

0 p
SC/FnX

0 ~
~ O O ~ ~ ~ O O O O O O O O O O O O O O O O O O O ~ . , S ~ C ~ ~ ~ ~ ~ ~ O O O ~ ~ O O O O O O O O O O ~ ~ ~ ~ ~ O O] , ~ O

SRAM

SRAM

EPROM SRAM

A SBC32 (C) 1990 by

SILICON COMPOSERS
Introduces the

SC/FOzm Single Board Computer32
Using the SC32tm Forth Chip

SC/FOX SBC32 (Single Board Computer32) SCIForth32 Interactive Language
-16, 20, or 24 MHz input clock operation. *Forth 83 standard with 32-bit extensions.
-64K to 512K bytes 0-wait-state SRAM. *Vectored I/O and recursion.
*64K bytes of shadow EPROM. -Supports ASCII text file or block source code.
*SC/Forth32 in EPROM included. *Double number (64-bit) support.
-56-Kbaud RS232 serial port. *Extended control structures.
*Two 50-pin application headers. *Byte, word, and long word access.
-4 Layer, Eurocard size: lOOmrn by 160mm. *Microcode support for custom SC32 instructions.
*Optional prototyping plug-on board. *Easy turnkey system generation.
*Retail from $995 wyi SC/Forth32. *Compatible with SC/Forth for RTX 2000.

SC32 Forth Chip SC/FOX Development System
032-bit CMOS microprocessor in 85-pin PGA. *MS DOS screen editor with pull-down menus.
-1-cycle instruction execution. *Load and run from editor capability.
*Nan-multiplexed 32-bit adr bus & data bus. *Program spawning with exit back to editor.
-16 Gbyte contiguous data space. *Multiple file loading.
-2 Gbyte non-segmented code space. *Advanced block copy and move feature.

Ideal for embedded-systems control, high precision numercial processing, data acquisition,
and process control applications. For additional information, please contact call us at:

SILICON COMPOSERS INC, 208 California Avenue, Palo Alto, CA 94306 (415) 322-8763

Forth Dimensions 2 Volwne XII, Nwnber 2

I

- - - -- -- - -

F O R T H
D I M E N S I O N S

m
UPSCALE NUMBER INPUT - GLENN LZNDERMAN

8
In addition to number input, this package includes formatted number output, number printing, and number-to-formatted-
string conversions. It comes with a test suite to validate your own implementation of these features, and to inspire you with
ideas. This article builds on earlier work by MikeElola, using user-friendly "picture strings" for numeric output and input.

m
EXTENSIBLE OPTIMIZING COMPILER - ANDREW SCOTT

I4

B Are you ever going to face the challenge of that fast-and-fancy C code? Put away your toys and roll out your own turbo-
charged Forth! This method combines typical Forth phrases into equivalent native instructions. It doesn't require "smart"
Forth primitives or extensive changes to the outer interpreter. Plus, the optimizer is extensible, permitting new rules to
be added at compile time.

m
FORST: A 68000 NATIVE-CODE FORTH - JOHN REDMOND

20
This begins a three-part series about a 32-bit, subroutine-threaded Forth for the Atari ST, whose OS "...is pretty much
a 68000 clone of MS-DOS." The system has a number of interesting and unique characteristics, but attention has been
given to compatibility with existing source code. Noting the perceived limitations of traditional Forth disk 110, the author
also incorporates multiple files and redirectable buffered YO. -

DICTIONARY STRUCTURES AND FORTH - WU QIAN
26

One dictionary, a pair of stacks, and a dictionary-management system comprise Forth. The author discusses dictionary
structures in general, and sheds light onForth7s interior landscape by comparing it to systems that are more strictly modular
or hierarchical in nature. His premise: you will use Forth more effectively and more expertly if you better understand its
underpinnings. -

INTERACTIVE CONTROL STRUCTURES -JOHN R. HAYES
28

This article describes an easy way to provide control structures that behave consistently, whether interpreted or compiled.
If mere consistent behavior doesn't convince you to implement these routines--which may become indispensable-here
are three sample uses for them:
8 0 do i . loop
create squares 100 0 do i i * , loop
Forth-79? if " Forth83-emulator" Load-file then

=
METACOMPILE BY DEFINING TWICE - CHESTER H. PAGE

31
This metacompiler puts the host Forth in out-of-the-way memory to create a new Forth dialect in normal memory. After
one complete pass through all new definitions, a second pass overwrites each with the final addresses. This technique
maintains the correct links between words, and sees that the proper vocabularies are searched in each pass.

Editorial
4

Letters
5

m
Advertisers Index Reference Section

19 39

Best of GEnie
36

FIG Chapters
42-43

Volume XII, Number 2 3 Forth Dirnensiom

Warning-whether you are a moder-
ately proficient or a profoundly immodest
Forth programmer, you'll find some chal-
lenges herein. A couple of our contents-
page thermometers &ost shattered, but
some of you wanted to sink your teeth into
advanced topics.. .

Phil Koopman, Jr. suggested in our last
issue-and plenty of working, real-world
evidence supports him-that Forth is the
language of choice for embedded control
systems. But now Wu Qian explains
Forth's underlying structure in a way that
makes it seem the ideal design-and-con-
struction kit for operating systems. Every
programmer seems to have his own idea
about what Forth is and what it does best. It
brings to mind Kim Harris' early article in
Dr. Dobb's Journal (1981), still the semi-
nal description of 'The Forth Philosophy"
in the minds of many. It was amusing then
to think that some people couldn't decide
whether Forth was a language, an operating
system, a way of thinking, or a metaphor.

Forth still retains a mutative, slippery
kind of strength that is hard to convey to the
uninitiated. That is why it's so tough to sell,
and why Forth marketing pitchesof the past
often used an "all things to all people" line
that no one took seriously. Of course we
could make Forth into something more
graspable and less elusive; but that, we
suspect, is no longer Forth. We ate still
unable to say in meaningful specifics just
what Forth is, unable to agree on any less-
than-global description.

Phil's idea, applied expertly, could
bring Forth into the spotlight. NASA's
Douglas Ross evidently agrees, for he
wrote a vociferous letter to Electronic De-
sign in response to an editorial titled.
"EmbeddedF'rogramming: C or Ada?" that
only passingly mentions Forth and Pascal.
As Douglas points out, "Forth, for those

Forth Dimensions
Published by the

Forth Interest Group
Volume XII. Number 2

JulyIAugust 1990
Editor

Marlin Ouverson
Advertising M m g e r

Kent Safford
Design and Production

Berglund Graphics

Forth Dimensions 4 Volume XII, Number 2

who don't know, was created in the early
1970s by Charles Moore to specifically
address the of control
applications, in an interactive and efficient

Forth has been the language of
choice 'embedded' in processors to control
video games, washing machines, calcula-
tors* radio telesco~es% and
systems. It has also been written to run On
probably the widest array of processors
known." If you have access to back issues
of that magazine* see the complete letter in
the May 11,1989 issue. (The added italics
are mine, in reference to the Koopman
article.)

Mr. ROSS also has a letter in this issue of
Forth Dimensions, but related to the Sieve
algorithm. Finding prime numbers is one of
those programmer's perennials, it always
seems to elicit reader response and rebuttal.
Check our letters section for the latest on
the topic and some interesting code.

--Marlin Ouverson
Editor

Reviewers' Remarks
we are please, to bring to our pages

another prize-winning Forth author. An-
drew Scott's "Extensible Optimizer for
Compiling Forth" won the award for Best
Paper at the 989 Conference in
Monterey, California. He and John Red-
mend, whose ultimately optimized tour de
ForSTis featured in this issue, each present
an optimizable, subroutine-threadedForth.
Unlike Redrnond's work on the ST, Scott's
is meant to be ported to many different
microprocessors. Both authors present us
with some work showing
that Forth does not suffer in terms
speed compared to languages. These
may tllm out to be breakthrough develop-
men&; readers are encouraged to study
them and respond.

Forth Dimensions welcomes editorialmate-
letters to the editor, and comments from its

readers. No responsibility is assumed for accu-
racy of submissions.

Subscription to Forth Dimemions is in-
cluded with membership in the Forth Interest
Group at 530 per year (542 For
membership, change of address, and to submit
items for the address is: Forthhter-
est Group, P.O. Box 8231. San Jose, California
95155. *-native offices and adversing

408-277-0668.
C o p ~ g h t @ 1990 by Forth Interest Group,

hc. contained in this periodical
(but not the code) is copyrighted by the individ-
ual authors of the articles and by Forth Interest
Group. Inc.. respectively. Any reproduction or
use of this periodical as it is compiled or the ar-
ticles, except reproductions for non-commer-
cia1 purposes, without the written permissionof
Forth Interest Group, Inc. is a violation of the
Copyright Laws. Any code bearing a copyright
notice, however, can be used only with permis-
sion of the copyright holder.

About the Forth Interest Group
The Forth Interest Group is the association

of pgr-ers. managers, and engineers who
create practical. Forth-based solutions to real-
world needs. Many research hardware and soft-
ware that win advance the general State

of the FIG provides a climate of intencsmd
exchange and benefits intended to assist eixh of
;, members. Publications, conferences, semi-
.,,, telecommunications, and area
,,kgs are among its activities.

"Forth Dimensions (ISSN 0884-0822) is
published bimonthly for $24/36 per year by the
Forth Interest Group. 1330 S. Bascorn Ave..
Suite D, San Jose, CA 95128. Second-class
postage paid at San Jose. CA. POSTMASTER:
Send address changes to Forth Dimemiom,
P.O. Box 8231. San Jose. CA 95155."

Poly-Lingual FIG?
In the Forth community, speaking about

other languages isn't a taboo (maybe be-
cause each of us is using his own Forth
extension or Forth-like language). So usu-
ally Forth people are curious about other
languages; for one, I would like to include
any good idea in my Forth system. It might
be good for the Forth Interest Group to offer
documentation about any existing lan-
guage, especially those for which it is diffi-
cult to find such details. At various times,
Forth articles refer to Neon, Reptil, PIS-
TOL, Stoic, Sphere, Magic-L, etc., but I
don't know where to find documentation.

Another idea is to extend the name of
the Forth Interest Group to FLIG-Forth &
Languages Interest Group. The Forth com-
munity is a very good multi-language fo-
rum; why don't we institutionalize that
fact?

Giorgio Kourtis
Via Arneglia 119
16136 Genova
Italy

A Smaller Prime Thousand...
Our last issue contained a letter titled
"Fast Thousand Seems Slow," in which
Marc Hawley presents his improvement to
the Eratosthenes Sieve code printed withan
earlier letter from Allan Rydberg (FD XI1
5). The following writer makes the same im-
provements, but in a digerent dialect and
with subtle digerences that Sieve sifters
may find of interest.

Dear Sirs,
.... I will describe an optimized version

of the original [Sieve]. . . The algorithm
finds all prime numbers smaller than a cer-
tain limit, rather than finding a given num-
ber of primes. To each integer up to this

Listing One. Scolnicov's smaller thousand.

SCR # 7 7 H
0 (Fr-ator;th~)--icne;' S-ieve Progr-am by Ar ie l " ' . isov)

2 10000 CONSTANT NPRIMES
3 CREATE PRIMES NPRIES 8 / 1 t ALLOT
4 tiEX
5 CRCATE BIN-TBL 0102 , 0408 , 1020 , 4080 ,
6 DECIMAL
7 . 2- BIN-TBI- + C@ ,
8 CET (i --) 8 /MOD PRIMES + DUP C@ ROT 2- OR SWAP C! ;
9 . GET (i -- bit-nonzero) 8 / K O PRIMES .(C@ SWAP 2- ANP

10
11 ELIM (Factor- -- ; eliminates a l l prcducts o f factrr)
12 DUP . " E l in1 inatirig prcrlucts o f " . . " . . . " CR
13 DUP DUP '* NPRIMES SWAP (factor fr-cm t o)
14 DO I SET DUP +LOOP DROP ;
15

SCR # 8 8 H
0 (SIEVE set- #2)
1
2 VAR 1ABL.E PR IMES-FOUND
3 C i F K I - - . , sieves table)
4 BEGIN B UP W T NOT I F DUP ELIM THEIN
r DUP DUF NPRIMES W I L E 1+ REPEAT DROP ,

P R I E S 0 PRIMES--FOUND ! NPRIMES 1 DO
I GET NOT I F I 3 R 1 PRIMES-FOUND + ' THEN LOOP

9 I N I T PRIMFS NPRIWS 8 / 1+ 0 F I L L ,
10
11 F IND-PRIES I N I r SIEVE P L I E S CR .
* n

limit, we store a flag. We then proceed to
eliminate all products of prime numbers:
starting with 2 as our prime, we mark in our
array the numbers 4, 6, 8, ... as unprime.
Now we eliminate all products of three: 6,9,
12, .. . Examining our array, we find 4 is
unprime, so there is no need to eliminate its
products, these having already been elimi-
nated by one (or more) of its prime factors
(in this case, 2). Continuing, we eliminate
10, 15,20, ..., then 14,21,28, ..., etc. We
observe, however, that we can begin elimi-
nating products of any prime number p at
p"2, since any product of p which is smaller
than p"2 must also be a product of a lower

prime, and will thus already have been
eliminated. We end the process when the
square of the prime we are about to use for
our eliminations is largerthan our limit. All
we now have to do is print the prime num-
bers.

I enclose a short (two screens) Forth
implementation of the algorithm, written
for clarity rather than speed. It is written in
a Forth-79lfig-FORTH hybrid, but does
not contain any irregular features. All
primes up to 10,000 are found and printed.
Since there are 1230primes up tothis limit,
comparisons can be made. On my 2 MHz
6502 system (a BBC computer running

Volume XII, Number 2 Forth Dimemiom

Acornsoft FORTH), the process takes 114
seconds, with half of this time used by
. PRIMES and only 57 seconds for finding
the primes. Doubtless, the program will run
much faster on the Amiga. Memory used is
1623 bytes, since only one bit is used to
represent each number. The running time
for the program grows as the square root of
the limit number, compared with linear
times for Mr. Rydberg's program. How-
ever, storage space does grow linearly in
my program, while Mr. Rydberg's grows
far less.

Finally, a few comments on Mr.
Rydberg's comments:

Division on a computer is carried out in
exactly the way he describes, except that
the quotient is also calculated on the way.
A primitive MOD should, therefore, be
faster than his test.
To find the squares of the primes in a
different way, utilize the congruences
1A2 = 1,2"2 = 1+3,3Y = 1+3+5,. . ., nA2
= 1+3+ ...+ 2*n-1. Thus, to find the
square of the newly found prime p, use
the square of the previous prime q: p 2 =
qA2 + (2*q+l) + (2*q+3) + .. . + (2*p-1).
It is unclear, however, if this will be
faster for large primes, since they are
widely dispersed.
In testing the integers one-by-one for
primeness, only integers of the form
6&1 need to be tested, since any other
remainder after division by 6 means the

Listing Two. Ross' fastest 0) thousand.

number is divisible by 2 or 3. (Thanks to
my younger brother for this.)

Yours,
Ariel Scolnicov
Nof Harim 96, Box 2747
Mevasseret Zion
Israel 90805

... and the Fastest (?) Thousand
Dear Sir,

In the November 1989 edition ofBYTE,
Milton Pope's letter presents a fast Sieve
algorithm in BASIC based on the work pre-
sented by Nick Pelling in a letter from the
May 1989 issue of that magazine. He
showed two versions of the algorithm and
suggested a third, even more efficient, al-
gorithm.

Presented here is a fast Sieve using all
the ideas suggested by Mr. Pope. It uses
only prime numbers to test multiples
against, starting at the square of the prime,
up to the square root of the array being
searched.

The array represents only the odd num-
bers (except for index 0, which represents
the prime 2). Therefore, you can find all the
primes in value up to two times the array
size. The index values 1, 2, 3,4 ,... corre-
spond to the numbers 3,5,7,9,. . .

PRIMES Computes and displays the
number of primes found in the array.
. PRIMES displays the prime values (ten to
a line). SIZE . PRIMES displays all the
prime values from 2 through 2* s I ZE.

\ F a s t e s t (?) E r a t o s t h e n e s S i e v e Benchmark
\ D o u g l a s Ross, NASA GSFC, 1 2 / 6 / 8 9
\ Computes t h e p r i m e s f r o m 2 t o Z t S I Z E
\ T h e r e ai-e 1028 p r i m e s up t o 8 1 9 0 , 1 8 9 9 up t o 16S80

DECIWPL
8 1 9 0 CONSTANT S I Z E 9 0 CONSTANT ROOT CREATE FLAGS S I Z E ALLOT
: DO-PRIME

FLAGS S I Z E 1 F I L L \ i n i t i a l i z e a r r a y
ROOT 1 \ do ROOT t i m e s
DO FLAGS I + C@ \ f l a g s C i 3 --

I F I 2 % 1+ DlJP 2 % SWAP DUP % \ s t e p p r i m e A . 2 --
BEGIN DUP S I Z E 2 t U<: \ s t e p p r i m e " 2 3 --
WI-iILE 0 OVER 2/ \ s t e p p r i me."2 13 i --

FLAGS + C ! \ s t e p p r i m e " 2 -- I f l a g t i 1 .= (5
OVER + \ s t e p p r i me"2+step C i 3

REPEAT DROP DROP \ --
THEN

LOOP ;

The f o l l o w i n g words a r e f o r o u t p u t t i n g i n f o r m a t i o n .

: PRIMES 1 S I Z E 1 DO FLAGS I + C@ + LOOP . . " PRIMES " ;

VARIABLE CNT
: 10= CNT 3 1+ DUP 10 - I F 0 CNT ! CR ELSE CNT ! THEN ;

: .PRIMES (S I Z E --) CR 2 8 U.R 1 CNT !

1 DO FLAGS I + C@ I F I 2 % 1+ 8 U.R 10= THEN LOOP ;

Yours truly,
Douglas Ross
NASA GFC
Code 728
Greenbelt, Maryland 2077 1

Macro Update
Dear Marlin,

The article "Macro Generation" by Don
Taylor (FD VII/l) is labelled as Forth-83
but its definitions wouldn't work on a
Forth-83 system. It uses T I B as if it were a
variable, and doesn't use #TIB to set the
length of the console input stream. I guess
this is a little late to report errors, but the
macro generator seems quite clever and
worth using sometimes to cut away the
nest-unnest overhead of short colon defini-
tions and to help make source code more
readable. Screens one through four here
holdadefinition that works onmy Forth-83
system. I renamed T I B ! to ! T I B to more
clearly show that its function is to restore
something, not memory access.

This version of MACRO : is an extension
of the normal interpretation of the input
stream. It implicity assumes that, after its
compiled string is installedas thenew input
stream, control immediately returns to
words that interpret (and execute or com-
pile) the input stream. Its macros can't be
performed within a colon definition. They
could be invoked within a program, but
would not be executed until (and if) the
program ended and gracefully returned
control to the console.

If INTERPRET is available, interpreted
tasks can be called from within an applica-
tion. Screen five holds a definition that does
so. The only use that occurs to me for such
a run-time macro is to use FORGET
<name> to trim startup words from an
application and still be able to use F I N D
and ' to locate words. (Calling ALLOT
with anegative number trims the dictionary
but destroys the dictionary chains.)

Sincerely,
David Arnold
616 112 W. Hamilton Street
Kirksville, Missouri 63501

Hindsight
A gremlin struck "Stack Variables" in

the last issue on page 21. With our apolo-
gies, the first line of code in Figure One
should be:
: INCLUDE (filenames --)

Forth Dimensionr 6 Volwne XII, Nwnber 2

UPSCALE
NUMBER INPUT

GLENN WNDERMAN - SANTA CLARA, CALJFORNIA
I

T k article WY i n s p a by Mike \ This code written f o r a 32-611 FOmX system that closely adheres t o the
Elol$sarticleinForthDimensions (XU4). \ FORTH-83 standard. The following extensions a r e used i n t h i s program:

I liked the overall concept of the ideas pre-
sented in his article, but found some points
that were insufficient for my applications.

\ Allnumeric operatorsdeal with 32-bit quanti t ies . OtherFORTH systems may
\ require t h e use of double-number words t o achieve t h e same da ta range.

number printing, and number-to-fomxit-
ted-string conversions. For those who im-
plement this package on their system, it
comes complete with some test cases at the
end of the code, which you can run to
validate the correctness of your implemen-
tation and to inspire you with ideas for
making your own picture strings.

The accompanying code adjusts for these
in~ufficiencies. A ~0~pariS0n of Mike's
implementation and mine is at the end of
the article.

addition to number input, this pack-
age includes formatted number output,

It is better to . . . con-
form to common user
practice.

\ The 'case" syntax used i s from t h e Wizard of Costa Mesa, W i l Baden.
\ Reference is Forth Dimensions Volume 8, N u m b e r 5, Page 29.

\ The words "for" and 'next" w e r e borrowed f ran Chuck Moore, who invented them
\ f o r t h e Novix chip. For those without them, I have used them only i n ways
\ whereit is equivalent t o subst i tute '0 do" f o r "for", and"1oop"for "next".

Features
The particular features provided by this

implementation center around a picture
string that describes the desired format of a
number. The same picture string that is
used to display a number can be used during
the input of the number, ensuring that the
number does not exceed the bounds of the
picture string. Using a picture string for
number input permits the number input
routine to be more user friendly: for ex-
ample, if a dollars-andcents value is ex-
pected, a dollars-and-cents template is dis-

1 played during input. This is generally more
helpful than describing, in a prompt, that a
dollars-and-cents value is expected.

\ The words "2>rn and '2r>" a r e equivalent t o ">r >r" and 'r> r>",
\ respectively.

\ You may need some of these def in i t ions i f you don't have them:
\ : 4 / 4 / ;
\ : u>- swap u< ;
\ : u> u< o= ;
\ : << f o r 2* next ;
\ : swapdrop swap drop ;
\ : beep 7 e m i t ; \ t h i s is machine dependent
\ : us>d 0 ; \ "unsigned s ingle t o double" t h i s is machine dependent

\ My compiler recognizes numbers beginning with $ a s beinghex. I f yours does
\ not, the $ can be eliminated by using t h e decimal equivalent.

\ The stack notation used i s conventional i f it f i t s on a s ingle l ine , but
\ unconventional i f i tdoesn ' t . Multi-line s tack notat ion i s equivalent t o
\ the single l i n e notation, and the use of a standard t ex t ed i tor "join lines"
\ function can convert from multi-line notat ion t o (very long) s ingle l ine
\ notation. Stated another way, t h e log ica l top-of-stack appears a t the
\ bottom of t he notation. This notationwas suggested by t h e reviewers, t o
\ c l a r i f y long stack notations.

\ You can pick your own values f o r these terminal control keys:
\ (Those l is tedformthe WordStar diamond f o r standard ASCII QWERTY keyboards.)
19 constant cursor le f t

4 constant cursorr ight
5 constant cursorup

24 constant cursordown

\ l i m i t values (these a r e f o r a 32 b i t implementation)
$7f f f f f f f constant maxpositive
S f f f f f f f f constant maxunsigned
$80000000 constant maxnegative

\ determine the maximum l ega l value f o r various s igns.
: ni-max (sign -- max 1/20/90)

Forth DimemRFIons 8 Volume XII. Number 2

case 3 > if 4/ 1 swap for base @ * next 1- endcase
case O= of maxunsigned endcase
case 1 = of maxpositive endcase
drop tmxnegative ;

\ insert a digit into value at the position given.
: ni-adddigit (value

position
sign
digit

--
adjusted-value

position
sign
01-1 1/20/90)

\ first we bounds check to avoid overflow:
\ all is well if: MAX r - position / digit - base / value position / >=
\ where r = value % position
\ v = value / position
\ v = v * base + digit
\ adjusted-value = v * position + r

\ do the checking
over ni-max 4 pick us>d 5 pick um/mod drop - us>d 4 pick um/mod swapdrop
over - us* base @ urn/& swapdrop
4 pick us>d 5 pick um/mod swapdrop u< if drop -1 exit then

\ do the work
swap >r -rot >r us>d r@ um/md base @ * rot + r@ * + 2r> 0 ;

\ perform error checking and return value adjustment after ni-adddigit
: ni-adderrchk (01-1 original-key -- original-key10 1/20/90)
over if swap then drop ;

\ delete a digit from value at the position given.
: ni-deldigit (value

position
sign

--
adjusted-value

position
sign 1/20/90)

2>r us* r@ um/mod us>d base @ um/mod swapdrop r@ * + 2r> ;

\ handle negation of the number, if within bounds
: ni-negate (value

position
sign
key

value
adjustedgosition

adjusted-sign
key10 1/20/90)

\ - key attempts to change the sign of the number
\ + key attempts to make the number positive
over 3 and if \ sign characters are permitted only if processing signed
numbers
dup ascii - = if
over 2 xor
else
over -3 and
then \ now we have desired sign
dup ni-max 5 pick u>= if >r 2drop r> 0 else drop then
then ;

\ increase position value to simulate cursor left conunand

After the template has been displayed,
the user can enter the number using the
digit keys (which, for some number bases,
includes some of the alphabetic keys), the
cursor control keys (which are implemen-
tation defined), and the following charac-
ters:

Tells numin to negate the
number.

+ Tells numin to take theabso-
lute value.

backspace Tells numin to delete the
digit to the left of the cursor.

The cursor control keys have the fol-
lowing effects:

t Moves the cursor one digit to the left.
+ Moves the cursor one digit to the right.

Adds one to the digit to the left of the
cursor.

d, Subtracts one from the digit to the left
of the cursor.

The picture-string characters that are
implemented by this code are as follows:

0 Represents a digit position, displayed
as a zero if no more significant digits
remain in the number being displayed.

9 Represents a digit position, displayed
as a space if not significant.

8 Represents a digit position, displayed
as an "-" if not significant.

7 Represents a digit position, displayed
as an "*" if not significant.

$ Leftmost $ represents a floating-posi-
tion $, which can float to the rightmost
insignificant $ position. Subsequent
$S represent digit positions, and the
second and subsequent insignificant $
(from the right) are displayed as
spaces. This only sounds complicated,
in an attempt to be precise; generally
speaking, a row of $ causes a single $
to be placed adjacent to the most sig-
nificant digit.

1 Represents zero or more digit posi-
tions, exactly enough to display all
remaining significant digits.

2 Represents zero or more digit posi-
tions, exactly enough to display all
remaining significant digits, with an
embedded comma every three digits.

, represents a comma if there are sig-
nificant digits to its left; if there are
not, it displays as whatever the next

Volume Xll , Number 2 9 Forth Dimensions

(Screens continued on next page.)

digit position to the right would have
displayed as if it were not significant
Resets the comma counter for implicit
commas for the picture code 2.

. Displays as ".". Resets the comma
counter for implicit commas for the
picture code 2.

For signed numbers, additional picture
codes are allowable. They are:

- Displays asu-" for negative numbers,
space for non-negative numbers.

+ Displays as "-" for negative numbers,
"+" for non-negative numbers.

(Displays as "(" for negative numbers,
space for non-negative numbers.

) Displays as ")" for negative numbers,
space for non-negative numbers.

3 Displays as "CR" for negative num-
bers, two spaces for non-negative
numbers.

4 Displays as "DB" for negative num-
bers, "CR for non-negative num-
bers.

5 Displays as "CR" for negative num-
bers, "DB" for non-negative num-
bers.

6 Similar to $ above, but implements a
floating "-" picture code. One posi-
tion coded as a 6 will contain the sign
indication, positions to the left will be
blank, positions to the right will con-
tain digits.

Any other characters that might appear
in a picture string are copied to the output
string.

The multitude of different techniques
for displaying the sign reflects the multi-
tude of commonly used techniques used
by different groups of accountants. It is
much better to have the capability to con-
form to common user practice than to
require that the user learn new techniques,
so the whole multitude was implemented.

Implementation
The cursor is permitted to be posi-

tioned only at digits. Rather than scan
forward or backward in the picture string
for the next digit position (which could be
rather hard for picture codes 1 and 2,
which represent multiple digits), the cur-
sorposition is maintainedby keeping track
of the position of the cursor in mathemati-
cal terms--the "position" is given by the

I base raised to a power: the power zero
represents the units position, the power

\ permitted i f : value base @ / posi t ion >= value posi t ion > and
: ni-incrpos (valueposi t ionsign--valueadj~si t ionsignf lag 1/20/90)
>r 2dup u> i f

r@ ni-max us>d base @ d m s d swapdrop over u>- i f
base @ * f a l s e

else
t r u e

then
e l s e

t r u e
then r> swap ;

\ decrease position value t o simulate cursor r i gh t conunand
: ni-decrpos (valuepositionsign--valueadj_positionsignflag 1/20/90)
> r dup base @ u>= i f base @ / f a l s e e l s e t r u e then r> swap ;

\ increase value by 1 a t current d i g i t posi t ion
: ni- incrdigi t (value

posi t ion
s ign

--
adjusted-value

posi t ion
sign
f l a g 1/20/90)

3dup ni-max r o t - u> i f t r u e e l s e 2>r r@ + 2r> f a l s e then ;

\ decrease value by 1 a t current d i g i t posi t ion
: ni-decrdigit (value

posi t ion
s ign

--
adjusted-value

posi t ion
sign
f l a g 1/20/90)

over2 over2 u>= i f 2>r r@ - 2r> f a l s e e l s e t r u e then ;

\ The following number input helper word does i n i t i a l processing on each
\ keystroke. Becausemsst of t he keystrokes a r e expected t o a f f ec t t h e value
\ of thenunber, this routine i s ca l led f i r s t t o analyze each keystroke and
\ apply it tothecurrentnumericvalue. I f t h e keystroke has no e f f ec t on
\ t h e nunber, it i s l e f t on t h e stack. I f t h i s routine uses t h e keystroke,
\ t h e value and sign on t h e stack a r e updated, and the keystroke replaced by
\ a zero. Cneimplication of t h i s behavior is t h a t t h e NUL character i s
\ ignored. This behavior seemed permissible i n t h i s context. If t h a t i s
\ unacceptablein your application, you can e i the r pre-check f o r NUL before
\ ca l l i ng th i s word, o r d e f i n e a w i n g forNULwithin this word. This word
\ is sens i t ive t o t h e number base, and w i l l permit a s d i g i t s only those
\ charactersfrom 0-9, A-Z, and a-z t ha t a r e permitted by the current number
\ base. Support i s provided only f o r number bases up t o 36, base 36 i s
\ subst i tuted f o r la rger bases.

: ni-keyadj (value
posi t ion

s ign
ke y-code

--
adjusted-value

a d j u s t e d p s i t i o n
adjusted-sign

I
key-code10 1/20/90)

case a s c i i - - a s c i i + =or
\ possible sign adjustment

i f ni-negate endcase

Forth Dimemiom 10 Volume XII, Nwnber 2

case 8 = 127 ior
\ BS, DEL delete last digit

of ni-deldigit false endcase

case ascii 0 - 10 base @ m i n 0 m x u<
\ digit from 0 to 9 (within base bounds)

if &p>r ascii 0 - ni-adddigit r> ni-adderrchk endcase

case ascii A - 26 base @ 10 - 0 max min u<
\ digit from A to Z (within bounds)

if &p>r ascii A - 10 + ni-adddigit r> ni-adderrchk endcase

case ascii a - 26 base @ 1 0 - 0 max min u<
\ digit from a to z (within bounds)

if dup>r ascii a - 10 + ni-adddigit r> ni-adderrchk endcase

case cursorleft =

\ increase position for cursor left
if >r ni-incrpos r> ni-adderrchk endcase

case cursorright =
\ decrease position for cursor right

if >r ni-decrpos r> ni-adderrchk endcase

the following two cases implement absolute value increase and decrease.
if you wish to implement actual value increase and decrease, you could
check the sign and call either ni-incrdigit or ni-decrdigit as needed.

case cursorup -
\ increase digit value

if >r ni-incrdigit r> ni-adderrchk endcase

case cursordown =
\ decrease digit value

if >r ni-decrdigit r> ni-adderrchk endcase

\ no more cases: return key-code without adjustment

: no-bumpcurs (cursctrl -- adjusted-cursctrl 1/20/90)
dup 65535 and 255 > if 1+ then ;

: no-bumpcursdigit (cursctrl -- adjusted-cursctrl 1/20/90)
65536 + dup 65535 and 255 > if 255 - then ;

: no-dispcurs (cursctrl -- 1/20/90)
255 and dup 1 > if 1- for 8 emit next else drop then ;

: no-savefill (flags fillchar -- adjusted-flags 1/20/90)
swap -256 and or ;

: no-fillout (flags -- adjusted-flags 1/20/90)
dup 255 and dup hold ascii $ = if bl no-savefill $2000 or then ;

: no-# (value
sign

cursctrl
flags

--
ad justed-value

sign
adjusted-cursctrl

flags 1/20/90)
3 pick if
>r 2>r # 2r> \ emit a digit, if there are any left

else
no-fillout >r \ emit the fill character if no digits left

then no-bumpcursdigit r> ;

one represents the "tens" position, the
power two the "hundreds" position, etc.
The position also happens to be a conven-
ient concept for digit incrementing and de-
crementing; see the words
ni-incrdigit and ni-decrdigit.
Another use for the position is in bounds-
checking the addition and deletion of digits
in the words ni-adddigit and
ni-deldigit.

The number output routine plays a key
role in this number input scheme. When a
number is displayed (see the word
no-displayer), both the value and the
position are processed as the picture string
is traversed from right to left, and in addi-
tion to returning the total length of the
output string, the distance in characters
from the right edge of the output string to
the cursor position is returned as well.
These two values are exactly what the
number input routine must have to adjust
the cursor back to its original position be-
fore attempting to display an updated
value.

Three types of valid keystrokes are
accepted by the number input routine: the
first type is comprised of the digits and the
sign characters (- toggles the sign of the
current value, + takes the absolute value of
the current value); the second type are edit-
ing keys (cursor movement and back-
space); the third type are termination key-
strokes (carriage return, space, and tab).
The main input loop (ni-doinput)
doesn't know or care what the first two
types of keys are, it simply calls
ni - ke yad j to process the keystroke. If
ni- keyad j recognizes the keystroke, it
makes the appropriate adjustments to the
state on the stack, and consumes the key-
stroke. If the keystroke is not recognized, it
remains on the stack.

ni-doinput simply looks to see if
the keystroke has been consumed: if so, it
obtains another key and loops. If not, the
keystroke is examined to see if it is a termi-
nation key, in which case ni-doinput
exits. All other keystrokes are processed by
notifying the user of their invalidity by
beeping. Note that some keystrokes are
valid (and therefore consumed) in some
states but not in others.

Notice that because of the asymmetry of
positive and negative values in two's com-
plement arithmetic, it is possible to enter a
negative number that is too big to negate,
thus invalidating the + and - keystrokes
until the number is reduced in magnitude.

Volume XII, Number 2 11 Forth Dimuuiau

These routines correctly handle this situ-
ation, but if you think it is too confusing for
the user, it can be avoided either by reduc-
ing the maximum magnitude of negative
numbers (maxnegat ive) by one, or by
only using picture strings that are con-
strained to fewer than the maximum num-
ber of digits possible. Another curious state
that can be avoided by using fewer than the
maximum number of digits, or by changing
the specified maximums, is the limited
range of the leftrnost digit due to the binary
representation of non-binary numbers.

Comparison to Mike's numin
The particular points in Mike's code

that were insufficient for my applications
are described here, with some comments as
to how mine differs in each respect, and the
tradenffs.

1. Use of a variable to maintain the
Context for S IGNED versus UNS IGNED.
Use of a variable to maintain the number of
expected digits. Use of a variable to main-
tain the number of current digits. Use of a
variable to maintain the current picture
string pointer.

Although all the state variables could
become user variables, permitting re-en-
trancy in a multitasking environment, the
number of user variables is limited on most
implementations, so I chose to keep more
information on the stack. Elimination of
state variables also avoids the problem of
making sure the state variables are all set to
the proper values before each call to nu-
min, which could otherwise be an easy
source of program bugs. To avoid coding
all the parameters to every call, additional
words can be provided that supply constant
values for some of the parameters: the need
for such words and the values of the para-
meters they supply can be determined after
using numin when starting to code a pro-
gram-it will soon become obvious what
sets of parameters change and which are
constant for a given program or subpro-
gram

2. MAXD IGIT s is not a sufficient tech-
nique for preventing overflow in either the
signed or unsigned case. I keep track of the
number of digits in the picture and of the
machine word-size limits, and restrict the
user accordingly.

3. No support is provided for intra-
number digit editing. This is the cause of

: no-out2 (cursctrl
flags
char1
char2

ad justed-cursctrl
flags 1/20/90)

hold hold >r no-bumpcurs no-bumpcurs r> ;

\Picturecodes land2 requireanadjustmentafteremittingthelastdigit
\ to compensate for the adjustable spacing they use.
: no-fixslide (cursctrl flags -- adjusted_cursctrl flags 1/20/90)
over 65535 and 255 > if swap 255 - swap then ;

: no-lout (value
sign

cursctrl
flags

--
ad justed-value

sign
adjusted-cursctrl

flags 1/20/90)
begin 3 pick while no-# repeat no-fixslide ;

: no-2out (value
sign

cursctrl
flags

--

ad justed-value
sign

ad justed-cursctrl
flags 1/20/90)

begin 3 pick while
over 16 >> 3 / i if
0- if
ascii , hold >r no-bumpcurs 65535 and r>

then
else
drop

then
no-#

repeat no-fixslide ;

: no-Gout (value
sign

cursctrl
flags

--
adjusted-value

sign
ad justed-cursctrl

flags 1/20/90)
bl no-savefill 3 pick if
no- #

else
dup $1000 and if
bl

else
$1000 or over2 2 and if ascii - else bl then

then
hold >r no-bumpcurs r>

then ;

\ rules for pictures: All characters not having special meaning are used
\ verbatim. You can, of course, recode this to behave in exactly the way

Forth Dimemions 12 Volume XZI, Number 2

\ you want your pictures t o behave, but these give examples of poss ib i l i t i e s .

\ Leading $ i s verbatim, subsequent $ used a s f loa t ing $.
\ 7 i s used a s * f i l l i n g , 8 used a s - f i l l i n g , 9 used a s space f i l l i n g ,
\ 0 used a s 0 f i l l i n g .
\ 1 is usedasan expandable d i g i t f ie ld , 2 i s an expandable d ig i t f i e l d with
\ appropriately enbedded c o r n s .
\ , used a s c o r n i f t he re are preceding s igni f icant d ig i t s , a s the f i l l i n g
\ character i f t he re was a f i l l i n g character t o t he r ight of it, and no
\ preceding signif icant d ig i t s , and a s a connna i f no f i l l i n g character t o
\ i t s r ight . Also r e se t s t he d i g i t position counter fo r implici t c o r n s .
\ . isverbatim, but r e se t s the d i g i t position counter fo r implici t connas.

\ for signed numbers: + i s a - for negative numbers, + fo r non-negative ones.
\ - i s a - f o r negative numbers, space fo r non-negative ones.
\ (a n d) arethemselves fornegativenumbers, spaces fornon-negativeones.
\ 3 i s CR f o r negative numbers, 2 spaces f o r non-negative ones.
\ 4 i s DB f o r negative numbers, CR fo r non-negative ones.
\ 5 i s CR f o r negative numbers, DB fo r non-negative ones.
\ Leading 6 i s a sign position, subsequent 6 used a s f loa t ing sign.

: no-dispchar (value
sign

cu r sc t r l
f l ags

fmtchar --

I
adjusted-value

sign

(Screens continued on page 16.) 1

Total control
with LMI FORTHTM
b r Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers
For Development:
Interactive Forth-83 InterpreterlCompilers
for MS-DOS, OSl2, and the 80386

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
500 page manual written in plain English
Support for graphics,floating point, native code generation

For Applications: Forth433 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate states,
and performs conditional compilation
Crosscompiles to 8080,Z-80,8088,68000,6502,8051,8096,
l802,6303,6809,68HC11,34010, V25, RTX-2000
No license fee or royalty for compiled applications

Laboratory Microsystems Incorporated
Pbst Office Box 10430, Marina del Rg! C4 90295

Phone W i t Card Orders to: (213) 306-7412
f;ex: (213) 301-0761

my code being significantly larger than
Mike's, but significantly eases the task of
editing long numbers.

4. Limited picture codes. These could
easily be added to Mike's implementation,
but after I did mine, I felt it was more useful
to add them to mine.

This code is placed in the public do-
main. You are welcome to examine it, re-
type it, modify it, give it away, or sell it.
This code is fully tested and deemed to be
working as submitted for publication;
however, it carries no guarantee or war-
ranty of fitness for any purpose.

Glenn Linderman has been using
Forth for six years, mostly on a large
program for music transcription.
That program has been used to pro-
duce four books of sacred music with
lyrics in four languages, and dozens
of pieces of sheet music.

UPPER DECK FORTH $49

Based on Forth-83 Standard
Fully segmented architecture
Uses ordinary ASCII text files
Direct threaded code with top of stack in
register for fast execution
Compiles 32K file in 6 seconds on 4.77 MHz
IBM PC
Built-in multi-file full screen editor
Assembler, decompiler, source-level debugger
Turnkey application support, no royalties
Complete documentation
For IBM PCIXTIAT and compatibles with 256K,
hard disk or floppy, DOS 2.0 or later

Add $3 for shipping and handling (outside USA $15).
CA residents add sales tax.

-
P.O. Box 263342, Escondido, CA 92026

(619) 741-1075

Volume XII, Nwnber 2 13 Forth DtnuuiaU

EXTENSIBLE OPTIMIZING
COMPILER

ANDREW SCOTT - EDMONTON, ALBERTA, CANADA

k r t h implementations on some pmc- speed of the compiled code. Many short
essors suffer speed limitations. One solu-
tion to this problem has involved imple-
meriting a subroutine-threaded system to
eliminate inner interpreter overhead. Short
pX%IIitives ate usually compiled as in-line
code. This Paper describes a n~ethod by
which Forth can be compiled to produce
more optimized code by combining se-
quences of Forth words into equivalent
native instructions. The optimizer de-
scribed does not require Forth primitives D
be "smart" words, nor does itrequireexten-
sive changes to the normal Forth outer
interpreter. Also, the optimizer is exten-
sible, permitting new optimization rules to
be added at compile time.

Introduction
One criticism that has sometimes been

algorithm expressed in indirect-threaded
~orth on the same ~rocessor will execute / needn't require great

primitive words, such as DUP, +, or E X I T ,
could be "in-lined" to avoid the overhead of
subroutine calls and returns. This tech-
nique is very common in currently avail-
able subroutine-threaded Forths. One tech-
nique that I do not believe is as common,
the subject of this paper, is the combining of
sequences of Forth words into in-line code.
For example, the common sequence DUP
 can be combin edinto one instruction on
the 68000 CPU.

In this paper, I will discuss the exten-
sible optimizer I created for use with a
subroutine-threaded Forth system. The tar-
get CPU is a 6800, but most of the con-
cepts I describe can be applied to any proc-
essor.

unfairly applied to Forth is that it is not very
fast. Granted, compared to code that an
optimizing c compiler produces, the same

Wniting an optimizing
Forth compiler

and SWAP DROP, math operations such as
LIT +, and memory operations such as
VAR @ and VAR ! are some of the idioms a
Forth programmer uses regularly. In fact, in
some Forths these primitives have been
combined to form other "primitives" in an
effort to improve efficiency. For example,
NIP isanaliasforsw~~ DROP,andl+and
2 * are used often for common math opera-
tions. The problem with this approach is
that the kernel becomes littered with words
that don't provide any additional function-
ality and make it more difficult for a new-
comer to leam the language. I believe in the
Forth philosophy that says. "Smaller is
better."

A more general approach is to let the
compiler worry about how to optimize
these sequences. A set of rules describes
how each sequence should be translated
into native machine code. The compile1
uses these rules to determine if an optimiza.
tion can take place and how it should k
done.

more slowly. The mistake in making this
comparison, however, is that apples are
being compared to oranges. It would be
more appropriate, for example, to compare
indirect-threaded Forth to interpreted
BASIC.

A common solution to the perceived
speed problem has hen to implement Forth
in the native p-ssor's machine language
instead of using an inner interpreter. These
subroutine-threaded Forths typically run
twice as fast as indirect-thnxded systems
on the same CPU. Most of the advantages
of Forth are still available, but tools such as
deom~ilen and code-altering words are
difficult to implement.

When I started work creating a subrou-
tine-threaded Forth system, it became ap-
Parent that many optimizations could be
made to further increase the execution

Compiler Operation
The traditional Forth compiler simply

lays down an address or a token when a
word is compiled. To optimize a sequence
of words, it would be necessary to either
delay the code generation until the se-
quence is complete or look back to what
had been compiled previously. I chose the
former approach.

When a word is compiled, its address is
remembered in a list. If the word ends a
sequence that can be optimized, the list is
flushed and the optimized code is laid
down. If a sequence ends prematurely, any
partial optimizations that can be made from
the list are compiled, and the remainder of
the list is "recompiled" into a new list. If no
partial optimizations can be made, the first
address on the list is compiled with a de-
fault rule and the rest of the list is mom-

effort.

Sequence Optimizations
The Forth virtual machine is a model of

elegance and simplicity. The stack-based
architecture is RISC-@e in that it is not
necessary to provide a dozen addressing
modes for each instruction. CPU designers
have realized this and have produced very
powerful processors in a fraction of the
chip space that conventional CPUs re-
quired. Alas, it is not always possible to use
a Forth chip. If you must use a conventional
CPU, try to use as many of the processor's
features as you can. If a dozen addressing
modes are available, use them.

It is very common for certain sequences
of Forth words to appear together. For
example, stack operations such as DUP >R

I
Forth Dimensions 14 Volume XII, Number 2

piled.
This algorithm is illustrated in Figure

One. In this example, the fictional Forth
Figure One. Optimization process using fictional Forth words and sequences described
in the text.

words A, B, C, X, and Y are used. The
seauences A B c and x Y can be 0~timi~e-d. I I Sequence list Description 1
a 4 can also be in-lined individ;ally. Thd
code to be compiled is A B x Y.

Optimization Rules
In the spirit of Forth, the optimizer I

developed is extensible. Additional rules
can be added to the rules database at com-
pile time (run time, from the compiler's
point of view). Each rule specifies the se-
quence of Forth words that can be con-
densed, and the Forth code that should
execute when this sequenceis encountered.
Typically, this involves invoking the as-
sembler to lay down the in-line code.

For example, some rules are given in
Figure Two-a to translate common se-
quences of Forth words to 68000 code. In
those examples, the word SEQ : is used to
mark the start of each sequence. It looks
ahead, "ticking" the following words until
IS : is found. Code between IS : and ; is
compiled, and the address of this code and
the addresses of each word in the sequence
are added to the rules database. (The words
LIT and L> will be explained in the next
section.)

The data structure built when rules are
compiled is shown in Figure Three. (In
Figure Three, assume that the rules given in
Figure Two-b have been defined.) The
structure is shaped like a set of trees. Each
tree's root is the common first word to a set
of sequences. At each node of the tree is
stored a pointer to the code that will be
executed if the sequence ends at that node.
A null pointer indicates that the sequence
cannot be optimized at this point.

The link between the top two nodes
indicates the list of nodes searched when a
word is compiled onto an empty sequence
list. Only rules beginning with A or x have
been defined. If either of these words is
compiled, the search begins with the node
list underneath the top-level node when the
next word is compiled. If a word is com-
piled that does not exist in the node list
currently pointed to, the backtracking algo-
rithm occurs as described above.

Note that nodes are shared by more than
one rule. This makes it possible to discover
and compile partial optimizations.

Optimizing Literals
Many of the optimization rules involve

m A is compiled. No code is generated at this
point, as the sequence A B C could yet occur.
An entry for A is put in the sequence list.

lAlBl B is compiled and remembered in the list.

A B x x is compiled. The s uence A B C did not
occur, so the list is r8uced. A partial optimiz-
ation can be made: A is in-lined.

IBI B is recompiled, but it does not start a s uence,
so it is compiled using the default comp%tion
rule.

x is recompiled. It starts the sequence X Y, so it
remains in the list.

Y is compiled. It ends the sequence x Y, so the
optimized code is laid down and the list is
flushed.

Figure Two-a. Translating common Forth sequences into 68000 code.

SEQ: SWAP DROP IS: sp@+ sp@ mov ;
SEQ: DUP >R IS: sp@ rp@- mov ;
SEQ: LIT @ IS : L> :1 sp@- mov ;
SEQ: LIT + IS: L > # 1 sp@ a d d ;

Figure Two-b. Optimizing the fictional Forth words used in Figure Three.

SEQ: A B C IS : (code to optimize A B C) ;
SEQ: A IS : (code to in-line A) ;
SEQ: X Y IS : (code to optimize X Y) ;
SEQ: X Y Z IS : (code to optimize X Y Z) '
SEQ: X A IS : (code to optimize X A) ;

Volume XII, Number 2

Figure Three. The data structure built when rules are compiled.
I

Figure Four. Common optimizations from the author's rules file.

Stack optimizations
SEQ: SWAP DROP IS: sp@+ sp@ mov ;
SEQ: DROP LIT IS: L> #1 sp@ mov ;
SEQ: DUP >R IS: sp@ rp@- mov ;
SEQ: R> DROP IS: 4 # 1 r p a d d q ;

Fetchlstore optimizations
SEQ: LIT @ IS: L> :1 sp@- mov ;
SEQ: LIT + IS: L> #1 sp@ add ;
SEQ: LIT LIT ! IS: L> L> ?DUP IF

#l :l rnov
ELSE

:1 clr
THEN ;

SEQ: LIT @ LIT ! IS: L> L> :1 :1 mov ;
SEQ: DUP LIT ! IS: sp@ L> : 1 mov ;

Math optimizations
SEQ: LIT +
SEQ: LIT -
SEQ: LIT OR
SEQ: LIT AND
SEQ: LIT XOR

Branch optimizations
SEQ: = ?BRANCH
SEQ: <> ?BRANCH
SEQ: < ?BRANCH
SEQ: > ?BRANCH
SEQ: <= ?BRANCH
SEQ: >= ?BRANCH
SEQ: LIT = ?BRANCH
SEQ: LIT <> ?BRANCH
SEQ: LIT < ?BRANCH
SEQ: LIT > ?BRANCH
SEQ: LIT <= ?BRANCH
SEQ: LIT >= ?BRANCH

IS: L> #1 sp@ add ;
IS: L> #1 sp@ sub ;
IS: L> #1 sp@ or ;
IS: L> #1 sp@ and ;
IS: L> #1 sp@ eor ;

IS :
IS :
IS :
IS :
IS :
IS :
IS :
IS :
IS :
IS:
IS:
IS :

sp@+ sp@+ cmpm bne ;
sp@+ sp@+ cmpm beq ;
sp@+ sp@+ cmpm bge ;
sp@+ sp@+ cmpm b l e ;
sp@+ sp@+ cmpm bgt ;
sp@+ sp@+ cmpm b l t ;
L> #1 sp@+ cmpm bne ;
L> #1 sp@+ cmpm beq ;
L> #1 sp@+ cmpm bge ;
L> #1 sp@+ cmpm b l e ;
L> #1 sp@+ cmpm bgt ;
L> #l sp@+ cmpm b l t ;

(Number Input screens continuedji-om page 13.)

adjusted-cursctrl
flags 1/20/90)

\ flags is used to hold the current fill character, and high bits are used
\ for other flags.

case ascii 0 = of ascii 0 no-savefill no-# endcase
case ascii 1 = of no-lout endcase
case ascii 2 = of no-2out endcase
case ascii 7 = of ascii * no-savefill no-X endcase
case ascii 8 = of ascii -no-savefill no-# endcase
case ascii 9 = of bl no-savefill no-# endcase
case ascii $ - of dup $2000 and 0= if ascii $ no-savefill then no-# end-
case
case ascii , = of 3 pick if ascii , hold else no-fillout then

>r no-bumpcurs 65535 and r> endcase
case ascii . = if hold >r no-bumpcurs 65535 and r> endcase

"folding" a number or address into an in-
struction as an absolute address of an
immediate value. In Forth, there are three
ways of describing a value: as a CON-
STANT, as the address of a VARIABLE
(words defined with CREATE fall into this
category also), or as a value compiled in-
line with LITERAL. There really should
be no distinction between these, as they all
push a number to the stack when executed.
In my Forth, CONSTANT and VARIABLE
simply use the run-time code of
LITERAL, LIT, to push the number or
address to the stack.

Rules that do use a literal value need
this value when the rule's code isexecuted.
The literal value is remembered in another
data structure, the literal stack, when it is
compiled. When a word is added to the se-
quence list, the depth of the literal stack is
also remembered in the list. When back-
tracking takes place for partial optimiza-
tions, the literal stack is restored to its state
when the literal was initially compiled.

The executable code associated with
rules involving literals uses the word L> to
pop the top value from the literal stack. The
value was put there initially by LITERAL,
which is defined now as:

: LITERAL (n --)
>L COMPILE LIT
; IMMEDIATE

L> must be called as many times as LIT
appears in the sequence.

Recursive In-lining
To remain compatible with regular

Forth, it was necessary to add words such
as 1 + and NIP to the system. These words
could be optimized internally, but it would
be better to in-line them in the words they
were compiled in.

When short words like these are com-
piled, the optimizer is temporarily dis-
abled. Instead, each internal word is com-
piled with the default rule. (In a subrou-
tine-threaded Forth, the default rule is to
compile a subroutine call to the word.)
These words will never be called from
compiled code, but only from the outer
interpreter, so the lack of optimization
does not really matter. A NOP instruction
precedes the rest of the internal code.

The NOP is a signal to the optimizer
that when this word is compiled, the com-

3 pick 3 and 0- if \ for unsigned numbers, all others are verbatim I ponent words inside it should be compiled
hold >r no-bumpcurs r> endcase

Forth Dimensions 16 Volume XII, Number 2

instead. In effect, using subroutine calls
only makes the word easily "decompil-
able" by the optimizer.

case a s c i i - =
of over2 2 and i f a s c i i - e l s e b l then hold >r no-bumpcurs r> endcase

case a s c i i + =
of over2 2 and i f a s c i i - e l s e a s c i i + then hold >r no-bumpcurs r> endcase

code to my system:

I use : : to signify that one of these
words is be canpiled. ~ h ~ ~ , the

fouowingdefmitions appear in thesource

: : N I P (a \ b - - b)
SWAP DROP ;

case a s c i i (-
ca;: zc;: ; and i f a s c i i (e l s e b l then hold >r no-bumpcurs r> endcase

of over2 2 and i f a s c i i) e l s e b l then hold >r no-bumpcurs r> endcase

When N I P is compiled inside another
word, SWAP and DROP are compiled in-
stead.

The benefit of this approach is that
partial sequences can be coded in a : :
word for clarity, and then combined with
the rest of the sequence in later code. For
example, using the rules described for Fig-
ure Two, we could write:

: : AB
A B ;

(this is the first part of A B C)
...
: AWORD

DUP AB C DROP ;

When AWORD is compiled, AB will be
expanded to compile A and B individually.
The sequence A B C will complete when C
is compiled next.

Previously I mentioned that variables,
constants, and literals really do the same
thing. In fact, VARIABLE compiles a : :
word with the literal value of the variable's
address inside, and CONSTANT compiles a
: : word with the literal value of the con-

case a s c i i 3 =
of over2 2 and i f a s c i i C a s c i i R else b l b l then no-out2 endcase

case a s c i i 4 =
of over2 2 and i f a s c i i D a s c i i B e l s e a s c i i C a s c i i R then no-out2 endcase

case a s c i i 5 =
of over2 2 and i f a s c i i C a s c i i R e l s e a s c i i D a s c i i B then no-out2 endcase

case a s c i i 6 = of no-Gout endcase

\ a l l others a r e always verbatim
hold >r no-bumpcurs r> ;

: no-formatter (value
posi t ion

sign
formatstring

--
cursorbksp

outpt r
out len

cursorc t r l 1/20/90)
ro t
\ calculate t h e i n i t i a l cursor posi t ioning control
0 swap begin dup while base @ / swap 1+ swap repeat drop 8 <<
\ add f lags f o r no-dispchar t o use, setup loop indices
swap 0 swap (v s cc £1 f s -) <# count range swap 1- do

i c@ (v s cc £1 char -) no-dispchar \ process each character
-1 +loop drop -rot drop #> over2 65535 and over 8 << + ;
: no-coverup (new-width old-cursorctrl -- 1/20/90)
8 >> swap - ciup O> i f dup spaces f o r 8 emit next e l s e drop then ;

: no-displayer (value
posi t ion

sign
f ormat s t r i ng

coverwidth
--

cursorc t r l 1/20/90)
>r no-formatter r> swap 2>r dup>r type 2r> no-coverup no-dispcurs r> ;

\ format numeric output v i a format s t r i ngs
: numformat (value

sign
f o m t s t r i n g
number-base --

: numoutput (value s ign formatstring number-&~ -- 1/20/90) 1 implementation Observstions numformat type ;

stant inside. Thus, every constant and every
variable defined will be optimized by one
of the rules involving LIT.

The major difficulties I encountered in
porting old code to the new optimizing
Forth resulted from implementation-spe-

outp t r
outlen 1/20/90)

base @ >r 36 min base ! 0 -rot 0 no-formatter drop r o t drop r> base ! ;

cific code. For example, some code
changedthevalue of acoNsTANT by alter-
ing the parameter field of the word. This is
a dubious practice to begin with, and failed
miserably when the value of the constant
was in-lined everywhere it was used. An-
other problem was the use of I and [to
create a jump table:

\ pr in t numeric output v i a format s t r i n g s
: numprint (value sign formatstring number-base -- 1/20/90)
numformat t y p p ;

: ni-istermkey (key -- f l a g 1/20/90)
dup 13 = over 9 = o r swap b l = o r ;

: ni-outadj (cursorc t r l -- 1/20/90)
dup 255 and dup 1 > i f

1- f o r b l e m i t next
else

drop
then
8 >> f o r 8 emit next ; (Continued on next page.)

Volume XII, Nwnber 2 17 Forth Dimensions

: ni-doinput (initial-value
position
signed?

output-width
format string

f irst-key
--

final-value
position

sign
output-width
format string

term-key 1/20/90)
swap >r swap >r
begin
ni-keyadj \ see if we can process this key
?dup if \ key not consumed
dup ni-istermkey if (fv p s tk - fs ow -) 2r> rot exit then
drop beep \ indicate error

then
3dup r@ ni-outadj
r> r@ swap no-displayer >r
key 127 and

again ;

\ adjust for additional digit
: ni-adjdigit (pos

Xdigit s
$6f lag --

ad justedps
adjusted-#digits

$6flag 1/20/90)
2>r us>d base @ um/rnod swapdrop r> 1+ r> ;

: ni-isnumeric (morepos
#digits
intf lag

char --
ad j~sted~morepos
ad justed-#digits
adjusted-intflag 1/13/90)

case ascii $ - of dup $40 and if ni-adjdigit else $40 or then endcase
case ascii 6 =
of dup $80 and if dup $20 and if ni-adjdigit else $20 or then then endcase

case ascii 7 = ascii 8 ==or ascii 9 =or ascii 0 =or
of ni-adjdigit endcase

caseasciil -ascii 2 ==or of >r2dropO dup r>endcase (usemachinelimit)
drop ;

\ count number of digits permittedin the formatstring, and if that would be
\ the limiting factor on number range, return the number of digits. Oth-
erwise,
\ return 0 to use the maximum natural machine range as the limit.

: ni-countdigits (sign formatstring -- number-digits10 1/20/90)
>r 3 and dup>r ni-max 0 r> if $80 else 0 then (indicate signed-ness)
r> count range do i c@ ni-isnumeric loop
(adjust stack, noticing if the digit count exceeds the natural machine
limit,
and if so, substituting 0 to indicate the natural machine limit for the
digit count.)

drop swap O= if drop 0 then ;

\ obtain numeric input
\ flags bits are: bit 0 = 0, let user edit default value,
\ = 1, user accepts default, or replaces with new
value

: numinput (initial-value
signed?

format string
flags

CREATE JUMPER
] ACTION0 ACTION1 ACTION2 [
... JUMPER + @ EXECUTE ...

A more portable version that the op-
timizer wouldn't touch is:

CREATE JUMPER

The other problems I encountered re-
sulted from using a subroutine-threaded
Forth. For example, as commonly defined,
COMPILE cannot be written on these sys-
tems. The usual solution is to make COM-
P I LE immediate.

What is really needed is a word analo-
gous to EXECUTE. It would accept the
ticked address of a word and compile it. I
wrote a word called (COMP I L E) that
works this way. On most systems, (COM-
P I LE) would simply comma the address
into the dictionary. On my system, (COM-
P I L E) invokes the optimizer. In Forth, we
have some portable words for writing
compiler words such as <MARK and <RE-
SOLVE. We just need to complete the set.

To get a better idea of some of the
common optimizations that can be done, a
small portion of my rules file is shown in
Figure Four.

Conclusions
Forth need not be a slow language. An

optimizing Forth compiler can be written
without requiring a great deal of effort.
Granted, my optimizer still doesn't com-
pare equally to an optimizing C compiler,
but it's fairly close and it didn't require
several man-years to write.

On the 68000 CPU, subroutine-
threadedForth executed about twice as fast
as indirect-threaded Forth. With the op-
timizer added to the compiler, the code ran
about three times as fast as indirect-
threadedForth. Thus, the optimizer added a
50% improvement to the execution speed
of the programs I compiled for comparison
purposes.

Benchmarks and timing tests should al-
ways be taken with a grain of salt, but
coding a bubble sort algorithm in Forth, C,
and 68000 assembly language yielded the
following results (in seconds):

Forth Dimensions I8 Volume XII, Number 2

indirect-threaded Forth 97
subroutine-threaded Forth 48
subroutine-threaded Forth

with optimizer 27
C 15
hand-tuned 68000

assembly language 07

The time to execute the C function reflects
the register nature of the language and the
speed of register-addressing modes on the
68000. Using registers to represent the top
stack items in Forth would be an interesting
experiment.

I have just begun to experiment with
other optimization techniques. Compile-
time arithmetic (e.g., VAR 4+) and other
kinds of "expression folding" would be
another effective addition to the Forth
compiler. What makes this kind of experi-
mentation easy is the extensibility and in-
teractive nature of the Forth language.

Reprinted from the FORML Pro-
ceedings 1989. Andrew Scott has
been programming in Forth since he
received his B.Sc. in Computer Engi-
neering from the University of Al-
berta in 1986. He works for
IDACOM Electronics Ltd., where he
is using Forth to develop a language
to describe components of ISDN
protocols.

EuroFORML.. 29

FIG Election Ballot 35

Forth Interest Group.44

W a r d Softworks24

Laboratory Microsystems13

Miller Microcomputer Services. . . .30

Next Generation Systems.34

Silicon Composers 2

Upper Deck Systems 13

number-base

final-value
tern-key 1/20/90)

base @ > r 36 m i n base ! 2>r 1 swap (i - v p o s s ? - o n b f l f s -)
3 and dup r@ ni-countdigi ts 4* + \ a d j u s t s i g n f l a g t o contain max # d i g i t s
3dup r@ 0 no-displayer 2r> key 127 and (i-v pos s ? ow f s f l key - onb -)
dup ni-istermkey
0- i f

\ not terminator key
swap i f 2>r 2>r > r drop 0 r > abs 2r> 2r> then \ d e f a u l t not used - set

t o zero
ni-doinput \ process t h e inpu t

else
swapdrop

then
(i-v pos s ? ow f s key - onb -)
2>r 2>r drop dup r@ 2 and i f negate swap then \ save r e s u l t wi th cor rec t

s ign
0 2r> ni-outadj r > 0 no-displayer drop (i-v - onb key -)
2r> base ! ;

: test (num s ign p i c z f l a g base -- 1/20/90)
2 s e l c u r \ t u r n text cursor on
numinput
0 s e l c u r \ t u r n text cursor o f f
a s c i i ! bkemit
cr ' Termination char:" count bktype h. ' F i n a l value:" count bktype

I

\ test leading zeros, 5 d i g i t l i m i t , 2 minus s igns
: tl (-- 1/20/90)
37 1 " -00000-" 0 10 test ;

\ test leading spaces, 6 d i g i t l i m i t
: t 2 (-- 1/20/90)
798 1 ' -999999-" 0 10 test ;

\ test a l l t h e d i f f e r e n t s ign i n d i c a t o r s , even t h e leading '-", and
\ comma suppression
: t 3 (-- 1/20/90)
144 -1 " - + 3 4 5 (6,660.00)" 0 10 test ;

\ test leading "$"
: t 4 (-- 1/20/90)
179 1 ' $$$,$$0.00 4" 0 10 test ;

\ test leading '*"
: t 5 (-- 1/20/90)
3 1 ' $77,770.00-" 0 10 test ;

\ test leading '-"
: t 6 (-- 1/20/90)
43 1 ' $88,880.00 5" 0 10 test ;

\ test var iab le width f i e l d
: t 7 (-- 1/20/90)
77 1 ' -$I" 0 10 test ;

\ test var iab le width f i e l d with embedded c o r n s
: t 8 (-- 1/20/90)
88 1 " -$2" 0 10 test ;

\ t h i s case looks l i k e money inpu t
: t 9 (-- 1/20/90)
99 0 " -$2.00t' 0 10 test ;

\ t h i s c a s e t e s t s v a r i a b l e width f i e l d i n combination w i t h o t h e r d i g i t types
\ a l s o tests unsigned numbers
: t l 0 (-- 1/20/90)
111 0 ' 4 $290" 0 10 test ;

\ t h e d i g i t s don't have t o be adjacent , and cursor s t i l l t r a c k s c o r r e c t l y
: tll (-- 1/20/90)
121 0 \' 9 9 9 0 0 0" 0 10 test ;

\ test a base o ther than decimal
: t 1 2 (-- 1/20/90)
131 1 " (2)" 1 36 test ;

1

Volume XII. Nwnber 2 19 Forth Ditnensiau

Part One

FORST: A 68000
NATIVE-CODE FORTH

T h i s three-part series of articles will
describe a 32-bit Forth based on the TOS
operating system of the Atari ST. TOS
(Tramiel Operating System) is pretty much
a 68000 clone of MS-DOS. The calls have
the same numbers and functions, but differ
in that the parameters are passed on the
stack rather than in registers. The directory
structure is identical to that of MS-DOS,
and data files are completely portable on
3.5" disks.

The ForST source code is in several
function files, which are referenced by a
single top-level load file. Depending on
user requirements, some of the files can be
removed, along with the corresponding
header entries. In this way, the size of the
ForST system can be controlled. Cultural
aspects like vocabularies and a screen edi-
tor are not included in the system at present,
but can be added later.

While the system has a number of non-
standard characteristics, attention has been
given to its compatibility with existing
source code. With some small qualifica-
tions about the header structure, and state-
smart variables and constants, it is close to
100% compatible.

I've tried to take note of (perceived)
limitations of the traditional Forth disc 110
and to incorporate some of the better fea-
tures of other languages and other operat-
ing environments; so I've incorporated the
use of multiple files and redirectable buff-
ered 110. ForST carries out all its 110 by
BIOS calls to the TOS firmware.

System Characteristics
a. Extended (32-bit) addressing
The 68000 CPU has the advantage of a 16
Mbyte flat address space, all of which can
be accessed without the intricacies of seg-
ment registers. To take advantage of the
addressing range, however, it is necessary
to have full 32-bit addressing (%-bit, re-

JOHN REDMOND - SYDNEY, AUSTRALIA.

ally). Code and data sue are limited only by
the available memory.

b. Position-independent code
TOS, and probably all future operating
systems, makes up its own mind about
where aprogram is to be loaded; so it is also
necessary to have a Forth written in posi-
tion-independent code.

c. 32-bit stack width
If the Forth is to handle 32-bit addresses, it
is appropriate to have a 32-bit width for all
stack entries. This has the advantage of
giving integers a much more useful range,
and of making them the same size as IEEE
short reals.

It is important to have
loops with the correct
behavior.

d. Subroutine-threaded code
This provides greater execution speed,
removes the distinction between code and
high-level words, and allows code optirni-
zation.

e. Macro dejnitions with edge optirniza-
tion
Each word available for in-line expansion
has an associated code flag and length
marker to direct expansion and optimiza-
tion.

f. Separated headers, with selective saving
and deletion
At present, the headers are in a simple,
unlinked list from which they can be selec-
tively retained or removed (regardless of
code type).

g. Good execution speed
100 iterations of the Sieve in 59 seconds, or
165 seconds without macro expansion.

How Wide?
The problem of word sue has been

discussed in detail [Bra87]. I support the
view that the natural, default fetch-and-
store words (@ and !) should universally
apply to movements corresponding to the
stack width. We are now nibbling at 32 bits,
but what in the future? When we get to 64
bits (and we will), @ and ! should apply to
64-bit operations. Provided that we get into
the habit of using the natural words for the
default data size, code will always be port-
able upwards.

Of course, there will always be a need to
access smaller units, such as with C@ and
c!,andnowweneedw@ andw! tocope
with specialized applications which de-
mand the 16-bit width (such as the GEM
interface). This has been my approach with
ForST. Variables, constants, and addresses
are all 32 bit, and we use @ and ! with
them-as always in the past.

The need for fetching and storing
doubles may all but disappear as the default
size increases, but 2DUP and its related
stack words will certainly stay because of
their use with pairs of values.

The Headers
ForST has been designed with separate,

dispensible, headers. The headers of any
Forth system allow the outer interpreter to
locate code and to either compile or execute
it. As a program becomes developed and
low-level words become incorporated into
definitions of more complex words, their
headers become superfluous. They take up
memory, they may conflict with access to
words with identical names, and they slow
down dictionary searches. What is needed
is a means of selective retention of only

Forth Dimensiom 20 Volume XII, Nwnber 2

L

Volume XII. Number 2 21

those headers which need to be accessed
later, and a means of disposing of the others.
This concept has been discussed before
[Joh87], butthere weredifficultiesin imple-
rnenting it in the FS3 environment, espe-
cially with respect to DOES>.

The header structure has been chosen as
optimal for copying from one part of mern-
o ~ y to another. The traditional arrangement
has the headers dispersed through the code
and connected as a linked list. The linking is
necessary because of the varying amount of
code between headers. ForST, on the other
hand, keeps its headers abutted together in
their own buffer. THERE (cf. HERE) returns
the address of the first free byte after the last
of the headers.

There are four fields in a header (in
order): name field, flag field, code field, and
parameter field. The flag field holds the
word length (less the final RTS) and the
edge marker, and is used by the compiler to
direct macro expansions. The latter two
fields (four bytes each) have address offsets
(see below), and the name field will be of
varying length and padded, if necessary, to
an even number of bytes. As usual, the fust
and last bytes have bit seven set to allow
TRAVERSE to find its way.

Header Structure
nfa: length+$80, 'name', (+ pad byte?)
€fa: length (=bytes12), macro flag
cfa: offset address of code
pfa: offset address of data or code

(FIND) works its way back from THERE
by executing code equivalent to
13 - -1 TRAVERSE

until it finds a match or runs against a base
address, rather than the zero pointer of other
systems.

A consequence of the header structure is
that there is no special relationship between
headers. Any of them can be located, its
length calculated from the name length, and
copied to another part of memory. The main
header list can then be truncated at any point
and the reserved headers copied back to the
new position given by THERE.

A minor result of the header structure is
that searches are a little slower than with
optimal linked headers with the link field
before the name field (but it is still pretty
fast), but selectively discarding headers
compensates for this. A more important
consequence is that there is presently no
system of vocabularies. Whether or not this

is a critical disadvantage depends on per-
spective. To date, mine has been on devel-
opment of application code rather than a
total environment, and for that the module
approach is better. Moreover, once the sys-
tem is up and going, the heads can be reor-
ganized into any number of linked lists, or
any other sort of data structure. Then,
because FIND is DEFER&, it can be redi-
rected to search the new data structure.

Creating Modules and
TOS-executable Applications

Disposable heads lead to the concept of
a program module. After definition of a
module, a small group of words will be
chosen as PUBLIC by saving their headers,
while the rest will implicitly be local and
have their headers discarded. This is in the
best tradition of information-hiding.

To implement this concept, ForST uses
the dummy words PROGRAM and MODULE.
Asillustrated,aseach moduleiscompleted.
only some of its words remain accessible-
and when the program is completed, only
selected headers are kept.

: PROGRAM ;

: MODULE ;
VARIABLE FIRST
CONSTANT TRUE, etc.
: DEFI ;

: DEF2 ;
. . .
: DEFN ;
FROM MODULE
KEEP TRUE
KEEP DEFN
PUBLIC
(only TRUE and DEFN are made public)

: MODULE ;
(list of definitions again)
FROM MODULE
KEEP . . .
KEEP . . . (etc.)
PUBLIC

: MODULE ;
(this might be the final module)
(several definitions again)
FROM MODULE
KEEP ...
PUBLIC (optional at end)

FROM PROGRAM
KEEP ...
PUBLIC

(this might be a single word from the whole
program)

It follows that, even if a very large program
is compiled into the basic ForST, it will
have almost no effect on the speed of dic-
tionary searches. Furthermore, almost all
Forth system words can be made local (and
therefore inaccessible) by the global
KEEP:

FROM START
KEEP <application-name>
PUBLIC

From this point, only the application
and the two words SAVE and SYSTEM are
available to the user. SAVE allows us to
save to the disk a standalone application,
and SYSTEM allows us to get back to the
GEM benchtop:

SAVE A : \ P A T H \ AP PNAME . TOS
SYSTEM

There are some finer points to specify-
ing how much work and header space the
application will need, and whether an auto-
exec is required on reloading but, other-
wise, it is just that simple to generate a
machine-code application.

How to Optimize Optimally
When primitive words such as DUP and

+ are used intensively in code, much of the
execution time is taken up with pushes to
and pops from the parameter stack. Con-
sider the high-level definition of 2 *:
: 2 * DUP + ;

Ignoring the overhead of subroutine calls
and returns, the active code will be some-
thing like the steps below. If DUP and + are
expanded as macro primitives, steps three
and four are brought into sequence. It now
becomes clear that they are very ineffi-
cient. They are expensive in terms of clock
cycles, and it is the task of the edge op-
timizer to recognize and remove them.

(call DUP)
1. push the top stack value onto the stack

(return and call +),
2. pop the (same) value to a register,
3. add the (now) top stack value to it,
4. push the (result) value to the stack.
(return)

To make the example specific to the 68000

Figure One-a.

(DUP)
l.MOvE.L (~61,-(A61 (20/2) (+ I
~ . M O V E . L (A6)+,DO (12/2)
3. ADD .L (A6) +,DO (14/2)
4.MOVE.L DO,-(A61 (12/2)
Total: 58 cycles/8 bytes

Figure One-b.

(DUP
1. M0vE.L (A61 ,DO (12/2) (+)
2. ADD. L (A6) +,DO (14/2)
3. MOW. L DO, - (A61 (12/2)
Total: 38 cycled6 bytes

Figure One-c.

(I
1. MOVE. L
2. ADD.L
3. M0VE.L
4. M0VE.L
5. M0VE.L
5a. MOVE .L
6. ADD.L
7. M0VE.L

D6,DO
D7, DO
DO, - (A61
(A6), - (A61
(A61 +,DO
(A6) ,DO
(A6) +,DO
DO, - (A6)

(4/2)
(6/2)
(12/2)

Remove (20/2)
Remove (12/2)
New (12/2)

(14/2)
Remove (12/2)

8. MOVE . L (~ 6) +,DO Remove (12/2)
9. ADD.L (A6) +,DO (14/2)
10. MOVE . L DO, - (A6) (12/2)
Total: 62(106) cycles/l2(18) bytes
Subroutines: 254 cycled12 bytes

[Cha87], the steps correspond to those in
Figure One-a If the steps are part of sub-
routine calls, a minimum of a further 68
clock cycles would be required (126 cycles
total), but the size would stillbe eight bytes.

One of the real advantages of the 68000
is the orderly set of addressing modes for
moves. There are no specific push or pop
instructions, although the hardware stack is
addressed by register A7. ForST uses A6 as
the data-stack pointer. Therefore, a push of
register DO to the data stack will be coded:
MOVE. L DO, - (A6)
and a pop from the return stack is:
MOVE. L (A7) +,DO

It is nevertheless more concise and descrip-
tive to refer to the processes of pushing and
popping, so I will use this terminology.

Moves to and from memory, and the
eight data registers and eight address regis-
ters, have very similar opcodes. This sim-
plifies the operation of an edge optimizer,
which balances and redirects moves. Opti-
mization of the preceding code is shown in
Figure One-b. The DUP mernory-temem-

ory move and the following pop are con-
verted into the more efficient memory-to-
register move. The speed optimization is
significant, even with this short fragment of
code, and the size is now smaller than for
two subroutine calls. Furthermore, thecode
has a trailing push, which provides scope
for further optimization when incorporated
into a larger definition.

To reinforce this point, consider the use
of our new 2 * as a macro in the following
code segment:
... I 2" + ...

In the expanded code shown in Figure One-
c, the edges removed or modified by the
optimizer are marked to show that incorpo-
ration of 2 * as a macro into a larger defini-
tion allows exploitation of its edge.

The outcome is code which is much
faster than a simple macro expansion, and
which still has an edge for furtheroptimiza-
tion. In non-trivial code, expansion/optimi-
zation will typically give a speed improve-
ment by a factor of 2.5-3.0 over subroutine
calls, with little change in code size.

Control of Macro Expansion
During compilation of many non-im-

mediate words, we may have the option of
compiling a call to the code of the word, or
of doing a direct copy of its code into the
word being compiled, provided it is not too
long. We control this option by setting the
macro compilation mode to false (with
CALLS) or-true (with MACROS). CALLS
and MACROS are themselves immediate
words and can be used for dynamic control
of the compilation process within word
definitions.

Not all words are appropriate for macro
expansion, however. Any code which has a
branch to outer code will not be suitable and
will have a false macro code flag. In this
event, the compiler will test the flag and
proceed to compile a call. If the macro edge
marker is non-zero, the macro compilation
mode is true, and the word length is not
longer than the preselected maximum in the
variable LONGEST, the code will be ex-

, panded and the edge marker will be used to
direct the optimization process.

Implementing Edge Optimization
There are two groups of edge markers:

the push group and the negative group (-1
and -2). Before expansion of a word with a
push marker, a flag is tested to determine
whether an exmsion has iust taken lace.
If so, the last two bytes of code (the end of
the previous expansion) are tested. If they
are identical to the marker, they are
removed and the first wo bytes of the
present word are skipped. The result is four
bytes less code and 24 clock cycles less
execution time. If the two bytes do not
match the marker, they will be tested more
generally for a push opcode. If this proves
true, it indicates that the instruction can be
altered to give more efficient code. As an
example:

PUSH D 1
POP DO
Total: 4 byted24 cycles

converts to:

MOVEL Dl,DO
Total: 2 byte46 cycles

This is still a significant level of optimi-
zation, and it illustrates the advantage of
starting a macro primitive with a pop and
ending it with a push.

The simpler case of a negative edge
L

Forth Dimensions 22 Volume XII, Nwnber 2

marker directs expansion of in-line code
without optimization at the leading edge. A
value of -1 is used by some system words,
such as OVER which does not start with a
POP, and -2 is generated in some special
cases of user definitions. A user definition
which consists solely of macro expansions
(and which may include IF, BEGIN, etc.)
will take on the macro flag of the first
expanded word in its definition. Inclusion
of one or more calls in the definition will
zero the edge marker.

Loops and Optimization
Programmers whodemand speed at any

cost attach a great deal of importance to fast
loops. It is very important, however, to
have loops with the correct sort of behavior.
The Forth-83 Standard loops have been
problematic when the initial indices are
identical, as they lead to a number circle ex-
cursion rather than a quick termination.
This might be acceptable for 16-bit loop
indices, but 32 bits are another matter. It
might take a lifetime to recover from an
uncontrolled loop! To cope with this,
ForST incorporates a test on entry to the
loop. If the indices are equal, the loop is
skipped entirely. The behavior is safe and
reasonable (cf. ?DO of F83) but differs from
the Forth-79 Standard, which would have
allowed one passage through the loop. This
is my solution to a potentially dangerous
problem, but I am aware that better ap-
proaches may be in the wind.

Because the 68000 has a good comple-
ment of registers, it is possible to assign
specific tasks to some of them. Code for DO
. . . LOOP and +LOOP is very efficient be-
cause registers D6 and D7 are reserved for
the indices. To allow nesting of loops, reg-
isters D6 and D7 are saved to a special loop
stack by (DO) before entering the loop and
are restored after leaving it. This means, of
course, that >R and R> will have no effect
on the progress of the loop, and that R@ and
I will give different results. The 32-bit
value in register D6 is incremented at the
end of each iteration and the loop repeated
if the overflow bit is clear.

The loop code takes only six bytes and
16 clock cycles, which is not much time at
eight MHz. There is a single decrement-
and-branch instruction (DBRA) for the
68000, which would take only four bytes
and ten cycles, but it uses only a 16-bit
value in the register (one of the handful of

Figure Two. Forth source code for the Sieve.

DECIMAL
MACROS
8190 CONSTANT S I Z E
CREATE FLAGS S I Z E ALLOT

: DO-PRIME FLAGS S I Z E 1 F I L L
0 S I Z E 0
DO FLAGS I + C@

I F I DUP + 3 + DUP I +
BEGIN DUP S I Z E <
WHILE 0 OVER FLAGS + C !

OVER + REPEAT
DROP DROP 1+

THEN
LOOP
(. ." primes " adds 0 - 0 5 sec per loop)

DROP

: PRIMES 0 DO DO-PRIME LOOP ;

Figure Three. Annotated ForST object code for DO-PRIME .
do-prime : - lea flags, a0

push a0 ;rmve.l a0, - (a6)
move. 1 #size, do
push do
bsr fill -

rmveq #O, do
push do
move. 1 #size, do
push do
rmveq #O,dO
push do
bsr bloop ;install loop indices
beq lpescape ;quit if indices equal

lpstart : lea
push
m e . 1
add. 1
add. 1
move. 1
moveq
move. b

move. 1
add. 1
push
move. 1
add. 1
push
moveq . 1
add. 1
push
move. 1
move.1
add. 1
add. 1
push

flags, a0
a0
d6, d0
d7, d0 ; I
(a6)+,d0 ;+
do, a0
#O,dO ;clear 32 bits
(aO) ,dO ;fetch byte
not set

a6,dO
a7, d0 ;I
do
(a6) ,do ; DUP
(a6) +, d0 ; +
do
#3, d0
(a6) +, d0 ;3 +
do
(a6), - (a61 ; DUP
d6,dO
d7, d0 ;I
(a6) +, d0 ; +
do

(Figure contimes on n a t page.)

Volume XII, Number 2 23

mistakes the 68000 designers made!).
LEAVE is implemented using another

dedicated stack. The familiar linked list
approach to marking addnsws for forward
branches is messy to use, as all addresses
are offsets and all branches are relative.

begin : move. 1 (a61 ,-(a61
move -1 #size, do
==PI (a6) +, d0
sgt do
ext .b do
ext . w do ; 32-bit flag

while : beq wend

I
Forth Dimensions 24 Volrune XII, Nwnber 2

Branch Optimization
The most basic elements of structured

controlarethe words 1F,ELs~,and THEN.
For an indirect-threaded code interpreter,
they are implemented by incorporating
BRANCH and ?BRANCH into the code.
These are the Forth equivalents of BRA and
BEQ microprocessor instructions and, in-
evitably, are much slower. BRANCH,
?BRANCH, and the associated compilation
words are available in ForST but, when
invoked, they carry out direct compilation
of BRA and BEQ instructions. As a result,
the branching code is as efficient as that
from any compiler. Structure checks are
made during compilation of the structures
by using marker values on the stack.

Similarly, BEGIN ... UNTIL and BE-
G I N . . . WHILE ... REPEAT c0mpile di-
rectly to patterns of single CPU instruc-
tions. Because all branching is by means of
machine instructions and all destinations
are within the code of a single word, the
code macro flag of the definition is not
affected and the word can, if it is shorter
than the length in the

be expanded as in-1ine code
when it is in higher-1eve1 definitions.

Benchmarking ForST
An illustration code

strate much of the previous discussion. The
Sieve of Eratosthenes is a and
rather overworked compiler benchmark. In
the pasts it has been used to demonstrate
that Forth is very inefficient by comparison
to The Forth source code (often seen in
these pages) is shown in Figure and
the annotated ForST code for Do-
PRIME in Figure Three. This has resulted
from compilation with MACROS and is, in

than the code with
CALLS.

If this example does nothing else* it
demonstrates the compactness and legibi1-
ib' of Forthcom~aredtoasse~bl~! A close
examination in the light of code for the
pfimitives suggest where edge 'phi-
'ation has taken place* and where code
expansion has taken place 'ptimi-
zation. The most time-critical code is in the

I

mveq #O,dO
push do ; 0
move. 1 4 (a61 ,dO
push do ; OVER
lea flags, a0
move. 1 a0,dO
add. 1 (a6) +, d0 ; +
move. 1 d0,aO

POP do ; 0
move. b do, (a01 ;C!
move. 1 4 (a6), do ;OVER
add. 1 (a6) +, d0 ; +
push do
bra begin

,
wend : POP do

POP do ; two DROP s

POP do
addq. 1 #l , do
push do ;increase count

not set : addq. 1 #l, d6
bvc lpstart ;loop if no overflow

iFsc: bsr bunloop ;get outer loop indices
bsr dot -
bsr - dotq ;print string

rts

BEGIN . . . WHILE . . . REPEAT COnStruct,
where most of the action takes place and
where every instruction really counts (it is
traversed 14996 times to find the 1899
primes). The unconnected DUP at the start,
the sign extension of the Boolean flag to 32
bits, the lSk of a compare-immediate in-
struction, and the absence of direct-address
kthmetic for pointers have added to exem
cution time. More generally, the policy
decision of using a 32-bit stack for all val-
ues has added 50% to all moves. I still
believe the approach is correct, as it elimi-
nates an important source of error at the ,,, code level.

Nevertheless, 100 iterations of the sieve
take only 59 seconds. Code from my Laser
C compiler takes 41.7 seconds with 16-bit
integers and 51.7 seconds when they are
expanded to 32 bits. The code from ForST
and the C compiler must be judged fairly
wuivalent in speed and quality. 1 ~ ~ 1 en-
thusiasts will point to faster times for 80286
systems, but they should remember that
they are using a narrow stack and the small
memory model. mey should recompile for

long integers and the huge model, and
compare again. Further to this point, the
68000 is near the bottom of the MC680XO
range and the ForST code will execute
much, much faster on 68030 systems. The
thought that code I am writing now will be
usable in the computers of ten years hence
is very appealing.

Finally, to confuse comparisons fur-
ther, consider the following (useless) code,
which is designed to test both the speed of
looping and the time for subroutine calls.

DECIMAL CALLS

: NOOP ;
: RAWSPEED
5000000 0 DO
NOOP LOOP ;

(36 seconds)

Compiled with CALLS (to farce a sub-
routine call to NOOP), it runs in 36 seconds.
The corresponding code from Laser C takes
110 seconds, indicating a little of the very

(Continued on page 40.)

HARVARD S O F T W O R K S
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

MEET THAT DEADLINE ! ! !

Use subroutine libraries written for
other languages! More efficiently!
Combine raw power of extensible
languages with convenience of
carefully implemented functions!
Yes, it is faster than optimized C!
Compile 40,000 lines per minute!
Stay totally interactive, even while
compiling!
Program a t any level of abstraction
from machine code thru application
specific language with equal ease
and efficiency!
Alter routines without recompiling!
Use source code for 2500 functions!
Use data structures, control
structures, and interface protocols
from any other language!
Implement borrowed feature, often
more efficiently than in the source!
Use an architecture that supports
small programs or full megabyte
ones with a single version!
Forget chaotic syntax requirements!
Outperform good programmers
stuck using conventional languages!
(But only until they also switch.)

HSIFORTH with FOOPS - The
only flexible full multiple
inheritance object oriented
language under MSDOS!

Seeing is believing, OOL's really are
incredible a t simplifying important
parts of any significant program. So
naturally the theoreticians drive the
idea into the ground trying to bend
all tasks to their noble mold. Add on
OOL's provide a better solution, but
only Forth allows the add on to blend
in as an integral part of the language
and only HSIFORTH provides true
multiple inheritance & membership.

Lets define classes BODY, ARM, and
ROBOT, with methods MOVE and
RAISE. The ROBOT class inherits:

INHERIT> BODY
HAS> ARM RightArm
HAS> ARM LeftArm

If Simon, Alvin, and Theodore are
robots we could control them with:
Alvin 's RightArm RAISE or:
+5 -10 Simon MOVE or:
+5 +20 FOR-ALL ROBOT MOVE
Now that is a null learning curve!

WAKE UP ! ! !

Forth is no longer a language that
tempts programmers with "great
expectations", then frustrates them
with the need to reinvent simple
tools expected in any commercial
language.

HEYFORTH Meets Your Needs!

Don't judge Forth by public domain
products or ones from vendors
primarily interested in consulting -
they profit from not providing needed
tools! Public domain versions are
cheap - if your time is worthless.
Useful in learning Forth's basics,
they fail to show its true potential.
Not to mention being s-1-o-w.

We don't shortchange you with
promises. We provide implemented
functions to help you complete your
application quickly. And we ask you
not to shortchange us by trying to
save a few bucks using inadequate
public domain or pirate versions. We
worked hard coming up with the
ideas that you now see sprouting up
in other Forths. We won't throw in
the towel, but the drain on resources
delays the introduction of even better
tools. Don't kid yourself, you are not
just another drop in the bucket, your
personal decision really does matter.
In return, well provide you with the
best tools money can buy.

The only limit with Forth is your
own imagination!

You can't add extensibility to
fossilized compilers. You are a t the
mercy of that language's vendor. You
can easily add features from other
languages to HEWORTH. And using
our automatic optimizer or learning a
very little bit of assembly language
makes your addition zip along as well
a s in the parent language.

Speaking of assembly language,
learning i t in a supportive Forth
environment turns the learning curve
into a light speed escalator. People
who failed previous attempts to use
assembly language, conquer i t in a
few hours or days using HSEORTH.

HSJFORTH runs under MSDOS or
PCDOS, or from ROM. Each level
includes all features of lower ones. Level
upgrades: $25. plus price difference
between levels. Sources code is in
ordinary ASCII text files.

All HS/FORTH systems support full
megabyte or larger programs & data, and
run faster than any 64k limited ones even
without automatic optimization -- which
accepts almost anything and accelerates to
near assembly language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminate
headers without recompiling. Compile 79
and 83 Standard plus F83 programs.

STUDENT LEVEL $148.
text & scaledJclipped graphics in bit blit
windows,mono,cga,ega,vga, fast ellipses,
splines, bezier curves, arcs, fills, turtles;
powerful parsing, formatting, file and
device UO; shells; interrupt handlers;
call high level Forth from interrupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file search paths; formats into strings.

PERSONAL LEVEL $248.
software floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4
words, 1..4 dimension var arrays;
automatic optimizer-machine code speed.

PROFESSIONAL LEVEL $396.
hardware floating point - data structures
for all data types from simple thru
complex 4D var arrays - operations
complete thru complex hyperbolics;
turnkey, seal; interactive dynamic l i i e r
for foreign subroutine libraries; round
robin & interrupt driven multitaskers;
dynamic string manager; file blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $496.
Metacompiler: DOS/ROMldirect/indired;
threaded systems start at 200 bytes,
Forth cores at 2 kbytes; C data
structures & struct+ compiler;
Turbowindow-C MetaGraphics library,
200 graphidwindow functions, Postscript
style line attributes & fonts, viewports.

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

FOOPS+ with multiple inheritance$ 76.
286FORTH or 386FORTH $296.

16 Megabyte physical address space or
gigabyte virtual for programs and data;
DOS & BIOS fully and freely available;
32 bit addresdoperand range with 386.

BTRIEVE for HS/FORTH (Novell) $199.
ROMULUS HS/FORTH from ROM$96.
FF'ORTRAN translatorlmathpak $ 75.

Compile Fortran subroutines! Formulas,
logic, do loops, arrays; matrix math,
FFT, linear equations, random numbers.

I\

Volume XII. Nwnber 2 25 Forth Dirnennnnm

DICTIONARY STRUCTURES
& FORTH

One dictionary, a pair of stacks, and a dic-
tionary-management system @MS) com-
prise Forth. The dictionary includes all the
functions of a Forth system so, along with
the DMS, it forms Forth's framework.

Dictionary Structure System
The design of an operating system-

even a single-user, single-task system-is
a very complex task. Anyone who has
designed aForth system will deeply appre-
ciate that it is much the same-though
simpler, smaller, more flexible, and more
effective than a generalized 0s-but re-
quires a shorter lead time to develop. Why?

The early designers of operating sys-
tems adopted the modular method, result-
ing in a modular-structure 0s. The method
is:

divide a large-scale system design into
small, independent, functional modules
and stipulate the interfaces between the
modules;

implement the modules individually; then
link the modules, according to their vari-
ous interfaces, to form a complete sys-
tem.

The main advantages of this modular ap-
proach are faster design, improved flexibil-
ity, and efficiency. Unix is a typical ex-
ample of the method. The disadvantages
include the difficulty of accurately parsing
functions into modules and defining their
interfaces in advance, and a lack of orderly
call sequences reduces the relative inde-
pendence of modules.

In order to improve on this method, a
system of ordered calls is used. We may
begin with a bare machine A which has no
software; install a layer of software to ex-
pand the functions to form the virtual

WU QIAN - BEIJING, CHINA

machine A1 , which has better performance;
then add another virtual machine A2, etc.,
until we arrive at the desired virtual
machine An. The operating system de-
signed with this method is divided into
layers, each composed of modules, which
have one-way relations. This is called a
hierarchical operating system. Its design
corrects the random call to the ordered call,
which enhances design correctness and
shortens development time. The lower layer
can be designed and tested before the upper
[or outer] layer, reducing the complexity of
each programming task. Moreover, mis-
takes can be made later in the upper layer
and subsequently corrected without break-
ing the lower layer's code, making mainte-
nance much easier.

The development of
Forth has just begun.

An operating system is the set of pro-
grams that controls and manages computer
hardware and software resources, organizes
the work flow, and generally makes things
more convenient for the user. In fact, to
design an operating system is to decide what
method and structure should be used to
organize this set of programs effectively.
Resource management should also be
handled by the operating system; from the
user's point of view, this manages the pro-
grams that manage the hardware and non-
system software resources. So a good oper-
ating system design should include not only
the functions it is to realize but also, and

I more important, the managementcontrol
mechanics of the OS that make up its frame.

Neither modular nor hierarchical sys-
tems regard system programs as a resource

to be managed in a fixed way. Modular
systems don't manage the system pro-
grams at all-modules connect haphaz-
ardly, related merely as the caller and the
called, resulting in unreliability and in long
development and maintenance cycles. Hi-
erarchical systems are more thoughtful, di-
viding the system into layers and managing
the modules within those layers, but this re-
duces efficiency because of the forced divi-
sion of similar resources and the relative
isolation of the layers.

How can one manage system programs
wisely in terms of resources? System pro-
grams are objects to be managed, and we
can use tables to express their various re-
sources. Their attributes differ because
their functions differ, but each is an inde-
pendent module. We can use one table to
describe each module's name, hierarchical
relationships, and other attributes. Mod-
ules and module tables together form the
resource base of the system program-
dictionary, in Forth terminology. The tools
used to work with the dictionary comprise
the DMS.

The dictionary is composed of modules
and module tables, linked by a fixed data
structure. Modules follow a strict calling
order: modules in higher layers can only
call modules in lower layers, a hierarchical
relation included in the module tables. The
DMS manages and controls the dictionary
by providing operations to find a module,
add a new module, remove a module, etc.

This dictionary structure system @SS)
differs from the simpler modular and hier-
archical systems. The design of a DSS
should first determine the dictionary struc-
ture and DMS. The designer can then use
hierarchical methods to realize system
functions that take full advantage of the
system frame.

Forth is a kind of simple DSS, whose

1 -
Forth Dimensiotu 26 Volume XII, Number 2

I

Volwne XII, Nwnber 2 27 Forth Dimensions

system frame is formed of a dictionary data
structure, an interpreter, and a compiler.
The words in the dictionary reflect the
functions of the Forth system, and they
follow a strict call order. Tables of words
are linked by the fixed dictionary structure,
and the interpreter and compiler provide
management and control mechanics for the
dictionary.

DSS Advantages
shorter lead time, enhanced reliability

DSS designers should first specify the
system frame. The frame is like a system-
construction m l and can improve the func-
tional design. Modules can use hierarchical
methods for reliability and ease of mainte-
nance.

efficiency
A DSS manages the system with a view

to its resources, and removes the inter-layer
communication barriers imposed by the
hierarchical method.

*flexibility
In a hierarchical system, it is difficult to

modify or extend the lower layers. The
DSS, on the other hand, includes all the hi-
erarchy in its tables and there are no physi-
cal layers, so adding or reducing system
functions is simply a matter of expanding
or deleting modules from the dictionary.

system programming language
DSS permits the DMS to be designed as

an interpreter and compiler (e.g., the Unix
shell), which in turn can offer a program-
ming environment built upon the system
instructions (e.g., Forth).

open-ended program base
This aspect of DSS can be very impor-

tant to software reuse and portability.

The design of Forth systems reflects the
advantages of DSS. Additionally, Forth
uses reverse Polish notation (RPN) arith-
metic, which is more easily handled by the
computer; linear decoding, which can save
memory; and irregular design.

Forth as System Language
The facts show that every language has

its own application area, and Forth is the
same. In the past, Forth has been used in
process control and image processing, to
name a couple, but I think Forth is well-

suited to be a system language.
First, it describes a system structure

which is simple, effective, and reliable. It
provides an interpreter and compiler which
are not only dictionary management tools
but also user-instruction processors. The
dictionary is open and composed of piled-
up modules; all of the words in it form the
system language, is., the Forth kiwuage.

Second, Forth balances the user inter-
face with the machine interface. RPN and
the irregular design method can make one
feel it is difficult to master, but these very
features make it easy to describe and imple-
ment a system.

To basic rule in Forth development is to
retain its simple style. Some people enjoy
its unique characteristics, while others re-
ject it or try to make it into something like
other high-level languages. My point is that
if one is bound by his nature to be a painter,
let him be a painter and not a singer; other-
wise, a genius is going to be a mediocrity.
Take Forth in your own direction, but fol-
low its spirit for the best results.

Forth can support all kinds of functions,
but its user interface is not good. Why won't
we take advantage of other high-level lan-
guage interfaces to compensate for Forth's
defects,perhapsending withForth as amid-
level language?

Forth Processors
The introduction of Forth chips and

their related Forth nucleus software con-
vinces us of the potential advantage of such
a system. In the past we saw machines that
directly supported high-level languages,
but design complexity, low efficiency, and
limited applications brought failure. Ac-
cording to past experience, it seems the
same problems could be encountered if we
try to make a machine that supports Forth.

The chip we designed to support Forth is
so simple, the gates so few, and the speed so
fast that others chips cannot compare.
Why? Forth itself--its style is quite differ-
ent from that of other languages. It's not so
much that Forth is a new kind of language,
as that it is a kindof design thought and rule.
As has been demonstrated, it is easy to
support in hardware Forth's fundamental
functions, stack-based operations, and
RISC techniques. Similarly, software de-
sign is so simple, the system so flexible, and
maintenance and performance so good, that
other system structures cannot compare.

Problems
Integrated hardware and software de-

sign based on Forth has just begun. There
are still a lot of problems to be solved. For
example, Forth's current dictionary struc-
ture is limited and further study is needed
to find the best solution; Forth's greatest
weakness is its lack of protection, espe-
cially of stacks; the frame is the key to a
DSS, so a Forth chip should support not
only basic functions and stack operations,
but the DSS frarne,operating system,even
some kind of conversion from other lan-
guages. I think both the hardwareand soft-
ware design of the new system should
fully integrate current well-developed
theory and technique.

In general, the development of Forth
has just begun. When necessary, it needs
tobe expanded and improved, but it would
be unwise to belittle Forth. It is not easy to
develop an adequate enough understand-
ing of Forth to study, use, and further
develop it, but if you can grasp Forth
thought you will gain anew understanding
of the language itself.

Wu Qian has an M.S. in software engi-
neering and fourth-generation lan-
guages from the Sofnvare Institute of
the Chinese Academy of Sciences, and
his thesis noted Forth's differences
from traditional OS structures. He is
interested in sofnvare engineering, the
structure of system software, artificial
intelligence, and the human-computer
interface. He is designing system soji-
ware for a new kind of machine that
supports Forth, and is trying to create
an integrated Forth system on a Forth
machine.

INTERACTIVE
CONTROL STRUCTURES

JOHN R. HAYES - LAUREL, MARYLAND

Ed novices some(imes type:
8 0 do i . loop

into their Forth systems and then wonder
why
0 1 2 3 4 5 6 7 o k

doesn't appear. The easy answer is that
Forth only allows control structures to be
used inside colon definitions. A more accu-
rate answer is that Forth system implemen-
tors feel that providing interactive control
is too difficult. In this article, I will describe
a relatively simple way for a Forth system
to provide control structures that behave
consistently, whether interpreted or com-
piled.

Interactive control structures have
many uses. For example, they can initialize
an array or table:

create squares
100 0 do
i i * ,

loop

Another use for interactive control
structures is conditional compilation in a
fde-based system:

Forth-7 9?
if ' Forth83-emulator"
load-file then

Forth-79? isawordthatteststoseeifa
Forth-79 Standard system is present. If so,
load-f ile loads a file named Forth83-
emulator that contains a Forth-83 emulator
written in Forth-79.

At the 1987 FORML Conference,
Mitch Bradley gave a paper appropriately
titled "Interpreting Control Structures-
TheRight Way" [I]. His solution to making
control structures interactive didn't allow

compiling-words such as a 1 lot and , to
be used within the control structures. For
example, you couldn't initialize the
squares table using the code above. He
left this as "an exercise for the reader." I
have taken up the challenge, and I provide
a solution here. In the remainder of this
article, I'll describe the problems found and
faced in developing my solution. Source
code is provided.

Problems and Solutions
The first problem in implementing

interactive control is that the control struc-
tures must be compiled before they can be
executed. This is easy to handle: just switch
to compile mode when the beginning of a
control structure (do, begin, if, et~.) is
encounteredduring interpretation. But how

As you grow accus-
tomed, they may
become indispensable.

do you know when to stop compiling and
execute the compiled code? If the compiler
is turned off as soon as an ending control
structure (loop, until, then, etc.) is
found, nested control structures will not
work. We must keep track of the nesting
level somehow.

I use Forth's st ate variable to count
the nesting level. A st ate value of zero
indicates that the system is interpreting.
Control structure words such as do, be-
gin, or if increment state and words
such as loop, repeat, and then
decrement st ate. I have added two words
to my system, named 1 1 and [[(analogous
to 1 and [) that perform these functions. For
example:

: do
1 I <dodocode>
; immediate

: loop
<loop-code> [[
; immediate

(~egin, repeat, until, if, and
then are modified in a similar way.) If do
is found while interpreting (state = 0). I I
increments st ate and the system starts
compiling (state = 1). If an if . . . then
structure appeared within the loop, if
would increment the st ate to two and
then would decrement it to one. When
loop is found later, [[decrements the
st ate back to zero and interpretation is
resumed. [[detects this transition and
executes the compiled code.

The code within the control structure is
transient and must be compiled into some
temporary location. The obvious location
is the end of the dictionary at he re. The
problem with this is that words such as
allot and , couldn't be used with the
control structures. For example, in the
squares example, 'comma-ing' in the
squared values would overwrite the do . . .
loop code and almost certainly crash the
system. A separate compile buffer would
solve this problem.

In an earlier article on local variables
(FD XI/l), I described a way to add com-
pile buffers to a Forth system. I changed the
dictionary pointer variable dp (called h in
some systems) into a colon definition to
add a level of indirection. Since allot,
here, and ultimately the entire compiler
are defined in terms of dp, changing the
value returned by dp can redirect the
compiler to another region of memory.

variable regionptr i : dp

I

Forth Dimemiom 28 Volume XII, Nwnber 2

EuroFORML'90

Large Systems
(Forth in Control in the 1990's)

October 12-1 4th 1 990

Call For Papers

Suggested Subject Headings Are:

Connectivity, Multi-processor Systems, Distributed Systems, Project Management,
Team Programming, Techniques and Tools.

Please let us know as soon as possible if you would like to speak. Abstracts should
be submitted by August 12th and papers, camera ready, by September 12th.

The venue:

The Potters Heron
Amp field

Hampshire

Situated on the edge of the picturesque New Forest, this extensive thatched hotel
offers all modern facilities. The famous Broadlands and Beaulieu stately homes are
only a short distance away as are the award winning Exbury and Hillier Gardens.
Sample the ancient splendour of the historic Winchester and Salisbury Cathedrals
or try a traditional New Forest Cream Tea.

A Demonstration and Exhibition area is available- please contact the Conference
Organiser for and information sheet.

All communications to:

The Conference Organiser
EuroFORMC90

133 Hill Lane
SOUTHAMPTON SO1 5AF

Tel: (+ 44) (703) 63 144 1 q I T$ I

VolwneXII.NwnberZ 29 Forth D k h

regionptr @ ;
\ (-- addr) Return next free
\ location in allocation
\ region

: allocatefrom
regionptr ! ;

\ (addr --) Select an
\ allocation region

New compile buffers are created by the
following defining word:

: region
create here
cell+ , allot ;

\ (size --) Create
\ allocation region

The control structure compile buffer is
created as:

200 region compileregion

Stdregion is the built-in standard
dictionary allocation region. I I and [[
automatically switch the compiler between
compileregion and stdregion.
The diagram in Figure One summarizes the
states the Forth system can occupy. In the
topmost state in the figure, the system is
interpreting and dp refers to the end of the
dictionary. Starting a colon definition sets
the state to one, and control structures
behave conventionally in the leftmost
group of states. If I I is called via do, if,
etc. while interpreting, the system enters
the rightmost group of states and starts
compiling into the compile buffer. Further
control structures will nest properly. When
the final loop, then, etc. calls [[, it
switches back to the standard allocation
region, executes the code in the compile
buffer, and resumes interpretation.

The Code
The source code is shown in the accom-

panying listing. I I first checks to see if the
1 system is interpreting (i.e., is this the 0-1
state transition?). If it is, I I switches dp
over to the compile buffer. Here, which
now indicates the next h e location in the
buffer, is saved in a variable named com-
pilebuffer. Since the code in the
compile buffer will later be passed to exe -
cute, we need to create a code field in the
buffer. The line labeled NON-PORTABLE
does this in a systemdependent way. For
example, in an indirect-threaded-code

I state = o \ I

7 state = 1 \

if, etc. then, etc.
[[

state = 2
compile in dictionary

I do, if, etc. 4 loop, then, etc.

I 1

Figure One. System state diagram.

system, st art : might ' (tic) a known
colon definition and copy the code field:

In a subroutine-threaded system,
start : would be a no-op. Finally,]]
increments st ate.

[[decrements st ate. If this brings
the system to the interpret state, [[knows
there must be something in the compile
buffer to execute. An exit is added to the
buffer, dp is switched back to the standard
allocation region, the code pointed to by
compilebuf fer is executed, and the

(Continued on page 41 .)

1 -

Forth Dimensions 30 Volwne XII, Number 2

METACOMPILE
BY DEFINING TWICE

CHESTER H. PAGE - SILVER SPRING, MARYLAND =

Volume XII, Number 2 31 Forth Dtnrmionr

tion.
It is convenient to group primitives into

successive screens to simplify this maneu-
ver. For example, in my definition of this
metacompiler, the fust ten screens are the
basic primitives of Forth, followed by four
screens of constants and variables, 27
screens of colon words, and finally nine
screens of primitive words. Only the 31
screens in the middle are subjected to a
second pass.

During each pass, only host words are
to be executed, but target words are to be
compiled. Making TARGET the CURRENT
vocabulary and HOST the CONTEXT,
solves most of the problem. All defining
words, such as the colon, are selected from
HOST. Immediate target words, however,
would be executed. This is avoided by
making IMMEDIATE include SMUDGE, so
that all immediate words in TARGET are
automatically passed over because of a
smudge. A problem then arises when an
immediate word is to be compiled by
[COMP I LE] ! This "Catch-22" situation is
resolved by substituting a special version
of [COMPILE I in HOST: the SEEK com-
ponent of [COMPILE I is modified to
change the smudge status of each input-
stream word, so that [COMPILE I Cannow
find only smudged words. There are times
when ' is needed for finding a target
word-TARGET must be the CONTEXT,
but the host is to be executed. This is
handled by smudging the target definition
of ' .

If a defining word that is missing in
HOST is to be used in TARGET, a suitable
version of the defining word must be added
to HOST. This can be done as an ad hoc
addition from the metacompiler. For ex-
ample, my minimal host does not have
ARRAY as a defining word (intentionally).
but my target needs an array VOC . LIST.

basic idea behind this meracom-
piler is to use a host Forth in out-of-the-way
memory to define a new, target Forth dia-
lect in the normal memory area, using nor-
mal Forth definitions. The addresses of the
components of new colon definitions are
taken from the target (when available),
otherwise from the host (if possible). For
components not defined in HOST and not
yet definedin ~ARGET,a0000i~~0mpiled
and announced. After one pass through all
the target definitions, the target words all
occupy the correct amount of space and are
located at their final addresses. The tempo-
r;ny host component addresses and 0 0 s
are to be replaced by target addresses on a
second pass through the set of definitions.
Actually, each definition is completely
overwritten, but with unchanged addresses
where the first pass gave the desired final
addresses.

The major requirement for redefining
with overwrite is maintaining the integrity
of the links between target words, so that
the target vocabulary can be searched prop-
erly when compiling definitions. The first
problem is having input-stream words
overwrite link fields, this is avoided by not
using the upcoming dictionary area for
WORD input. A special area (STREAM) is
used, and its content is transferred to the
dictionary area when appropriate.

The second problem involves new link-
ages. The second defining pass starts with
the dictionary pointer reset to the origin of
the target; if the target vocabulary is still
called TARGET, the first word will link to
the previous last word, making a circle that
prevents proper searching. This is avoided
by setting up a dummy vocabulary for tar-
get words in the second pass. Linkages in
DUMMY will run from the latest word rede-
fined, down to the first word. Linkages in
TARGET will be from the final word down

through all words defined only once, then
down through the words that are also in
DUMMY, because the dummy links are re-
peats of the original TARGET links!

The first pass has some improper com-
ponent addresses, but each word is at its
correctlocation,sothesecondpasswillfind
a correct address for each component-
including any that were not in existence
when they were needed in the first pass.
Thus, host addresses and 0000s will be
replaced by the desired target addresses.

One problem l l l is to
keep CONTEXT and
CURRENT under
c0n&Ole

All colon words are subject to a second
pass; assembled primitives need not be
redefined, since all components are cor-
rectly located on the first pass. Where a
primitive makes areference toan address in
another primitive, or to the storage cell of a
Forth variable, labels are used and label
addressesarenotsubstituteduntil theendof
the first pass, so they do not needcorrecting.
Skipping the screens of primitive words
during the second pass requires adjusting
links and the dictionary pointer across the
skip. For example, consider a group of
screens of primitives to be skipped; when it
is reached in the second pass, identify the
last word in these screens as LATEST (so
that the next word defined will link to it-
in a multi-threaded system, this must be
done for each thread) and set the dictionary
pointer to the first byte of the header of the
first word on the following screen, so that
the overwriting will start in the proper loca-

So a version of ARRAY is temporarily
added to HOST. A modified version of
VOCABULARY, called SVOCAB to avoid
confusion, is also used for creating new
vocabularies in the target during compila-
tion.

The ultimate machine to be defined is
called FORTH, and this is defined as a
vocabulary in TARGET. Also defined in
TARGET the vocabulaly NEW with One
word in it, to test the compiler.

Compiling 0000 for any word not found
is achieved by substituting a special ad hoc
version of INTERPRET in HOST. (These
modifications to HOST are not perma-
nent--they are not made in HOST. but are
substitutidns put into HOST in memory by
the metacompiler.)

Since the final colon words must have
TARGET generic execution procedure
(rather than HOST code field references),
the host's : (colon) must be redefined be-
fore the second pass by substituting the
target DOCOL for the host DOCOL in the
host colon. Similarly, the target's EXIT
must be substituted into the host's ; (semi-
colon). All words compiled by immediate
words in HOST must be replaced by their
TARGET counterparts so that target ad-
dresses will be compiled. Examples of
compilees to be substituted are ?BRANCH,
BRANCH, (DO), (LOOP), (."),etC.

All the other special generic execution
pr0Cedu~es (DOVAR, DODOE, DOCON, etc.)
must also be replaced in the second pass,
and all of the addresses compiled by imme-
diate compiling words must be updated
before the second pass.

Since both defining passes are opera-
'tions in HOST, vocabulary reference
changes are made in the host's CONTEXT
and CURRENT. After the second pass, the
SET .CONTEXT (by which calling a vo-
cabulary sets it to CONTEXT) must be
changed to refer to the target's CONTEXT.
The vocabulary specified to be searched
next after a word is not found must also be
changed in each secondary vocabulary to
FORTH. BASE, DP, and FENCE must be
properly initialized, the topword pointer(s)
set in FORTH, and the starting word(s) at
the origin linked back as the first word(@ in
FORTH.

The final step is to unsmudge all
smudged words and call for a cold start of
Forth. This newly defmedForth can then be
saved to disk.

s c r e e n s SCR # 1
0 \
1 HEX
2 E6 CONSTANT N
3 N 2- CONSTANT D I V
4 N 8 + CONSTANT I P
5 I P 3 + CONSTANT W
6 W 2+ CONSTANT XSAVE
7 EO CONSTANT TEMP
8 E2 CONSTANT TEMP1
9 FDED CONSTANT GOUT

10 FC22 CONSTANT VTAB
11 FC58 CONSTANT HOME
1 2 FD35 CONSTANT INCH
1 3 900 CONSTANT ORIG
1 4 5 7 8 CONSTANT CH
1 5 2 5 CONSTANT CV -->

s c r e e n s SCR # 2
0 \ 13MAR89CHP
1 2 8 CONSTANT BASL
2 FBCl CONSTANT BASCALC
3 C054 CONSTANT PAGE1
4 C055 CONSTANT PAGE2
5 BE03 CONSTANT R I .PARSE
6 BEOC CONSTANT ERR.PRINT
7 BE6C CONSTANT PNlADD
8 BFOO CONSTANT M L I
9 FUSE CONSTANT GROUT

10 VARIABLE VOC.SAVE
11 VARIABLE LFLAG
1 2 VARIABLE DP.HOLD -->
1 3 \ These ROM a n d ProDOS s y s t e m c o n s t a n t s p r o v ~ d e f o r u s i n g
1 4 \ b u i 1 t - i n o p e r a t i o n s , s u c h a s d i s k i n p u t a n d o u t p u t
1 5

s c r e e n s SCR # 3
0 \ 13MAR89CHP
1 : &NUMBER (h e r e - - d t r u e : h e r e f a l s e) 0 0 ROT DUP 1+ C 2D =
2 DUP >R + -1 BEGIN DPL ! CONVERT DUP C @ DUP 2E =
3 WHILE DROP 0 REPEAT
4 BL = I F DROP R> I F DNEGATE THEN 1
5 ELSE R> DROP >R DROP DROP R> 1- 0 THEN ;
6 : &INTERPRET BEGIN SEEK ?DUP
7 I F STATE i) + O= I F . ELSE EXECUTE THEN
S ELSE &NUMBER
9 I F DPL il 1+

10 I F CCOMPILEI DLITERAL ELSE DROP [COMPILE] L ITERAL THEN
11 ELSE ." New w o r d u s e d a s componen t ; 0000 comp i l e d ' ' CR
1 2 DROP 0 ,
1 3 THEN
14 THEN
1 5 AGAIN ; -- >

s c r e e n s SCP # 4
D ' Sub= t I t u t e LINTERPRET f o r ItlTERPRET 13MAR89CHP
1 LII4TERPRET DUP ' RUIT 1 2 + ' ' LOkD 40 + '
2 C r e a t e dumrn, ARRAY a n d 0 O C . L I S T I n h o s t s o u r c e
3 : C'OARP SWAP 2r- + :
4 : t+RRAY CREATE DUP -2 ALLOT C ' DODOE 2+ I LITERAL ,
5 C DOARP 2+ I LITERAL . , 0 DO 0 . LOOP :
6 7 APRAY VOC.LIST
7 ' P r o v ~ d e v o c a b u l a r v - c r e a t ~ n g w o r d f o r u s e w h l l e c o m p l l l n g
S : ?,"OLkB CREATE -2 ALLOT C ' DODOE 2 + 1 L ITERAL ,

I SET.CONTEXT 2+ I LITERAL , A081 . HERE 2- DUP DUP DUP
10 C FORTH 6 + I LITERAL , LAST
11 1 BEGIN DUPVOC.L IST 3 W H I L E 1+ DUP 7 =
1 2 ABORT" T o o man> v o c a b u 1 a r I e s ' REPEAT VOC . L I ST :
1 3 5 LOAD
14 \ NOTA BENE: N e e d LOAD I n s t e a d o f - - > t o a c t ~ v a t e u s e
1 5 \ o f &INTERPRET I n s c r e e n ~ n t e r p r e t a t ~ o n s

Forth Dimensions 32 Volume XZZ, Nwnber 2

screens SCR # 6
0 \ Prepare f o r second p a s s , r e d e f i n i n g w ~ t h o v e r w r i t e 13MAR89CHP
1 \ R e d e f i n e ARRAY t o a v o i d e r a s i n g a r r a y s d e f i n e d i n f i r s t
2 \ pass , e . g . . VOC.LIST h o l d i n g names o f vocabu la r ~ e s
3 \. def i n e d i n f i r s t pass
4 FARTH DEFINIT IONS
5 : ARRAY CREATE DUP - 2 ALLOT [0 1 L ITERAL , [0 I
6 LITERAL , , 2* ALLOT I 0 I LITERAL , ;
7 ' Now s u b s t i t u t e F IRTH addresses i n t h i s d e f i n i t i o n
8 FIRTH ' DODOE 2+ FARTH ' ARRAY OE + !
9 FIRTH ' DOARRAY 2+ FARTH ' ARRAY 1 4 + !

10 FIRTH ' EXIT FARTH ' ARRAY 20 + !
11 \ P r o v i d e f o r immediate compi 1 i n g words t o compt l e FIRTH
12 \ addresses ~ n s t e a d n f the l o c k e d - i n FARTH addresses
13 FIRTH ' 'BRANCH @UP FARTH ' I F 4 + ! ' UNTIL 4 + !
14 F IRTH ' BRANCH DUP FARTH ' ELSE 4 + ' ' AGAIN 4 + !
15

I

screens SCR # 7
0 ;, 13MAR89CHP
1 FIRTH ' (LOOP? FARTH ' LOOP 4 + !
2 F IRTH ' !+LOUP) FARTH ' +LOOP 4 + !
3 FIRTH ' <DO) FARTH ' DO 4 + !
4 FIRTH ' L I T FARTH ' LITERAL C + !
5 F IRTH ' (DOES) FARTH ' DOES> 4 + !
6 FIRTH ' (. ") DUP FARTH ' ." 0A + ! ABORT'' 8 + !
7 F IRTH ' QUIT FARTH ' ABORT" 1 4 + !
8 FIRTH ' SP! FARTH ' ABORT" 10 + !
9 F IRTH ' UOC.LIST DUP FARTH ' &UOCAB 3C + ! ' &UOCAB 65 + !

10 FIRTH ' DODOE 2+ FARTH ' LUOCAB C + !
11 F IRTH ' DOCON FARTH ' CONSTANT 8 + !
12 FIRTH ' DOVAR FARTH . CREATE A5 + !
13
14
15 - - ?

screens SCR # 5
0 \ 13MAR89CHP
1 3 9 LFLAG ! \ Screen 8 3 8 i s l a s t colon-word d e f i n i ng screen
2 \ I t ends i n LFLAG LOAD -- on f i r s t pass l o a d i n g proceeds
3 \ t o the second b a t c h o f p r i m i t i v e s ; on t h e second pass
4 \ l o a d i n g wi l l be d i v e r t e d t o the wrao-up screens %A/B
5 60 ' IMMEDIATE 6 + C! \ Makes IMMEDIATE a l s o SMUDGE
6 \ Rename h o s t FORTH a s FARTH
7 ' FORTH >NAME 2+ 41 SWAP C!
8 VOCABULARY F IRTH
9 FIRTH DEFINIT IONS

10 FARTH
11 ORIG DP
12 ASSEMBLER
13 CLEAR.TABLES
14
15 OD LOAD \ F i r s t sc reen f o p r i m i t i v e d e f i n i t i o n s

screens SCR # 8
0 \ 13MAR89CHP
1 \ P r o v i d e f o r [COMPILE] t o compi le SMUDGED IMMEDIATE words
2 \,~ Def i n e *SEEK t o f i n d unsmudged words by smudging the sample

4 : *SEEK BL WORD COUNT UPPER THREAD! STREAM DLlP 20 TOGGLE
5 [' FIRTH 6 + I LITERAL THREAD a 2* + a (FIND) ;
6 '\ S u b s t ~ t u t e t h i s i n t o tCOMPILEl

About Vocabularies
One problem in developing a program

like this metacompiler, which is operating
in several vocabularies, is to keep CON-
TEXT and CURRENT under control. In the
case of defining vocabularies during com-
pilation, the following routine was used:

CONTEXT @ CURRENT @
&VOCAB FORTH
&VOCAB NEW
F I R T H
NEW DEFINITIONS
: NEWTEST

. " NEWVOC" ;
CURRENT !
CONTEXT !

The other place requiring a juggle is in
defining the colon words. Forth normally
makes the CURRENT vocabulary the CON-
TEXT during a definition, so that compo-
nents will be found in the appropriate vo-
cabulary. In this case, we want F I R T H to
be the context during the redefinition phase
in which DUMMY is CURRENT. Screen
eight redefines the host colon to accom-
plish this.

My realization of this concept com-
prises 12 screens of metacompiler instruc-
tions, followed by the definitions of the
desired Forth. In my case, these definitions
take 53 screens. I wish to emphasize that
these definitions are all in standard forms,
with no special considerations for the
metacompiler (except for the use of &vo-
CAB when defining additional vocabular-
ies, and this could be avoided by using
VOCABULARY as its name); actually, these
definitions were the Forth language de-
scription of my assembly program for
generating my Forth. The host is based on
a minimal version of Forth that has to meet
only two requirements: it must be able to
load screens, and it must support an assem-
bler. The minimal version with the assem-
bler compiled onto it is the HOST of the
above discussion. In my Apple] [e, HOST
lies from $5000 up. leaving the 18K from

I I 7 ' *SEEK ' [COMPILE] 4 + !
8 \ Next s t e p 1s a t the HEART OF THE METACOMPILER

$800$4FFF avaiiable for the Forth being
? \ R e d e f ~ n e FARTH's : t o f o r c e FIRTH (i n p l a c e o f DUMMY) a s compiled.

1 1 10 \ c o n t e x t d u r i n a c o m ~ i l a t i o n o f the d e f i n i t i o n o f a colon-word I I I

I I 11 : CLASS R > a 2+-LAST' NAME> ! ;
12 : : ?EXEC CONTEXT a ! c s p CREATE FIRTH I CLASS DOCOL :
13 F IRTH ' DOCOL FARTH ' : 1 2 + !

I

Volume XII, Nwnber 2 33

Machine-Specific Considerations
The mutines mentionedabove are illus-

trated by the following actual realization of
a metacompiler, written for use with the
Apple]I family of computers. These
screens are only for illustrating the pmb-

(Continued on page 40.)

Forth D t n e t h m

Many FIG Board Terms Drawing to a Close

CALL FOR NOMINATIONS

The nominating process for the selection
of officers for the 1991 FIG Boardof Direc-
tors is starting. The candidates elected to
the five available director positions will be
able to serve a three-year term, with the
possibility of reelection thereafter.

To be considered for nomination or to
obtain a nomination by petition, you should
carefully read these instructions. The
nomination and subsequent election proc-
esses take place as proscribed by our By-
laws. As the following extract from Article
VIII, Section 1 of the Bylaws indicates,
open elections are made possible by the
timely completion of steps stretching over
at least a five-month time period. The first
step has already been taken by the current
Board of Directors through the appoint-
ment of Mike Elola and Jack Brown to the
Nominating Committee for this election
Year.

FROM THE BYLAWS. ..
(a) Nominating Committee. The Board of

Directors shall appoint a Nominating
Committee composed of at least two
Directors to select qualified candidates
for election to vacancieson the Board of
Directors at least 120 days before the
election is to take place. The Nominat-
ing Committee shall make its report at
least 90 days before the date of the
election, and the Secretary shall pro-
vide to each voting member a list of
candidates nominated at least 60 days
before the close of elections.

(b) Nominations by members. Any 25
Members may nominate candidates for
directorshius at any time before the
90th day preceding such an election.
On timely receipt of a petition signed by
the required number of Members, the
secret& shall cause the names of the
candidates named on it to be placed on
the ballot along with those candidates
named by the Nominating Committee.

(c) The Corporation shall make available to
all nominees, an equal amount of space
in Forth Dimensions to be used by the
nominee for a purpose reasonably re-
lated to the election.

(d) Should a petition be received, a ballot
process will be provided to the voting
membership. Otherwise, the Secretary
shall cast a unanimous ballot for the
candidates as proposedby theNominat-
ing Committee.

OBTAINING A NOMINATION
The Nominating Committee selects

candidates for the ballot. FIG members
who wish to become candidates this way
should submit a letter requesting considera-
tion by the Nominating Committee (c/o
FIG office) before the deadline.

Alternately, a potential candidate shall
obtain at least 25 signatures from FIG
members and send this petition to the FIG
Secretary (c/o FIG office) before the dead-
line. The names of qualifying candidates
are placed directly on the voting ballot.

The deadline for submitting either nomi-

nating petitions or letters requesting con-
sideration by theNominating Committee is
August 3 1, 1990. Send these items to the
FIG office at P.O. Box 823 1, San Jose, CA
95155.

(If the Secretary does not receive any
nominating petitions by August 31,1990,
then the Secretary will cast a unanimous
vote for the candidates selected by the
Nominating Committee. In such a case the
membershipat large willnotreceive voting
ballots.)

The next important date after August 3 1
of this election year is September 14. It is
the deadline for candidates to submit their
candidate statements so that they can ap-
pear in the November-December issue of
Forth Dimensions.

Ballots will be included in the Novem-
ber-December issue of Forth Dimensions,
if necessary. The voting ballots must be
returned to the FIG office by December 3 1,
1990. The newly elected directors assume
their duties the following day.

The following FIG members nominate <candidate-name> to the R G Board of
Directors.

MEMBER NAME MEMBER MEMBER
@'lease Print) SIGNATURE NUMBER

I I

Nominating Petitions must be worded as is shown

L

Volume XII, Number 2 35 Forth Dimemions

BEST OF
GENIE

GARY SMITH - LITTLE ROCK, ARKANSAS =

N e w s from the CEnie Forth
~ o u n d ~ a b l e - & e of the most common
questions asked on the GEnie Forth
RoundTable Bulletin Board, if not the very
most common, is, "What Forth should I get
for my (fill in computer/chip/applica-
tion)?" This is not an unreasonable query-
even from a seasoned Forth programmer-
when one considers there were 145 files
posted in ow on-line Library #4, "Public
Domain and Sample Systems," theevening
I was writing this column. Expect one or
two additions by the time this piece is deliv-
ered to your mailbox. While that means
there are many offerings to filter through
for the one that might best serve your needs,
it also means there is probably a kernel
available for your needs. Keep in mind, this
does not include the splendidly supported
products provided by systems vendors and
embedded-board and programmed-chip
vendors.

First let's examine some specific re-
quests and the responses they elicited. Then
I will close this with a sampler of some of
the public-domain kernels available in the
library, including some rather unique ones.

Topic 7:
Which Public-Domain Kernel?

From: Alex Kozak
Re: 8080fig-FORTH

I'm looking for an 8080 fig-FORTH
with source in CP/M ASM.

To: Alex Kozak
From: Gary-S

Alex, there are two kernels on GEnie
(which I know are also available on xCFBs)
you may wish to consider:

GEnie #1418. FORTHLIB.ARC is a 79-
Standard kernel modeled after Glen

Haydon's All About Forth.
GEnie #701. UNI4TH80.ARC is
Uniforth's public-domain sampler, but is
quite complete.

If neither of these meets your needs, I
can upload to GEnie (and it will be ported
to the xCFBs if you can't get on GEnie) a
public-domain fig-FORTH written for a
Kaypro I1 you should be able to run as-is on
your Ozzie. I had to massage it some to get
it to go on a Bondwell-12, but I don't think
you will have the same problem with your
0-1. --Gary

It's hard to imagine a
computer for which
there is no Forth.

From: Ben Combee
Re: Forth for the IBM

Do you know about a good public-
domain Forth for an IBM XT-compatible
that comes with (or has available) words to
access EGA graphics? I have used F83
(dated rather a ways back) but did not like
its interface.

Also, does anyone know of a good inter-
active tutorial for Forth that will run on the
same system? I have seen similar programs
for Turbo Pascal and the other "in" lan-
guages. While I have read both editions of
Starting Forth, I still am having problems
getting anything done.

To: Ben Combee
From: Sysop (ECFBIShifrin)

You may be interested in checking out
Tom Zimmer's F-PC. It's built on F83, is
text-file based, and has numerous exten-
sions including a number for EGA and

VGA graphics. Look for FPC225-1.ZIP
through FPC225-5ZIP. If you can't find it
locally, you're welcome to log in here to
download it. You can also order the base
system from the author for $25.

Re: "Also, does anyone know of a good
interactive tutorial for Forth that will run on
the same system?"

The two Forth boards and GEnie have
an on-line tutorial based on this implemen-
tation. It's too big to network, but you're
welcome to stop by and download the les-
sons or participate in that conference. Good
luck!

From: Bob Bileski
Re: What Forth

I would like to start learning Forth by
picking a system that is current and that I
can grow with. After downloading a num-
ber of Forths, I felt F88 by Zimmer was as
close to a friendly language as I've seen.
I've read that FPC225 is better because it is
based on Zimmer's Forth. I guess at this
point I'm totally baffled by the millions of
Forths available, as well as the number of
extensions and fixes. Should I start with
FPC225, F88, TIL, Harvard, LMI, F83,
F83X, Zimmer's, etc.. . Should I use one
from the BBS or can I purchase a Forth and
all the attachments from one source? I
spoke to Offete about the FPC225 (total
package) and all I really came away with is
"...very, very good. Send check. $75.
You'll like it very much."

I give up. Perhaps you can advise what
would be the best long-term Forth to pur-
chase. Does anyone sell Forth diskettes and
tutorials, so I can minimize my BBS phone
charges? I suppose the vast amount of
unstructured Forth products makes many
shy away from this language. Maybe I'm

i missing something. I'd appreciate any info

Forth Dimensions 36 Volume XII. Nwnber 2

you might give me.. . Thanks.

To: Bob Bileski
From: Steve Palincsar

Bob, what Forth to get should be, in
part, determined by what you want it for,
what you intend to do with it, and the state
of your budget For example, LMI and
Harvard Softworks-to name only twc+
both have excellent, very complete prod-
ucts suitable for professional-level work, at
corresponding prices. With either of these
systems, you'll get a fine product (actually,
LMI has a number of fine products, both 16
and 32 bit, for both DOS & OSb!). There are
any number of public-domain Forths out
there, as you've discovered, some of which
have a lot of features but all of which seem
to have a chaos of versions, incompatible
extensions, etc. There are systems that fit
into about 4K, and there are systems that
seem to take about 400K. I think some of
Jerry's text files here, including
"which4th" mightbeof help to you, but the
most important thing is to decide what you
want to do with it. If it's presently learning
something about the language, to get a feel
for it, you might want to start with a fairly
simple (and limited) public-domain sys-
tem.

Unless, of course, 400+ dollars is a
mere bagatelle.. .

To: Steve Palincsar
From: Bob Bileski

I see what you mean. I originally wanted
to use Forth for an embedded controller
project. After downloading a number of
Forths, I realized that ROMming a Forth
kernel is not as easy as I was led to believe.
I think I will use F-PC Forth for my learning
process at this time. As for the controller,
I'll use the Intel 80~52 Basic microcon-
troller; it has all the EPROM burning,
machine calls, etc. that I need built-in. As
far as being slower thanForth, that won'tbe
a problem. I looked at ZenForth, but
couldn't find documentation to get me
going. Perhaps I really need to learn what
I'm doing before I can make any intelligent
decisions in regards to using Forth for
control projects (non-commercial).

From: DunMiller
Also check Pygmy for an 8088 version

of cmForth, which is a good minimal sys-
tem for embedded control. Pygmy, trans-
lated by F. Sergeant is available on GEnie,

and includes a small metacompiler to gen-
erate code. cmForth for the RTX processor
is ROMmable. Pygmy includes notes on re-
generation.

From: Gary-S
Re: "Does anyone have a publicdomain
x386, x286, or 680xx Forth system they can
easily send me over the network to run on
either kind of Sun workstation?"

Sun workstation => unix => Mitch
Bradley's cForth.

Easy solution: send $50 to P.O. Box
4444, Mountain View, California 94040.

From: Eric Therkelsen
I like what I've seen of Forth (F83 and

the Inner Access S8), and intend to make it
my principal language for in-house projects
(and out-house, if I can sell it). Can anyone
recommend a Forth package for the PC
(MS-DOS) that:
has a fairly complete set of extensions for
string handling, file access, and math,
including floating point;

is more or less in the mainstream--that is,
whose extensions aim more or less in the
direction Forth seems to be headed;

has been around long enough to be stable
and has a good user base.

Wish list
allows precompiled function libraries;
interfaces to the hardware either via DOS
functions (rather than using ROM-BIOS
services) or via redefinable words, so it
will run on the Zl00 as well as on AT-
compatibles.
internals available, metacompiler, etc. I
don't want to have to use these, but I like
to be able to if necessary. Also, they're
fun to play with late at night.

Any help would be greatly appreciated.

To: Eric Therkelsen
From: Steve Palincsar

HSIForth will do all that you ask, in-
cluding being able to use precompiled C
libraries. It includes a metacompiler and all
the string functions described in Kelly &
Spies' Forth: a Text and Reference, and is
as solid and completea system as you could
wish for.

To: Ben Combee
From: Steve Palincsar

Ben, if you're looking for a public-
domain Forth for the PC that has more
pizazz than F83, F-PC is your logical
choice. By the way, the most recent version
of F83 is about a 1984 dare. You can get F-
PC from the Forth Interest Group, from
C.H. Ting's Offete Enterprises, or direct
from Tom Zimmer, I believe, if you can't
find a BBS that has it.

Portedfrom uucp =>
Looking for versions of Polack's FPT-

F83.ARC and F83 that run together. I
would like an 8087 interface in Forth. I
med F-PC and the program was too big to
load on my 256K Sanyo MBC 555 (IBM-
compatible) machine with two 360K
drives. -Jina Chan

To: well!gars@LLL-
WINKEN..LLNL.GOV
sphinx@milton.u.washington.edu
Re: 8087 interface

We are currently trying to port Forth
archives to Simtel20. I think F83 is already
there. I am going to post your inquiry and
my reply to ForthNet for confirmation.

uunet! swbat!texbell!ark!lrark!glsrk!gars
(My own unix sys-Gary)

From: Stephen Minton
Subj: F83 (L&P) CP/M version

I need to download the latest available
version of F83 (L&P) for CP/M (I have
1.00). Where would I find this, and was it
updated to 2.10 like the PC version?
Thanks!

From: Gary-S
To: Stephen Minton

There are several upgraded L&P F83s
available on GEnie and the xCFBs for
CP/M users. They did not follow the 2.10
version notation, but have such additions
as full-screen editors and alphabetized
word lists. You may prefer to look at the
Silicon Valley FIG (John Peters) disks-
posted on GEnie and the xCFBs-and roll
your own. There is also the Australian M-
20 you may wish to consider, which ac-
cepts text files.

From: Scott Roberts
Re: Forth source for 8088

Does anyone know of a Forth system
that would be suitable for storing in ROM
of a controller based on the Intel 8088? If I
could get an assembler source listing, etc.,

lolume XII. Nwnber 2 Forth Dimensiwu

I could modify it to suit my system. Thanks
in advance.

To: Scott Roberts
From: Jerry Shjfn'n

You might want to look into the Zen-
Forth files available on the xCFBs, GEnie,
and perhaps even get in touch with Martin
Tracy (their author). I understand that Zen
has been successfully ROMrned into vari-
ous environments.

From: Ian Green
Re: cmForth

Anybody seen a crnForth system for
DOS? I currently only have F-83 in my
tools directory and would like a copy of
cmForth to fiddle with.

A brief look at some of the kernels
posted to library four will satisfy most
everyone that there is likely a public system
available for your computer. It is but a
modem call away. Some of the files for
various computers include the following :

Number: 1710
Name: POCKET4.SIT
Address: C.Heilman
Description: This Macintosh StuffIt file
contains the Pocket Forth vers. 4 applica-
tion and Deck Accessory. Also includes a
number of extension source code files.

Number: 1647
Name: MX2O.ARC
Address: L Collins
Description: Text-based Forth for CP/M
from Lance Collins MM FORTH

Number: 1596
Name: GSFORTH.BQY
Address: D.M.Holmes
Description: This contains the main file in
the Apple GS Forth Demo Package.

Number: 1541
Name: STFORTH.ARC
Address: ECFB
Description: Forth-83 version 1.0 for Atari
ST distributed by the San Leandro Com-
puter Club.

Number: 1846
Name: PURPLE.FORTH.BQY
Address: J.Purple
Description: FIG for the Apple I1 series.
This file has been compressed using an
Apple-specific compression technique.

Variety is also ever present, as evi-
denced by this incomplete list of MS-DOS-
specific files. Note, I didn't even bother
with the FIG. L&P F-83, and Uniforth
sampler.

Number: 900
Name: BBL.ARC
Address: Green.ECFB
Description: This is Roedy Green's unique
gift to the Forth world. It is a very fast 32-
bit public-domain (except for military use)
Forth that uses multiple pointers.

Number: 1964
Name: F-PC35-IZIP
Address: DRuffer
Description: This is version 3.5 of Tom
Zimmer's F-PC for MS-DOS computers.
F-PC is a t u b l i k e environment for MS-
DOS Forth users. F-PC comes with an
amazing array of support files, and is easily
the banner system for the maxi-Forth pro-
ponen ts .

Number: 1939
Name: PYGMY 12.ARC
Address: F.Sergeant
Description: Here is Pygmy Forth version
1.2. It is faster, more accurate, and more
compatible. It automatically sets up for
color or monochrome monitors. Turnkey is
much easier with DEFERed BOOT. As
always, it includes full source code, assem-
bler, metacompiler, documentation, and a
Starting Forth-compatibility fie. Pygmy is
representative of the minimalist-Forth
approach. Gary

The arguments, from those running
Unix and Unix-like environments, that
there were no good Forths available for
them, vanished sometime back with Alan
Pratt's public-domain cForth and Mitch
Bradley's supported CFORTH-83. Here
are two more-recent entries for that arena.

Number: 2003
Name: BOTFTH68.ARC

1 Address: Gary-S
Description: botForth is another effort at a
clean, universal, minimal Forth kernel.
This is the 2/90 port to MC68K CPUs.
There are no associated Makefiles.

Number: 1944
Name: TILE
Address: Gary-S
Description: Mikael Patel's public-domain

F83-written in Unix shells.

Language is not necessarily a bam'er to
using Forth, either. Witness these German
and Russian Forth versions.

Number: 1576
Name: VOLKS4TH.ARC
Address: K Schleisiek
Description: Documentation for this is in
German, so it's pretty hard for me to tell
you anything about it, except that it's for a
PC. Here is the Copyright Die Programme
und die zugehrigen Quelltexte knnen fiei
verwendet werden. Das beinhaltet die
Weitergabe und Nutzung der Programme
und gilt selbstverstndlich auch fr Applika-
tionen, die auf volksFORTH aufgebaut
sind. Das Handbuch unterliegt dem Copy-
right (c) 1985 - 1988 Klaus Schleisiek,
Ulrich Hoffmann, Bernd Pennemann,
Georg Rehfeld und Dietrich Weineck.

Number: 1737
Name: ASTRO4TH.ARC
Address: D.Ruffer
Description: AstroFORTH, from Russia, is
a software development system for design
software of different kinds. AstroFORTH
includes the Forth-83 language standard,
extended by a number of service proce-
dures and software packages providing
users with additional facilities. Astro-
FORTH may be used on IBM PC XTIAT-
compatible computers, equipped with the
i80861i8088 microprocessors. The system
operates under the control of MS-DOS. For
the system to work, one needs 128K main
memory, a floppyhard disk drive, a color/
monochrome display controller, and (if
required) a printer.

I will end this session with evidence it
would be dificult to imagine a computer
environmentfor which there is no Forth. An
argument has raged about the Forth-like
qualities of PostScript, Adobe System's de
facto graphics system. There are many
features of Postscript that smack strongly
of a Forth heritage. In answer to the argu-
ments, Mitch Bradley created a skeletal
version of Forth in-yep!--?ostScript.

Number: 1995
Name: PSFORTH.02.90
Description: In response to messages from
Doug Philips regarding why "PostScript
does not qualify as Forth," Mitch Bradley

(Continued on page 40.)

Forth Dimetwiotw 38 Volume XII, Number 2

REFERENCE SECTION

L
Volwne XII, Number 2 39 Forth Dimensions

to become proficient in Forth in theleast amount
of time. Telephone 213-306-7412.

On-Line Resources
To communicate with these systems, set your
modem and communication software to 3001
1200/2400 baud with eight bits, no parity. and
one stop bit, unless noted otherwise. GEnie
requires local echo.

GEnie
For information, call 800-638-9636

Forth RoundTable
(ForthNet link*)
Call GEnie local node, then type M710
or FORTH
SysOps: Dennis Ruffer (D.RUFFER), Swtt
Squires (S. W.SQUIRES), Leonard Mor-
genstern (NMORGENSTERN), Gary
Smith (GARY-S) - MACH2 RoundTable
Type M450 or MACH2
Palo Alto Shipping Company
SysOp: Waymen Askey (D.MILEY)

BlX (ByteNet)
For information, call 800-227-2983

Forth Conference
Access BM. via TyrneNet, then type j forth
Type FORTH at the : prompt
SysOp: Phil Wasson (PWASSON)
LMI Conference
Type LMI at the : prompt
Laboratory Microsystems products
Host: Ray Duncan (RDUNCAN)

CompuServe
For information, call 800-848-8990

Creative Solutions Conference
Type !Go FORTH
SysOps: Don Colbum, Zach Zachariah.
Ward McFarland, Jon Bryan. Greg Guerin.
John Baxter, John Jeppson
Computer Language Magazine Conference
Type !Go CLM
SysOps: Jim Kyle, Jeff Brenton. Chip Rabi-
nowitz, Regina Starr Ridley

Unix BBS's with forth.conf (ForthNet link+
and reachable via StarLink node 9533 on

(Reference Section conhnhnued)

Forth Interest Group
The Forth Interest Group serves both expert

and novice members with its network of
chapters. Forth Dimensions, and conferences
that regularly attract participants from around
the world For membership information, or to
reserve advertising space. contact the adminis-
trative offices:

Forth Interest Group
P.O. BOX 823 1
San Jose, California 95155
408-277-0668

Board of Directors
Robert Reiling. President (ret. director)
Dennis Ruffer. Vice-President
John D. Hall, Treasurer
Wil Baden
Jack Brown
Mike Elola
Robert L. Smith

Founding Directors
William Ragsdale
Kim Harris
Dave Boulton
Dave Kilbridge
John James

In Recognition
Recognition is offered annually to a person

who has made an outstanding contribution in
support of Forth and the Forth Interest Group.
The individual is nominated and selected by
previous recipients of the "FIGGY." Each re-
ceives an engraved award, and is n d on a
plaque in the administrative offices.

1979 William Ragsdale
1980 Kim Harris
1981 Dave K i i d g e
1982 Roy Martens
1983 John D. Hall
1984 Robert Reiling
1985 Thea Martin
1986 C.H. Ting
1987 Marlin Ouverson
1988 Dennis Ruffer
1989 Jan Shepherd

ANS Forth
The following members of the ANS X3 J14

Forth Standard Committee are available to per-
sonally carry your proposals andconcerns to the
committee. Please feel free to call or write to
them directly:

Gary Betts
Unisyn
301 Main, penthouse #2
Longmont, CO 80501
303-924-9 193

Mike Nemeth
CSC
10025 Locust St.
Glenndale, MD 20769
301-286-8313

Andrew Kobziar
NCR Medical Systems Group
950 Danby Rd.
Ithaca, NY 14850
607-273-53 10

Elizabeth D. Rather
FORTH. Inc.
11 1 N. Sepulveda Blvd.. suite 300
Manhattan Beach, CA 90266
213-372-8493

Charles Keane
Performance Packages, Inc.
515 Fourth Avenue
Watervleit, NY 12189-3703
518-2744774

G a g e Shaw
Shaw Laboratories
P.O. Box 3471
Hayward, CA 94540-3471
415-276-5953

David C. Petty
Digitel
125 Cambridge Park Dr.
Cambridge, MA 02140-23 11

Forth Instruction
Los Angeles-Introductory and intermedi-

ate three-day intensive courses in Forth Pro-
gramming are offered
Microsystems. These hands-on courses are de-
signed for engineers and programmers who need

(Continued from previous page.)

TymNet andPC-Pursuit node c d a onTeleNet.)
WELL Forth conference
Access WELL via CompuserveNet
or 415-332-6106
Fairwitness: Jack Woehr (jax)
Wetware Forth wnference
415-753-5265
Fairwitness: Gary Smith (gars)

PC Board BBS's devoted to Forth
(ForthNet links*)

East Coast Forth Board
703442-8695
StarLii node 2262 on TymNet
PC-Pursuit node dcwas on TeleNet
Sysop: Jerry Schifrii
British Columbia Forth Board
604-434-5886

(Continued from page 24.)

considerable function overhead of C,
which just is not there in subroutine-
threaded Forth. The moral is that you first
pick your language and only then do you
pick your benchmark!

References
[Bra871 M. Bradley, "Forth to the

Future." Forth Dimensions
(IWl).

[Cha87] L. Chavez, "A Fast Forth for
the 68000," Dr. Dobb's Jour-
nal, Oct. 1987.

*Fortmet is a virtual Forth network that l i d s
designuted message buses in un attempt topro-
vide greater information distribution to the
Forth usersserved. It isprovided courtesy ofthe
SysOps of its various links.

Sysop: Jack Brown
Real-Tie Control Forth Board
303-278-0364
StarLii node 2584 on TymNet
PC-Pursuit node coden on TeleNet
Sysop: Jack Woehr

Other Forth-specific BBS's
Laboratory Microsystems, Inc.
213-306-3530
StarLii node 9184 on TyrnNet
PC-Pursuit node calm on TeleNet
Sysop: Ray Duncan
Knowledge-Based Systems
Supports F i
409-696-7055
Dnnna Forth Board
512-323-2402
StarLink node 1306 on TymNet
SysOps: S. Suresh, James Martin. Anne
Moore
Harris Semiconductor Board
407-7294949
StarLink node 9902 on TymNet (toll
from Post. St. Lucie)

Non-Forth-specific BBS's wirh derisive Forth
Libraries

Twit's End (PC Board)
501-771-0114
1200-9600 baud
StarLink node 9858 on TymNet
SysOp: Tommy Apple
College Comer (PC Board)
206-643-0804
300-2400 baud
SysOp: Jerry Houston

(Continued from page 38.)

[Joh871 D. Johansen, "Headless
Compiler," Forth Dimensions
(IWl).

I

John Redmond is an Associate Profes-
sor of Organic Chemistry (Macquarie
University, Sydney) with a research
interest in the biotechnology of glyco-
conjugates. His first Forth effort was
adapting Loeliger's 2-80 to the Tandy
Color Computer. He is a "..some-
times-evenings-when-1-have-time
programmer" whose chiefdisappoint-
ment of 1988 consisted of attending a
plant pathology conference in Acap
ulco while Forth'sown Charles Moore
was visiting Sydney. Mr. Redmond
welcomes letters from FD readers: 23
Mirool Street, West Ryde, NSW 21 14,
Australia.

produced this very minimal Forth kernel
entirely in Postscript lexicon. It is by no
means a full system, but does contain the
seed elements from which to write a full
kernel.

To suggest an interesting on-line guest,
leave e-mail posted to GARY-S on
GEnie (garson Wetware and the Well),
or mail me a note. I encourage anyone
with a message to share to contact me
via the above or through the ofices of
the Forth Interest Group.

(Continued from page 33 .)

lems and solutions discussed above; actual
address offsets for the various plug-in
modifications depend upon the details of
the host source. The first two screens define
various constants and variables to be used
by HOST, not to be included in TARGET.
Screen three sets up the special definition
of INTERPRET that will compile M)o
when an unfound word is requested.

The host version of FORTH has to be
renamed to avoid conflict; the substitute
name must occupy the same dictionary
thread, The (temporary) name for the TAR-
GET must have the same number of letters
as the host, and must also be in the same
thread (screen five). The next two screens
are the tricky part: TARGET addresses must
be substituted in a number of places. Note
that these screens do not depend on the
dialect being compiled-they are con-
trolled entirely by the HOST vocabulary.

Chester H. Page earned his doctorate
at Yale and spent some 36 years at the
National Bureau of Standards. His
first Forth was Washington Apple Pi's
fig-FORTH, which he modified to use
Apple DOS, then ProDOS, and later to
meet the Forth-79 and Forth-83 Stan-
dards. Recently, he added many fea-
tures of F83, including a four-thread
dictionary (but no shadow screens).

Forth Dimemiom 40 Volume XII, Nwnber 2

(Continuedfrom page 30.)

space used by the code is reclaimed. The
order in which these actions occur is criti-
cal. We must switch back to the standard
allocation region before executing the
code. Otherwise, words such as a l l o t or
, would effect the compile buffer instead
of the standard dictionary. Also, the com-
piled code must be executed before re-
claiming the space it occupies. This allows
I I and [[to be re-entrant, since they
could be called via the execute in [[.
For example, in the conditional load, the
code in the file may contain interpreted
control structures.

A popular Forth programming tech-
nique is to temporarily drop out of a colon
definition with I, do something, then res-
ume compilation with] . For consistency,
this should also work with interpreted con-

trol structures. Thus, the new definitions of
[and 1 in the listing. [saves the st a t e in
l a s t st a t e and starts interpreting. I re-
stores the st a t e . A final addition is the ini-
tialization of l a s t s t a t e :

: q u i t
... 0 s t a t e !
1 l a s t s t a t e !

In some Forth systems, 1 also contains
the compiler loop. Similar modifications
should work in such systems, although I
haven't tried this.

An unsolved problem with this implem-
entation of interactive control is the in-
c m e d fragility of the compiler. If some-
thing is amiss in the source code being
compiled, the compiler can end up stuck in
the compile buffer. Since the buffer is small,

the space is quickly exhausted.
Interpreted interactive control struc-

tures may turn out to be only occasionally
useful. On the other hand, as you grow
accustomed to them, they may become in-
dispensable. I would be interested to hear
about the uses other Forth Dimensions
readers find for them.
References
[11 Bradley, Mitch. "Interpreting Con-

trol Structures-The Right Way,"
1987 FORMLConference Proceed-
ings, pp. 126- 130.

John R. Hayes received an M.S. in
computer science from ~ohns ~ o ~ k i n s
University in 1986. He has written
flight software in Forth for satellite-
based magnetometer experiments and
for the shuttle-based Hopkins Ultra-
violet Telescope.

\ Contro l s t r u c t u r e s . This s e c t i o n handles execu t ing c o n t r o l s t r u c t u r e s
\ i n t e r a c t i v e l y .
200 reg ion compileregion \ a compile b u f f e r
v a r i a b l e compilebuffer \ remembers beginning of b u f f e r

: 1 1 \ (---) N e s t down one c o n t r o l s t r u c t u r e l e v e l . I f
\ w e w e r e i n t e r p r e t i n g when 1 1 was c a l l e d , swi tch a l l o c a t i o n
\ t o compile b u f f e r .

s t a t e @ O= i f \ i f w e were i n t e r p r e t i n g
compileregion a l l oca t e f rom \ swi tch t o compile b u f f e r
h e r e compilebuffer ! \ remember where w e s t a r t
s t a r t : \ NON-PORTABLE: c r e a t e code f i e l d

then 1 s t a t e +! ; \ bump n e s t i n g l e v e l

: [[\ (---) Unnest one c o n t r o l s t r u c t u r e l e v e l . I f w e
\ a r e now back i n i n t e r p r e t s t a t e , execute what i s i n compile
\ b u f f e r and empty b u f f e r .

-1 s t a t e +! \ bump n e s t i n g l e v e l
s t a t e @ O= i f \ i f w e a r e now i n t e r p r e t i n g

compile e x i t \ compile a r e t u r n from s u b r o u t i n e
dp >r compilebuffer @ dup >r \ remember where b u f f e r s t a r t s
s t d r e g i o n a l l o c a t e f r o m \ r e v e r t t o s t anda rd a l l o c a t i o n r eg ion
execute \ execute compile b u f f e r
r > r> ! \ and empty compile b u f f e r

t hen ;

v a r i a b l e l a s t s t a t e \ f o r temporary drop from compile
: [s t a t e @ l a s t s t a t e ! 0 s t a t e ! ; immediate
: I l a s t s t a t e @ s t a t e ! ;

Volume XII, Number 2 41 Forth Dimemiom

FIG
CHAPTERS

The FIG Chapters listed below
are currently registered as active
with regular meetings. If your
chapter listing is missing or incor-
rech please contact Kent Safford at
the FIG office's Chapter Desk.
This listing will be updated in each
issue of Forth Dimensiom. If you
would like to begin a FIG Chapter
in your area, write for a "Chapter
Kit and Application." Forth Inter-
est Group, P.O. Box 8231, San
Jose, California 95155

U.S.A.
ALABAMA
Huntsville Chapter
Tom Konantz
(205) 88 1-6483

ALASKA
Kodiak Area Chapter
Ric Shepard
Box 1344
Kodiak, Alaska 99615

ARIZONA
Phoenix Chapter
4th Thurs., 7:30 p.m.
Arizona State Univ.
Memorial Union, 2nd floor
Dennis L. Wilson
(602) 381-1 146

ARKANSAS
Central Arkansas Chapter
Little Rock
2nd Sat.. 2 p.m. &
4th Wed.. 7 p.m.
Jungkind Photo, 12th & Main
Gary Smith (501) 227-7817

CALIFORNIA
Los Angeles Chapter
4th Sat.. 10 a.m.
Hawthorne Public Library
12700 S . Grevillea Ave.
Phillip Wasson
(213) 649-1428

North Bay Chapter
2nd Sat.. 10 am. Forth. AI
12 Noon Tutorial. 1 p.m. Forth
South Berkeley Public Library
George Shaw (415) 276-5953

Orange County Chapter
4th Wed., 7 p.m.
Fullerton Savings
Huntington Beach
Noshir Jesung (714) 842-3032

Sacramento Chapter
4th Wed., 7 p.m.
1708-59th St.. Room A
Bob Nash
(916) 487-2044

San Diego Chapter
Thursdays, 12 Noon
Guy Kelly (619) 454-1307

Silicon Valley Chapter
4th Sat.. 10 a.m.
H-P Cupertino
Bob Barr (408) 435-1616

Stockton Chapter
Doug Dillon (209) 93 1-2448

COLORADO
Denver Chapter
1st Mon.. 7 p.m.
Clifford King (303) 693-3413

CONNECTICUT
Central Connecticut Chapter
Charles Krajewski
(203) 344-9996

FLORIDA
Orlando Chapter
E v q other Wed., 8 p.m.
Herman B. Gibson
(305) 855-4790

Southeast Florida Chapter
Coconut Grove Area
John Forsberg (305) 252-0108

Tampa Bay Chapter
1st Wed., 7:30 p.m.
Terry McNay (813) 725-1245

GEORGIA
Atlanta Chapter
3rd Tues.. 7 p.m.
Emprise Corp., Marietta
Don Schrader (404) 428-081 1

ILLINOIS
Cache Forth Chapter
Oak Park
Clyde W. Phillips, Jr.
(708) 713-5365

Central Illinois Chapter
Champaign
Robert Illyes (217) 359-6039

INDIANA
Fort Wayne Chapter
2nd Tues., 7 p.m.
I/P Univ. Campus
B71 Neff Hall
Blair MacDerrnid
(219) 749-2042

IOWA
Central Iowa FIG Chapter
1st Tues.. 7:30 p.m.
Iowa State Univ.
214 Comp. Sci.
Rodrick Eldridge
(5 15) 294-5659

Fairfield FIG Chapter
4th Day, 8: 15 p.m.
Gurdy Leete (5 15) 472-7077

MARYLAND
MDFIG
Michael Nemeth
(301) 262-8140

MASSACHUSETTS
Boston Chapter
3rd Wed.. 7 p.m.
Honeywell
300 concord, Billerica
Gary Chanson (617) 527-7206

MICHIGAN
DetroitIAnn Arbor Area
Bill Walters
(3 13) 731-9660
(313) 861-6465 (eves.)

MINNESOTA
MNFIG Chapter
Minneapolis
Fred Olson
(612) 588-9532

MISSOURI
Kansas City Chapter
4th Tues.. 7 p.m.
Midwest Research Institute
MAG Conference Center
Linus Orth (913) 236-9189

St. Louis Chapter
1st Tues., 7 p.m.
Thornhill Branch Library
Robert Washarn
91 Weis Drive
Ellisville. MO 6301 1

NEW JERSEY
New Jersey Chapter
Rutgers Univ.. Picataway
Nicholas Lordi
(201) 338-9363

Volume XII. Nwnber 2

NEW MEXICO
Albuquerque Chapter
1st Thurs.. 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
Jon Bryan (505) 298-3292

NEW YORK
Rochester Chapter
Odd month, 4th Sat.. 1 pm.
Monroe Comm. College
Bldg. 7, Rrn. 102
Frank Lanzafarne
(716) 482-3398

OHIO
Cleveland Chapter
4th Tues.. 7 p.m.
Chagrin Falls Library
Gary Bergstrom
(216) 247-2492

Columbus FIG Chapter
4th Tues.
Kal-Kan Foods, Inc.
51 15 Fisher Road
Terry Webb
(614) 878-7241

Dayton Chapter
2nd Tues. & 4th Wed.. 6:30
p.m.
CFC. 11 W. Monument Ave.
#612
Gary Ganger (513) 849-1483

OREGON
Willamette Valley Chapter
4th Tues., 7 p.m.
Li-Benton Comm. College
Pann McCuaig (503) 752-51 13

PENNSYLVANIA
Villanova Univ. Chapter
1st Mon., 7:30 p.m.
Villanova University
Dennis Clark
(215) 860-0700

TENNESSEE
East Tennessee Chapter
Oak Ridge
3rd Wed., 7 p.m.
Sci. Appl. Int'l. Corp.. 8th Fl.
800 Oak Ridge Turnpike
Richard Secrist
(615) 483-7242

TEXAS
Austin Chapter
Matt Lawrence
PO Box 180409
Austin. TX 78718

Dallas Chapter
4th Thurs., 7:30 p.m.
Texas Instruments
13500 N. Central Expwy.
Semiconductor Cafeteria
Conference Room A
Clif Penn (214) 995-2361

Houston Chapter
3rd Mon., 7:30 p.m.
Houston Area League of PC
users
1200 Post Oak Rd.
(Galleria area)
Russell Harris
(713) 461-1618

VERMONT
Vermont Chapter
Vergennes
3rd Mon., 7:30 p.m.
Vergennes Union High School
RM 210. Monkton Rd.
Hal Clark (802) 453-4442

VIRGINIA
First Forth of Hampton
Roads
William Edrnonds
(804) 8984099

Potomac FIG
D.C. & Northern Virginia
1st Tues.
Lee Recreation Center
5722 Lee Hwy., Arlington
Joseph Brown
(703) 47 1 4 0 9
E. Coast Forth Board
(703) 442-8695

Richmond Forth Group
2nd Wed., 7 p.m.
154 Business School
Univ. of Richmond
Donald A. Full
(804) 739-3623

WISCONSIN
Lake Superior Chapter
2nd Fri., 7:30 p.m.
1219 N. 21st St., Superior
Allen Anway (715) 394-4061

INTERNATIONAL
AUSTRALIA
Melbourne Chapter
1st Fri., 8 p.m.
Lance Collins
65 Martin Road
Glen Iris. Victoria 3146
03/29-2600
BBS: 61 3 299 1787

Sydney Chapter
2nd Fri., 7 p.m.
John Goodsell Bldg., RM
LG19
Univ. of New South Wales
Peter Tregeagle
10 Binda Rd.
Yowie Bay 2228
02/524-7490
Usenet
tedr@usage.csd.unsw.oz

BELGIUM
Belgium Chapter
4th Wed.. 8 p.m.
Luk Van Loock
Lariksdreff 20
2120 Schoten
031658-6343

Southern Belgium Chapter
Jean-Marc Bertinchamps
Rue N. Monnom, 2
B-6290 Nalinnes
0711213858

CANADA
BC FIG
1st Thurs., 7:30 p.m.
BCIT, 3700 Willingdon Ave.
BBY, Rm. l A-324
Jack W. Brown
(604) 596-9764
BBS (604) 434-5886

Northern Alberta Chapter
4th Sat., 10a.m.-noon
N. Alta. Inst. of Tech.
Tony Van Muyden
(403) 486-6666 (days)
(403) 962-2203 (eves.)

Southern Ontario Chapter
Quarterly, 1st Sat., Mar., Jun.,
Sep., Dec., 2 p.m.
Genl. Sci. Bldg., RM 212
McMaster University
Dr. N. Solntseff
(416) 525-9140 ~ 3 4 4 3

ENGLAND
Forth Interest Group-UK
London
1st Thurs., 7 p.m.
Polytechnic of South Bank
RM 408
Borough Rd.
D.J. Neale
58 Woodland Way
Morden, Surry SM4 4DS

FINLAND
FinFIG
Janne Kotiranta
Arkkitehdinkatu 38 c 39
33720 Tarnpere
+358-3 1-184246

HOLLAND
Holland Chapter
Vic Van de Zande
F i a r k 7
3831 JE Leusden

ITALY
FIG Italia
Marco Tausel
Via Gerolamo Fomi 48
20161 Milano
021435249

JAPAN
Japan Chapter
Toshi Inoue
Dept. of Mineral Dev. Eng.
University of Tokyo
7-3-1 Hongo, Bunkyo 113
812-21 11 ~ 7 0 7 3

NORWAY
Bergen Chapter
Kjell Birger Faeraas,
47-518-7784

REPUBLIC OF CHINA
R.O.C. Chapter
Chin-Fu Liu
SF, #lo, Alley 5, Lane 107
Fu-Hsin S. Rd. Sec. 1
Taipei, Taiwan 10639

SWEDEN
SweFIG
Per Alrn
46/8-92963 1

SWITZERLAND
Swiss Chapter
Max Hugelshofer
Industrieberatung
Ziberstrasse 6
8 152 Opfikon
01 810 9289

WEST GERMANY
German FIG Chapter
Heinz Schnitter
Forth-Gesellschaft C.V.
Postfach 11 10
D-8044 Unterschleissbeirn
(49) (89) 317 3784
Munich Forth Box:
(49) (89) 725 9625 (telcom)

SPECIAL GROUPS
NC4MW) Users Group
John Carpenter
1698 Villa St.
Mountain View. CA 94041
(415) 960-1256 (eves.)

Volume XII, Number 2 43 Forth Dimensions

CALL FOR PAPERS
for the twelfth annual

FORML CONFERENCE
The original technical conference

for professional Forth programmers, managers, vendors, and users.

Following Thanksgiving, November 23-25, 1990

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California U.S .A.

Conference Theme: Forth in Industry
Papers are invited that address relevant issues in the development and use of Forth in
industry. Papers about other Forth topics are also welcome.

Mail abstract(s) of approximately 100 words by September 1,1990 to FORML,
P.O. Box 8231, San Jose, CA 95155.

Completed papers are due November 1,1990.

Registration information may be obtained by telephone from the Forth Interest Group
business office (408) 277-0668 or write to FORML, P.O. Box 8231, San Jose, CA
95155.

The Asilomar Conference Center combines excellent meeting and comfortable living
accommodations with secluded forests on a Pacific Ocean beach. Registration
includes use of conference facilities, deluxe rooms, all meals, and nightly wine and
cheese parties.

Forth Interest Group
P.O.Box 8231
San Jose, CA 95155

Second Class
Postage Paid at
San Jose, CA

