VOLUME XII, NUMBER 3 SEPTEMBER/OCTOBER 1990 $6.00

R

s e
R, | f\'-?_':-”_'.

. - e
o PR - iy .}

g, L e
P

ot

~
5
i B

e

LA
e
el he

G ", . i e 1 el b p . o R e, g i S A R e R R . . R, o O R e
o et Gl g R . : i : ;
b "”-5“ -“-3""'-'”5".- T R . g R i e F-\.]I RN v % v e - g S . - L » IR . H'.:T
Rl s R R e B T i A e SRt R T R S R ety SoRtia e R e T R
e - k s 0 N L v) J Lo 2 5 = N : - L 1 i) - J .

G

L5 o
ety

e
WS S

i i)
L S etk o L
et :

. o
= sl e
&

car

.:.:,- 4 b '."__
e D R
i e Nt PSR
“" . e

peon o T N, e

SILICON COMPOSERS

Introduces the

SC/FOX™ Single Board Computer32
Using the SC32™ Forth Chip

SC/FOX

° Q0000000000000 00000000O00 Osy 2|0 0000000000000 0C0O 000000005
0000000000000000000000C0 O SBC32 Q0000000000000 0 00000000|q
1 49 1

<
° of v ©0000000000000 ™
CLOCK
©

o O

00000000009 0 00000000 CO O

o °
s > SRAM SRAM
° a ° _D EPROM 100600500000 00E 00000000000
° ©00000GCO0O0O0O . E SRAM & SRAM
o ©000000000O0C B00CO0O0D0CO000QO0DO o 000000000 OO D 0000000 CO OO
° oo X oo 0000000000000 IO 000000000COIONC 000000000 O
-] o0 SC32 oo
o 000 o0 SRAM SRAM
° R[°%¢ Ccpy °°° EPROM dlioooooocoococoodlddneocococooccoo
) ::0 °:: AN° 0000000000 Y 000000000 CO0 0
o,
: :::0:::00:: 000000006000000 EOOSOROA:dOOOQOUDiOO§ROADP4°°0000
0 o lo 00000000000 00000000009000 000000000 O O ©0O0O0D0DODOCODO O
[o| ABEUEEGHJEL S SRAM l} SRAM
L] :D EPRDM ‘000000000000 W 0O000000COCO O
) Bo0000000OC NP 0000000000 0 000000000 C O
‘--g D°°°°°°°°°° G0G00000060000 ¥ E SRAM]& SRAM
:} 0000000000000 0Q © 0000000000 D 0000000000 O
002 0000000000 O © 90000000 0 O 0 00000000 0O Q)
D SRAM SRAM
'°_GN_ o::::::o Dt EPROM Eooooooooooo 9000060600000
:° [O:UART:: TR YA XY NP 000000000 O O 0 00000000 0O 0
°2 |L}e . b SRAM B) SRAM
_o__n :: :: GG D 00000000007 dlljs0000000000lduwooococoooood
©0coo0o000 E] & SBC32 (C> 1990 by
° Lesecee 0000000000 SILICON COMPOSERS lNC—°
SC/FOX SBC32 (Single Board Computer32) SC/Forth32 Interactive Language
+16, 20, or 24 MHz input clock operation. +Forth 83 standard with 32-bit extensions.
+64K to 512K bytes 0-wait-state SRAM. *Vectored I/O and recursion.
+64K bytes of shadow EPROM. *Supports ASCII text file or block source code.
+SC/Forth32 in EPROM included. *Double number (64-bit) support.
+56-Kbaud RS232 serial port. *Extended control structures.
+Two 50-pin application headers. *Byte, word, and long word access.
+4 Layer, Eurocard size: 100mm by 160mm. *Microcode support for custom SC32 instructions.
+Optional prototyping plug-on board. »Easy turnkey system generation.
*Retail from $995 with SC/Forth32. «Compatible with SC/Forth for RTX 2000.
SC32 Forth Chip SC/FOX Development System
+32-bit CMOS microprocessor in 85-pin PGA. *MS DOS screen editor with pull-down menus.
+»1-cycle instruction execution. +Load and run from editor capability.
+Non-multiplexed 32-bit adr bus & data bus. *Program spawning with exit back to editor.
+16 Gbyte contiguous data space. «Mutltiple file loading.
2 Gbyte non-segmented code space. +Advanced block copy and move feature.

Ideal for embedded-systems control, high precision numercial processing, data acquisition,
and process control applications. For additional information, please contact call us at:

SILICON COMPOSERS INC, 208 California Avenue, Palo Alto, CA 94306 (415) 322-8763

Forth Dimensions

2 Volume XII, Number 3

O

E N § I O N

o)

DYNAMIC VIRTUAL MEMORY MANAGEMENT - ANTERO TAIVALSAARI
7

With these virtual memory management extensions to Forth, persistent storage space for data items can be allocated
and deallocated dynamically. A simple heap-based memory compaction mechanism is used, and the extensions are
proven functional in F83 (but they should be quite portable).
|
DYNAMIC MEMORY ALLOCATION - DREAS NIELSEN
17

Many programs handle data elements of indeterminate size or number, but you needn’t statically allocate a buffer
capable of holding the largest possible datum. Explicitcontrol of dynamic memory allocation is a powerful tool. Many
algorithms—and data structures like linked lists, queues, and trees—are difficult to implement efficiently without it.

|
SMART RAM - ROB CHAPMAN
28

The concept of smart RAM can be applied in many other areas. When developing a new Forth, the author used it to
interactively and incrementally test the Forth, monitor the performance of each word, and tune it for the 68000. It could
also be used to speed up slow RAM, even to intercept slow instructions or data moves and do them while the processor
is not using memory.
L |
TESTING TOOLKIT - PHIL KOOPMAN, JR.
31

Forth supports interactive development and testing, but interactive testing isn’t always enongh. Sometimes we want
a permanent record of test cases for Forth words to serve as documentation. A full suite of test cases ensures that a
change in one part of the program does not disturb other parts.

FORST: A 68000 NATIVE-CODE FORTH - JOHN REDMOND
34

This is the second in a three-part series about a 32-bit, subroutine-threaded Forth for the Atari ST, whose OS “...is
pretty much a 68000 clone of MS-DOS.” The system has a number of interesting and unique characteristics, but
attention has been given to compatibility with existing source code. This installment may cure your C envy!

@G @D @ @=D @@=

|
Editorial Reference Section
4 39
Letters Ad Index
5 41
Best of GEnie FIG Chapters
37 42-43
Volume XIi, Number 3 3

Forth Dimensions

EDITORIAL

If you haven’t paid close attention to
the growth of on-line Forth activity, you
may be surprised. Forth programs, debates,
questions, news, and insights are being
shared between several BBSs and larger
communication systems—including some
international ones—thanks to their respec-
tive sysops and to both electronic and
manual gateways between systems. There
ismore reason than ever to tune in to the on-
line Forth community. FD’s “Reference
Section” lists the electronic resources we
find and, despite some past problems, we
try to keep it both current and complete.
(You can help by informing us of changes
and additions.)

If you didn’t log on in August, you
missed meetings scheduled with Bill
Ragsdale and Glen Haydon. To further
encourage your virtual presence on at least
one of these electronic venues, upcoming
guest conferences on GEnie’s Forth
RoundTable include:

Dick Miller, President of Miller Micro-
computer Services

“To DOS or Not to DOS”

Thursday, September 20

9:30 p.m. Eastern/6:30 p.m. Pacific

JefRaskin, originator of the Apple Mac and
the Canon Cat

“What Happened to the Cat?”

Wednesday, October 17

9:30 p.m. Eastern/6:30 p.m. Pacific

(Note that the October conference is on
Wednesday instead of the usual Thursday.)

* * *

Speaking of Glen Haydon (of MVP-
FORTH, WISC, etc.), he has completed a
significant revision of his book All About
Forth. 1t has long been popular as the
working reference volume of definitions,
implementation examples, and relevant
details about a widely used set of Forth
words. But the recent, greatly revised and
expanded version makes the book an anno-
tated glossary of practically all Forth words
in common usage, in all the primary dia-
lects. Implementation examples are given
in high-level Forth or 8086/88 assembly
language to help clarify the text of a word’s
definition. When in doubt, just look it up!
This essentially new book is, in my opin-
ion, an important contribution to every
Forth programmer’s workbench. Look for
it on the FIG Mail Order Form.

If you live in Memphis,
don’t blame us...

Publishing News reported that seventy-
five percent of monthly magazines were
delivered late in early 1990, an increase
over last year. Memphis, Tennessee had the
worst record (none delivered on time) and
San Mateo, California had the best record
(one hundred percent).

~Marlin Ouverson
Editor

Forth Dimensions
Published by the
Forth Interest Group
Volume XII, Number 3
September/October 1990
Editor
Marlin Ouverson
Advertising Manager
Kent Safford
Design and Production
Berglund Graphics

Forth Dimensions welcomes editorial mate-
rial, letters to the editor, and comments from its
readers. No responsibility is assumed for accu-
racy of submissions.

Subscription to Forth Dimensions is in-
cluded with membership in the Forth Interest
Group at $30 per year ($42 overseas air). For
membership, change of address, and to submit
items for publication, the address is: Forth Inter-
est Group, P.O. Box 8231, San Jose, California
95155. Administrative offices and advertising
sales: 408-277-0668.

Copyright © 1990 by Forth Interest Group,
Inc. The material contained in this periodical
(but not the code) is copyrighted by the individ-
ual authors of the articles and by Forth Interest
Group, Inc., respectively. Any reproduction or
use of this periodical as it is compiled or the ar-
ticles, except reproductions for non-commer-
cial purposes, without the written permission of
Forth Interest Group, Inc. is a violation of the
Copyright Laws. Any code bearing a copyright
notice, however, can be used only with permis-
sion of the copyright holder.

About the Forth Interest Group

The Forth Interest Group is the association
of programmers, managers, and engineers who
create practical, Forth-based solutions to real-
world needs. Many research hardware and soft-
ware designs that will advance the general state
of the art. FIG provides a climate of intellectual
exchange and benefits intended to assist each of
its members. Publications, conferences, semi-
nars, telecommunications, and area chapter
meetings are among its activities.

“Forth Dimensions (ISSN 0884-0822) is
published bimonthly for $24/36 per year by the
Forth Interest Group, 1330 S. Bascom Ave,,
Suite D, San Jose, CA 95128. Second-class
postage paid at San Jose, CA. POSTMASTER:
Send address changes to Forth Dimensions,
P.O. Box 8231, San Jose, CA 95155.”

Forth Dimensions

Volume XII, Number 3

Language of Choice
Dear Sir,

Tagree with Philip Koopman Jr.’scall 1o
market Forth for what it is, the premier
controller language (FD XII/1). I'm not a
professional programmer, but I am a fan of
Forth.

Koopman hits the mark by spotlighting
the perception of Forth. I'm looking at a
well-balanced article written by Dara
Pearlman and published in the September
1983 issue of Popular Computing.Itled me
to send for the fig-FORTH listing years
ago. But the article’s title says itall: “Forth
Inspires a Fanatic Following—But Why
Hasn’t It Taken the World by Storm?” Next
to it is a color photograph of the original
FIG five in their FIG t-shirts and waving
copies of Forth Dimensions. | fear that, in
the public’s mind, Forth is a strange lan-
guage promoted by even stranger fanatics.

The perception of a language is its
theme, the one-sentence statement that
defines the problem it solves for the com-
puting public (preferably a large segment
of it). BASIC, for example, was created to
introduce computers to Social Science stu-
dents at Dartmouth. It fulfilled the need of
the novice for an easy way to learn to use a
computer. That BASIC can now be found
as a complex, structured, compiled lan-
guage is beside the point.

The result, Koopman points out, is a
lack of marketing focus in promoting
Forth. This has caused Forth to lose the
synergism from a strong, consistent mar-
keting sponsor. Where would BASIC be if
not for Dartmouth, Microsoft, Apple, and
all the other home computer companies and
universities who found in BASIC an ideal
vehicle to sell their products and services?
Forth has to be marketed for what it is, the
ideal way for a business to save time and
money programming controllers. That it

LETTERS

can do much more is beside the point.
Koopman'’s request for programmers to
go public with their experiences in Forth
projects is good. We may think Forth is
great, but it would help a lot if some hard
facts about time and money would back up
that opinion for businesses to act upon.
For publicity, I believe a Forth version
of Steve Ciarcia’s “Circuit Cellar, Ink.”
would be an ideal showcase. The Forth
chips are out there. So why not encourage
the Forth hackers? The Forth hardware
people should take a good look at this.
Koopman calls us to actively promote
Forth now. The expansion of microcompu-
ters into everything gives Forth a rare op-
portunity to be like those caterpillars that
march around in a circle until they die. It
does need to focus on a single marketing
goal. Why not the one for which it was
created?
Yours truly,

Walter J. Rottenkolber
P.O. Box 936
Visalia, California 93279

Dear Editor,

I agree with most of Philip Koopman,
Jr.’s article. To me, additional definitions
are so logical and not too hard to follow, but
others seem to consider it witches’ brew.,
Consider the Forth definition in Gespac’s
Glossary of Technical Terms (1989):

Forth is a high level language that is
based on a very small kernel. It allows
user(s] to define instructions which can
then be used to define other, higher level
instructions,which can be used to define
higher level instructions and so on
Experienced Forth users worship that
language. Forth, however, has been
banned by most corporations because

the “Forth Dictionary” tends to be-
come a dialect of the programmer,
making it almost impossible to read and
be maintained by any other program-
mers...

It does seem that embedded systems,
withoutakernel, thatcan be used tomecha-
nize operations for well-defined situations,
could help. With enough systems or parts
available that can easily be used with all
CPUs, use could not help [but] increase
acceptance.

It’s not the whole answer...

Phil Chadwick
358 Thompson Mill Road
New Hope, Pennsylvania 18938

Standards Notwithstanding

I have been using Forth continuously
(but not exclusively) since 1975. I started
with my own creation, which has grown
into a very viable system. I have also used
the most notable commercial versions.
Chuck Moore’s statement (“Best of
GEnie,” FD X1/5) inspires the following
comments based upon experience:

1. Classic Forth consists of a few ele-
mentary definitions (* is tick an address, !
is store a word, etc.), a philosophy of pro-
gramming tasks, and a definite form in
which the program is expressed (numbers
precede commands, names follow, and
space is the only delimiter). The philoso-
phy seems to be the hard part to grasp for
the uninitiated, perhaps because it is al-
ways cryptically demonstrated and is sel-
dom simply expressed.

2. Complex operations do not survive
the test of time. Simpler ways evolve, or
they are returned to the vocabulary.

3. VOCABULARY has a purpose only if

Volume X1I, Number 3

Forth Dimensions

it speeds up compilation and FORGETing.
It is great for task management. Other uses
are probably abuses.

4. My Forth has been recreated just
about every year. Little has gone untried,
and useless things have fallen by the way-
side. This is an inherent part of the life of
Forth.

5. Forth and Standard Forth are contra-
dictions of definitions (terms). Any par-
ticular Forth contains only the necessary
common definitions, adaptations, and ex-
tensions to do a particular job. A Standard
Forth would require all definitions to be
common, even adaptations and extensions
(as do BASIC, Modula 11, etc.).

6. Some programmers cannot compre-
hend the philosophy of Forth; this relegates
them to use other languages and lose the
benefits of Forth, or to use a Forth compiler
that does not require such understanding (if
somebody can invent one).

7. The ideal Forth machine has not yet
been demonstrated. Much of Forth can be
parallel processed (but mostly not in the
commonly thought-of way).

8. QWERTY keyboards (or some sub-
stitute) are necessary for common editing
(data-entry stage). All other needs are man-
aged better by a logic tree and a very few
keys. Forth is a natural at executing logic
trees.

9. IBM-type PCs are a collection of
design compromises incorporated to lock
customers into acommercial operation that
continuously requires additional expendi-
ture for both software and hardware. Ex-
tremely expensive, high-speed processors
are required to overcome this burden. The
efficiency of Forth permits a very inexpen-
sive, moderate-speed processor to outper-
form the IBM type.

10. Experiment until you fully under-
stand, and program only what you do fully
understand. This demonstrates the defini-
tion of “smart.” Forth is the most natural
execution of this philosophy.

11. Because of its adaptability and ex-
tensibility, real Forth is master of what it
has to do. Standard Forth would be master-
of-none, butitcould become acommercial,
general-purpose master-of-none like most
other standard languages.

12. PUSH and POP are longer words for
>R and R>. Long natural words are for
users of applications; short, cryptic sym-
bols are for programmers.

13. Multiply and divide are overused,
but require less understanding of the situ-

ation (ina conniving sense). Methods using
logic operations are often much more
efficient. SHIFT and 2*,2/,4%,4/,8%,
8/, etc. are often better choices if you
understand what you are doing.

14. Floating-point arithmetic is bad.
But it is no joke if its abuses are not ac-
counted for when calculating something
like the strength of the floor you are stand-
ing on. Errors can far exceed tolerances.

15. Source code is withheld because of
mass commercial intent or because it is not
presentable (often both). Forth is best used
for customized adaptations which have
little mass commercial appeal. However,
publish the source code of an interesting
Forth program—no matter how unpre-
sentable-—and the Forth community will
correct it, improve it, adapt it, and return it
for little or no cost. Beat that, if you can.

Forthisthe best programming language
for those who can master it and bend it to
their needs. I will be using a flexible, adapt-
able version of Forth for the rest of my life
(standards committee notwithstanding).

Fred F. Kloman
3533 DelL.eone Road
San Marcos, California 92069

He Wants a New View

In the interest of software quality,
wouldn’t it be nice if there were a utility
which would help in the data-flow analysis
of a colon definition? Perhaps a modifica-
tion to VIEW in F-PC. The idea is to have
the colon definition displayed, one word
per line, with its stack comment. E.g.,

?EMIT (c --)
DUP (c -- c ¢)
IF (f -- ¢)

EMIT
ELSE

(c --)
(——)
DROP (c ==)
THEN (--)
; (-—-)

The stack comments could be checked to

see that all inputs and outputs were prop-

erly matched, a big time saver; and it would

encourage the use of stack comments.
Yours truly,

Ken Kupisz

Ontario Hydro

700 University Avenue
Toronto, Ontario
Canada M5G 1X6

[And remember to account for words that
leave a varying number of stack items,
depending onrun-time conditions.. —Ed.]

Return to DO-FOREVER
Dear Marlin,

QOops, DO~-FOREVER as printed in
Forth Dimensions XII/1 won'’t even load,
much less run. Somewhere in all the
changes it correctly acquired an IF but
failed to acquire a matching ENDIF. The
minimal correction would be to insert an
ENDIF immediately before the semi-co-
lon. In my letter of January 23, I tried to be
more elegant and added an error message in
case the user types an undefined word. [See
Figure One.]

Best wishes,

Tom Napier
One Lower State Road
North Wales, Pennsylvania

: DO-FOREVER
~FIND

UNTIL DROP
ELSE CR .” Do what?”
ENDIF ;

(repeat next word until keyboard input)

IF DROP CFA (this is £ig—-FORTH)
BEGIN DUP EXECUTE ?TERMINAL

Figure One, DO-FOREVER as it ought to be.

Forth Dimensions

Volume XII, Number 3

DYNAMIC

VIRTUAL MEMORY

MANAGEMENT

ANTERO TAIVALSAARI - TAMPERE, FINLAND

In this article we shall present dy-
namic virtual memory management exten-
sions to Forth. With the extensions, persis-
tent storage space for data items can be al-
located and deallocated dynamically in
Forth’s virtual memory, and the sizes of the
data items can be changed at any time. A
simple heap-based memory compaction
mechanism is used in order to keep the
blocks unfragmented. The extensions are
proven functional in Laxen & Perry’s F83,
but they should be quite easily portable to
other Forth models, too.

Introduction

Forth is a multidimensional program-
ming language which has many character-
istics that are normally related only to the
operating system. One of the special char-

acteristics of Forth is its unique way to
handle virtual memory. In Forth, a virtual
memory device—typically a disk drive—is
accessed in 1K blocks by using a very
limited but powerful set of words. Disk
blocks can be loaded to main memory buff-
ers by giving a block number and the
command BLOCK. The buffer can then be
examined and modified; the Forth system
will automatically save the buffer into the
disk if the user marks the buffer updated.

...can also be used for
dynamic databases
not tied to traditional
models.

With the basic virtual memory com-
mands of Forth, different kinds of database
systems are quite easily implemented.
However, as typical of most database man-
agement systems based on traditional stor-
age models (hierarchical, network or rela-
tional), these database systems tend to be
rather dependent on physical aspects of the
storage system and data. Such things asfile
sizes, data item sizes, and physical loca-
tions of data must occasionally be taken
into serious consideration at the
programmer’s level. Also, traditional stor-
age models restrict the modifiability of the
database. For example, the sizes of data
items must usually be determined during
the creation of the database, which can be
very inconvenient if the description
(schema) of the database is to be changed

Screen 0

A AR AR AR AN A AR AR AR AR A AR KRR R KA KRR AR AR AR AR R RN A AR KRR KRR R R K N A KRR I RN K

* Antero Taivalsaari

* Ruovedenkatu 13 D 54
* SF-33720 Tampere

* FINLAND

* Electronic mail: tsaari@tukki.jyu.fi (128.214.7.5)

AR AN AR KA KN I A AR RR AR R NN AR A KR AR AR AR R TR RN A AR AR KR AR AR RRRXR XK AN AN R A

* FILE.....: DISKHEAP.BLK
* PURPOSE..:
* : to Forth-83.

* REQUIRES.: F83.COM

* AUTHOR...: Antero Talvalsaari
* DATE.....: 29.10.1989

AR KR AR AR KRR AR AR AR AN RN A AR R R KA A A AR R A NN RN KR AKX R AR A AT A A AT R AR A AR AT AR

Screen 1
\ Constants, addresses, varlables

Dynamic virtual memory management extensions

Screen 20
\ DISKHEAP.BLK

Example:

variable varl
variable var2
createHeap test.blk
20 allocate varl !

40 allocate var2 !
50 varl @ resize
var2 @ free

Screen 21
Apt 29,10.89

varl @ area /area type

Apt 29.10.89

Dynamic virtual memory management,

defines variables for storing indexes
to handles.

creates a new diskheap ‘test.blk’.
allocates 20 bytes referred by varl.
types contents of varl.

allocates 40 bytes referred by var2.
resizes data-area of varl to 50 bytes.
disposes data-area of var2.

P P O

0 CONSTANT polinterBlk \ block for persistent pointers
6 CONSTANT /handle \ slze of handle (= 6 bytes)
170 CONSTANT handles/blk \ max# of handles per block
1020 CONSTANT maxBytes/blk \ max# of databytes per block

0 CONSTANT firstHandle \ index of first handle

: lastHandle pointerBlk block ; \ index of last handle
: firstDataBlk pointerBlk block 2+ ; \ blk# of first datablk
: lastDataBlk pointerBlk block 4 + ; \ blk# of last datablk

: #ofFreeHandles pointerBlk block 6 + ; \ # of free handles

VARIABLE reUseHandles
reUseHandles on
-=>

\ determines whether handles may be
\ reused after they are freed.

\ Constants, addresses, variables Apt 29.10.89
DiskHeap contains three different memory areas: pointer block,
handle block(s), and data block(s). Block 0 (pointerBlk)
contains persistent pointers to handles and data. Handles,
which are static references to the data-area, begin from block
1. Handle blocks are followed by data blocks which continue

to the end of file. Since one handle block can contain only 170
handles, data blocks must occasionally be moved. When # of
handles in the last handle block exceeds 170, a new block is
requested from DOS and the first data block is moved to this
new block. The original first data block can then be used

for storing handles.

Volume XII, Number 3 7

Forth Dimensions

Screen 2

\ Variables, offsets Apt 29.10.89
VARIABLE currentBlk
VARIABLE currentHandle
VARIABLE areaSize

\ blk# of current datablock
\ index# of current handle
\ size of current data area

: ‘blk ; lmmediate { handleAddress -- ‘blk }
: ‘offset 2+ ; { handleAddress -- ‘offset)}
: ‘size 4+ ; { handleAddress -- ‘size)
: free/blk { -- “freeSize)
currentBlk @ block ;
: refs/blk { -- ‘#ofReferences)
free/blk 2+ ;
-—>
Screen 3
\ handle>virtual inHandleRange? virtual>memory Apt 29.10.89

Defer doError
v abort is doError

: handle>virtual { handleIndex -- offset block)}
handles/blk /mod swap /handle * swap 1+ ;

: inHandleRange? { handleIndex -- }
firstHandle lastHandle @ 1- between not
IF .” — Not in handle range “ doError THEN ;

: virtual>memory { offset block -- address)
block + 7
-=>
Screen 4
\ handle free? roomForNewHandle? <tooBlg? Apt 29.10.89
: handle (handleIndex -- handleAddress }

dup inHandleRange? handle>virtual virtual>memory ;

: free? ‘blk @ 0= ; { handleAddress -- flag)
: roomForNewHandle? (-- flag)

lastHandle @ handle>virtual nip firstDataBlk @ < ;

: tooBig?
maxBytes/blk >
IF .” — Cannot allocate over 1020 byte areas ™
doError
THEN ;

{ size --)

-

Screen 5
\ convertHandles Apt 29.10,.89
: convertHandles { oldBlock lastBlock --)
over currentBlk !
lastHandle @
refs/blk @ 0 2DO
BEGIN 1- dup
handle dup currentHandle !
‘blk @ 3 pick =
UNTIL
over currentHandle @ ‘blk ! update
LOOP drop 2drop ;
-—>

Screen 22
\ Variables, offsets Apt 29.10.89
Handles are referred with a simple 16-bit index, starting
from 0. Handleindexes must be betweerffirstHandle-lastHandle’.
Each handle contains three 2-byte fields, which are:
- ‘blk blk# of data-area,
- ‘offset offset to the beginning of data in the block,
- ‘size current slze of data-area.

In the beginning of each data block there are following fields:
- free/blk # of free data bytes in this block,
- refs/blk reference count to this data block (tells
how many handles refer to this data block).

Screen 23

\ handle>virtual inHandleRange? virtual>memory Apt 29.10.89

doError vectored error handling.

handle>virtual returns virtual address of a handle.

inHandleRange? ensures that handle index is between the
values of varlables ‘firstHandle’ and
‘lastHandle’.

virtual>memory fetches a virtual block to memory and returns
the sum of its address and the parameter

‘offset’.
Screen 24
\ handle free? roomForNewHandle? tooBig? Apt 29.10.89
handle fetches a handle from virtual memory and
returns its address in a disk buffer.
free? tests whether handle is free

(that 1s: fleld ‘blk is zero).
roomForNewHandle?
tests whether current handle block has room
for one more handle,
ensures that we shall not try to allocate
data-areas of over 1020 bytes.

tooBig?

Screen 25

\ convertHandles Apt 29.10.8%
convertHandles this word is used when a data block is
moved to another block. All references
to ‘oldBlock’ are changed to refer to
‘newBlock’.

Forth Dimensions 8

Volume XII, Number 3

Screen 6
\ firstDataBlk>newBlk makeNewHandle Apt 29.10.89
: firstDataBlk>newBlk (--)

1 more

1 lastDataBlk +! update

firstDataBlk @ lastDataBlk @ 2dup copy convertHandles

1 firstDataBlk +! update

firstDataBlk @ currentBlk ! ;

;: makeNewHandle { =-- handleIndex)
roomForNewHandle? not
IF firstbataBlk>newBlk THEN
lastHandle @
1 lastHandle +! update ;

-—>

Screen 7

\ findOldHandle giveHandle Apt 29.10.89
: findOldHandle { -- handlelIndex)

lastHandle @
BEGIN 1~ dup
handle free?

UNTIL

-1 #ofFreeHandles +! update ;
: giveHandle {

#ofFreeHandles @

reUseHandles @ and

IF findOldHandle

ELSE makeNewHandle

THEN ;

-- handlelIndex }

Screen 8

\ roomInCurrentBlk? makeNewDataBlk >endOfData Apt 29.10.89
: roomInCurrentBlk?

free/blk @ > not ;

(stze -~ flag }

: makeNewDataBlk {(-- 1}
1 more
1 lastDataBlk +! update
lastbataBlk @ currentBlk !
maxBytes/blk free/blk !
0 refs/blk ! update ;

: >endOfData (
b/buf free/blk @ - ;

-- address }

->

Screen 9

\ findNextBlk allocateRoom Apt 29.10.89
: findNextBlk (size —-)
false lastDataBlk @ currentBlk @ 2DO
i currentBlk !
over roominCurrentBlk?
IF drop true leave THEN
LOOP nip
not IF makeNewDataBlk THEN ;

I

: allocateRoom (size -- offset blk)
>endOfData >r r@ currentBlk @ virtual>memory
over erase negate free/blk +!

1 refs/blk +! update

r> currentBlk @ ;

Screen 26

\ firstDataBlk>newBlk makeNewHandle Apt 29.10.89

firstDataBlk>newBlk requests a new block from DOS and copies
the first data block to this new block.
This word is used when old data blocks are
changed to handle blocks.

makeNewHandle creates a new handle. If there is no room

for a new handle in the current handle

block, then ‘firstDataBlk>newBlk’ is

executed.

Screen 27

\ findOldHandle giveHandle Apt 29.10.89

findOldHandle finds a free handle from existing
handles. This word is used if ‘reUseHandles’
is ON, and #ofFreeHandles is > 0.
giveHandle gives a free handle. If ‘reUseHandles’ is

OFF or #ofFreeHandles = 0, then a new
handle must be created.

Screen 28

\ roomInCurrentBlk? makeNewDataBlk >endOfData Apt 29.10.89

roomInCurrentBlk? tests whether current data block has room
for ‘size’ more bytes.

makeNewDataBlk creates a new empty data block and sets
the relevant pointer values. Initially
there are no handles referring to this
block (‘refs/blk’ = 0) and the free space
in the block is ‘maxBytes/blk’.
>endOfData returns the address of the first free byte
in the current data block.

Screen 29

\ findNextBlk allocateRoom Apt 29.10.89

findNextBlk finds the next data block having room
for ‘size’ bytes. This block is then made
current. If existing blocks do not have
enough room, a new block is created.

allocateRoom allocates ‘size’ bytes from current data

block and returns the virtual address
of this new data-area. ‘free/blk’ and
‘refs/blk’ are updated. The allocated
area 1ls erased to all zeros.

Volume XII, Number 3 9

Forth Dimensions

Screen 10
\ findRoom Allocate

: findRoom { size -— offset blk)
dup roomInCurrentBlk? not
IF dup findNextBlk THEN
allocateRoom ;

: Allocate
dup tooBig?
giveHandle >r
dup findRoom
r@ handle >r r@ ‘blk 2!
r> ‘size ! update
{ save-buffers) r> ;

{ size —- handleIndex }

-

Screen 11
\ handleUpdate

: handleUpdate
lastHandle @
refs/blk @ 0 ?DO

BEGIN 1- dup
handle dup currentHandle !
‘blk @ currentBlk @ =
UNTIL
over currentHandle @ ‘offset @ > not
IF 2 pick currentHandle @ ‘offset +!
LOOP drop 2drop ;

(+/-n offset --)

-

Screen 12
\ moveData

: moveData { +/-n handleAddress --
dup ‘offset @ swap ‘size Q@ +
2dup handleUpdate
>endOfData over - >r
currentBlk @ virtual>memory
tuck + r> move update ;

Apt 29,10.89

Apt 29.10.89

update THEN

Apt 29.10.89

)

Screen 30

\ findRoom Allocate

findRoom

Khkk AR KKK K KT RK &K

Allocate
khAr kA A kA kA Ak K

Screen 31
\ handleUpdate

handleUpdate

Screen 32
\ moveData

moveData

Apt 29.10.89

locates the next data block that has enough room
for ‘size’ bytes and return the virtual address
of this new data-area.

allocates ‘size’ bytes from diskHeap and returns
the handle index of this new data-area. The
new data-area is erased to all zeros.

This 1s one of the basic commands in dynamic
virtuval memory management.

Apt 29.10.89

increments or decrements the ‘offset’ fields of
handles pointing to the current data block
according to the parameter ‘n’ in case

the ‘offset’ of a handle is >= than the parameter
‘offset’. This word is used when the slize of

an exlisting data-area changes.

Note that thanks to reference counter ‘refs/blk’
we don’t necessarily have to loop through all

the handles.

Apt 29.10.89

moves the data-areas above the data-area referred
by ‘handleIndex’ in the current data block
upwards or downwards in the block according to
the parameter ‘n’ (positive n = upwards, negative
= downwards). The ‘offset’ fields in handles are
also updated (handleUpdate)}. This word is used
when the size of an existing data-area changes.

-=>
Screen 13 Screen 33
\ Free Apt 29.10.89 \ Free Apt 29.10.89
khkkk AR A ARk Kk
: Free { handleIndex --) Free frees existing data-areas. The data block is
dup handle >r r@ free? *xxxaxxxxaAxxx compressed by moving the rest of data in the
IF r> 2drop .” — Handle already free “ doError THEN block downwards; the counter ‘free/blk’ is
r@ ‘blk @ currentBlk ! incremented with the size of freed data-area,
r@ ‘size @ negate r> moveData and the reference counter ‘refs/blk’ is
handle dup ‘blk off update decremented by one. The handle to the
‘size @ free/blk +! deallocated data-area is marked free by storing
-1 refs/blk +! update ‘0’ into the ‘blk’ field of the handle. Then the
1 #ofFreeHandles +! update number of free handles is incremented by one.
(save-buffers) ;
This 1s one of the basic commands in dynamic
-—> virtual memory management.
Forth Dimensions 10

Volume XII, Number 3

—

Screen 14
\ area /area Apt 29.10.89
T area
handle dup free?
IF drop .” — Handle not in use ™ doError THEN
dup ‘size @ areaSize !
2@ virtual>memory ;

{ handleIndex -- address }

: /area

areaSize @ ; (-- areaSize)

-=>

Screen 15
\ expandCurrentB8lk Apt 29.10.89
: expandCurrentBlk { sizeMore handleIndex --)
dup handle >r r@ ‘size @
IF over r> moveData
ELSE >endOfData currentBlk @ r>
THEN
over negate free/blk +!
dup area /area + 2 pick erase update
handle ‘size +! update ;

*blk 2!

-—>

Screen 16
\ moveToOtherBlk Apt 29.10.89
: moveToOtherBlk { sizeMore handlelndex --)
2dup handle ‘size @ + dup
findNextBlk allocateRoom
2dup >r >r virtual>memory
over area swap /area cmove update

\ allocate new room
\
\
dup handle >r r@ ‘blk @ currentBlk ! \
\
\
\

fetch to memory
move to new room

r@ ‘size @ negate r> moveData
handle >r r@ ‘size @ free/blk +!
-1 refs/blk +!
r@ ‘size +!

free exlsting space
in the original

update block

r> r> r> rot ‘blk 2! update ; \ update handle
--> { huh, but {t works!)
Screen 17
\ expandArea Apt 29.10.89
: expandArea (slzeMore handleIndex --)

swap 0 max over

handle >r r@ ‘'size @ over + tooBig?
r> ‘blk @ currentBlk !

tuck roomInCurrentBlk?

IF expandCurrentBlk

ELSE moveToOtherBlk

THEN (save-buffers } ;

Screen 34

\ area /a
LRI R RS RS 1

area
ARRANRK KK

P22 22222 2]

/area
IR AR RZ EE]

Screen 35
\ expandCu

expandCurx

Screen 36
\ moveToOt

moveToOthe

Screen 37
\ expandAr

expandArea

rea Apt 23.10.89
this word is used to fetch a data-area from virtual
memory into a disk buffer. The word returns the
address of the first byte of data into the parameter
stack. A pointer to the size of the data-area is
stored to the variable ‘areaSize’ for the word ‘/area’
returns the size of the current data-area.

These are basic commands in virtual dynamic memory
management.

rrentBlk
entBlk

Apt 29.10.89
expands the data-area referred by the
‘handleIndex’ ‘sizeMore’ bytes.

The expansion is accomplished by moving
all the data-areas that are located higher
in the block ‘sizeMore’ bytes upwards in
the block. The reserved new data space is
erased to all zeros.

herBlk
rBlk

Apt 29.10.89

moves an existing data-area to another
block and at the same time expands the
data-area ‘sizeMore’ bytes.

This command is used when the free space
in the original block 1s insufficient
for ‘sizeMore’ byte expansion. The data
space in the original block is freed.

ea Apt 29,10.89

expands the data-area referred by the
handle ‘handleIndex’ ‘sizeMore’ bytes. If
there is not enough free space in the
original block, the data-area is moved

to another block. When needed, a completely
new block is requested from DOS.

Remember that the size of a data-area cannot
exceed 1020 bytes.

Volume XII, Number 3 11

Forth Dimensions

Screen 18
\ shrinkArea Resize Apt 29.10.89
: shrinkArea {(sizeless handleIndex --)

swap 0 max over

handle >r r@ ‘size @ min negate swap

r@ ‘blk @ currentBlk !

over r> moveData

over negate free/blk +!

handle ‘size +! update (save-buffers)} ;

: Resize { newSize handleIndex --)
>r r@ handle ‘size @ 2dup <>
IF 2dup > IF - r> expandArea

Screen 38
\ shrinkArea

shrinkArea

Ark KRR KK NK Rk Ak kK kk

Reslize
khkkkkkkkkrhhhkkhk Rk kK

Resize

Apt 29.10.89

shrinks the data-area referred by the
‘handleIndex’ ‘sizeless’ bytes. This is
accomplished by moving all the data-areas
higher in the block downwards ‘sizeless’
bytes in the block.

resizethedata-areareferredbythehandle
‘handlelIndex’ to ‘newSize’ bytes.

This is one of the basic commands in
dynamic virtual memory management.

ELSE swap - r> shrinkArea THEN

ELSE 2drop r> drop THEN ;
-—>

Screen 19

\ createHeap useHeap

: createHeap { --)
3 create-file
0 lastHandle !
2 firstDataBlk !
2 lastDataBlk !
firstDataBlk @ currentBlk !
0 #ofFreeHandles ! update
maxBytes/blk free/blk !
0 refs/blk ! update save-buffers ;

: useHeap (==
open
firstDataBlk @ currentBlk ! ;

\ usage: createHeap filename

\ usage: useHeap filename

Screen 39
Apt 29.10.89

KhkkRRKKAK KK KKK

createHeap

AARRR KX KK KK KKK

useHeap
khkhkhkhhkk kA Ak kk Kk

\ createHeap useHeap

Apt 29.10.89

creates a new diskHeap. The size of a new heap
*xkxxxxxxxx*x*x {5 three blocks (0 = pointer block,
block,

1 = handle
2 = data block).

takes an existing diskHeap in use.

frequently later.

Our original intention in the develop-
ment of these dynamic virtual memory
management extensions has been to create
persistent object storage for the author’s
object-oriented, Forth-based language
Kevo [Tai89, Tai90] (the language was
previously called Cool, but was renamed
because other languages under that name
appeared to exist already). In the develop-
mentof such astorage system the following
design goals were listed:

« Allocated data items (objects) should
persist between different sessions and
programs.

» The objects should be referred to by
using only a simple identifiers (values)
that can be easily passed as parameters or
stored to other data structures.

+ Physical aspects such as file sizes, loca-
tions of objects, and sizes of objects
should be unimportant to the user.

» Dataobjects could be allocated and deal-
located dynamically “on the fly.”

» The sizes of objects must be able to
change dynamically.

= Asimplebuteffective garbage collection
mechanism must be provided to keep the

data blocks unfragmented and the size of
the database moderate.

In the literature, many different ap-
proaches to object-oriented database sys-
tems have been presented (see, for ex-
ample, MSO86, Bee87, LiS88, and
Low88). By analyzing several alternatives,
we concluded that a simplified version of a
heap-based storage system [ACC81, Har88
p-26) would be quite sufficient for our pur-
poses. For main memory management,
heap extensions to Forth have already been
presented by Dress [Dre86] and Pountain
[Pou87]. Therefore, our main task has actu-
ally been to modify the existing heap
mechanisms to work with virtual buffers
instead of main memory.

These extensions have proven to be
functional as persistent object storage.
However, they should be useful in any
application where the sizes of virtual data
items are to change frequenty. Such sys-
tems include, for example, textual data
bases or hypertext applications. The exten-
sions can also be used as a kernel for new
kinds of dynamic databases not bound to
any of the traditional database models.
Other interesting application areas might

be operating system extensions to Forth;
older overlay systems, for example, could
be rather easily and more elegantly reim-
plemented with dynamic virtual memory
extensions. One of our future visions has
also been to build a dynamic persistent
Forth, completely based on dynamic vir-
tual memory.

Main Ideas

‘We shall not explain the function of the
extensions very carefully. The basic prin-
ciples of heap memory management are
quite well documented already [Dre86].
Furthermore, our code is rather well com-
mented and thereby should be easy to
understand. A brief description of the main
technical details is given, though.

Storage areas

In a heap memory management system,
the storage space is usually divided into
two different regions. The first one con-
tains handles: statically located references
to the data items. The actual data items are
located in another memory region called
the data area. The locations of items in the
data area may vary, since access to the
items takes place indirectly via handles.

Forth Dimensions

12

Volume XII, Number 3

In a virtual heap system (“diskheap”),
both the handle and data areas must be
located in virtual memory. In addition to
these memory areas, some persistent point-
ers and indexes to the handle and data
blocks are also needed. Therefore, in our
system the disk file (heap) is divided into
three different regions: pointer block,
handle blocks, and data blocks. The pointer
block is located at block zero and is fol-
lowed by the handle blocks and data blocks,
which continue to the end of file (see Figure
One).

Handles

Handles are references to the data area.
The location of a handle is always static, so
the handles can be safely referenced despite
the fact that the actual locations of data may
vary. In our extensions, the handles are
referenced via simple two-byte indexes.
‘When a new data area is allocated, an index
to that new data area is returned. This index
must thereafter be remembered somehow,
since it will be the only way to access the
data arca. Because handle indexes are
simple values, they can be easily stored as
variables or passed as parameters. In order
to create complex persistent data struc-
tures, the handle indexes can, of course, be
stored to other data areas in the heap. Val-
ues of handle indexes range from zero (the
constant firstHandle) to the current
maximum handle index value, which is
kept in the persistent variable last-
Handle.

Handles are six bytes long. Each handle
consists of a four-byte virtual address field
{(block, offset) telling the location of the
data area, and of a two-byte field holding

the current size of the data area (sce Figure
Two). If the data area referred to by a
handle is deallocated, a zero value is stored
to the block number field (first two bytes) to
mark the handle free. The special variable
reUseHandles can be used to specify
whether free handles may be reused. When
reUseHandles is turned off, the system
may work a bit faster but, at the same time,
will need more space for the handles. The
default is reUseHandles on.

Since one Forth disk block is 1024
bytes, it can contain a maximum of 170
handles. In case the number of handles in a
handle block exceeds 170, anew disk block
is automatically requested from DOS and
the first data block is moved to the new
block; the original data block then becomes
anew handle block.

Data areas

Data blocks are located after the handle
blocks. In the beginning of each data block,
four bytes are reserved for system usage.
The first two bytes (free/blk) tell the
number of free bytes currently in the block.
The next two bytes (refs/blk) hold a
reference count telling how many handles
are currently referring to this data block.
This simple reference count mechanism is
used to rev up the resizing of dataareas. The
rest of the block (1020 bytes) is used for
storing data.

To avoid the need for complex garbage
collection mechanisms, the data blocks are
kept compacted all the time. Each time the
size of a data area changes or a data area is
deallocated, the rest of the data in the block
is moved upwards or downwards in the
buffer, so the free space in a data block is

.

always located in the end of the block.
Since the size of adata block isonly 1K and
the compaction is done in a main memory
buffer, the compaction can be done very
quickly. Of course, when moving data, the
virtual data addresses (blocks, offsets) of
the handles referring to the affected blocks
must also be changed, and that is more
time-consuming.

When a data area is expanded, it may
happen that the free space in the data block
becomes inadequate. In that case, free
space will be searched for in the blocks
following the current data block (cur-
rentB1k). If a data block that has room
forthe expanded data areais found, the data
area is moved and expanded into that data
block. The storage space in the original
data block is then freed and compacted. In
case no data blocks having enough room
exist, a new block is requested from DOS.
Note that we have not implemented any
special mechanisms for finding free space
in the existing data blocks. A heap opera-
tion (allocation, deallocation, or resizing)
always leaves the latest affected block cur-
rent, and free space is then searched up-
wards beginning from this current block.
For our purposes, this mechanism has
proven to be fair and fast enough.

The extensions do have some restric-
tions. Since virtual memory handling is
done in 1K buffers, the size of a data area
may not exceed 1020 (maxBytes/Blk)
bytes. This restriction can, though, be
avoided by defining higher-level words
that will automatically allocate two or
more handles when the size of a data area
exceeds 1020 bytes. One data area may
then be physically composed of several

block number

offset

Blk # 0 Bik #1 Blk # i Bik # (i+1) Blk # n
T
Y V
Pointer block Handle blocks Data blocks
(max 170 handles/block) (Contents:

* free byte count
* reference count
* 1020 bytes of data)

data area size

Figure One. Structure of a diskheap

Figure Two. Structure of a
handle

Volume XII, Number 3

13

Forth Dimensions

FORTHcoming...

William H. Payne

 Embedded
Controller FORTH

For the 8051 Family

B e ——
Y Y Y Y YT Y YT Y Y Y Y Y Y.

o6 oocoo0o00ee ©00000000p00RGEOD
2809900090099

WOOOOOOOOF

_©09%sess0e0ss6sssssefoscesccesvn

m 0000000000000 000ON
\ .OOOOOOOOOOOOOM

0000000000000V O0090C000RGOG0CO0OEN

Embedded Controller FORTH for the 8051 Family

W.H. Payne

This book presents the technology required to develop hardware and software
for embedded controller systems at a fraction of the cost of traditional methods.
Included are hardware schematics of 8051 family development systems (single
board and bussed 8051 microcontroller), as well as source code for both the 8086
and 8051 family FORTH operating systems. Binary images of the operating
systems can be generated from the source code using the metacompiler also
contained in the book.

The book can be seen as a “toolbox” including all the necessary hardware and
software information to be used in constructing 8051-based controller systems.

September 1990, 528 pp., $49.95/ISBN: 0-12-547570-5

Order from your local bookseller or directly from

ACAD E M IC PR E SS Harcourt Brace Jovanovich, Publishers

Book Marketing Dept. #35090, 1250 Sixth Avenue, San Diego, CA 92101

carL TouL Free 1-800-321-5068 rax 1-314-528-5001

Quote this reference number for free postage and handling on your prepaid order w 35090
Prices subject to change without notice. ©1990 by Academic Press, Inc. All Rights Reserved. TC/MJD —35090.

separate data areas. This kind of mecha-
nism has been implemented in the author’s
Kevo system, but since the mechanism is
more application dependent, we will not
discuss it here. When implementing such
extensions, we must of course keep in mind
that in Forth the virtual memory blocks will
not necessarily be loaded to a contiguous
memory area.

Example
A new diskheap is created simply by
saying

createheap test .hea

This creates a new disk heap called
test .hea which is initially three disk
blocks long. Data areas can now be allo-
cated by using the command allocate.
In this simple example, we shall at first
create two Forth variables and allocate data
areas of 20 and 40 bytes. The handle in-
dexes of the data areas are stored to the
variables.

variable datal
20 allocate datal !

variable data2
40 allocate data2 !

The allocated data areas are initially erased
to all zeros. To fill a data area with text we
can use, for example, the standard Forth
input word EXPECT which takes two para-
meters: the address where the string is to be
stored and the maximum number of input
characters. These parameters are provided
by the extension words area and /area.

datal @
area /area expect
update

data2 @
area /area expect
update flush

To see the contents of the data areas we
canuse, for example, the Forth word TYPE:

datal @
area /area type

data2 @
area /area type

Forth Dimensions 14

Volume XII, Number 3

The data areas were originally 20 and 40
bytes long. If we now want to change the
first data area to be 50 bytes long and the
second data area to be 30 bytes, we can
simply use the word RESIZE:

50 datal @ resize
30 data2 @ resize

Existing data areas can be deallocated
by using the word FREE:

datal @ free
data2 @ free
flush

Note that we must remember to use the
word UPDATE to mark the buffer updated
whenever the contents of an existing data
area are changed; the words FLUSH or
SAVE-BUFFERS must also be occasion-
ally used. Before ending the use of a
diskheap, FLUSH should always be exe-
cuted.

An existing diskheap can be reopened
with the command USEHEAP, e.g.:

useheap test.hea

About Coding

Our code should be standard Forth-83.
Only a few F83-specific words are used.
Such words are MORE which is used to
request more disk blocks from DOS, and
COPY which is used to copy a disk block to
another. Other non-standard words are
CREATE-FILE to create a new DOS file
and OPEN to open existing files. Of course,
the underlying Forth system must support
block-oriented 1/O.

In some definitions, the return stack is
used heavily; the code could perhaps be
made more readable if more variables were
used. However, we have tried to minimize
the number of potentially shared variables
in order to keep the definitions re-entrant.
This is to allow the extensions to be used in
future multiprogramming environments.
In the present form, however, multipro-
gramming is not supported.

Efficiency

For our purposes, the extensions have
proven to be efficient enough. Accessing a
data arcarequires at most two physical disk
reads: reading the handle and the data
block. Data area allocation, deallocation,
or resizing, in turn, may take more time—

especially deallocation and resizing, if the
disk heap is large. This is mainly because
heap compaction may require going
through all the handles in order to find the
ones whose respective data areas are to be
moved during the compaction; more intel-
ligent algorithms for handle management
mightbe worth investigating. However, the
efficiency can be muchimproved by adding
more resident disk buffers to the Forth
system, thus decreasing the need for physi-
cal disk operations. A minimum of four
buffers is needed, but when using very
dynamically changing disk heaps the rec-
ommended number of buffers is at least
eight. Since the extensions use the disk
heavily, the speed of the disk device is also
crucial. Although the extensions work cor-
rectly on floppy disk files, a hard disk—
preferably a fast one—is recommended.

The main reason for implementing
these virtual memory management exten-
sions has been to create a persistent object
storage kernel for the Kevo system; [have
had neither time nor the interest to optimize
this low-level code yet. I would, however,
be grateful to receive any suggestions to
improve the code.

Acknowledgements

Many thanks to Mike Elola and Michael
Perry for reading and commenting on the
previous version of this article at
FORML.'89. Without their encouragement
I may not have sent this article for publica-
tion.

References

[ACC81] Atkinson, M.P., Chisholm, K.J.,
Cockshott, W.P. “PS-Algol: An Al-
gol with a persistent heap.” ACM
SIGPLAN Notices Vol. 17 no. 7,
1981, pp.24-31.

{Bee87] Beech, D. “Groundwork for an
object database model.” In Shriver,
B., Wegner, P. (eds): Research direc-
tions in object-oriented program-
ming, MIT Press, 1987, pp.317-354.

[Dre86] Dress, W.B. “A Forth implementa-
tion of a heap data structure.” Journal
of Forth Application and Research
Vol 3. no. 3, 1986, pp.39-50.

[Har88] Harper, R. “Modules and persis-
tence in standard ML.” In Atkinson,

M.P., Buneman, P., Morrison, R.
(eds): Data Types and Persistence,
Springer-Verlag, 1988, pp.21-30.

[LiS88] Lindsjimn, Y., Sjiberg, D. “Data-
base concepts discussed in an object-
oriented perspective.” In Gjessing,
S.,Nygaard, K. (eds): Proceedings of
ECOOP’'88 European Conference
on Object-Oriented Programming
(Oslo, Norway), 1988, pp.300-318

[Low88] Low, C. “A shared, persistent
object store.” In Gjessing, S.,
Nygaard, K. (eds): Proceedings of
ECOOP’88 European Conference
on Object-Oriented Programming
(Oslo, Norway), 1988, pp.390-408.

[MSO86] Meier, D., Stein, J., Otis, A.,
Purdy, A. “Development of an ob-
ject-oriented DBMS.” In Meyrowitz,
N. (ed): OOPSLA’86 Conference
Proceedings (Portland, Oregon),
1986, pp.472-482.

{Pou87] Pountain, D. Object-oriented
Forth: implementation of data struc-
tures. Academic Press, 1987.

{Tai89] Taivalsaari, A. “Cool — unifying
class and prototype inheritance.” To
appear in Proceedings of FORML’ 89
Conference on Forth and object-ori-
ented programming (Pacific Grove,
California), 1989.

[Tai89] Taivalsaari, A. “Implementing
class inheritance without explicit
classes.” Submitted paper, 1990.

AnteroTaivalsaariisa Ph.D. student

of computer science at the University
of Jyvdskyld, Finland. He has been
an avid Forth programmer for seven
years, the last two of which have
found him interested in object-ori-
ented programming, the theme of his
doctoral dissertation.

Volume XII, Number 3

15

Forth Dimensions

HARVARD SOFTWORKS
NUMBER ONE IN FORTH INNOVATION

{513) 748-0390

MEET THAT DEADLINE ! ! !

¢ Use subroutine libraries written for
other languages! More efficiently!

¢ Combine raw power of extensible
languages with convenience of
carefully implemented functions!

* Yes, it is faster than optimized C!

¢ Compile 40,000 lines per minute!

* Stay totally interactive, even while
compiling!

¢ Program at any level of abstraction
from machine code thru application
specific language with equal ease
and efficiency!

* Alter routines without recompiling!

¢ Use source code for 2500 functions!

*Use data structures, control
structures, and interface protocols
from any other language!

* Implement borrowed feature, often
more efficiently than in the source!

¢ Use an architecture that supports
small programs or full megabyte
ones with a single version!

* Forget chaotic syntax requirements!

* Outperform good programmers
stuck using conventional languages!
(But only until they also switch.)

HS/FORTH with FOOPS - The
only flexible full multiple
inheritance object oriented
language under MSDOS!

Seeing is believing, OOL’s really are
incredible at simplifying important
parts of any significant program. So
naturally the theoreticians drive the
idea into the ground trying to bend
all tasks to their noble mold. Add on
OOL’s provide a better solution, but
only Forth allows the add on to blend
in as an integral part of the language
and only HS/FORTH provides true
multiple inheritance & membership.

Lets define classes BODY, ARM, and
ROBOT, with methods MOVE and
RAISE. The ROBOT class inherits:

INHERIT> BODY

HAS> ARM RightArm

HAS> ARM LeftArm
If Simon, Alvin, and Theodore are
robots we could control them with:
Alvin ’s RightArm RAISE or:
+5 -10 Simon MOVE or:
+5 +20 FOR-ALL ROBOT MOVE
Now that is a null learning curve!

WAKE UP !'!!

Forth is no longer a language that
tempts programmers with “great
expectations”, then frustrates them
with the need to reinvent simple
tools expected in any commercial
language.

HS/FORTH Meets Your Needs!

Don’t judge Forth by public domain
products or ones from vendors
primarily interested in consulting -
they profit from not providing needed
tools! Public domain versions are
cheap - if your time is worthless.
Useful in learning Forth’s basics,
they fail to show its true potential.
Not to mention being s-l-o-w.

We don’t shortchange you with
promises. We provide implemented
functions to help you complete your
application quickly. And we ask you
not to shortchange us by trying to
save a few bucks using inadequate
public domain or pirate versions. We
worked hard coming up with the
ideas that you now see sprouting up
in other Forths. We won’t throw in
the towel, but the drain on resources
delays the introduction of even better
tools. Don’t kid yourself, you are not
just another drop in the bucket, your
personal decision really does matter.
In return, we’ll provide you with the
best tools money can buy.

The only limit with Forth is your
own imagination!

You can’t add extensibility to
fossilized compilers. You are at the
mercy of that language’s vendor. You
can easily add features from other
languages to HS/FORTH. And using
our automatic optimizer or learning a
very little bit of assembly language
makes your addition zip along as well
as in the parent language.

Speaking of assembly language,
learning it in a supportive Forth
environment turns the learning curve
into a light speed escalator. People
who failed previous attempts to use
assembly language, conquer it in a
few hours or days using HS/FORTH.

P.O. Box 69, Springboro, OH 45066

HS/FORTH runs under MSDOS or
PCDOS, or from ROM. Each level
includes all features of lower ones. Level
upgrades: $25. plus price difference
between levels. Sources code is in
ordinary ASCII text files.

All HS/FORTH systems support full
megabyte or larger programs & data, and
run faster than any 64k limited ones even
without automatic optimization -- which
accepts almost anything and accelerates to
near assembly language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminate
headers without recompiling. Compile 79
and 83 Standard plus F83 programs.

STUDENT LEVEL $145.
text & scaled/clipped graphics in bit blit
windows,mono,cga,ega,vga, fast ellipses,
splines, bezier curves, arcs, fills, turtles;
powerful parsing, formatting, file and
device I/Q; shells; interrupt handlers;
call high level Forth from interrupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file search paths; formats into strings.

PERSONAL LEVEL $2485.
software floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4
words, 1..4 dimension var arrays;
automatic optimizer-machine code speed.

PROFESSIONAL LEVEL $395.
hardware floating point - data structures
for all data types from simple thru
complex 4D var arrays - operations
complete thru complex hyperbolics;
turnkey, seal; interactive dynamic linker
for foreign subroutine libraries; round
robin & interrupt driven multitaskers;
dynamic string manager; file blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $495.
Metacompiler: DOS/ROM/direct/indirect;
threaded systems start at 200 bytes,
Forth cores at 2 kbytes; C data
structures & struct+ compiler;
TurboWindow-C MetaGraphics library,
200 graphic/window functions, PostScript
style line attributes & fonts, viewports.

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

FOOPS+ with multiple inheritance$ 76.
286FORTH or 386FORTH $295.
16 Megabyte physical address space or
gigabyte virtual for programs and data;
DOS & BIOS fully and freely available;
32 bit address/operand range with 386.
BTRIEVE for HS/FORTH (Novell) $199.
ROMULUS HS/FORTH from ROM$ 95.
FFORTRAN trapslator/mathpak $ 75.
Compile Fortran subroutines! Formulas,
logic, do loops, arrays; matrix math,
FFT, linear equations, random numbers.

Forth Dimensions

16

Volume XII, Number 3

Forth-83

DYNAMIC MEMORY

ALLOCATION

DREAS NIELSEN - BELLEVIEW, WASHINGTON

Many programs require the ability
to manipulate data elements of indetermi-
nate size or number. Text strings are an
example of one such type of data: each
string may be a different length, and it is
usually neither feasible nor economical to
statically allocate (at compile or assembly
time) abuffer capable of holding the largest
possible string. Programs that manipulate
arrays of numbers often need to establish
their memory requirements dynamically—
that is, at run time, without the use of a
statically allocated buffer. Creation of
linked lists, trees, and other more complex
data structures also typically cannot be
carried out with statically allocated mem-
ory. The solution to this problem is to
provide the program with a means to dy-
namically allocate memory at run time.
Dynamically allocated memory is drawn
from the pool of main memory remaining
after a program has been loaded and the
stack (and other language-specific data
structures) has been established. Dynamic
memory allocation requires more complex
run-time support than static buffers (which
require none), but provides greater flexibil-
ity. If the available memory is to be re-used
repeatedly for different purposes, the spe-
cial-purpose code needed to manipulate a
statically allocated block may be equiva-
lent in size and complexity to that for gen-
eral-purpose dynamic memory atlocation.

Dynamic memory allocation is used by
many common languages. Insome of these,
itis solely under the control of the language
itself (e.g., strings in BASIC and dBase, all
objects in Smalltalk and Lisp); in others,
partial or complete control is given to the
programmer (e.g., Pascal, C, and Modula-
2). Explicit control of dynamic memory
allocation is a powerful tool, and funda-
mental to effective implementation of
many useful algorithms. Data structures
such as linked lists, queues, and trees, for

example, are difficult to implement with-
out it.

This article provides an introduction to
the implementation of dynamic memory al-
location, covering a few of the principles
and providing examples for illustration.
This is a topic that does not seem to be well
covered in the literature; indeed, Knuth
(1973) and Aho, Hopcroft, and Ullman
(1983) secem to be the only commonly
available references that treat it in depth.
On the other hand, why would you want to
know anything more about the implemen-
tation of such an arcane feature, particu-
larly if you are not writing a compiler or
operating system? First of all, you may
need (or want) to use a language which does
not intrinsically provide this feature but
doces have the systems-programming capa-
bility to implement it. Secondly, the mem-
ory allocation functions provided by a lan-
guage or standard library may not exactly
suit your needs. Curiosity, of course, may
be sufficient reason in and of itself.

The heart of any mem-
ory allocation routine
is a data structure.

Despite the relative paucity of informa-
tion, dynamic memory allocation is not as
complex as it may seem. Furthermore, an
understanding of the techniques and costs
involved can help you decide when a gen-
eral-purpose routine is suitable, when a
specialized routine may be better, and
when to do without dynamic memory allo-
cation. Source code for both a simple gen-
eral-purpose routine and a more efficient
specialized routine is provided for iltustra-
tion. The implementation of dynamic
strings is used as an example application of
the general-purpose routine.

General Principles

A prerequisite for dynamic memory al-
location is a pool of contiguous available
memory from which smaller blocks can be
allocated. This free memory space is gen-
erally called the heap; dynamically allo-
cated subsets of it commonly are referred
to as blocks. The physical location of the
heap and the way in which it is isolated
from other features of the run-time envi-
ronment are dependent on the language in
use and, often, its implementation. These
details will not be considered here. (Dy-
namic allocation of space for local vari-
ables, which typically uses the stack rather
than a heap, will also not be considered.)
Other issues related to dynamic memory
allocation, such as the identification of
free blocks within the heap, the applica-
tion interface, and efficiency considera-
tions, are more general. The following
discussion will address these topics. Note
that although the principles described may
apply, for instance, to BASIC’s dynamic
string handling, they will not necessarily
allow you to add new dynamic memory
functions to BASIC or some other lan-
guages.

The Free List

The heart of any memory allocation
routine is a data structure that identifies
the location of all free blocks of memory;
thisisconventionally called the “free list.”
Typically it takes the form of a singly
linked list in which each node identifies
the location of a block of available mem-
ory, the size of the block, and the position
of the next node in the list. At first glance,
allocation of storage space for the free list
itself would seem to be a problem. Ini-
tially, all free memory would be in one
block, requiring only one node—but after
a series of allocations and de-allocations,
the list may contain any number of nodes.

Volume XII, Number 3

17

Forth Dimensions

Where and how, then, is the free list stored?

One answer is 1o store the pointers to
free memory in the free memory itself. This
sounds abit like a snake swallowing itsown
tail, but is actually quite simple and
straightforward to implement. A small
portion of each free block is used to store
the block size and pointer to the next node,
as shown in Figure One (page 23). The
pointers to the free blocks are therefore im-
plicit—the address of each node is itself the
address of a free block. One consequence of
this method of storage is that free blocks
cannot be smaller than a node of the free
list. In Figure One the nodes are shown
sorted from low to high addresses. This ar-
rangement makes deallocation easier, as
shown below, but it is not the only scheme
that can be used. Nodes may be sorted by
block size, for example, to make allocation
simpler.

Other methods may also be used to store
the free list. The second example shown
below uses a bit map, an approach made
possible by the fact that blocks are of a fixed
size and the total number of blocks is
known.

Types of Dynamic Memory Allocation

There are several important distinctions
among memory allocation systems. As
mentioned previously, one of these is the
issue of implicit versus explicit control—
whether language features alone can make
use of this resource or whether the pro-
grammer can use it too. Although implicit
and explicit control of memory allocation
are not generally found together, they are
notmutually exclusive. The dynamic string
package presented here, for example, auto-
matically allocates and de-allocates mem-
ory to carry out its functions, but can coex-
ist with user programs that make explicit
use of the same functions.

When a language has sole access to
memory allocation functions it can control
all pointers to allocated space, and so need
not replace each deallocated block back
into the free list as soon as the application
program releases it. This technique of de-
layed reclamation of de-allocated space
(“garbage collection™) allows programs to
run faster, as long as there is sufficient free
memory in the heap, at the expense of a
relatively lengthy delay for garbage collec-
tion whenever the heap becomes ex-
hausted. Lisp is an example of a language
that manages memory using garbage col-

Listing One

S
0 { Dynamic Memory Allocation --~ Screen 1)

1 (Each block of free space begins with a 4-byte control block.
2. The first word contains the address of the next free block

3. [or O if none] and the second contains the number of bytes in
4 the current block [including the control block].)

5

6

7

8

. { Create pointer to beginning of free space, w/ size=0.)
. 2VARIABRIE FREELIST 0 0 FREELIST 2!

9. (Initialize memory pool.)

10. : DYNAMIC-MEM (start_addr length —)

11. OVER DUP FREELIST ! (Save starting addr.)

12. 0O SWAP ! (Set null pointer.)

13. SWAP 2+ ! (Save length in 1lst control block.)
14. ;

15.

Screen 2

0. (Dynamic Memory Allocation, Screen 2: MALLOC)

1. (Returns pointer to n free bytes, or 0 if there is no space.
2. Word before returned address holds size of block. No free
3 blocks of less than 4 bytes are allowed.)
4. : MALIOC (n — n)

5. 2+ FREELIST DUP

6. BEGIN

7 WHILE DUP @ 2+ @ (Size) 2 PICK U<

8. IF @ @ DUP (get new link)

9. ELSE DUP @ 2+ @ (size) 2 PICK - 4 MAX DUP 4 =

10. IF DROP DUP @ DUP @ ROT !

11. ELSE 2DUP SWAP @ 2+ ! SWAP @ +
12. THEN 2DUp ' 2+ O (store size, bump pointer,)
13. THEN (and set exit flag)
14. REPEAT SWAP DROP (dump #bytes)
15.
Screen 3
0. (Dynamic Memory screen 3: FREE)
1. (Deallocates memory. Pointer passed must be from MALLOC)
2. : FREE { ptr ——)
3. 2-DUP @ SWAP 2DUP 2+ ! FREELIST DUP
4., BEGIN DUP 3 PICK U< AND
5. WHILE @ DUP @
6. REPEAT (at exit: (size block ptrl)
7. DUP @ DUP 3 PICK! ?DUP (sz blk ptrl 0 -or- ptr2 ptr2)
8. IF DUP 3 PICK 5 PICK + = (size blk ptrl ptr2 t/f)
9. IF DUP 2+ @ 4 PICK+ 3 PICK 2+ ! @ 2 PICK!
10. ELSE DROP THEN (sz blk ptrl)
11. THEN (sz blk ptrl)
12. DUP 2+ @ OVER + 2 PICK = (sz blk ptrl t/f)
13. IF OVER 2+ @ OVER 2+ DUP @ ROT + SWAP ! SWAP @ SWAP !
14. ELSE !
15. THEN DROP ;

Listing Two

Screen 1

0. (ASCIIZ string manipulation routines)

1 : TEXT (¢ ——) (Parse text to matching char, put in PAD)

2 >IN @ TIB @ + CQ OVER = IF DROP O PAD C! 1 >IN +! PAD

3. ELSE WORD THEN COUNT DUP PAD + O SWAP C! PAD SWAP CMOVE ;
4
5

: SCANO (s —— z) (Returns address of terminating null.)

Forth Dimensions

18 Volume XII, Number 3

Listing Two, continued

BEGIN DUP C@ WHILE 1+ REPEAT ;

6
7.
8. : STRIEN (8 -—— n) {(Return length of string in bytes)
9

. DUP SCANO SWAP -- H
10.
11. : CHARS (n -—-) (Define a string buffer of n chars.)
12. CREATE 0 C, ALLOT DOES>
13.
14. : STRCPY (sl s2 -~) (Copies from sl to s2)
15. OVER STRLEN 2DUP + O SWAP C! CMOVE ;
Screen 2
0. (ASCIIZ string extensions)
1.
2. (Return the address of a string literal compiled into
3. the dictionary.)
4.
5. ™ (—s)
6. R> DUP BEGIN DUP C@ WHILE 1+ REPEAT 1+ >R ;
7.
8. % (-— s) (Example: “ This string.” State-smart.)
9. 34 TEXT PAD STATE @ IF COMPILE (“)
10. DUP STRLEN 1+ HERE SWAP ALLOT STRCPY
11. THEN ; IMMEDIATE
12.
13. : PRINT (s ——) (Print the ASCIIZ string at the addr.)
14. BEGIN DUP C@ DUP WHILE EMIT 1+ REPEAT 2DROP ;

Screen 3

lection, The technique is particularly ap-
propriate for programs that require dy-
namically allocated memory but are ex-
pected to ordinarily require less than the
total amount of memory available. This
article describes only immediate recla-
mation of de-allocated memory; Knuth
and Aho et al. should be consulted regard-
ing strategies for garbage collection.

Another important distinction be-
tween memory allocation schemes is re-
lated to the need for fixed- or variable-size
memory blocks. An application that cre-
ates and destroys only a single type of
uniformly sized structure may use a dif-
ferent strategy than one which manipu-
lates structures of many different sizes.
Implementations satisfying these differ-
ent needs may vary greatly in complexity
and efficiency. Some of these differences
are illustrated by the examples described
below.

A third important factor is the se-
quence of allocation and de-allocation
requests that will be generated by an
application. If de-allocation proceeds in
the inverse order of allocation (i.e., likea

0. (More char and ASCIIZ string extensions) stack), specialized routines tailored for
1. : UASE (¢ -—-c) (Uppercases character.) the purpose may be made much more
g. DUP 96 > OVER 123 < AND IF 223 AND THEN ; efficient than general-purpose memory
4. : CFROM (al a2 -- al a2 ¢) (Gets char from pointer under.) allocaqon functions. Ot.her patterns of
5. OVER C@ ; allocation and de-allocation requests can
6. : CFROM+ (Like CFROM, but increments pointer) lead to varying fragmentation of the free
7. CFROM ROT 1+ -ROT ; list; memory allocation routines can also
8. : CTO (al a2 ¢ —- al a2) (Puts char at top pointer.) be optimized to cope with a high or low
9. OVER C! . degree of fragmentation.
10. : CTo+ (Like CTO, but increments pointer.)
1. CTo 1+ ; o e
12. : CTRANS+ (al a2 -— al+l a2+l) (Transfers a char.) Appllc.atlon Interface .
13. CFROM+ CTO+ ; A simple example of dynamic mem-
4. ory use is a program which sorts or counts
15. : EO0S? (al -—— f£) C@ NOT ; values in an input file by constructing a
binary tree in memory as the fileisread. A
Screen 4 . . new node of the tree would be allocated
(1): (‘égéi C}(‘aza:f;i and fA)SCHZ thim? extensions.) every time anew item is found in the file.
5. ! The sorted output can then be written to
3. : STRPOS (¢ zstr —— n) { Returns position of ¢ in zstr,) another file during an in-order traversal of
4. 0 >R BEGIN 2DUP C@C= NOT (O-based, or -1 if not found.) the tree. A simple application such as this
5. OVER EOS? NOT AND WHILE 1+ R> 1+ >R REPEAT needsonly to be able to allocate additional
g. C@C= IF R> ELSE R> DROP -1 THEN ; memory as needed. Any application
. : . . much more complicated than this, how-
2: : nsqiggos (e :s;g,r" £1 (Tifc in zstr, F otherwise) ever, will generally need to de-allocate
10. memory as well. If the program described
11. : STRCAT (zstrl zstr2 --) (appends zstrl to zstr2) above is extended to read several files in
12. SCANO STRCPY ; succession, the tree should be de-allo-
13. cated before the next file isread, to reduce
14. : TOUPPER (zstr —) BEGIN DUP EOS? NOT WHILE the risk of running out of memory. This
15. DUP C@ UCASE OVER C! 1+ REPEAT DROP ; application is still simple enough, how-
ever, that performance can be improved
by reclaiming the entire heap at once
Volume XII, Number 3 19

Forth Dimensions

rather than de-allocating the tree node-by-
node.

Application programs gencrally make
use of dynamic memory allocation, there-
fore, via two routines: one to allocate
memory and one to release it. These rou-
tines are known to C programmers by the
names “malloc” and “free” and to Pascal
programmers as “new” and “release.” Ini-
tialization of the dynamic memory buffer
and routines is performed by the standard
run-time code for these languages. If you
write your own memory allocation rou-
tines, you will have to take care of this
detail yourself, providing a third (initializa-
tion) interface to application software. The
initialization routine is responsible for
marking the entire contents of the heap as
available; it may carry out other tasks also,
depending upon the needs of the allocation
and de-allocation routines.

Efficiency

The efficiency of dynamic memory al-
location is principally a function of the time
required to grab and release a chunk of
memory. The amount of overhead space
(i.e., the number of extra bits required for
each allocated block) is also an efficiency
consideration, but one that is likely to be
less important than that of time. Factors that
can affect the time required to allocate or
free a block of memory are:

» Amount of free space available.

+ Pattern of previous allocation and de-
allocation requests; that is, the degree of
fragmentation of the free space.

« Size of the block(s) to be allocated.

» Algorithms used.

Clearly, these all interact in ways that
may differ from one application to another
and even from one data set to another. If
you are concerned about efficiency, your
best approach is to evaluate the first three
factors as best you can and use them to
select appropriate algorithms. Generally
applicable analyses of these interactions
are probably not possible, although the in-
dividual factors may be examined (see
Knuth, for example, for a discussion of the
effect of memory fragmentation).

Choice of an appropriate algorithm can
greatly affect the efficiency of an applica-
tion. The two techniques presented here
provide an illustrative contrast. The gen-
eral-purpose routine requires two bytes of
overhead per block, and the time required
to allocate or de-allocate a block depends

Listing Three

Screen 1
0. (Dynamic strings, screen 1. DYNAMEM package must be loaded.)

1. : STRVAR { Create pointer to dynamic string.)

2. CREATE O , ; (a VARIABLE by another name)

3.

4. STRVAR _ SYSSTR (Save ptr to created/modified strings.)
5.

6. : LEN (dstr —) @ STRLEN ;

7.

8. : RELEASE (dstr ——) DUP @ ?DUP IF FREE THEN O SWAP ! ;
9.

10. : STRSAVE (zstr dstr --—) (Assigns zstr to dstr)

11. SWAP DUP STRLEN 1+ MALLOC (dstr zstr mem)

12. SWAP OVER STRCPY SWAP DUP RELEASE ! H

13.

14. : s! (dstrl dstr2 -—-) (Stores 1 in 2, making a copy)
15. SWAP @ SWAP STRSAVE ;

Screen 2

0. (Dynamic strings, screen 2)

1.

2. ¢+ LEFT {(dstrl n -— dstr2) (Returns left n chars of dstrl)
3. OVER IEN OVER MIN 1+ MALLOC DUP >R ROT @ SWAP ROT

4. (zstr memn ——) 2DUP + O SWAP ! CMOVE

5. __SYSSTR RELEASE R> _ SYSSTR ! __SYSSTR ;

6.

7. : RIGHT (dstrl n —— dstr2) (Returns right n chars of dstrl)
8. OVER 1EN SWAP -- 0 MAX SWAP @ + _ SYSSTR STRSAVE __ SYSSTR ;
9.

10. : SUBSTR (dstrl nl n2 -- dstr2)

11. { Substring of dstrl starting at char nl, of length n2)
12, ROT @ ROT 1- OVER STRIEN MIN + _ SYSSTR STRSAVE

13, __SYSSTR SWAP LEFT H

Screen 3

0. {(Dynamic strings, screen 3. S+ SAY UPPER)

1.

2. : S+ (dstrl dstr2 — dstr3) (Appends 2 to 1)

3. OVER LEN OVER 1LEN + 1+ MALLOC DUP >R ROT @ OVER
4. STRCPY SWAP @ SWAP STRCAT _ SYSSTR RELEASE R> _ SYSSTR !
5. __SYSSTR ;

6.

7. ¢ SAY (dstr -)

8. @ PRINT ;

9.

10. : UPPER (dstrl —- dstr2)} (Makes an uppercased copy }
11. __SYSSTR s! __ SYSSTR @ TOUPPER _ SYSSTR ;

Screen 4

0. (Dynamic strings, screen 4. s”)

1

2 STRVAR __ SYSSTR2

3

4 (8”) (For pre-incrementing NEXTs)}

5. R> DUP BEGIN DUP CQ@ WHILE 1+ REPEAT 1+ >R ___SYSSTRZ
6 STRSAVE __ SYSSTR2 H

7

8 : 8” (— dstr) (Accepts text from input stream)
9. (into anonymous dynamic string.)
10. 34 TEXT PAD STATE @ IF COMPILE (S”)

11. DUP STRLEN 1+ HERE SWAP ALLOT STRCPY

12. ELSE

13. __SYSSTRZ STRSAVE ___SYSSTR2

14. THEN ; IMMEDIATE

15.

Forth Dimensions

20 Volume XII, Number 3

Listing Four

T-Screen 1

0

1

2. VARIABLE NODESIZE
3. VARIABLE NODEMAP
5. VARIABLE NODEBUF
6. VARIABLE SRCHPTR
7

8

9

Screen 3

(Dynamic mem. alloc. for fixed node size, screen 1.)

(Size of each node)

(Pointer to bit map of nodes)

(Pointer to memory buffer)

(Node # at which to start search for free)

: >MASK (—1<n<8 -- mask

. 1+ DUP 2 > IF 1 SWAP 1- 0 DO 2* 1OOP THEN ;
10.
11. : NODE (n-—-ma) (n=node #, m=mask, a=address)
12. 8 /MOD NODEMAP @ + SWAP >MASK SWAP
13.
14.
15.
Screen 2
0 (Dynamic mem. alloc. for fixed size nodes, screen 2.)
1
2. : >BYTES (n —-— n2) (Converts bits to bytes.)
3. 8 /MOD SWAP O= NOT ABS + H
4 HEX
5 : CLEARNODES (—)
6 #NODES @ >BYTES O DO FF NODEMAP @ I + C! LOOP
7 0 SRCHPTR ! ; DECIMAL
8.
9. : NODEBUFSIZ (nl n2 n3 ~- (nl = address of buffer)
10. DUP NODESIZE ! (n2 = size of buffer, b)
11. 1+ / DUP #NODES ! (n3 = size of node, b)
12. >BYTES OVER + NODEBUF !
13. NODEMAP !
14. CLEARNODES ;
15,

0. (Dynamic mem. alloc. for fixed size nodes, screen 3.)
1. HEX

2. : GETNODE (— a) (a 0 if no space available)
3. 0 (accumulator) #NODES @ 0 DO I SRCHPTR @ +

4. #NODES @ MOD DUP NODE CR SWAP AND (free?)

5. IF DUP 1+ #NODES @ MOD SRCHPTR !

6. DUP NODE DUP C& ROT FF XOR AND SWAP C!

7. SWAP DROP NODESIZE @ * NODEBUF @ + LEAVE

8. ELSE DROP

9. THEN ILOOP ;

10.

11. : RELEASENODE (a-—) (a as returned by GETNODE)
12. NODEBUF @ - NODESIZE @ /

13. DUP SRCHPTR !

14. NODE DUP CR ROT OR SWAP C! ;

15. DECIMAL

upon the pattern of previous requests. The
specialized routine for fixed-size blocks
requires only one bit of overhead per
block (approximately), in many cases re-
quires near-constant (and minimum) time
to allocate a block, and constant time to
de-allocate a block.

General-Purpose Memory Allocation
The most important feature of a general-
purpose memory allocation scheme is the
flexibility to satisfy an indeterminate num-
ber of requests for blocks of varying sizes.
The most appropriate structure for main-
taining the free list under these conditions is

alinked list. Each node of the list identifies
the position of a free block, its size, and the
location of the next block in the list. Gener-
ally, this linked list is stored within the free
space itself, as shown in Figure One. The
address of each node therefore identifies
the position of the associated free block,
and this information need not be explicitly
stored.

For the sake of efficiency during de-al-
location, the free list is generally kept
sorted in order of increasing addresses. By
using a doubly linked list, it is possible to
make de-allocation slightly more efficient
yet (the typical de-allocation strategy is
discussed below).

Because each allocated block may be of
a different size, and because de-allocation
routines are typically passed only the ad-
dress of an allocated block, the size of each
block must be stored when it is allocated.
(Modula-2, however, requires the size of
the block to be passed to the standard deal-
location routine.) It seems that the extra
space needed to store the size could be
eliminated if the de-allocation routine were
passed the size as well as the address but, as
discussed below, in some cases more space
is actually allocated than is requested,
unknown to the calling routine. For this
reason, it is important to store the amount
of space actually allocated rather than that
requested.

Fitting Strategies

When searching for a free block to sat-
isfy an allocation request, the memory allo-
cation routine can select either:

= the first free block that is large enough
(first fit) or

« the block that is closest in size to that
needed (best fit).

The first-fit strategy is generally re-
garded as superior, as the number of small
blocks tends to proliferate when using the
best-fit method. In addition, because it
usually must examine more (often all) of
the free list for each allocation request, the
best-fit method is slower.

If allocation requests fall into a known
pattern, however, you may find that the
best-fit method, or some variant of it, is
more memory efficient. For example, sup-
pose that your application most often re-
quests blocks of 30, 50, or 70 bytes. After
some period of use, most of the free blocks

Volume XII, Number 3

21

Forth Dimensions

are likely to also be of these sizes. In such
acase, your best strategy may be to choose
the first free block of appropriate size, re-
ducing the number of useless 20-byte
(approximately) free blocks created.

Eliminating Small Blocks

Wasted space is created whenever a free
block is created that is smaller than the
application is likely to request. The exis-
tence of too-small free blocks slows down
the memory allocation routines, as their
nodes must be examined each time the free
list is traversed. Although it is not always
possible to prevent this waste of space, itis
possible to eliminate its effect on perform-
ance. This is done by including the “extra”
space with the allocated block that would
otherwise have left the bytes behind. The
actual size of the allocated block, including
the extra bytes, must be recorded in its
reference cell, and the troublesome node
can then be eliminated.

An Example of General-Purpose
Memory Allocation

An implementation of a general-pur-
pose memory allocation scheme is shown
in Listing One. Forth encourages the con-
struction of application-specific languages
of arbitrarily high level, yet is unsurpassed
for the direct memory manipulation needed
to implement system routines. In keeping
with the Forth philosophy of providing
simple tools to build custom applications,
there are no standard Forth words for dy-
namic memory allocation. The examplesin
these listings are presented in the same
spirit: although they are fully functional,
they should be regarded as examples only.
You should modify, improve, or replace
them as appropriate to the needs of your
own applications. Heed the dictum about
notreinventing the wheel, but be advised to
trade in your standard steel-belted radials
for racing slicks when the competition gets
hot.

The two principal interface words,
MALLOC and FREE, are shown in screens
two and three of Listing One. These rou-
tines have the same calling conventions, as
well as the same names, as their C counter-
parts, so even if you know nothing but C,
you should be able to make some sense of
the Forth code. (Some of the more avid pro-
ponents of other languages would say that
if you know nothing but C, you know noth-
ing atall; that’s arather harsh judgment, but
I would agree that users of languages of the

PL-1 family—C, Pascal, Modula-2, and
Ada——could profitably broaden their hori-
zons by learning something different:
Forth, Lisp, Prolog, APL, and Smalltalk all
embody unusual approaches to comput-
ing.) This code is written for a 16-bit Forth-
83 Standard system.

The free list in this implementation is a
singly linked list in which each node occu-
pies four bytes. Each node contains a link to
the next, followed by the size of the block in
bytes. No free blocks smaller than four
bytes are allowed. If satisfying a request
from an available block would leave fewer
than four bytes, the extra bytes are included
in the block being allocated. Except for this
limitation, there is no minimum size im-
posed on either the allocated or free blocks.
Free blocks are selected by the first-fit strat-
egy.

The word DYNAMIC-MEM, in screen
one, is used to initialize the heap. It should
be passed the starting address and size of the
heap in bytes. The heap itself may either be
compiled directly into the Forth dictionary
or placed in free memory above the diction-
ary. (If you choose the latter course, take
care to avoid conflicts with PAD, TIB,
block buffers, and the parameter and return
stacks.)

DYNAMIC-MEMcreates asingle node or
control block at the beginning of the heap
space, setting its size to that of the entire
heap. The address of this first node is stored
in the double variable FREELIST, which
has the same format as a node but, having a
fixed address, serves as the root, always
pointing to the first real node in the free list.
The size cell of FREELIST is always zero;
itexists so that FREE does not have to treat
the root node as a special case.

Each block of allocated memory is pre-
ceded by a cell containing the block’s size.
This information is needed to de-allocate
the block. Each allocated block is therefore
actually two bytes larger than its nominal
size. This overhead cost should be consid-
ered if you wish to use the smallest possible
heap, based upon your knowledge of the
number and size of blocks needed.

The word MALLOC is used to reserve a
block; it is passed the number of bytes
desired and returns the address of an appro-
priately sized block, or zero if the request
cannot be satisfied. The first thing this word
does is increase the requested size by two
bytes to allow for the size cell. A sequential
search of the free list is then performed,
which is terminated when a block of suffi-

I

NGS FORTH

A FAST FORTH,
OPTIMIZED FOR THE IBM
PERSONAL COMPUTER AND
MS-DOS COMPATIBLES.

STANDARD FEATURES
INCLUDE:

¢79 STANDARD
®DIRECT I/O ACCESS

oFULL ACCESS TO MS-DOS
FILES AND FUNCTIONS

SENVIRONMENT SAVE
& LOAD

eMULTI-SEGMENTED FOR
LARGE APPLICATIONS

SEXTENDED ADDRESSING

eMEMORY ALIOCATION
CONFIGURABLE ON-LINE

@AUTO LOAD SCREEN BOOT
OLINE & SCREEN EDITORS

eDECOMPILER AND
DEBUGGING AIDS

08088 ASSEMBLER
OGRAPHICS & SOUND
ONGS ENHANCEMENTS
oDETATILED MANUAL
®INEXPENSIVE UPGRADES
ONGS USER NEWSLETTER

A COMPLETE FORTH
DEVELOPMENT SYSTEM.

PRICES START AT $70

NEWeHP-150 & HP-110
VERSIONS AVAILABLE

=
|

NEXT GENERATION BYSTEMS
P.0.BOX 2987

BANTA CLARA, CA. 95055
(408) 241-5909

Forth Dimensions

22

Volume XII, Number 3

Free :
list L— >
links

Root
pointer

<

Allocated memory

Figure One. Linked list in the heap.

A. B.

Tt

[Freeblock
A Allocated block

Block to be de-allocated

C. D.

Figure Two. De-allocating a block; surrounding memory.

cient size is found or the end of the free list
is reached. Either of these conditions is
signaled by a zero on the stack; the test for
this value occurs at the beginning of line
seven. During this search, two values are
kept on the stack: the number of bytes
needed and the address of the node that
contains the address of the node currently
being examined. The address of the node
“one back™ must be maintained so that its
node’s link address can be adjusted in case
the current node is entirely allocated and
must be dropped from the free list.

Line seven of screen two fetches the
size of the current block and tests it against
the request. Line eight performs two
fetches to get the link to the next block if
the size is insufficient. Line nine evaluates
whether the entire block should be allo-
cated; if so, the pointers are adjusted in line
ten, otherwise the size of the current block
is reduced in line 11. In either case, the
address of the block is left on the stack.
Line 12 stores the size for later use, incre-
ments the pointer past the size cell, and sets
a zero flag on the stack to terminate the
loop.

Release of an allocated block may or
may not result in the addition of another
node to the free list. Blocks above and
below the one to be de-allocated may
themselves be either free or reserved. The
four possibilities are shown in Figure Two.
Only when the memory configuration is as
shown in Figure Two-a will a new node be
added to the free list. The situation shown
in Figure Two-b will result in the creation
of a new node within the newly de-allo-
cated block, and the removal of the node
above, for no net change. The link address
previously pointing to the node to be re-
moved must also be modified. When the
situation isas shown in Figure Two-c,only
the size of an existing node need be
changed. If free memory bounds the de-
allocated block on both sides, as in Figure
Two-d, then the size of the lower node
must be changed and the upper one elimi-
nated.

The need to examine the blocks on both
sides of the one to be de-allocated is why
the free list is kept sorted by address. To
find the address of the preceding free node,
asequential search is performed foranode
which has an address lower than that of the
one to be de-allocated, but a link address
that is higher. If the size and address of the
lower node sum to the address of the one to
be de-allocated, then the situation in either

Volume XII, Number 3

23

Forth Dimensions

Figure Two-c or Two-d applies. To find the
address of the following block (which will
have a free-list node if empty), it is only
necessary to sum the size and address of the
block to be de-allocated; if the resulting ad-
dress appears in the free list, then the situ-
ation in either Figure Two-b or Two-d
applies.

Evaluation of the memory configura-
tion and removal of the indicated node are
performed by the word FREE in Listing
One, screen three. This word begins by
fetching the size of the node and storing it
in the second cell, creating the size cell of a
valid node header. A sequential search of
the free list is then performed (lines 3-6),
ending with the address of the free node
below the one to be de-allocated. Note that
this may be the root (FREELIST) which,
because of the extra cell allocated to it, may
be treated exactly like any other node
header.

In line nine, the link address held by the
next-lower free node is stored in the block
to be de-allocated, completing the valid
node header for this block. Nothing yet
points to this header, and it may eventually
be abandoned. Construction of the header
atthis step is more efficient, however, if the
node is not to be abandoned. Lines eight
through ten evaluate whether the node tobe
de-allocated is immediately followed by a
free node; if so, the size cell of the newly
created node header is increased by the size
of the following free block and the link
address is set to that contained in the fol-
lowing header. Lines 12-14 evaluate
whether the block to be de-allocated is
preceded by a free block; if so, the link and
size cells of the preceding header are modi-
fied appropriately, and if not, the link ad-
dress of the preceding header is set to that of
the de-allocated block.

An Example Application

The use of these words is illustrated by
a set of routines for manipulation of dy-
namic strings. Listing Two contains a set of
static string-handling words, and Listing
Three ties these together with the dynamic
memory words in Listing One.

Strings are generally stored in memory
in one of two ways: with the string length in
the first byte or word, or with the end of the
string marked with a sentinel character,
usually an ASCII zero. For simplicity, I
will refer to these alternatives as counted
strings and zstrings. Dynamic strings will
be referred to henceforth as dstrings. Forth

contains several standard words for ma-
nipulating counted strings (using a single
byte for a count), but is not limited to this
form of storage. I prefer to use zstrings, as
they allow you to scan a string more easily;
the remainder of the string can always be
represented by a single stack element rather
than by an address-count pair, as is neces-
sary with counted strings. The words in
Listing Two are therefore designed to cre-
ate and manipulate zstrings rather than the
more usual (for Forth) counted strings.

Because this is an illustration and not
central to the point of this article, the words
in Listing Two will not be described in
detail. A few points are worth noting,
however. In particular, the words TEXT
and (") may be found in existing Forth sys-
tems with slightly different actions. Typi-
cally these create and return counted
strings, whereas the versions shown here
are designed for zstrings. If possible, you
should rewrite SCANO in your native as-
sembly language, as it may amount to only
a single instruction. The words in Listing
Two do not form a complete set of tools for
handling static strings, but they include all
those used to illustrate dynamic string han-
dling in Listing Three as well as a few
others.

The words in Listing Three integrate
those in Listings One and Two. They allow

-

strings of any length (within the limits of
the heap space) to be stored or modified
without any concern on your part about
overrunning a statically allocated string
buffer. These words mimic some of the
string-manipulation functions of dBase in
name and application.

Dynamic strings are represented by a
pointer to a zstring; the zstring itself is
stored in the heap, rather than in the Forth
dictionary. A dstring can be converted to a
zstring simply by a fetch (@) operation.
With thatin mind, and an explanation of the
role of _ SYSSTR, the words in Listing
Three should be easy to interpret.

Several of the dynamic string manipula-
tion routines create new unnamed
dstrings—that is, ones which do not di-
rectly replace one of the dstrings passed as
aparameter. The words LEFT,RIGHT, and
S+ are examples. This new, unnamed
dstring is left on the stack, where you may
save it (with s !), display it (with SAY), or
otherwise dispose of it. The pointer to the
heap space allocated for this string mustnot
be lost, however, or the space will be unre-
coverable. SYSSTRis used to store this
pointer. Note that the pointer is stored only
until the next operation which creates anew
unnamed dstring; at that point, the space is
de-allocated and the pointer reassigned. In
some situations, this limits the operations

THIRTY-DAY FREE OFFER — Free MMSFORTH
GAMES DISK worth $39.95, with purchase of MMSFORTH
System. CRYPTOQUOTE HELPER, OTHELLO, BREAK-
FORTH and others.

Forth Dimensions

24

Volume XII, Number 3

that can be successively carried out on an
unnamed dstring. Consider the following
sequence of commands:

STRVAR COMPOST

" Gardeners rarely grow cabbage.”
COMPOST STRSAVE

COMPOST 3 LEFT

COMPOST 5 RIGHT

S+

The result of this would be garbage, but
not the “Garbage.” that you might expect.
Both of the phrases COMPOST 3 LEFT
and COMPOST S5 RIGHT leave a pointer
to an anonymous zstring, but only one
anonymous pointer (___SYSSTR) is al-
lowed. Thus, the two arguments passed to
s+willbothbe __SYSSTR, and the result
will always be to concatenate the rightmost
five-character substring of COMPOST with
itself. The solution to this problem is to use
another dstring defined with STRVAR for
intermediate storage of the leftmost sub-
string,

Any number of successive operations
on a single, unnamed dstring may be car-
ried out, however, For example:

COMPOST 6 LEFT UPPER SAY

These routines are written so that
__8YssTrRmaybeone of theirarguments,
and space for the resulting string will be
allocated before _ SYSSTR is de-allo-
cated.

Another way of reducing conflicts be-
tweenusesof _ SYSSTRis touse adiffer-
ent system string for each routine. This ap-
proach is taken with the word S" (the
dstring counterpart to "), simply to allow
the convenience of entering a string while
an unnamed dstring resides on the stack.
The drawback is that heap space may re-
main allocated long after the unnamed
dstring is no longer needed by the applica-
tion.

The technique of implementing dy-
namic strings shown in Listing Three is
only an example. Counted strings could be
used instead of zstrings. The count could
also be kept in the dstring header, whether
counted strings or zstrings are used. This
last approach may be most suitable when
you want to use zstrings for most purposes
but your application frequently needs to
evaluate the length of strings; the extra
space devoted to storage of the string size,

although unnecessary, may save computa-
tion time. Tailor the tools to the task.

Special-Purpose Memory Allocation

If there is anything systematic about the
size of blocks that will be needed, the
number of allocation requests, or the pat-
tern of allocation and de-allocation, you
may be able to improve performance and
save memory by using a special-purpose
memory allocation routine. Whereas most
general-purpose memory allocation rou-
tines will probably be based on a model
somewhat like that presented above, you
are pretty much on your own when it comes
to designing a special-purpose routine.
Knuth and Aho, Hopcroft, and Ullman
describe a technique known as the “buddy
system,” which is a sort of general-purpose
special-purpose system, suitable when
only a limited number of sizes of blocks
will be needed. Its advantage is that it can
be customized for different combinations
of sizes of blocks.

Considerations of fitting strategies and
the problems of small blocks do not pertain
when all blocks are the same size. It is, in
fact, easier to design an appropriate solu-
tion for a single special-purpose applica-
tion than it is to design a good general-
purpose memory allocation routine.

The technique described here is one
that is suitable only when blocks of asingle
size will be needed. But for this limitation,
it has a number of advantages over the
general-purpose routine described above:

» The time required to allocate a node is
likely to be much less.

+ The time required to de-allocate a node
is constant.

» The overhead is only one bit per block,
rather than two bytes.

These advantages are conferred by the
representation of the free list as a bit map
rather than as an actual linked list. The bit
map consists of a series of bytes long
enough so that their total number of bits is
atleast as great as the number of nodes that
can be accommodated by the heap. The
state of each bit (set or reset) indicates the
availability of a corresponding node. The
code for this implementation is shown in
Listing Four. The words NODEBUFS1IZ,
GETNODE, and RELEASENODE are
analogous to DYNAMIC-MEM, MALLOC,
and FREE in Listing One.

A free block is indicated by a set (1) bit

in the map. To allocate a block, it is neces-
sary to scan the map for such a bit and
calculate the address to which it corre-
sponds. To increase efficiency when a
sequence of successive allocation requests
may be performed, each search of the map
begins where the previous one left off. To
increase efficiency when an alternating se-
quence of allocation and de-allocation
requests is performed, a pointer is set
whenever a block is de-allocated so that the
next search will begin with that block and
so will be satisfied immediately. In some
cases, only one of these fine-tuning mecha-
nisms may be appropriate; both are shown
here for illustration.

The housekeeping information is kept
in the five variables shown in Listing Four,
screen one. The first three words (>MASK,
NODE, and >BYTES) manage the conver-
sion between the bit map and actual ad-
dresses. The word >MASK (“to-mask™)
takes a bit number and converts it into a
mask that can be used to test or set the bit
with AND or CR. This is a good candidate
for coding in assembly language.

Initialization of the bit map and house-
keeping information is performed by the
word NODEBUF S IZ. The beginning of the
memory buffer is set aside for the bit map;
this routine calculates the number of nodes
that will fit and the size of the map needed.
The map always occupies an integral
number of bytes. Depending upon the
buffer and node sizes, up to seven bitsof the
last byte of the map may be unused. The
overhead per block may therefore be
slightly more than one bit.

The word CLEARNODES has been fac-
tored out of NODEBUFSIZ so that it may
be used to re-initialize the buffer without
the need to use RELEASENODE to de-
allocate each block. This word must be
used with great care, and subsequent refer-
ence to dangling pointers should be
avoided.

GETNODE (Listing Four, screen three)
allocates space by looping over the total
number of nodes; the phrase

I SRCHPTR @ +
#NODES @ MOD

translates a relative node number into an
actual node number based upon a non-zero
starting position, If a free block is found,
the starting point for the next search is set
(line five), that entry in the map is marked
as allocated (line six), and the actual ad-

Volume XII, Number 3

25

Forth Dimensions

PROCEED!

195y
ROCHISUR

INDUSTRI
e AUTOMAT |

June 20 - 24th, 1989

University of
Rochester

1989 Rochester Forth Conference
on Industrial Automation . . . $25.

6 invited papers and 54 presented papers on all
aspects of Forth processors, applications and
object oriented technology, including:

¢ SwissForth, A Development and
Simulation Environment for Industrial
and Embedded Controllers

Klaus Flesch, FORTH System — Angelika

¢ Forth-based Control of an Ion Implanter
Don Berrian, Varian/Extrion
+: Cellmate/TOOLBOX Hardware/Software
Workstation/Language DOES>
Automotive/Aerospace

Powertrain/Vehicle
Development/Testing ;

Bob McFarland, Digalog, Inc.

4 Events and Objects: Industrial Control
by Hierarchical Decomposition
Dean Sanderson, Forth, Inc.

4 Breakthrough in Knowledge Management
Bjorn J. Gruenwald, ACA, Inc.

ROCHESTER

ronemE MBEDDED
mommaeo Y STEMS

JUNE 12 - 167TH, 1990
UNIVERSITY OF ROCHESTER

Please add $5 shipping & handling for each
book ordered. Send name, full address and
phone number. Check or money order in US
funds, or, VISA/MC # and exp. date.

1990 Rochester Forth Conference
on Embedded Systems $30.

Over 70 papers on the state of the art in Forth
and threaded interpretive languages, including
comparisons of C, ADA and Forth for em-
bedded systems, and eleven papers from the
Soviet Union.

4 ShBoom on ShBoom: A Microcosm of
Hardware and Software Tools

Mr. Charles Moore, Computer Cowboys
¢ Using Forth to Analyze and Debug
Kernel-less Embedded Systems
Mr. Darrel Johansen, Orion Instrurnents, Inc.
Active Messages and Passive Objects:
An Object Oriented View of Forth
Mr. Rod Crawford, MPE, Ltd.
¢ The Forth System Behind VP-Planner:

Designing for Efficiency
in the Face of Complexity

Dr. Kent Brothers, Stephenson Sofiware

¢ The Future of Forth in Astronomy
Dr. Arne Henden, Ohio State Univ.

Ada and Forth: How Do They Stack Up?
Dr. James D. Basile, Long Island Univ.

dress of the block calculated (line seven).

The word RELEASENODE de-allo-
cates space by calculating the node num-
ber (screen three, line 12) and setting the
appropriate bit (line 14). In addition, it sets
the starting point of the next search to the
node just de-allocated (line 13).

Because of the uniform block size, this
approach lends itself to compressed dis-
plays of the allocation map more easily
than does the first. A simple word to dis-
play this map may be defined as follows:

: SHOWMAP
#NODES @ 0 DO
I NODE C@& AND IF
Lo
ELSE

” 14

THEN
LOOoP ;

Summary

The examples shown in this article, al-
though useful in their own right, are in-
tended principally to illustrate a point.
That is: you can improve the performance
of your application programs by tailoring
memory allocation routines to their spe-
cific needs.

Several changes could be made in the
general-purpose routine which might im-
prove its suitability for certain applica-
tions. For example, each search could be
started wherever the previous one termi-
nated, as is done with the specialized rou-
tine. Also, backward links in each node
header would eliminate the need for a se-
quential search when a block is to be de-
allocated.

If the size of blocks is known at com-
pile time (which s very often the case), the
special-purpose routine could be im-
proved by making NODESIZE a constant
rather than a variable. Depending upon the
actual block size (e.g., for powers of two),
other changes may also increase perform-
ance. See the references.

Other special cases of memory alloca-
tion, such asa series of LIFO requests, may
be handled by techniques very different
from either of the examples shown here.

Although the standard libraries of most

To: conventional languages provide routines
Institute for Applied Forth Research EMail: GEnie L.Forsley only for general-purpose memory alloca-
70 Elmwood Avenue BIX LForsley tion, you can still take advantage of oppor-
Rochester, NY 14611 USA Delphi LFORSLEY tunities to create special-purpose routines
(716) 235-0168 « (716) 328-6426 fax as needed. If you cannot supplant the stan-
dard routines, they can at least be used to

Forth Dimensions 26 Volume XII, Number 3

permanently allocate a heap large enough

for your own routines. For some applica-
tions, you may even wish to have two or '
more different memory allocation tech- ®
niques in use simultaneously, each with its
own heap. Consider the needs of your

application carefully, use the techniques JFAR Volume 6 Number 1
shown here and in the references as guides,

4 The Harris RTX 2000 Microcontroller

andﬁy:: ;\2? erSI_gdne rg;{ln[g;ymalpleo:fi[rl;n Tom Hand, Harris Semiconductor
routn: Vi -
ance. P ¢ A User Definable Language Interface THE JOURNAL OF
ORTH
Ref T. A. Ivanco & G. Hunter, York University
Afl el;:n\?esj E. Hoocroft. and] D. Ullman Institute for Space and Terrestrial Science APPLICATION AND
0,A.V.,J).0. 1o ,andJ.D. .
1983. Data Strulf:(t:ures and Algorithms 4 Marsaglia Revisited: Rapid Generation RESEARCH
Ad di. Wesl Readi N‘Ig 42,} of Fitted Random Numbers Volume6 .~ Number1 v 1990
pp son-wesiey, readmg, Mass. Ferren Maclntyre, Univ. of Rhode Island o e
Knuth, Donald E. 1973. The Art of Com- ’]S)c“,‘a tsi:_f“;‘“:hslf)“ .
puter Programming. Vol. 1, Fundamen- ; \'/e'; ::l ‘;J) mg““;/mmg
tal Algorithms. Second Edition. Ad- V. Noble, University of Virginia .
1 - 1] i 'v :
dison-Wesley, Reading, Mass. 634 pp. Handling leltiple .Dsml 'l?pcs In Forfh Fareie RTX 2000
John J. Wavrik, Univ.of Calif. at San Diego B
Language Extensions
Reprinted with the kind permission of ;; ientific Programming

The Computer Journal, 190 Sullivan

Crossroad, Columbia Falls, Mon-
tana 59912.

JFAR Volume 6 Number 2

#The Cost of User-Friendly Programming:
Maclmage as Example

Ferren Maclntyre, Univ. of Rhode Island THE JOURNAL OF
4 Little Universe:

A Self-referencing State Table

Karl-Dietrich Neubert, Physikalisch-Tech- APPLICATION AND

nische Bundesanstalt, Berlin, FRG RESEARCH

¢ AFORmula TRANslator for Forth
J.V. Noble, University of Virginia

¢ A Generalized EXIT
Carol Pruitt, University of Rochester

¢ Strings, Associative Access,
and Memory Allocation

User-friendly Programming

N. Solntseff, McMaster Universii :
olntseff, McMaster Universtty FORmula TRANSlator for Forth
Strings and Things
Volume VI Subscriptions To:
Individual Corporate Institute for Applied Forth Research
USA $60.00 $145.00 70 Elmwood Avenue

. Rochester, NY 14611 USA
CanadaMexico $65.00 $145.00) (525 168 w (716) 328-6426 fax

Europe/Asia $7500 $160.00 EMail GEnie L.Forsley
Send name, full address and phone number. BIX LForsley
Check or money order in US funds, or, Delphi LFORSLEY

VISA/MC # and exp. date.

Volume XII, Number 3 27 Forth Dimensions

SMART
RAM

ROB CHAPMAN - EDMONTON, ALBERTA, CANADA

Iﬁrst heard of smart RAM from Bob La
Quey. It was one of those amusing things to
throw out for discussion when you sat
down to chew the fat. We tossed the idea
around a lot but never had an application for
it. Until now.

Breeding Forths

After spending six months creating and
tuning a real-time kernel for the RTX-
2000, I wanted to port it to other processors.
Since we had a lot of 68000s kicking
around at work, I decided that the first port
would be to a familiar processor: an 8 MHz
68000. The traditional, well-known
method of building a 68000 system of
ROM, RAM, SIO, and a processor with the
burn-EPROM-plug-it-in-doesn’t-work-
edit-swear-try-again method didn’t really
appeal to me, so I figured there must be a
better way. A bolt of lightning struck and I
thought, maybe this is an opportunity to use
smart RAM. That would allow me to inter-
actively and incrementally test the Forth,
monitor the performance of each word, and
tune it for the 68000.

68000 and Smart RAM

Being a Forth-bred minimalist, I didn’t
want to build alot of hardware (or software)
toachieve a smart RAM system. The result-
ing hardware configuration consists of a
68000, interface logic, a bot, and a laptop.

The laptop connected to the bot pro-
vides file storage, an editor, and a terminal.

The bot (bundle of technology) is a
concept that, in itself, is worth another
paper. For the scope of this paper, though,
a bot is 2 minimal RTX-2000 system,
which consists of an RTX-2000, RAM,
SIO, 96-pin expansion connector, and a
Forth. This, bundled with some software,
emulates smart RAM.

The interface logic maps the 68000
address bus, data bus, and the control sig-

nals onto the RTX-2000 gio bus, where a
data exchange protocol takes care of mov-
ing data between the 68000 and RAM.

Developing a smart RAM language
required a lot of fiddling (as is usual, and
very much a part of Forth), but it eventually
broke down into primitives to deal with the
68000 signals; words to transfer data be-
tween RAM and the 68000; and a debug-
ging language which would allow for
single-stepping, peeping and poking into
the 68000 registers, and monitoring the
68000 transactions.

Smart RAM concepts
can be applied in
many areas...

Data Exchange Protocol

All data exchanges are initiated by the
68000 asserting address strobe low. This
qualifies all the signals. All data exchanges
are then terminated by the smart RAM
asserting dtack low.

There are three types of exchanges:
instruction-read, data-read, and data-write.
If r/-w is high and p/-d is high, the 68000 is
doing an instructionread. If p/-d is low, itis
doing a data read. If r/-w and p/-d are low,
it is doing a data write.

During a data write, a check is per-
formed to make sure it falls within the area
reserved for the 68000 Forth. During an
instruction read, the instruction doesn’t
have to come from RAM, it can come from
the stack. Feeding the 68000 instructions
from the stack allows instruction sequences
to be inserted, and if followed by a jump
back to the original address these se-
quences are essentially transparent. This
technique is used for unobtrusive register

peeps and pokes.

As well, data reads and writes may be
ignored by just asserting dtack. Instruction
reads may be skipped by writing a no-op to
the data bus and asserting dtack.

Debugging Tools

The debugging tools consist of a trans-
action monitor with single-stepping and a
register content editor.

The transaction monitor displays each
transaction between the 68000 and smart
RAM. The status is displayed before each
dtack. Filters allow selective viewing of
instruction reads, data reads/writes, or
both. There are also filters for disassem-
bling and decompiling. If the disassembler
is enabled, each 68000 instruction is dis-
played.

If the decompiler is enabled, the high-
level Forth words being executed are dis-
played. The monitor can be adjusted to
show any depth of nesting. After a word is
tested, a summary of the transaction and the
status of the Forth registers is displayed.
This summary and status may also be
turned off. The monitor output may be
stopped by touching any key. An escape
will then abort the execution of the current
word, while any other key will resume
status display.

When single-stepping is enabled, either
by an out-of-bounds read/write or by user
selection (SSTEP), execution is stopped
just before each dtack. Execution may be
aborted by pressing the escape key, or
continued by pressing any other key.

The register content editor serves two
purposes. The seven registers used by the
virtual Forth machine may be viewed, and
any of the registers may be altered. This
basic peeking and poking is accomplished
by feeding instruction sequences to the
68000 followed by a jump back to the
address it started from.

Forth Dimensions

28

Volume XII, Number 3

68000 Forth Model

I chose a Forth model for the 68000
which is similar to the RTX-2000. Techni-
cally, it is a 16-bit, subroutine-threaded,
stack-cached Forth.

The top two parameter stack items are
cached on chip in registers, just like the
RTX-2000. The top of stack is an address
register to allow for very quick fetches and
stores. The next stack item is kept in a data
register for quick ALU operations.

Since subroutine threading is used, it
allows the mixing of assembler and Forth
within the same definition (the mini-as-
sembler was written to support this by
making the assembler words immediate).
Subroutine threading also allows forin-line
optimization of assembler instructions.

One interesting dilemma resulted from
using subroutine threading and 16-bit
stacks: every subroutine call pushes a 32-
bit address onto the return stack and, like-
wise, every exit pulls a 32-bit address from
the return stack. Since Forth allows for
modifying control flow via direct access to
the return stack (R>, R, and R>), there was
an immediate compatibility problem. This
is solved by allowing the return stack to be
32 bits, while keeping the parameter stack
as 16 bits. R>, R, and R> take care of the
translation.

The model uses five other registers, as
well as the two top parameter stack items.
Two address registers are used for the stack
pointers. A dataregisterisused forinterme-
diate results. Anaddress register is used for
some pointer operations. The FOR ...
NEXT loop uses a data register to hold the
index. The previous contents of the index
register is pushed onto the return stack by
FOR and is restored by NEXT. This model,
coupled with a good peephole optimizer to
minimize off-chip stack flow, should run
fast. All the stack primitives are one or two
opcodes (except ROT), which means that it
is cheaper to in-line them than to do a sub-
routine call.

Interactive Development

I started with the Forth T wrote for the
RTX-2000, or 2K-Forth, and defined eve-
rything in high level except about 20 primi-
tives. These include stack and math/logic

operators, memory access, and a test opera-
tion:

SWAP DROP
DUP NIP
>R R>

L

Interface

— L7
ioE i |

Figure One. The smart RAM system consists of a laptop, an RTX-2000 bot, and a prototype
board. The laptop serves as a terminal, an editor, and provides file storage. The RTX-2000
bot emulates smart RAM and runs Forth. The prototype board contains the 68000 and the
interface logic which multiplexes the 68000 signals onto the RTX-2000 16-bit gio bus.

Smart RAM

Memory mep gio map
FFFF 1F ta boot pin reset.hait ciock
not used and (a2 {syﬁem EE—
empty not used
not used status asiiw udsddepid)
smart RAM
dtack 68000
bus dtack
68k Forth data write
address bus 415 |
data read
2 Forth oy data bus 90915
L 0000 e pd | ——

Figure Two. All the 68000 signals are mapped onto the RTX-2000 gio data bus. Only the
15least significant address lines are used. This, with -uds and -1ds, gives an effective address
range of 64K bytes. dtack is the output of a flip-flop which is set by the address strobe going
low, and is reset through the gio bus. Address, data-read, data-write, control signals, and
dtack map to five out of the possible eight addresses on the gio bus. The signal p/-d (actu-
ally FC1) allows differentiation between opcode and data fetches. The boot pin is used to
control reset and halt. The clock input is fed tclk divided by two, so that the 68000 receives
a 5 MHz clock.

68000 read smart RAM 68000 write smart RAM
addr, status, -as addr, status, -as
\
data ADDR @ >DATA data DATA ADDR |
L Mk Drack dtack DTACK

Figure Three. Exchanges between the 68000 and smart RAM are initiated by the 63000
asserting address strobe and terminated by smart RAM asserting dtack.

spare addr top [index J
spare data next

68k

Smart RAM

Figure Four. The 68000 Forth uses seven out of 16 registers. The top two data stack items
(top and next) are kept in registers to quicken most Forth operations. Two pointers are
needed to keep track of the stacks in memory. The index register is only used for FOR ...
NEXT loops. When it is used, the previous contents are pushed onto the return stack. Two
extra registers (spare data and spare addr) are needed for some intermediate calculations.

Volume XII, Number 3

29 Forth Dimensions

R +

- AND
OR XOR
NOT 2%
2/ @
ce !

c! 0=

The modified 2K-Forth was tested by meta-
compiling it on the bot.

Once I had pared the Forth down to a
few primitives, it was very simple to rede-
fine them for the 68000. Adjustments had
to be made to the metacompiler to compile
the 68000 subroutine calls and returns.
Headers, byte ordering, and word align-
ment stayed the same. The metacompiler
kept track of which definitions consisted of
fewer than four words, so that they could be
in-lined (this mega-simplified the return
stack definitions). Since there were very
few primitives, a mini-assembler was built
(they could have been hand coded, but the
assembler provided a creative outlet).

Development proceeded rapidly by
executing each primitive on the 68000,
monitoring bus activity, and checking the
Forth registers when done. Operations like
SWAP took one opcode and no memory
access.

Once I had the twenty primitives work-
ing, I started testing the other definitions.
Since I was monitoring bus activity, I could
see just how long it took to execute the
words. This motivated me to code some of
these words in assembler. When I needed
more 68000 instructions, I added them to
my assembler and disassembler as well.

The development actually was done in
parallel. When a problem occurred in the
68000 Forth, I created a new tool to solve it
on the smart RAM. Sometimes this made
matters worse, since one bug can some-
times hide another. But perseverance paid
off, since I now have most of the tools I
need.

Finally came the steak dinner test: does
it work? To test the whole kernel, I con-
nected the input and output queues from the
68000 Forth to the /O port of the bot. The
2K-Forth serviced the I/O port and took
care of RAM transactions. The euphoria
came when it all worked.

Prospects

The next few processors to be con-
nected to the smart RAM are the 68020, a
microcontroller from National Semicon-
ductorand, possibly, a popcorn part like the

ok: 8
top 0000 4271
next 0000 48rs
sp@ 4876
ok: TEST ROT
Summary: depth 0 calls 0 codes 4 stores 1 fetches 1 dtacks 6
top 0000 48rs§ rpl 0000 5472
next 0000 4E71
spd 48r8
ok: ASM INST 1 TRACE TEST ROT
sp@ alu move ROT
next sp@ move

rpd 0000 5472

p/~D 8 R/-W 2 -AS 0 a:34C6 d:3016 -~U,-L 0 0
p/»D 8 R/-W 2 —-AS 0 a:34C8 d:3C87 -U,-L 0 0
top next wmove P/~D B R/-W 2 ~AS 0 a:34CA d:320D -U,~L 0 0
alu top move P/-0 8 R/-W 2 ~AS 0 a:34CC d:3a40 -U,-L 0 0
Summary: depth 0 calls 0 codes 4 stores 1 fetches 1 Qtacks 6

tap 0000 48r8 rpd 0000 5472

next 0Q00Q 48r6

4x71

ok: RAM TEST ROT
ap@ alu move ROT
next sp@ move

P/~D 8 R/-W 2 =AS 0 a:34C6 d:3016 -U,-L 0
P/-D B R/-W 2 ~AS 0 a:34C8 d:3Cc87 -U,~L 0
?/~D 0 R/-W 2 —AS 0 a:330C d:4871 -U,-L 0
p/-D 8 R/-W 2 —-AS 0 a:34CA d:3g0p ~-U,-L 0
p/-D 0 R/-W 0 —-AS 0 a:330C d:48r6 -U,-L O
alu top move P/-D 8 R/-W 2 =AS O a:34CC d:3A40 -U,~-L 0
Summary: depth 0 calls 0 codes 4 stores 1 fetches 1 dtacks 6§

top 0000 4E71 rpd 0000 5472

next G000 48rs

2p@ ~—— 48F6

fetch
top next move
store

coocooa

Figure Five. This is a listing of four trace monitor outputs of ROT with different filters
selected. All input has been highlighted [and follows the ok: prompts]. Initially, the status
of the Forth registers is shown by the command S. ROT is then run with all output filtered.
The summary that comes back displays how deeply nested the calls got (in this case zero,
since ROT is just four instructions); how many subroutine calls were made; how many
opcodes were fetched; how many stores to RAM; how many data fetches from RAM; and,
finally, how many dtacks (one for each memory cycle). The third run has disassembling and
decompiling enabled, for a maximum trace depth of one. The code is displayed firstand the
Forth code is displayed after it. The decompiler considers the four opcode instructions to
be ROT. In the fourth run, RAM accesses are traced as well, and we can see the fetch from
stack and the store back to stack (the fetch and store don’t happen right away, because of
the internal architecture of the 68000). The display on the right is the actual signals that exist
on the 63000 busses before a dtack. Non-zero values represent a logical one, while zero
represents a logical zero.

ok: TIEE RESET-INPUT
: RESET-INPUT (?) keyg 0Q NO in ! tib 2 + ¢ib ! NO INPUT C!
keyq sio-in ! emitq sio—out ! ° COLLECTOR DUP XILL >BARON ;

ok: ~ASM INST -RAM] TRACE TEST RESET-INPUT

keyq P/-D 8 R/-W 2 -AS 0 a:5426 d:3007
p/-D 8 R/-W 2 ~AS 0 a:5428 d:3z0D
2/~D 8 R/-W 2 =-AS 0 a:542A d:3A7C
p/-D B8 R/-W 2 -AS 0 a:542C d:439A
0Q p/~D 8 R/=-W 2 -AS 0 a:542E d:4EB8
p/~D 8 R/-W 2 =-AS 0 a:3F76 d:4E75
2/~0 8 R/-W 2 -AS O a:3F78 d:0034
NO P/-D 8 R/-W 2 -AS 0 a:5432 d:3p07
P/~D 8 R/~ 2 -AS 0 4:5434 d:3EOD
P/-D 8 R/-W 2 -AS D a:5436 &:3A7C

[
NN

U
B

&

p/-D 8 R/-W 2 -AS 0 2:5433 d:0000
in P/=D 8 R/-W 2 -AS 0 a:343A d:3D07
p/-D 8 R/-W 2 ~—AS 0 =a:543C d:3E0D ~U,
p/-D 8 R/-W 2 =-AS #:543E d:3A7C -U,-L
p/~D 8 R/-W 2 -AS
~AS
~-AS

LEEEEEEEEEEE
1)

U

(3
R R R-E-T- - I
000 CcC0oO00A0000RT GO

2:5440 d:495C -U,-L
a:5442 d:42B8 -U,-L
3:3642 d:4E75 -U,-L

! p/~D 8 R/-W 2
P/-D 8 R/-W 2
(—— SPACE to proceed ESC to abort. —)

0
0
0
0

Figure Six. RESET - INPUT is decompiled with TSEE and then the first five Forth words
are traced. The output has been temporarily halted to view the results. In this trace, we are
only interested in the highest-level calls.

6811 from Motorola.
The concept of smart RAM can be ap-

‘When the processor requests the data, it is
already in the latch. The stacks are easy to

plied in many other areas as well. It could
be used as a way to speed up slow RAM in
a system, with the addition of some fast
latches (one for the data stack, one for the
return stack, and one for instructions). The
smart RAM would prefetch the nextneeded
value from RAM before the processor actu-
ally requests it, and store it in the laich.

predict, but programs would be harder. But
by knowing what the branch or jump in-
structions are ahead of time, the smart
RAM could make an intelligent choice for
what to put into the latch.

To take things to an extreme, the smart
RAM could intercept slow instructions or

(Continued on page 36.)

Forth Dimensions

30

Volume XII, Number 3

Forth-83

TESTING

TOOLKIT

PHIL KOOPMAN, JR. - WEXFORD, PENNSYLVANIA

One of Forth’s strong points is its sup-

port of interactive development and test-
ing. Sometimes, however, interactive test-
ing is not enough. During the development
of low-level software for the RTX family,
we wanted a method to create a permanent
record of test cases for Forth words. This
record serves as documentation for users
and maintainers. In addition, a full suite of
test cases for a program provides a way to
be sure that a change in one part of the
program does not disturb other parts of the
program,

How to Use It

Each test case consists of code that
places elements on the data and return
stacks, creates and executes a test defini-
tion, then verifies that the correct results
were placed on both stacks. For example, a
test case for the word DUP would be:

The test case can be
any sequence of Forth
words.

DS(1111 --

RS({ --

TEST: DUP ;DONE
--)RS

-- 1111 1111)DS

The first line of the test case specifies that
the data stack input to the test is the number
1111. The second line specifies that no
elements are to be placed onto the returm
stack. The third line creates and executes a
temporary Forth word with a body of DUP,
carefully handling the data and return stack

\ Forth testing support B
\ By Philip Koopman Jr., for Harris Semiconductor

\ Derived from test code used for the RTX chip family

\ Developed on F~TZ (an F-PC and F-83 derivative) version 3.X11

VARIABLE #STACK -1 #STACK ! \ Saves number of stack elements for testing

CREATE R-SAVE 8 ALLOT \ Note: F~TZ uses 32-bit return addresses!
: GET-DEPTH (..stack.stuff.. - ..stack.stuff..)
DEPTH #STACK @ —-- #STACK ! ;

: DS((-- $BAD1 SBAD2)
\ Init RS to -1 so that ‘-~ will know it is a DS input
\ Uses hex OBAD1l and hex OBAD2 as sentinel values for DS
-1 #STACK ! $BAD1 $BAD2 ;

: RS((—— SBAD3 S$BAD4)
\ Uses hex OBAD3 and hex ORAD4 as sentinel values for RS
DEPTH #STACK ! SBAD3 $BAD4 ;

: - (nl n2n3 .. n.n - nl n2 n3 .. n.n sentinel)
#STACK @ 0< NOT IF (if RS() GET-DEPTH THEN ;

.

?DATA (nl n2 ——)
= NOT ABORT” DATA STACK ERROR” ;

: 2RETURN (nl n2 ——)

= NOT ABORT” RETURN STACK ERROR” ;
P ()

DEPTH #STACK ! ;

: PERCOIATE (rl n.n .. nl -— n.n .. nl rl)
#STACK @ ROLL -1 #STACK +! ;

:)RS {r.n .. x3r2r.1 nln2n3 .. n.n~-)
GET-DEPTH #STACK @
IF BEGIN PERCOLATE °?RETURN #STACK @ 0= UNTIL THEN
$BAD4 ?RETURN SBAD3 ?RETURN -1 #STACK !

’

:)DS (r.n .. r3r2r.1 nl n2n3 .. n.n -—)
GET-DEPTH #STACK @
IF BEGIN PERCOIATE 2?DATA #STACK @ O= UNTIL THEN
$BAD2 ?DATA SBAD1 ?DATA -1 #STACK ! ;

: REVERSE (n.l1n.2 .. n.n. n -— n.n .. n.2n.1)

DUOP 0> IF 0 DO I ROLL LOOP ELSE DROP THEN ;

: INIT-TEST (..DS.stuff.. ..RS.stuff.. -- ..DS.stuff..)
contents before and after the test. The (RS: -- ..RS.stuff..)
fourth line specifies that no values should
Volume XII, Number 3 31

Forth Dimensions

be left on the return stack, and generates an
error message if this is not the case. The
fifth line specifies that two values of the
number 1111 should be returned from the
test, again generating an error message if
this is not the case. It is very important that
the test cases be written in exactly this
order, with no missing items, for proper
operation.

The body of the test case between
TEST : and ; DONE can be any sequence of
Forth words, including primitives that ma-
nipulate the return stack. The words
INIT-TEST and FINISH-TEST are
automatically compiled with the test case to
handle the data and return stacks for proper
execution.

Inordertobe sure thata word is working
properly, it is not enough to simply place
the required number of parameters on the
stack and then see if the correct results are
returned. The problem is that a word may
cause unexpected side effects (such as cor-
ruption of elements on the data and return
stacks) that are not detected immediately.
In order to handle this case, the test words
place two “sentinel values” onto both the
data stack and the return stack, then check
to ensure that no corruption has occurred.
While side effects are usually nota problem
in high-level code, they can easily create
problems when dealing with assembly lan-
guage or microcode word implementa-
tions.

Ideas for Further Refinements

The test capability presented here is
rather simple, in order to keep the code
(somewhat) understandable. Features that
could be added to improve its usability
include: allowing RS () RS to be optional,
so tests that deal only with data stack opera-
tions could automatically generate and test
return stack sentinel values; more sophisti-
cated error messages that show exactly
what is wrong with a stack when an error
does occur; methods to ensure that only
desired memory locations are modified for
words that perform fetches and stores; and
methods to ensure that only desired on-chip
registers are modified for assembly lan-
guage definitions.

The code is written for F-TZ, a version
of F-PC, developed by Tom Zimmer, F-PC
is a descendent of F-83, but allows using a
dictionary space of greater than 64K bytes.
The code presented should be relatively

(Continued on page 41.)

CR .” TEST-”

#STACK @ 0< ABORT” You must specify both DS(and RS(.”

R> R-SAVE ! R> R-SAVE 2+ ! \ Save return address
#STACK @ REVERSE

BEGIN 4#STACK @ O> WHILE >R -1 #STACK +! REPEAT

R-SAVE 2+ @ >R R-SAVE @ >R H \ Restore return address

: FINISH-TEST (..DS.stuff.. —— ..DS.stuff.. ..reversed.RS.stuff..)
(RS: ..RS.stuff.. --)

R> R~SAVE ! R> R-SAVE 2+ ! \ Save return address
\ Transfer return stack contents onto data stack for later compare
0 >R
BEGIN R> R> SWAP 1+ >R
R> REVERSE
R-SAVE 2+ @ >R R-SAVE @ >R

DUP $BAD3 = UNTIL
\ Restore return address
.” -DONE” -1 #STACK ! ;

\ TEST and DONE use F-TZ specific words to compile a short
\ definition containing the word to be tested, execute that
\ definition, then FORGET it from the dictionary.
\ This borrows a compilation idea from Rick van Norman’s RTX test code
CREATE MARKER 4 ALLOT
: TESTER ;
: TEST: (—)
XHERE 2DUP MARKER 2! PARAGRAPH + DUP XDPSEG ! O XDP !
XSEG @ —— [‘] TESTER >BODY !
COMPILE INIT-TEST] ;

: ;DONE

COMPILE FINISH-TEST COMPILE EXIT

STATE OFF TESTER MARKER 2@ XDP ! XDPSEG ! ;
IMMEDIATE

\ Test ROT for proper operation
DS(1111 2222 3333 —
RS(~——
TEST: ROT ;DONE
-)RS
—— 2222 3333 1111)Ds

\ Test >R for proper operation
DS(5555 —
RS(—
TEST: >R ;DONE
-— 5555)RS
--)DS

\ Any combination may go between TEST: and ;DONE
DS(1111 2222 3333 --
RS(7777 2222 9999 —
TEST: SWAP R> ROT >R ;DONE
- 7777 2222 3333)RS
-— 1111 2222 9999)DS

\ Null test to be sure it works
DS(——

Forth Dimensions

32 Volume XII, Number 3

Twelfth Annual

FORML CONFERENCE

The original technical conference
for professional Forth programmers, managers, vendors, and users.

Following Thanksgiving, November 23-25, 1990

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean
Pacific Grove, California U.S.A.

Conference Theme: Forth in Industry

Papers are invited that address relevant issues in the development and use of Forth in
industry. Papers about other Forth topics are also welcome.

Mail abstract(s) of approximately 100 words by October 1, 1990 to FORML, P.O. Box
8231, San Jose, CA 95155.

Completed papers are due November 1, 1990.

Conference Registration

Registration fee for conference attendees includes conference registration, coffee breaks, and note-
book of papers submitted, and for everyone rooms Friday and Saturday, all meals including lunch Fri-
day through lunch Sunday, wine and cheese parties Friday and Saturday nights, and use of Asilomar
facilities.

Conference attendee in double room—$285 » Non-conference guest in same room—$160 ¢ Children

under 17 in same room—3$120 « Infants under 2 years old in same room—free » Conference attendee in
single room—$360

Register by calling the Forth Interest Group business office at (408) 277-0668 or writing to: FORML
Conference, Forth Interest Group, P.O. Box 8231, San Jose, CA 95155.

About Asilomar

The Asilomar Conference Center combines excellent meeting and comfortable living accommodations.
It is situated on the tip of the Monterey Peninsula overlooking the Pacific Ocean. Asilomar is part of
the California State Park system; it occupies 105 secluded acres of forest and dune. If you like, you
may jog on the beach before breakfast, join an informal discussion under a cypress tree after lunch, and
exchange stories in front of a fireplace at the nightly wine and cheese parties. Guests of conference at-

tendees may enjoy sightseeing along the beautiful Big Sur coast, visiting the new Monterey Aquarium,
or shopping in nearby Carmel.

Volume XII, Number 3 33 Forth Dimensions

Part Two

FORST: A 68000

NATIVE-CODE FORTH

Ihave very mixed feelings about using
C. The syntax is dense and helps maximize
typing errors, but the statements are power-
ful. As normally used, it falls far behind
(say) Pascal as an algorithmic language,
but it is used much more often. It seems to
be the most popular applications language,
despite the flab which most systems insist
on adding to the code. Finally, the code is
usually tolerably fast and, for Forth pro-
grammers, it is the language to beat!

In their enthusiasm to push the
enormous advantages of their own lan-
guage, Forth programmers opt for a system
which is at once powerful, malleable,
comfortable and primitive. And they con-
demn themselves to forging, for the most
part, their own tools while the Unix/C
environment has all those powerful utilities
with the ridiculous names. And, above all,
C has access to enormously powerful and
flexible I/O functions. As ForST took
shape, I decided that it just had to include
the I/O functions, its best feature, from C.

Much has been written, many times,
about Forth blocks and screens. Disk [/O is
based on (usually) 1024-byte chunks of
disk space. No operating system directory
is used and there is often a problem of
reconciling Forth’s use of the disk with that
of the resident system. The F83 use of
blocks within DOS files, for instance, is
rather contrived.

ForST’s approach is to use buffered
TOS files, which permits fully redirectable
I/0O based on (wait for it!) GETC and PUTC.
Once these functions are incorporated, it is
extremely simple to carry out file copy and
filtering functions.

System File Usage

As normally configured, ForST has
eight file structures available for its own
use. When source code is compiled from
the disk (using LOAD <filename>),the
source code can include nested LOAD in-

JOHN REDMOND - SYDNEY, AUSTRALIA.

structions to a nesting level of seven. This
is a powerful and convenient approach,
analogous to that of standard Forth, but it
uses a special system stack to keep track of
the nesting. If a compilation error occurs,
all open files are automatically closed.

File Structure
FILE is a very simple defining word:

: FILE

CREATE 24 ALLOT DOES> ;
The six 32-bit fields within the structure it
creates are used in the following way:

offset O: #chars in buffer
4: character pointer
8: buffer pointer
12: system file handle
16: file mode
(O=input,1=output)
20: #chars read or written from/

to buffer so far

(Using 32 bits for each field is wasteful, but
simple to follow.)

Opening a File

When FOPEN is used, it expects on the
stack the address of a file structure and the
operating mode. If the mode is non-zero, a
file will be created using FMAKE; other-
wise, the low-level word OPEN is used to
open an existing file for reading. If success-
ful, it willretumn asystem file handle, which
isthenkeptin the file structure. ThenMAL-
LOC is used to allocate a 1024-byte buffer
in heap memory. The buffer address is
returned and stored in the two pointer fields
of the file structure. Finally, the #chars
fields are cleared ready for a read or write.

When a file is accessed with GETC for
the first time, itattempts to fetch a character
from the allocated buffer. When it fails, a
1024-byte disk READ into the buffer is

attempted. READ returns the actual num-
ber of characters read successfully and the
#chars fields are set appropriately. Then a
character is fetched from the buffer, the
character pointer advanced and the #chars
decremented. This will be continued until
#chars is zero, when another READ will be
necessary. In the event that the buffer is
empty and READ returns O characters,
GETC returns -1 instead of a character.

PUTC carries out its operations in a
very similar way. Whenever the buffer is
full, it is flushed to the disk before insert-
ing a new character. When FCLOSE is
used, it will flush the buffer contents to the
disk before using the lower-level MFREE
to deallocate the memory buffer and
CLOSE toclose the file and free the system
file handle for further use. Using this ap-
proach, forty (!) disk files can be open at
any one time.

TOS File Handles

The available handles number 045, of
which 645 may be allocated to disk files.
These are the non-standard handles. Stan-
dard handles 05 are allocated to hardware
devices by ForST, in accordance with the
TOS designations:

handle 0: console input
1: console output
2: serial port (AUX)
3: parallel port (PRN)
4 & 5: dummies

It is easy to confuse the different labels
associated with files. The file ‘handle’ is
the file descriptor of C and is stored in the
array (structure) at the address returned by
a named file, e.g.,

FILE FILEl (define the file)
FILE1l 0 FOPEN (open it for input)

Forth Dimensions

34

Volume XII, Number 3

From this point, the address given by
FILEl + 12 will hold the descriptor, for
later use; but most programs will not need
to use it. At the user level, FILE1 is the
only file label used.

Block Operations

Although byte-buffered operations are
usually the most convenient, block opera-
tions are also available with READ and
WRITE. To keep their use intuitive for
Forth programmers, their parameters are as
for CMOVE, e.g.,

FILEl LINEBUFFER LINELENGTH
READ
LINEBUFFER FILE2 LINELENGTH
WRITE

These functions are much faster than byte-
buffer I/O, but GETC and PUTC still oper-
ate atupwards of 30 Kbytes per second with
a hard disk.

System Redirection
BLK holds the source descriptor in a
standard Forth system. ForST replaces this

with SRC and adds DEST toredirect normal
output. When the system looks forinput and
BLK contains zero, it will go 1o the key-
board buffer; butif SRC contains two, it will
fetch a character from the serial port. Simi-
larly, if DEST contains a non-zero value
less than six, it will direct output to a hard-
ware device. If the valuein SRCor DEST is
six or higher, it will be interpreted as a file
structure address (eg, FILE1) and disk /O
will be carried out.

LOAD is an important user word which
uses system file stuctures:

LOAD <filename>

The system responds by pushing the value
in SRC onto the input stack and replacing it
with the address of the file structure it has
allocated to the source file. If the file, in
turn, contains LOAD commands, the proc-
ess is repeated.

ForST allows access to other TOS file
utilities. LSEEK allows a buffer to be set to
any point in the input file:

FILE1l 0 0 LSEEK
is equivalent to rewind,

WE'RE LOOKING
FOR A FEW GOOD

FILEZ -10 1 LSEEK

winds the access position back 10 bytes,

FILE1l -45 2 LSEEK

sets the access position input to 45 bytes
back from the end.

FTELL returns the present access posi-
tion of the input or output file. FDUP dupli-
cates a standard handle with a disk file
handle, and a non-standard handle and
FORCE forcibly redirects I/O.

Finally, a point about string
compatibility: TOS expects a pointer to an
uncounted, null-terminated string for any
of its arguments. A terminal space-——such
asis added by WORD-—has been acceptable
for all cases so far tried, but ForST users
should be aware (see NAMEARG inthe code
below).

A few simple file utilities are given to
illustrate use of the primitives. COPY is a
good model for more complex filter func-
tions, such as case conversion and charac-
ter substitution. The conversion between a
hybrid F83 file and a normal text file, for
example, is trivial.

Next time, the final chapter of this se-
ries: the use of named, automatic stack

Total control

with LM/ FORTH"

For Programming Professionals:
an expanding family of compatible, high-

performance, compilers for microcomputers

For Development:

Interactive Forth-83 Interpreter/Compilers

for MS-DOS, 0S/2, and the 80386

* 16-bit and 32-bit implementations

¢ Full screen editor and assembler

» Uses standard operating system files

* 500 page manual written in plain English

» Support for graphics, floating point, native code generation

For Applications: Forth-83 Metacompiler

» Unique table-driven multi-pass Forth compiler

¢ Compiles compact ROMable or disk-based applications

¢ Excellent error handling

» Produces headerless code, compiles from intermediate states,
and performs conditional compilation

» Cross-compiles to 8080, Z-80, 8088, 68000, 6502, 8051, 8096,
1802, 6303, 6809, 68HC11,34010, V25, RTX-2000

* No license fee or royalty for compiled applications

M | aboratory Microsystems Incorporated
Post Office Box 10430, Marina del Rey, CA 90295
Phone Cradit Card Orders to: (213) 306-7412
L FAX: (213) 301-0761

Forth Dimensions

N v

7T}

IDASH, FIND

ASSOCIATES

Forth Recruiters

70 Elmwood Ave./ Rochester, NY 14611/(716) 235-0168

Volume X1I, Number 3 35

variables and an analysis of their advan-
tages in writing a floating-point package.

John Redmond is an Associate Pro-

fessor of Organic Chemistry at
Sydney's Macquarie University. He
isa“...sometimes-evenings-when-I-
have-time programmer” whose chief
disappointment of 1988 consisted of
attending a plant pathology confer-
ence in Acapulco while Forth’s own
Charles Moore was visiting Sydney.
Mr. Redmond welcomes letters from
FD readers: 23 Mirool Street, West
Ryde, NSW 2114, Australia.

(Continued from page 30.)

data moves, and be doing them during the
time that the processor is not using mem-
ory.

Asa poor man’s emulator, it is a proven
concept. Since notall of us have accesstoa
$40,000 analyzer or emulator, the smart
RAM is a very powerful way to debug a
system. One thing that would be interesting
would be to unplug the RAM from anormal
system and plug in the smart RAM (along
with the appropriate handshake signals).
This is the inverse of what most emulators
do, since they unplug the processor and
emulate it. I think RAM is easier to emu-
late.

Rob Chapman s a software engineer
at IDACOM. He has used a 32-bit
Forth in several large projects over
the last two years, but now he is much
happier witha simpler Forthrunning
ona Forth engine.

L

O CONSTANT RD
1 CONSTANT WR
FILE FILE1l
FILE FILE2
: NAMEARG 32 WORD 0O OVER COUNT + C! 1+

(File dump utility which uses unbuffered file i/o)

.HEX <# # # #> TYPE SPACE ;

.ADDR CR <# [ASCII] : HOLD

4 %% #%##% ¥ TYPE 2 SPACES ;

.BYTES PAD SWAP O

DO COUNT .HEX 17-=

IF SPACE THEN LOOP DROP ;
: .CHAR DUP 32 < IF DROP [ASCII] . THEN EMIT ;
: .CHARS PAD SWAP 0 DO COUNT .CHAR LOOP DROP ;
: DLINE DUP .BYTES SPACE SPACE .CHARS ;

(Dump a file of any type, opened by low-level OPEN)
: DUMP NAMEARG RD OPEN CLS HEX 0 (offset)
BEGIN DUP (offset) .ADDR 16 + (bump offset)
OVER (file handle) PAD 16 READ
DUP (bytes read) DLINE
16 = NOT (last block) KEY 3 = OR UNTIL
DROP (offset) CLOSE ;
(example dump a:\forth\forst.tos)

(Utilities which use buffered file i/o)

(list a text file)

¢ LIST FILEl RD NAMFARG FOPEN CR
BEGIN FILEl GETC
DUP 0< (EOF) NOT WHILE EMIT REPEAT
DROP (EOF char) FILEl FCLOSE ;

(example: LIST <fname>)

(copy any file)
¢ COPY FILEl RD NAMEARG FOPEN
FILE2 WR NAMEARG FOPEN
BEGIN FILEl GETC DUP 0< (EOF) NOT
WHILE FILE2 PUTC REPEAT DROP
FILEl FCLOSE FILE2 FCLOSE ;
(example: COPY <sourcefile> <destfile>)

: CD NAMEARG CHDIR O< IF
(example: cd a:\forth\examples)

: BLKNAME GETDTA 30 + 12 32 FILL ;
: FIRST NAMEARG 47 SFIRST ;
: .FNAME GETDTA 12 TYPE ;

: DIR BLKNAME FIRST O< (error) NOT
IF CR .FNAME
BEGIN BLKNAME SNEXT 0< (error) NOT
WHILE .FNAME REPEAT
THEN ;
(example: dir a:*.tos)

.” cannot set up path ™ THEN ;

Forth Dimensions

36

Volume XII, Number 3

News from the GEnie Forth
RoundTable—As the working BASIS
being modified by the X3/J14 ANS Forth
Technical Committee comes closer to a
final document, some of the debate sur-
rounding Forth’s future standard seems to
be heating up. Recently, one of the hot
potatoes has been dynamic memory allo-
cation. There are those who think the cur-
rent tools used in Forth are more than
sufficient, and there are those who would
‘borrow’ concepts incorporated in C.

Read along in the two topic areas de-
voted to this exchange, and once you have
drawn your own conclusions, make them
known. You have only yourself to blame if
acourse is followed you do not agree with.

Category 10
Forth Standards

Topic 36
Memory spaces and position-independent
code

Message 11 (Ported from xCFBs)
From: DAVID BREEDING
Subject: Dynamic allocation

Although 1 consider dynamic alloca-
tion to be one of the highest priorities in the
new standard, I have yet to read anything
about it. I keep waiting for someone to
bring it up, but somehow no one ever does,
so I've finally gotten down to writing
myself. All of the so-called “modern” lan-
guages support some form of dynamic allo-
cation within the language itself. This
memory can be called from fast RAM,
cache, or even disk. All of this is transpar-
ent to the user.

One of the reasons, I heard, why col-
leges don’t use Forth for teaching is that it
leaves out this very thing. I'm not saying
thatadding DA will make colleges and uni-
versities start teaching Forth, but I bet
they’ll sit up and notice.

BEST OF
GENIE

GARY SMITH - LITTLE ROCK, ARKANSAS

Now, how to implement it...

First, let’s keep it simple. Two words,
DALLOT and UNALLOT. All this does is
return an address of n items and then returns
this address to a pool. Most of the work in
DA is easily accomplished using RAM past
HERE, and then feeding the memory back
(keeping a linked list of deallocated mem-
ory chunks) to HERE after UNALLOT.

Any specialized memory management
could be handled by the individual system,
only the standard words need to be there for
the programmers.

Colleges may not
teach Forth because it
leaves out dynamic
memory allocation.

Message 12
From: BRODRIGUEZ2

Huh. I guess C and Pascal aren’t “mod-
em” languages. Certainly there is no dy-
namic memory allocation “within the lan-
guage itself” in C; it’s part of the function
library. A distinction with a difference!
And, while it’s been years since I dusted off
my Jensen & Wirth, I seem to recall static
allocation in Pascal, too.

Local variables are dynamically allo-
cated in both languages, but this topic is
called “local variables” in X3J14 circles.

Not to say that dynamic allocation is
unnecessary. Nick Solntseff and I recently
implemented such a system for our Forth
work, using the same words with different
names: ALLOC and RELEASE, Soon to be
published in JFAR, we're told.

[agree, these seem to be the essential
primitives. (Damfino why C has so many

forms of alloc. Enlightenment please?)
Let me make one further suggestion: in
real-time environments it is beneficial to
force compaction/garbage collection at a
convenient (idle) time, rather than at the
usually critical moment when an alloca-
tionruns out of room. (Assuming here that
your system needs compaction or garbage
collection, and you’re desperate enough to
use such in a real-time problem.) Perhaps
a third word, COLLECT, should be de-
fined. Easy to make itano-op whenit’snot
needed.

But... this should not be bound up with
the notions of “what is the Forth language”
(like Lisp). This should be a standardized
libraryfunction. More power to the X3J14
TC for moving in this direction!

—Brad

Message 13 (Ported from xCFBs)
To: DAVID BREEDING
From: DARRYL BIECH
Subject: Dynamic allocation

Maybe I'm getting a little technical
here, but I'm wondering if you were im-
plying that the application will take care of
shrinking its claim on system memory
(say .COM files, for example) and moving
the stack out of the way, etc., prior to deal-
locations?
—d.b.
NET/Mail: British Columbia Forth Board
Bumaby, B.C., Canada
604-434-5886

Message 14 (Ported from xCFBs)
To: DARRYL BIECH
From: DAVID BREEDING
Subject: Dynamic allocation

That could all be handled on a system
level and does not need to be addressed at
the “standards” level. There are a lot of
ways to implement DA, but a lot of it
depends on the hardware setup of the sys-

Volume XII, Number 3

37

Forth Dimensions

tem. All I am proposing is a standard way
of doing DA. All of the particulars (like
caching and extended memory use) could
be handled by the programmers of the
compiler. The only thing that makes sense
to me is the inclusion of the two words
DALLOT and UNDALLOT. Which returns
an address for use, or returns it to the
“heap"’

It is a truly exciting subject...when I
was in college, we used DA extensively
(this was about five years ago). Using DA
and recursion, you can do some truly great
things that deal with huge amounts of data.
I have always regretted not having DA as a
part of the Forth language.

Message 15 (Ported from xCFBs)
To: BRODRIGUEZ2
From: RAY DUNCAN
Subject: Memory and PIC

Dynamic memory allocation is very
useful. All of the LMI Forth systems have
had this for several years. But I agree that it
should be viewed as an extension to the
language rather than part of the core lan-
guage (similar to its implementation as part
of the RTL in C) —it doesn’t make any
sense to require that this be supported in a
ROMmed ANSI Standard Forth kernel, for
example,
NET/Mail : LMI Forth Board
Los Angeles, California
213-306-3530

Message 16 (Ported from xCFBs)
To: JEFF CYNX
From: RAY DUNCAN
Subj: Comment

My injunction against this is both
worldly and spiritual. If you want your
program to run properly under multitasking
environments such as DesqView, Win 3,
08/2’s DOS box, etc., you should be well-
behaved in your use of memory. Not using
MALLOC means that you will not be able to
use new capabilities such as SHELL” and
that your program will not be easily port-
able to the higher-performance UR/
FORTH systems for DOS, 0S/2, or 32-bit
80386 protected mode.
NET/Mail ; LMI Forth Board
Los Angeles, California
213-306-3530

Message 17 (Ported from xCFBs)
To: DAVID BREEDING

From: DARRYL BIECH

Subject: Dynamic allocation

‘Why not have dynamic allocation as an
extension or “standard option,” which
would be palatable to both small and large
implementations of the language?

—d.b.

NET/Mail: British Columbia Forth Board
Bumaby, B.C., Canada

604-434-5886

Category 18
"comp.lang forth

Topic 86
Subject: Dynamic memory allocation

Message 1 (Ported from UseNet)

Path: willett!dwp

From: dwp@willett. UUCP (Doug Philips)

Newsgroups: comp.lang forth

Subject: Re: global storage of setjimp()/
longjmp()

Mitch Bradley writes:
“(...personally I find a“malloc”ed array
of jmp_buf’s treated as a stack of recov-
ery points more useful than the potential
uses of “foo,” but that’s just me.)”

Which is exactly the point. ANS Forth
CATCH and THROW implicitly perform this
stacking action for you, for free. You don’t
have to synthesize your own stack. The
nested handlers go on the return stack in a
very natural and easy-to-implement fash-
ion, and they are automatically removed
without any special care on the part of the
programmer.

For free?

Catch frames must interfere with uses of
the return stack in the same way that DO
LOOP indices do.

There must either be:

1) A pointer to the top-most catch frame.
2) A unique tag to mark catch frameson the
return stack.

Since no special care on the part of the
programmer is required, the first option
would require support in NEXT and the
second option would restrict the kinds of
temporaries shoved on the return stack.

Idon’tsee how itis free. Still, I suppose
that having a separate Catch/Throw stack
would be exceeding the charter of X3J14. In
fact, the scheme you describe must have
had some “common practice” to be
adopted, or is this not true?

I would like to hear more details about
how it’s supposed to work. (Maybe I should

wait until BASIS12 is put online.)
—Doug

P.S. This reminds me somewhat of the al-
loca controversy for C. (Allocate memory
on the stack so that procedure exit/
longjmp will automatically reclaim it.)

Message 2 (Ported from UseNet)
From: gary@softway.oz (Gary Corby)
Newsgroups: comp.lang forth
Subject: Re: C memory allocation

Mitch Bradley writes:
“(Damfino why C has so many forms
of alloc. Enlightenment please?)”

Some reasons:

1) History.

2) C library functions are not arbitrarily
constrained to be the “most primitive
possible” functions.

3) Different alignment requirements for
different data types.

Another reason: The actual system
calls used to change data segment space
allocation are brk(2) and sbrk(2). The first
sets an absolute boundary and the second
alters the boundary relative to the current
one. Malloc(), calloc(), talloc(), free(),
and friends all come down to brk() and
sbrk() in the end. There are “most primi-
tive possible” functions. So primitive, in
fact, that nobody in their right mind wants
to use them if malloc() or something like it
is available.

—Gary

Gary Corby (Friend of Elvenkind)
Softway Pty Ltd

ACSnet: gary@softway.oz
UUCEP: ...!uunet!softway.oz!gary

Message 3 (Ported from UseNet)

From: wmb@MITCH.ENG.SUN.COM
(Mitch Bradley)

Newsgroups: comp.lang forth

Subject: C memory allocation

Sender:
daemon@ucbvax. BERKELEY EDU

Gary Corby writes:

Another reason: The actual system calls
used to change data segment space al-
location are brk(2) and sbrk(2). The
firstsets an absolute boundary and the
second alters the boundary relative to

(Continued on page 41.)

Forth Dimensions

38

Volume XII, Number 3

REFERENCE SECTION

Forth Interest Group

The Forth Interest Group serves both
expert and novice members with its net-
work of chapters, Forth Dimensions, and
conferences that regularly attract partici-
pants from around the world. For member-
ship information, or to reserve advertising
space, contact the administrative offices:

Forth Interest Group

P.O. Box 8231

San Jose, California 95155

408-277-0668

Board of Directors

Robert Reiling, President (ret. director)
Dennis Ruffer, Vice-President

John D. Hall, Treasurer

Wil Baden

Jack Brown

Mike Elola

Robert L. Smith

Founding Directors
| William Ragsdale

{ Kim Harris

Dave Boulton

Dave Kilbridge
John James

In Recognition

Recognition is offered annually to a
person who has made an outstanding con-
tribution in support of Forth and the Forth
Interest Group. The individual is nomi-
nated and selected by previous recipients of
the “FIGGY.” Each receives an engraved
award, and is named on a plaque in the ad-
ministrative offices.

1979 William Ragsdale
1980 Kim Harris
1981 Dave Kilbridge
1982 Roy Martens
1983 John D. Hall
1984 Robert Reiling
1985 Thea Martin
1986 C.H. Ting

1987 Marlin Ouverson
1988 Dennis Ruffer
1989 Jan Shepherd

ANS Forth

The following members of the ANS
X3J14 Forth Standard Committee are avail-
able to personally carry your proposals and
concerns to the committee. Please feel free
to call or write to them directly:

Gary Betts

Unisyn

301 Main, penthouse #2
Longmont, CO 80501
303-924-9193

Mike Nemeth

CSC

10025 Locust St.
Glenndale, MD 20769
301-286-8313

Andrew Kobziar

NCR Medical Systems Group
950 Danby Rd.

Ithaca, NY 14850
607-273-5310

Elizabeth D. Rather

FORTH, Inc.

111 N. Sepulveda Blvd., suite 300
Manhattan Beach, CA 90266
213-372-8493

Charles Keane
Performance Packages, Inc.
515 Fourth Avenue
Watervleit, NY 12189-3703
518-274-4774

George Shaw

Shaw Laboratories

P.O. Box 3471

Hayward, CA 94540-3471
415-276-5953

David C. Petty

Digitel

125 Cambridge Park Dr.
Cambridge, MA 02140-2311

Forth Instruction

Los Angeles—Introductory and inter-
mediate three-day intensive courses in
Forth programming are offered monthly by
Laboratory Microsystems. These hands-
on courses are designed for engineers and
programmers who need to become profi-
cient in Forth in the least amount of time.
Telephone 213-306-7412.

On-Line Resources

To communicate with these systems, set
your modem and communication software
to 300/1200/2400 baud with eight bits, no
parity, and one stop bit, unless noted other-
wise. GEnie requires local echo.

GEnie

For information, call 800-638-9636

» Forth RoundTable
(ForthNet link*)
Call GEnie local node, then type M710
or FORTH
SysOps: Dennis Ruffer (D.RUFFER),
Scott Squires (S.W.SQUIRES), Le-
onard Morgenstern (NMORGEN-
STERN), Gary Smith (GARY-S)

*» MACH2 RoundTable
Type M450 or MACH2
Palo Alto Shipping Company
SysOp: Waymen Askey (D.MILEY)

BIX (ByteNet)
For information, call 800-227-2983
+ Forth Conference
Access BIX via TymeNet, then type j
forth
Type FORTH at the : prompt
SysOp: Phil Wasson (PWASSON)
» LMI Conference
Type LMI at the : prompt
Laboratory MicroSystems products

Yolume XII, Number 3

39

Forth Dimensions

Host: Ray Duncan (RDUNCAN)

PC Board BBS's devoted to Forth

(ForthNet links*)
CompuServe East Coast Forth Board
For information, call 800-848-8990 703-442-8695
» Creative Solutions Conference StarLink node 2262 on TymNet

Type !Go FORTH

SysOps: Don Colburn, Zach Zachariah,
Ward McFarland, Jon Bryan, Greg
Guerin, John Baxter, John Jeppson
Computer Language Magazine Confer-
ence

Type !|Go CLM

SysOps: Jim Kyle, Jeff Brenton, Chip
Rabinowitz, Regina Starr Ridley

Unix BBS’s with forth.conf (ForthNet
links* and reachable via StarLink node
9533 on TymNet and PC-Pursuit node
casfa on TeleNet.)

WELL Forth conference .
Access WELL via CompuserveNet
or 415-332-6106

Fairwitness: Jack Woehr (jax)
Wetware Forth conference
415-753-5265

Fairwitness: Gary Smith (gars)

PC-Pursuit node dcwas on TeleNet
SysOp: Jerry Schifrin

 British Columbia Forth Board
604-434-5886

512-323-2402

StarLink node 1306 on TymNet
SysOps: S. Suresh, James Martin, Anne
Moore

Harris Semiconductor Board
407-729-4949

StarLink node 9902 on TymNet (toll
from Post. St. Lucie)

SysOp: Jack Brown
¢ Real-Time Control Forth Board
303-278-0364

Non-Forth-specific BBS’s with extensive
Forth Libraries
e Twit’s End (PC Board)

StarLink node 2584 on TymNet
PC-Pursuit node coden on TeleNet
SysOp: Jack Woehr

Other Forth-specific BBS's

« Laboratory Microsystems, Inc.
213-306-3530
StarLink node 9184 on TymNet
PC-Pursuit node calan on TeleNet
SysOp: Ray Duncan

* Knowledge-Based Systems
Supports Fifth
409-696-7055

» Druma Forth Board

501-771-0114

1200-9600 baud

StarLink node 9858 on TymNet
SysOp: Tommy Apple

College Comer (PC Board)
206-643-0804

300-2400 baud

SysOp: Jerry Houston

Psymatic BBS

Sunnyvale, California
408-992-0372

300 - 2400 baud

This is a programmer’s board with a
large Forth area.

16-BIT FORTH DEVELOPMENT SYSTEM

UPPER DECK FORTH $49

» Based on Forth-83 Standard

* Fully segmented architecture

* Uses ordinary ASCII text files

* Direct threaded code with top of stack in
register for fast execution

* Compiles 32K file in 6 seconds on 4.77 MHz
IBM PC

* Built-in multi-file full screen editor

» Assembler, decompiler, source-level debugger

* Tumkey application support, no royalties

» Complete documentation

* For IBM PC/XT/AT and compatibles with 256K,
hard disk or floppy, DOS 2.0 or later

CA residents add sales tax.

UPPER DEC!% SYSTEMS
Ne——

Add $3 for shipping and handling (outside USA $15).

The development sys-
tem consists of a two-
board set. The target
board can be used in
astand alone mode as
a single chip unit with
a FORTH kernel and
UE to 32K byte on-
chip eprom and 2K
ram or with a piggy-
back memory expan-
sionboard with either
64K bytes of 16 bit
ram/rom memory,
64K bytes of 8-bit
ram/rom (32K/32K)
memory or 32K bytes
of 8-bit ram memory.

MITSUBISHI M37700

The target board has

two RS232/RS422 serial ports, sockets for 8 buffer IC’s, two 40 pin headers for
/O or expansion, and battery backup for both the memory on the CPU and alt

of the expansion board ram.
The 16-bit single chig

watchdog timer, 68 I/

Mitsubishi M37700 family has eight 16-bit timers, a
lines, two UARTS (synch or asynch), hardware multip-

ly and divide, nineteen interrupts, and an 8-bit A-D converter with an 8 chan-
nel multiplexer, all with a typical power dissipation of 30 mW. They are available
in both 8 Mhz and 16 Mhz versions and with 512 to 2K bytes of on-chip ram and
up to 32K bytes of on-chip ROM or EPROM.

Also available is a very low cost ($125) prom programmer that can be used with
the development system to burn either 27x series of EPROM’s or, with an
adapter, the eprom version of the 7700 chips. Full development systems with
FORTH source code for assembler, disassembler, editor, prom programmer

. and many other utilities as well as
P.0O. Box 263342, Escondido, CA 92026 a 6K FORTH kemnel in rom are| HORNE ELECTRONICS, Tic,
(619) 741-1075 available NOW! Target Board 33122 181st. Ave. S.E.
prices start at $200.00. Package Auburn, Wa, 98002
prices and quantity discounts 206) 735-0790
available also. F (206) 735-4767
Forth Dimensions 40 Volume XII, Number 3

International Forth BBS's

« Melboume FIG Chapter
(03) 809-1787 in Australia
61-3-809-1787 international
SysOp: Lance Collins

+ Forth BBS JEDI
Paris, France
3336431515
7 data bits, 1 stop, even parity

« Max BBS (ForthNet link*)
United Kingdom
0905 754157
SysOp: Jon Brooks

+ Sky Port (ForthNet link*)
United Kingdom
44-1-294-1006
SysOp: Andy Brimson

+ SweFIG
Per Alm Sweden
46-8-71-35751

« NEXUS Servicios de Informacion,
S.L.
Travesera de Dalt, 104-106, Entlo.
4-5
08024 Barcelona, Spain
+ 34 32103355 (voice)
+ 34 32147262 (modem)
SysOps: Jesus Consuegra, Juanma
Barranquero
barran@ nexus.nsi.es (preferred)
barran@nsi.es
barran (on BIX)

This list was accurate as of August 1990. If
you know another on-line Forth resource,
please let me know so it can be included in
this list. I can be reached in the following
ways:

Gary Smith

P. O. Drawer 7680

Little Rock, Arkansas 72217
Telephone: 501-227-7817

GEnie (co-SysOp, Forth RT and Unix
RT): GARY-S

Usenet domain.: uunet! wugate!
wuarchive!texbell!

(Continued from page 32.)

portable to other 83-Standard Forths, as
long as the return-address-save sequences
in INIT-TEST and FINISH-TEST are
changed to save and restore only a single
return stack element for most other Forths.
Also, TEST: and ; DONE should be rede-
fined for use with other dictionary struc-
tures.

Interactive testing is important and use-
ful (and, in fact, there is no reason why
these tools cannot be used as an interactive
testing format). However, once initial test-
ing is done, it is often useful to have a
permanent test suite in a consistent and
readable format. Portions of many pro-
grams are so crucial to system operation
that they merit a full validation suite to
prove correct operation. At Harris, valida-
tion suites are being used on the instruction
sets of some of the RTX processors. The
tools presented here provide a starting point
for creating a validation suite for a variety
of applications.

Philip Koopman Jr.is a senior scien-
tist at Harris Semiconductor and an
adjunct professor at Carnegie Mel-
lon University. The opinions in this
article are his, and do not necessar-
ily reflect the views of Harris Semi-
conductor.

(Continued from page 38.)

the current one. Malloc(), calloc(), tal-
loc(), free() and friends all come down
to brk() and sbrk() in the end. So there
are “most primitive possible” func-
tions. So primitive in fact that nobody
in their right mind wants to use them if
malloc() or something like it is avail-
able.

Note that, while this is true in Unix, itis
not necessarily true in other operating sys-
tems. Consequently, while sbrk() is cer-
tainly the primitive memory allocation
operation for Unix, it does not necessarily
even exist on all C implementations. In
particular, I would expect that it would be
difficult to properly implement sbrk() on
the Amiga (probably the Amiga C library
simulates it with some restrictions). sbrk()
assumes that each process has its own ad-
dress space, which is not generally true. Use
of sbrk() is not necessarily portable.

By the way, since brk() can be imple-
mented in terms of sbrk(), sbrk() is the true
primitive on Unix systems. In many Unix
implementations, sbrk() is the true system
call, and brk() is implemented as a library
routine, a thin veneer around sbrk().
—Mitch Bradley

To suggest an interesting on-line
guest, leave e-mail posted to GARY-§
on GEnie (gars on Wetware and the
Well), or mail me a note. I encourage
anyone with a message to share 10
contact me via the above or through
the offices of the Forth Interest
Group.

ADVERTISERS INDEX

ark!lrark!gars
S — Academic Press, Inc. 14 Institute for Applied 26,27
*ForthNet is a virtual Forth net- Dash, Find Associates 35 Forth Research
work that links designated message Laboratory Microsystems 35
bases in an attempt to provide Forth Interest Group 44
greater information distribution to Miller Microcomputer Services 24
. . FORML 33
the Forthusersserved.Itisprovided Next G tion Svst ”
courtesy of the SysOps of its various Horne Electonics, Inc. 40 ext Liencration Systems
Sili C 2
Harvard Softworks 16 ticon L-omposers
Upper Deck Systems 40
Volume XII, Number 3 41

Forth Dimensions

The FIG Chapters listed below
are currently registered as active
with regular meetings. If your
chapter listing is missing or incor-
rect, please contact Kent Safford at
the FIG office’s Chapter Desk.
This listing will be updated in each
issue of Forth Dimensions. If you
would like to begin a FIG Chapter
in your area, write for a “Chapter
Kit and Application.” Forth Inter-
est Group, P.O. Box 8231, San
Jose, California 95155

US.A.
« ALABAMA
Huntsville Chapter

Tom Konantz
(205) 881-6483

« ALASKA
Kodiak Area Chapter
Ric Shepard
Box 1344
Kodiak, Alaska 99615

+ ARIZONA
Phoenix Chapter
4th Thurs., 7:30 p.m.
Arizona State Univ.
Memorial Union, 2nd floor
Dennis L. Wilson
(602) 381-1146

+ ARKANSAS
Central Arkansas Chapter
Little Rock
2nd Sat., 2 p.m. &
4th Wed., 7 p.m.
Jungkind Photo, 12th & Main
Gary Smith (501) 227-7817

+ CALIFORNIA
Los Angeles Chapter
4th Sat., 10 am.
Hawthormne Public Library
12700 S. Grevillea Ave.
Phillip Wasson
(213) 649-1428

FIG
CHAPTERS

North Bay Chapter

2nd Sat., 10 a.m. Forth, Al

12 Noon Tutorial, 1 p.m. Forth
South Berkeley Public Library
George Shaw (415) 276-5953

Orange County Chapter

4th Wed., 7 p.m.

Fullerton Savings

Huntington Beach

Noshir Jesung (714) 842-3032

Sacramento Chapter
4th Wed., 7 p.m.
1708-59th St., Room A
Bob Nash

(916) 487-2044

San Diego Chapter
Thursdays, 12 Noon
Guy Kelly (619) 454-1307

Silicon Valley Chapter
4th Sat., 10 a.m.

H-P Cupertino

Bob Barr (408) 435-1616

Stockton Chapter
Doug Dillon (209) 931-2448

COLORADO

Denver Chapter

1st Mon., 7 p.m.

Clifford King (303) 693-3413

CONNECTICUT

Central Connecticut Chapter
Charles Krajewski

(203) 344-9996

FLORIDA

Orlando Chapter

Every other Wed., 8 p.m.
Herman B. Gibson

(305) 8554790

Southeast Florida Chapter
Coconut Grove Area
John Forsberg (305) 252-0108

Tampa Bay Chapter
1st Wed., 7:30 p.m.
Terry McNay (813) 725-1245

GEORGIA

Atlanta Chapter

3rd Tues., 7 p.m.

Emprise Corp., Marietta

Don Schrader (404) 428-0811

ILLINOIS

Cache Forth Chapter
Oak Park

Clyde W. Phillips, Jr.
(708) 713-5365

Central Illinois Chapter
Champaign
Robert Illyes (217) 359-6039

INDIANA

Fort Wayne Chapter
2nd Tues., 7 p.m.

I/P Univ. Campus
B71 Neff Hall

Blair MacDermid
(219) 749-2042

IOWA

Central Iowa FIG Chapter
1st Tues., 7:30 p.m.

Iowa State Univ.

214 Comp. Sci.

Rodrick Eldridge

(515) 294-5659

Fairfield FIG Chapter
4th Day, 8:15 p.m.
Gurdy Leete (515) 472-7077

MARYLAND
MDFIG
Michael Nemeth
(301) 262-8140

MASSACHUSETTS

Boston Chapter

3rd Wed., 7 p.m.

Honeywell

300 Concord, Billerica

Gary Chanson (617) 527-7206

MICHIGAN
Detroit/Ann Arbor Area
Bill Walters

(313) 7319660

(313) 861-6465 (eves.)

MINNESOTA
MNFIG Chapter
Minneapolis

Fred Olson

(612) 588-9532

MISSOURI

Kansas City Chapter

4th Tues., 7 p.m.

Midwest Research Institute
MAG Conference Center
Linus Orth (913) 236-9189

St. Louis Chapter

1st Tues., 7 p.m.
Thornhill Branch Library
Robert Washam

91 Weis Drive

Ellisville, MO 63011

NEW JERSEY

New Jersey Chapter
Rutgers Univ., Piscataway
Nicholas Lordi

(201) 338-9363

NEW MEXICO
Albuquerque Chapter

1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico

Jon Bryan (505) 298-3292

Forth Dimensions

42

Volume XII, Number 3

+ NEW YORK
Long Island Chapter
3rd Thurs., 7:30 p.m.
Brookhaven National
Laboratory
AGS dept., bldg. 911, lab rm.
A-202
Irving Montanez
(516) 282-2540

Rochester Chapter

Odd month, 4th Sat., 1 p.m.
Monroe Comm. College
Bldg. 7, Rm. 102

Frank Lanzafame

(716) 482-3398

« OHIO
Cleveland Chapter
4th Tues., 7 p.m.
Chagrin Falls Library
Gary Bergstrom
(216) 247-2492

» Columbus FIG Chapter
4th Tues.
Kal-Kan Foods, Inc.
5115 Fisher Road
Terry Webb
(614) 878-7241

Dayton Chapter
2nd Tues. & 4th Wed., 6:30

p.m.
CFC. 11 W. Monument Ave.
#612
Gary Ganger (513) 849-1483

« OREGON
Willamette Valley Chapter
4th Tues., 7 p.m.
Linn-Benton Comm. College
Pann McCuaig (503) 752-5113

« PENNSYLVANIA
Villanova Univ. Chapter
1st Mon., 7:30 p.m.
Villanova University
Dennis Clark
(215) 860-0700

+ TENNESSEE
East Tennessee Chapter
Oak Ridge
3rd Wed., 7 p.m.
Sci. Appl. Int’l. Corp., 8th FL.
800 Oak Ridge Turnpike
Richard Secrist
(615) 483-7242

+ TEXAS
Austin Chapter
Matt Lawrence
PO Box 180409
Austin, TX 78718

Dallas Chapter

4th Thurs., 7:30 p.m.
Texas Instruments

13500 N. Central Expwy.
Semiconductor Cafeteria
Conference Room A

Clif Penn (214) 995-2361

Houston Chapter

3rd Mon., 7:30 p.m.
Houston Area League of PC
Users

1200 Post Oak Rd.
(Galleria area)

Russell Harris
(713)461-1618

+ VERMONT
Vermont Chapter
Vergennes
3rd Mon., 7:30 p.m.
Vergennes Union High School
RM 210, Monkton Rd.
Hal Clark (802) 453-4442

« VIRGINIA
First Forth of Hampton
Roads
William Edmonds
(804) 898-4099

Potomac FIG

D.C. & Northemn Virginia
1st Tues.

Lee Recreation Center
5722 Lee Hwy., Arlington
Joseph Brown

(703) 4714409

E. Coast Forth Board
(703) 442-8695

Richmond Forth Group
2nd Wed., 7 p.m.

154 Business School
Univ. of Richmond
Donald A. Full

(804) 739-3623

« WISCONSIN
Lake Superior Chapter
2nd Fri., 7:30 p.m.
1219 N. 21st St., Superior
Allen Anway (715) 394-4061

INTERNATIONAL

+ AUSTRALIA
Melbourne Chapter
1st Fri., 8 p.m.

Lance Collins

65 Martin Road

Glen Iris, Victoria 3146
03/889-2600

BBS: 61 3 809 1787

Sydney Chapter

2nd Fri., 7 p.m.

John Goodsell Bldg., RM
LG19

Univ. of New South Wales
Peter Tregeagle

10 Binda Rd.

Yowie Bay 2228
02/524-7490

Usenet
tedr@usage.csd.unsw.oz

BELGIUM
Belgium Chapter
4th Wed., 8 p.m.
Luk Van Loock
Lariksdreff 20
2120 Schoten
03/658-6343

Southern Belgium Chapter
Jean-Marc Bertinchamps
Rue N. Monnom, 2

B-6290 Nalinnes
071/213858

CANADA

BC FIG

1st Thurs., 7:30 p.m.

BCIT, 3700 Willingdon Ave.
BBY, Rm. 1A-324

Jack W. Brown

(604) 596-9764

BBS (604) 434-5886

Northern Alberta Chapter
4th Sat,, 10a.m.-noon

N. Alta. Inst. of Tech.

Tony Van Muyden

(403) 486-6666 (days)
(403) 962-2203 (eves.)

Southern Ontario Chapter
Quarterly, 1st Sat., Mar., Jun.,
Sep., Dec., 2 p.m.

Genl. Sci. Bldg., RM 212
McMaster University

Dr. N. Solntseff

(416) 525-9140 x3443

ENGLAND

Forth Interest Group-UK
London

1st Thurs., 7 p.m.
Polytechnic of South Bank
RM 408

Borough Rd.

D.J. Neale

58 Woodland Way
Morden, Surry SM4 4DS

FINLAND

FinFIG

Janne Kotiranta
Arkkitehdinkatu 38 ¢ 39
33720 Tampere
+358-31-184246

- HOLLAND
Holland Chapter
Vic Van de Zande
Finmark 7
3831 JE Leusden

« ITALY
FIG Italia
Marco Tausel
Via Gerolamo Forni 48
20161 Milano
02/435249

+ JAPAN
Japan Chapter
Toshi Inoue
Dept. of Mineral Dev. Eng.
University of Tokyo
7-3-1 Hongo, Bunkyo 113
812-2111 x7073

« NORWAY
Bergen Chapter
Kjell Birger Faeraas,
47-518-7784

« REPUBLIC OF CHINA
R.O.C. Chapter
Chin-Fu Liu
SF, #10, Alley 5, Lane 107
Fu-Hsin S. Rd. Sec. 1
TaiPei, Taiwan 10639

« SWEDEN
SweFIG
Per Alm
46/8-929631

» SWITZERLAND
Swiss Chapter
Max Hugelshofer
Industrieberatung
Ziberstrasse 6
8152 Opfikon
01 810 9289

« WEST GERMANY
German FIG Chapter
Heinz Schnitter
Forth-Gesellschaft C.V.
Postfach 1110
D-8044 Unterschleissheim
(49) (89)317 3784
Munich Forth Box:

(49) (89) 725 9625 (telcom)

SPECIAL GROUPS

» NC4000 Users Group
John Carpenter
1698 Villa St.
Mountain View, CA 94041
(415) 960-1256 (eves.)

Volume XII, Number 3

43

Forth Dimensions

NEW FROM THE FORTH INTEREST GROUP

STACK
COMPUTERS

Philip J. Koopman, Jr.

—Vev
L« ¢\' /
%"4" | - /\ AN \ z

STACK COMPUTERS
the new wave

by Philip J. Koopman, Jr.

This book presents an alterna-
tive to Complex Instruction Set
Computers (CISC) and Re-
duced Instruction Set Comput-
ers (RISC) by showing the
strengths and weaknesses of
stack machines.

$62.00

All About
FORTH

An Annotated Glossary
Glen B. Haydon

Third Edition
REVISED AND UPDATED

Includes
COMMON USAGE
STANDARDS DOCUMENTATION

FOUR IMPLEMENTATIONS

ALL ABOUT FORTH
the 3rd Edition

by Glen B. Haydon

An Annotated glossary of most
Forth words in common usage,
including Forth-79, Forth-83,
F83, F-PC, MVP-FORTH. Im-
plementation examples in high-
level Forth and/or 8086/8088
assembler, and useful com-
mentary, are given for each

" $90.00

NOW AVAILABLE!

SEE ORDER FORM INSIDE

Forth Interest Group
P.O.Box 8231

Second Class
San Jose, CA 95155

Postage Paid at
San Jose, CA

