don't judge Forth by public domain
products or ones from vendors
primarily interested in consulting -
they profit from not providing needed
tools! Public domain versions are
cheap - if your time is worthless.
Useful in learning Forth's basics, they
fail to show its true potential. Not to
mention being s-1-o-w.

We don't shortchange you with
promises. We provide implemented
functions to help you complete your
application quickly. And we ask you
not to shortchange us by trying to
save a few bucks using inadequate
public domain or pirate versions. We
worked hard coming up with the ideas
that you now see sprouting up in other
Forths. We won't throw in the towel,
but the drain on resources delays the
introduction of even better tools. Don't
kid yourself, you are not just another
drop in the bucket, your personal
decision really does matter. In return,
we'll provide you with the best tools
money can buy.

The only limit with Forth is your
own imagination!

You canY add extensibility to fossilized
compilers. You are at the mercy of
that language's vendor. You can easily
add features from other languages to
HEYFORTH. And using our automatic
optimizer or learning a very little bit
of assembly language makes your
addition zip along as well as in the
parent language.

Speaking of assembly language,
learning it in a supportive Forth
environment turns the learning curve
into a light speed escalator. People
who failed previous attempts to use
assembly language, conquer it in a few
hours or days using HSIFORTH.

HWFORTH runs under MSDOS or
PCDOS, or fmm ROM. Each level includes
all features of lower ones. Level upgrades:
$25. plus price difference between levels.
Source code is in ordinary ASCII text files.

All HS/FORTH systems support full
megabyte or larger programs & data, and
run faster than any 64k l i i t e d ones even
without automatic optimization -- which
accepts almost anything and accelerates to
near assembly language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefme words, eliminate
headers without recompiling. Compile 79
and 83 Standard plus F83 programs.

PERSONAL LEVEL $299.
NEW! Fast direct to video memory text
& scaled/clipped/windowed graphics in bit
blit windows, mono, cga, ega, vga, all
ellipsoids, splines, bezier curves, arcs,
turtles; lightning fast pattern drawing even
with irregular boundaries; powerful
parsing, formatting, file and device ID;
DOS shells; interrupt handlers;
call high level Forth from interrupts;
single step trace, decompiler, music;
compile 40,000 lines per minute, stacks;
file seamh paths; format to strings.
software floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math, van: A B * IS C compiles to 4 words,
1..4 dimension var arrays; automatio
optimizer for machine code speed.

PROFESSIONAL LFVEL $399.
hardware floating point - data structures
for all data types from simple thru
complex 4D var arrays - operations
complete thru complex hyperbolics;
turnkey, seal., interactive dynamic linker
for foreign subroutine libraries; round
robin & interrupt driven multitaskere;
dynamic atring manager; file blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $499.
Metacompiler: DOS/ROM/direct/indirect;
threaded systems start at 200 bytes,
Forth cores from 2 kbytes;
C data structures & struct+ compiler,
TbrboWindow-C MetaGraphics library,
200 graphidwindow functions, PostScript
style line attributes & fonts, viewports.

ONLINE GLOSSARY 8 45.

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

FOOPS+ with multiple inheritance $ 79.
TOOLS & TOYS DISK $79.
286FORTH or 386FORTH $299.

16 Megabyte physical address space or
gigabyte virtual for programs and data;
DOS & BIOS fully and freely available;
32 bit addreedoperand range with 386.

ROMULUS HSJFORTH fmm ROM $99.
FFORTRAN translatorlmathpak $79.

Compile Fortran subroutines! Formulas,
logic, do loops, arrays; matrix math,
FFT, linear equations, random numbers.

Shipping/system: US: $7. Canada: $19.
foreign: $49. We accept MC, VISA, & AmEx

I
Forth Dimensions November 1991 December

A message f r m the President of the Forth Interest Group I capitalists waving money in I

I Have a Dream

supplies the indirect techni-
cal informa tion, but we have
lost our ability for direct
face-to-face technical sup
port. During a recent SWIG
meeting when this topic was
discussed, many people
seemed only to be waiting
to be asked to provide their
time and telephone for a
Technical Hot Line. We have
started a list of experts for
the Silicon Valley area. We
need to extend this idea to
the rest of the world. If any
of you would like to par-
ticipate and be available to
answer technical questions
about Forth or Forth-related
topics, we will establish in
FD a list of experts on dif-
ferent topics with telephone
numbers.

Forth Dimensions
Although Forth Dfmen-

slons is the best and most
beautiful publication that
any language group in the
world has ever produced,
there is always room for
more improvements. One
area where new ideas in
Forth Dimenstons will
complement the new direc-
tions we are taking FIG, is in
the area of education: edu-
cation of each of us, and
education of members new
to FIG and the Forth com-
munity.

Foreacb of us: It has been
suggested by Russell Harris
that we need technical ar-
ticles dealing with hands-
on consuuction. Many ofus

I Have a Dream...
We aren't a little group

with little ideas. We are an
organization of 1600 very
devoted and very idealistic
individuals. We have made
an impact over the 13 years
we have existed. What other
computer language group
that is devoted to such
radical changes can say that?
The dream is not dead. It is
probably more alive than it
has ever been. The general
downturn in the economy
has discouraged us. The
pressure from "iron found-
ries" to sell larger and more
expensive doodads has
blinded us. The venture

hands-on articles and serve
as the editor of such a col-
umn, if others will also write
*get-your-hands-dirty" ar-
ticles. Marlin will be coor-
dinating this, so start orga-
nizing your own contribu-
tion.

For new members: We
need articles oriented to-
ward new Forth users. We
have become so sophisti-
cated with Forth that we
can only talk to each other.
How many Forths are writ-
ten these days in other lan-
guages, to demonstrate the
equivalences to people who
use those other languages?
We write Forth these days
in Forth. We wind up talk-
ing to ourselves. Each of us,

our faces have confused us.
The dream is still alive.

All we have to do is to think
bigger, to bypass and step
over these obstacle.. While
we debated our navel (case
statements, control struc-
tures, ANSI...), the rest of

From the days of the
programming Mlchelangelos,
we have reached the depths
of the paint mixers.

the software industry had
time to catch up. We don't
have the advantage we once
had. We have become smug.

But one spark, and the
whole world will flame Forth
again. We have to get
working in the new areas
that have developed while
we debated, in areas where
we will again capture the
imagination of the world.
How many of us have
worked with the new RISC
processors? How many of
us have used object-oriented
programming methods (in
its pure form, it is very close
to our philosophy)? Have
we seen a parallel Forth?

We can't afford to let
opportunities pass us by, as
we have in the past. How
many of us supported F83
when it first became avail-
able? Did FIG endorse or
promote it? How many of us
immediately supported the
Novix chip when it first
appeared7 So it had prob-
lems-with enough sup-
port, all problems can be
fmed. How many of us have
put our jobs on the line to
put Forth into the systems
we were building?

We think too small. The
day-to-day blinders limit our
scope of the world and re-
strict our dreams. Break out
and dream again! We are
only limited by our narrow
view of what is possible.
Just as hardware has a limit
to its speed and size and is
rapidly coming to that limit,
software has reached the
limit of its complexity. Even
simple applications are

would welcome more how-
to-do-it articles. We need a
"Steve Ciarcia" of Fortb DI-
mensions, or at least an
editor of a column along
those lines. R ~ l l W ~ S a-
tounded that someone had
passed up the opportunity
to explain the construction
of the 'Forth Gizmo" from
the 1988 Los Angeles Forth
Convention in FoHb LH-
rnensfons. He could be
convinced to write some

November 1991 December 26 Forth Dimensions

no matter how new to Forth
or how sophisticated, can
write an article explaining
some new insight that we
just gained using Forth.

Technical Hot Unes
One thing that happened

when the Forth Interest
Group, hc. separated from
the Silicon Valley FIG
Chapter was that we lost
much of our technical Forth
context and contacts. FIG

themfdu&-cf-the-dForth
user, we have risked boring
the cotps of seasoned Forth

who have kept us
technically strong for all
these years.

2. Plans are under way
rfght now to publish Forth
news and product an-
nouncements; thesuccess of
this d e p a m t will rely on
readers in forming us of rel-
evant items, andon vendors
and developers sending
timely press releases and
announcements (very fau
currently do so).

4. FD c u m l y willpub-
lish honest articles about
Forth-drivable hardwae of
any kind, even ifwritten by
the develope', provfded that
itisnotjustanaduerCisement
i n disgutsc+that is, the
technical in formation must
be at least as valuable to our
readers as the space it oc-
cupies on ourpages. To go
further and begin publish-
ing "eLxtendedpm releases"
as shofi articles, written by
p a w with a vested interest
tn thmeproducts, wouldalso
be possible if FD receives a
clear mandate to convert to
an indushytrade magazine
format (see next item).

5. Certainly many of the
changes suggested would
require an entirely d1 f l i
philosophy on FIG'S part.
Changing a magazine's di-
rection and format can be
accomplished with simple
(but not that simple) Jogis-
tics; changing its supporters'
beliefs, ~ e c t a t i o n s , and
desires forit isanotherthing
altogether. Perhaps Mr. Tse
is @$&suddenly having a
FoHh industry trade publi-
cation might be headystufi
pmpedy inoigorating, and
good outeach to those we
have not been able to ad-
dress in ourcunaztfbrmat.
But we would have to step
out of the iwry tower of

(Continued on page 31 .)
November 1991 December

price of any similar hard-
ware you can find on the
world-wide market, pro-
vided it is used in a Forth
language project and, if
possible, that the project is
described in FDand a ten
percent commission is paid
to FD if it publishes the
vendor's name. (Using the
profit motive to get s u p p o d

John N.S. Tse
Managing Director
Chrisma Technology, Ltd.
45, Genting Lane #07-01
Genting Warehouse Complex
Singapore 1334

We thank Mr. Tse sin-
cerely forhiscadulce, because
it ispossible that a sweeping
change, of the scope he
suggests, may be exactly
what FIG and FD need. His
a?guments aregivengreater
stmzgthbythecoincklental-
but-congnrotcs contents of
this issue's "GuestEditorialJ'
and "Pmident's Letter. ." I
will forward these recom-
mendations to FIG3 Bust-
ness Group and Board of
Dit.ectors, and will include
specific r e f m e to them in
a letter solicUing feedback
from Forth vendors. Our
readers' and vendors' re-
sponses to this material will
surely influence how theFIG
leadership regards it.

Ican oflersomeprelimi-
nary, personal mpomes to
a few ofMr. 'lSeJspoints.

1. I agree that a major
challenge is to address a
widerreadenhipwithin our
limited space. Practical,
task-otjented articles a re
always sought after and,
with the he@ mentioned in
this Lrstce's "mklent 's Let-
ta; "we hope to have found
a way to stattge#ng them.
To date, we also have too
little tutorial material for
new Forth users; and, when
wehaveaddressedpdmari&

27

reaching the limit where
complex languages and
complex thinking are geo-
metrically driving the nec-
essary people and money
beyond the reach of indi-
viduals.

I am tired of the com-
plicated and complex, the
dull and drab technologies,
and work-for-wages tech-
nocrats. Programming is an
art and will always be. From
the days of the programming
Michelangelos, we have
reached the depths of the
paint mixers.

I want to polish the
simplicity andelegance and
let the Sword of Forth cut
through the Gordian Knots
of COBOL, Fortran, and C.

I Still Have a
Small m u m . . .

I want to make Forth
one of the major program-
ming philosophies of the
world.

I Have a
Bigger m u m . . .

I want to make the world
better with applications that
only Forth can make pos-
sible.

I am always available for
comments (and maybe
some humility).

-John Hall
510-535-1294

JDHALL on GEnie

Forth Dimensions

(tstters, mFom 12.)
about the previous or next
standardorversion Because
of economic and time con-
straints, toomanydefections
from Forth will make any-
thing about Forth irrelevant.
If Forth has not been a
widely accepted language
anyway, why not have a
freshbeginning, just the way
FIG got started. With all the
best programming minds in
the industry, we should be
able to attract new Forthians
(especially software and
hardware houses) if we
become (finally?) unified.

Note: Imagine what
would happen if the Win-
dows 3.0 operating system
is a Forth system with DOS
as only one of its default
tasks. Users communicate
with it using plain language,
graphics, or (for power us-
ers) object-oriented Forth.
This is only possible pro-
vided the company doing it
makes money and puts
some of it toward creating
the next money-making
Forth product with mass-
market appeal.

There are many more
questions and statements
than we have time for. If
you would like them all,
please let us know.

We do not understand
why Forthians keep saying
how great Forth is, how
many great programmers we
have, and that Forth can
hold its own against any
language-yet we are a
dying breed. Could the an-
swer be, "Money, money,
money makes the world
(and Forth) go round"?

Take my advice. Use FD
to make money for all
Forthians or soon there will
be fewer than 2000 hard-
core hobbyists (profession-
als?).

We are prepared to sell
our hardware (documenta-
tion included) at the lowest

News from the Forth RoundTable

If you thought discus-
sion regarding the pending
Forth Standard was waning,
think again! Several issues
still remain unresolved and
bear some serious thought
before the book is closed
and the seal is waxed on dp
ANS Forth. One of the more
unresolved of these issues
is that of address alignment
Please read the exchanges
captured June 20,1990 from
ForthNet ports off RIME and
Usenet comp.lang.forth, and
from GEnie Forth Round-
Table participants in Cat-
egory 10, Topic 25.

I have begun this dis-
cussion with a proposal
presented by Jack Woehr
regarding problems unique
to implementors of embed-
ded Forth systems. This
proposal alone amplifies the
X3J14 Technical Commit-
tee's task. It is not enough to
make a set of rules-rhey
must also consider how
those rules affect a variety
of platforms, not the least of
which is embedded systems.

Read, discover, partici-
pate.

Category 10: Forth
Standards

LWcurslonr about the ANS
Forfh Standard for Tk4

>BODK /!I.. .
Magnet:Charles Keane

X3J14 Proposal
Tit&: ROM-based Systems
Quibble with >BODY

words:
>BODY
CREATE DOES>
ENVIRONMENT?

Abstract:
>BODY as defined in BASIS
14 may benefit from redefi-
nition with an eye to port-
ability between mixed RAM/
ROM and RAM-only sys-
tems.

Pto$mal:
8.1.0550 >BODY

In conjunction with 5.3.2
"Addressable Memory," this
construct and the underly-
ing concepts of PFA appear
to b e ambiguous for
ROMmed creatures of
CREATE which contain ad-
dress tokens in their PFA.

Propose: "a-addr is the
parameter field associated
with the execution token w
of a word defined via
CREATE. The contents of
this address may be constant
data, such as an address
token to memory where the
data which makes the
 CREATE^ word useful is
stored (as is often the case
in a ROMmed system), or
such data itself (as is typically
the case in a RAM-only
system). If there is any
question as to which is the
case, a Standard program
should compare the token
returned by >BODY with the
token returned by
EXECUTEing the CREATEd

word itself."
The counter argument

could be brought that the
above technique would not
workforCREATE.. .DOES>.
In such case, another
CREATE COnStruCt could be
examined by a Standard
program to determine what
sort of PFAs CREATE creates.
In any event, it is hard to
imagine a truly portable
Standard program that
would want access to the
internals of a CREATE
. . .DOES> word via >BODY.
It would be safer, in such
cases, simply to create some
data structure that was more
easily manipulable and then
to write a colon definition
that performed the desired
action upon it.

Alternatively, perhaps a
query string could be de-
fined for the ENVIRON-
MENT? construct (8.1.1345)
which could inform the
Standard program as to
whether CREATE words
contain data or address
pointers in their PFAs.

Submitted by:
Jack J. Woehr
Vesta Technology Inc.
7100 W. 44thAve, Suite #I01
Wheat Ridge, Colorado
80033
Voice: (303) 422-8088
FAX: (303) 422-9800
BBS: (303) 278-0364
jax@well.UUCP JAX on
GEnie

Subject: When to ALIGN
In general, you don't

need to ALIGN before @
and !, but instead when
using , (comma) after C, .
It's usually used when cre-
ating data structures.

-Mitch Bradley
wrnb@Eng.Sun.COM

Subject: ALIGN
Reply-To:
UNBCIC%
BRFAPESP.BITNET@
SCFVM.GSFC.NASA.GOV

". . .whenyou<BUI~~S
things, you need to align
i t And, if the word DOES >
nothing, the user will
have to use ALIGN be-
fore @ and ! too. Actu-
ally, that's not true, if the
system implementor did
things right. The last
word-aligned system I
used automatically
.ALIGNed before every
CREATE. This forced the
parameter field to an
even address (which was
required for thread of a
colon definition). So
DOES > always returned
an aligned address, and
the user didn't have to
worry about it.

"Strings compiled in-
line were always padded
to an even number of
bytes; this required a
small bit of additional
logic in run-time code
which advances the IP
over the string, but it was
invisible to the user. (In-
line byte parameters
were forbidden, no great
loss.)"

1) I think the loss of the
ability to compile bytes is a
great loss.

2) How about:

November 1991 December Forth Dimensions

: DATA CREATE
ALLOT (NAME) ,
(AGE ;
15 30 DATA NAME-1

Just putting 15 won't
work. SPARCs have a four-
bytes alignment restriction,
too, for example. And on
and on. And RECORD
structures are vg, ~ J W .

-Daniel C. Sobral
~C@BRFAPESP.BImET

"1) I think the loss
of the ability to com-
pile bytes is a great
loss."

Well, in the system I was
speaking of, you didn't lose
that ability. Structures had
no alignment restrictions
other than starttngat a word
boundary. Which means
that, yes, if you were care-
less, you could create a
structure which would lead
to an addressing violation.

What was lost was the
ability to, for example,
compile a BRANCH with a
one-byte offset ("in-linen
parameter). This was be-
cause the thread needed to
maintain word alignment.
You didn't lose any capa-
bilities with this restriction,
just some micro-optimiza-
tions of memory usage.

-Brad Rodriguez
B.RODRIGUEZ2 [Bradl

*

Subject: Addressability of
data space
Reply-To:
Mitch.BradleyO/o
ENG.SUN.COM@
SCFVM.GSFC.NASA.GOV

"The troublesome
clause from BASIS13 is
from section 5.3.2. It
clearly states:

Forth Dimensions

" I . . . ff is an exception
tf a Standard Program
addresses memory other
than An dicttonaryspace
regtonsJ"m the address
p&&d by a CREAlEd
word or HERE to the end
of the region generated
by consecutive alloca-
t ion~ (, , C, , ALLOT,
ALIGN) made without
intervening definitions
or deallocatfons @OR-
GET). . .' [the rest of this
section is about non-
dictionary space1

"This means that if
you build a defined word
with CREATE (or a word
like DEFER which uses
CREATE), say CREATE
FOO, you can use the
address returned by ~ 0 0 .
Period. Nowhere does it
say you can tick FOO for
its parameter field ad-
dress, and this clause is
carefully worded such
that a n w n g not explic-
itly permitted is forbid-
den.

"Has this clause been
fmed in the latest BASIS?"

Basis 15 says pretty much
the same thing (it's now
section 5.4).

I believe that this text is
logically correct. The text
says that memory at that
address is addressable. It
does not, and indeed can-
not, enumerate all the pos-
sible ways of putting that
address on the stack. For
example, one could do the
following:

CREATE FOO
1 C, 2 C, 3 C, 4 C,
5 C, HERE
CONSTANT XYZZY
7 XYZZY 5 - C!

The point is, section 5.4
says that the memory ad-
dress provided by a
 CREATE^ word and by HERE

is addressable, and that other
memory addresses are not
addressable. It does notsay
that executing the CREATE^
word is the only way of
calculating that same ad-
dress.

However, since this
section has already been
misunderstood, I would like
to hear suggestions for how
to improve the wording. I
Find that writing extremely
precise English text is a very
challenging task.

By the way, here's what
Basis 15 says about >BODY:

8.1.0550 >BODY
Wbody" CORE
(w -- a-addr)
aaddr is the data field ad-
dress corresponding to the
execution token w of a word
&fined via CREATE.
See also: 5.4 Addressable
Memory

The rationale box says:
aaddr h the address that
HERE WOUld have returned
had ff been executed imme-
diately after the execution
of the CREATE that defined
W .

-Mitch Bradley
Mitch.Bradky@Ehg.Sun.COM

Subject: Addressability of
data space
Reply-To:
wbrown@beva.bev.lbl.gov
(Bill Brown)

Seems I recall hearing
somewhere that somebody
offers, or at least once upon
a time offered, an 8052 with
a version of Forth in on-
board ROM. Does anybody
know if it's still available,
and if it is who sells it and
for how much? I was sure
that I had the details some-
where, however, if I do I
must have put it in a redly

safe place!
My interest is triggered

by an article in the May '91
issue of Elektor Ekctnmics
USA which has to do with
an 8032/8052 single-board
computer project. It men-
tions using an 8052 with
BASIC in ROM, and at first
glance it looks like it would
make a neat Forth gadget,
assuming that the Forth
version of the 8052 is
available.

Disclaimer: These opin-
ions are my own and have
nothing to do with the offi-
cial policy or the manage-
ment of Lawrence Berkeley
Labs, who probably couldn't
care less about employees
who play with trains.

-Bill Brown
wbrown@beva.bev.lbl.gov

*

Okay, I have a copy of
BASIS15 now. According to
BASIS13, your example:

CREATE ...
HERE CONSTANT XYZZY

would not necessarily work,
because nothing equated the
address returned by
 CREATE^ words to the ad-
dress returned by HERE.

The first key addition in
BASIS 15 was section 5.4.1,
which states (among other
things), "HERE always
identifies the beginning of
the next region to be allo-
cated."

The second key addition
was the rationale note in
>BODY that you quoted
(although I don't know if
the rationale note carries
the same weight as the text
of the standard itself).

At any rate, you've an-
swered my question--the
problem was fmed in BASIS
15.

By the way, I found the

November 1991 December

section in BASIS 13 per-
fectly understandable,
Mitch. It's just that there was
a difference between what
it said and what everyone
assumed. Thanks (to you or
whoever) for elucidating this
in BASIS 15.

-Brad Rodriguez
brad%candid maccs.uucp
(God willing) or
B.RODRIGUEZ2 on GEnie
or:
brad%candice@
maccs.dcss.mcmaster.ca
or:
bradford@
maccs.dcss.mcmaster.ca
(archaic)

Subject: 1.2.4 Alignment
Problems
Keywords: BASIS 15 ALIGN
ALIGNED
Re: BASIS 15 1.2.4 Align-
ment Problems

"An implementor of
ANS Forth can handle
these alignment restric-
tions in one of two ways.
Forth memory access
words (@ , ! , + ! , etc.)
could be implemented
in terms of smaller width
access instructions which
have no alignment re-
strictions.. . .

"Although this con-
ceals hardware ugliness
from the programmer, it
is inefficient.

"An alternative
implementation of ANS
Forth could &fine each
memory access word
using the native instruc-
tions that most closely
match the word's func-
tion.. . .

"In this case respon-
sibility for giving @ a
correctly aligned address
devolves on the pro-
grammer.

"A portable ANS Forth
program must assume

November 1991 December 30 For# Dimensions

the worst case and use
the alignment operators
described below.. ."
me fundamental issue

raised in ~ ~ ~ t h implements-
tions on machine architec-
tures with alignment resuic-
tions, is whether to aim for
m i m u m space efficiency
(solution 1) or to aim for
m i m u m speed
(solution 2). Dependent on
the kind of ei-
ther of the solutions may
result in better performance
of a particular application.
ms suggests that the pro-
gra-r (or even the user^
of the final application is
bestsuitedtomakethespace
vs. speed &cision. H ~ ~ -
ever, BASIS 15 leaves the
decision to the implementor
of the Forth system.

Big deal?!
well, yes... because, in

order to let the implementor
make that &cision, BASIS
15 supplies him with two
core (ALIGN and
~ ~ 1 ~ ~ ~ ~) t h a t m ~ s t b e - d
by portable ANS ~ ~ r t h pro-
grams. Besides breaking
existing code (already
mentioned by Mit& ~ ~ d -
ley), this "solutionn places
the alignment burden on aU
programmers, including
those who do not use
alignment-restricted hard-
ware. Unfair would be the
least to call this; in order to
let some people have the
advantage of a speedier
~ ~ r t h , all the rest should
suffer from alignment indi-
gestion.

But should we then force
implementors to choose the
f i t solution? In principle,
yes, but this sounds worse
than it actually is:

My suggestion would be
for ~ o r t h s on aligned ma-
chines to implement both
the space- and the speed-
efficient versions of the
memory-a=- words. mr-

thermore, when dealing
with the speed-efficient
words, the character unit
should be cell-size SO every
operator would keep ad-
dresses aligned-

Different word lists
should be used for the two
kinds of definitions; the
spaceefficientwords could,
for example, be kept in
SMALL, whereas their
speedefficient counterparts
would reside in FAST. Now,
when a program is ported
from a non-aligned to an
aligned environment, the
programmer can first select
the appropriate versions by
executing SMALL or FAST,
resulting in either small or
fast compiled code.

I'm SOT for LZ because
he had to enter the whole
alignedness into the basis
document, but I would be
even more SOT if hardware
patches like ALIGN(ED)
would enter the standard.
For after all, who knows, in
x years alignment resuic-
tions may no longer be rel-
evant, but because some
people in the 90s thought
they were, Forthers are still
aligning their data smctures.

-JanStout
wslwsup4@1wa.urc.tue.n1
Eindhoven University of
Technology, Netherlands

Subject: Address alignment
Reply-To: Mitch Bradley
<Mitch.Bradle@
ENG.SUN.COM@
SCFVM-GSFC.NASA.GOV>

In a threaded-code
implementation, the penalty
for ahitrary-alignment @ and
! operators is relatively
small.

In an optimized native-
code system, where you are
really pushing for speed,
the situation is s~mewhat
different. @ and ! are often

expanded in-line on those
systems, and peephole o p
timization can frequently
combine the access with
nearby calculation steps
and/or arithmetic and logi-
cal operators. The require-
ment for arbitrary aligflment
support makes this much
more difficult, and the
compiler is considerably less
likely to succeed in gener-
ating excellent code.

I ran into this problem
when I wrote a translator
program that would convert
68000 binary code into
SPARC binary code. 68000s
are two-byte aligned, and
SPARCS are four-byte
aligned. The alignment
problems made the gener-
ated SPARC code much
worse in the general case,
and caused me to go to a lot
of trouble to get the trans-
lator to guess about actual
alignment at compile time.

My experience with
Forth programmers is that
many of them want to be
able to get the most out of
their hardware, and are
willing togo to a bit of extra
progfamming effort to get it
(e.g., by adding ALIGNED
at judicious Iplacesl.

-Mitch Bradley
M i t L h ~ ~ ~ . a) I ' v l

Subject: Alignment
Reply-TO:
Mitch.Bradley%

ENG.SUN.COM@
SCFVM.GSFC.NASA.GOV

'Hmmm.. . reading
Robert Berkey's com-
ments, I'm beginning to
believe that aU existing
Forth code will be ren-
dered nonconforming by
the BASIS."
In a sense, this is correct.

However, I think a better
way to look at it is as fol-
lows:

ANS Forth will not magi-
cally make existing code
portable. Existing code will
most likely continue to run
on the same systems that it
currently runs on. Existing
code that assumes arbitrary
alignment is currently not
poltable to implementations
that do not choose to "hide"
hardware alignment restric-
tions (a significant percent-
age of Forth implementa-
tions for such hardware).

-Mitch Bradley
Mirchl3mky@FNGm.OOM

Subject: Align
Reply-To:
UNBCICO/o
BRFAPESP. BITNET@
SCFVM.GSFC.NASA.GOV

"From: Rob Sciuk
"Subject: RE: Memory
Management/PIC

"Elizabeth points out
that any standard defm-
ing word should take
care to align words
(bodies, headers, and
fields contained therein)
on appropriate bound-
aries. Further, ALLOT and
, should align on cell
boundaries, and c,
should ensure that the
next invocation of HERE,
ALLOT, , (comma), etc.
will utilize a cell bound-
ary appropriate to the
processor [mine]."
C, should ensure that

the next invocation of HERE,
ALLOT, . . . will utilize a cell
boundary?! It's better to live
with a slow @ and ! than
with this! We have only two
options:
1) Throw an overhead upon
HERE, ALLOT, ...;
2) Make C, ALLOT a ce4
thus acting as a comma.

Another thing, if ALLOT
and HERE always return an
aligned address, it's better
to make this very clear in

the standard, or Structure
Wordsets (which are very
common) will be a source
of lots of errors. I wouldn't
like an ALLOT that aligns,
but then, you can never
satisfy everyone.

Errare Humanum Est...
. ..Perseverare Autem

Diabolicum
-Daniel C. Sobral
UNBCIC@BRFAPESP.BlTNl3
u N B c K B F P S P 3 ~ ~ B R
(No one but me is respon-
sible for the above message.)

Subject: Align

Daniel C. Sobral writes:
"C , should ensure

that the next invocation
of HERE, ALLOT ... will
utilize a cell boundarv?!" - ~

Good, it wasn't just me
who thought this was a lousy
idea. I was wondering how
C , would ever accomplish
this, short of always allo-
cating enough bytes to end
up on a cell boundary. But
then, how do you pack bytes
with successions of C, ?

I'm always hesitant of
posting to this group; hav-
ing read publications by
many of the other posters, it
is hard for me to think of
myself as a peer. For ex-

ample, I assume there must
be something I don't un-
derstand about all these
AL IGNment issues. Haven't
we been living with ALIGN
on 68000s for a decade now?
I've always assumed that
the implementation was
pretty straightforward: AL-
LOT ensures that the ad-
dress generated for the vari-
able being allotted is appro-
priate to the size of the
variable, allocating extra
bytes to make it so. Of
course, this assumes the size
is a "natural" size for the
processor, usually bytes,
longs, etc. For "unnaturaln
records, you had to align
things manually. Is there
something new I'm missing?

By the way: alignment to
a cell boundary is not nec-
essarily sufficient, depend-
ing on the processor. For
example, the i860 requires
address alignment to be
MOD (size of variable),
or there is a very high per-
formance penalty on
memory accesses.

-Nicolas Tarnburri
nick@sw.stratus.com

-Gay Smith
GARY-S on GEnie

(zsw, -page 27.)
technical objectivity and
wmme?cial imparHali& (to
the degree that we have
achieved either of those),
and relinquish the "clubby"
familiar-ness of what we
ham enjoydull theseyean.
(See Mr. 73e'spoinB ten, 1 1,
13, 14, 17).

7. Yes,,please! Wed0 want
topublish examples ofForth
doing agoodjob at an inter-
esting task, or even at a
boringtaskifit-ates
technology that can be
transferred pmfitably to
other sitedapplicatim by
other Forth users,

i%ese few thoughts, as I
stated above, are prelimi-
naq.-Mr. Tse's letter
c m e d my desk duringFnal
pn?-pes pqaratratrm. His
mnarkschaUengeusto~
up t o g m W ~ b i l W and
higher stakes than ux have
consklered hew before. May
they kad us to thoughtful
consideration and fnritful
discussion, and to a &ion
of Fotth and FIG that will
save weU in thefuhrre.

Pkase send your 'eplies
to me at the Fotth Interest
Group mailing address orto
my UARLIN.0 e-mail ad-
dress on GEnie. -Ed.

For# Dimensions 31 November 1991 December

Forth resources & contact information

Please send updates, corrections, additional listings, and suggestions to the Editor.

Forth Interest Group I
The Forth Interest Group serves both expert and
novice members with its network of chapters, Forth
Dimensfom, mail-order services, and on-line activities.
For membership information, or to reserve advertising
space, contact the administrative offices:

Forth Interest Group
P.O. Box 8231
San Jose, California 95155
408-277-0668
Fax: 408-286-8988

Board of Directon Founding D i m t m
John Hall, President William Ragisdale
C.H. Ting, Vice-president Kim Harris
Mike Elola, Secretary Dave Boulton
Dennis Ruffer, Treasurer Dave Kilbridge
Wil Ba&n
Jack Brown
David Petty
Dennis Ruffer

In Recognition /
Recognition is offered an- 1979 William Ragsdale
nually to a person who has 1980 Kim Harris
ma& an outstanding con- 1981 Dave Kilbridge
trihtion in support of Forth 1982 Roy Martens
and the Forth Interest 1983 John D. Hall
Group. The individual is 1984 Robert Reiling
nominated and selected by 1985 Thea Martin
previous recipients of the 1986 C.H. Ting
"FIGGY." Each receives an 1987 Marlin Ouverson
engraved award, and is 1988 Dennis Ruffer
named on a plaque in the 1983 Jan Shepherd
administrative offices. 1990 Gary Smith

ANS Forth 1
I

The following members of the ANS X3J14 Forth Stan-
dard Committee are available to personally carry your
proposals and concerns to the committee. Please feel
free to call or write to them directly:

Gary Betts Charles Keane
Unisyn Performance Pkgs., Inc.
301 Main, penthouse #2 51 5 Fourth Avenue
Longmont, CO 80501 Watervleit, NY 12189-3703
303-924-9193 5 18-274-4774

Mike Nemeth George Shaw
CSC Shaw Laboratories
10025 Locust St. P.O. Box 3471
Glenndale, MD 20769 Hayward, CA 94540-3471
301 -286-831 3 41 5-276-5953

Andrew Kobziar David C. Petty
NCR Digitel
Medical Systems Group 125 Cambridge Park Dr.
9% Danby Rd. Cambridge, MA 02140-2311
Ithaca, NY 14850
607-273-5310

Elizabeth D. Rather
FORTH, Inc.
11 1 N. Sepulveda Blvd.,

suite 300
Manhattan Beach, CA 90266
213-372-8493

Forth Instruction

Las AtzgeZes-Introductory and intermediate three-day
intensive courses in Forth programming are offered
monthly by Laboratory Microsystems. These hands-on
courses are &signed for engineers and programmers
who need to become proficient in Forth in the least
amount of time. Telephone 213-306-7412.

November 1991 December 32 Forth Dimensions

On-Line Resources I
To communicate with these systems, set your modem and
communication software to 300/1200~2400 baud with eight
bits, no parity, and one stop bit, unless noted otherwise.
GEnie requires local echo.

GEnie
For information,
call 800-638-9636

Forth RoundTable
(ForthNeP)
Call GEnie local node, then

type M710 or FORTH
sysops:
Dennis Ruffer (D.RUFFER),

Scott Squires
(S.W.SQUIRES),
Leonard Morgenstern

(NMORGENSTERN),
Gary Smith (GARY-S)

MACH2 RoundTable
Type M450 or MACH2
Palo Alto Shipping
Company
sysop:
Waymen Askey (D.MILEY)

BE (ByteNet)
For information,
call 800-227-2983

Forth Conference
Access BIX via TymNet,
then type j forth
Type FORTH at the :

prompt
sysop:
Phil Wasson (PWASSON)

LMI Conference
Type LMI at the : prompt
LMI products
Host:
Ray Duncan (RDUNCAN)

cow-
For information,
call 800448-8990

Creative Solutions Conf.
Type !Go FORTH
SysOps: Don Colburn,
Zach Zachariah, Ward
McFarland, Jon Bryan,
Greg Guerin, John Baxter,
John Jeppson

Computer Language
Magazine Conference
Type !Go CLM
SysOps: Jim Kyle, Jeff
Brenton, Chip Rabinowitz,
Regina Starr Ridley

Unix BBS's witb fortb.conf
(FortbNetZ and reachable Yia
StarLink node 9533 on
TymNet and PC-Pursuit node
casfa on TekNet.)

WELL Forth conference
Access WELL via
CompuserveNet
or 415-332-6106
Fairwitness:
Jack Woehr (jax)

Wetware Forth conference
4 15-753-5265
Fairwitness:
Gary Smith (gars)

PC Board BBS's devoted to
Fortb (FortbNet9

British Columbia Forth
Board
604-434-5886
SysOp: Jack Brown

Grapevine
501-753-8121 to register
501-753-6389
StarLink node 9858
SysOp: Jim Wenzel

Real-Time Control Forth
Board

303-278-0364
StarLink node 2584 on

T W e t
PCPursuit node coden on

TeleNet
SysOp: Jack Woehr

Otber Fottb-speclr~: BBS's
Laboratory Microsystems,

Inc.
213-306-3530
StarLiik node 9184 on

TymNet
PCPursuit node calan on

TeleNet
SysOp: Ray Duncan

Knowledge-Based Systems
Supports Fifth
409-696-7055

Drum Forth Board
5 12-323-2402
StarLink node 1306 on

T W e t
SysOps: S. Suresh, James
Martin, Anne Moore

Non-Fortb-specfk BBSs with
ertensiue Forth libraries

DataBit
Alexandria, VA
703-7 19-9648
PCPursuit node dcwas
StarLink node 2262
SysOp: Ken Flower

The Cave
San Jose, CA
408-259-8098
PCPursuit node casjo
StarLink node 6450
SysOp: Roger Lee

Intemarional Fortb BBSs
Melbourne FIG Chapter
(03) 809-1787 in Australia
61-3-809-1787 international
SysOp: Lance Collins

Forth BBS JEDI
Paris, France
33 36 43 15 15
7 data bits, 1 stop, even

parity

Max BBS (FortbNet*)
United Kingdom
0905 754157
SysOp: Jon Brooks

Sky Port (FortbNet*)
United Kingdom
44-1-294-1006
SysOp: Andy Brimson

SweFIG
Per Alm Sweden
46-8-71-35751

NEXUS Servicios de
Informacion, S. L.

Travesera de Dalt, 104-1M
Entlo. 4-5

08024 Barcelona, Spain
+ 34 3 2103355 (voice)
+ 34 3 2147262 (modem)
SysOps: Jesus Consuegra,
Juanma Barranquero
barran@nexus.nsi.es

(preferred)
barrant3nsi.e~
barran (on BIX)

This list was accurate as of February 1991. If you know
another on-line Forth resource, please let me know so it can
be included in this list. I can be reached in the following ways:

I *Forth&t is a VitlualForth network tbat links designated message
bases in an attm@t to provide greater infwmah'on dish.ibution ' to the Fad users served. It i s Pr-d courtesy of h e Sysop of
its various links.

Gary Smith
P. 0 . Drawer 7680
Little Rock, Arkansas 7221 7
Telephone: 50 1-227-78 1 7
Fax (group 3): 501-228-9374
GEnie (co-SysOp, Forth RT and Unix RT): GA RY-S
Usenet domain.: uunet!ddil!lrark!glsrk!gars

Forth Dimensions 33 November 1991 December

FIG Chapters I
The Forth Interest Group Chapters listed below are currently
registered as active with regular meetings. If your chapter
listing is missing or incorrect, please contact Anna Brereton
at the FIG office's Chapter Desk. This listing will be updated
regularlyin Forth Dimensions. lfyou wouldlike to begin a FIG
Chapter in your area, write for a "Chapter Kit and Applica-
tion. "

Forth Interest Group
P. 0. Box 823 1
San Jose, California 95155

U.S.A.
ALABAMA
Huntsville Chapter
Tom Konantz
(205) 8816483

AUSKA
Kodiak Area Chapter
Ric Shepard
Box 1344
Kodiak, Alaska 9%15

ARIZONA
PhoenLx Chapter
4th Thurs., 7:30 p.m.
Arizona a t e Univ.
Memorial Union, 2nd floor
Dennis L. Wilson
(602) 381-1146

CAUFORNIA
Los Angeles Chapter
4th Sat., 10 a.m.
Hawthorne Public Library
12700 S. Grevillea Ave.
Phillip Wasson
(213) 649-1428

North Bay Chapter
2nd Sat.
12 noon tutorial, 1 p.m. Forth
2055 Center St., Berkeley
Leonard Morgenstern
(415) 376-5241

Orange County Chapter
4th Wed., 7 p.m.
Fullerton Savings
Huntington Beach
Noshir Jesung 014) 842-3032

!kaalmmto Chapter
4th Wed., 7 p.m.
1708-59th St., Room A
Bob Nash
(916) 487-2044

San Diego Chapter
Thursdays, 12 Noon
Guy Kelly (619) 454-1307

Si lkon Valley Chapter
4th Sat., 10 a.m.
Applied Bio Systems
Foster City
John Hall

Stockton Chapter
Doug Dillon (209) 931-2448

COLORADO
Denver Chapter
1st Mon., 7 p.m.
Clifford King 003) 693-34 13

FLORIDA
Orlando Chapter
Every other Wed., 8 p.m.
Herman B. Gibson
0 5) 855-4790

GEORGIA
Atlanta Chapter
3rd Tues., 7 p.m.
Emprise Corp., Marietta
Don Schrader (404) 4280811

IUINOIS
Cache Forth Chapter
Oak P?rk
Clyde W. Phillips, Jr.
(708) 713-5365

Centnt Illinois Chapter
Champaign
Robert Illyes (217) 359-6039

INDIANA
Fort Wayne Chapter
2nd 'hes., 7 p.m.
UP Univ. Campus
B71 Neff Hall
Blair MacDermid
(219) 749-2042

IOWA
Central Iowa FIG Chapter
1st Tues., 7:30 p.m.
Iowa State Univ.
214 Comp. Sci.
Rodrick Eldridge
(515) 294-5659

Fairfie!ld FIG Chapter
4th Day, 8:15 p.m.
Gurdy Leete (5 15) 472-7782

MARYIAND
MDFIG
3rd Wed., 6:30 p.m.
JHU/APL, Bldg. 1
Parsons Auditorium
Mike Nemeth
0 1) 262-8140 (eves.)

~ C H U s m
Boston FIG
3rd Wed., 7 p.m.
Bull HN
300 Concord Rd., Billerica
Gary Chanson (6171 527-7206

MICHIGAN
DetroitIAnn Arbor Area
Bill Walters
013) 731-9660
(313) 861-6465 (eves.)

MINNESOTA
MNFIG Chapter
Minneapolis
Fred Olson
(612) 588-9532

h m s 0 U R I
Kansas City Chapter
4th Tues., 7 p.m.
Midwest Research Institute
MAG Conference Center
Linus Orth (913) 236-9189

S t buis Chapter
1st Tues., 7 p.m.
Thornhill Branch Library
Robert Washam
91 Weis Drive
Ellisville, MO 63011

NEWJERSEY
New Jersey Chapter
Rutgers Univ., Piscataway
Nicholas G. Lordi
(908) 932-2662

NEWMEXICO
Albuquerque Chapter
1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
Jon Bryan (505) 298-3292

1 NEWYORK
-

Long Island chapter
3rd Thurs., 7:30 p.m.
Brookhaven National Lab
AGS dept.,
bldg. 911, lab rm. A-202
Irving Montanez
(516) 282-2540

Rochester Chapter
Monroe Cornm. College
Bldg. 7, Rrn. 102
Frank Lanzafame
(716) 482-3398

OHIO
Columbus FIG Chapter
4th Tues.
Kal-Kan Foods, Inc.
5 115 Fisher Road
Terry Webb
(614) 878-7241

Dayton Chapter
2ndTues. &4th Wed., 6:30p.m.
CFC
11 W. Monument Ave. #612
Gary Ganger (5 13) 849-1483

PENNsnVANIA
Villanova Univ. Chapter
1st Mon., 7:30 p.m.
Villanova University
Dennis Clark
(215) 860-0700

TENNESSEE
East Tennessee Chapter
Oak Ridge
3rd Wed., 7 p.m.
Sci. Appl. Int'l. Corp., 8th FI.
800 Oak Ridge Turnpike
Richard Secrist (615) 483-7242

T E X A S
Austin Chapter
Matt Lawrence
PO Box 180409
Austin, TX 78718

Dallas Chapter
4th Thurs., 7:30 p.m.
Texas Instruments
13500 N. Central Expwy.
Semiconductor Cafeteria
Conference Room A
Warren Bean (214) 480-31 15

Houston Chapter
3rd Mon., 7:30 p.m.
Houston Area League of
PC users (HAL-PC)
1200 Post Oak Rd.
(Galleria area)
Russell Harris
(713) 461-1618

I I
November 1991 December 34 Forth Dimensions

VERMONT
Vermont Chapter
Vergennes
3rd Mon., 7:30 p.m.
Vergennes Union High School
RM 210, Monkton Rd.
Hal Clark (802) 453-1442

VIRGINIA
First Forth of
Hampton Roads
William Edmonds
(804) 898-4099

Potomac FIG
D.C. & Northern Virginia
1st Tues.
Lee Recreation Center
5722 Lee Hwy., Arlington
Joseph Brown
(703) 471-4409
E. Coast Forth Board
(703) 442-8695

Richmond Forth Group
2nd Wed., 7 p.m.
154 Business School
Univ. of Richmond
Donald A. Full
(804) 739-3623

WISCONSIN
Iake Superior Chapter
2nd Fri., 7 3 0 p.m.
1219 N. 21st St., Superior
Allen Anway (715) 394-4061

INTERNATIONAL
AUSTRAUA
Melbourne Chapter
1st Fri., 8 p.m.
Lance Collins
65 Martin Road
Glen Iris, Victoria 3146
03/889-2600
BBS: 61 3 809 1787

Sydney Chapter
2nd Fri., 7 p.m.
John Goodsell Bldg., RM LG19
Univ. of New South Wales
Peter Tregeagle
10 Binda Rd.
Yowie Bay 2228
021524-7490
Usenet:
te&@usage.csd.unsw.oz

BELGNM
Belgium Chapter
4th Wed., 8 p.m.
Luk Van Loock
Lariksdreef 20
2120 Schoten
03/658-6343

Southern Belgium Chapter
Jean-Marc Bertinchamps
Rue N. Monnom, 2
B-6290 Nalinnes
07112 13858

CANADA
Foith-BC
1st Thurs., 7:30 p.m.
BCIT, 3700 Willingdon Ave.
BBY, Rm. 1A-324
Jack W. Brown
(604) 5969764 or
(604) 436-0443
BCFB BBS (604) 434-5886

Noichern Alberta Chapter
4th Thurs., 7-9:30 p.m.
N. Alta. Inst. of Tech.
Tony Van Muyden
(403) 486-6666 (days)
(403) 962-2203 (eves.)

Southern Ontario Chapter
Quarterly: 1st Sat. of Mar.,
June, and Dec. 2nd Sat. of Sept.
Genl. Sci. Bldg., RM 212
McMaster University
Dr. N. Solntseff
(416) 525-9140 a 4 4 3

ENGLAND
Forth Interest GroupUK
London
1st Thurs., 7 p.m.
Polytechnic of South Bank
RM 408
Borough Rd.
D.J. Neale
58 Woodland Way
Morden, Surry SM4 4DS

FINLAND
FinFIG
Janne Kotiranta
Arkkitehdinkatu 38 c 39
33720 Tampere
+358-31-184246

GERMANY
Germany FIG Chapter
Heinz Schnitter
Forth-Gesellschaft e.V.
Postfach 11 10
D-8044 Unterschleissheim
(49) (89) 317 3784
e-mail uucp:
seaetary@forthev.UUCP
Internet:
secretary@Admin.FORTH-eV.de

HOLLAND
Holland Chapter
Maurits Wijzenbeek
Nieuwendammerdijk 254
1025 IX Amsterdam
The Netherlands
++(20) 636 2343

JAPAN
Japan Chapter
Toshio Inoue
University of Tokyo
Dept. of Mineral Develop
ment
Faculty of Engineering
7-3-1 Hongo, Bunkyo-ku
Tokyo 113, Japan
(81)3-3812-2111 ext. 7073

REPUBLIC OF CHINA
R.O.C. Chapter
Ching-Tang Tseng
P.O. Box 28
Longtan, Taoyuan, Taiwan
(03) 4798925

-EN
SweFIG
Per Alm
46/8-92%3 1

SWlTZERLAND
swiss Chapter
Max Hugelshofer
Industrieberatung
Ziberstrasse 6
8152 Opfikon
01 810 9289

'We have to get working in the
new areas that have developed
while we debated, in areas
where we will again capture
the imagination of the worldmn

See "President's Letter

nALY
FIG Italia
Marco Tausel
Via Cerolamo Forni 48
20161 Milano

SPECIAL GROUPS
Forth Engines User
Group
John Carpenter
1698 Villa St.
Mountain View, CA 94041

Forth Dimensions 35 November 1991 December

Contributions from the Forth Community
We are beginning to assemble a great collection of Forth code in machine-readable form.
If you need a good Forth, it is probably here.

Minimum-requirement Forths: PocketForth, PYGMY, eForth
The kitchen-sink Forths: F-PC, BBL
Complete starters: F83, Kforth, ForST
Object-oriented Forths: Yerkes, MOPS
Macintosh Forths: Yerkes, MOPS, PocketForth
IBM Forths: PYGMY, F-PC, BBL, F83, Kforth, eForth
Atari Forth: ForST
805 1 Forths: 8051 ROMmable Forth, eForth
Graphic and floating-point Forths: Yerkes, MOPS, F-PC, Kforth

Forth tutorials: The Forth Course, F-PC Teach

Applications: Forth List Handler, Forth Spreadsheet,
Automatic Structure Charts, A Simple Inference Engine,
The Math Toolbox

Great demos from St. Petersburg: AstroForth and AstroOKO

(See the Mail Order Form inside for more complete descriptions)

Yet to come:
Collections of tools and techniques are being assembled that cover communications, hardware

drivers, data analysis, and more math and numerical recipes.

Things we need or which are not currently available in machine-readable form:
Original listings of fig-Forth for any machine on disk. We do not currently have them.
We can use many more applications and application ideas that include source code.
Code from the authors of FORML papers and past Forth Dimensions articles.

Send submissions to: FIG, c/o Publications Committee, P.0 Box 8231, San Jose, CA 95155

Forth Interest Group
P.O.Box 8231
San Jose, CA 95155

Second Class
Postage Paid at
San Jose, CA

