

F O R T H
m

EXTENDED BYTE DUMP - ALLEN ANWAY

P 8
Byte dump displays usually show dataand ASCII text separately, merely allowing the user to browse through memory.
A problematic byte often hovers tantalizingly before the eyes but remains untouchable. If you have yearned to reach
out and type over something, this utility will let you do just that, automatically placing the new values in RAM.

W C A E VARIABLES AND ARGUMENTS - JYRKI YLI-NOKARZ
13

This method of adding local variables to Forth is demonstrated in Laxen and Perry's F83. It yields results that are
portable, ROM-able, and recursive. A local variable is created at run time by allocating space from the return stack.
Recursion is allowed and code ROM-ability isn't affected.

m
W C A L VARIABLES, ANOTHER TECHNIQUE - JOHN R. HAYES

I8
Named local variables help clarify Forth code that suffers from too many stackmanipulation words.This method based
on scopes has a pleasing syntax and allows declaration of locals anywhere in a colon definition. Space for the locals
is dynamically allocated, so code using these variables will be re-entrant.

m
PREFIX FRAME OPERATORS -JOSE BETANCOURT

23
Implementing local variables via prefix frame operators allows for utility, readability, and compactness. A stack frame
allows re-entrant procedures, but the Forth virtilal machine does not have a standard method of creating frames.
Primitives that do so and a few simple string operators to identify labels make it more portable to different systems
and saves dictionary space.

m
FORTH NEEDS THREE MORE STACKS - AYMAN ABU-MOSTAFA

27

I Standard Forth uses the return stack for a number of disparate tasks: that is bad programming at best, confusing and
error-prone at worst. This article suggests an auxihy stack for loop parameters and temporary storage. And a method
of handling conditionals without branching allows use of conditionals outside colon definitions; this is done with a
condition stack and a case stack.

m
8250 UART REVISITED - BRIAN FOX

30
This lexicon allows access to the hardware functions of the 8250 async communications device. It is accessed via high-
level words as intuitive as one's spoken language. Rather than stepping through menus, as in the method recently
presented, you talk directly to the chip. The useful words can readily be incorporated into later applications.

Editorial
4

Letters
5

Advertisers Index
33

Best of GEnie
35

Reference Section
3 7

FIG Chapters
39-42

Volume XI, Number 1 3 Forth Dimemiom

W e l c o m e to the eleventh volume of I vendors have introduced some differences
Forth Dimensions. As a member of the
Forth Interest Group. you are part of a
diverse audience of readers. A beginning
Forth programmer will find here the fel-
lowship of other novices, but in a 1987
survey 78% of our readers rated their
knowledge of Forth as intermediate or
advanced. Our authors are drawn from
among them, so these pages offer exposure
to both traditional and ground-breaking (or
rule-breaking) ways of approaching vari-
ous programming problems. Differing
opinions are printed, letters with feedback
about previous articles are welcome, and
improvements to earlier code are published
regularly. Rather than dictate one right ap-
proach to a problem and censor the rest, we
try to keep this forum open for the cross-
pollination and evolution of ideas. If the
debate sometimes seems to spiral danger-
ously close to the sun, that is one side effect
of working with a language in which the
language itself is easily subject to modifi-
cation. Just follow where your Forth sys-
tem leads: it will prod you into understand-
ing its low-level details, and even your own
computer hardware, better than you had
planned.

A stumbling block is sometimes en-
countered when you attempt to use Forth
code from another system and find that it
won't run (it may even refuse to load) after
you bring it into your system. A Forth
system generally belongs to one of several
broad categories. It may conform to the
Forth-83 or Forth-79 S tanM, to fig-
FORTH, F83, FPC, or another public-
domain version; or to a vendor's unique
way of implementing the language. Our
articles indicate which dialect is used by the
authors but, within those descriptive cate-
gories, assembler-specific code may affect
the portability between machines, and

(e.g., features) even between brand names
that are based on the same standard.

The trick is to turn every would-be
obstacle into an opportunity to become
more expert about how your system works.
You will learn which words are imple-
mented elsewhere under other names and
which really are functions unique to your
system. Eventually, you will understand its
strengths and weaknesses in different envi-
ronments, in relation both to other Forths
and to non-Forth systems. By that time, we
hope you will have joined the ranks of our
authors to share your experience, to write
about your latest project, and to advance the
state of our collective understanding.

Local variables: in the past they've been
either ho-hum ("my system has had them
for years") or taboo ("not Forth-like"), de-
pending on who you asked. Like many
formerly acrid debates, the arguments have
faded gradually with the popular endorse-
ment of fully featured programming envi-
ronments. Now not just a Forth-too issue,
local variables have become a convenience
many programmers simply don't want to
do without. Add the ability name them, and
they become more intuitive and readable
than the stack-juggling alternatives.

Those who want to seriously study local
variables should look in A Bibliography of
Forth References. Several related articles
by prominent Forth thinkers have been
published and still lend themselves to dis-
cussion of the topic. Three articles in this
issue address the subject, too. Depending
on your Forth, your programming style,
and your view of the mdeoffs, one or the

(Continued on page 41 .)

Forth Dimensions
Published by the

Forth Interest Group
Volume XI, Number 1

MaylJune 1989
Editor

Marlin Ouverson
Advertising Manager

Kent Safford
Design and Production

Berglund Graphics

Forth Dimensions welcomes editorial mate-
rial, letters to the editor, and comments from its
readers. No responsibility is assumed for accu-
racy of submissions.

Subscription to Forth Dimenswm is in-
cluded with membership in the Forth Interest
Group at $30 per year ($42 overseas air). For (
membership, change of address, and to submit
items for publication, the address is: Forth Inter-
est Group. P.O. Box 823 1, San Jose, California
95155. Administrative offices and advertising
sales: 408-277-0668.

Copyright O 1989 by Forth Interest Group,
Inc. The material contained in this periodical
(but not the code) is copyrighted by the individ- 1
ual authors of the articles and by Forth Interest
Group. Inc., respectively. Any reproduction or
use of this periodical as it is compiled or the ar-
ticles, except reproductions for non-comrner-
cialpurposes, without the written permission of
Forth Interest Group, Inc. is a violation of the
Copyright Laws. Any code bearing a copyright 1
notice. however, can be used only with permis-
sion of the copyright holder.

About the Forth Interest Group
The Forth Interest Group is the association

of programmers, managers, and engineers who
create practical. Forth-based solutions to real-
world needs. an^ research hardware and soft- (
ware designs that will advance the general state
of the art. FIG provides a climate of intellectual
exchange and benefits intended to assist each of
its members. Publications, conferences, semi- I
nars, telecommunications, and area chapter
meetings are among its activities.

"Forth Dimensions (ISSN 0884-0822) is
published bimonthly for $24/36 per year by the
Forth lnterest Group. 1330 S. Bascom Ave..
Suite D, San Jose. CA 95128. Second-class
postage paid at San Jose. CA. POSTMASTER:
Send address changes to Forth Dimensions,
P.O. Box 8231, San Jose, CA 95155."

Forth Dimensions 4 Volume XI, Number 1

) Serial Dates for FPC
Dear Editor,

After submitting my article on a sug-
gested alternative for writing Forth pro-
grams (Forth Dimensions X/6), I find that
a short addition to FPC will allow the
source code for "A Serial Day Calculation"
to compile with that implementation, too.
I
: 1 (- -)
\ skip all lines between) and (

? l o a d i n g
[c o m p i l e]
' (' '>$ c o m m e n t $!
['1 < c o m m e n t :> i s run ;

1

I hope this will encourage Forth pro-
grammers to give the technique a try. Even
this letter is written in the style!
Yours,
Glen B. Haydon
Box 429, Route 2
La Honda, California 94020
I

Objects are Harmonious
Dear Mr. Ouverson:

This is a comment on Mike Elola's
article (Forth Dimensions XIS) about ob-
ject-oriented Forth (OOF). I have written
an object-orientedForth interpreter and can
respond to many of Mr. Elola's points and
contribute some more.

The object-oriented approach
There is no doubt the object-oriented

approach is the best design of data struc-
tures that has come about. However, there
is much more to the object-oriented ap-
proach than data structures; it is a software
design methodology. This methodology

views the world as a collection of objects.
Each object has certain properties, called
instance variables; and there are particular
operations that can be performed on these
variables, called methods.

Objects communicate with each other
by sending "messages" to one another. The
object management system has the duty to
see if a message matches any of the methods
that the objectreceiving the message under-
stands. If it does, it invokes that method
within the object; otherwise, the system
returns an error.

This approach encapsulates everything
about the object in its very body, which
simplifies maintenance and debugging and
reduces the probability of error. Forth, on
the other hand, views the world as a collec-
tion of words, each doing its own thing and
communicating with each other through the
stack.

Classes of objects
Every object belongs to a "class." A

class is merely a template that describes the
instance variables and methods that objects
of the class will have when they are created.
For example, a string class might define the
variable L e n g t h and the methods
C o n c a t , I n s e r t , D e l e t e , and
S u b s t r . The words STRING S T will
create an object S T of class STRING much
like any defining word. ST will show up in
the dictionary as a regular Forth word.

The words S T LENGTH wiU send the
message LENGTH to the object ST. The
object management system will fetch ST
for the LENGTH method. This process is
called "binding." Contrary to what Mr.
Elola said, message-passing to objects can
use postfix notation, as in this example.
However, there is nothing wrong with pre-

fix syntax, since Forth uses it all the time
with every defining word (such as VARI -
ABLE and VOCABULARY). Binding in the
example will succeed and the method
LENGTH will be executed, pushing the
current length of ST on the stack.

This example shows that incorporating
classes and objects in Forth is almost natu-
ral. In my Forth interpreter, called CSU
Forth, I defined the two words :CLASS
and ; CLASS to start and end the definition
of a class. Between these two words, meth-
ods and variables are defined in the regular
Forth manner, e.g., using : and ; as in
Figure One, which shows an example defi-
nition of a stack class.

Inheritance
The word I N H E R I T in the stack ex-

ample is used to establish any number of
"parents" of the class being defined. By
doing so, the system-when it cannot bind
a message to an object method-will look
in the object's parents for it. This way,
objects can be reusable and extensible. 0
I N H E R I T means this class does not inherit
any methods or instance variables from any
other class. Such a class is said to be origi-
nal.

Mr. Elola emphasized that inheritance,
particularly multiple inheritance in which a
class inherits from more than one parent, is
what makes the object-oriented design so
attractive. However, he said, it is undisci-
plined and requires care and patience. I
don't exactly know what he meant by that,
but I suppose that oneof the things to watch
out for is methods with identical names in
the different parent classes (name colli-
sions). Which one should the system bind
to?

Volume XI, Nwnber 1 5 Forth Dimensions

:CLASS STACK 0 INHERIT
VARIABLE TOS VARIABLE BOS (top and bottom of stack)
: CLEAR BOS @ 1t TOS ! ;
: INITIALIZE BOS ! CLEAR ; (BOS needed to create object)
: DEPTH BOS @ TOS @ - It ;
: -EMPTY DEPTH O> ;
: SHOW -EMPTY IF

ASCII (EMIT
TOS @ 1- BOS @ DO I @ . -1 +LOOP
ASCII) EMIT

ELSE . " () " THEN ;
: POP -EMPTY IF 1 TOS t! THEN ;
: t STACK -1 TOS t! ; PRIVATE (inaccessible outside class)
: PUSH +STACK TOS @ ! ;

;CLASS

Figure One. Definition of a stack class.

:CLASS FIXED-STACK 1 INHERIT STACK
VARIABLE MAXSIZE (max num of elements)
: INITIALIZE BOS ! MAXSIZE ! CLEAR ; (2 parms to create obj)
: -FULL DEPTH MAXSIZE @ < ;
: +STACK -FULL IF -1 TOS t! THEN ; PRIVATE

;CLASS
(Notice that INITIALIZE and tSTACK are redefined, thus overriding
old definitions in parent STACK; however PUSH which uses +STACK
was not! That's the power and elegance of object-oriented design)

Figure Two. A new definition can inherit features from a class.

I solved this problem by establishing
the order of classes in the inheritance list as
the order of the search for methods. An-
other technique that has been used is to
rename the methods. Figure Two shows the
definition of a fixed-size stack that inherits
many features from the class STACK.

Obstacles to OOF
Under this subtitle, Mr. Elola men-

tioned the need for more than one data stack
to be able to handle the variety of classes,
therefore OOF has to "steer clear from
normal Forth." There is nothing in the stan-
dard that limits a Forth implementation
from having more than one data stack. An
implementation can employ several stacks,
as long as their details are hidden and do not
interfere with the data stack. The best way
to do this is through classes.

Under the subhead "I Object!" Mr.
Elola gave an example of the need to have
prefix notation to implement OOF. His
example was attempting to calculate the
average of two numbers, as follows:
GET A
GET B
+ 2/
PUT C

There is no reason why this problem
should be designed that way. It's a bad
design. Here is how CSU Forth solves the

same problem:
USE FLOAT
A @
B @
+ 2/
C !

The words USE FLOAT establish that
the search order for methods will start with
the FLOAT class, much like the vocabulary
search order. The syntax is postfii and
there is no binding ambiguity. The words @ ,
t, 2/ , and ! are all defined in the class
FLOAT and A, B, and C are objects of it. No
compromises on Forth's original philoso-
phy are needed. In my experience, there are
no obstacles to implementing OOF.

Why not vocabularies?
It may seem that vocabularies can do

everything classes can. Use CHAIN to es-
tablish inheritance; to pass messages, use
the vocabulary name to alter the search
order; and to make objects of a class, use
special definitions of CREATE ... DOES>.
It's uossible, but tedious. It is also a lot
better, as all i f us know, to implement these
mechanisms in assembly rather than in
high-level Forth. My experience with CSU
Forth convinced me that implementing
OOF is easy and harmonious with regular
Forth, and doesn't have to interfere with it.
CSU Forth has classes and vocabularies.

Dr. Ayman Abu-Mostafa
7932 Lampson Avenue #25
Garden Grove, California 9264 1 4 147

Fast *I for the Novix
Dear Sir,

One of the promises of the Novix
processor's Math Steps opcodes, in
particular * and / ' , is that hand-tailored
math routines can be written to provide
very fast, limited-range, multiply and di-
vide routines.

I can report that this idea does not work
for Forth's * or / operations. Performing
the Math Steps opcodes fewer than the full
1 6 TIMES leaves the result left-shifted
(for *) or right-shifted (for /) by as many
bits as the opcodes were run fewer than
sixteen times. For example, 2 3 * gives
twelve when * ' is run once less; and 10 0
2 / gives 25 when / is run once less.

However, it is possible to write short
versions of Forth's scaling function * /.
This is due to the fact that the two opera-
tions complement each other, as they rotate
the intermediate results in opposite direc-
tions. This means that the partial result left
by a short multiply can be fed into a short
divide routine and the net result is scaled
correctly.

In the following definition, n may take
any integer value less than 15 without af-
fecting the value of the result, save for
different argument ranges.
: * / ' (u u* u/ -- u')

>R 4 I!
0 n TIMES *I
R> 4 I !
D2* n TIMES / '
DROP ; (12 + 2n)

From the timing calculation, it can be
seen that an eight-bit * / ' will take a mere
28 clock cycles, with a 12-bit version con-
suming 36 cycles, compared to 59 for the
full * / provided in cmFORTH.

On the subject of argument ranges, 1
thought the multiplicand and divisor would
be limited to n number of bits, but it tran-
spires that the input number u is also lim-
ited to this size.

Yours faithfully,
Dave Edwards, Dir. of Engineering
Jarrah Computers Pty. Ltd.
Suite 7,85 Rokeby Road
Subiaco, WA 6008
Australia

I I
Forth Dimensions 6 Volume XI, Number 1

YES, THERE IS A BETTER WAY
A FORTH THAT ACTUALLY

DELIVERS ON THE PROMISE

I POWER

HSIFORTH's compilation and execution speeds are
unsurpassed. Compiling at 20,000 lines per minute. it
compiles faster than many systems link. For real jobs
execution speed is unsurpassed as well. Even non-
optimized programs run as fast as ones produced by
most C compilers. Forth systems designed to fool
benchmarks are slightly faster on nearly empty do
loops, but bog down when the colon nesting level ap-
proaches anything useful, and have much greater
memory overhead for each definition. Our optimizer
gives assembler language performance even for
deeply nested definitions containing complex data and
control structures.

HSIFORTH provides the best architecture, so good that
another major vendor "cloned" (rather poorly) many of
itsfeatures. Our Forth uses all available memory for
both programs and data with almost no execution time
penalty, and very little memory overhead. None at all for
programs smaller than 200kB. And you can resize seg-
ments anytime, without a system regen. With the
GigaForth option, your programs transparently enter
native mode and expand into 16 Meg extended memory
or a gigabyteof virtual, and run almost as fast as in real
mode.

Benefits beyond speed and program size include word
redefinition at any time and vocabulary structures that
can be changed at will, for instance from simple to
hashed. or from 79 Standard to Forth 83. You can be-
head word names and reclaim space at any time. This
includes automatic removal of a colon definition's local
variables.

Colon definitions can execute inside machine code
primitives, great for interrupt & exception handlers.
Multi-cfa words are easily implemented. And code
words become incredibly powerful, with mult~ple entry
points not requiring jumps over word fragments. One of
many reasons our system is much more compact than
its immense dictionary (1 600 words) would imply.

I INCREDIBLE FLEXIBILITY

The Rosena Stone Dynamic Linker opens the world of
utility libraries. Link to resident routinesor link & remove
routines interactively. HSIFORTH preserves relocata-
bility of loaded libraries. Link to BTRIEVE METAWIN-
DOWS HALO HOOPS ad infinitum. Our call and data
structure words provide easy linkage.

HSIFORTH runs both 79 Standard and Forth 83 pro-
grams, and has extensions covering vocabulary search
order and the complete Forth 83 test suite. It loads and
runs all FIG Libraries, the main difference bein$they
load and run faster, and you can develop larger applica-
tions than with any other system. We like source code in
text files, but support both file and sector mapped Forth
block interfaces. Both line and block file loading can be
nested to any depth and includes automatic path

FUNCTIONALITY

More important than how fast a system executes, is
whether it can do the job at all. Can it work with your
computer. Can it work with your other tools. Can ~t trans-
form your datainto answers. A language should be
complete on the flrst two, and minimize the unavoidable
effort requlred for the last.

HSIFORTH opens your computer like no other lan-
guage You can execute funct~on calls, DOS com-
mands, other programs ~nteract~vely, from def~nlt~ons,
or even from f~les be~ng loaded DOS and BlOS functlon
calls are well documented HSIFORTH words, we don't
settle for glvlng you an INTCALL and saylng have at ~t
We also Include both fatal and ~nformative DOS error
handlers, Installed by executing FATAL or INFORM

HSIFORTH supports character or blocked, sequent~al
or random 110. The character stream can be received
fromlsent toconsole, file, memory, prlnter or com port.
We include a communicat~ons plus upload and down-
load utility, and foregroundlbackground music. Dlsplay
output through BlOS for compatibility or memory
mapped for speed.

Our formatting and parsing words are without equal. In-
teger. double, quad, financial, scaled, time, date, float-
ing or exponential, all our output words have string
formatting counterparts for building records. We also
provide words to parse all data types with your choice of
field definition. HSIFORTH parses files from any lan-
guage. Other words treat files like memory, nn@H and
nn!H read orwrite fromlto a handle (file or device) as
fast as possible. For advanced file support. HSIFORTH
easily links to BTRIEVE, etc.

HSIFORTH supports textlgraphlc windows for MONO
thru VGA. Graphic drawings (line rectangle ellipse) can
be absolute or scaled to current window size and
clipped, and work with our penplot routines. While great
for plotting and linedrawing, ~t doesn't approach the ca-
pabilities of Metawindows (tm Metagraphics). We use
our Rosetta Stone Dynamic Linker to interface to Meta-
windows. HSIFORTH w~th Metawindows makes an un-
beatable graphics system. Or Rosetta to your own
preferred graphics driver.

HSIFORTH provides hardwarelsoftware floating point,
including trig and transcendentals. Hardware fp covers
full range trig, log, exponential functions plus complex
and hyperbolic counterparts, and all stack and comparl-
son ops. HSIFORTH supports all 8087 data types and
works in RADIANS or DEGREES mode. No coproces-
sor? No problem. Operators (mostly fast machine code)
and parselformat words cover numbers through 18 dig-
~ts. Software fp eliminates conversion round off error
and minimizes conversion time.

Single element through 40 arrays for all data types in-
cluding complex use mult~ple cfa's to improve both per-
formance and compactness. Z = (X-Y) / (X + Y) would
be coded: X Y - X Y + I IS 2 (1 6 bytes) instead of: X @
Y @ - X @ Y @ + I Z ! (26 bytes) Arrays can Ignore 64k
boundaries. Words use SYNONYMsfor data type ~nde-
pendence. HSIFORTH can even prompt the user for
retry on erroneous numeric input.

The HSIFORTH machine coded strlng library with up to
3D arrays is without equal. Segment spanning dynamic
string support includes insert, delete, add, find, replace,
exchange, save and restore string storage.

Our minimal overhead round robin and time slice multl-
taskers require a word that exlts cleanly at the end of
subtask execution. The cooDeratlve round robin multi-
tasker provides individual user stack segments as well
as user tables. Control passes to the next taskiuser
whenever desired.

APPLICATION CREATION TECHNIQUES

HSiFORTH assembles to any segment to create stand
alone programs of any size. The optimizer can use HSI
FORTH as a macro library, or complex macros can be
built as colon words. Full foward and reverse labeled
branches and calls complement structured flow control.
Complete syntax checking protects you. Assembler
programming has never been so easy.

The Metacomptler produces threaded systems from a
few hundred bytes, or Forth kernelsfrom 2k bytes. With
~ t , you can create any threading scheme or segmenta-
tlon archltecture to run on disk or ROM.

You can turnkey or seal HSIFORTH for dlstribut~on, wlth
no royalt~es for turnkeyed systems. Or convert for ROM
In saved, sealed or turnkeyed form.

HSIFORTH includes three edltors, or you can quickly
shell to your favorlte program editor. The resident full
window editor lets you reuse former command lines and
save to or restore from a file. It is both an indispensable
development a ~ d and agreat user Interface. The macro
editor provides reuseable functions, cut, paste, file
merge and extract, session log, and RECOMPILE. Our
full screen Forth editor edits file or sector mapped
blocks.

Debug tools include memorylstackdump, memory
map, decompile, single step trace, and prompt options.
Trace scope can be limited by depth or address.

HSIFORTH lacks a "modular" compilation environ-
ment. One motivation toward modular cornp~lation IS

that, with conventional compilers, recompiling an entire
application to change one subroutine is unbearably
slow. HSIFORTH compiles at 20,000 lines per minute.
faster than many languages llnk- let alonecompile!
The second motivation is linking to other languages.
HSIFORTH ltnks to foreign subroutines dynamically.
HSIFORTH doesn't need the extra layer of files, or the
programs needed to manage them. With HSIFORTH
you have source code and the executable f~le. Period.
"Development environments" are cute, and necessary
for unnecessar~ly complicated languages. Simpl~city is
so much better.

HSIFORTH Programming Systems
Lower levels include all funct~ons not named at a higher
level. Some functions available separately.

Documentation &Working Demo
(3 books, 1000 + pages, 6 Ibs) $ 95.

Student $145.
Personal optirnlzer. scaled &quad integer $245
Professional 80x87, assembler, turnkey, $395

dynamlc strlngs, multitasker
RSDL linker.
physical screens

Production ROM, Metacompiler, Metawindows
$495

Level upgrade, price difference plus $ 25.
OBJ modules $495.
Rosetta Stone Dynamic Linker $ 95.
Metawindows by Metagraphics (~ncludes RSDL)

$145.
Hardware Floatlng Point & Complex $ 95.
Quad integer, software floating point $ 45.
Time slice and round rob~n mult~taskers $ 75.
GigaForth (802861386 Native mode extension) $295.

HARVARD
SOFTWORKS

PO BOX 69
SPRINGBORO, OH 45066

(51 3) 748-0390

Volume Xi, Number 1 7 Forth Dimemions

EXTENDED
BYTE DUMP

M o s t languages, including ~or th ,
provide a byte dump of RAM memory. The
display usually shows data bytes on the left
and ASCII text, separately, to the right. In
Forth, the programmer would call:
DUMP (addr #bytes --)

The chief disadvantages of this scheme are
that it is cumbersome to browse through
memory, and it is necessary to count over
on the screen to relate displayed bytes to
their ASCII text. So, for several years, I
have used this video byte dump:
VDUMP (ad&--)

It lists the ASCII text underneath the bytes
(Figure One), and zooms forward through
memory with each press of the space bar
and backward with the return key. The
extreme left column of Figure One dis-
plays the 16-bit address in two bytes, and
the rest displays the data bytes with their
corresponding ASCII characters under
them.

Many times I have yearned to move my
cursor up to the display bytes and type over
them. In Forth, if you want it, you write ic
so I present:
WDUMP (addr --)

After the display fills the screen, press the
up-arrow or escape key, and you can move
the cursor to any data bytes and type over
them, automatically placing the new val-
ues in RAM. Typing chatacters with the
cursor anywhere else will not be recog-
nized by the computer, except the cursor
moves right. Press escape again to exit
altogether. The space bar and return still
browse forward or backward through
memory.

ALLEN ANWAY - SUPERIOR, WISCONSIN -
Requirements and Modifications

To write and run this program, you need
the following words or their equivalents:

XKEY (-- ASCII)

Sees all keystrokes alike, including escape.
I don't use my KEY because escape doesn't
work the same as the other keys.

-LF, LF, -BS,andBS (--)
These move the cursor up, down, right, and
left one position on the screen.

"VVDUMP starts the
real programming
fun."

CLEAR (--)

Clears the screen and positions the cursor at
the upper left-hand comer before printing.

/ c
(n -- low-byte high-byte)

This is shown on screen 39 if you don't have
i t

You do not need the next two words, but
it makes a slicker ending with them:
HVTAB
(horiz-index vert-index --)
Positions cursor.

CEOL (--)
Clears to the end-of-line.

In the original VDUMP, I wrote my word
LAYOUT in machine language to print the

display fast, but here I show everything in
high-level Forth for more general demon-
stration of the principles.

I also genedied the program for this
discussion by writing HPOS and VPOS
variables for the cursor position-in case
you don't have access to the internal regis-
ters. You can save programming steps if
you can gain access to them: on the Apple
I1 computers, they are at WI0024 and $0/
0025, respectively. ($ means 'hex' for
Apple people and some others).

Evolution of the Dump
Let's start with VDUMP. Step one is to

plan the display grid. I don't like planning,
but here we are stuck with it. From Figure
One (the desiredoutput), we derive the grid
in Figure Two showing the coordinate
pairs where each nybble will be printed. By
this scheme, the 24 x 40 Apple screen
allows $B bytes down by $C bytes wide;
$B x $C = $84 bytes displayed. Thus, going
backward with the return key makes us
subtract 2 x $84 = $108 from the ending
address to get the new beginning address
for the display. (Better Forth programming
would use constants for $B, $C, $84, and
$108.)

VDUMP looks for the keys you press,
controlling forward and backward brows-
ing, or exit.

PDUMP (start-addr end-addr - -)

Prints the same format on a printer, but 32
squeezed data bytes wide, to almost fill the
width of the paper page.

Working on WDUMP starts the real
programming fun. To type over the nybble
of a data byte, we use the cursor grid (Fig-

Forth Dimensions 8 Volume XI, Number 1

09 86 42 52 41 4E 43 48 92 09 B2 OC 85
89 B R A N C H
09 OC 4C D8 08 23 09 87 3F 42 52 41 4E
95 L # ? B R A N
09 43 48 A5 09 B5 00 08 E8 E8 28 FO E5
A1 C H (

09 E6 OC E6 OC 4C D8 08 89 09 86 28 4C
AD L (L
09 4F 4F 50 29 BF 09 18 A9 01 00 63 01
B 9 O O P) c
09 83 01 43 03 DO C7 A0 00 FO 89 B6 09
C5 C
09 87 28 2B 4C 4F 4F 50 29 DB 09 B5 00
Dl (+ L O O P >
09 E8 E8 85 10 38 A3 03 E3 01 85 12 18
DD 8
09 A3 01 65 10 83 01 38 A3 03 E3 01 FO
E9 e 8
09 D5 45 12 10 98 A5 10 45 12 10 CB 30
F5 E E 0

OA 90 9B 09 84 28 44 4F 29 OB OA B2 OC
0 1 (D O)

Figure One. VDUMP shows ASCII text below each row of hex bytes.

I 1

Figure Two. Grid of video display (hex numbers). (Text, continued on page 12.)

NGS FORTH
A FAST rnR131,
OPTIMIZED FOR THE IBM
PERSONAL COMHPTER AND
MS-DOS COMPATIBLES.

BTANDARD]FEATURES
INCLUDE:

@79 STANDARD

@DIRECT 1/0 ACCESS

~ X J I J J ACCESS TO MS-DOS
FILES AND FUNCTIONS

@ENVIRONMENT SAVE
& ILIAD I
@MULTI-SEGMENTED FOR
LARGE APPLICATIONS

@EXTENDED ADDRESSING

.MEMORY ALIX)CATION
CONFIGURABLE ON-LINE

.AUTO UlAD SCREEN BOOT 1
@LINE & SCREEN EDITORS I
@DECOMPILER AND
DEBUGGING AIDS I
GRAPHICS & SOUND I
@NGS ENHANCEMENTS I
@DETAILED MANUAL I
.INEXPENSIVE UXRADES

ONGS USER NEWSIJXER

A COMPLETE TDKl'H
DEVELOPM?i'lW SYSTEM. I

PRICEB 8- AT $70 I
NEW--150 & HP-110
VERBION8 AVAILABLE

NEXT GENERATION 8YBTEM8
P.0.BOX 2987
-A CLARA, CA. 95055
(408) 241-5909

Volume XI, Nwnber I 9 Forth Dimensions

1 1 SCREEN # 033 SCREEN # 034 I I
(Original VDUMP in high level Forth > (Original PDUMP in high level Forth > / / HEX I I

I I : .2N S>D <# # # #> TYPE ; (n --- > (addr-begin\addr-end ---
I 1 1

: LAYOUT CLEAR
BEGIN ROT ROT DUP /C .2N >R SPACE
OVER 0 DO SPACE DUP I + C9 .2N

LOOP
CR SPACE R> .2N
OVER 0 DO SPACE SPACE DUP I + C9

DUP DUP BL < SWAP 2E > OR
IF DROP BL THEN EMIT

LOOP
CR OVER + ROT 1- ?DUP O=

UNTIL ; (#cols\address\#rows ---
#cols\address' >

: VDUMP BASE a SWAP HEX c SWAP
BEGIN B LAYOUT XKEY DUP D =

IF DROP 108 -
ELSE BL - (space bar >

IF 2DROP BASE ! EXIT THEN
THEN

REPEAT ; (ram-address --- >
-->

SCREEN # 035
(New VVDUMP types over data readout

: PDUMP >R >R ?STACK BASE 9 HEX
20 R> R> OVER - 0 20 UM/ 1+
1 OUTPUT! (start printer >
IB EMIT 71 EMIT CR (<Esc>q<Cr> >

(squlshed chars, Apple Imagewriter >
LAYOUT
IB EMIT 63 EMIT CR (<Esc>c<Cr> >

(reset printer
0 OUTPUT! (stop printer >
2DROP BASE ! ;

Allen Anway December 12, 1988
1219 North 21st Street
Superior, WI 54880
715-394-4061

SCREEN # 036
(New VVDUMP types over data readout >

VARIABLE HPOS VARIABLE VPOS : >> VPOS P 15 <= (--- >
IF HPOS O 27 >=

: LEGALV VPOS 9 DUP 14 <= IF -1 HPOS ! 1 VPOSt!
SWAP 2 MOD O= AND ; THEN 1 HPOS t! - BS

(--- flag > THEN ;

: LEGALH HPOS 9 W A P - DUP 0>
SWAP 1- 3 MOD O= AND ;

(offset-position --- flag >
: LEGAL? LEGALV 3 LEGALH 4 LEGALH

OR AND ; (--- flag >

: INDex OVER 84 - VPOS P 21 C *
HPOS P 4 - 3 / + + ;

(end-aAnyb --- end-ad\nyb\byte-ad >

-->
INDex calculates ram location that the
typed-over byte exists, byte-ad.
C B x * is 84, all in HEX.
nyb is the nybble entered by DIGIT'.

: << HPOS a o= (---)

IF 28 HPOS ! -1 VPOS +!
THEN -1 HPOS +! BS

VPOS O< IF 0 VPOS ! THEN ;

. VPOS 9 (--- >
IF -1 VPOS + ! -LF
THEN ;

: vv VPOS 9 14 <= (--- >
IF 1 VPOS t! LF
THEN ;

: EMIT' DUP BL < IF DROP BL THEN
EMIT BS >> ; (char --- >

-->

1

Forth Dimemiom 10 Volume XI, Number 1

SCREEN # 0 3 7
(New VVDUMP types over data readout >
HEX
VARIABLE MODE

: DIGIT' (addr\key --- addr 1
MODE 9 O= I F DROP EXIT THEN
LEGAL? O= I F DROP >> EXIT THEN
DUP >R
10 DIGIT O= I F RDROP >> EXIT THEN
INDex CQ SWAP 3 LEGALH
I F 4SHIFTSWAPOFANDOR

DUP vv >> EMIT' ^ * << <<
ELSE SWAP FO AND OR

DUP vv EMIT' ^ ^ <<
THEN
INDex C! R> EMIT' ;

DIGIT' types representative character
below the byte, then updates nybble.

I f you don't have RDROP replace it above
with R> D

SCREEN # 0 3 9
(New VVDUMP types over data readout >

: .ENTER ." ENTER" -LF -LF BS
4 HPOS ! 14 VPOS ! -1 MODE ! ;

(--- >

VARIABLE OLDKEY

: XKEY' XKEY DUP OLDKEY ! ;
(--- key 1

: EXIT' 2DROP BASE ! 0 1 6 HVTAB CEOL ;
(base\x\x --- 1

: LAYOUT' CLEAR B LAYOUT MODE OFF ;
(#cols\addr --- #cols\addr' >

I f you don't have /C use this one:
HEX
: /C DUP W F F AND SWAP FFOO AND

-8 SHIFT ;
1234 /C . . prints out 1 2 3 4

SCREEN # 0 3 8
(New VVDUMP types over data readout >

--> commentary for DIGIT'

: DIGIT' (addr\key--- addr >
MODE OFF ? yes: quit
illegal position ? yes: move curs, quit

illegal digit ? yes: move curs, quit
get byte, is it at lhs nybble position ?
yes: shove over 4 bits, insert in byte

print over display character.
no : insert in byte

print over display character.

update ram with new byte, print nybble.

SCREEN # 040
(New VVDUMP types over data readout >

(ram-addr --- 1
: VVDUMP BASE 9 SWAP HEX C SWAP

LAYOUT'
BEGIN XKEY' CASE

D OF 1 0 8 - LAYOUT' ENDOF
BL OF LAYOUT' ENDOF
MODE Q AND
8 OF << ENDOF

15 OF >> ENDOF
A OF vv ENDOF
B OF * ^ ENDOF

1B OF EXIT' EXIT ENDOF
DIGIT' (removes key >
MODE 9 O= OLDKEY Q AND

B OF .ENTER ENDOF
1B OF .ENTER ENDOF
MODE 3 O= I F DRUP EXIT' EXIT

THEN ENDCASE
REPEAT ;

DECIMAL ; S

(Screens continued on page 40.)

Volume XI, Number 1 I 1 Forth Dimemiom

ure Two) to determine (a) is the cursor on an
actual data byte, (b) which nybble is it on,
and (c) what is that byte's absolute RAM
address, so we can update it?

We save our sanity by breaking this
complex problem into small pieces. When
the cursor is actually on a displayed data
byte, I call it a legal position for updating
that byte. The vertical spacing is easy:
LEGALV checks for odd (illegal) and even
(legal) rows. The horizontal spacing is
harder: the extreme left address bytes are
illegal-they aren't data bytes. So we write
LEGALH requiring an offset input of three
or four to compensate for starting irregu-
larly.

Combining the two gives us:
LEGAL? (--flag)

Returns a true flag indicating that the cursor
is on a displayed data byte.

Using similar techniques, we figure out
INDex to determine the absolute RAM
address by calculating from the horizontal
and vertical positions and the ending ad-
dress.

Screen 36 shows cursor movement
words for four directions, keeping the cur-
sor from going too low and scrolling the
screen. This programming assumes that
-LF and B s are unable to scroll the screen
backward even if you tried to, which is true
of most computers. As stated above, these
words are easier to write if you have access
to the internal horizontal and vertical indi-
ces of the computer.

D I G I T takes your keyed input and
types over the nybble and its corresponding
ASCII character. It is defined on screen 37
and explained in screen 38. Screen 39
shows simple utility words, good practice
in Forth to clean up the final screen. The
word . ENTER assumes a known starting
cursor position at grid 16.0 (Figure Two).
After printing ENTER in reverse video, the
cursor is placed on grid 14,4 at the high
nybble of the bottom-most data number.

For your amusement, I include screen
41 to show my first attempt to force this
program to work, something like interior
decorating with an ax. (It does work!) That

1 code is impossible to understand or to alter

successfully, even slightly; and it mixes
dissimilar functions. Note also two un-
structured branches for complete-rather
than partial-obfuscation.

How would one clean up screen 41?
Start over with a new concept, that of a
MODE variable. If the mode is false, you are
browsing; if the mode is true, you are
moving the cursor and, maybe, typing over.
MODE separates the final vv~m program
(screen 40) into four easy-to-comprehend
sections:

The space bar and return key browse to
the next or previous memory display,
turning MODE off (no type-over).
If the mode is true (-I), the commands
<<, >>, vv, and ^ ^ will move the
cursor; and a numerical key will type
over, via DIG IT . The escape key here
will exit.
If the mode is false (0). one can activate
type-over with the up-arrow or escape
key (running the . ENTER command).
This must follow the true mode, where
the escape key acts in a contradictory
way.

(Continued on page 40.,

SDS FORTH for t l ~ e INTEL 8051
C u t your development t i m e w i t h your PC using SDS For th based env i ronment .

Programming Environment
Use your I B M PC compatible as terminal and disk server
Trace debugger
Full screen editor

Software Features
0 Supports Intel 805x, 80C51FA, N80C451, Siemens 80535, Dallas 5000

Forth-83 standard compatibi l i ty
0 Bui l t - in assembler

Generates headerless, self starting ROM-based applications
0 RAM-less target or separate data and program memory space

SDS Technical Support
100+ pages reference manual, hot line, 8051 board available now

Limited development system, including PC software and 8051 compiled software w i th manual, for $100.00.
(generates ROMable applications on top o f the development system)

SDS Inc., 2865 Kent Avenue #401, Montreal, QC, Canada H3S 1 M 8 (514) 461-2332
J

Forth Dimemim 12 Volume XI, Number 1

LOCAL VARIAB
AND ARGUMENTS

1 will describe a technique to add
local variables and arguments (procedural)
to Forth. The code is written in Laxen and
Perry's F83, but should be quite portable to
any conventional Forth implementation. I
will not argue about why everyone from
now on should use local variables and argu-
ments. If you have been forced to use
PICK, you'll find this article at least of
academic interest.

Design Goals
My major design goal was to have local

variables and arguments that were "clean"
and Forth-like. That is, they had to be
portable, ROM-able, recursive, and-
hopefully-not state-smart. They should
also be easy and intuitive to use. Justp
declaration at the beginning of a definition
should suffice. One important criterion was
that the whole source code should be one or
two screens total; otherwise, nobody would
bother to uy it. Local variables and argu-
ments should work similarly, differing
mainly in that arguments are like constants
and local variables are like variables. This
analogy calls for corresponding defining
words.

Specifications
A local variable is a variable created at

run time by allocating space from the return
stack. Its lifetime is from the beginning to
the end of the definition in which it is de-
clared, at which time the space is automati-
cally released. Since the space is allocated
from the stack, recursion is allowed and
code ROM-ability isn't affected. Local
variables are accessed by address, like any
variable.

--

JYRKI YW-NOKARI - TAMPERE, FINLAND
m

An argument is one of the stack inputs a
word gets. When arguments are declared,
they are moved from the stack to the return
stack. (Local variables are similar, but are
not initialized.) Arguments are accessed by
value, like constants. In the current im-
plementation, they can also be accessed by
address, like variables, although this seems
to be unnecessary because they are only
stack inputs.

"Locals are imple-
mented by using
return stack frames."

Programmer's View
ARGS (argl ... argN N --)

declares N stack items as arguments. The
stack items argl ... argN are pushed to the
return stack. When the word that calls
ARGS exits, the space is automatically
freed.

The general word to push the value of
argument N to the stack is:

% (N -- argN)

Numbering starts from the deepest stack
item (in a stackdiagram, the leftmost item).
The name % was chosen because it has no
previous meaning in Forth, and because of
its correspondence to MS-DOS file.BAT
parameters.

For fast access, I have predefined the
words % 1, %2, ... % 8. This was done with
the defining word:

ARGUMENT <name> (N --)

<name> (-- argN)

ARGUMENT creates a new <name> that
fetches the argument to the stack.

So much for the theory, let's see some
action:

: SWAP
2 ARGS
(nl n2 -- n2 nl)
%2 %1 ;

: ROT
3 ARGS
(nl n2 n3 -- n2 n3 nl)

%2 %3 %1 ;

: NIP
2 ARGS
(nl n2 -- n2)
%2 ;

: TUCK
2 ARGS
(nl n2 -- n2 nl n2)

%2 %1 %2 ;

Figure One shows a definition written
in three different ways, for comparison.
ARGS need not be called frst in a defini-
tion. It can be called in the middle, and the
arguments it provides are usable until the
end of the definition. It is not advisable,
however, to use ARGS within a loop; it is,
in fact, impossible to use in a DO loop.

Normally the arguments are accessed
as constants, but it is possible to access
them like variables. This is done with the
word:

Volume Xl. Number 1 13 Forth Dimensions

ARGV (N -- 'argN)

/ with LMI FORTHTM I

1 For Programming Professionals: 1
an expanding family of
compatible, high-performance,
Forth-83 Standard compilers
for microcomputers

For Development:
Interactive Forth-83 lnterpreterlCompilers

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
400 page manual written in plain English
Options include software floating point, arithmetic
coprocessor support, symbolic debugger, native code
compilers, and graphics support

For Applications: Forth-83 Metacompiler
uniq& table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate
states, and performs conditional compilation
Cross-compiles to 8080, Z-80, 8086, 68000, 6502, 8051,
8096, 1802, and 6303
No license fee or royalty for compiled applications

For Speed: CForth Application Compiler
Translates "high-level" Forth into in-line, optimized
machine code
Can generate ROMable code

Support Services for registered users:
Technical Assistance Hotline
Periodic newsletters and low-cost updates
Bulletin Board System

Call or write for detailed product information
and prices. Consulting and Educational Services
available by special arrangement,

l ~ a b o r a t o r ~ Microsystems Incorporated
Post O i i ~ce Box 10430, Mar~na del Rey, CA 90295

credit card orders to: (213) 306-7412

Overseas Distributors.
Germany. Forth-Systeme Angellka Flesch. T~t!see.Neustadt. 7651-1665
UK: System Sclence Ltd., London, 01-248 0962
France: Mlcro-Sigma S.A.R L., Paris. (1) 42.65.95.16
Japan: Southern Pacific Ltd . Yokohama, 045-314-9514
Australia' Wave-onlc Assoclates. Wilson, W.A.. (09) 451.2946

Forth Dimensim 14

that returns the address of argument N.
(The name was borrowed from C.)

Definition of local variables is done
with the word:
LOCALS (N --)

that allocates space for N variables. This is
identical to ARGS, except variables are
uninitialized (and guaranteed to contain
garbage, not zeros).

The general word to access a local vari-
able N is:
LV (N - - A)

that pushes the address of the local variable
number N to the stack. (If you declare N
LOCALS, you will have local variables
numbered one through N, like with ARGS.)

For fast access, I have predefined the
words L 1 ... L8. Also, there are words @1
... @8 to fetch and ! 1 ... ! 8 to store local
variables. Their syntax is borrowed from
[Bow82]. They are created by special de-
fining words (Figure Two) that are only
used to create named local variables.
However, this is not recommended-un-
less you have a transient, independently
forgettable vocabulary-because variable
names so defined remain accessible to
other definitions, as well.

In the accompanying screens are three
different implementations of the Tower of
Hanoi puzzle. The first implementation
usesonly LOCALS and ARGS, the second is
a mixture of ARGS and conventional code,
and the third is just conventional Forth.
RECURSE calls the definition recursively.
This is in the Forth-83 controlled reference
word set, and is called MYSELF in some
older Forths. Personally, I prefer using the
F83 word RECURSIVE and use the word
name itself instead of RECURS IvE (I hope
the new standard will include this in the
controlled reference word set).

Implementation
Local variables and arguments are

implemented by using return stack £rames.
This means the return stack must be in a
range of addressable memory (me of most
microcomputer implementations). Addi-
tionally, a way is needed to fetch and re-
store the return stack pointer. In F83, this is
done via:
RP@ (-- A 1
RP! (A - -)

Volume XI, Number 1

that fetch the return stack pointer to the
parameter stack, and store the top parame-
ter stack item in the return stack pointer,
respectively. (Note that fig-FORTH's RP !
behaves differently.)

This implementation presumes that the
return stack grows "upwards" (toward
lower addresses), that the return stack
pointer points to the topmost item, and that
a stack item consists of 16 bits. This is true
in the majority of implementations. In 32-
bit systems, just replace every 2 * with 4 *
or by CELL* or whatever your system will
understand.

LOCALS and ARGS each has its own
stack frame (Figures Two and Three). The
variables ' LFRAME and ' AFRAME point
to the start of the current frame, and data is
accessed through them. When a stack
frame is built, the previous value of the
frame pointer is pushed first, then comes
the space for the data and, finally, the pre-
vious return stack pointer.

Both LOCALS and ARGS Use a corout-
ine technique to clean up the return stack.
On entry, they pop their return address
from the return stack and, when the frame
is built, perform a call to this address. This
means the rest of the definition gets exe-
cuted (i.e., where ARGS or LOCALS is
called). After that, control is returned to
ARGS or LOCALS just after the CALL.
Then the stack frame is removed and con-
trol is returned to the word two levels up.
Figure Four shows the execution and call-
ing order of the words FOO and BAR.

Comments
The design goals were met, pretty

much, except Icouldn't fit the implementa-
tion into two screens. Also, there is no
clean way to use double-length LOCALS or
ARGS, which must be handled in two parts.

To be useful in the real world, the im-
plementation of ARGS and LOCALS
should be something like:

: ARGS
(APUSH) CALL (APOP) ;

: LOCALS
(LPUSH) CALL (LPOP) ;

: CONVENIENT
4 ARGS (x a b c - - a * x * x + b * x + c)
%2 %1 * %1 * %3 %1 * + %4 + ;

: THEORETIC
4 ARGS (x a b c - - a * x * x + b * x + c)
2 % 1 % * 1 % * 3 % l % * + 4 % + ;

1 ARGUMENT x
2 ARGUMENT a
3 ARGUMENT b
4 ARGUMENT c
: ACADEMIC
4 ARGS (x a b c - - ~ * x * x + ~ * x + c)
a x * x * b x * + c + ;

Figure One. One definition three ways.

) 0 .-------.---------
arg 1 -------.---------

arg N . - - - - - - - - - - - - - - - - -
Old 'AFRAME 4-

v

I I

). 0 -
. - - - - - - - - - - - - - - - - -

local 1 .----------------.
I

0

. - - - - - - - - - - - - - - - - -
local N

Old 'LFRAMEf -
i

Figure Two. The argument stack frame. Figure Three. The local variable stack
frame.

: FOO BAR . ; (nl n2 --)
: B A R 2 A R G S %1 %2 + ; (n l n 2 -- n 3)

FOO) BAR --+ 2
ARGS -+ R>

(b u i l d f r a m e)
%l<- CALL
% 2
t
EXIT -+ (r e m o v e frame
.I EXIT - EXIT

where (APUSH) , (APOP) , (LPUSH) ,
and (LPOP) should be in code, as should

the LVARIABLE* @LVARIABLEv Figure Four. The execution order of ARGS.
and !LVARIABLE. And ARGUMENT
should be defined as:

(Text, continued on page 41 .)

Volume XI, Number 1 15 Forth Dimensions

1 8
0 \ Local variables and arguments load block j t y 220688 Local variables and arguments load block j t y 220688
1 2 3 THRU The source code i s i n blocks 2 and 3
2
3 VOCABULARY NOVICE VOCABULARY MIXED There are three versions of the Tower of Hanoi puzzle.
4 NOVICE DEFINITIONS 4 LOAD NOVICE that uses only ARGS and LOCALS,
5 MIXED DEFINITIONS 5 LOAD MIXED that uses a mixture of stack manipulation and ARGS and
6 FORTH DEFINITIONS 6 LOAD normal for th version that does not use anything special.
7
8
9

10
11
12
13
14
15

2 9
0 \ Local variables and procedural arguments, defining JTY 190688 Local variables and arguments are return stack frames JTY 190688
1 VARIABLE 'LFRAME ' L F W contains pointer t o the current local variable frame.
2 VARIABLE 'AFRAME ' A F M contains pointer t o the current argument frame.
3 : CALL (A --) >R ; CALL i s mch l i k e EXECUTE, but takes IP-value instead of CFA.
4 LOCALS allocates space fo r N local vars from the return stack
5 : LOCALS (N --) R7 'LFRPSIE @ rR RP@ ROT 2* - RP@ and sets 'LFRAME t o point t o the beginning of th i s frame.
6 SWAP RPI >R RP@ 'LFRAME I CALL R> RPI R> 'LFRAME I ; Previous 'LFRAME i s saved t o enable recursion. After th is it
7 issues a coroutine c a l l t o the cal ler. When that returns,
8 : ARGS (k l . . k N N - -) R> 'AFRAME@>R the return stack i s reset t o the or iginal value and 'LFRAME is
9 RP@ 'AFRAME 1 SWAP BEGIN restored to previous value.

10 ROT >R 1- 7DUP 0- UNTIL ARCS behaves l i k e LOCALS, except that it moves N items t o return
11 'AFRAME @ >R RP@ 'AFRAME I CALL R> RP I R> ' AFRAME I ; stack and set pointer t o frame t o ' AFRAME .
12 LV returns the address o f local variable nunber N.
13 : LV (N -- 'Ln) 2* 'LFRAME @ + ; ARGV returns the address of argument n h e r N. The topmost
14 : ARGV (N -- 'An) 2* 'AFRAME @ t ; argument i s nunber N (l i k e i n a stack diagram).
15 : % (N -- An) ARGV @ ; % returns the value o f argument number N. See ARGV .

3 10
0 \ Local variables and procedural arguments, end user JTY 190688 Local variables & arguments defining & end user words JTY 190688
1 : LVARIABLE (N --) CREATE C, DOES, (-- 'n) C0 LV ; LVARIABLE creates a word that brings the address of Nth
2 : ILVARIABLE (N --) CREATE C. DOES> (-- Ln) C0 LV @ ; local variable t o the stack a t runtime.
3 : ILVARIABLE (N --) CREATE C, DOES, (x --) C@ LV I ; OLVARIABLE creates a word that brings the value of Nth
4 : W E N T (N --) CREATE C, WES> (-- An) C@ % ; variable t o the stack a t runtime.
5 ILVARIABLE creates a word that stores the item i n stack
6 1 LVARIABLE L1 2 LVARIABLE L2 3 LVARIABLE L3 4 LVARIABLE L4 t o the Nth local variable a t runtime.
7 5 LVARIABLE L5 6 LVARIABLE L6 7 LVARIABLE L7 8 LVARIABLE L8 ARGUMENT creates a word that brings the value of Nth argument
8 1 LVARIABLE $1 2 (QLVARIABLE 92 3 [QLVARIABLE @3 4 @LVARIABLE @4 t o the stack a t runtime.
9 5 LVARIABLE @5 6 CLVARIABLE @6 7 @LVARIABLE 87 8 @LVARIABLE @8

10 1 ILVARIABLE 11 2 ILVARIABLE 12 3 ILVARIABLE 13 4 ILVARIABLE 14 L l . . L8 are local variables 1 . . 8
11 5 ILVARIABLE 15 6 ILVARI~LE 16 7 ILVARIABLE 17 8 ILVARIABLE 18 (41 . . @8 fetches the values o f corresponding variables
12 1 ARGUMENT %1 2 ARGUMENT %2 3 ARGUMENT %3 4 ARGUMENT %4 11 .. 18 stores the value on stack t o the corresponding variable
13 5 ARGUMENT 15 6 ARGUMENT %6 7 ARGUMENT %7 8 ARGUMENT %8 %1 . . %8 bring the corresponding argument to the stack
14

I
Forth Dimensions 16 Volume XI, Number 1

4 11
0 \ Testing args and local variables: Tower of Hanoi #1 j t y 180688 The Towers of Hanoi problem algorithm i n ADAish j t y 220688

1 : THIRD (t l t 2 -- t3) 2 ARGS 6 %2 - 21 - ; TYPE tower i s (1, 2, 3);
2 FUNCTION third(a, b: I N tower) RETURN tower I S BEGIN

3 : MOVEDISK (frcun t o --) 2 ARGS return 6-a-b;
4 CR ." Move disk frcun " %I . ." t o " 12 . (KEY CROP) ; END third:
5 PROCEDURE movedisk(a, b: tower); -- Move disk from a to b

6 : MOVETOWER (from t o n --) 3 ARGS 1 LOCALS 13 1 = IF PROCEDURE mvetower(a, b: tower; n: lntegei) IS t: tower; BEGIN

7 21 %2 MOVEDISK ELSE IF (n - 1) THEN -- I s there only one disk t o move7
8 %l %2 THIRD 11 movedisk(a, b);
9 %l @1 13 1- RECURSE ELSE -- More than one

10 5.1 %2 MOVEDISK t := third(a, b);
11 @1 %2 3 1 RECURSE THEN ; movetower(a, t, n-1);
12 movedisk(a, b);
13 : HANOI (N --) 1 ARGS 1 3 11 MWETOWER ; movetower(t, b, n-1);
14 ENDIF
15 END movetower;

5 6
0 \ Testing args and local variables: Tower o f Hanoi 12 j t y 180688 0 \ Testing args and local variables: Tower of Hanoi Y3 jty220688

1 : THIRD (t l t 2 -- t 3) 6 SWAP - SWAP - ; 1 : THIRD (t l t 2 -- t 3) 6 SWAP - SWAP - ;
2 2

3 : MOVEDISK (from t o --) SWAP 3 : MOVEDISK (ftm t o --) SWAP
4 CR ." Movedisk f rom" . ." t o " . (KEY DROP) ; 4 CR .* Movedisk frcun" . ." t o " . (KEY CROP) ;

5 5
6 : MOVETOWER (from t o n --) 1- 7DUP IF 6 : MOVETOWER (from t o n --) 1- 7DUP IF
7 3 ARGS %1 %2 THIRD 7 >R 2DUP THIRD
8 21 OVER %3 RECURSE %1 12 MOVEDISK 22 13 RECURSE ELSE 8 2 PICK OVER R@ RECURSE
9 MOVEDISK THEN ; 9 2 PICK 2 PICK MOVEDISK

10 10 SWAP R> RECURSE DROP ELSE

11 : HANOI (N --) 1 3 ROT MOVETOWER ; 11 MOVEDISK THEN ;

12 12

13 13 : HANOI (N --) 1 3 ROT MOVETOWER ;

14 14

15 15

L

Volume XI, Number 1 17 Forth Dimensions

Forth Dimensions 18 Volwne XI, Number 1

F83

LOCAL VARIABLES
ANOTHER TECHNIQUE

JOHN R. HAYES - LAUREL, MARYLAND -

A n o t h e r method for adding named
local variables is presented here. The
method has an aesthetically pleasing syn-
tax and allows the declaration of local vari-
ables anywhere within a colon definition,
andwiththevariablebeinginitializedwith
the value on top of the stack at run time. An
efficient implementation is given.

Introduction
The efficiency and clarity of Forth code

often suffers from excessive use of stack
manipulation words. These words-such
as DUP, SWAP, and ROT-are primarily
used for operand positioning and, as such,
are pure overhead. More importantly, se-
quences such as SwM DROP ROT O ~ S C W

the nature of what the code is really doing.
Named local variables would help im-
mensely.

Several ways of creating local variables
have been proposed in the past (see refer-
ences). Inspired by the second reference
listed, I have come up with yet another
implementation of local variables. My
method allows named local variables to be
declared anywhere within a colon defini-
tion. These declarations can be inter-
spersed with ordinary Forth code. Space for
the local variable is dynamically allocated,
so code using these variables will be re-
entrant. In the following paragraphs, I will
describe how local variables are declared
and how they are implemented. Source
code is supplied.

Syntax and Semantics
My local variable method is based on

scopes. A scope is a section within a Forth
word over which a given local variable is
defined. Reminiscent of C, a scope is de-

limited by braces, i.e., { ... I . Any local de-
dared within the braces can be axxzssed
until the right brace closes the scope. In the
following code:

: £001 (a b -- a+b
{ local b

local a

a b +
1
,

"The local variable
is also a compiling
word* 99

the locals a and act asparameters for the
Ool and using the name a Or

causes the local's value to be returned. At
run time, a local is initialized with the value

top the parameter stack- After initiali-
'ation, the parameter stack is popped. This

locals canalsobeusedas tempo-
rq For

: Oo2 (a -- ?)

t dup *
local asquared
0 local temp

...
1
,

creates a word with locals* One

with the 'quare of the input Wument
and the other initialized with zero. Arbi-

trary ~ortti code can be used to initialize a
local.

The scope delimiters are compiling
words like if and then and must pair up
in the same way. Scopes may also be
nested to an arbitrary depth like i f ...
then pairs. Here is an exampleof how this
might be used:

: £003 (x y -- ? 1
{ local y

local x

x y + x *
1000 > if
{ 0 local temp1

X Y *
local temp2

...
1
then

1
I

The words templ and t emp2 are only
allocated if the if test is true. Notice that
within the inner scope, the local variables
in surrounding scopes can be accessed. If a
local variable in an inner scope is declared
with the same name as a local in some
surrounding scope, the inner definition
hides the outer one until the inner scope is
closed. This is the same rule used by Algol,
Pascal, and C.

Local variables behave like constants
in that they return their values. This is the
desired behavior, since locals will usually
be used to hold function arguments which
are not changed. However, a local can be
modified by its name by to. n i s

causes the value on the top of the stack to be
stored in the local variable.

Implementation
The syntax and semantics of local vari-

ables described above requires that, while
compiling a colon definition, it must be
possible to add the definition of a local
variable to the dictionary without disturb-
ing the colon compilation. Therefore, a
temporary allocation region must be set
aside for holding the definitions of the local
variables. These transient definitions
which are only needed at compile time are
forgotten and their space reclaimed when
their scope is c l o d . It is also desirable that
allocating, initializing, accessing, and deal-
locating local variables be as fast as pos-
sible atrun time. Local variables are kept on
the return stack. A local is speedily allo-
cated and initialized with the value on the
parameter stack by using >r. Locals are
accessed and deallocated using special
code words.

To solve the problem of a temporary
allocation region, my Forth system had to
be modified slightly. Most Forths have a

variable named dp that points to the Eree
space at the end of the dictionary. I have
added an extra level of indirection (see
Figure One) by creating two variables
s tdregion and regionptr and by
making dp acolon definition. The resulting
Forth system behaves exactly like the origi-
nal system. However, since all the diction-
ary-space management words like here, ,
(comma), and a l l o t are defined in terms
of dp, it now becomes possible for a pro-
grammer to maintain multiple allocation
regions by manipulating regionpt r.

An allocation region called
locregion is created to hold temporary
dictionary entries for local variables. lo-
c a l is both a defining word and a compil-
ing word. When a local variable is declared,
l oca l switches the current allocation re-
gion to locregion, uses c rea te to
make a dictionary header for the local, and
records some information that will allow
the local's value to be retrieved at run time.
loca 1 then switches the current allocation
region back to s t dregion and compiles
a >r. The local variable is also a compiling
word that compiles code to pick its value

from the appropriate location in the return
stack. The braces are compiling words that
mainly do bookkeeping. The left brace {
keeps track of how many local variables
have been declared. The right brace) re-
claims the space used by the dictionary
entries for the local variables, backs up the
current vocabulary pointer, and compiles
code to discard the locals at run time.

Figure Two shows what would be
compiled on a 32-bit Forth system for the
first example given in this paper. The first
>r creates local variable b and the second
>r creates a. (rp ick) and (rpop) are
code words that take their parameter from
the instruction stream. The (rpick) 0
copies the first 32-bit word on the return
stack to the parameter stack, and the
(r p i c k) 4 copies the second 32-bit word
on the return stack to the parameter stack.
(rp ick) 8 deallocates both locals by
popping two 32-bit words off the return
stack.

Allocating local variables on the return
stack causes problems for do, loops. If a do
loop is used within ascope, it would be nice

1 to be able to access that scope's local vari-
ables within the loop:

f

CONCEPT
f o r t h W I N D O W S +

Text and Data Windows
O - O I 90 Windows1 per available memory

8086,8088 Native
Code generator.
The easy way to
optimize Laxen &
Perry F83, including
the hi-level flow
control words ... If ..

popup Windows
Save and Restore windows from files

Mouse Support
Circular Event Que for Mouselkeyboard

DOS sewicesl directory
F83, HSFORTH, FPC supported

PLUS
' Then, Do .. Loop, I $49.95

Begin..Again. All programs require DOS 2.0 or higher ~ All programs include 5 114" disk and manual
$20.00 Send check or money order to :

CONCEPT 4, INC. PO BOX 20136 VOC

Prolog
Virtual

Machine

Add productivity,
flexibility, and auto-

mated reasoning
Fully interactive

between Forth and
Prolog code

$69.95
AZ 86341

I

Volume XI. Number 1 13 Forth Dimensions

: foo4 (X -- ?)
{ local x

8 0 do
i x +

...
loop

1
,

This is easily accomplished by adding to
the definitions of do and 1 oop a single line

of code informing the compiler that two
more locals have been declared1. It would
also be nice to declare a scope within a do
loop and access the loop index i within the
scope:

: £005
8 0 do
{ 10 local x

x i +
... I :oo,

r

Figure One. Separate allocation regions.

: fool (a b -- a+b
{ l o c a l b

l o c a l a

a b +
I
,

v a r i a b l e s td reg ion (s tandard a l l o c a t i o n region)
v a r i a b l e r eg ionp t r (p o i n t s t o a region p o i n t e r)
: dp r eg ionp t r @ ; (new d e f i n i t i o n of dp)

memory regionpt r s td reg ion

Figure Two. Code compiled for f oo 1 in example

doc01

This situation is harder to accommodate,
since a smart i would be needed and is
therefore not allowed in my implementa-
tion. An implementation that uses a third
stack for locals would not suffer from this
problem.

(rpick) >r

* a

Summary
Many Forth definitions are simple

enough that nothing would be gained by
using local variables. However, there are
times when a word is forced to juggle many
things on the stack. Then the use of local
variables both clarifies the code and makes
it more efficient by avoiding obscure se-
quences of stack-thrashing words.

+ 0 4 >r

References
Bowhill, S. "Fast Local Variables," 1982

FORML Conference Proceedings, pp.
142-146.

Glass, H. "The Implementation of Exten-
sions to Provide a More Writable Forth
Syntax," 1983 FORML Conference Pro-
ceedings, pp. 57-68.

Hart, J.R. "Local Variables," Journal of
Forth Application and Research 32
1985, pp. 159-162.

Jekel, R.N. "Local Variables for Forth,"
1980 FORML Conference Proceedings,
pp. 59-63.

Korteweg, S., Nieuwenhuyzen, H. "Stack
Usage and Parameter Passing," Journal
of Forth Application and Research 2,3
1984, pp. 27-50.

La Quey, R.E. "Local Variables," 1984
FORML Conference Proceedings, pp.
307-3 16.

Volk, W. "Named Local Variables in
Forth," 1984 FORML Conference Pro-
ceedings, pp. 347-357.

(rpick)

>

a u x i l i a r y region 1
John Hayes is the author of several
Forth articles and a key figure in the
VLSI Forth microprocessor project at
the Applied Physics Laboratory of
Johns Hopkins University.

a

1. This assumes that the implementation of
loops keeps two items on the return stack.

(; I (rpop)

*

I
Forth Dimensions 20 Volume XI, Number 1

8

a u x i l i a r y region 2

*

\ The following words used in the code are not standard Forth-83 and
\ may not be familiar to everyone. They provide a way to write word
\ size independent forth code.
\ al+ [n --- n+sizeof[word]] equivalent to 2+ on 16 bit forths,
\ equivalent to 4+ on 32 bit forths
\ al- n --- n-sizeof[word]] equivalent to 2- on 16 bit forths,
\ equivalent to 4- on 32 bit forths
\ a* [n --- n*sizeof[word]] equivalent to 2* on 16 bit forths,
\ equivalent to 4* on 32 bit forths

\ The following code words for accessing locals on the return stack are
\ also used. All three code words use an inline parameter which follows
\ it in the instruction stream.
\ (rpick) [--- x] return a return stack item n bytes from the top
\ (rstore) [x ---] store x on return stack n bytes from the top
\ POP) 1 --- 1 pop n bytes off the return stack
\ In all the above n is found in the instruction stream.

/ \ 1. The code in this section must be incorporated into the forth kernel 1 I 1 hex

variable stdregion
variable regionptr

variable outerdepth

variable currentdepth

\ standard allocation region
\ current dictionary allocation region

\ records total number of temporaries
\ created in surrounding scopes.
\ records number of temporaries made
\ in current scope so far.

I \ define dp to use an extra level of indirection 1 I
: dp regionptr @ ; \ (--- addr) I I I \ modifiy do and loop to work with scopes I I
: do \ (--- clue here)
2 currentdepth +! \ allow for local variable scopes
[compile] do \ traditional do
; immediate

: loop \ (clue here ---)
-2 currentdepth + I \ allow for local variable scopes
[compile] loop \ traditional loop
; immediate

: +loop \ (clue here ---)
-2 currentdepth +! \ allow for local variable scopes
[compile] +loop \ traditional +loop
; immediate

\ 2. The code in this section can be incorporated in the forth kernel or
\ loaded into the forth system when needed.

1 \ Block structure extensions I 1
: region \ (size ---) define allocation region of given size.
create here al+ , allot
does> ; \ (--- regionptr)

Volume XI, Number 1 21 Forth Dimemions

: allocatefrom \ (regionptr ---) start allocating space from given region.
regionptr 1 ; i I

200 region locregion \ create region for making temporary
\ dictionary entries for locals.

: { \ (--- oldcurrentdepth region) begin a scope.
currentdepth @ dup outerdepth +!
0 currentdepth I
locregion @ ; immediate \ this allows space to be recovered

: 1 \ (oldcurrentdepth region ---) recover space used by
\ local headers, unwind vocabulary, compile code to clean
\ up return stack, and restore depth variables.

dup locregion @ =
if drop \ if no locals used, do nothing
else \ otherwise,

dup name> >link @ current @ ! \ back vocabulary pointer
locregion 1 \ deallocate space

then
currentdepth @ ?dup if

compile (rpop) a* , \ compile code to clean up rstack
then
dup currentdepth ! \ restore depth counters
negate outerdepth +! ; immediate

variable to?
: to 1 to? ! ; immediate

: local \ (---) create a local variable dynamically allocate
\ its header from the temporary region. at run time,
\ dynamically allocate space for the local on the return
\ stack.

locregion allocatefrom \ create dict. entries in temp region
create

outerdepth @ currentdepth @ + , \ record offset from bottom
1 currentdepth +!
immediate

stdregion allocatefrom \ revert to standard allocation region)
compile >r \ initialize local

does> \ (addrtoffset] ---) offset is in words from the bottom.
to? @ if \ if to local

compile (rstore) 0 to? ! \ copy local from pstack to rstack
else

compile (rpick) \ copy local from rstack to pstack
then
@ outerdepth @ currentdepth @ + swap - 1- a* , ; immediate

I

Forth Dimemiom 22 Volume XI, Number 1

PREFIX FRAME
OPERATORS

K i l o contemporary operating sys-
tems and user environments require many
parameters as of function cdls and pro-
cedures, Forth is optimized for only three
stack items-and manipulating even these
few can be aggravating. For example, con-
sider that a simple task such as:
(a b c -- a-b a-c)

JOSE BETANCOURT - SUNNYSIDE, NEW YORK

"Lazy variables and
stack extension in-
crease its usefulness."

will require many stack operations. To
eliminate this problem, we can utilize local
variables via a prefix frame operator design
that allows for utility, readability, and
compactness.

This method was developed on a
68000-based, 32-bit, call-threading Forth
system. Except for internal structure,
memory addressing, and system dependen-
cies, this system adheres to the Forth-83
Standard. It has a few differences that are
straightfornard: @ is a 32-bit fetch, w@ is a
16-bit fetch, and c@ is an eight-bit fetch.
The comma and store words are similar.

Implementation

: SORT (cfa.array cfa.cornpare cfa.exchange start end)
L(ARRAY COMPARE EXCHANGE START END \ SWITCH N1 N2)
BEGIN FALSE IS SWITCH L END L START
DO I GO ARRAY I IS N1 I 1+ GO ARRAY IS N2

L N1 L N2 GO COMPARE
IF TRUE IS SWITCH

I I 1+ L N1 L N2 L ARRAY GO EXCHANGE
THEN

LOOP L SWITCH FALSE =
[JNTIL S() ; I

(Use: ' DATA ' > ' EXCHANGE 1 6 SORT will do an ascending sort) I
Figure One. Bubble sort.

: SOLVE \ (a b c -- Cb-(b-2-c)]/2a Cb+(bA2-c)]/2a true : false)
ROT DUP 0 < > \ denominator not zero?
IF 2*L(b c 2 a \ p) L b D U P * L c - I S p

SUB b p L 2a / SUM b p L 2a / TRUE
S(difference sum true)

ELSE 3 NDROP FALSE THEN ; \ (1 2 4 gives 1 1 -1)

Figure Two. Formula computation.

: SUMMING
1 2 3 4 L(# 4 \ RESULT)
L M L N L P L Q + + + IS RESULT ATRESULT ? S() ;

(10 should be printed on screen

Figure Three. Using lazy variables.

: $= ($1 $2 --- flag) L (S1 S2 \ FLAG LEN)
L S1 CI 1+ IS LEN TRUE IS FLAG SUM LEN S1 L S1
DO I. S2 CI I CI <> IF FALSE IS FLAG LEAVE THEN ++ S2 LOOP
L FLAG S(# 1) ; \ true== equal

Figure Four. String word rewritten.

CODE DISK. FREE (16byte. buffer. address) \ call GEMDOS $36
R -) 0 # MOVE .W R -) S) + MOVE .L
R -) $36 U MOVE . W 1 TRAP R AR 8 ADDQ .L NEXT

A stack frame is space allocated in a
stack for storage of local variables and
parameters. Using a stack frame allows re-
entrant subroutines or procedures. Frames
are SO useful that Some general-p~rp~~e

Volume XI, Number 1 23 Forth Dimensions

: ?DISK. BYTES. FREE (---bytes)
L(\ SECTOR/ALU SECTOR.SIZE TAU FAU) AT FAU DISK. FREE
L FAU L SECTOR/ALU * L SECTOR.SIZE * S(BYTES) ;

COMMENT: DISK.FREE expects the address of a buffer where it will put
disk information in the order: fau tau sector.size sector/alu.
?DISK.BYTES.FREE gives it the address of a frame created for that

micropr~~essor~ have built-in S ~ ~ U C ~ U & S to
them. For exampks the MC68000

has the L I N K and UNLK instructions.

purpose, and then uses the data to compute bytes free.
COMMENT ;

Figure Five. Using frame as buffer.

Surprisingly, the Forth virtual machine
does not have a standard method of creating
frames. Therefore, primitives must be writ-
ten that do so. The method used here re-
quires only one variable, which should be a
host register for speed, the return stack for
re-entrancy, and the existing parameter.
Using the Forth stack saves time, whereas,
in some local variable proposals, an initial
relocation of items to another array or local
stack does not. To identify labels, a few
simple string operators are used. This
makes it more portable to different Forth
systems and saves dictionary space.

Method
A frame for use within a single defmi-

tion is created with L (. It parses the input

stream until the closing) and creates a
string array above HERE. This array is then
pointed to by LPTR. The count of blank-
delimited smngs is the number of local
variables needed For example, the phrase:
L (length width height)

will create a frame with three items labelled
"length," "width," and "height."

Two more capabilities were added to
increase usefulness: lazy variables and
stack extension. Lazy variables are created
when the character # is followed by a
number in the string array. Lazy variables
are one-character strings comprised of the
letters M, N, P, and so on. (To avoid confu-
sion with the number zero (O), the letter 0 is
not used.) They are useful when one needs

\ Simple s t r i n g words

: $= ($1 $2 --- f l a g) \ compare s t r i n g s , same=true f l a g
-1 -ROT DUP C@ 1+ OVER + SWAP
DO COUNT I C@ < > I F SWAP DROP 0 SWAP LEAVE THEN
LOOP DROP ;

: GETNAMES \ name1 nameN) (a d r --- count) count is #items
\ g e t instream l a b e l s and form s t r i n g a r r a y a t adr
\ form: C l l e n :$. . . . :lien :$. l l l e n l $. . . : 0 : 1
0 SWAP BEGIN 3 2 WORD DUP I+ C@ A S C I I) <>

WHILE ROT I + -ROT ZDUP,C@ 1+ >R R@ CMOVE R> +
REPEAT DROP 0 S W A P C . ;

: $SRCH ($adr $ a r r a y --- o f f s e t f l a g) \ t r u e = found
0 0 ZSWAP (count f l a g $adr bufadr)
BEGIN DUP C@ 0= 3 P I C K OR NOT \ n o t end o r n o t t r u e f l a g

WHILE 2DlJP $= I F ROT DROP -1 -ROT \ change f l a g t o t r u e
ELSE >R ROT 1+ -ROT R > COUNT + THEN

REPEAT 2DROP ;

VARIABLE LPTR \ name b u f f e r p o i n t e r f o r temporary s t r i n g a r r a y

: SRCH.CHAR (adr char -- adr) \ s e a r c h f o r char s t a r t i n g a t a d r
BEGIN SWAP COUNT SWAP -ROT OVER = UNTIL DROP 1- ;

: REMOVE\ \ remove "\" from name list a t $ar ray
LPTR @ DUP A S C I I \ SRCH.CHAR SWAP 0 SRCH.CHAR (a \ a0)
SWAP DUP >R 1+ SWAP R@ - R > 1- SWAP CMOVE ;

\ Lazy v a r i a b l e s

: >SHOVE ($buf fe r n) \ make room f o r l a z y names i n $ar ray
SWAP > R 2* RB + R > 4+ SWAP OVER \ (4+a 2n+a 4+a)
LPTR @ 0 SRCH. CHAR SWAP - 1+ CMOVE> ;

: S K I P . 0 (c---c') \ i f c is "0" conver t t o " P " us ing hybrid l o g i c
DUP A S C I I 0 = 1 AND + ;

: RESERVE ($buf fe r n) \ c r e a t e l a z y v a r i a b l e s M,N,P, e t c .
ZDUP >SHOVE 2* 2DUP 1 F I L L
A S C I I M -ROT SWAP 1+ SWAP
OVER + SWAP
DO S K I P . 0 DUP I C! 1+ 2 +LOOP DROP ;

: ?LAZY (#parsed ---new.number) \ make l a z y v a r s i f neccessary
LPTR @ W@ 291 = \ f i r s t name is " # ?
I F 0 LPTR @ 2 + CONVERT 2DROP (n tt)

LPTR @ OVER RESERVE + 2-
THEN ;

to quickly write a procedure and descrip-
tive labels are not important, or when oneis
lazy and prefers to use one-letter labels.

In Figure Three, lazy variables are used
in the word SUMMING. Four numbers on
the stack are assigned to four local vari-
ables named M, N, P, and Q via the phrase #
4. These are then used to compute a simple
sum.

The other capability can be used to
extend the size of the frame. When local
variables are allocated, they are based on
the count of items in the string at LPTR @.
This count cannot exceed the number of
parameters which will be on the stack at the
definition's run time, since a frame is made
within the stack, not by extending the stack.
But if we need three local variables, for
example, and there are only two items on
the stack, there will be no room for the
frame. One creates the necessary room by
preceding the names with a \ (backslash).
This will cause the compiler L (to execute
EXTSTK, which compiles in-line, stack-
extension code.

In Figure Three, SUMMING uses the
backslash option. The four lazy variables
are used to compute the sum, but another
variable is needed to store it. This is done
with the phrase:
\ RESULT)

The primitive S (is much simpler. It
parses the input stream as above, but it
compiles (SOME) or (NONE) depending
on the number of parameters returned at
run time. These parameters can be named
explicitly or with the character # followed
by the count. The "# count" alternative is
used when the stack contents are obvious.
For example, if the last words in a phrase
are L FLAG (leave contents of FLAG on the
stack), one can write S (# 1) to avoid
repeating the word 'flag' in the parameter
string. Of course, in this example a more
descriptive name could be used instead,
such as:
S (key found?)

The prefix operators L, IS, and AT
access frame items by parsing the in-line
string in a definition and searching for a
match in the string array at LPTR, then
compiling the associated run-time prefix
and offset. These prefixes are the minimum
necessary to provide full use of prefix
frame operators. However, to accommo-
date application needs as well as program-
ming style, user-defined prefm operators
can be created. To provide vectored execu-
tion, for example, a prefix called GO was

Forth Dimensions 24 Volume XI, Number 1

defined in block 83. It is used in Figure One
to help define a generic bubble sort. The
word SORT expects code fieldaddresses on
the stack that specify what kind of data
structure is being sorted: strings, numbers,
complex numbers, etc.

In addition to GO, a few more prefixes
are shown, such as the"implicit" SUM. SUM
replaces the phrase L one L two + with
the phrase SUM one two. These implicit
prefixes make the source code more com-
pact and readable, as illustrated in Figure
Two.

(FRAME) is the run-time frame crea-
tor; it saves thepresentcontentsof F P T R O ~
the return stack and then uses the in-line
number to add to the stack pointer, which
will now point to the bottom of the frame.
(SOME) and (NONE) are therun-time un-
framing words which unstack the F P T R
and save or lose the items in the frame by
resetting the stack pointer.

Examples
The structure compiled by prefix frame

operators is seen by this simple definition:

: TEST (a b -- total)

L (A B \ TOT)
SUM A B I S TOT
L TOT
S (t 1) ;

This compiles as:
EXTSTK 1 J S R (FRAME) 3 J S R
(SUM) 0 1 J S R (I S) 3 J S R (L) 3
J S R (SOME) 1 RETURN

(Note: for simplicity, the actual compiled
offsets and code are not shown.)

An unexpected benefit of prefix frame
operators is the ability to use the frame as an
m y , as illustrated in Figure Five, where
the word ? D I S K . BYTES .FREE is de-
fined. This word is used to determine the
amount of free disk space.

The required data is provided by
DISK . FREE which expects an address on
the stack of a sixteen-byte buffer where it
will store disk parameters in this order:
FAU, TAU, SECTOR. S I Z E , and SEC-
TOR/ALU. ? D I S K . BYTES. FREE cre-
ates this buffer as a frame with a name for
each of these parameters. Note that the
names in this list are in reverse order. This
is because, in this Forth system, the pa-
rameter stack grows toward lower mem-
ory. As a consequence, so does the frame.

\ Stack extension for uninitialized local variables

CREATE SLASH 1 C, ASCII \ C, \ the letter "\" as a string

: EXTSTK (n) \ compile inline stack extension code
[ASSEMBLER I S SWAP U SUBA W [0 138 U+ ! 1 ;

: ?TEMPS (Uparsed --new#) \ stack extension if needed
SLASH LPTR @ $SRCH IF OVER SWAP - 4* EXTSTK REMOVE\

ELSE DROP THEN ;

\ Framing

VARIABLE FPTR \ frame pointer. Should be register for speed.

: (FRAME) \ run-time formation of frame WITHIN the stack!
\ old fptr is put under return address on return stack
'S R> DUP W@ SWAP 2+ \ 's n return)
FPTR @ >R >R + FPTR ! ; \ () (R oldfptr return)

\ fptr=sp+4n

: L(\ name..)Jname..\ temp..) : \ temp . .) JU n):# n \ temp..)
?COMP HERE 1024 + DUP LPTR ! GETNAMES DUP
@= ABORT" Empty parameter list!" ?LAZY ?TEMP
1- 0 MAX 4* COMPILE (FRAME) W, ; IMMEDIATE

\ Unframing

CODE SP! (adr) S AR S) + MOVE . L NEXT \ load stack pointer

: (NONE) \ run-time stack reset leaving no parameters
R> R> FPTR @ SWAP FPTR ! SWAP >R 4+ SP! ;

: (SOME) \ run-time stack reset leaving parameters
'S R> DUP W@ SWAP 2+ R> SWAP >R FPTR @ SWAP FPTR !
SWAP DUP >R - 4+ SWAP OVER R> CMOVE> SP! ;

: S(\ names. . .) : 9 n names. .) J U n) compile frame release
?COMP LPTR @ GETNAMES DUP
IF LPTR Q WQ 291 = \ 291 is string "f"

IF DROP 0 LPTR Q 2+ CONVERT 2DROP
THEN COMPILE (SOME) 4* W,

ELSE DROP COMPILE (NONE) THEN ; IMMEDIATE

\ Prefixing

: ?LOCAL \ name () compile name's frame offset
32 WORD LPTR 8 $SRCH 0= IF HERE COUNT TYPE
ABORT" is local?" THEN 4* W, ;

: 'N \ (a d) get adr of stack cell using inline number
FPTR Q R> R> DUP W@ SWAP 2+ >R SWAP >R - ;

\ prefixes. These are simular to QUAN or VALUE variables
\ run-time code (C terminology)
: (L) (--parameterr) 'N Q ; \ fetch (rvalue)
: (IS) (n - - -) N ! ; \ store (:=)
: (AT) (--- adr) 'N ; \ address (lvalue)

\ compile time code
: L \ name (--n) call to lvar fetch

?COMP COMPILE (L) ?LOCAL ; IMMEDIATE
: IS \ name (n --) call to store

?COMP COMPILE (IS) ?LOCAL ; IMMEDIATE
: AT \ name (--- adr) call pointer

?COMP COMPILE (AT) ?LOCAL ; IMMEDIATE

COMMENT: The prefix defining words should be made into a compact
create . . . does> structure. Was not done here since the Forth sys
used does automatic inline code expansion, and I could not tame it.

COMMENT ;

I

Volume XI, Number 1 25 Forth Dimensions

\ Extensions, Byte and increment operators.

: (GO) 'N@EXECUTE; \ vectored execution

: (LC@) 'N 8 C@ ; \ fetch character
: (LC!) 'N @ C! ; \ store character
: (++) 'N l+! ; \ increment by 1
: (- -) 'N I-! ;

: GO \ vectored execution of CFA in local variable.
\ Compile: name (---)

?COMP COMPILE (GO) ?LOCAL IMMEDIATE
: LC@ ?COMP COMPILE (LC@) ? L O C ~ ; IMMEDIATE
: LC! ?COMP COMPILE (LC!) ?LOCAL ; IMMEDlATE
: ++ ?COMP COMPILE (+ +) ?LOCAL; IMMEDIATE

-- ?COW COMPILE (- -) ?LOCAL ; IMMEDIATE

\ Implicit extensions. Dual operators.

: 'NN (---A1 A2) \ adr of next two parameters using inline numbers.
FPTR @ R> R> DUP 4+ >R \ (f lret 2ndret) (R ret)
SWAP >R DUP W@ SWAP 2+ W@ \ (f nl n2) (R ret lret)
>R OVER R> - >R - R> ; \ (a1 a2) (R ret lret)

: (SUM) 'NN @SWAP@+ ; \ implicit addition
: (SUB) 'NN@ SWAPOSWAP-; \ implicit subtraction
: (MOVEC) 'NN SWAP @ C@ SWAP @ C! ; \ implicit byte copy

: SUM \ (-- sum) Compile: name1 name2
?COMP COMPILE (SUM) ?LOCAL ?LOCAL ; IMMEDIATE

: SUB \ (--difference) Compile: name1 name2
?COMP COMPILE (SUB) ?LOCAL ?LOCAL ; IMMEDIATE

: MOVEC \ () Compile: name1 name2
?COMP COMPILE (MOVEC) ?LOCAL ?LOCAL ; IMMEDIATE

\ run-time words coded in 68000 machine language using Forth assembler.

: M.L [ASSEMBLER 1 MOVE .L ; \ abbreviation

CODE (FRAME)
0 AR S AR M.L
0 DR 1) + MOVE . W
FPTR @#L 0 AR M. L

CODE (NONE)
0 DR FPTR @#L M.L

R) R) + M.L
S A R B DR M.L

CODE (SOME)
0 DR S AR M.L

FPTR @#L R) + M. L
1 DR 2 DR SUB .L

S -) 0 DR M.L
' CMOVE> @#L JSR

CODE 'N
0 DR FPTR @#L M.L
1 DR 1) + MOVE .W
0 DR 1 DR SUB .L

CODE 'NN
0 DR FPTR @#L M.L
1 AR 0) + MOVE .W
0 DR 1 AR SUB .L

S -) 1 DR M.L

1 AR R) + M. L R -) FPTR @#L M. L
R -) 1 AR M.L 0 0 DR ADDA . W
NEXT

FPTR @#L 4 R I) M. L
O DR 4 ADDQ . L

NEXT

0 AR R) + M.L 1 DR FPTR @#L M.L
2 D R 0) + M o V E . W 2EXTL

1 DR 4 ADDQ . L R -) 0 AR M. L
S -) 1 DR M.L S -) 2 D R M . L
S A R 1 DRM.L NEXT

1 A R 4 R I) M.L
1 EXTL 4 R I) 1 AR M.L
S -) 0 D R M . L NEXT

1 DR 0 DR M.L 0 AR 4 R I) M.L
2 A R 0)+MOVE .W 4 R I) 0 ARM.L
1 DR 2 AR SUB . L S -) 0 DR M.L
NEXT

Buffer names are, therefore, listed back-
ward. Fetching the address of the variable
FAU returns the beginning address of the
buffer. This address is passed to
D I S K . FREE which stores the data; the
rest of the definition uses that data to calcu-
late the number of free bytes on the disk.

Problems
One obvious compromise in this design

is the use of the prefix L, which may appear
awkward and redundant. However, to
eliminate its use would have made the
implementation more complicated. An al-
ternative is to modify the Forth outer inter-
preter so that, instead of aborting, a call to
an interpretive vector is made. Another
alternative is to use a special bodiless vo-
cabulary, where only heads and frame off-
sets are temporarily stored.

Application
Frame operators are more practical at

the beginning of a project to speed up
prototyping, changes, and testing. Forth
novices can also use local variables to ease
the stackburden. Such stack juggling is not
required in more popular languages.

Local variables may not be required if
definitions are kept short and the stack is
kept shallow. Yet, unless there is rigorous
testing of Forth code to determine the ac-
tual costs of all factors, i.e., nesting level,
stack depth, vectoring, etc., will we really
know what is most efficient in terms of per-
formance or development? Are small defi-
nitions really more productive? Does the
name explosion and deep nesting levels
reduce the advantage?

Conclusion
Forth can easily be extended to provide

local variables; the approach presented
here uses prefix frame operators. If the
prefixes are viewed as defining the proper-
ties of a stack object, this may also consti-
tute a simple, objectdented approach.

If there is a demand by users for local
variables, maybe it should become an op-
tional extension to the standard Forth
wordset.

Jose Betancourt is a f ~ l d service tech-
nician for Brinkmann Instruments, Inc.
In spare minutes, he tinkers with Forth
or experiments with hardware using a
PC and the single-chip F68HC11.

Forth Dinaensiom 26 V o l m XI, Number 1

FORTH NEEDS
THREE MORE STACKS

AYMAN ABU-MOSTAFA - SEAL BEACH, CALIFORNIA
=

Standard Forth uses the return stack
for a number of tasks: storing return ad-
dresses, storing indexes and limits of DO
loops, and for temporary storage. This is
bad programming. This article suggests the
use of an auxiliary stack for loop parame-
ters and temporary storage, thus reserving
the return stack for return addresses only.

Furthermore, the way standard Forth
implements conditionals such as IF and
ELSE is through branching forward or
backward to a given address. This prohib-
its the use of conditionals outside colon
definitions. In this article, I show a simple
method of handling conditionals without
branching. Indeed, branching as a way to
implement conditionals can be totally
eliminated. This is done by adding two
stacks: a condition stack and a case stack.

The Auxiliary Stack
One stack should be reserved for stor-

age of loop indexes and for temporary
storage. This will free the return stack to be
used only for return addresses, eliminating
a big source of errors that arise when the
programmer forgets to use R> after >R, for
example. Standard Forth words which will
be affected are: >R, R>, I, and J. The first
two of these should not be changed, they
should continue to work on the return
stack. Two additional words, perhaps
named >x and x>, may be used to move to
and from the auxiliary stack. However, I
suggest the more general pair of words >S
and S>, which expect two numbers on the
stack: the value to be moved and the num-
ber of the stack to move it to. Stacks will be
numbered zero through four, where stack
zero is the parameter stack. Thus, >x may
be defined as:

I

The words I and J will operate on the new
auxiliary stack. R@ will not change. One can
also define a word S @ which will return the
top of any stack without altering it, e.g.:
: I 2 S @ ;
: R @ I S @ ;

The addition of this auxiliary stack does
not change the structure of Forth.

"The return stack
will be used only for
return addresses."

The Condition Stack
The Forth-83 Standard specifies a host

of primitive words to handle the work of
conditionals. These words are: BRANCH,
?BRANCH, MARK>, <MARK, RESOLVE>,
and <RESOLVE. All this is in addition to
IF, ELSE, and THEN. Furthermore, these
three conditionals cannot work in interpre-
tive mode (outside a colon definition) since
branching necessitates a jump to an address.
This is why the standard suggests three
other primitive conditionals for interpretive
mode,namely IFTRUE, OTHERWISE, and
IFEND. However, these three words do not
allow nesting of conditions.

There is a rather simple way to handle
conditionals both inside and outside colon
definitions, including nesting, and to elimi-
nate the need for the six branching primi-
tives. This can be done by implementing a

condition stack. Here is how:

1. As the interpreter parses the input buffer,
it also checks the top of the condition
stack. If that flag reads true, the inter-
preter proceeds to interpret the current
word as usual. If the top of the condition
stack reads false or don't-care, the inter-
preter ignores the word and goes on to
parse the next word.

2.Some words will have to be honored
regardless of the condition stack.
Among these "must exec" words are
those that change the condition stack,
IlaIllely IF, ELSE, and THEN. They will
be marked by setting a bit in their name
field address-I suggest the second most
significant bit.

3.The condition stack is initialized by
pushing the true flag on it at startup. The
system will check that at least this value
is on the condition stack. In other words,
the condition stack will never be empty.

4. The word IF will move the flag from the
parameter stack to the condition stack if
the flag on top of the condition stack is
true; otherwise, it will push don't-care
onto the condition stack and drop the
flag. This way, conditionals can be
nested to as many levels as the maximum
depth of the condition stack.

5.The word ELSE will simply reverse the
top of the condition stack. (The reverse
of don't-care is the same.)

6.The word THEN will simply pop the
condition stack.
A possible implementation of the above

is as follows (assuming 1 is the true flag,
-1 is false, and 0 is don't-care):

Volume XI, Number 1 27 Forth Dimemiom

: REVERSE
3 S> NEGATE
3 >S ;

: I F
3 S@
I F 3 >S
ELSE DROP

0 3 >S
THEN ;

: ELSE
REVERSE ;

: THEN
3 S > DROP ;

These definitions will require a change to
INTERPRET and will give significance to
the second most significant bit of a word's
NFA.

In addition to eliminating branching.
this approach makes it easy to use condi-
tionals in interpretation mode without fur-
ther changes to INTERPRET and without
the addition of new primitives. They can be
nested to any level, as well.

The Case Stack
The case statement's usefulness is

nearly undebatable. However, implement-
ing it in standard Forth is not easy. By using
a special stack-the case stack--the case
statement implementation becomes very
easy.
1. The case statement structure will look

like this:
x SELECT
nl CASE (case I...) ELSE
n2 CASE (case 2...) ELSE

CONSULTANTS

4. The word ELSE is the same word used
with the condition stack.

5. The word END will set up the top of the
condition stack so that the interpreter
will not ignore the words that follow.
The condition stack top will not read
TRUE at the end of the case statement
unless the last (or default) case is true.
END is defined as follows:

: END
4 S> DROP
1 4 > S ;

...
nm CASE (last e...) ELSE
END m CASES

2. The word SELECT moves the value tobe
compared, x , from the parameter stack to
the case stack. I.e.,

: SELECT (n --)
4 >S ;

3. The word CASE compares the case value
with the current value on the parameler
stack and passes the resulting flag to I F .
1.e..

: CASE (n --)
4 S@ = IF ;

<IB4R, a national consulting firm,
has Forth assignments in the Denver area.

If you are looking for a change,
and the Rocky Mountains appeal to you,

please give us a call

6. If there is no default case, the last ELSE
will be redundant.

7. Finally, the word CASES will pop off
the condition stack as many flags as
there were cases, then pop the case stack
to end this case statement. 1.e..

: CASES
0 DO THEN LOOP
4 S> DROP ;

Again, we can now use THEN independ-
ently in a definition.

This structure allows the programmer

(Continued on page 41 .)

or send your resume to:
<IBfR

Beth Kern, Recruiter
4100 E. Mississippi Ave., Suite 1810

Denver, CO 80222
(303) 691-2273

A S S O C I A T E S

Forth Recruiters

70 Elmwood Ave.1 Rochester, NY 1461 1 / (7 16) 235-0168 -
i

Forth Dimensions 28 Volume XI, Nwnber I

1989 ROCHESTER FORTH CONFERENCE
ON

INDUSTRIAL AUTOMATION
June 20 - 24,1989

University of Rochester
Rochester, New York

Over 60 presentations on the state of the art in
Forth and threaded interpretive languages
including:
Dr. Sergei Baranoff, "From Russia With Forth"
Five invited speakers covering:

* Real time control
* Development Systems for Embedded Controllers
* Machine Vision

Engine Rsting
Smalltalk-like Classes
and Objects for Process Control

Managing software
and programmers under Forth
ANS X3J14 Forth Standard
Working Groups
Tour the Laboratory for Laser Energetics

* See Fusion and Forth

REGISTRATION
The registration fee and conference services includes all
sessions, meals, and the Conference papers. Lodging is
available at local motels or in the UR dormitories.
Registration will be from 4 - 11 PM on Tuesday, June
20th in the Wilson Commons, and from 8 AM
Wednesday, June 21st in Hoyt Hall, where sessions will
be held.
Note: Due fo lodging conficts caused by the U.S. Open Golf
Tournament, the Conference will tukephce one week later than
previously announced.

Name

Address

Telephone: Wk (-)

Hm (-1

Registration:
$200.00 $150.00 (UR Staff and

IEEE Computer Society)
IEEE #

$50.00 (full-time students)
Vegetarian Meal Option

Total $

Conference Services $200.00
Dormitory housing, 5 nights

$125.00 single $100.00 double

non-smoking roommate 5K Fun Run
Total $
Amount Enclosed $
MC/Visa# exP -
Please make chech payable to the Rochester Fonh Conference. Mail
your registration to Rochester Forth Conference, Box A, 70 Elmwood
Avenue, Rochester, hTl4611, USA.

Volume XI, Number 1 29 Forth Dimemions

8250 UART
REVISITED

BRIAN FOX - LONDON, ONTARIO, CANADA
m

A b o u t a day before the November1
December issue of Forth Dimensions (Xl4)
arrived in the mail, I was involved with
interfacing an MS-DOS computer to a
broadcast-quality video tape recorder. The
VTR w a equipped with an RS-422 serial
communications interface, so we were us-
ing a commercially available RS-232/RS-
422 converter. The protocol was developed
by SONY specifically for controlling video
tape equipment We had a copy of the
complete protocol specification, so we
thought we were ready.

The protocol specified communication
at 38.4 Kbps, something I had never done
with my computer. I use a version of HSI
FORTH by Harvard Softworks that gives
me the ability tocall DOS' MODE command
from within the Forth shell, so I had never
bothered to really learn all that I should
have about the details of the 8250 UART
chip. Of course, with the MODE command I
could only turn the 8250 up to arate of 9600
bps, so-with text in hand-an associate
(who likes to program in C, but other than
that he's normal) and I proceeded to de-
velop a feel for the details of controlling
this handy little chip, using Forth as an
R&D tool, of course. Later, I put our work
together in a lexicon of words to control the
communication protocols only, since HS/
FORTH contains all the necessary words
for transmitting and receiving bytes.

It was interesting to see the different
approach taken by Mr. Paul Cooper in last
November's Forth Dimensions. His is the
approach taken by programmers in more
conventional languages. That is, build a
complete program designed to do a specific
job. The disadvantage of this is that the
program is seldom completely reuseable in

other applications.
The Forth programmer has the freedom

to be quite different. To quote Brodie,
"Forth programming consists of extending
the root language toward the application,
providing new commands that describe the
problem at hand." This approach ensures
that, in later applications, time and effort
will not be wasted solving the same prob-
lems over again, since the needed words can
readily be incorporated from past efforts.
This is particularly true if the problem is

"Forth is the langauge
of choice for hardware
interfacing. ''

factored into small components that have a
very specific but simple function.

This lexicon of words consists of a set of
primitives and constants that allow access
to the underlying hardware functions.
These are then controlled by a set of high-
level words that mimic their English-lan-
guage equivalents. Rather than step
through a set of menus to make a selection,
the Forth approach allows you then to talk
directly to the chip. After loading this lexi-
con, one can issue the command 1 2 0 0
BAUD to the 8250 fiom a screen of source
code or directly fiom the keyboard, and the
chip will understand (in a matter of speak-
ing).

Interface Primitives
I have chosen here to deal only with the

primitives needed to set the communica-

tion parameters, since most PC-based
Forths make use of the ROM BIOS interupt
calls to send and receive characters. Mr.
Cooper's paper provides fine examples of
how tocreatean SKEY and SEMIT word to
send and receive characters in high-level
Forth. Also, for my purposes, thereason for
this lexicon was to achieve the higher baud
rates needed to comply with the SONY
control protocol.

The first few words in the file are sirn-
ply to make the job a little easier.
WITHIN? is my version of a word that
goes by many aliases in other systems, so
you may be able to use the equivalent from
your system--taking care, of course, to see
if the input requirements are the same.
BINARY is self-explanatory; you may also
find an equivalent in your system for this
word. SPLIT is a kernel word in HSI
FORTH, but I include it here for reference.
SAL (shift arithmetic left) is also available
as a code word in most systems, but not
necessarily by the same name. For those
who don't have it, I have included a much
slower, but useable, version.

The constants and variables defined are
explained in Figure One.

With regard to the information needed
to set up the 8250, the approach taken here
is to calculate the required number from
user-supplied inputs. The alternative ap-
proach is to use lookup tables for the bytes
the chip needs. While reviewing informa-
tion about the chip, however, it became
clear that all the neccessary numbers could
be easily calculated using real-world input
that a user could intuitively understand.

The word COM-PORT does just this. It
can be seen that the I10 address of com (i.e.,
communication) port 0 is at hex 3F8, or

Forth Dimenrim 30 Volume XI, Number 1

t.2
r:. MICRO- %. 7..

j$:.:
f.'

::: "COTROLI ::f

f.'
:::

j$:::
c< 3

FEATURES
-FORTH-79 Standard Sub-Set
-Access to 8031 features
-Supports FORTH and machine

code interrupt handlers
-System timekeeping maintains

time and date with leap
year correction

-Supports ROM-based self-
starting applications

130 page manual -S 30.00
::: 8K EPROM w~th manual-$100.00

Postage pa~d rn North America A
lnqurre for license or quantity priclng

:::
:::

.-.
Bryte Computers, Inc. .-.

P.O. Box 46, Augusta, ME 04330 ?;
D :.- (207) 547-32 18 .:.
.5' g 2. 2.:.

COM BASE as I have called it. Note, then,
that 3 1 other com ports use an address
exactly 100 hex bytes lower. Therefore,
COM-PORT can calculate the address of a
corn port very easily by using the value of
COM# times 100 (hex) and subtracting the
product from the COM-BASE.

Next, by using the base address returned
by COM-PORT plus an offset byte count,
we can address any of the registers in the
8250 register complement. The word
REGISTER does this. The usage then be-
comes simply 3 REGISTER to return the
I/O address of the line-control register we
are interested in. This language is clarified
by using the constant LINE-CTRL instead
of the literal number three.

A peculiarity of the 8250 is that two of
the control registers, those used to store the
baud rate divisor, are kind of hidden. They
can only be changed if the seventh bit of the
line-control register is set (i.e., high). The
word BAUD ! takes care of these details. A
copy of the contents of the linecontrol reg-
ister is put on the stack and also on the
return stack.

The parameter stack's copy has its sev-
enth bit set high by ORing hex 80 with it
and storing the resulting number back into
the line-control register. Now the first two
registers will accept bytes as the baud rate
divisor. This number is used by internal
hardware to time how long an interval to
use for a given number of bits per second;
in other words, how much time to use for
each bit.

BAUD ! wants an integeron the stack for
input, and this integer is split into two bytes
by the word SPLIT. The upper byte is
placed into register one and the lower byte
into register zero. This completely ab-
stracts the problem of setting the baud rate
divisor. It's now all one word.

The primitives are now almost in place.
In fact, the word LINE-CTRL ! did not
exist until I had completed the entire lexi-
con and reviewed my code. As is usually
the case, I found that I had used a similar
phrase in many word definitions. By ex-
tracting the common phrase from those
words and giving it a name, I reduced the
total amount of both source code and
compiled memory while improving the
readability of the final sourcecode. LINE-
CTRL ! uses an input byte and a mask byte
as input arguments, and simply changes the
bits in the register by using the mask to
AND all the bits you don't want changed

and to OR the new bits into the old register
contents.

This completes the complement of
primitives needed to get on with making a
user-interface lexicon, the actual words an
end user will use.

High-Level Stuff
When I was thinking about how this

lexicon should read to the end user, it oc-
cured to me that the English words we use
for talking about serial communication
parameters are perfect Forth syntax. This
became my model. I wanted it to read like
this, for example:

1200 BAUD
ODD PARITY
7 BITS
2 STOP -BITS

The first word needed is BAUD. It will
use BAUD ! , of course, but what numbers
are stored in the baud rate divisor registers?
A quick look at Figure Two will reveal a
linear relationship between the numbers
needed for a given baud rate and the baud
rate itself. It is, therefore, a simple matter to
find the constant required to derive the
correct divisor: multiply the baud rate by
the baud rate divisor, expressing both
numbers as a 16-bit integer. For example,
the table tells us that the value needed for a
speed of 300 baud is 0180 hex or 384
decimal. If we multiply 300 * 384, we get a
value of 115,200. This is our magic num-
ber, so in the code the constant is named
MAGIC#. Now we can calculate any num-
ber in the table simply by dividing our
MAGIC# by the baud rate.

The only problem with this is that
115,200 must be stored as a double-pmi-
sion constant and, therefore, our dividing
must be done with a mixed operator, one
that divides a 32-bit integer by a 16-bit
integer. In the Forth-83 Standard, the op-
erator that does this is UM/MOD. I chose it
for the sake of compatability with this
paper. This operator is not quite what we
need, since it returns a remainder with the
quotient, but that is easily DROP-ed in the
code. (Check your own system for an op-
erator like M/ if you wish, and don't forget
to remove the DROP in in the existing
code.)

The word BAUD checks for invalid baud
rates, i.e., those less than zero or higher than
57,600 bps. This is done effectively by

I

Volume XI, Number l 31 Forth Dimemions
I

using a common Forth mck, that being the
U< operator. We then calculate the divisor
needed, SWAP DROP the remainder, and
pass it on to BAUD ! .

The rest is easy. All the other high-level
words simply trap for bad inputs using
ABORT and then use a shift arithmetic left
(SAL) operator to move the input numbers
into the correct bit position. Then, with the
correct mask byte, LINE-CTRL ! puts the
bits into the 8250's linecontrol register.

For parity, three constants are defined.
NO is zero, ODD is one, and EVEN is two.
These values control parity in the 8250.

Of interest is the fact that the 8250 uses
the digits 0-3 to represent the number of
bits that will be used. Since the chip design-
ers graciously made the control-numbers
sequence in the same order as the number of
bits each number represents, we can calcu-
late the proper parameter simply by sub-
tracting five from the input. This allows us
to write nice Forth statements like 8 BITS.

Conclusions
It can be seen from this exercise that the

principles ofForth programming make alot
of sense when writing an interface for real-
world devices. The concepts of small, reus-
able code blocks (words), coupled with the
ease with which parameters c k be passed
between them, allows the programmer to
create a syntax that is not only just right for
the job but which is also completely inte-
grated into the programming environment.

W e n interfacing to hardware, look for
relationships between what the hardware
needs and what the user wants to provide it.
In this case, a lot of memory was saved by
doing away with lookup tables and com-
plex logic involving IF or CASE state-
ments, simply by calculating the values
needed.

I suggest that these words, or ones like
them, become standard word names for
setting up a UART chip. The behind-the-
scenes details of how they work is thor-
oughly hidden to the end user, but the
primitives could be easily modified to work
for any UART. Frankly, given the fact that
Forth is the langauge of choice for hard-
ware interfacing, I am surprised there is not
a standard wordset for dealing with 110
devices (except for disk-block words).
Perhaps the ANSI group is dealing with
that. Sounds like there is another article in
there somewhere. Any takers?

Bibliography
Brodie Leo, Thinking Forth. Prentice Hall,

Inc., 1981.
Jourdain Robert, Programmers Problem

Solver. Brady Books (a division of
Simon & Schuster.)

Brian Fox is an engineering technician
with CFPL Television in Canada. He is
the author of INTELECT, a textdriven
data base written in HSIFORTH that
allows users of a newsroom computer to
talk to a character generator for high-
speed election result displays. Brian has
been using Forth for aboutfive years.

(8250 Communication parameter control 24NOV88 FOX)

(Written using HS/FORTH V3.8 with the Forth-83 overlay)

HEX
\ This version is true if n is within or equal to the limits
: WITHIN? (n lo-limit hi-limit -- ?)

>R 1- OVER < SWAP R> 1+ < AND ;

: SPLIT (n -- lo-byte hi-byte)

DUP OOFF AND SWAP 100 / ;

: BINARY 2 BASE ! ;

(Code continued on next page.)

I Forth Recruiters I
I 70 Elmwood Ave./ Rochester. N Y 1461 1 !(716) 235-0168 I

I

Forth Dimemions 32 Volume XI, Number 1

(\ Check your system for it's own SHIFTARITH-
METIC LEFT operator
: SAL (bit-cnt --)

0 DO 2 * LOOP ; \ poor man's substitute

VARIABLE COM# 0 COM# !
3F8 CONSTANT COM-BASE
003 CONSTANT LINE-CTRL
1C200. ZCONSTANT MAGIC# \ divide by BPS to
get divisor for 8250

BINARY
111OO111 CONSTANT PAR MASK
11111011 CONSTANT S T O ~ S K
11111100 CONSTANT BITS-MASK

HEX
: COM-PORT (-- corn#-address)
COM-BASE COM# @ 100 * -- ;

: REGISTER (n -- addr)
COM-PORT + ;

an 8250 register

: BAUD! (n - 1
baud rate divisor

\ select

\ store

Bryte . 3 1
Giber . 28
Concept 4 . 19
Dash, Find Associates . 28
Druma, Inc. 32
Forth Interest Group 44
Harvard Softworks 7
Institute for Applied Forth Research 29
Laboratory Microsystems 14
KBSI 34
Miller Microcomputer Services 40
Next Generation Systems 9
SDS Electronic 12
Silicon Composers 2

LINE-CTRL REGISTER P@ DUP >R \ stack
line-ctrl reg. value
80 OR LINE-CTRL REGISTER P! \ set

7th bit in the register
SPLIT 1 REGISTER P ! 0 REGISTER P ! \ store

the bytes of divisor
R> LINE-CTRL REGISTER P ! ; \ restore

line-ctrl reg. value

: LINE-CTRL! (c --)

LINE-CTRL REGISTER DUP >R P@ AND OR R>
P! ;

DECIMAL
:BAUD (n - -)
DUP 57600 U< NOT ABORT" Invalid baud rate"
MAGIC# ROT UM/MOD SWAP DROP BAUD! ;

: STOP-BITS (n --)
1- DUP 0 1 WITHIN? NOT ABORT" 1 or 2 allowed"
2 SAL STOP MASK LINE-CTRL! ; -

0 CONSTANT NO
1 CONSTANT ODD
3 CONSTANT EVEN

: PARITY
DUP 0 3 WITHIN? NOT ABORT" Bad parity type"
3 SAL PAR-MASK LINE-CTRL! ;

: BITS (c --)

5 - DUP 0 3 WITHIN? NOT ABORT" Bad bit
count ! "
BITS MASK LINE-CTRL! ; -

EXIT

\ Examples of use of 8250 control words
0 COM# ! 300 BAUD ODD PARITY 7 BITS

1 STOP-BITS
1 COM# ! 1200 BAUD EVEN PARITY 7 BITS

1 STOP-BITS
2 COM# ! 19200 BAUD NO PARITY 8 BITS

2 STOP-BITS
3 COM# ! 38400 BAUD NO PARITY 8 BITS

1 STOP-BITS

1 -
Volwne XI, Number 1 33 Forth Dirnensiom

HEX
3F8 COM-BASE The base I/O address of the first serial

port in a PC-type computer.

3 LINE-CTRL The offset in bytes from the COM-
PORT address to the 8250's line-con-
trol register.

. lC2 0 0 MAGIC# This number, when divided by the
number of bits per second, gives the
baud rate divisor.

Variable
CoMX A user variable in HS/FORTH. It stores the

corn port number in use (zero is the first
COM#).

I

I

1
Figure One. Constants and variables defined by the program.

Binary constants
PAR-MASK Mask byte to select "parity" control bits.
STOP MASKMask byte to select "stop-bits" control bits.
BITS~MASKMask byte to select "bits" control bits.

Xw
0 4H
0 1H
OOH
OOH
0 OH
OOH
OOH
OOH
0 OH
0 OH
OOH
0 OH

mui
17H
80H
COH
60H
40H
30H
20H
18H
OCH
0 6H
0 3H
02H

Figure Two. Table of baud rate divisors for the 8250 UART.

32-bit data stack
Tree structured scoping of dictionaries
Direct editing of dictionary structure
Tight binding of source and code
Automatic compilation
On-line help facility:
One key help from within editors
Context sensitive help on errors

Turnkey application generator
Complete debugging tools
Built-in heap memory management
Forth 83 to Fifth converter
Produces native code
8087 floating point processor support
Pointer validity checking during development

For IBM PC's with 128K, MS-DOS 2.0 or better
Professional Version: $250.00
Demo Disk: $10.00
System Source Code Available for

68000 Versions, call for information

Knowledge Based Systems Inc.
100 West Brookside
Bryan, TX 77801
(409)-846-1524

This advertisement was prepared using a PostScript compatible
interpreter written in Fifth, controlling a high resolution Laser Engine.
~ h . ~ T - . r L d M . b . s , m . I r .
MPWS L a rrdand T-rb dM- Cerp
IBM In 8 *red Tde-ark .f I m b N - D u b a s M r h l a Corp

I I
Forth Dimensions 34 Volume XI, Numbe;

THE BEST OF
GENIE

O n e of the 'Best of GEnie' columns to
gamer the most interest appeared in the
SeptemberIOctober 1988 issue of Forth
Dimensions (Xl3). I think this is more than
understandable, since that column featured
the Real-Time Conferences on the GEnie
Forth RoundTable. We are interested in the
thoughts and philosophies of our fellow
Forthers.

To recap that column briefly: I dis-
cussed Leonard Morgenstern's excellent
Sunday night Figgy Bar, which addresses
fundamental Forth coding issues. I must
repeat, Leonard's knowledge and style
make this a most pleasant opportunity to
expand your ability to write Forth code.
Thursday night is the regular Figgy Bar,
where I attempt to maintain some sense of
order amidst mayhem. No rule is the rule
here, as long as the topics pertain to Forth.
Some wonderful discussions result despite
the din. One that comes to mind centered on
VMS (Virtual Mass Storage) for FPC
(Zimmer and associates' excellent F-83 for
PCs). The exchanges were wonderful.

The stars of theReal-Time Conferences
are our special guests. Guests since that
issue of Forth Dimensions have included
Mitch Bradley ("Forth in a Unix environ-
ment"), Lany Forsley ("Forth and the Fu-
ture"), Dr. C.H. Ting ("Forth and Zen"),
and Larry Forsley ("Forth in Publica-
tions"). I will conclude this conference
series in the next issue with synopses of
conferences that have featured George
Shaw, Mike Perry, Randy Dumse, and Wil
Baden.

It should be clear, if you are not partici-
pating in these conferences, that you are
missingout on a lot of Forth knowledge and
insight. As before, I will feature the guests'

- - -

GARY SMITH - LIlTLB ROCK, ARKANSAS
m

opening remarks for their respective con-
ferences.

Mitch Bradley
August 1988
Staff engineer with Sun Microsystem and
owner of Bradley Forthware.

<Mitch]> Sun Microsystems: Leading
supplier of technical workstations, has
grown to$l billion annual sales in six years.
I've been there since 1982 (employee #50.
now over 7500 employees).

Bradley Forthware: My home com-
pany. Supplies Forth for 680x0 machines
(Atari ST, Macintosh, Sun, others) and
SPARC machines (Sun, single board).

Past use of Forth at Sun:
"Unofficial" bring up standalone diag-
nostics.
A small number of Unix-based tools.

Current Forth work at Sun:
Developing new Forth-based firmware
for Suns; will probably become the stan-
dard firmware shipped with Suns some-
time in the future.
Forth is used as an interactive monitor
and as a CPU-independent language for
"plug-in" boot drivers (not Unix drivers;
they're still written in C).

My (perhaps) controversial beliefs:
Forth needs to "grow up."
The "minimalist" Forth philosophy is
responsible for Forth's relative lack of
success.
Screens suck.
Forth's portability problems are due to
disregard of reality.
C has its advantages.
Forth chips are no big deal.

Larry Forsley
October 1988
Director of the Institute for Applied Forth
Research.

<[larry]> Forth and the Future. First,
what is the future of computing? Proce-
dural languages, non-procedural lan-
guages, expert systems, neural networks,
artificial intelligence?

Perhaps we're heading for augmented
intelligence, where the computer is an
amplifier. Ah, convergence between Forth
and the Future. Chuck Moore speaks of
Forth as an amplifier for good and bad
programmers and applications alike.

What is Forth? Who is Forth for? What
does Forth do best? What do we want to do
with it? And a paradox ... "Forth is like the
Tao. It is a way which is realized when
followed. Its fragility is its strength. Its
simplicity is its direction."

Given all this, I propose some trends
I've observed and wish discussion upon.
Unlike UNIXIC, Forth hasn't hit well with
academia without students growing up to
be employed like their parents. We lack
Reaganomics as an economic engine.
Without that engine, the military doesn't
want us, either. If the military doesn't want
us, we're not real; unlike well-fed physi-
cists, and more like hungry biologists. This
community has kept its minds clean, but
hasn't yet had opportunity.

Dr. C. H. Ting
October 1988
Software engineer with Maxtor.

<[ting]>Let me start by quoting Dr. Lin
Yu-Tang, a famous Chinese modem
writer, "A man's speech should be like
girls' skirts. None preferred." If have to,
the shorter the better.

Volume XI, Number 1 35 Forth Dimensionr

I
Forth Dimensions 36 Volume XI, Number 1

c[Gary]>ReadthefilePREZEN2.TXT
to receive full benefit of Dr. Ting's topic
intent. The notes follow:

Welcome to this Zen and Forth Confer-
ence. What I like to focus on tonight is the
religious aspect of Forth. Zen is the relig-
ious development in China which shares
many characteristics with Forth. I would
like to use it to open our discussion.

Zen siresses simplicity. Enlightenment
is not as complicated as traditional Bud-
dhism leads you to believe. It is not in the
documentation. It is not in the established
practices. It is in yourself. You have it
already. But you have to discover it your-
self. It is alsoan experience, which can only
be passed from mouth to mouth and from
heart to heart, not by books or written
words. It became an oral tradition.

Forth is the Zen of computing.

Background of Zen in China:
Over hundreds of years, Buddhism

spread into China from India. Tons of lit-
erature was translated, most so badly that
only the priesthood could make sense of it.
Lots of temples and monasteries were es-
tablished. Millions were led to believe they
could attain enlightenment and a better
second life by certain practices and rituals.

The Zen masters found that thebest way
to attain enlightenment was not through
study of literatm, not through established
rituals, but by ridding oneself of foreign
things. Meditation, hard physical labor,
occasional loud noises, and sometimes a
sharp blow on the head would precipitate
the enlightenment.

Zen became very successful in China
and Japan because it integrated the es-
sences of Buddhism and Taoism. The more
foreign Hindu influences were diluted, so
Zen grew more naturally in the Chinese
environment. It became the principal Far
Eastern philosophy dealing with the mean-
ing of life and provided a framework that
individuals could find happiness and satis-
faction in life.

Similarities between Zen and Forth:
They present their subjects in the sim-
plest ways, stripping away any irrele-
vant elements that hinder understanding
the essence of the subjects. Simplicity is
the most common trait
They broke away from massive estab-
lishments overloaded with church,
documentation, practices, and, unfortu-
nately , money.

Enlightenment is not derived from es-
tablished church, documentation, prac-
tices, or money.
Enlightenmentdoesrequirepersonalef-
fort. When personal effort reaches a
critical mass, enlightenment usually
comes in a flash.
They both started as oral traditions.
Documentation was considered un-
trustworthy, dangerous, and superflu-
ous.
They attracted feverish and loyal fol-
lowers, as well as opposition of similar
intensity.
They became fragmented as individuals
perceived their own brands of truth.
Standards committees were organized
to iron out differences, but never quite
succeeded.

Religious Experience in Forth Program-
mers:

The most intense form of religious
experience is enlightenment in Zen and
Buddhism,rebirth in Christianity,commit-
ment in marriage. etc.

Most Forth programmers had very
similar experiences that convinced them of
the righteousness of Forth. It generally
happens after the completion of a substan-
tial project, with the full understanding of
INTERPRET, figuring out what DOES>
does, or when seeing 'ok' from a system
one is building. Prior to that experience, he
generally has spent a couple of months
wing figure out why Forth works or why
his Forth does not work.

Casual Forth users, like taking a course
in Forth, generally do not have the intense
period of study and exploration to warrant
the enlightenment. Most of them drift away
at the next wind.

Let's open up the floor and see how
many people share a similar experience. I
am particularly interested in at which stage
you attained enlightenment, if you did. The
next question is: Is this experience transfer-
able to other people? Is this Forth disease
contagious?

It seemed that Forth was contagious in
'77-'80period due to the explosive growth
of FIG. It also seems that it is not conta-
gious now. Anybody care to comment?

Why is Forth Right?
Why isForthright,and why areallother

computer languages wrong? BecauseForth
is the essence of computing. Then, what is
computing?

Man created this machine, somewhat in
his own image, logically. He tried, but not
quite succeeded. Because he is too compli-
cated to be cloned by mechanical or elec-
tronic media. He wanted this machine, he
called it a computer, to do something use-
ful; that is, things he would otherwise have
to do himself. They include doing lots of
addition, multiplication, logic operations.
piloting an airplane, and guiding a missile.
Because the machine is of lesser 'intelli-
gence,' it must begiven precise, unarnbigu-
ous instructions.

The essence of computing is to give this
machine precise, unambiguous instruc-
tions. Why is Forth right? Because it is the
best vehicle to construct and to deliver
precise, unambiguous instructions to this
machine.

Forth consists of a set of instructions
that we call words, which Man can use to
make the Machine do what he desires,
within the capability of the Machine. This
is true for all other languages. But Forth
delivers the instructions directly to the ma-
chine (it interprets), and new instructions
can be constructed freely from existing
instructions (it compiles).

In Forth, Man is not programming the
Machine. He is designing a new Machine
by adding new instructions to it, so that the
Machine becomes a closer clone to his
image. Forth is right because it allows the
Machine to grow to be more like its master.

The Forth syntax is simple because the
Machine understands it best, and it is not
difficult for the Man to learn and to use. The
Man gets the best satisfaction if he means
what he says, because the Machine does
exactly what he says. Simple syntax does
not means weak syntax, as Forth syntax
fully supports the classical control struc-
tures and modularity touted by the propo-
nents of modem structured programming.

I like Bach's music, but I cannot play.
So I programmed my computer to play his
music for me. To program it became very
tedious, because I had to enter every note to
build a whole piece. I gave my computer a
scanner so it scans the music and converts
the score to notes it can then play for me.
The computer reads the music, very similar
to the way I read the music. It writes the
notes to a file, just as I would have written
them. I cloned a part of myself in my
computer. You can do it in any language,
but Forth let me do it in the shortest time.

(Continued on page 3 8 .)

REFERENCE SECTION

Forth Interest Group
The Forth Interest Group serves both

expert and novice members with its net-
work of chapters, Forth Dimensions, and
conferences that regularly attract partici-
pants from around the world. For member-
ship information, or to reserve advertising
space, contact the administrative offices:

Forth Interest Group
P.O. Box 823 1
San Jose, California 95155
408-277-0668

Board of Directors
Robert Reiling, President (ret. director)
Dennis Ruffer, Vice-President
John D. Hall, Treasurer
Terri Sutton, Secretary
Wil Baden
Jack Brown
Mike Elola
Robert L. Smith

Founding Directors
William Ragsdale
Kim Harris
Dave Boulton
Dave Kilbridge
John James

In Recognition
Recognition is offered annually to a

person who has made an outstanding con-
tribution in support of Forth and the Forth
Interest Group. The individual is nomi-
nated and selected by previous recipientsof
the "FIGGY ." Each receives an engraved
award, and is named on a plaque in the ad-
ministrative offices.

1979 William Ragsdale
1980 Kim Harris
1981 Dave Kilbridge
1982 Roy Martens
1983 John D. Hall
1984 Robert Reiling
1985 Thea Martin
1986 C.H. Ting
1987 Marlin Ouverson
1988 Dennis Ruffer

On-Line Resources
To communicate with these systems, set
your modem and communication software
to 300/1200/2400 baud with eight bits, no
parity, and one stop bit, unless noted other-
wise. GEnie requires local echo.

GEnie
For information, call 800-638-9636

Forth RoundTable (ForthNet link*)
Call GEnie local node, then type M710
or FORTH
SysOps: Dennis Ruffer (D.RUFFER),
Scott Squires (S.W.SQUIRES), Leona
Morgenstern (NMORGENSTERN),
Gary Smith (GARY-S)
MACH2 RoundTable
Type M450 or MACH2
Palo Alto Shipping Company
SysOp: Waymen Askey (D.MILEY)

BIX (ByteNet)
For information, call 800-227-2983

Forth Conference
Access BIX via TymeNet, then type
j forth
Type FORTH at the : prompt
SysOp: Phil Wasson (PWASSON)

LMI Conference
Type LMI at the : prompt
Laboratory Microsystems products
Host: Ray Duncan (RDUNCAN)

CompuServe
For information, call 800-848-8990

Creative Solutions Conference
Type !Go FORTH
SysOps: Don Colburn, Zach Zachar-
iah, Ward McFarland, Jon Bryan.
Greg Guerin, John Baxter, John
Jeppson
Computer Language Magazine Con-
ference
Type !Go CLM
SysOps: Jim Kyle, Jeff Brenton, Chip
Rabinowitz, Regina Starr Ridley

Unix BBS's with Forth cogerences
(Fortmet links*)

WELL Forth conference
Access WELL via CompuserveNet or
415-332-6106
Fahimess: Jack Woehr (jax)
Wetware Forth conference
415-753-5265
Fahimess: Gary Smith (gars)

PC Board BBS's devoted to Forth
(ForthNet links*)

East Coast Forth Board
703-442-8695
SysOp: Jerry Schifrin
British Columbia Forth Board
604-434-5886
SysOp: Jack Brown
Real-Time Control Forth Board
303-278-0364
SysOp: Jack Woehr

Volume XI, Number 1 3 7 Forth Dimensiom

Other Forth-specijic BBS's
Laboratory Microsystems, Inc.
213-306-3530
SysOp: Ron Braithwaite

This list was accurate as of March 1989. If
you know another on-line Forth resource,
please let me know so it can be included in
this list. I can be reached in the following
ways:

Gary Smith
P. 0. Drawer 7680
Little Rock, Arkansas 72217
Telephone: 501-227-7817

Fax: 50 1-228-027 1
Telex: 6501 165247 (store and forward)
GEnie (co-S ysOp, Forth RoundTable):

GARY-S
BIX (Bytenet): GARY S
Delphi: GARYS
MCIMAIL: 1 16-5247
CompuServe: 71066,707
Wetware Diver. (Fairwitness, Forth Con

ference): gars
Usenet domain.: gars@well.UUCP or

gar@ wet.UUCP
Internet: well!gats@lll-winken.arpa

WELL: gars

*Fortmet is a virtual Forth network
that links designated message bases in
an attempt to provide greater informa-
tion distribution to the usersserved. It is
provided courtesy of the SysOps of its
various links.

(Continued from page 36.)

The computer grows steadily, like a child,
but only one word at a time.

Larry Forsley
December 1988
Owner of DashFind Associates and pub-
lisher of the Journal of Forth Application
and Research.

c @ q] > Forth is going on towards 20
years. For the first several, it was totally an
oral tradition. FORTH, Inc. published
some early manuals. Two papers appeared
in the IEEE and astronomy literature, and
all was silence until Forth Dimensions,
FORML Conferences, the Journal of Forth
Application and Research, and Rochester
Conference Proceedings. Then Dr. Dobb's
Journal and the big one... BYTE magazine
1980 and their first language issue, which

happened to be on Forth.
As of two years ago, when last I

counted, there were about 2.000 references
to Forth in the literature. But are we writing
what we're doing more than before? Are
we writing to ourselves or toa larger group?

Early on, Elizabeth Rather womed that
the Journal would take good authors away
from the 'open' literature. Did that happen?
Who reads about Forth in Dobb's? And,
what about textbooks. Even with Brodie,
Winfield, Haydon, Kelly and Spies, and
Pountain, why isn't there a suitable col-
lege-level text that ties Forth into the rest of
computing?

<[Gary]> Larry: I know you were ap-
proached on this. Will you please, for once
and for all, respond to the non-performance

of [the Journal of Forth Application and
Research] this year. Where is it? What are
your plans to make good on purchased
volumes, and when?

c[larry]> Thanks for the chance to
respond. JFAR V,2 will be going to the
printer ... just before Christmas. It has
papers by Dress (neural nets), Grossman (a
solver for f(x)=O), Noble (on the death of
Fortran), Roye (exception handling),
Feucht (LISP and a new number system),
and a bit more. We have been held up
converting to an electronic system. We
now use Ventura Publisher and have found
the transition very painful. JFAR V,3 and
V.4 papers are now being processed. I
expect volume V to be finished by June
'89.

Forth Dimensions 38 Volume XI. Number 1

CHAPTERS
DOWN UNDER

We recently received an interesting
letter from hi Collins, the principal of
Fifth Generation Systems, Ltd. in Austra-
lia, which we reproduce here in part

"Dear Jack,
"Re: Forth Dimensions X/5, pg. 36 on
email to chapter coordinators.

"I am the Chapter Coordinator for the
Melbourne FIG Chapter and also the
SYSOP of our OPUS BBS. Our problem in
maintaining email contact with you is very
simple. It's lack of money. My problem is
that I am self-employed and don't have a
kind employer to pay my telephone bills.
The chapter members who can be relied
upon are in a similar situation. (The aca-
demics in our chapters who do have access
to things like USENET here are not reli-
able!)

"To put you in the picture about our
chapter, I should start from how things
were about a year ago. Meetings were held
monthly in a small hall (they still are) and
usually about ten people attended out of
about 400n our mailing list. Sometimes we
talked about Forth, but mostly it was a
general chat about micros. Nobody was ac-
tually doing anything in Forth. If my wife
had not kept booking the hall and providing
supper, the chapter would probably have
folded. I was not doing anything in Forth
because of a large software package I am
developing in Dataflex. In May, I attended
the first Australian Forth Symposium and
realised there were a lot of people out there
doing things in Forth who never have any-
thing to do with FIG Chapters.

I "With the promise of lots of support, I
agreed to organize a second symposium in
Melbourne this year. The first step was to

-- - --

JACK WOEHR - 'JAX' ON GEnie

I
Volume XI, Number 1 39 Forth Dimemions

legally incorporate our chapter and to set up
a bulletin board to facilitate communica-
tion between the symposium organizers.
(Incorporation because I found I was per-
sonally liable if someone had an accident at
one of our meetings. The situations pos-
sible from a two- to three-day symposium
for 200 people did not bear thinking about)
We have the board set up but the promised
support fororganizinga symposium did not
appear (see note on academics, above). So
there will not be an Australian Forth sym-
posium in Melbourne this year.

"About last November, I decided to
devote my efforts to getting the bulletin
board going and to let monthly meetings
die out if the members did not talk more
about Forth. The results so far have been
encouraging in two ways. First, thanks to a
large pile of disks from Jerry Shifrin, there
are many interesting files on the board and
about 15 people have paid up for BBS
membership; pretty good, as many have
had to buy a modem as well. (Chapter fees
are $20 for ordinary membership and $40
for full access to the bulletin board.) Sig-
nificantly, fiveof theseare from out of town
or interstate. (We have never before had
members outside of Melbourne, as we had
nothing to offer.)

"Secondly, by laying down the law at
chapter meetings, we are talking about
Forth again, peopleare showing their Forth
machines at meetings, and attendance is up
to 15 or more. The numbers may seem
small to you but we were starting behind
scratch, as we had probably driven a num-
ber of people away in previous years.
[Frankly, Lance, those numbers sound

, great to us!]
"Now weneedsome help. Iam unhappy

about the small amount of chat on [our FIG
Chaptercomputerbulletin] board. W e n d
someone to talk to. Seems to me, it is
critical that we become part of a wider
Forth conference so that our members can
see what is going on over there and that they
also can have an input ..."

Lance Collins
65 Martin Road
Glen Iris, Victoria 3146
Australia
BBS (03) 299-1787
Voice (03) 299-2009
When dialing from U.S.A., replace the (03)
with (61 3).

Lance's letter in interesting in several
aspects. First of all, Lance's experience
indicates that the general decline of what
we might call "clubbiness" in the Forth
community is not aphenomenon limited to
North America. Observation indicates that
it is difficult to draw people to computer
meetings in an era of our societies when
computers are extremely easy to come by.
Possibly the next generation of Forth chips
(SC32, 32-bit RTX) will bring 'em out
again in droves to see and touch the new
hardware.

Secondly, our personal experience at
the Denver FIG Chapter coincides with that
of Lance, in that a computer BBS is a
powerful communication tool helping to
keep the local Forth community from dis-
persing to the four winds. In Denver, our
Forth-83 class meets weekly, but the chap-
ter meetings are irregular. We all keep in
touch meantime via the RCFB.

Last but not least, it is disappointing to
hear that there will be no Australian Forth

Symposium this year. It seems that Forth
and the careers of professional Forth pro-
grammers are booming while organized
Forth social activity wilts on the vine. Do
we no longer need each other?

The Talmud, the 2200-year-old collec-
tion of Jewish aphorisms, says, "Student,
get thyself a companion in study!" Perhaps
our generation of Forth programmers has
graduated to success and we no longer feel
the longing for fellowship, exchange, and
mutual edification that we once felt, and
have grown comfortable limiting that ex-
change to the BBS medium.

If that is the case, our duty is clear: it is
time to induct the next generation of Forth
programmers into the fold. Where, please
tell me, where are we reaching out to the
millions of computer-aware youth of to-
day?

Jack Woehr
FIG Chapter Coordinator
well!jax@lll-winken.arpa
JAX on GEnie
SYSOP, RCFB: (303) 278-0364

(Continuedfiom page 12.)

If the mode is false (0). any key except
the space bar, return, escape, and up-
arrow will exit the program.
If you love complexity and high per-

formance, you could add the property of
typing over the display character and corre-
spondingly updating the RAM and byte
display.

Happy programming!

Allen Anway is a computer coordina-
tor at the University of Wisconsin at
Superior. His eldest daughter (of
three) is a third-generation physicist.

(Screens continued from page 11 .)

SCREEN # 041
(# 041 (Don't use this program!)
(ram-address --- > HEX -1 MODE !
: VVDUMP BASE GI HEX SWAP C SWAP BEGIN

BEGIN BEGIN [>R >R >R >R >R >R I
CLEAR B LAYOUT
XKEY DUP DUP 1B = SWAP B = OR

IF ." ENTER" -LF -LF BS DROP
4 HPOS ! 14 VPOS !

BEGIN XKEY CASE
8 OF << ENDOF
1B OF >> ENDOF
A OF vv ENDOF
B OF ENDOF
D OF 108 - [R> R> R> I REPEAT ENDOF
BL OF [R> R> R> I REPEAT ENDOF
1B OF 0 16 HVTAB CEOL

2DROP BASE ! EXIT ENDOF
DIGIT' 0 ENDCASE REPEAT

ELSE DUP D =
IF DROP 108 - ELSE BL -

IF 2DROP BASE ! EXIT THEN THEN
THEN REPEAT ;

DEC I MAL

Forth Dimensions 40 Volwne XI, Number 1

1 (Continued from page 4.) I I I
other of them will prove useful.
Betancourt's approach, especially his lazy
variables, will appeal to some; Yli-
Nokari's method will be easy for F83 users
to test; and Hayes' scope-based technique
may be the most clean h d versatile.

If you already have local variables and
flatly don't want to know any more about
them, turn to "Forth Needs Three More
Stacks." I don't know anyone who has five
stacks yet-who knows what it could lead
to?

The flyer announcing this year's Roch-
ester Forth Conference on industrial auto-
mation (June 20-25 at the University of
Rochester) contained an interesting note
from conference chairman Larry Forsley.
The conference schedule includes Dr. Ser-
gei Baranoff from the Leningrad Institute
for Informatika, with a speech titled "From
Russian, With Forth." If you haven't heard,
Forth is rumoured to have made significant
inroads behind the Iron Curtain-possibly,
in part, becauseof its capital performance in
limited address spaces. Dr. Baranoff is the

(Continued from page 15.)

: ARGUMENT
CREATE 2* C, ;CODE ... ;
An interesting note is that the ;CODE

part of LVARI ABLE should be nearly iden-
tical to the user variable code, except UP is
changed to 'LFRAME.

When comparing the execution speeds
of the second and third versions of HANOI,
the latter was about 20 percent faster. If
ARGS were written as above, the second
should be as fast or faster than the third. Un-
fortunately, I was unable to test it; anyone
care to comment?

The numbering scheme starts from one
instead of zero. This convention was
picked (controversial pun intended) be-
cause the numbering in stack diagrams-
and in human minds--also starts from one.

Since one of the design goals was not to
have complicated state-smart words, com-
piler security was not implemented. This
means that LOCALS and ARGS can be used

without really declaring them. In this case,
the closest upper-level frame is accessed.
i.e., the ARGS or LOCALS of the calling
word. This is considered a feature, not a
bug.

Finally, it seems that local variables are
not very useful in everyday work. since we
already have the stack for temporary val-
ues. Especially the words ~1 ... ~8 and @ 1
... @ 8 seem not to be very useful. However,
when there is need for large amounts of
temporary data, the local variables come in
handy.

References
[Bow821 S.A. Bowhill: "Fast Local Vari-

ables for Forth," FORML Pro-
ceedings 1982.

[Bar821 Paul Bartholdi: "Another Aid
for Stack Manipulation and Pa-
rameter Passing in Forth," 1982
Rochester Forth Conference on
Data Bases and Process Con-
trol Proceedings.

author of a 1988 Forth textbook in Russian,
about which Larry's flyer announces,'The
print run of 100,000 copies sold out in two
weeks, making this the most popular book
on Forth written." Move over, Starting
Forth, the Russians are coming.

-Mar l in Ouverson
Editor

[Mor84] Leonard Morgenstern: "An-
onymous Variables," Forth
Dimensions (VII1).

[Ros87] Peter Ross: "Local Variables,"
Forth Dimensions (1x14).

Jyrki Yli-Nokari wrote a Unix guide in
1985 and is a consultant in a major
Finnish software house, but he c laim
Forth as hisfirst 1ove.Asa 1981 school
project, he wrote a Forth-79 system
and utilities for the PDP-11; his
master's thesis was a multi-user,
multi-tasking Forth-83 for the 6809.

(Continued frompage 28.) 1 I

to list hiscases without worrying about how
many there are. Then, when he is done, he
can count them and pass the count to
CASES. It also allows nesting of the case
statement inside another case statement or
conditional or loop, without restriction.
Also, by virtue of the condition stack, the
case statement can be used in interpretation
mode.

Summary
By adding three stacks to a Forth sys-

tem-an auxiliary stack. a condition stack,
and a case stack-we can eliminate nine
primitives; eliminate the need for branch-
ing; and eliminate the restriction on the use
of conditionals, which then become regular
Forth words that can be used individually to
define other words and can be used in inter-
pretive mode. We can then have a simple

implementation of conditionals and case
statements, andcan reduce the potential for
errors.

Dr. Ayrnan Abu-Mostafa has imple-
mented these ideas in his obect-oriented
Forth (see 'Letters," this issue) on a
Prime minicomputer at California State
University.

L
Volume XI, Nwnber 1 41 Forth Dimensions

FIG
CHAPTERS

The FIG Chapters listed below
are currently registered as active
with regular meetings. If your
chapter listing is missing or incor-
rect, please contact Kent Safford at
the FIG office's Chapter Desk.
This listing will be updated in each
issue of Forth D k w n r . If you
would like to begin a FIG Chapter
in your area, write for a "Chapter
Kit and Application." Forth Inter-
est Group, P.O. Box 8231, San
Jose, California 95155

U.S.A.
ALABAMA
Huntsville Chapter
Tom Konantz
(205) 881-6483

ALASKA
Kodiak Area Chapter
Horace Simmons
(907) 486-5049

ARIZONA
Phoenix Chapter
4th Thurs., 7:30 p.m.
AZ State University
Memorial Union. 2nd floor
Dermis L. Wilson
(602) 956-7578

ARKANSAS
Central Arkansas Chapter
Little Rock
2nd Sat.. 2 p.m. &
4th Wed.. 7 p.m.
Jungkind Photo, 12th & Main
Gary Smith (501) 227-7817

CALIFORNIA
Los Angeles Chapter
4th Sat., 10 a.m.
Hawthorne Public Library
12700 S. Grevillea Ave.
Phillip Wasson
(213) 649-1428

North Bay Chapter
2nd Sat., 10 am. Forth, A1
12 Noon Tutorial, 1 p.m. Forth
South Berkeley Public Library
George Shaw (415) 276-5953

Orange County Chapter
4th Wed.. 7 p.m.
Fullerton Savings
Huntington Beach
Noshir Jesung (714) 842-3032

Sacramento Chapter
4th Wed., 7 p.m.
1708-59th St., Room A
Tom Ghormley
(916) 444-7775

San Diego Chapter
Thursdays, 12 Noon
Guy Kelly (619) 454- 1307

Silicon Valley Chapter
4th Sat., 10 a.m.
H-P Cupertino
Bob Bart (408) 435-1616

Stockton Chapter
Doug Dillon (209) 93 1-2448

COLORADO
Denver Chapter
1st Mon., 7 p.m.
Clifford King (303) 693-3413

CONNECTICUT
Central Connecticut Chapter
Charles Krajewski
(203) 344-9996

FLORIDA
Orlando Chapter
Every other Wed.. 8 p.m.
Herman B. Gibson
(305) 855-4790

Southeast Florida Chapter
Coconut Grove Area
John Forsberg (305) 252-0108

Tampa Bay Chapter
1st Wed.. 7:30 p.m.
Terry McNay (813) 725-1245

GEORGIA
Atlanta Chapter
3rd Tues.. 6:30 p.m.
Western Sizzlen. Doraville
Nick Hennenfent
(404) 393-3010

ILLINOIS
Cache Forth Chapter
Oak Park
Clyde W. Phillips, Jr.
(312) 386-3147

Central Illinois Chapter
Champaign
Robert Illyes (217) 359-6039

INDIANA
Fort Wayne Chapter
2nd Tues., 7 p.m.
I/P Univ. Campus, B71 Neff
Hall
Blair MacDermid
(219) 749-2042

IOWA
Central Iowa FIG Chapter
1st Tues.. 7:30 p.m.
Iowa State Univ., 214 Comp.
Sci.
Rodrick Eldridge
(5 15) 294-5659

Fairfleld FIG Chapter
4th Day. 8: 15 p.m.
Gurdy Leete (5 15) 472-7077

MARYLAND
MDFIG
Michael Nemeth
(301) 262-8140

MASSACHUSETTS
Boston Chapter
3rd Wed., 7 p.m.
Honeywell
300 Concord. Billerica
Gary Chanson (617) 527-7206

MICHIGAN
DetroitlAnn Arbor Area
4th Thurs.
Tom Chrapkiewicz
(313) 322-7862

MINNESOTA
MNFIG Chapter
Minneapolis
Even Month, 1st Mon.. 7:30
p.m.
Odd Month, 1st Sat., 9:30 a.m.
Fred Olson (612) 588-9532
NC Forth BBS (612) 483-6711

MISSOURI
Kansas City Chapter
4th Tues., 7 p.m.
Midwest Research Institute
MAG Conference Center
Linus Orth (913) 236-9189

St. Louis Chapter
1st Tues.. 7 p.m.
Thornhill Branch
Robert Washam
91 Weis Drive
Ellisville. MO 6301 1

NEW JERSEY
New Jersey Chapter
Rutgers Univ., Piscataway
Nicholas Lordi
(201) 338-9363

Forth Dimensions 42 Volume XI, Number I

* NEW MEXICO
Albuquerque Chapter
1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
Jon Bryan (505) 298-3292

* NEW YORK
FIG, New York
2nd Wed.. 7:45 p.m.
Manhattan
Ron Martinez (212) 866-1 157

Rochester Chapter
Odd month, 4th Sat.. 1 p.m.
Monroe Comm. College
Bldg. 7, Rm.102
Frank Lanzafame
(716) 482-3398

OHIO
Cleveland Chapter
4th Tues., 7 p.m.
Chagrin Falls Library
Gary Bergstrom
(216) 247-2492

Dayton Chapter
2nd Tues. & 4th Wed.. 6:30
p.m.
CFC. 11 W. Monument Ave.
#612
Gary Ganger (513) 849-1483

OREGON
Willamette Valley Chapter
4th Tues., 7 p.m.
Li-Benton Comm. College
Pann McCuaig (503) 752-51 13

PENNSYLVANIA
Villanova Univ. FIG Chapter
Bryan Stueben
321-C Willowbrook Drive
Jeffersonville. PA 19403
(215) 265-3832

TENNESSEE
East Tennessee Chapter
Oak Ridge
2nd Tues.. 7:30 p.m.
Sci. Appl. Int'l. Corp.. 8th F1
800 Oak Ridge Turnpike
Richard Secrist
(615) 483-7242

TEXAS
Austin Chapter
Matt Lawrence
PO Box 180409
Austin, TX 78718

Dallas Chapter
4th Thurs., 7:30 p.m.
Texas Instruments
13500 N. Central Expwy.
Semiconductor Cafeteria
Conference Room A
Clif Penn (214) 995-2361

Houston Chapter
3rd Mon.. 7:45 p.m.
Intro Class 6:30 p.m.
Univ. at St. Thomas
Russell Harris (713) 461-1618

VERMONT
Vermont Chapter
Vergennes
3rd Mon., 7:30 p.m.
Vergennes Union High School
RM 210, Monkton Rd.
Hal Clark (802) 453-4442

VIRGINIA
First Forth of Hampton
Roads
William Edmonds
(804) 8984099

Potomac FIG
D.C. & Northern Virginia
1st Tues.
Lee Recreation Center
5722 Lee Hwy., Arlington
Joseph Brown
(703) 47 1 A 0 9
E. Coast Forth Board
(703) 442-8695

Richmond Forth Group
2nd Wed., 7 p.m.
154 Business School
Univ. of Richmond
Donald A. Full
(804) 739-3623

WISCONSIN
Lake Superior Chapter
2nd Fri., 7:30 p.m.
1219 N. 21st St., Superior
Allen Anway (715) 394-4061

INTERNATIONAL
AUSTRALIA
Melbourne Chapter
1st Fri., 8 p.m.
Lance Collins
65 Martin Road
Glen Iris, Victoria 3146
03/29-2600
BBS: 61 3 299 1787

Sydney Chapter
2nd Fri., 7 p.m.
John Goodsell Bldg.. RM
LC19
Univ. of New South Wales
Peter Tregeagle
10 Binda Rd., Yowie Bay
2228
021524-7490

BELGIUM
Belgium Chapter
4th Wed., 8 p.m.
Luk Van Loock
Lariksdreff 20
2120 Schoten
031658-6343

Southern Belgium Chapter
Jean-Marc Bertinchamps
Rue N. Monnom, 2
B-6290 Nal i ies
0711213858

CANADA
BC FIG
1st Thurs.. 7:30 p.m.
BCIT. 3700 Willingdon Ave.
BBY, Rm. 1A-324
Jack W. Brown (604) 596-
9764
BBS (604) 434-5886

Northern Alberta Chapter
4th Sat., loam.-noon
N. Alta. Inst. of Tech.
Tony Van Muyden
(403) 486-6666 (days)
(403) 962-2203 (eves.)

Southern Ontario Chapter
Quarterly, 1st Sat., Mar.. Jun..
Sep.. Dec., 2 p.m.
Genl. Sci. Bldg., RM 212
McMaster University
Dr. N. Solntseff
(416) 525-9140 x3443

Toronto Chapter
John Clark Smith
PO Box 230, Station H
Toronto, ON M4C 5J2

ENGLAND
Forth Interest Group-UK
London
1 st Thurs., 7 p.m.
Polytechnic of South Bank
RM 408
Borough Rd.
D.J. Neale
58 Woodland Way
Morden, Suny SM4 4DS

FINLAND
FinFIG
Jame Kotiranta
Arkkitehdinkatu 38 c 39
33720 Tampere
+358-31-184246

HOLLAND
Holland Chapter
Vic Van de Zande
Finrnark 7
3831 JE Leusden

ITALY
FIG Italia
Marco Tausel
Via Gerolamo Forni 48
20161 Milano
021435249

JAPAN
Japan Chapter
Toshi Inoue
Dept. of Mineral Dev. Eng.
University of Tokyo
7-3-1 Hongo, Bunkyo 113
812-21 11 x7073

NORWAY
Bergen Chapter
Kjell Birger Faeraas,
47-518-7784

REPUBLIC OF CHINA
R.O.C. Chapter
Chin-Fu Liu
5F, #lo, Alley 5, Lane 107
Fu-Hsin S. Rd. Sec. 1
Taipei, Taiwan 10639

SWEDEN
SweFIG
Per Alm
46/8-92963 1

SWITZERLAND
Swiss Chapter
Max Hugelshofer
Industrieberatung
Ziberstrasse 6
8152 Opfiion
01 810 9289

SPECIAL GROUPS
NC4000 Users Group
John Carpenter
1698 Villa St.
Mountain View, CA 94041
(415) 960-1256 (eves.)

Volume XI, Number 1 43 Forth Dimensions

1989 ROCHESTER FORTH CONFERENCE
ON

INDUSTRIAL AUTOMATION
The Conference is sponsored by the Institute for Applied Forth Research, Inc., and will be held
June 20-25,1989 at the University of Rochester in Rochester, New York in cooperation with the
Department of Physics and Astronomy, of the University of Rochester and the IEEE Computer
Society. This is the ninth Rochester Forth Conference and it is sponsored by Dash, Find Associates,
Harris Semiconductor, Mikrap, Miller Microcomputer S e ~ c e s , and the NASA Goddard
Spaceflight Center.

Special Guest Lecturer

Dr. Sergei Baranoff, Leningrad Institute for Informatika, Leningrad, USSR,
"From Russia with Forth"
Dr. Baranoff is the 1988 author of the first Forrh textbook in Russian. The print run of 100,000 copies sold out in 2 weeks,
making this the mast popular book on Forth written.

Invited Speakers

Don Berrian, Chief Engineer,Varian/Extrion Beverly Operation, Beverly, MA,
'%brrh-based Control of an Ion Implanter"

Klaus Flesch, VP Engineering, FORTH Systeme - Angelika Flesch, Breisach, FRG,
"SwissFORTH, A Development and Simulation Environment

for Industrial and Embedded ControNers"

Bob McFnrland, President, Digalog, Ventura, CA,
": Cel lmate/Tool box

HardwareISoftware
WorkstationILanguage DOES>
Automotive/Aerospace
Powertrain/Vehicle Development/Testing ;"

Jim Reda, VP Engineering, VIDEK, Rochester, NY,
"An Application Specifc Machine Viiwn System"

Dean Sanderson, Chief Programmer, Forth, Inc., Hermosa Beach, CA,
"Events and Objects: hdushial Control by Hierarchical Decomposition"

Additional Presentations
Harris Semiconductor will present a seminar including papers by current users of the RTX 2000.
There will be vendors exhibits, demonstrations and poster sessions.
Vendors are welcome. Please contact us.

HOUSING a n d TRAVEL
Registration, hotel or dormitory housing call (716)-235-0168.
USAir is the Conference airline and Stewart and Benson are the Conference Travel Agents.

Unrestricted fares 40% off coach
restricted fares 5% off supersaver or best rate available.
Call Ms. Barbara George collect at (716)-244-9300.

MORE INFORMATION
Lawrence P. Forsley, Conference Chairman Voice: (716)-235-0168
Institute for Applied Forth Research, Inc. Fax: (716)-328-6426
Box 100 70 Elmwood Avenue Email: L.Forsley on GENie;
Rochester, NY 14611 LFORSLEY

on BIX and DELPHI

Forth Interest Group
P.O.Box 8231
San Jose, CA 95 155

Second Class
Postage Paid at
San Jose, CA

